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Introduction

Suppose we have a symplectic manifold (M, w). From differential topology, we have a cohomology ring H*(M).
However, this does not take into account the symplectic structure of (M, w). Instead, we can deform the ring
structure, by considering J-holomorphic spheres which pass through the given homology classes. This gives us
a ring QH*(M, w), called the quantum cohomology ring. In chapterm we will define this ring, subject to some
technical conditions which simplify the theory. In the process, we will introduce some basic pseudoholomorphic
curve theory, such as Gromov's compactness theorem.

Next, in chapter [l we introduce very briefly Hamiltonian Floer homology. This is a variant of Morse
homology, where the critical points correspond to 1-periodic orbits under a Hamiltonian flow. This has a
natural ring structure, by considering pairs of pants which join 1-periodic orbits. To conclude the section, we
show that the quantum cohomology ring is isomorphic to the Hamiltonian Floer homology ring.

The second half of the essay is about the Seidel representation, which is a group homomorphism

70(G) — QOH* (M, w)*

where G is a covering space of the group of smooth based loops in Ham(M, w). In chapterlml we will define
the Seidel representation. We do this by defining an action of G on Hamiltonian Floer homology, then using
the isomorphism we defined in chapter [ to define the Seidel representation.

We finish the essay with two worked examples. In chapter [V} we use the Seidel representation to show
that an element in y(Ham(M, w)) has infinite order. In chapter [V] we will use the Seidel representation to
find relations in the quantum cohomology ring of a toric manifold, and compute the quantum cohomology ring
of some examples.

To conclude this introduction, we make some remarks about the analytic aspects of the theory. Defining
these structures usually involves counting the number of solutions to an elliptic partial differential equation. In
turn, this involves constructing a moduli space of solutions, perhaps up to a generic choice of perturbation. We
will either show that the moduli space is zero-dimensional, and so we can count the number of solutions, or
we will intersect the moduli space with a manifold of complementary dimension.

For the most part, we will not discuss the analytic details, and we will instead focus on the geometric
aspects of the theory.

Notation

In general, the notation that is used in the essay is either standard, or introduced in the text. However, we will
use the following:

e a manifold will be smooth, and may or may not have boundary.

e If X is a compact oriented manifold (or more generally, has a fundamental class), and f : X — Y is a
continuous map, we will write
[f]:= £]X] € H(Y)

e For spaces where Poincaré duality hold, PD will be used to denote both maps in the isomorphism.
e P" = CP" is complex projective space.

e we will omit the Hurewicz map, and consider (M) as a subgroup of Hy(M).

Note (June 25 2024) after submission:
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For the benefit of the reade we include a dependency graph of the sections of this essay. This only includes
the first three chapters, where we are developing the theory. The last two chapters are independent of eachother,
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Chapter |

Quantum cohomology

.1 Introduction

Let M be a compact oriented manifold, and let H*(M) be its cohomology ring. Let X,Y C M be compact
oriented submanifolds, intersecting transversely. Under Poincaré duality,

PD[X] — PD[Y] = PD[X N Y]

That is, the ring structure on H*(M) is given by the intersection of submanifolds.

Now let (M, /) be an almost complex manifold. We would like to define a ‘deformed’ ring structure on M.
Let a, b, c € H.(M) be cycles. We will define the coefficient of ¢ in the product of a and b to be the number
of J-holomorphic spheres passing through a, b, c.

The associated ring is called the quantum cohomology ring QH*(M). More precisely,

Definition 1.1.1. A J-holomorphic curve u is a smooth map P' — M, such that
Jodu=duoj

where j is the complex structure on P'.



Since PSL(2,C) acts triply-transitively on P! by Mébius transformations, it is equivalent to count the
number of J-holomorphic curves u, with

u(0) € a,u(1) € b and u() € c.
For A € Hy(M), define the moduli space
M(A, J) = {u: P" — M J-holomorphic curve with [u] = A}

and we have an associated evaluation map

We would like to consider the intersection of ev(M(A, J)) with a x b x ¢, and we can use the intersection
number to define the quantum cup product.

To define the homology class, we would like M(A, J) to be a compact oriented manifold. In this case,
M(A, J) has a fundamental class, which we can push-forward using ev. For a generic choice of J, M(A, J) is a
finite-dimensional oriented manifold. On the other hand, in general it is not compact.

Understanding the non-compactness of the moduli space will lead us to Gromov's compactness theorem,
where we see that a sequence of J-holomorphic curves can degenerate via bubbling. Once we have this, we
will see that the points which we need to add to ev(M(A, J)) to make it compact has codimension at least 2,
assuming a technical condition called monotonicity. Once we have this, we will have an associated homology

class.
Throughout, we will follow [MS94).

.2 Pseudocycles

First of all, we will need to define a generalisation of cycles in homology, called pseudocycles. The main
purpose is to allow for non-compactness, as long as the strata which we need to add to make the space compact
has codimension at least 2.

[.2.1  Definitions
Let M be a compact manifold, with dim(M) = n.

Definition 1.2.1. A subset B C M has dimension at most k if there exists a manifold V¥, and a smooth map
g:V — M, with B C g(V). We will denote this by dim(B) < k.

For a smooth map f: V — M, let
Q= () f(V\K)

KCV compact

be the set of all limit points of sequences f(x¢), where (x¢) C V is a sequence with no convergent subsequence.
Intuitively, we can think of Q as the boundary “at infinity" of f(V/).

Definition 1.2.2. Let V be a k-dimensional oriented manifold. A smooth map f : V' — M is called a pseudocycle
if dim(Qf) < k — 2.

Definition 1.2.3. Let fo : Vo — M, f1 : Vj — M be pseudocycles. They are bordant if there exists a (k + 1)-
dimensional manifold W, with oW = V; — V4, and a smooth map F : W — M, such that

[ ] F|\/0:f0
[} F|\/1 :f1
o dim(Qf) < k—1



[.2.2 Intersections
Definition 1.2.4. Pseudocycles e : U — M, f : V — M are transverse if:
e Q.Nf(V)=e(UNnQr =g,
o if e(u) = f(v) = x, then T\M = im(de(u)) + im(df(v)).
As with the intersection of submanifolds, if e and f are transverse, then
{(u,v) | elu) = 1)} C U x V
is a compact manifold of dimension dim(U) + dim(V) — dim(M).

Proposition 1.2.5 ((MS94] Lemma 7.12]). Lete: U — M, f:V — M be pseudocycle, with dim(U) + dim(V) =
dim(M). Then

(i) There exists a non-meagre subset D C Diff(M), such that for all ¢ € D, e is transverse to ¢ o f,
(it) If e and f are transverse, then {e(u) = f(v)} is a finite set. Define
e-f= Z v(u,v)
e(u)=f(v)
where v(u, v) is the intersection number of e(U) and f(V) at e(u) = f(v).
(iii) e - f only depends on the bordism classes of e and f.

This is a generalisation of standard results in differential topology. For (ii), we have that if X, Y are
compact oriented submanifolds, of complementary dimensions and intersecting transversely, then X N Y is
a compact zero-dimensional manifold, and so it is a finite set. For (iii), if we have 07 = Z; — 2y, with
dim(Z) 4+ dim(X) = dim(M) + 1, and assuming the intersection is transverse, we get that Z N X is a 1-manifold
with boundary 0Z N X = Z; N X U Zy N X. Thus, when we count the boundary points with orientation, we get
that the intersection numbers are the same.

1.2.3 Representing homology classes

Let B € Hy(M; Z) be an integral homology class. We can represent this by a map f : P — M, where P is a
finite oriented simplicial complex without boundary, and so P has a fundamental class. In this case, B = [f].
Now consider V' to be the union of the d and d — 1 dimensional faces of P. V is a smooth manifold, and let
f’: P — M be a continuous approximation of f, which is smooth on V. In this case,

Qp = f(P\ V)

and so f’ defines a pseudocycle.
Note that any two choices of " are bordant, and so if e : U — M is an n — d dimensional pseudocycle, we
have a well defined homomorphism

b HyMZ) = Z
(B =e-f'

With all of this in mind our goal will be to define the moduli space M(A, J) and the evaluation map ev, and
to show that ev(M(A, J)) is a pseudocycle.

.3 Moduli space of curves

Let (M?", J) be an almost complex manifold, and let A € Hy(M) be a homology class.

Definition 1.3.1. A map v : P' — M is simple if it does not factor as u = vo ¢, where ¢ : P! — P! is a degree
d > 1 map, and v: P' — M is a smooth map.

Definition 1.3.2. The moduli space of curves is

M(A, J) = {u:P" — M| u is J-holomorphic and simple, with [u] = A}



Remark 1.3.3. We require the maps to be simple, as we will want to perturb the almost complex structure J
locally. If the map was not simple, then we will need to perturb J at several places at the same time. We may
not be able to assume transversality in this case.

The requirement for a smooth map v : P' — M to be J-holomorphic is a first order linear elliptic PDE
given by the Cauchy-Riemann equations. This can be represented as a section of an appropriate vector bundle,
which we will now define.

Definition 1.3.4. A smooth map v : P! — M is somewhere injective if there exists zy € P! such that
du(z) #0 and v '(u(z)) = {20}
Remark 1.3.5. If a J-holomorphic curve is somewhere injective, then it is simple.

Let X denote the set of all smooth maps u : P! — M, which satisfy [u] = A and are somewhere injective.
We can view X as an infinite-dimensional manifold, with tangent space

Tu&X =T (" TM) = {<(2) € Ty M}
given by smooth vector fields along u. Now consider the vector bundle £ — X, with fibres
o = QY (" TM),
given by J anti-linear 1-forms on P! with value in u*TM.

Definition 1.3.6. For a smooth map v : P! — M, define
- 1
O =5 (du+Joduoj) € Q"N TM) = &,

for the complex anti-linear part of du.

Note that v is /~holomorphic if and only if 9,u = 0. The differential operator 0, defines a section of £, and

we have that M(A, J) = 5]1(0). Thus, to show that M(A, J) is a smooth manifold, we will need to show that
we have a transverse intersection, and then we can appeal to the implicit function theorem.
The first step is to linearise the operator. Let m, : Ty 0 = T,X ® & — &, be the projection map, and
define
Dy M(u'TM) = Q¥ (" TM)
via

Dy

T,X &

dd;(u) T
Twoé€

Transversality is equivalent to requiring D, to be surjective for all v € M(A, J). Computing, we find that D, is
a first order elliptic differential operator. In particular, it is Fredholrrﬂ and from Riemann-Roch, it has index

index(Du) = 2n + 2¢1(u*TM).

For a specific choice of J, M(A, J) need not be a smooth manifold. Suppose (M, w) is a symplectic manifold.
Let J = J(M, w) be the space of w-compatible almost complex structures, equipped with the C* topology.
We will let J vary in J. For a generic choice of J, M(A, /) will be a smooth manifold.

Definition 1.3.7. A pair (u, /) is regular if D, is surjective. For A € Hy(M), let Jeq(A) be the set of / € J
such that (u, J) is regular for all v € M(A, J).

A bounded linear map T : X — Y between Banach spaces is Fredholm if ker(T) and coker(T) are finite dimensional, and T(X) is
closed. The index of T is
index(T) = dim(ker(T)) — dim(coker(T))



Regular in this context can be considered to be a version of reqular values from differential topology. In the
finite dimensional case, we have Sard's theorem, which states that the complement of the set of regular values
has measure zero. However, measure zero does not (a priori) make sense on an infinite dimensional manifold,
and thus we will need to consider a generalisation, called the Sard-Smale theorem, which states that the set
of reqular values is non-meagre, in the sense of Baire category.

Once we have a regular value, in finite dimensions we have an implicit function theorem, which shows that
(for example) the zero set is a submanifold. There is a natural generalisation to the case when the differential
is a Fredholm operator. Combining these two statements, we obtain the following theorem:

Theorem 1.3.8 ((MS94] Theorem 3.1.2)). Jweq(A) € J is non-meagre. For | € Jweq(A), M(A,J) is an oriented
smooth manifold of dimension 2n + 2¢4(A).

Example 1.3.9. Consider the case M = P2 Let L € H,(P?) be the class of a line. In this case, ¢;(L) = 3. Note
that by the degree-genus formula, the only curves which are biholomorphic to P! are lines and conics. We then
have that

dim(M(L, J)) = 4+ 6 =10
dim(M(2L, /) = 4 + 12 = 16.

These are larger than what we would expect. The moduli space of lines in P? is P2, and the moduli space of
conics in P? is P°. Thus, we would expect the real dimensions to be 4 and 10 respectively.

The reason for the difference is as follows: The moduli spaces we constructed from algebraic geometry are
for unparametrised curves, but the moduli space M(A, J) is for parametrised curves. In particular, Aut(P') =
PSL(2, C) acts on M(A, J) by reparametrisation. One can show that dim¢(PSL(2, C)) = 3. Thus, when we
quotient out by the action, we get the expected dimensions.

In the introduction, we chose three marked points (0, 1, 00) on P!, and since three points determine a Mébius
transformation, this is another way of quotienting out by the action of PSL(2, C).

Next, we will show that the resulting space does not depend on the choice of / € Jeq(A) in an essential
way. Let Jo, )1 € JreglA), and let (Ji)ieo,1) € J be a smooth path connecting Jy and J;. Define

MA ) = || MA )

t€]0,1]
In general, M(A, J;) can be sinqular.

Theorem 1.3.10 (]MS94, Theorem 3.1.3]). For a generic choice of (J;), M(A, (Jt)) is an oriented smooth manifold
of dimension 2n + 2¢1(A) + 1, with boundary

OIM(A, (J1)) = M(A, J1) — M(A, J)

Thus, we have a cobordism between M(A, Jy) and M(A, J;). However, for this to be of use, we will need to
establish some form of compactness, which we will do in the next section.

.4 Bubbling
.41 Energy

Let J € J(M, w). Then we have an associated Riemannian metric
glv.w) = wlv, Jw)
on M.
Definition 1.4.1. Let u: ¥ — M be a J-holomorphic curve. The energy of u is

1
E(u) = 5 s |dul*dA,

where dA = wes is the area form on P



Lemma 1.4.2 ((MS12] Lemma 2.2.1]).
E(u) = /]Pﬂ u'w = w(ul)

In particular, it depends only on the homology class of u.

Proof. We will compute the integrand locally. Let z = x + iy be the complex coordinate on an open subset of
C CP" Then

1 1
Slduf’dA = 5 (|ux\2 + |uy|2) dx A dy

1
= §|Ux + ]uyfzdx A dy — gluy, Juy)dx A dy

- 1
|Gu’dA + 5 (v, uy) + wfuy, Juy)) dx A dy

The first term vanishes as v is J-holomorphic, and the second term is just u*w. O

An important result in the theory of Sobolev spaces is Morrey’s inequality [Eva10, Section 5.6.2, Theorem
4], which states that for n < p < oo and u € C°(R"), we have

Hull coymay < CllUllpwrpmn

where y = 1 —n/p. This implies that we have a compact embedding W'?(R") — C%Y(R"). In our case, n = 2,
and translating the results to maps on P!, we get the following:

Theorem 1.4.3 (IMS94, Theorem 4.1.3)). Let p > 2. Suppose (uy) is a sequence of J-holomorphic curves, with
llullwip(ky bounded for all K C P compact. Then there exists a subsequence which converges uniformly with
all derivatives on compact subsets of P'.

However, when we only have control of the homology class, we have a W'? bound. This is the critical case
of the Sobolev embedding, and the theorem does not hold for p = 2. What we instead have is bubbling.

Example 1.4.4. For a € C fixed, consider the curve C, in P?, given by the equation xy = az*.

C, is a degree 2 curve, and so if [ € H,(P?) is the homology class of a line, then [C,] = 2L. Thus, the
energy is constant. When a is non-zero, C, is a smooth conic, and so it is homeomorphic to P'. On the other
hand, when @ = 0, we get xy = 0, which topologically is P! v P'.

The “complex picture” is

and the “real picture” is

CO -0

In this example. when we take the limit @ — 0, we obtained a ‘bubble’ P'. On the other hand, if we have
a, — a with a, # 0, then we have a sequence of smooth curves converging to a P!, and no bubble forms.



[.4.2 Cusp curves

Definition 1.4.5. A cusp curve u = (u', ..., uN) consists of J-holomorphic curves v/, such that if C/ = u/(CP"),
then for all k,
C'u---uck

is connected.

Lemma 1.4.6 (MS94, Remark 4.4.2]). If u is a cusp curve, then there exists a smooth, but not J-holomorphic
map v : P' — M parametrising it.

Definition 1.4.7. A sequence of J-holomorphic curves vy : P' — M converges weakly to a cusp curve u =
(u1 ,,,,, uN) if

(i) for each j, there exists ¢} & PSL(2,C), X/ C P finite, such that uy o ¢, converges to u/ uniformly with
all derivatives on compact subsets of P!\ X/,

(ii) there exists fx € Diff"(P') such that uy o f; converges in the C%-topology to a parametrisation v of u.
Suppose vy converges weakly to u. Then for k sufficiently large, uy is homotopic to
u'##V P M

which is defined by

In particular,

wud = _wlw) and ciffud) = )_al’).

From the first statement, we see that

E(u) = )_E()
J
and we can see this as energy "bubbling off”. This phenomenon was first observed for minimal surfaces in
ISUB1|, and it is related to the conformal invariance of energy.

Theorem 1.4.8 (Gromov's compactness, [MS94 Theorem 4.43)). Suppose | € J(M, w). Let uy : P! — M be a
sequence of J-holomorphic curves, with
sup E(ug) < o0
k

Then (ux) has a subsequence with converges weakly to a cusp curve u.
Corollary 1.4.9. Any sequence (ur) C M(A, J) has a sequence which converges weakly to a cusp curve.

Example 1.4.10. We continue with example 4.4 We can parametrise the curve by
[s: t]r[s2: at® : st].

In affine coordinates { = s/t, we have that
1 1
u(Q) = (cz,c)
a a

and

o1 = 128,

In particular, as a — 0, |u'({)| — oo near 0. In the limit, we see that this energy bubbles off, and we get a
cusp-curve in the limit.
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We can also view this as “pinching’, as illustrated in the following example:

Example 1.4.11. Define

un(z) = (z,n?z7 ) e P x P".

Then consider the loop
u,,(n71 619) _ (n71 8[6, n71 8719).

As n — oo, the loop shrinks to a point (0, 0), which is where the two components of the cusp curve meet.

Another corollary of Gromov's compactness theorem is the following:

Corollary 1.4.12. Suppose J € J(M, w). For fixed K > 0, there are only finitely many classes A € Hy(M)
with J-holomorphic representatives, and with w(A) < K.

Proof. Suppose not. Then we have an infinite sequence of curves (u,), each in a different homology class with
bounded energy. But by Gromov's compactness theorem, [u,] € H2(M; Z) is eventually constant. Contradiction.
O

Corollary 1.4.13. There exists a constant h > 0O, such that any non-constant J-holomorphic curve has E(u) > h.

Proof. Fix K sufficiently large such that there exists a J-holomorphic curve u with E(u) < K. By the previous
corollary, we have finitely many homology classes Ay, .. ., Ay, such that w(A;) < K and A; has a /-holomorphic
representative u;. If w(A;) = 0, then E(u;) = 0, and u; is constant. In this case, A; = [u;] = 0. Without loss of
generality, we may assume that Ay = 0. Thus, we can take

h=min{wA), ..., w(Ae)}-

1.4.3 Compactness of the moduli space

First of all, the non-compact group G = PSL(2, C) acts on M(A, J) by reparametrisation, and so M (A, J) cannot
be compact. Let C(A, J) = M(A, J)/G be the quotient space. We can use our understanding of bubbling to see
when C(A, J) is compact.

Definition 1.4.14. A homology class A JTz(ME is indecomposable if it cannot be written as A = Ay + - -+ Ax
(k > 2), where A; € m(M), with w(A;) > 0.

Theorem 1.4.15 ((MS94, Theorem 4.3.4)). Suppose A is indecomposable. Then C(A, J) is compact for all | €
J M, w).

Proof. We will show that it is sequentially compact. Let (ux) be a sequence in C(A, /). By Gromov's compactness

theorem, there exists a subsequence which converges to a cusp curve v = (u', ..., uM). In this case, we have
that A =[u"]+ -+ [uN], where each [u/] € (M) has positive energy.
But we assumed A was indecomposable, and so we must have N =1, and so u = u" € C(A, J). O

Example 1.4.16. Let M = P", with the Fubini-Study form. In this case, Hy(M) = Z - L, where L is the class of
a line. In particular, a degree d curve in P” has homology class dL. The above theorem implies that C(L, J) is
compact. On the other hand, example [:4:4] shows that in C(2L, J) is not compact.

Recall that we identify (M) as a subgroup of Ha(M) through the Hurewicz map.

i



1.4.4 Aside: Higher genus curves

In the definition of J-holomorphic curves, we have only considered the case of genus O-curves. However, a lot
of the theory still works for higher genus curves. The following example is inspired by the discussion of the
genus of a plane curve found in [Ara12, Section 1.5].

Example 1.4.17. Let C = V(f) be a smooth plane quartic, and let g = (x> + y> +2°)z. Now consider the pencil
ge=tf +(1—1t)g. Let GG =V(g¢), so G4 = C. As a curve, (p has two components: a smooth cubic and a line.
By Bézout, the cubic intersects the line in 3 points.

On the other hand, C; has genus 3. What we can see is that as t — 0, three circles on G shrink to a point,
and so we get a P'-bubbling off.

In general, the bubbles will all have genus 0, i.e. are P's. We can relate this to the genus of the curve as
follows:

Corollary 1.4.18. Let Cy = V(f4) be a smooth plane curve of degree d. Then the genus of Cy is

o — (d—1)2(d—2)'

Sketch. Consider the pencil
fd+1,z = tfyp1 + (1 - t)de

where fy defines a smooth plane curve of degree d. Let Cyi1r = V(fg41¢). In the limit as t — O, the smooth
plane curves converges to a cusp curve with two components, a smooth plane curve Cy of degree d and a line
L. Now LN Cy is d-points. By a version of Gromov's compactness for higher genus curves, Cy41 is homotopic
to the result when we connect L and Cy. Thus, the genus of Cyy1 is

Gd+1 =g +d.

The result then follows by induction. O

.5 Monotone symplectic manifolds

Definition 1.5.1. A symplectic manifold (M, w) is monotone if there exists A > 0, such that
w(A) = Aci(A)

for all A € m(M).

This is a form of positivity condition, and although this won't appear explicitly in any of the statements, it
is required for the “limiting” strata to be of lower dimension, and so the evaluation map defines a pseudocycle.

Definition 1.5.2. The minimal Chern number N of M is defined by
<Cq, JT2(/V/)> = NZ.

Example 1.5.3. Let M = P". The anticanonical bundle is O(n 4+ 1), and so the minimal Chern number is n + 1.
Moreover, ¢1 = (n + 1)[w], and so P" is monotone.

[.6 Evaluation map
In this section, we will define a homomorphism
L|JA’p . Hd(Mp,Z) — 7

forp=3,4,and d =2n(p — 1) — 2¢1(A)
Intuitively, fix a tuple z = (71, ..., zy) € (P") and cycles Z; € Hy (M;Z), with dy + -+ d, = d. We
would like to define

YaplZi, . Zp) = [{u e M(AJ) | ulz) € Z}}]

d is chosen such that for a generic choice of / and z, the right hand side is a finite set.

12



To make this precise, let / € Jieq(A), and so M(A, J) is a manifold of dimension 2n + 2c1(A). Consider the
evaluation map

evas,  M(A J) - MP
u—(u(zr), ..., u(zp)).

For a generic choice of J, eva;, is a pseudocycle. The limit points correspond exactly to cusp curves from
Gromov's compactness theorem, and these form the lower-dimensional strata of ev4;,(M(A, J)). With this, we
have an associated homomorphism

Y Hy(MP,Z) > Z

as in section 23] by choosing a smooth pseudocycle representing a homology class. Thus, we can define

LPAJ,Z(Z1 ,,,,, Zp) = LP(Z1 X - X Zd)
where X denotes the cross product in the Kiinneth theorem.
Theorem 1.6.1 ((MS94| Lemma 7.4.1]). W, is independent of the choice of ] € Jreq(A) and z € (P')P.

The usual arguments show that if Jo, i € Jreq(A) and zg, z1 € (P')", then evay, ., and eva, ,, determine
bordant pseudocycles, and so the associated homomorphisms are equal. With this, W, , is then well defined.

Example 1.6.2. Consider the case when M = P". Let L be the homology class of a line, H be the homology
class of a hyperplane. Then ¢1(A) = n + 1, and so when p = 3, we get

d=2n(2)—2n+1)=4n—2n—2=2n—2.

Thus, W (pt, pt, H) is well defined. This counts the number of lines through two generic points, intersecting
a generic hyperplane. One can verify that the standard complex structure on P" satisfies the transversality
requirements, and that W, (pt, pt, H) = 1 as expected.

Example 1.6.3. For example, in P2, if [ is the class of a line, we have that

Wy (pt, pt, pt, pt) = 1.

In algebraic geometry, five points determine a conic, but in the above, we only have four. To see this, the pair
(P', 2) is a marked curve. PSL(2, C) acts triply-transitively on P', and so when p = 3, they are all equivalent.
When p = 4, markings z, 7/ € (P")* are equivalent if and only if they have the same cross-ratio.

In particular, the space of all conics through four generic points gy, . . ., G4 has complex dimension 1, and
there exists a unique element in this space which sends z; to g;.

Remark 1.6.4. It is also possible to define W, , for different values of p. However, as we will only need p = 3
to define the quantum cohomology ring, and p = 4 to prove that the quantum product is associative, we will
not consider the general case.

[.7  Quantum cohomology

Assume that (M, w) is a 2n-dimensional compact monotone symplectic manifold, with minimal Chern number
N > 2. By rescaling w, we will assume [w] defines an integral homology class, with {w, m(M)) = 1. That s,
A=1/IN.

Definition 1.7.1. The quantum cohomology ring is the tensor product of graded rings

QH*(M) = H* (M) ® Z[q, g™
where deg(q) = 2N. Thus, QH*(M) consists of elements of the form

a= Z a;q"
=

where a; € HA=2N{(M).
Remark 1.7.2. Multiplication by g defines an isomorphism QH*(M) = QH**?M(M), and we have a Z/2N-
grading on QH*(M). Equivalently, we can define

OH'M) = HM)

j=k (mod 2N)

which gives us a Z/2N-graded abelian group. The Novikov variable g allows us to get a Z-grading.
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[.7.1  Quantum product
Definition 1.7.3. For a € HX(M), b € HY(M), define

axb= Z(CI * b)AqCW(A)/N c QHk+€(M),
A

This extends to a product on QH*(M). Here, (a x b)y € H<?=2aA(M) is defined as follows: for y &
Hito—2c,4 (M),

/(a x b)a = Wa(PD(a), PD(b), y).

We note that
deg(PD(a)) = 2n — k and deqg(PD(b)) =2n —7¢

and
(2n — k) +(2n = O) + (k + € — 2¢1(A)) = 4n — 2¢1(A)

and so the right hand side is well defined.
In the introduction, we claimed that the quantum product is a ‘deformation’ of the usual cup product. The
constant term is the case when A = 0. Since J is w-compatible, we have that for any u € M(A, J),

Thus, u is constant. In particular, Wo(Z1, Z2, Z3) is just the triple intersection number 2y - 2, - Z3. From this, we
see that (a % b)g = ab.

[.8 Associativity

Next, we will show that the quantum product is associative. Again, it suffices to consider the quantum product
of ordinary cohomology classes. Fix a € H/(M), b € H*(M), c € HY(M). For A € Hy(M), define

&n = PD((a * b)a) € Han2c,(4)—j—k (M)

With this, we have that
/((a * b) % c)p = Z Wg(<a—s, PD(c), 0)

0 B
First of all, we would like to find a pseudocycle with represents the homology class &. Fix z;, 22, z3 € P,
and consider the manifold
V={uve M) | uzn)ePD(a) uz) e PDb)}

with the map

f:vV-o-mM

u— u(z).

This defines a pseudocycle representing ¢a. Geometrically, 4 is the union of all curves in M(A, J), which pass
through PD(a) and PD(b). Thus, Wg5(&a, v, 0) counts the number of curves in M(B, J), which passes through
&a, v, 0. But by definition, every curve which meets &4 meets a curve in M(A, J), which passes through PD(a)
and PD(b). Thus, Wg(&4, v, 8) counts the number of cusp curves u = (u', u?), with [u'] = A, [u?] = B, such that
u' passes through PD(a), PD(b), and u? passes through y, d.
Let
Wagla, By, 8) = Wa(&a, v, 0)

where in the right hand side, to define &, we take a = PD(a), b = PD(B). Geometrically, W4 5 represents

14



We then have that

[ita6) < cls = Y ar_a(PDIo), POI) PDIC) 8)
B

Analogous to our definition of the quantum cup product, we can also define a triple product, via

P(a, b, c) = Z(a s b x c)aqtr AN
A

where

/P(a,b, ¢)a = Wa(PD(a), PD(b), PD(c), &)
0

The triple product is clearly skew-symmetric, and so it suffices to show the following:

Proposition 1.8.1 ([MS94, Lemma 8.2.4]).

Wal@,B.v,8) =) Waa sla. By o)
B

Sketch proof. Consider the evaluation map

ev, M(A, J) = M*
evz(u) = (u(0), u(1), u(co), u(2))

where z € C\ {0,1}. Wa(a, B, v, 0) counts the intersection between ev, and a x B x y x d. Diagrammatically,
this is

Consider a sequence (ux) in M(A, J), and a sequence (zx) in C converging to 0, such that
uk(0) € a, uk(1) € B, ug(oo) € vy and ug(zi) € 0.
We have two cases
(i) The sequences converge to different points.

(ii) The sequences uk(z¢) and uk(0) converge to the same point in y N 0.

15



In the first case, the derivative of wy must blow up near 0, and we obtain a bubble which meets y, d and lies
in a class B. In this case we get a limiting cusp curve corresponding to

Wa_gs(a,B;y, 0)
In the second case, the limit is a curve which contributes to
Wala, B,y N o) = Waola,B;v,9)

That it, we can think of this as bubbling off a curve with zero energy. Thus, if z is sufficiently close to 0, every
curve we count in Wa(a, B, v, 0) is counted in ) zWpa_p(a,B;y,0). O

1.9 Example - Projective space

To illustrate this theory, we will now compute the quantum cohomology of P”. We will revisit this in section|[V5)]
where we will use the machinery developed in this essay to compute it using a combinatorial description. For
now, we will compute it from the definitions.

Recall that

cpry 2P
HA(P") = (xpT1)
where p € H?(P") is Poincaré dual to a hyperplane. Let L € Hy(P") be the class of a line. The first Chern
class in this case is ¢1(L) = n+1,andso N =n + 1.
As a graded abelian group,
Z k even

0 kodd
Next, to define the quantum product, recall that we defined a homomorphism

Was : Hapooe (M Z) — Z.

QHA(P") = {

Thus, when A = mL, we have
W3 Hanompsy (M Z) — Z.

For this to be non-zero, we will need 0 < 4n —2m(n + 1) < 6n. Rearranging to get a constraint on m, we get

that )
0<m< n

2
n+1 <

and so m = 0,1 are the only possibilities. Thus, for a € HX(M), b € H/(M), we have that
axb=(axb)y+ (axb)yg=ab+ (ax*b)gq
as the constant term is the usual cup product. By definition, (axb);, € H**=20F (M), and so if k+¢ < 2(n+1),

then (a x b); =0, and so in this case, a x b = ab.
Let p = PD(P"") € H?(M). We claim that
pxp"=qeQH(M).
In this case, (p * p")o = 0 for degree reasons, and so we just need to show that (p* p"); =1 € HY(P"). Ho(P")
is generated by the class of a point, and so all we need to show is that

/(p*p”)L =1
pt

/(p +p"). = Wi(PD(p), PD(p"), pt) = WL(P"""], pt, pt).
pt

and this is 1, as computed in example [[6.7 In general, one can show that for k +¢ > n + 1,

pk x pé _ pk+€7(n+1)‘

But we have that

To conclude, we have that

OH(B") = Zp, q*']

(p!=q)
which we can view as a deformation of the cohomology ring of P, since if we set ¢ = 1, then we get
Zp]
<pn+1 — ’|>
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Chapter |l

Hamiltonian Floer homology

In this chapter, we will discuss the construction of Hamiltonian Floer homology. The starting point for Hamil-
tonian Floer homology is the study of 1-periodic orbits of a Hamiltonian vector field, inspired by the Arnol'd
conjecture. The description in this chapter is a mix of the material from [Sei97] and [MS94]. In particular, in
IMS94; Chapter 10], they define Hamiltonian Floer cohomology. In this case, the difference is in the grading,
and won't affect any of the results.

Let (M, w) be a compact monotone symplectic manifold of dimension 2n.

Definition 11.0.1. The free loop space of M is
AM = C*=(S', M)
and LM C AM is the space of all contractible loops.

Hamiltonian Floer homology can be considered as an infinite-dimensional version of Morse homology,
performed on LM. A reference for Morse homology in the finite-dimensional setting is [Nic11].

[I.1 Covering space

Consider pairs (v, x) € C®(D?, M) x LM, such that x = v|yp>. We can define an equivalence relation ~, where
(vo, x0) ~ (v1, x1) if X0 = xq, and
w(vo#Vy) = ci(v#v) =0

Here, w#v7 : S? — M is defined by

Let LM be the set of equivalence classes under ~. The projection map p[v, x| = x defines a covering map

LM — LM.

Let
(M)

[ = ————.
w=c1=0

For @ € m(M), w(a) and ¢q(a) only depends on its equivalence class in . Thus, for y € ', we can define
w(y) and cq(y). In particular, ' is the deck group for the covering map p.
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[I.2  Floer chain complex

Let H € C>°(M x S',R) be a 1-periodic Hamiltonla Let Xi(t, x) be the associated Hamiltonian vector field.
Then we have an action one-form on LM, given by

an(x)(S) = / w(x(t) = Xp(t, x(1)), <(1))dt.
S‘\
The zero set of ayy consists of the 1-periodic solutions to
X(t) = Xu(t, x(1)).

The pullback p*ay is exact. That is, p*ay = day, where

aplv, x| = 7/02 Viw + /S1 H(t, x(t))dt.

let Z = {ay = 0} € LM. Then Crit(ay) = p~'(Z) is the set of critical points of a;. We will assume all
critical points are non-degenerate, in the sense of Morse theory. Thus, for ¢ € Crit(ay), we have an associated
index ppy(c) € ZMS94} Section 10.1, p. 155]. Let Critg(ay) denote the set of critical points of index k.

Definition I1.2.1. The Floer chain complex CF(H) is the group of formal sums
> mex
ceCrity(ap)

with {c € Crite(an) | me # 0, ap(c) > C} finite for all C € R, and x° is a formal variable. To avoid issues
with orientation, we will use Z/2 coefficients in this chapter. That is, m. € Z/2.

As in Morse homology, the boundary maps will be given by counting flow lines between critical points.
Let ] = (Ji)iest be a family of almost complex structure on M, with J; € J(M, w) for all t. This induces a
Riemannian metric on LM, given by

(&) = [ wlé0 g0yt

Pulling this back to LM and computing, we find that v : R — LM is a flow line of —Vay, if and only if
u=pouis a solution to the Floer equation

8+ hfuls. 1) (5 = Xl (s, 1)) =0
(s,t) ERx S'

Remark [1.2.2. The Floer equation can be viewed as a perturbed Cauchy-Riemann equation. When H = 0, the
Floer equation is the Cauchy-Riemann equation. In particular, it is a first-order elliptic PDE.

Analogous to the finite-dimensional setting, if v is a solution to the Floer equation, with

E(u) = /

then there exists c_, c¢; € Crit(ay), such that

2
< o0

(lu
ds

lim U(s) = cx.
S—=+00

For c_, ¢y € Crit(ap), let M(c_, cy; H,]) be the space of solutions with have a lift u, with limits c_, c;. R
acts on M(c_, c4+; H,]) by translation in the s-direction. We then define for c_ & Crity(ap),

o)=Y Ml HR] X

¢y €Critg—1(ap)

Definition 11.2.3. The Hamiltonian Floer homology of (M, w) is the homology of the Floer chain complex,
denoted HF (M, w).

This exists for a generic choice of H and J, and is indepenent of the choice.

TWe will identify S" = R/Z throughout.
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[I.3 Pair-of-pants product

Consider the punctured surface £ = (R x S')\ (0;0). We can think of this as a pair-of-pants, via
e RoxS'>¢

1 1
(s, t)— Zezm cos(2st), Zezm sin(2srt)

This defines a cylindrical structure near the puncture, as shown in the diagram below.

For u: L — M, we will write u® = uoe. Suppose u € C®(L, M), vy € C=(D?, M) are such that

lim w®(s, ) = volap2
then these two glue to a smooth map u#v : > M. Identifying T=RxS" we get a path R — AM. On
the two ends of ¥, u#v has the same limits as u. Geometrically, we can attach a disc to one of the ends of £,
which gives a cylinder.

For c_,cp, ¢t € LM, we say that u € C*(X, M) converges to (c_, co, c4) if

[ ]

m (s, ) = ples)
[ ]

lim (s, ) = p(co)

e for cp = [w, xo0], uFw has a lift LT#VQ ‘R — LM with limits c_,Cy.

The appropriate version of the Floer equation in this case are

Z—Z(s, t)+ Jsi(u(s, t) ((;Ltl(s t) — Xul(s, t, u(s, t))) =0 for (s,t)€ L\ e((—o0,—1]x S

and
e

u e ou
95 (S, t) +je(5,t)(u (Sr t)) ( ot

For c_, co, ¢4, let Mpp(c_, co, c+; H,]) be the space of solutions to the above, which converge to (c_, co, c4).
Again, we need a generic choice of H and J.

Definition 11.3.1. Define

e

(s, t) — Xple(s, t), u®(s, t))) =0 for (s, t)eRxS"

PP~ x) = Z |[Mpp(c_, co, e H )| - x.

Cy

This induces a map *pp : HF (M, w) ® HF (M, w) — HF (M, w), called the pair-of-pants product.

()

\

<

C

i)



[I.4  Novikov ring

In the next section, we will define an isomorphism between Floer homology and quantum cohomology. To do
this, we will need to generalise the coefficients which we consider in quantum cohomology. Let R be a ring,
which throughout will be one of Z,Z/2, R.

Definition 11.4.1. The Novikov ring N\ is the set of sums

A=t
Ael’
subject to the finiteness condition that for all C > 0, there are only finitely many A with A4 # 0 and w(A) < C.
Multiplication is defined by
Ak p = Z/\AUB#HB
AB

We can then define the quantum cohomology ring as

OH*(M) = H* (M) ® A.

A is naturally a Z-graded ring, where we define deg(t!) = 2¢;(A). This gives a grading on the quantum
cohomology ring as follows.
2n
QH (M) = P H; M) ® A
j=0

Thus, a generic element of QHX(M) is of the form
a = Z aAtA
A

where as € H<=24A (M), and the finiteness condition implies that for all C > 0, there are only finitely many
A with a4 # 0 and w(A) < C. The same formula

] (a % bjs = WA(PD(a), PD(b), y)

defines the quantum cup product on QH*(M), which makes it into a graded ring.

[I.5 Isomorphism with quantum cohomology

For the next chapter on the Seidel representation, we will need an isomorphism between the Floer homology
ring and the quantum cohomology ring. We will sketch the construction due to Piunikhin, Salamon, and Schwarz
here, as we will not need the details. This isomorphism was originally constructed in [PSS96]. The exposition
here is based on [PSS96] Example 3.3] and [MS12).

First of all, for ¢ € Crit(ay), consider the manifold A~4(C) of maps v : C — M, where the map (s, t) —
u(e?™s+1) satisfies the Floer equation, with limit c.

Let @ be a cycle, with deg(a) + dLm(/\N/I(C)) = 2n. Then we can define n(a, c) to be the number of u & /\~/I(c)
such that u(0) € @, counted with appropriate signs. Then we can deﬁneﬂ

¢ QH(M, w) — CF.(H)
a= Z ant™ — n(aa, (—A)#c)x©
Ac
where we sum over all A € I, and all ¢ such that n(aa, (—A)#c) makes sense. ¢(a) defines a cycle, and the

resulting homology class is independent of choices. Thus, we have an induced map ¢ : QH*(M, w) — HF (M, w).
Diagrammatically, @ is defined by counting spiked discs as follows:

2with implicit dependence on H, J and representatives for the homology classes.
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The inverse map is given by reversing the diagram.
The fact that it is a ring homomorphism follows from the following diagram:

L8

*

We can see that if we add three “caps” to the pair-of-pants, we get a sphere, and this relates the pair-of-pants
product to the quantum cup product.
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Chapter Il

Seidel representation

In this chapter, we will define the Seidel representation. First, we will define the covering space G of
AHam(M, w), and construct the action on loops in M. This action then lifts to an action of the covering space
LM as constructed in the previous chapter, which then induces an action on Hamiltonian Floer homology.

Next, we will define Hamiltonian fibre bundles, which are symplectic fibre bundles, with a globally defined
closed 2-form which restrict to the symplectic form on the fibres. For each element of a we associate a
Hamiltonian fibre bundle. Counting pseudoholomorphic sections of this bundle will define an element in
quantum cohomology.

Finally, we will use the isomorphism defined in section [T5] to show that these two constructions are
equivalent, and use this to deduce properties of the Seidel representation.

Throughout, we will follow [Sei97|. One change is that in [Sei97], the map is defined to take value in
quantum homology, rather than quantum cohomology. In this case, we have a natural Poincaré duality pairing
between quantum homology and quantum cohomology, and so we have translated the results. See [MT06|
Section 2.2] for more details about the Poincaré duality pairing.

.1 Group action on loops

Let Ham(M, w) denote the group of Hamiltonian diffeomorphisms of (M, w), and G the group of smooth based
loops in Ham(M, w). We will use the C* topology on Ham(M, w) and on GC.
G acts on AM by
(g - x)(t) = ge(x(1)).

Lemma I11.1.1 ([Sei97, Lemma 2.2)). This action restricts to an action on LM, the space of contractible loops.

Let H be a generic periodic Hamiltonian on M. Recall that the Floer chain complex CF(H) is generated

by critical points of
/ v w+/ (¢, x(t
D? St

We say that a Hamiltonian K; generates g € G if

9g:

m@=&ﬁ@@%

If H is another Hamiltonian, we define

HI(t, y) = H(t, gi(y) — Kq(t, gi(y))
By a direct computation, we have that g*ay = aps.

Proof. Suppose g(LM) is a connected component of AM which is distinct from LM. If H is small, then ayy has
no zeroes in g(LM) since for sufficiently small H, 1-periodic orbits of H will be contractible. Thus, ays has no
zeroes on LM.

But this contradicts the Arnol'd conjecture, which implies that for every Hamiltonian there exists a con-
tractible 1-periodic orbit. The Arnol'd conjecture was proven in the monotone case by Floer|Flo89). O
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In turn, this action lifts to a homeomorphism of LM. Let G C G x Homeo(m) be the subgroup of pairs
g = (g, ), where g is a lift of g. We have an exact sequence

1 r [oiiENgy 1 (I1.1)

of topological groups, where I is the deck group of the covering map p : LM — M constructed in the previous
chapter.

For ¢ =[v,x] € LM, we have an associated trivialisation of x*TM, given by 7 : x*TM — S1 x R2", which
extends over v*TM. This is independent of the choice of v and x. Next, for g € G, we have a loop

2(t) = Tg10(t)dge(x(t) Te(t) " € Sp(2n, R).
Up to homotopy, this does not depend on the choice of ¢ or the trivialisations. We define
l(g) = deg(¢)
where deq : H1(Sp(2n, R)) — Z is the isomorphism induced by the determinant map on U(n) C Sp(2n, R).

Lemma I11.1.2 (|Sei97| Lemma 2.6]). /(g) depends only[g] € mo(G), and I : mo(G) — Z is a group homomorphism.
Fory e, I(1,y) = ci(y).

[1.2  Action on Floer homology

Define
CF(qg) : CF(HY) — CFr_21q(H)
X€ o 0
This defines an isomorphism of chain complexes, and so we have an induced isomorphism on homology
HF(g) : HF((H?) — HF 2y (H)

Now, by the usual arguments, if (H,]) is ‘reqular’, then so is (HY,19), where qu = g}Ji. With this in mind, we
have a well defined map
HF(g) : HF (M, w) — HF (M, w).

In particular, from the definitions, we have that
Proposition 111.2.1 (|Sei97}, Proposition 4.9]). HF (1) = id and HF(g192) = HF(g1)HF(g).
Moreover, this action is compatible with the pair-of-pants product, in the following sense.
Proposition 111.2.2 (|Sei97, Proposition 6.3]). For all g € G abe HF (M, w),
HF.(g)(a *pp b) = HF(g)(a) *pp b.
Thus, if u is the multiplicative unit of HF (M, w), then
HF.(g)(a) = HF.(g)(u) *pp a.

[11.3  Symplectic fibre bundles

Definition II1.3.1. A symplectic fibre bundle is a fibre bundle 7 : E — B, with a smooth family Q = (Qp)per
of symplectic forms on the fibres.

Let VE = ker(dm) < TE denote the vertical bundle. Then Q defines a symplectic structure on the vector
bundle VE.

We will focus on the case when B = S?. We can think of S? = D* Ui D™, where D*, D~ are the closed
upper and lower hemispheres. Fix a point zy € D~

Definition 111.3.2. A symplectic fibre bundle (E, Q) over S? with fibre (M, w) is a symplectic fibre bundle, along
with a fixed symplectomorphism i : (M, w) — (E_,, Q).

In particular, we will be interested in the following:

Definition 11.3.3. A Hamiltonian fibre bundle is a symplectic fibre bundle (E, Q) — B, along with a closed
2-form Q on E, such that Q|g, = Q, for all b € B.
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I11.3.1 Sections

Definition I11.3.4. Let so, s1 be continuous sections of a Hamiltonian fibre bundle (£, (~)) over S?. We say that
so,s1 are [-equivalent if Q(so) = Qs1), and c1(VE, Q)(so) = c1(VE, Q)(s1). If S is the T-equivalence class of
s, we will write Q(S) = Q(s) and ¢1(VE, Q)(S) = a1(VE, Q)(s).

Lemma I11.3.5 (|Sei97| Lemma 2.10]). Let (E, (NI) be a Hamiltonian fibre bundle over S?, with fibre (M, w). Then
(i) E has a continuous section,
(ii) for I"-equivalence classes Sy, Sy, there exists a unique y € I such that
0(51) = Q(So) + w(¥)
a(VE, Q)(51) = ar(VE, Q)(S0) + ci(y)

Conversely, given a I -equivalence class So and y € T, there exists a unique [ -equivalence class Sy such
that the above holds.

In the setting of (it), we will write Sy = Sy + y.

Definition 111.3.6. A normalised Hamiltonian fibre bundle (E, 6,5) is a Hamiltonian fibre bundle with a I'-
equivalence class S.

[11.3.2 Clutching construction

Let g be a smooth loop in Ham(M, w). We will now construct a Hamiltonian fibre bundle associated to g, using
the clutching construction. That is, we will take the trivial bundle over the upper and lower hemispheres of
S?, and glue them together along the boundary S* using g. A description in the case of vector bundles can be

found in [Hat17].
More precisely, we glue the trivial bundles D* x (M, w) together via

¢g:0D" x M - 9D™ x M
(t. y) = (t.gi(y))
This gives a symplectic fibre bundle (£4, Qg), with fibre (M, w). Moreover, this is in fact Hamiltonian.

Next, for g € G, choose a point ¢ € LM, and representatives ¢ = [v,x] and g(c) = [V/, X'} Then the maps
s;: D7 > D" xM
z— (z,v(2))
and
sz D" =D xM
7 (z,V(2)

glue together to form a continuous section sz of £. The ['-equivalence class is independent of the choices

which we have made, and we obtain a normalised Hamiltonian fibre bundle (£, (N)g, 53).
In fact, all normalised Hamiltonian fibre bundles are of this form, and all Hamiltonian fibre bundles are of
the form (E£4, Qg) for some g € G.
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1.4 Pseudoholomorphic sections

Let (E, Q) be a symplectic fibre bundle over S?, with fibre (M, w). Let 7 : E — S? be the projection map,
i (M, w) — (E,, Q) the fixed isomorphism.

Let J(E, Q) be the space of ] = (/;),es2, such that J, is an almost complex structure on £, compatible with
Q,.

Definition 111.4.1. Let j be the usual complex structure on S? = P'. We say that an almost complex structure
J on E is compatible with | and | if

o~

1. 7 is (/, j)-holomorphic, Le.
jodmr =dmo/

2. 7|Ez =J, forall z € S%
Let 3(/,]) be the space of all such almost complex structures.

Definition 111.4.2. For J € 7(j, 1), a smooth section s : S — E is (j,j)—holomorphlc if

o~

ds(z) o j = Jis(2)) o ds(z)

o~

Let S(j, J) be the space of all such sections.

Locally, a holomorphic section looks like a J-holomorphic map v : P! — M, except we allow for the the
complex structure to vary on each fibre. However, globally it can be very different, and the action of G means
that the maps will be “twisted".

For a [-equivalence class S, we will write S(j,j, S) for the space of (j,j)—holomorphlc sections in S. Using
the standard techniques, we obtain that

Proposition Il1.4.3. For generic choices of |, ] and ] € 3(], J), the map
ev: S(j,j, S)->M
s i (s(z0))
is a pseudocycle of dimension 2n + 2¢1(VE, Q)(S).

With this, we then have an associated element

005 =Y [evm (5(/,7, S+ y))] ot

yelr

As before, different choices of ],/ will define bordant pseudocycles, which will define the same homology
class, and so the right hand side is independent of choices. Geometrically, this is counting the number of
pseudoholomorphic sections which intersect cycles in the fibre above zp.

1.5 Seidel representation

Definition I11.5.1. The Seidel representation is the map q : G — QH*(M, w) defined by
qlg) = O(Ey, Qq. S5) € QH* (M, w)

where (Eg, (ng, 5g) is the normalised Hamiltonian fibre bundle associated to g.

_ Let o QH*(M) — HF (M, w) be the isomorphism defined in section m The relation between g and the
G-action on Floer homology is given by

Theorem 111.5.2 (|Sei97) Theorem 8.2)). g(g) = ®~"HF(qg)®(1) where 1 € QH*(M) is the multiplicative unit.

Let u = ®(1) denote the multiplicative unit of HF (M, w). Then we have the following properties of the
Seidel representation, which follow almost immediately from what we have shown.
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Corollary 1115.3 (|Sei97| Theorem 1)). Forg € G and b € HF, (M, w),
HF(g)(b) = HF(g)(u) *pp b = P(q(q)) *pp D
Proof. This follows from proposition [l2.2] and the theorem. O
In particular, HF(g)(u) = ®(q(q)).
Corollary I11.5.4 ( Corollary 3)). g defines a homomorphism G— QH*(M, w)*.
Proof. We can compute using proposition [lT27] and proposition [T.22] that
q(g192) = ¢~ "HF(g192)(u)
= &~ 'HF(g1)HF(g2)(u)
= &~'HF(g1)%(q(g2))

= &' d(g(g1))P(q(g2))
= q(g1) * q(g2)

O

Moreover, g(g) depends only on the class of g in 7p(G), and so it descends to a homomorphism mp(G) —

QH*(M, w)*. Combining these, we see that g(g) defines a left action of JT()(E) on QH*(M, w) by automorphisms
of the form
b q(g)*b

To conclude, we will sketch how the quantum cohomology and Floer homology pictures we have described
are related. Recall that ¢ is defined by a picture of the following form

Thus, if we take two of the above pictures, but twist the one on the right using the G action, we get

j“cc)L |

Finally, gluing the spheres together using the clutching construction, we obtain

which is represents the automorphism defind by the Seidel element. See [MS12| Remark 12.1.7] for more details.
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1.6 Kahler manifolds

For the next chapter, we will need the fact that when we are working with Kahler manifolds, we have a more
explicit description of the Seidel representation.

Proposition 111.6.1 (|Sei97, Proposition 7.11)). Let (E,J) be a compact complex manifold 7 : E — P' a
holomorphic map with no critical points, Q € Q*(E) a closed form, such that Q, = Q|g, makes E, into a Kdhler
manifold, i : (M, w) — (E. Q) is an isomorphism for some zy € P'. Moreover, assume that

(i) The space S of holomorphic sections s of x, with c1(VE)(s) < 0 is connected. In particular, they all lie
within the same [ -equivalence class Sy,

(i) for any s € S, HY(P', s*VE) = 0,
(iii) let w : P' — E be a holomorphic map, with im(w) C E, for some z € P'. Then

(a) ci(TE)(w) > 0.
(b) if w is non-constant, and c1(TE)(w) + c1(VE)(Sg) < 0O, then s(z) & im(w) for all s € S.

Assuming all of this, S is a smooth compact manifold, and
Q(E' Q, 50) = (eVZo)*[S} -1

For a holomorphic vector bundle £ — X, HP9(X, E) denotes the Dolbeault cohomology. If Q% denotes the
sheaf of holomorphic p-forms on X, then HP9(X, E) = H9(X, E ® Q). In particular, taking p = 0, we have
HOT(X, E) = H'(X, E), where H'(X, E) is the sheaf cohomology of the vector bundle £ — X. See [Huy04,
Section 2.6] for more details about Dolbeault cohomology.

Sketch proof. In proposition we needed a generic choice of J for the evaluation map to define a pseudo-
cycle and to define the element Q(E Q, S). The ] corresponds to the almost complex structure J. However, the
J which we have chosen may not be regular. That is, in general, we may not have transversality.

On the other hand, to define the pseudocycle, we just need to understand the possible limiting behaviour.
But in this case, we have a result which is similar to Gromov's compactness theorem. Thus, for y € I fixed, to
compute [ev (S(j, 7, y + 5))] we just need J to be regular for the limits. In this case, we only need to consider
y for which

0<n+a(VE)S)+ aly) < n

which is implied by the assumptions in the proposition. O
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Chapter IV

Application | - Element of infinite order

In this chapter, we will show that on a rational ruled surface, there exists an element in 7y (Ham) with infinite
order. To do this, we will construct a Hamiltonian fibre bundle, which in this case is naturally a complex
manifold and a fibre bundle over P'. We will then appeal to proposlttonm which gives us a way to compute
the Seidel element. To complete the proof, we note that the Seidel element has infinite order, and so the
element in sr1(Ham) must also have infinite order.

This is the second example from [Sei97| Section 11].

IV.1 Rational ruled surface

Let O(d) denote the degree d line bundle over P'. That is, O(—1) is the tautological bundle, and © = O(0) is
the trivial bundle. Moreover, Pic(P') = Z, and any line bundl lﬁ — P is isomorphic to O(d) for some d. In
this case, we define deg(L) = d. More generally, we can define for any vector bundle & — P, we can dehneﬂ

deg(€) = {1(€),[P"]) € Z.

Let £, denote the total space of the fibre bundle p : P(O @ O(d)), which is a P'-bundle over P'. This is
also called the d-th Hirzebruch surface. We have the following standard facts about ¥4.

Lemma IV.1.1 ([Bea96] Proposition IV.1]). (i) Lets:P' — L, be a section of p. Then s*VL, is a line bundle
over P!, and deq(s*VLy) > —d. There is a unique section s_ such that equality holds, and all others
have deg(s*VL4) > 2 —d.

(ii) Let w:P" — ¥, be a holomorphic map. Then c((w]) > 0. Moreover, all non-constant w with c;(w) < 2
factors as
Py,

N

with u holomorphic. Equivalently, u is a rational function on P'.

Remark IV.1.2. The statement in [Bea96| Proposition V1] is about the Picard group of £, Since Ly is a
surface, the Weil divisors are curves. The lemma is a restatement in terms of complex geometry.

More precisely, Pic(Zy) = Zf & Zh, where f is the class of a fibre and h is the class of O(1). Then
f2=0,fh=1,h’ = d. s_ corresponds to the unique curve with self-intersection —d, in class h — df.

In particular, we will study the symplectic structure of M = ¥,. First, we will construct a Kahler structure
on M.
"Throughout, line bundle will refer to holomorphic line bundles.

2In general, we would define the degree of a vector bundle to be additive on short exact sequences. The fact that we are working over
P! means that the degree agrees with the first Chern class.
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Lemma IV.1.3. We have an isomorphism of complex surfaces
M ZV(zdwi — ziwy) C P! x P? (IV1)

where P! has coordinates [20 : z1] and P2 has coordinates [wo : wy : wal. In particular, we can consider M as a
complex submanifold of P' x P?.

Proof. This follows from trivialising O @ O(2) over the standard affines in P', as it has transition functions of
the form

(X, y) > (x, 2°y)

and so the projectivisation has transition functions of the form

by [x s 22y

Thus, if we let pry, pr, be the projection maps to P! and P respectively, then for A > 1,
wy = (A—="1)pr] wp + pr wp

is a Kéhler form on M, where wp« is the Fubini-Study form on P*.

IV.2 Hamiltonian fibre bundle

Next, we will construct a Hamiltonian fibre bundle. We have an action of S C C on O(2) by scalar multi-
plication, which induces a Hamiltonian circle action g on (M, w,). Consider the following vector bundle over
P! x P!

V = Opip @ pri O(2) @ pr; O(—1)

where pr; are the projection maps. In this case, we have a bundle s : £ — P' given by the composition
E=P(V) 2 P! x P! 22, P!

The fibres £, = 77 '(2) are given by
E,=PO®O(2)®0(-1),).

We have a standard Hermitian metric on the tautological bundle O(—1), and so a unit-length element & € O(—1)
determines a btholomorphism £, — M. Any two such maps differ by a complex isometry, and so the symplectic
form ), on E, is independent of the choice of & With this, we obtain a Hamiltonian fibre bundle (£, Q) over
P

IV.3 Holomorphic sections

Let s be a holomorphic section of 7. Then we can decompose s as:
e si=my0s:P' - P xP'is a section of pr,
e s, is a section of F = P(s}V) — P!,
Here, since s(z) € P(Vs,(y) for all z € P, s, is just given by s. This gives us an exact sequence
0 —— s3VF —— s*VE SLEUN sj(ker(dpry)) —— 0 (IV.2)
of vector bundles over P'. Since s is a section of pr,, we have that s1(z) = (u(2),2) for a map v : P! — P'.

With this,
st(ker(dpr,)) = u*TP' = 4*O(2) = O(2d)

and
s;V=0a&u"02)0(-1) =08 0(2d —1).
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For d > 0, F is isomorphic to Z4—1, and when d =0, F is isomorphic to Z;.
First suppose d > 0. By lemma |\/.1.1ki), deg(s3VF) > 1—2d and deg(u*TP?) = 2d. But degree is additive
on short exact sequences, and so we must have that

deg(s*VE) = deg(s5VF) + deg(s7 V) > 1.

Now consider the case d = 0. In this case, by lemma[[V1.1] again, we see that deg(s*VE) > 0 unless s, is
the unique section with deg(s3VF) = —1. Any such section must be of the form

sdz) =[1:0] € PO®OR). ® O(—1),) C E,

for some ¢ € P,
Thus, we have that S = {s.}.cpi. For z fixed, the evaluation map S — E, = M has image

C* = {(2: 2 [1:0:0)} S M
where we use the embedding into P! x P from lemma
Proposition IV.3.1. The conditions of proposition [lL.6.1] are satisfied.
Proof (i) Since we have a natural identification of S with P!, it is connected.

(it) For s €S, eq. (V2) becomes

0 —— O(-1) SVE @) 0

Using the long exact sequence for sheaf cohomology, we get that H'(P!, s*VE) = 0.

(ii) () This is lemma [VT.T]ii)
(b) Now consider the curve
C™={(z0:21,[0: 2 : z)} € M.

This is the unique curve on M with self-intersection —2. Let s_ be the corresponding section of p.
Then
deg(s* VL,) = —2.

Now let w : P" — E, be a non-constant holomorphic map with ¢i(TE)(w) < 2. By lemma l't),
im(w) € C~. On the other hand, for all s € S, s(z) € C*. Noting that C~ N CT = &, we see that
s(z) & im(w).

O

Corollary IV.3.2.
Q(E,Q, ) =[C"]1

IV.4 Element with infinite order

Let x* € H>(M; Z) denote the classes of C*, and y* € Hy(M; Z/2) the reduction modulo 2.
Lemma IV.4.1. (y*)’ = [/\/I](t%(x**f) _ t%ww))‘

Proof. In [McD87], McDuff shows that (M, w;) is symplectomorphic to P! x P!, with symplectic form wp: ® Awp:.
The symplectomorphism sends x* to a + b, where a = [P' x pt] and b = [pt x P']. The result then follows by
computing the quantum cohomology ring of P! x P, for example, as done in section O

Proposition 1V.4.2. For all A > 1, [g] € m(Ham(M, w)) has infinite order.

Proof. Let g : LM — LM be the lift of g corresponding to the [-equivalence class So. Then
9lg’) = QE, Q. So)’ = [MI: (1 — 1)

and

q(me) _ [M}t%’(X*—X’)“ _ )m

q(g2m+7) _ y+t7(x+fx’)(/| o tx’)m
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Recall from eq. (1) that we have an exact sequence

Applying 7o, we get

Moreover, consider the map

7: = QH'M, w)*
yi=q(ly) = M)t

We have a commuting diagram [Sei97} Equation 1.4

r 10(G) 1 (Ham(M, w))

q
~

q
M —— QH"M, w)* —— QH"(M, w)*/z(I")

T

Next, note that w;(x~) = A — 1, and so the class of x~ in I has infinite order. Thus, g(g*) & 7(I') for all k, and

so G([g]F) # 1 for all k. Hence [g] has infinite order.
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Chapter V

Application Il - Quantum cohomology of
symplectic toric manifolds

In the previous chapter, we studied the element we obtain from applying the Seidel representation to a Hamil-
tonian circle element. In this chapter, we will study the Seidel element for a Hamiltonian circle action on a
symplectic toric manifold. As an application, we will apply this theory to compute the quantum cohomology of
toric complex surfaces. In particular, we will show that in nice cases, the quantum cohomology can be computed
directly from the combinatorial data of the toric variety.

The main reference for this section is [MT06]. However, the examples in section and section have
been written by the author, as a direct application of the techniques in [MT06].

V.1 Symplectic toric manifolds

In this section, we will first briefly give a sketch of the theory of symplectic toric manifolds. For a more detailed
reference, see [Sil08} Aud04]

Definition V.1.1 (|Sil08, Definition 27.4])). A symplectic manifold (M?", w) is toric if there exists an effective
action of T = T" on M by symplectomorphisms, with moment map py: M — t* = R".
We will denote this data by (M, w, T, p).

Here, the action is effective if

() Stabr(p) =1

peEM

Theorem V.1.2 (Atiyah-Guillemin-Sternberg, [Sil08) Theorem 27.1)). Suppose (M, w, T, ) is a compact toric
symplectic manifold. Then A = p(M) is a convex polytope. In particular, A is the convex hull of the images of
the fixed points of the T-action.

A is called the moment polytope of M. Akin to the case of normal toric varieties, we have a correspondence
between toric symplectic manifolds and a certain class of convex polytopes.

Definition V.1.3 ([Sil08| Definition 28.1)). A convex polytope A C R" is Delzant if it is
(i) simple: there are n edges meeting at each vertex, say the edges are given by p + tu;, 0 <t < 7.
(it) rational: the u; can be chosen to be in Q" or equivalently, Z",
(iit) smooth: the u; can be chosen to be a basis of Z".

Theorem V.1.4 (Delzant, [Sil08| Theorem 28.2)). There is a one-to-one correspondence between Delzant poly-
topes in R" and compact symplectic toric manifolds of dimension 2n.

The final thing which we will mention is how to compute the cohomology ring of a toric variety from its
moment polytope. Let (M, w, T, p) be a compact toric symplectic manifold, with moment polytope A. Since the
T is abelian, we can assume without loss of generality that t = R”, with lattice Z" C R".

Let Dy, ..., Dy be the codimension 1 faces of A, with outward pointing normals nq, ..., nN € Z". Let ¥ be
the set of subsets | = {iy, ..., it C{1,..., N} such that D;, n---N D, + @.
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A subset | C {1,..., N} is primitive if | ¢ L but every proper subset of / is in . Define two ideals in

Q[Xq ,,,,, X/\/]4
C—,( c Z/7>

SRy = (xi, x| =1, ., ir} is primitive) .

[

Pa = <Z<5,/71>X1

Note that for each i, V; = ®~'(D,) is a (real) codimension 2 submanifold of M. In fact, in the toric varieties

case, ®~1(D;) corresponds to a complex codimension 1 subvariety, giving us a divisor. In either case, let
u; = PD]V)] € H*(M; Q). Then the map

X NE g
PLiSR, _MQ

Xi = Ui

is an isomorphism of rings. The proof of this is by Morse theory. For a generic choice of &, the map (y, &)
defines a Morse function on M. The critical points correspond to the vertices of A, and the indices correspond
to the dimension of the faces.

In particular, this means that H*(M; Q) is determined by the intersection of toric divisors, which we can
compute using combinatorial data. See [Aud04, Section VII.3.b] for more details.

Finally, we can compute the symplectic form and the first Chern class of a toric manifold.

[w] = Z diu; and (M) = Z u;

where d; = (n;, D;). This is well-defined since n is the normal to D;.

Proposition V.1.5.

V.2 Novikov rings

For this chapter, we will need a different definition of the Novikov ring. Let A’ be the ring of elements of the

form
Z I’kfk

keR

with rp € Q, subject to the finiteness condition that for all C > 0, there is finitely many k& < C such that
re # 0. That is, we replace t* with t“™. Now define A = N[g, g~} and QH*(M, w) = H*(M; Q) ®¢ A.
For a, b € H*(M; Q), we define

ax b= Z (U* b)A® qm(A)tw(A)
Ae(M)

where as before,

/(0 % b)a = Wa(PD(a), PD(b), ).

Note that when (M, w) is monotone, ie. w(A) = Aci(A) for all A € m(M), then Wt = (gt4)9™, and
so we actually have less information in this case.

V.3 Hamiltonian circle actions

As g is now used as a variable in the Novikov ring, we will denote the Seidel map by S : m(Ham(M, w)) —
QH" (M, w)*.
Let (M, w, T, 1) be a compact toric symplectic manifold. Let A, D; and n; be as in section[V1] Let y; : M — R
be given by
pi(p) = (u(p). mi) -
yi defines a moment map for a circle action g;, given by the tangent vector n; € t.
We say that (M, w) is Fano if there are no non-constant J-holomorphic spheres u with ¢i([u]) < 0. In

particular, (M, w) being monotone is a sufficient condition, since in this case, ci([u]) is a positive multiple of
w(u)) = E(u) > 0.
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Theorem V.3.1 (]MT06| Theorem 1.10(ii)]). /f M is Fano, then
S(g)=u@q 't

We will use this without proof, and instead focus on applying this result to compute the quantum cohomology
of symplectic toric manifolds.

V.4 Quantum cohomology
In this section, we will show that there exists an ideal éﬁa cCQx,..., xn] ® A such that the map x; — u; =
PD(V;) induces an isomorphism
= Z QH'M, w) (V.1)
Let o be a face of A. Then
U:Dhm“‘ij[
for some ji, ..., Jje. The dual cone is given by

o = Cone(nj, ..., M) = Z aphj, | Gp € R>o

p=1

The collection & = {0"}4y<a forms a complete fan in R”, and so any z € R” lies within the interior of some
(necessarily unique) aV.

Let I = {iy,..., Wt C{1,..., N}. Then ny + -+ n, € 0’ for some 0 < A. Say 0 = D;, n---ND;.
Then there exists unique positive integers my, ..., my such that

Ny + 4Ny =mn, + -+ menj,. (\/2)

When [ is primitive, {iq, ..., ir}and {1, ..., je} are disjoint. Let v; € Hy(M; Q) be such that u(v;) = 0;;, and
let

B/=v[-1+~-—0—vl-k—m1vh—---—mgvjp
Then
alB)=k—my—--—my
w(B,):d,ﬁ ++d,k 7!7710'/‘1 7”‘7”7@0’/‘[.

On the other hand, eq. (V2) shows that we have two circle actions which are the same. Since the Seidel
representation is a homomorphism, we must have that

—k,—d; ——d m m My —midi, ——myd
Uu"'U:‘k®q t 9% i :uﬁw‘,_ujl{@q m me y—m1dj, medj,

Rearranging, we obtain that

My ® gt B gwlB) — (.

iy i ® 1 — o

Define the ideal éﬁA CQx, ..., xn] ® A by

SRy = (X x, ®1— Xpx) ® qBIB | primitive) .

We will show that this satisfies eq. (V.1). Note if £ = 0, we set x;" - - - x]* = 1. This is the case if n;, +- - -+, =
0.
Define a valuation v on Q[xy, . . ., xn] ® A\ by

v Z agr ® g7t | = min{k | exists d such that ag + 0}
d.k
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Lemma V.4.1 (IMT06| Lemma 5.1)). The natural map © : Q[xy, . . ., xN] @ N — QH (M, w) is surjective.
Moreover, if pq,..., Pm € Qxi1, ..., xn] generate ker(Q[x, ..., xn] = H* M, w)), and if q1, ..., Gm €
Qxi, ..., xn]® A are such that ©(q;) = 0 and v(p; — q;) > 0 for all i, then g1, .. ., qm generate ker(©).

Assuming this, eq. (V1) is immediate.

Sketch proof The main idea in the proof is that we have a “division algorithm” Let z € QH"(M). We would
like to find Z € Q[x1, . . ., xn] ® A such that

vz —6(2))

v(z)

v(z) +h

v(2)

\VARIVS

Let

S

Z=Zz[®qd‘tk‘ +r
i=1

where v(r) > v(z) + h, z; € H*(M), d; € Z and k; > v(z). Here, I is the constant from corollary [[413] where
we can assume without loss of generality that v(p; — q;) > A.
Since 0 is surjective, let Z; be such that 8(z;) = z. Then v(9(z;) — 6(z;)) > kA, and so we can set

S
7=) z&q"t
i=1

V.5 Projective space

For simplicity, we will restrict ourselves to P, The same ideas will work for P", just with more things to keep
track of. P2 is a toric manifold, via

(t1, 1’2) . [ZO 721 22} = [ZO bz tzZz]
and we have an associated moment map p : P? — R?, defined by

1 21| |2

2\ |zol* +1zi* + 12 | + |21 + 2" |

Uzo:z1: 2] =—
The moment polytope is given by

—
-
4
—
-

=4
2

In this case, we can take
m=10  mn=(01 ad mn=(=1-1)

and we have that ’
d1:O dzZO and dgzi.

The only primitive subset of {1,2,3} is {1,2,3} itself, and as m + 2 + n3 = 0, we have that

é\liA = <X1X2X3 R1T—-1® q3t71/2>.



For & = (¢1, &) € 27,

Y (Eomhxi = &+ &xo — (& + Qs = &l —x3) + S — x3)

L

and so Pa = (x; — x3, X — x3). With this, we obtain that

* (T2 Q[X] ®/\
O w) = T3 eT — T prmy
More generally,
OB ) Q@ A

<X/7+1 R1—1Q qn+1t1/2>'

Comparing this to section where we computed QH*(P") directly, we can see that we get same result, just
with different coefficient rings.

V.6 Product of lines

Consider M = P' x P'. Let pry, pr, : M — P' denote the projection maps. On M, we have the symplectic form
pri w =+ pri w.
Then
TM = pr; TP' @ prj TP'

and so
c1i(M) = c1(pry TP') + ¢1(prs TP') = pri 1 (P') + pr5 c1 (P').

Since P! is monotone, so is P! x P,
M is a toric manifold, via

(t1, t2) - ([xo = xal [yo - yal) = (o = taxali [yo = ©2yal)

and we have moment map

2 2
[l ly1]
e

(o xil o y1) = —=
PRI T T Bl + Wl Tuol” + 1y

The moment polytope is then given by

_;,?_

//”

\/?.

We can take as normals
m=(1,0  m=(01 m=(=10 and n=(0-1).

Then we have that ’ ’
d1:O dZZO d3:§ and d4:§.

For & = (31, &) € 27,

Z (& niyxi = &x1 + Sxo — & — Sxa = &(x — x3) + S(x — xa)

L

and so Pa = (x1 — x3, X2 — x4).
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The primitive subsets are {1,3},{2,4}, and m + 3 = n2 + n4 = 0, and we obtain that

SRa = (xxs®1-1®¢* " xou®1-1® ¢*t'?).

Hence
Q. x]
(FR®1-10¢* "7, x3 01 -1®¢*t"?)
Comparing this to the result in the previous section, we see that this can also be seen as the tensor product
QH*(P") ®g QH*(P1).

QH"(M) =

Remark V.6.1. In [MT06| Example 5.7], they do the same thing but with (P! x P!, w @ Aw). That is the same
example as in chapter [[V] but in this case the different symplectic form changes the quantum cohomology ring.

Further discussion on the differences in the symplectic topology of these two cases can be found in [MS17
Example 13.4.2].

V.7 One-point blowup of projective plane

Next, let M be the size 12 — € blowup of P? at a point. This is [MT06, Example 5.6], although there are some
differences between the method here and in [MTOG].
This has polytope

-yl - 0

N
N

/
\/
R

—l/z
and we have
m = (1,0) m=(0,1) m= (=100 and n4=(-1,-1)

and

1
d1=0 d2=0 d3=6 and d4=§.

Computing, we find that
Par=(x1—x3— x4, %0 — x3)

and

1
W= X3+ =X
3t 5x
¢ = 2x3 + 3x4.

For M to be monotone, we need to take € = 1/3.

As for P! x P!, the primitive subsets are {1,3} and {2,4}. We have that n; + n3 = 0, and that n, + 4 =
(=1,0) = n3. Thus,

SAlfiA = <X1X3 R1T—-1® qzt’m,xzxz; RT—x3Q qt’%)
and this computes the quantum cohomology of a one-point blowup of P?.

Remark V.7.1. Different choices of y will give the same complex manifold, since the complex structure (i.e. the
toric variety) only depends on the fan, and not on the polytope. However, the symplectic form depends on ¢,
and we need a specific choice of € for monotonicity to hold.

Remark V.7.2. This is also a Hirzebruch surface, namely £1 = P(O & O(1)).
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Chapter VI

Conclusion and further directions

In this essay, we first constructed the quantum cohomology ring QH*(M). To define QH*(M), we defined a
family of invariants W, ,. In the literature, these are called the Gromov-Witten invariants. We have defined
them in the very special case of the domain being P!, and with M being monotone. Defining them in general
is @ much more difficult problem, and is the subject of active research [AMS21; [HS22] Even in the contexts
where the Gromov-Witten invariants have been defined, computing them is a difficult problem.

We then defined the Hamiltonian Floer homology, which gave us a different perspective on QH*(M), through
the isomorphism defined in section There is another version of Floer homology, called Lagrangian Floer
homology [Aur14; |Smi15]. In Lagrangian Floer homology, we define HF*(Ly, L;) where Ly, L, are Lagrangian
submanifolds. The generators of the chain complex are intersection points of L1 and L, and the boundary maps
are given by counting J-holomorphic strips.

If we define Ham; (M, w) to be the set of all Hamiltonian diffeomorphisms ¢ such that ¢(L) = L, then we
can define a relative Seidel representation |HL10|

i (Ham(M, w), Ham, (M, w)) — HF*(L, L)

In the last chapter, we computed the quantum cohomology ring of toric varieties using the Seidel represen-
tation. There are also other methods, such as [Giv98; [FOOO16].

In a different direction, the analytic details have mostly been omitted from this essay. The proofs can be
found in [MS94; MS12]. For a background on the analytic aspects of finite-dimensional Morse theory, see
[AD14; Jos08; Nic11], and [AD14| for Floer homology.
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