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Topological spaces

Definition 1.1 (Topological space)
Given a set X, a topology on X is a collection .7 of subsets of X such that

e I XeT
o lfU;e Thoralliel thenJU e T

iel
o lfU, b e T, then UNnlh e .

and a topological space is a pair (X, 7).

Definition 1.2 (Open and closed sets)
For AC X, Aisopenif A€ 7, and Ais closed if X N A e T
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Proposition 1.3.
e &, X are closed
e If U; are closed for all i € /, then so is (i € IU;

e If Uy, Us are closed, then so is Uy U Us

Remark 1.4. This gives us an equivalent way to defining a topology, by specifying the closed sets. This can be useful,
eg. for the Zariski topology.

Definition 1.5 (Interior)
For A C X, define the interior of A to be

IntA = U U

UCA,U open

Definition 1.6 (Closure)
For A C X, define the closure of A to be

|
I

)
<

<

UCX,U closed

Proposition 1.7. For all A we have that IntA C A C A, with equality holding if and only if A open (closed
resp.).

Proposition 1.8. For all x € X, we have that x € IntA if and only if there exists U open such that
xe UCA

Proposition 1.9. For all x € X, x € A if and only if for all U open such that x € U, UNA + .

Proposition 1.10. For any A C X, U C A open, A C B closed, then

UCIntACACACRB

Definition 1.11 (Dense)
AC X is dense in X if A= X.

Definition 1.12 (Separable)

X is separable if it has a countable dense subset.



Definition 1.13 (Hausdorff)

A topological space X is Hausdorff if for all x, y € X distinct, we have open sets U, V such that x € U,
yeVadUnV=g0.

Definition 1.14 (Convergence)

Let X be a topological space, x € X. Then x, — x if for all neighbourhoods U of x, there exists N such
that forall n > N, x, € U.

Definition 1.15 (Continuity)
Let X, Y be topological spaces. f: X — Y is continuous if for all U C Y open, f~'(U) C X is open.

Definition 1.16 (Open map)
Let f : X — Y is open if for all U C X open, f(U) C Y is open.

Definition 1.17 (Homeomorphism)
f: X — Y is a homeomorphism if f is a bijection, f and f~" are both continuous.

1.1 Constructions

Subspaces

Definition 1.18 (Subspace topology)
Suppose X is a topological space, Y C X. Then

{VnY:Vopenin X}
defines a topology on Y, known as the subspace topology.
Proposition 1.19. The inclusion map Y — X is continuous.

Proof Let V C X be open, (- Y < X be the inclusion map. Then (='V = V' N Y is open by definition of the
subspace topology. O

Proposition 1.20 (Universal property of subspaces). Suppose Y C X and Z is any topological space,
f:Z—Y. Then

X
tof [
Z—1 sy

f is continuous if and only if to f is continuous.



Proof. Suppose f is continuous. Then to f is a composition of continuous functions, so continuous.
Now suppose to f is continuous. Let U C Y be open. Then there exists V C X open such that U =V NY.
Then

(Lo )" (V)= (V) = (V)

is open. So f is continuous. O

Product topology

Definition 1.21 (Basis)

For a set X, a basis B for a topology on X is any collection of subsets of X such that

o B covers X, that is, [ gz B = X,

e Forany By, B, € B, x € B1 N By, there exists B3 € B such that x € B3 C B1 N By,

Definition 1.22 (Generated topology)
Given a basis B, the collection

{UBi:B[EB}

iel

forms a topology on X.

Definition 1.23 (Box topology)
Let X, Y be topological spaces. The topology generated by the basis

{Ux V:Uopenin X,V open in Y}
is known as the box topology (or the product topology for finite products) on X x Y.

Proposition 1.24. The projection maps X x ¥ — X and X x Y — Y are continuous.

Proposition 1.25 (Universal property of product topology). Suppose we have

sixof X

ZﬁXXY
x
styof Y

Then f is continuous if and only if 7x o f and sy o f are continuous.

Proof. If f is continuous then mx o f and sy o f are compositions of continuous functions. Now suppose 7y o f
and sy o f are continuous.

Let W C X x Y be open. Without loss of generality, we may assume that W = U x V is a basis element.
Then we have that

U X V)= ((Ux Y)N (X x V) = (W) 0 £ (my (W)

is open. So f is continuous. O



Proposition 1.26. (x,, y,) — (x,y) if and only if x, = x and y, — y.

Proof. Suppose (x,, y,) — (x,y). For any neighbourhood U of x, then U x Y is a neighbourhood of (x, y). So
by convergence we have N such that forall n > N, x, € U for all n > N.

Conversely, let W be a neighbourhood of (x, y). Without loss of generality, we may assume W = U x V.
Then for n sufficiently large, (x5, y,) € W. O

Quotient topology

Definition 1.27 (Quotient topology)
Let X be a topological space, g : X — Y surjective. Then the collection

{\/ g~ '(V) open in X}

defines a topology on Y.

Proposition 1.28. The quotient map g : X — Y is continuous.

Proposition 1.29 (Universal property of quotient topology). Suppose we have

X" 7

Y

where Y has the quotient topology, then f is continuous if and only if f o g is continuous.

Proof. Suppose f o g continuous. Let V' C Z be open. Then

(Foq) '(V) =g " (F(V))

is open in X, which means that f~'(V/) is open in Y, so f is continuous. O

Proposition 1.30. Suppose we have

>
N

eIl

<~

Then if f is open, so is f.

Proposition 1.31. Let X be a topological space, R be an equivalence relation on X. Suppose X/R is
Hausdorff. Then R C X x X is closed.

Proof Let W = X x X . R. Then for any (x, y) € W, g(x) # g(y). Then we have neighbourhoods S and S of
q(x), g(y) respectively such that SN T = @. Now let U = ¢~ '(S) and V = ¢~ (T). Then (x,y) € U x V, and
UxVNR=a. So W isopen, and R is closed. O



Proposition 1.32. Let X be a topological space, and suppose R is an equivalence relation on X, R C X'x X
closed, and g : X — X/R open. Then X/R is Hausdorff.

Proof. Let z, w be distinct points in X/R. Choose x, y € X such that g(x) = zand q(y) = w. Let W = XX X\R.
Then (x, y) € W, which is open as R is closed. So we have U, V such that (x,y) € U x V C W. Then g(U)
and g(V) are disjoint neighbourhoods of z and w respectively. O

2 Connectedness

Definition 2.1 (Connected)

A topological space X is disconnected by A, Biif A, B C X open, A, B nonempty, ANB = @ and X = AUB.
X is connected if no such A, B exists.

Definition 2.2 (Interval)
ICRisaninterval if forall x,z € |, if x <y <z theny € I.

Theorem 2.3. For a topological space X, the following are equivalent.
e X is connected.
e For any continuous function f : X' — R, f(X) is an interval.
e For any continuous function f : X' — Z, f is constant.
Proof. For (i) implies (it), we prove the contrapositive. Suppose f(X) is not connected. Then we have x, z € f(X),
x<y<zuygf(X). Then f~!((—co,y)) and f~'((y, co)) disconnect X.
For (ii) implies (iii), then consider X — Z — R, the image is an interval which only contains integers,

which must be a singleton.
For (iii) implies (i), suppose X = AU B is not connected. Then f = 14 is continuous, but not constant. [

Proposition 2.4. X is connected if and only if the only clopen sets are X and @.

Proposition 2.5. X C R is connected if and only if it is an interval.

Proposition 2.6. Let Y C X, then Y is disconnected if and only if we have U, V' open such that
e UNY,VNY+g,
s UNVNY =0,
e YCUUV.

Proposition 2.7. If Y C X is connected, then Y is connected.

Proof Suppose U, V disconnect Y. If UN Y and V N'Y are both nonempty, then U and V will disconnect Y.
So without loss of generality, we may assume VNY = @. Then Y C X\ V, which is closed, so Y C X'\ V,
contradiction. O



Corollary 2.8. If Y C Z C Y, then if Y is connected, Z is connected.

Theorem 2.9. If f : X — Y is continuous, X is connected, then f(X) is connected.

Proof If U, V disconnect f(X), then f=1(U), f~"(V) disconnect X. O

Corollary 2.10. If X is connected, then X/R is connected.

Lemma 2.11. Let A be a family of connected subsets of X. Suppose B is a connected subset of X such
that forall A€ A, AN B # @. Then

~(Unve

AcA

is connected.

Proof. Let f : Y — Z be continuous. For all A, f|4 is constant. Similarly, f|g is constant. But for all A € A,
ANB+ @, so f is contant. O

Theorem 2.12. If X, Y are connected, then X x Y (s connected.

Proof. Fix xo € X. Let B={xo} x Y, and A = {X x {yo} : yo € Y}. Then apply above lemma. O

2.1 Path connectedness

Definition 2.13 (Path)
For x, y € X, a path from x to y is a continuous function

y:[0,1]—= X
such that y(0) = x and y(1) = y.

Definition 2.14 (Path connected)
A topological space X is path connected if for all x, y € X, there exists a path from x to y.

Theorem 2.15. If X is path connected, then X is connected.

Proof Suppose X = U U V is disconnected. Let x € U, y € V, and y : x — y path. Then y~'(U) and y~'(V)
disconnect [0, 1]. O

2.2 Components

Connected components



Definition 2.16 (Connected components)

Let X be a topological space, define the equivalence relation ~ on X where

x ~y <= JA connected, st. x,y € A

The elements of X/ ~ are known as connected components of X.

Proposition 2.17. The connected components are nonempty, maximal, connected, closed subsets of X.

Proof. Nonempty is clear as it is an element of a partition. Now suppose if C is a connected component, C C A
where A is connected. Then for any x € C, y € A, we have that x ~ y. So A= C and C is maximal.

Fix x € C. For any y € C, we have A, connected such that x,y € A,. Then A= [J A, is connected, by
yeC

maximality, A = C, so C is connected. B
Since C is connected, so is C, so by maximality C = C, so C is closed. O

Path components

Definition 2.18 (Path components)

Let X bs a topological space, define the equivalence relation ~ on X by

X~y &< Jpathy:x -y

Theorem 2.19. Let U C R" be open. Then U is connected if and only if U is path connected.

Proof. One implication is always true. Therefore, assume U connected. Without loss of generality, assume U
nonempty. Fix xo € U, and let P = {x € U: 3y : x = xo}. We will show that P is clopen, and thus must be
the whole set U.

Fix x € P, then there exists r > 0 such that D(x;r) C U. Then D(x;r) is path connected, so for any
y € D(x;r), we have a path xo = x — y. Thus D(x;r) C P, and P is open.

Now fix x € U N P, for any y € D(x;r), if y € P then we have a path xo —» y — x. So D(x;r) CUN P,
and P is closed. O

3 Compactness

Definition 3.1 (Compact space)

A topological space X is compact if every open cover has a finite subcover.

Lemma 3.2. Let X be compact, (U;) be a sequence of open sets, U; C U, C -+, and U[ U; = X. Then
there exists N such that for all n > N, U, = Uy = X.

Proof. The U; form an open cover. Take a finite subcover. O

Lemma 3.3. Let X be compact, (T;) be a sequence of closed sets, T4y 2 T, D ---, all T; + @&. Then



A7 +2
i=1

Proof. Suppose not. Let U; = X ~ T;. Then the U; form an ascending chain, which covers X. So by previous
lemma, there exists N such that Uy = X. But this means Ty = @. Contradiction. O

Theorem 3.4. Suppose f : X — R continuous, X compact, then f is bounded and attains its bounds.

Proof For n € N, let U, = {x € X : |f(x)| < n}. By above lemma, U, is eventually constant, so the function
is bounded. Let a = inf f(X), and suppose there is no x € X such that f(x) = a. So for all x € X, there exists
n such that f(x) > a + 1/n. Let V, = {x € X : f(x) > a + 1/n}. Aqgain this is an increasing sequence, so
eventually constant. Thus we have some N such that for all x € X, f(x) > a + 1/N. But a is the infimum of
the image. Contradiction. O

Lemma 3.5. Suppose Y C X, then Y is compact if and only if for every collection % of open sets of X
such that Y C UUE% U, we have a finite subcollection which covers Y.

Theorem 3.6. [0, 1] C R is compact.

Proof. For A C [0, 1], we say that A is finitely covered by % if there is a finite subcollection of open sets in %
which cover %. Thus, we want to show that [0, 1] is finitely covered.

Suppose not. Then at least one of [0, 1/2] and [1/2, 1] is not finitely covered. Say[ay, b]. Let ¢ = J(aq+by).
Then at least one of [a1, ¢] and [c, b1] will not be finitely covered. Repeating this, we get

[a1,b1] D [a2, b2] D -+

Such that [a,, b,] are all not finitely covered, and b, — a, = 27", Then a, — x and b, — x for some
x €10,1]. Choose U € % such that x € U. Since U is open, there must be € > 0 such that (x — e, x+¢) C U.
Since a,, b, — x, choose N such that x — & < any < x < by < x + €. Contradiction. O

Theorem 3.7. Let Y C X, suppose X compact, Y closed in X. Then Y is compact.

Proof. Let % be an open cover of Y by sets open in X. Then % U {X \ Y} is an open cover of X, so we have
a finite subcover, which must cover Y. O

Theorem 3.8. Let Y C X, suppose X is Hausdorff, Y is compact, then Y is closed in X.

Proof Fix x € X\ Y. By the Hausdorff property, for all y € Y, we have U,, V,, neighbourhoods of x, y
respectively such that U, NV, #+ @. The Vjs cover Y, so by compactness we have a finite subcover,

Vy,U---uV, DY

n

Thus, Uy, N--- N U,, is a neighbourhood of x, which is disjoint from Y. O

Theorem 3.9. Let f : X — Y, X is compact, then f(X) is compact.



Corollary 3.10. Any quotient of a compact space is compact.

Theorem 3.11 (Topological inverse function theorem). Let f : X' — Y be a continuous bijection, X is
compact and Y Hausdorff. Then =" : ¥ — X is continuous. Equivalently, f is open, f is a homeomorphism.

Proof. Let U C X be open. Then K = X ~\ U is closed, so K is compact. So f(K) is compact, and f(K) is
closed in Y. Thus f(U) = Y ~ f(K) is open in Y. O

Theorem 3.12 (Tychonoff). Let X, Y be compact. Then X x Y is compact.

Proof. Let % be an open cover. Without loss of generality, we may assume that all elements of % are basis
elements, ie. U x V. Thenforall z € X x Y, we have U,, V, suchthat z€ U, x V, € % .
Fix x € X. Then {x} x Y is compact, and we have an open cover by elements of %, so we have a finite

subcover, say

(Ui Vi) 2y

Ny
Let Uy = (] Uy. Then we have that
i=1

Ny

Uy x Y C U (Uei x Vi)
i~

Now (Uy),cx is an open cover of X, so we have a finite subcover, say U,,, ..., Uy,. Then

k Ny

Xx ¥ =W, x Vi)

i=1j=1

is finitely covered.

Theorem 3.13 (Heine-Borel). K C R” is compact if and only if it is closed and bounded.

Proof. R" is Hausdorff, so if K is compact it must be closed. Furthermore, x — |Ix|l is continuous, so K is

bounded.
Conversely, if K is bounded, then K C [—-M, M]" for some M > 0. So it is a closed subspace of a compact

space, hence compact. O

4 Metric spaces

Definition 4.1 (Metric space)

For a set X, a metric d : X x X — R is a function such that
e d(x,y) > 0 for all x, y, with equality if and only if x =y,
e d(x,y)=dy,x)
o d(x,z) < d(x,y)+d(y, 2).

A pair (X, d) where d is a metric on X is known as a metric space.

10



Proposition 4.2. A normed space (X, II1l) has a metric given by d(x, y) = [|x — y||.

Proposition 4.3. Any metric space (X, d) is a topological space, with topology generated by the basis

B={D(x;r):xe X, r>0}

Proposition 4.4. Any metric space is Hausdorff.

Definition 4.5 (Subspace)
For Y C X, d|yxy defines a metric on Y.

Proposition 4.6. For any metric space (X, d), and ¥ C X, we have that

subspace metric

(X, d) (Y. dlyxy)
metric topology metric topology
—
(X' %() subspace topology (Y' 9Y)

commutes.

Definition 4.7 (Product)
For p €[1, 00,

d((xa, y1), (2, y2)) = (dx(xa, )P + dy(yr, y2)?)'"?
defines a metric on X x Y. We write the product as X @, Y.

Proposition 4.8. For a metric space (X, d), x € X, we have that x, — x if and only if

Ve > 0,IN st. Vn > N, d(x,, x) < €

Proposition 4.9. For metric spaces (X, dx), (Y, dy), f : X — Y is continuous if and only if

Vx € X,V¥e > 0,36 > 0st. dxlx,y) <5 = dy(x.y)

Definition 4.10 (Isometric)

f: X — Y is isometric if for all x, y, we have that

d(f(x). f(y)) = d(x. y)

i



Definition 4.11 (Lipschitz)
f: X — Y is Lipschitz with constant C if for all x, y, we have that

d(f(x). fy)) < Cd(x, y)

Definition 4.12 (Uniformly continuous)

f: X — Y is uniformly continuous if for all € > 0, there exists 0 > 0 such that for all x, y € M,

dx,y) < 0 = d(f(x), fy) < e

Proposition 4.13. For fixed y, x — (x, y) is an isometric map.

Proposition 4.14. Projection maps are 1-Lipschitz.

Proposition 4.15.

Isometric = Lipschitz = Uniform continuous = Continuous

Definition 4.16 (Equivalent metrics)
Two metrics d and d’ are equivalent if they induce the same topology. Equivalently, if the maps

id: (X,d) = (X,d) and id:(X,d)— (X, d)

are continuous.

Definition 4.17 (Uniformly equivalent metrics)

Two metrics d and d’ are uniformly equivalent if the maps

id: (X,d) = (X,d) and id: (X, d)— (X, d)

are uniformly continuous.

Definition 4.18 (Lipschitz equivalent metrics)

Two metrics d and d’ are Lipschitz equivalent if the maps
id: (X, d) > (X,d") and id:(X,d")— (X,d)

are Lipschitz.

5 Uniform convergence

12



Definition 5.1 (Uniform metric)
For a set S, and a metric space (X, d), define a metrid] dss on the set of all functions S — R by

doo(f, g) = sup d(f(x), g(x))

xXEeS

9Strictly speaking this can also take value oo

Definition 5.2 (Bounded functions)
Let S be a set, X be a metric space, then define

loo(S, X) = {f:S — X : f bounded}

Definition 5.3 (Uniform convergence)

We say that a sequence f, converges uniformly to f on S if deo(f,, f) — 0. Equivalently,

Ve > 0,IN,Vn > N,Vx € S, d(f,(x), f(x)) < €

Definition 5.4 (Pointwise convergence)

We say f, converges to f pointwise on S if for all x € S, f,(x) — f(x).

Proposition 5.5. Uniform convergence implies pointwise convergence.

Proposition 5.6. Suppose S is a topological space. f, : S — X for all n, and f, — f uniformly on S.
Suppose f, is continuous. Then f is continuous.

Proof Let U C X be open, and let t € f~'(U). Since f(t) € U, there exists € > 0 such that D(f(t), 3e) C U.
As f, — f uniformly, there exists N such that for all s € S, d(f(x), fn(x)) < €. Let V = D(fn(t), €), and fy'(V)
is open. Furthermore, t € fy'(V), so suffices to show fy'(V) C F~1(U).

Let w e fﬁ(\/)A Then

d(f(w), (1)) < d(f(w), In(w)) + d(fn(w), In(t) + d(In(1), (t) < 3¢
So f(w) e U. O

Lemma 5.7. If f, — f uniformly on S, and f, is bounded for every n, then f is bounded.

Proof. Fix N such that for all x € S, d(f(x), fn(x)) < 1. Since fy is bounded, there exists M, z € X such that
d(f(x),z) < M for all x € S. Then for all x € S, we have that

d(f(x), z) < d(f(x), fn(x)) + d(fn(x), 2) <M +1

13



Theorem 5.8. Suppose f, :[a, b] = R is integrable for every n, and f, — f uniformly on [a, b]. Then f is
integrable. Furthermore, we have that
b b
o=l

Proof. We have already shown that the uniform limit of bounded functions is bounded. Fix € > 0, we have
N € N such that for all x € [a, b], |fn(x) — f(x)| < e. Since fy is integrable, we have a dissection 2 such that

Ug(f) — La(f) < e

For any x, y € [xk—1, xk] in 2, we have that

1£(x) = F()] < [F(x) = )]+ IIn) = ()] + [En(y) = Fly)] < Tinlx) = Inly)| + 2¢
Which means that

sup () = fy)l < sup i) = In(y)l + 2e

X,yE[Xk,w,Xk] x,ye[xk,,q,xk]
So

m

Z(Xk —Xk—1)  sup |f(x) = fy)| < Ug(f) — Lp(f) + 2e(b—1) < 2(b—a) + 1)e

k=1 X,UE[Xk—1,xk]
Thus f s integrable. Furthermore, we have that

b b
Joo )

b
g/ lf, — f| < (b—a) sup |fy(x)—f(x)] =0

x€Ela,b]

Corollary 5.9. Let f, be integrable for every n, and suppose Y f, converges uniformly on [a, b]. Then
x+— Y f, is integrable, with

/Gb Z fo(x)dx = Z /ub f(x)dx

n
Proof. For x € [a,b], n € N, define F,(x) = ) fi(x), and F(x) =Y _ fi(x). Then F, — F uniformly on [a, b].
k=1

Each F, is integrable, and result follows by above. O

Theorem 5.10. Let f, : [a, b] — R be C', and suppose
e ) f/ converges uniformly on [a, b]
e There exists ¢ € [a, b] such that }_ f(c) converges.

Then Y f converges uniformly on [a, b] to a continuously differentiable function f, and
/
fix) = (qux)) =) _fil
k k

Proof Let g(x) =) (fl(x),and A =) fi(c). Define



Since g is the uniform limit of continuous functions, it is continuous. Furthermore, by FTC, we have that
f" =g on[a, b]. So ' is continuous, with f(c) = A.

Also by FTC, fi(x) = fi(c) + [ f{(t)dt. Fix € > 0. We have N such that

o |A=Y (o] < eforalln> N, and

. ’g(t) = f;(t)‘ < eforall n >N and t €la, b]

Then for n > N, x € [a, b], we have that

3
—_—
~>
S
—
+
—

>
=
—
=
a
~
~——

)\—l—/cxg(t)dt—

flx) = > filx)
k=1

k=1
< |A=> flo)]| + / g(t) =) K(n)dt
k=1 X k=1
<e+|x—cle
<(b—a+1)e

Definition 5.11 (Uniformly Cauchy)
A sequence (f,) of functions is uniformly Cauchy if

Ve > 0,IN,Vn,m > N,¥x € S, d(fs(x), fu(x)) < €

Theorem 5.12 (General principle of uniform convergence). Suppose X is a complete metric space, f, is
uniformly Cauchy on S. Then f, converges uniformly on S.

Proof. Fix x € S. Then f,(x) is a Cauchy sequence, so by completeness we have f such that f,(x) — f(x).

Then f, — f pointwise.
Fix € > 0, we have N such that for all n,m > N, x € S, d(f,(x), fn(x)) < e Fixx €S, n > N. Then for
allm > N, d(f(x), f,(x)) < €, taking m — (xﬂ we have that d(f(x), f,(x)) < g, so f, — f uniformly. O

Theorem 5.13 (Weierstrass M-test). Let X be a complete normed spacd] f, : S — X. Assume for all
n > N, there exists M,, > 0 such that ||f,,(x)|| < M, for all x € S. Furthermore, assume Y M, converges.
Then Y f, converges uniformly.

%a Banach space

n
Proof. Let Fp(x) = > fi(x). Fix n > m, then
k=1

< ) A< Y M,

k=m+1 k=m+1

> flx)

k=m+1

Thus, given € > 0, we have N such that ) 7\, M, < & and for m, n > N, we have that HFH(X) — F,n(X)H <
e. So f, is uniformly Cauchy. O

1Fat) = Fut)]| =

Theorem 5.14. Suppose ) ¢,z" has radius of convergence R. Then for 0 < r < R, the power series
converges uniformly on D(a; r).

TStrictly speaking we are assuming continuity of d.

15



Proof. Fix w € C such that r < |w| < R. Since ) _c,w" converges, ¢,w" — 0, which means that c,w" is
bounded. Let p = r/|w|. Fix z € D(a;r) and n € N. Then

Z|n
—_ Mp"
o] e

[c,2"| = |caw"|

Since Y Mp" converges, by the M-test, Y ¢,z" converges uniformly on D(a; r). O

Definition 5.15 (Local uniform convergence)

Let U C C be open, f, — f locally uniformly on U if for all w € U, there exists D(w, d) C U such that
f, — f uniformly on D(w, 0).

Proposition 5.16. A power series converges locally uniformly within its radius of convergence.

6 Uniform continuity

Definition 6.1 (Uniform continuity)
Let X, Y be metric spaces. Then f: X — Y is uniformly continuous if

Ve>0,30 >0, d(x,y) <o = d(f(x),fly)) <e

Theorem 6.2. Let X be a compact metric space, Y be any metric space, f : X — Y continuous. Then f is
uniformly continuous.

Proof. Given € > 0, for all x € X, by continuity we have 0, such that f(D(x, 20)) C D(f(x), €). Then D(x, o)
form an open cover of X, so we have a finite subcover (D(x;, Oy))i. Let & = min; 0x. Then for x,y € X,
d(x, y) < 0, since we have a cover, we have x; such that d(x;, x) < 0. Then

d(y, xi) < d(y, x) +d(x, x;) < 0+ 0y <20
Hence f(x), f(y) € D(f(x), €), so d(f(x), d(y)) < 2e. O

Corollary 6.3. A continuous function f : [a, b] — R is integrable.

Proof. See IA Analysis. O

7 Completeness

Definition 7.1 (Cauchy sequence)

Let X be a metric space, a sequence x, in X is Cauchy if

Ve > 0,3IN,¥n,m > N,d(x,, xn) < €

Definition 7.2 (Complete metric space)

16



A metric space is complete if all Cauchy sequences converge in M.

Proposition 7.3. If X and Y are complete metric spaces, then so is X @, Y.

Proof. Let (x,, y,) be a Cauchy sequence in X @, Y. Since a sequence in the product converges if and only if
each component converges, suffices to show that x, is Cauchy. But this is immediate since

d(Xnn Xm) < d((Xﬂ' y”)' (Xf”' g”’))

Proposition 7.4. Let X be a metric space, Y C X. If Y is complete, then Y is closed in X.

Proposition 7.5. Let X be a complete metric space, Y C X closed. Then Y is complete.

Theorem 7.6. Let S be any set, X be a complete metric space. Then Z,,(S, X) is complete with respect
to the uniform metric.

Proof. Let f, be a Cauchy sequence. Then it is uniformly Cauchy, so converges uniformly to say f : S — X.
The uniform limit of bounded functions is bounded, so f € 6,,(S, X). O

Definition 7.7 (Continuous bounded functions)

Let X be a topological space, Y be a metric space. Then define

Ca(X,Y)={f: X = Y f continuous, bounded} < Z,(X,Y)

Theorem 7.8. Let X be a topological space, Y be a complete metric space. Then Cg(X, Y) is complete.

Proof. Suffices to show it is closed in €5(X, Y). This follows as the uniform limit of continuous functions is
continuous. O

8 Sequential compactness

Definition 8.1 (Sequential compactness)

A topological space X is sequentially compact if every sequence has a convergent subsequence.

Definition 8.2 (Net)
For a metric space X, a subset F C X is an e-net for X if

X=|JDly.e)

yeFr
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Definition 8.3 (Totally bounded)

A metric space X is totally bounded if there exists a finite e-net for all € > 0.

Definition 8.4 (Diameter)
The diameter of AC X is

diam(A) = sup d(x, y) € [0, 0]
X,YyEA

Lemma 8.5. Assume that X is totally bounded, A C M nonempty closed, and € > 0. Then there exists
closed sets By, .. ., By such that A= By U --- U By, and diam(B;) < ¢ for all i.

Proof. Let F be a finite £/2-net. Then (AN D(x, €/2) : x € F,AN D(x, €/2) # @) works. O

Theorem 8.6. For a metric space X, the following are equivalent.
(i) X is compact.
(it) X is sequentially compact.

(iit) X is complete and totally bounded.

Proof (i) == (ii). First suppose X is compact, and let (x,) be a sequence in X. Let T, = {xx : k > n}, then
the limit of any subsequence must be in T = (), T,, which is nonempty by compactness. Let x € T. Then
x € T; means that we have k; > 1 such that X, € TN D(x;1), and x € Tih means we have k> > kq such that
Xk, € Ti, N D(x;1/2), and so on. This gives us ky < k» < ... such that d(x, x¢,) < 1/n, so x,, — x.

(i) = (iil). Now suppose X is sequentially compact. Let (x,) be a Cauchy sequence in X, then it has a
convergent subsequence, so converges. So X is complete.

Now suppose if X is not totally bounded. Let € be such that there is no finite e-net. Fix x; € X. Then we
have x» such that x, & D(x, €). More generally, we always have

xo11 & | Dlxi, )
i=1

Then this sequence has no Cauchy subsequence, and so cannot have a convergent subsequence.

(ii) = (i). Let Z be an open cover for X, and suppose % does not finitely cover X. Let Ay = X. Then
by lemma, we have closed sets By, ..., By such that Ag = By U --- U By and diam(B;) < 1. These can't all be
finitely covered, without loss of generality assume By cannot be finitely covered. Then set A7 = By. Inductively,
we have A1 D Ay D ... such that each A; is closed, diam(A,) < 277, and A; is not finitely covered by % .

For each n, choose x, € A,. Then this is a Cauchy sequence, so by completeness converges to say x. Now
choose U € % such that x € U. Since U is open, we must have some n such that D(x; 1/n) C U. But then %
finitely covers (say) A,. Contradiction. O

9 Contraction mapping

Definition 9.1 (Contraction map)
Let X, Y be metric spaces. Then f: X' — Y is a contraction map if f is A-Lipschitz for some 0 < A < 1.

18



Theorem 9.2 (Contraction mapping theorem, Banach's fixed point theorem). Let X be a nonempty complete
metric space, f : M — M is a contraction map. Then f has a unique fixed point.

Proof. Suppose f is A-Lipschitz, for some 0 < A < 1. Fix xp € X, and define x, = "(xo). Inductively, we have
that
d(an Xn+1) = C/(I[(X”,1), f(Xn)) < /\d(anhxn) << /\nd(XOr XW)
and for m > n, we have that

m—1 m—1

dlxm,x0) <) dlxe, xi) <) Ad(xo, x1) <
k=n k=n

AI?

md(x(),)q) -0 as n—-o o0

So (x,) s Cauchy, and by completeness, x, — z for some z € X. By continuity, f(x,) — f(z), but
f(xn) = Xp41 — 2z, s0 by uniqueness of limits, we must have that f(z) = z.
For uniqueness, suppose z and w are fixed points. Then

d(z, w) = d(f(2), f(w)) < Ad(z, w)

So we must have d(z, w) =0, ie. z=w. O

Lemma 9.3. For f : R — R" integrable (say componentwise), we have that

|

Hf ||dt< b—a) sup Hf(t)H
te(c,d]

Theorem 9.4 (Picard-Lindeldf). Suppose we have yg € R" and R > 0, and

¢ :[a, b] x D(yo; R) — R”
where ¢(t,-) - R" — R” is k-Lipschitz for all t. Then there exists € > 0 such that for all ty € [a, b],
the initial value problem
f'(t) = ¢(t, f(t)) with initial value f(to) = yo

has a unique solution on [c, d] = [ty — €, ty + €] N [a, b].

Proof. ¢ is a continuous function from a compact set, so it is bounded. Let C = sup ||¢>(tx)H Let
t€la,b],x€D(yo;R)
e=min (£, 2) for any 6 € (0,1). Fix to € [a, b], and let [c, d] = [to — &, to + €] N[a, b].
Now let X = C([c, d], D(yo; R)). This is complete as D(yo; R) is a compact metric space. Define T : X — X

) = yo+ [ éls. g(s))ds

We first need to check that T is well defined. For any t € [c, d], we have that

by

< |t —to] sup H(Z)S g(s H <eC<R

s€lto t]

1T () — yol| = H [ sts.gishax

So Tg € M. Now we will show that T is a contraction. Let g, h € M. For t € [c, d], we have that
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gl — Thin)| < ‘

[ 85, 9(s)) — (s, h(s))ds

< [t —to Sﬁpr]Hd)(S'g(S)) = (s, h(s))|

< ekllg o,
< ollg 1]l

So ||Tg - 7’/‘7“00 < 5Hg — hHOO. Thus, by the contraction mapping theorem, T has a unique fixed point,
say f. Then

f(t) = go+/ phils, f(s))ds

and the fundamental theorem of calculus shows that this satisfies the differential equation. O

10 Differentiation
Definition 10.1 (Matrix norm)

For T € L(R™,R"), we can identify T with a matrix (7;;) with respect to the standard bases. Then we
define the (elementwise) norm as

7l = <ZZ Ti) - (iuwﬁ)

j=1 =1

Lemma 10.2. For T € L(R™,R"), x € R", we have that

Il < [T s

Proof

17 =

Z X,‘T@(

i=1

< Z |X[|HT€[H by Triangle-Ineq.
i=1

m 1/2 m 112
Zx?) (Z HTeiHZ) by Cauchy-Schwarz
i=1 i=1

= || T|[ix

<

Corollary 10.3. Linear maps are Lipschitz, hence (uniform) continuous.

Lemma 10.4. For S € L(R",RP), T € L(R™, R"), we have that

IsTI < ISl
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Proof

17l

m 1/2
(Z HSTeiHZ)
i=1
m 112
2 2
(Zusn I7e )
=1

= [ISIHI7]

IN

Definition 10.5 (Differentiable)
Let f: R" - R", a € R". We say f is differentiable at @, with derivative Df(a) = f'(a) = T € L(R™,R")
if
fla+ h)—f(a)— T(h)
1]

—0 as h—0

Proposition 10.6. f is differentiable if and only if there exists T € L(R™,R"), € : R” — R" continuous,
£(0) = 0 such that

f(a+ h) = f(a) + T(h) + ||h||e(h)

Proposition 10.7. The derivative, if it exists, is unique.

Proof. Suppose we have S and T both satisfying the equation in the definition of a derivative. Fix x € R”
nonzero. Then for all k € R, we have that x/k — 0, so
Sx) = T(x) _ S(x/k) — T(x/k)

— -0

14l Hx/k”

Proposition 10.8. Suppose f € L(R",R"). Then f is differentiable, with Df = f.

Proposition 10.9. Suppose f € Bil(R” x R”,RP). Then f is differentiable, with

Df(a, b)(h, k) = f(a, k) + f(h, b)

Definition 10.10 (Differentiable in a set)
Let U CR" be open, f: U — R", a € U. Then f is differentiable at a, with derivative Df = f'(a) = T €
LR™, R") if
fla+ h)—f(a)— T(h)
1]

—0 as h—0

whenever a + h € U.
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Remark 10.11. For m = 1, we note that L(R,R") = (R")* = R”, so in this case we can write Df(a)(h) = v - h for
some v € R".

Proposition 10.12. Let f : U — R” be differentiable at a. Then f is continuous at a.

Proof For x € U, we have that

f(x) = f(a) + f'(a)(x — a) + lix — alle(x — a)

which is sum/product/composition of continuous function, hence continuous (at a). O

Proposition 10.13 (Chain rule). Let f: U - R"”, g : V — R, f(V) C V, and a € U. Suppose that f is
differentiable at a, and g is differentiable at b = f(a). Then g o f is differentiable at a, with

D(g o f)(a) = Dg(f(a)) o Df(a)

Proof. Let S = Df(a), T = Dg(f(a)). Then we have that

fa+ h) =f(a) + S(h) + ||h||e(h) and g(b+ k) = g(b) + T (k) + || k|| (k)
So we get that

f(a
‘

‘
‘

(gof)a+h)

+

h))

S(h) + || hl|e(h)

T(S(h) + [[h|| e(h) + ||S(h) + ||h][€(M]||S(S(h) + ||h]|(h)
(T o S)(h) + [|h|| T(e(h) + || k(h)]|¢(K(h))

=n(h)

(

(a)
(a))
(a))

Q@ Q@ au Qa

(
(
(
(

+ +

Suffices to show that n(h)/||h|| — 0 as h — 0. Since T is continuous, ||h||T(e(h))/HhH = T(e(h)) = 0 as
h — 0.

) st ol [SUAL Il o) oo

Inll 1] - 1]
is bounded as h — 0, k(h) = S(h) + Hh”s(h) — 0 as h — 0, so we have that {(k(h)) — 0 as h — 0, which
means that n(h)/||h|| — 0 as h — 0. O

Proposition 10.14 (Components of derivatives). Let f : U — R", a € U. Let f; = 7j o f be the j-th
component of f. Then f is differentiable at @ if and only if each f; is differentiable at a, with

Df(a)(h) = ) _ Df(a)(h)e;
j=1
Equivalently,

m;(Df(a)) = D(m; o f)(a)

Proof. First suppose f is differentiable. ; is linear, so differentiable. The chain rule gives the required result.
Conversely, suppose each f; is differentiable, with
fila + h) = f(a) + Dfj(a)(h) + [||e;(h)
Then
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flo+h) = fla)+ ) Df(a)(h)e; + ||h]| > &(h)e;
j=1 j=1

n
and we have that ) ¢g;(h)e; - 0as h — 0. O
=

Proposition 10.15 (Linearity of derivative). For A,y € R, f, g : U — R" differentiable at @ € U, we have
that

D(Af 4+ ug)(a) = ADf(a) + uDg(a)

Proposition 10.16 (Product rule). Let f: U — R" and ¢ : U — R be differentiable at a. Then

D(@f)(a)(h) = ¢(a)[DF(a)(h)] + [D¢(a)(h)]f(a)

Proof. Define F: U — R x R" by F(x) = (¢(x), f(x)) and G : R x R" by G(A,v) = Av. Then ¢f = Go F.
DF = (D¢, Df) by projections, and DG(A, v)(y, w) = Aw + pv by bilinearity. The result follows by chain
rule. O

Definition 10.17 (Directional derivative)
Let U C R™ be open, f: U - R", a € U. Fixu € R" ~ {0}. If

o fla + tu) — f(a)
t—0 t

exists, we call this the directional derivative of f at a, and write D, f(a) for the limit.

Definition 10.18 (Partial derivative)

We write D; = D,, for the i-th partial derivative of a function.

Proposition 10.19. If f is differentiable at a, then for all u, D,f(a) exists, with

D, f(a) = Df{a)(u)

Proof. Suppose f(a + h) = f(a) + Df(a)(h) + HhHs(h) Then
fla + tu) — f(a) [t]
t t
So D,f(a) = Df(a)(u). O

= Df(a)(u) + —llulletu — Df(a)(u)

Corollary 10.20.

Di(a)(h) = i hiDif (a)
i=1
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Definition 10.21 (Jacobian)
The Jacobian matrix of a function f is Jf(a) = [Df(a)], Le. Df with respect to standard bases.

Proposition 10.22. The i-th column of Jf(a) is D;f(a), and

_ G
N 6)([

(Jf(a))y

Theorem 10.23. Suppose D;f(x) exists for x € V, where V' C U is an open neighbourhood of a. Moreover,
x — D;f(x) is continuous at a. Then f is differentiable at a.

Proof. Considering components of f, without loss of generality f : R™ — R. We will prove this by induction on
m. The case m = 1 is trivial. For h € R, define

m—1
A = Zh[e[ and  h? = h,e,
i=1

Let

m

Y(h) = fa+h)—fla)+ ) hiDif(a)
=1

We wish to show that (i(h) is o(h). We have that

m—1

Y(h) = fla + h) = fla + h") = hyDyf(a) + f(a + h') — f(a) = > hiDif(a)
(0 -

(i
By the inductive hypothesis, (i) is o||A"]|) so o(||A]|). Now Let

o(t) = fla+ hV + th?)

¢ is differentiable, with ¢/(t) = h,, D, f(a + h™") 4 h?). Then by the mean value theorem, we have t € (0, 1)
such that ¢(1) — ¢(0) = ¢'(t). Which means that

(i) = (1) — $(0) — hyDpf(a) = hy(Dpfla + hV + th?)) — D, f(a))

As h — 0, the part in the brackets tends to zero by continuity. So (i) is o(|hn]), and hence o(HhH). O

Theorem 10.24 (Mean value inequality). Suppose f : U — R” differentiable, and M is such that
||f’(z)H < Mforall z €a, b] C U. then

I£(6) = f(a)]| < M[[6 - o
Proof. Let u = b —a, v = f(b) — f(a). Without loss of generality, u # 0. Then define y(t) = a+ tu. foy s
differentiable, with
D(f oy)(t) = DI (y(0)(Dy(t)) = Df(a + tu)(u)

Furthermore, let ¢(t) = (f(y(1)),v). Then ||f(b) — f(a)H2 = ¢(1) — ¢(0), and ¢/(t) = (Df(a + tu)(u), v).
Then by the mean value theorem, we have 6 € (0, 1) such that ¢(1) — ¢(0) = ¢’(0). So
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[7(6) = fla)]|” =

( fla + Bu)(u), v)
gHDfa—i-Qu HHVH
< ||Df(a + 6u ||||uHHv||
< M[lb — o |1(5) ~ f(a)]

Corollary 10.25. Let U be open, f : U — R" differentiable, Df = 0 on U. Then U is locally constant.

Proof. For any x € U, we have a neighbourhood D(x;r) C U. Then for any y € D(x; r), the segment [x, y] is
contained in U. Applying the mean value inequality we get the required result. O

Corollary 10.26. Suppose U is open and connected, f : U — R” differentiable, Df = 0 on U. Then U is
constant.

Proof. A locally constant function on a connected space is constant. O

Proposition 10.27. Let f : V — W be a bijection, f differentiable at a and =" differentiable at f(a),
where V C R™ and W C R". Then m = n.

Proof Let S = Df(a), and T = D(f~")(f(a)). Then by the chain rule, TS = idgs and ST = idg.. So
m=tr(TS)=tr(ST) =n. O

Theorem 10.28 (Inverse function theorem). Let U C R" be open, f : U — R" is C', a € U, f'(a) is
invertible. Then there exists open neighbourhoods V, W of a, f(a) respectively, such that f|y : V — W is
a bijection, with inverse g : W — V that is C".

Furthermore, Dg(y) = (Df(g(y)))~"

Proof Let T = Df(a), h(x) = T~ '(f(a + x) — f(a)). By the chain rule, h is differentiable, with h’(x) =
T=' o Df(a + x), which is a composition of continuous functions, so continuous. Furthermore, we have that
h(0) = 0, and Dh(0) = id. Since f(x) = T(h(x — a)) + f(a), suffices to prove the result for h. So without loss
of generality, we may assume a = f(a) = 0, and Df(0) = id.

Since Df is continuous, we have r > 0 such that D(0;r) C U and for all x € D(0; r), HDf 'LdH < %
For x € D(0;r), let p(x) = f(x) — x. Then Dp(x) = Df(x) — id. So for all x € D(0;r), HDp )| < 3. So by
mean value inequality, ||Dp(x) - Dp(g)H < %HX - g|| As a result,

1
160 = F)] = llpb) = p(y) +x =y > [[x = y[| = [|px) = p(v)]]| > 5[}x = y]
Let W = D(0; 5) and fix w € W. Let g(x) = w —f(x) + x = w — p(x). Since p(0) = f(0) = 0, we have that

gl < nwit =+ {|p(x)|| < 1wl + %qu < Zé —r

So q(D(0; r)) € D(0; r). Furthermore, we have that

ot — gt = llot) — ()| < 51x— u]
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So q is a contraction mapping on the complete metric space D(0; r), and has a unique fixed point. That is,
a unique x such that f(x) = w. Since w is arbitrary, we have that D(0; r/2) C f(D(0; r)).

Let V = (W) N D(O;r). Then V and W satisfy the requirements of the theorem, as V, W open,
fly : V. — W is a bijection. Let g be the inverse, we will show that g is continuous.

[g(u) = gv)[| < 2||f(g(u)) = (g = 211t — v

So g is Lipschitz, hence continuous. The proof that g is C' is non-examinable. O

10.1 Second derivative

Definition 10.29 (Second derivative)

Let f : U — R" be differentiable on V' open, where @ € V' C U. Then we say that f is twice differentiable
at a if

Df .V — [(R",R")

is differentiable at a. We write the result as f”(a) = D*f(a), where

D*f:V — L(R", L(R",R"))

Remark 10.30.
LR™, L(R™, R")) = Bil(R" x R",R")

via T(h)(k) < T(h, k), so we do not make a distinction between the two.

Proposition 10.31. Let f : U — R” be differentiable on V' open, where a € V C U. Then f is twice
differentiable at a if and only if there exists T & Bil(R” x R"™,R") such that

Df(a + h)(k) = Df(a)(k) + T(h, k) + of||h||)
for each fixed k.

Proof Assume f is twice differentiable at a. Then

Df(a + h) = Df(a) + D*f(a)(h) + || h||e(h)
Fix k € R", and evaluating the above at k, we find that

Df(a + h)(k) = Df(a)(k) + D*f(a)(h, k) + || h]|(h)(k)

Letting T = D?f(a), Hs(h)(k)” < Hs(h)””k” — 0 as h — 0, so the error is o(HhH)
Now suppose T exists. Let

Df(a + h) — Df(a) — T(h)
1]
Suffices to show that €(h) — 0 as h — 0. For each fixed k € R”, ¢(h)(k) — 0 as h — 0. So we have that

e(h) =

” 112
[e(h)]| = (ZHs(h)(ei)Hz) —0 as h—0
i=1
Proposition 10.32. If f : R™ — R” linear, then D*f = 0.
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Proposition 10.33. If f € Bil(R™ x R™,R"), then D’*f = Df (up to identifying linear/bilinear forms).

Proof.
Df(a, b) = ((h, k) — f(a, k) + f(h, b))

is linear in (a, b). O
10.2 Partial derivatives

Proposition 10.34. Suppose f : U — R" is twice differentiable at a. Then

D,D,f(a) = D*f(a)(u, v)

Proof For each fixed k € R™, we have

Df(a + h)(k) = Df(a)(k) + sz(a)(h, k) + o(HhH)
Putting k = v, we get that
D,f(a + h) = D,f(a) + D*f(a)(h, v) + of||h]|)
Which then gives us that D,f : V' — R” is differentiable at a, with

D(D,f)(a)(h) = D*(a)(h,v)

Seeting h = u gives the required result. O

Theorem 10.35 (Symmetry of mixed partial derivatives). Suppose f : U — R” is twice differentiable, with
D?f : V — Bil(R™ x R™, R") continuous at @ € V C U. Then

D, D, f(a) = D,D,f(a)

Equivalently, D?f(a) is a symmetric bilinear map.

Proof Since

(Dyf);(x) = (Dul(x)); = (DF(x)(u)); = DF(x)(u) = Dufjx)

without loss of generality n = 1. Define

(s, t) = f(a+ su+ tv)—fla+ tv)— f(a + su) + f(a)
Fix s, t. Define Y(y) = f(a+yu+tv)—f(a+ yu). Then ¢(s, t) = Y(s) — (0). By the mean value theorem,
we have a € (0, 1) such that
o(s, t) = Y(s) — Y(0) = sy/(as) = s (D,f(a + asu + tv) — D,f(a + asu))

Apply the mean value theorem to z+— D,f(a + asu + zv), we have some 8 € (0, 1) such that

H(s, t) = stD,D,f(a + asu + Btv) = stD*f(a + asu + Btv)(v, u)

By continuity, we have that

B0 _ oy

" a+ asu + Btv)(v, u) = D*fla)(v,u) as s t—0

If instead we used (y) = f(a + su + yv) — f(a + yv), then we would get
¢(5' t) N sz(

st
Uniqueness of limits gives the required result. O

u,v) as s t—0
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