Analysis and Topology

Shing Tak Lam

May 11, 2022

Contents

1	Topological spaces 1.1 Constructions	1 3			
2	Connectedness 2.1 Path connectedness 2.2 Components	6 7 7			
3	Compactness	8			
4	Metric spaces				
5	Uniform convergence				
6	Uniform continuity	16			
7	Completeness				
8	Sequential compactness	17			
9	Contraction mapping	18			
10	Differentiation 10.1 Second derivative 10.2 Partial derivatives	20 26 27			

1 Topological spaces

Definition 1.1 (Topological space)

Given a set X, a topology on X is a collection ${\mathscr T}$ of subsets of X such that

- $\bullet \ {\varnothing}, X \in {\mathscr T}$
- If $U_i \in \mathscr{T}$ for all $i \in I$, then $\bigcup_{i \in I} U_i \in \mathscr{T}$
- If $U_1, U_2 \in \mathscr{T}$, then $U_1 \cap U_2 \in \mathscr{T}$.

and a topological space is a pair (X, \mathscr{T}).

Definition 1.2 (Open and closed sets) For $A \subseteq X$, A is open if $A \in \mathscr{T}$, and A is closed if $X \smallsetminus A \in \mathscr{T}$ **Proposition** 1.3.

- \emptyset, X are closed
- If U_i are closed for all $i \in I$, then so is $\bigcap i \in IU_i$
- If U_1 , U_2 are closed, then so is $U_1 \cup U_2$

Remark 1.4. This gives us an equivalent way to defining a topology, by specifying the closed sets. This can be useful, eg. for the Zariski topology.

Definition 1.5 (Interior) For $A \subseteq X$, define the interior of A to be

$$\operatorname{Int} A = \bigcup_{U \subseteq A, U \text{ open}} U$$

Definition 1.6 (Closure) For $A \subseteq X$, define the closure of A to be

$$\overline{A} = \bigcap_{U \subseteq X, U \text{ closed}} U$$

Proposition 1.7. For all *A*, we have that $Int A \subseteq A \subseteq \overline{A}$, with equality holding if and only if *A* open (closed resp.).

Proposition 1.8. For all $x \in X$, we have that $x \in \text{Int } A$ if and only if there exists U open such that $x \in U \subseteq A$.

Proposition 1.9. For all $x \in X$, $x \in \overline{A}$ if and only if for all U open such that $x \in U$, $U \cap A \neq \emptyset$.

Proposition 1.10. For any $A \subseteq X$, $U \subseteq A$ open, $A \subseteq B$ closed, then

$$U \subset \operatorname{Int} A \subset A \subset \overline{A} \subset B$$

Definition 1.11 (Dense) $A \subseteq X$ is dense in X if $\overline{A} = X$.

Definition 1.12 (Separable) *X* is separable if it has a countable dense subset.

Definition 1.13 (Hausdorff)

A topological space X is Hausdorff if for all $x, y \in X$ distinct, we have open sets U, V such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Definition 1.14 (Convergence) Let X be a topological space, $x \in X$. Then $x_n \to x$ if for all neighbourhoods U of x, there exists N such that for all $n \ge N$, $x_n \in U$.

Definition 1.15 (Continuity) Let X, Y be topological spaces. $f : X \to Y$ is continuous if for all $U \subseteq Y$ open, $f^{-1}(U) \subseteq X$ is open.

Definition 1.16 (Open map) Let $f : X \to Y$ is open if for all $U \subseteq X$ open, $f(U) \subseteq Y$ is open.

Definition 1.17 (Homeomorphism)

 $f: X \to Y$ is a homeomorphism if f is a bijection, f and f^{-1} are both continuous.

1.1 Constructions

Subspaces

Definition 1.18 (Subspace topology) Suppose *X* is a topological space, $Y \subseteq X$. Then

 $\{V \cap Y : V \text{ open in } X\}$

defines a topology on Y, known as the subspace topology.

Proposition 1.19. The inclusion map $Y \hookrightarrow X$ is continuous.

Proof. Let $V \subseteq X$ be open, $\iota: Y \hookrightarrow X$ be the inclusion map. Then $\iota^{-1}V = V \cap Y$ is open by definition of the subspace topology.

Proposition 1.20 (Universal property of subspaces). Suppose $Y \subseteq X$ and Z is any topological space, $f : Z \rightarrow Y$. Then

f is continuous if and only if $\iota \circ f$ is continuous.

Proof. Suppose f is continuous. Then $\iota \circ f$ is a composition of continuous functions, so continuous.

Now suppose $\iota \circ f$ is continuous. Let $U \subseteq Y$ be open. Then there exists $V \subseteq X$ open such that $U = V \cap Y$. Then

$$(\iota \circ f)^{-1}(V) = f^{-1}(\iota^{-1}(V)) = f^{-1}(U)$$

is open. So *f* is continuous.

Product topology

Definition 1.21 (Basis)

For a set X, a basis \mathcal{B} for a topology on X is any collection of subsets of X such that

- \mathcal{B} covers X, that is, $\bigcup_{B \in \mathcal{B}} B = X$,
- For any $B_1, B_2 \in \mathcal{B}, x \in B_1 \cap B_2$, there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

Definition 1.22 (Generated topology) Given a basis \mathcal{B} , the collection

$$\left\{\bigcup_{i\in I}B_i:B_i\in\mathcal{B}\right\}$$

forms a topology on X.

Definition 1.23 (Box topology)

Let X, Y be topological spaces. The topology generated by the basis

 $\{U \times V : U \text{ open in } X, V \text{ open in } Y\}$

is known as the box topology (or the product topology for finite products) on $X \times Y$.

Proposition 1.24. The projection maps $X \times Y \rightarrow X$ and $X \times Y \rightarrow Y$ are continuous.

Proposition 1.25 (Universal property of product topology). Suppose we have

Then *f* is continuous if and only if $\pi_X \circ f$ and $\pi_Y \circ f$ are continuous.

Proof. If *f* is continuous then $\pi_X \circ f$ and $\pi_Y \circ f$ are compositions of continuous functions. Now suppose $\pi_X \circ f$ and $\pi_Y \circ f$ are continuous.

Let $W \subseteq X \times Y$ be open. Without loss of generality, we may assume that $W = U \times V$ is a basis element. Then we have that

$$f^{-1}(U \times V) = f^{-1}((U \times Y) \cap (X \times V)) = f^{-1}(\pi_X(W)) \cap f^{-1}(\pi_Y(W))$$

is open. So *f* is continuous.

Proposition 1.26. $(x_n, y_n) \rightarrow (x, y)$ if and only if $x_n \rightarrow x$ and $y_n \rightarrow y$.

Proof. Suppose $(x_n, y_n) \to (x, y)$. For any neighbourhood U of x, then $U \times Y$ is a neighbourhood of (x, y). So by convergence we have N such that for all $n \ge N$, $x_n \in U$ for all $n \ge N$.

Conversely, let W be a neighbourhood of (x, y). Without loss of generality, we may assume $W = U \times V$. Then for n sufficiently large, $(x_n, y_n) \in W$.

Quotient topology

Definition 1.27 (Quotient topology)

Let X be a topological space, $q: X \rightarrow Y$ surjective. Then the collection

 $\{V: q^{-1}(V) \text{ open in } X\}$

defines a topology on Y.

Proposition 1.28. The quotient map $q : X \rightarrow Y$ is continuous.

Proposition 1.29 (Universal property of quotient topology). Suppose we have

Proof. Suppose $f \circ q$ continuous. Let $V \subseteq Z$ be open. Then

$$(f \circ q)^{-1}(V) = q^{-1}(f^{-1}(V))$$

is open in X, which means that $f^{-1}(V)$ is open in Y, so f is continuous.

Proposition 1.30. Suppose we have

Then if f is open, so is \tilde{f} .

Proposition 1.31. Let *X* be a topological space, *R* be an equivalence relation on *X*. Suppose X/R is Hausdorff. Then $R \subseteq X \times X$ is closed.

Proof. Let $W = X \times X \setminus R$. Then for any $(x, y) \in W$, $q(x) \neq q(y)$. Then we have neighbourhoods *S* and *S* of q(x), q(y) respectively such that $S \cap T = \emptyset$. Now let $U = q^{-1}(S)$ and $V = q^{-1}(T)$. Then $(x, y) \in U \times V$, and $U \times V \cap R = \emptyset$. So *W* is open, and *R* is closed.

Proposition 1.32. Let *X* be a topological space, and suppose *R* is an equivalence relation on *X*, $R \subseteq X \times X$ closed, and $q : X \to X/R$ open. Then *X*/*R* is Hausdorff.

Proof. Let *z*, *w* be distinct points in *X*/*R*. Choose *x*, $y \in X$ such that q(x) = z and q(y) = w. Let $W = X \times X \setminus R$. Then $(x, y) \in W$, which is open as *R* is closed. So we have *U*, *V* such that $(x, y) \in U \times V \subseteq W$. Then q(U) and q(V) are disjoint neighbourhoods of *z* and *w* respectively.

2 Connectedness

Definition 2.1 (Connected)

A topological space X is disconnected by A, B if A, $B \subseteq X$ open, A, B nonempty, $A \cap B = \emptyset$ and $X = A \cup B$. X is connected if no such A, B exists.

Definition 2.2 (Interval)

 $I \subseteq \mathbb{R}$ is an interval if for all $x, z \in I$, if x < y < z then $y \in I$.

Theorem 2.3. For a topological space X, the following are equivalent.

- X is connected.
- For any continuous function $f : X \to \mathbb{R}$, f(X) is an interval.
- For any continuous function $f : X \to \mathbb{Z}$, f is constant.

Proof. For (i) implies (ii), we prove the contrapositive. Suppose f(X) is not connected. Then we have $x, z \in f(X)$, $x < y < z, y \notin f(X)$. Then $f^{-1}((-\infty, y))$ and $f^{-1}((y, \infty))$ disconnect X.

For (ii) implies (iii), then consider $X \to \mathbb{Z} \hookrightarrow \mathbb{R}$, the image is an interval which only contains integers, which must be a singleton.

For (iii) implies (i), suppose $X = A \cup B$ is not connected. Then $f = \mathbb{1}_A$ is continuous, but not constant.

Proposition 2.4. *X* is connected if and only if the only clopen sets are *X* and \emptyset .

Proposition 2.5. $X \subseteq \mathbb{R}$ is connected if and only if it is an interval.

Proposition 2.6. Let $Y \subseteq X$, then Y is disconnected if and only if we have U, V open such that

- $U \cap Y, V \cap Y \neq \emptyset$,
- $U \cap V \cap Y = \emptyset$,
- $Y \subseteq U \cup V$.

Proposition 2.7. If $Y \subseteq X$ is connected, then \overline{Y} is connected.

Proof. Suppose U, V disconnect \overline{Y} . If $U \cap Y$ and $V \cap Y$ are both nonempty, then U and V will disconnect Y. So without loss of generality, we may assume $V \cap Y = \emptyset$. Then $Y \subseteq X \setminus V$, which is closed, so $\overline{Y} \subseteq X \setminus V$, contradiction.

Corollary 2.8. If $Y \subseteq Z \subseteq \overline{Y}$, then if Y is connected, Z is connected.

Theorem 2.9. If $f : X \to Y$ is continuous, X is connected, then f(X) is connected.

Proof. If U, V disconnect f(X), then $f^{-1}(U), f^{-1}(V)$ disconnect X.

Corollary 2.10. If X is connected, then X/R is connected.

Lemma 2.11. Let \mathcal{A} be a family of connected subsets of X. Suppose B is a connected subset of X such that for all $A \in \mathcal{A}$, $A \cap B \neq \emptyset$. Then

$$Y = \left(\bigcup_{A \in \mathcal{A}} A\right) \cup B$$

is connected.

Proof. Let $f : Y \to \mathbb{Z}$ be continuous. For all A, $f|_A$ is constant. Similarly, $f|_B$ is constant. But for all $A \in A$, $A \cap B \neq \emptyset$, so f is contant.

Theorem 2.12. If *X*, *Y* are connected, then $X \times Y$ is connected.

Proof. Fix $x_0 \in X$. Let $B = \{x_0\} \times Y$, and $\mathcal{A} = \{X \times \{y_0\} : y_0 \in Y\}$. Then apply above lemma.

2.1 Path connectedness

Definition 2.13 (Path)

For $x, y \in X$, a path from x to y is a continuous function

 $\gamma: [0, 1] \rightarrow X$

such that $\gamma(0) = x$ and $\gamma(1) = y$.

Definition 2.14 (Path connected)

A topological space X is path connected if for all $x, y \in X$, there exists a path from x to y.

Theorem 2.15. If *X* is path connected, then *X* is connected.

Proof. Suppose $X = U \cup V$ is disconnected. Let $x \in U$, $y \in V$, and $\gamma : x \to y$ path. Then $\gamma^{-1}(U)$ and $\gamma^{-1}(V)$ disconnect [0, 1].

2.2 Components

Connected components

Definition 2.16 (Connected components)

Let X be a topological space, define the equivalence relation \sim on X where

 $x \sim y \iff \exists A \text{ connected, s.t. } x, y \in A$

The elements of X/\sim are known as connected components of X.

Proposition 2.17. The connected components are nonempty, maximal, connected, closed subsets of X.

Proof. Nonempty is clear as it is an element of a partition. Now suppose if *C* is a connected component, $C \subseteq A$ where *A* is connected. Then for any $x \in C$, $y \in A$, we have that $x \sim y$. So A = C and *C* is maximal.

Fix $x \in C$. For any $y \in C$, we have A_y connected such that $x, y \in A_y$. Then $A = \bigcup_{y \in C} A_y$ is connected, by

maximality, A = C, so C is connected. Since C is connected, so is \overline{C} , so by maximality $C = \overline{C}$, so C is closed.

Path components

Definition 2.18 (Path components)

Let X bs a topological space, define the equivalence relation \sim on X by

$$x \sim y \iff \exists \text{ path } \gamma : x \rightarrow y$$

Theorem 2.19. Let $U \subseteq \mathbb{R}^n$ be open. Then U is connected if and only if U is path connected.

Proof. One implication is always true. Therefore, assume U connected. Without loss of generality, assume U nonempty. Fix $x_0 \in U$, and let $P = \{x \in U : \exists y : x \to x_0\}$. We will show that P is clopen, and thus must be the whole set U.

Fix $x \in P$, then there exists r > 0 such that $D(x; r) \subseteq U$. Then D(x; r) is path connected, so for any $y \in D(x; r)$, we have a path $x_0 \to x \to y$. Thus $D(x; r) \subseteq P$, and P is open.

Now fix $x \in U \setminus P$, for any $y \in D(x; r)$, if $y \in P$ then we have a path $x_0 \to y \to x$. So $D(x; r) \subseteq U \setminus P$, and P is closed.

3 Compactness

Definition 3.1 (Compact space)

A topological space X is compact if every open cover has a finite subcover.

Lemma 3.2. Let X be compact, (U_i) be a sequence of open sets, $U_1 \subseteq U_2 \subseteq \cdots$, and $\bigcup_i U_i = X$. Then there exists N such that for all $n \ge N$, $U_n = U_N = X$.

Proof. The U_i form an open cover. Take a finite subcover.

Lemma 3.3. Let X be compact, (T_i) be a sequence of closed sets, $T_1 \supseteq T_2 \supseteq \cdots$, all $T_i \neq \emptyset$. Then

$$\bigcap_{i=1}^{\infty} T_i \neq \emptyset$$

Proof. Suppose not. Let $U_i = X \setminus T_i$. Then the U_i form an ascending chain, which covers X. So by previous lemma, there exists N such that $U_N = X$. But this means $T_N = \emptyset$. Contradiction.

Theorem 3.4. Suppose $f : X \to \mathbb{R}$ continuous, X compact, then f is bounded and attains its bounds.

Proof. For $n \in \mathbb{N}$, let $U_n = \{x \in X : |f(x)| < n\}$. By above lemma, U_n is eventually constant, so the function is bounded. Let $\alpha = \inf f(X)$, and suppose there is no $x \in X$ such that $f(x) = \alpha$. So for all $x \in X$, there exists n such that $f(x) > \alpha + 1/n$. Let $V_n = \{x \in X : f(x) > \alpha + 1/n\}$. Again this is an increasing sequence, so eventually constant. Thus we have some N such that for all $x \in X$, $f(x) > \alpha + 1/N$. But α is the infimum of the image. Contradiction.

Lemma 3.5. Suppose $Y \subseteq X$, then Y is compact if and only if for every collection \mathscr{U} of open sets of X such that $Y \subseteq \bigcup_{U \in \mathscr{U}} U$, we have a finite subcollection which covers Y.

Theorem 3.6. $[0, 1] \subseteq \mathbb{R}$ is compact.

Proof. For $A \subseteq [0, 1]$, we say that A is finitely covered by \mathscr{U} if there is a finite subcollection of open sets in \mathscr{U} which cover \mathscr{U} . Thus, we want to show that [0, 1] is finitely covered.

Suppose not. Then at least one of [0, 1/2] and [1/2, 1] is not finitely covered. Say $[a_1, b_1]$. Let $c = \frac{1}{2}(a_1 + b_1)$. Then at least one of $[a_1, c]$ and $[c, b_1]$ will not be finitely covered. Repeating this, we get

$$[a_1, b_1] \supseteq [a_2, b_2] \supseteq \cdots$$

Such that $[a_n, b_n]$ are all not finitely covered, and $b_n - a_n = 2^{-n}$. Then $a_n \to x$ and $b_n \to x$ for some $x \in [0, 1]$. Choose $U \in \mathscr{U}$ such that $x \in U$. Since U is open, there must be $\varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subseteq U$. Since $a_n, b_n \to x$, choose N such that $x - \varepsilon \leq a_N \leq x \leq b_N \leq x + \varepsilon$. Contradiction.

Theorem 3.7. Let $Y \subseteq X$, suppose X compact, Y closed in X. Then Y is compact.

Proof. Let \mathscr{U} be an open cover of Y by sets open in X. Then $\mathscr{U} \cup \{X \smallsetminus Y\}$ is an open cover of X, so we have a finite subcover, which must cover Y.

Theorem 3.8. Let $Y \subseteq X$, suppose X is Hausdorff, Y is compact, then Y is closed in X.

Proof. Fix $x \in X \setminus Y$. By the Hausdorff property, for all $y \in Y$, we have U_y , V_y neighbourhoods of x, y respectively such that $U_y \cap V_y \neq \emptyset$. The V_y s cover Y, so by compactness we have a finite subcover,

$$V_{q_1} \cup \cdots \cup V_{q_n} \supseteq Y$$

Thus, $U_{y_1} \cap \cdots \cap U_{y_n}$ is a neighbourhood of *x*, which is disjoint from *Y*.

Theorem 3.9. Let $f : X \to Y$, X is compact, then f(X) is compact.

Corollary 3.10. Any quotient of a compact space is compact.

Theorem 3.11 (Topological inverse function theorem). Let $f : X \to Y$ be a continuous bijection, X is compact and Y Hausdorff. Then $f^{-1} : Y \to X$ is continuous. Equivalently, f is open, f is a homeomorphism.

Proof. Let $U \subseteq X$ be open. Then $K = X \setminus U$ is closed, so K is compact. So f(K) is compact, and f(K) is closed in Y. Thus $f(U) = Y \setminus f(K)$ is open in Y.

Theorem 3.12 (Tychonoff). Let *X*, *Y* be compact. Then $X \times Y$ is compact.

Proof. Let \mathscr{U} be an open cover. Without loss of generality, we may assume that all elements of \mathscr{U} are basis elements, i.e. $U \times V$. Then for all $z \in X \times Y$, we have U_z, V_z such that $z \in U_z \times V_z \in \mathscr{U}$.

Fix $x \in X$. Then $\{x\} \times Y$ is compact, and we have an open cover by elements of \mathcal{U} , so we have a finite subcover, say

$$\left(U_{x,i} \times V_{x,i}\right)_{i=1}^{n_x}$$

Let $U_x = \bigcap_{i=1}^{n_x} U_{x_i}$. Then we have that

$$U_x \times Y \subseteq \bigcup_{i=1}^{n_x} \left(U_{x,i} \times V_{x,i} \right)$$

Now $(U_x)_{x \in X}$ is an open cover of X, so we have a finite subcover, say U_{x_1}, \ldots, U_{x_k} . Then

$$X \times Y = \bigcup_{i=1}^{k} \bigcup_{j=1}^{n_{x_i}} (U_{x_i,j} \times V_{x_i,j})$$

is finitely covered.

Theorem 3.13 (Heine-Borel). $K \subseteq \mathbb{R}^n$ is compact if and only if it is closed and bounded.

Proof. \mathbb{R}^n is Hausdorff, so if K is compact it must be closed. Furthermore, $x \mapsto ||x||$ is continuous, so K is bounded.

Conversely, if K is bounded, then $K \subseteq [-M, M]^n$ for some M > 0. So it is a closed subspace of a compact space, hence compact.

4 Metric spaces

Definition 4.1 (Metric space)

For a set X, a metric $d: X \times X \to \mathbb{R}$ is a function such that

- $d(x, y) \ge 0$ for all x, y, with equality if and only if x = y,
- d(x, y) = d(y, x),
- $d(x, z) \le d(x, y) + d(y, z)$.

A pair (X, d) where d is a metric on X is known as a metric space.

Proposition 4.2. A normed space $(X, \|\cdot\|)$ has a metric given by $d(x, y) = \|x - y\|$.

Proposition 4.3. Any metric space (X, d) is a topological space, with topology generated by the basis

$$\mathcal{B} = \{D(x; r) : x \in X, r > 0\}$$

Proposition 4.4. Any metric space is Hausdorff.

Definition 4.5 (Subspace) For $Y \subseteq X$, $d|_{Y \times Y}$ defines a metric on Y.

Proposition 4.6. For any metric space (*X*, *d*), and $Y \subseteq X$, we have that

commutes.

Definition 4.7 (Product) For $p \in [1, \infty]$,

$$d((x_1, y_1), (x_2, y_2)) = (d_X(x_1, x_2)^p + d_Y(y_1, y_2)^p)^{1/p}$$

defines a metric on $X \times Y$. We write the product as $X \oplus_{\rho} Y$.

Proposition 4.8. For a metric space (*X*, *d*), $x \in X$, we have that $x_n \to x$ if and only if

 $\forall \varepsilon > 0, \exists N \text{ s.t. } \forall n \geq N, d(x_n, x) < \varepsilon$

Proposition 4.9. For metric spaces (X, d_X) , (Y, d_Y) , $f : X \to Y$ is continuous if and only if

 $\forall x \in X, \forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } d_X(x, y) < \delta \implies d_Y(x, y)$

Definition 4.10 (Isometric) $f: X \to Y$ is isometric if for all x, y, we have that

d(f(x), f(y)) = d(x, y)

Definition 4.11 (Lipschitz) $f: X \rightarrow Y$ is Lipschitz with constant *C* if for all *x*, *y*, we have that

 $d(f(x), f(y)) \le Cd(x, y)$

Definition 4.12 (Uniformly continuous)

 $f: X \to Y$ is uniformly continuous if for all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x, y \in M$,

 $d(x, y) < \delta \implies d(f(x), f(y)) < \varepsilon$

Proposition 4.13. For fixed $y, x \mapsto (x, y)$ is an isometric map.

Proposition 4.14. Projection maps are 1-Lipschitz.

Proposition 4.15.

 $Isometric \implies Lipschitz \implies Uniform \ continuous \implies Continuous$

Definition 4.16 (Equivalent metrics)

Two metrics d and d' are equivalent if they induce the same topology. Equivalently, if the maps

 $id: (X, d) \rightarrow (X, d')$ and $id: (X, d') \rightarrow (X, d)$

are continuous.

Definition 4.17 (Uniformly equivalent metrics)

Two metrics d and d' are uniformly equivalent if the maps

 $\operatorname{id}:(X,d)\to(X,d')\quad \text{and}\quad \operatorname{id}:(X,d')\to(X,d)$

are uniformly continuous.

Definition 4.18 (Lipschitz equivalent metrics)

Two metrics d and d' are Lipschitz equivalent if the maps

 $\operatorname{id}:(X,d)\to(X,d') \quad \text{and} \quad \operatorname{id}:(X,d')\to(X,d)$

are Lipschitz.

5 Uniform convergence

Definition 5.1 (Uniform metric)

For a set S, and a metric space (X, d), define a metric^{*a*} d_{∞} on the set of all functions $S \to \mathbb{R}$ by

$$d_{\infty}(f,g) = \sup_{x \in S} d(f(x),g(x))$$

 a Strictly speaking this can also take value ∞

Definition 5.2 (Bounded functions)

Let S be a set, X be a metric space, then define

$$\ell_{\infty}(S, X) = \{f : S \to X : f \text{ bounded}\}$$

Definition 5.3 (Uniform convergence)

We say that a sequence f_n converges uniformly to f on S if $d_{\infty}(f_n, f) \to 0$. Equivalently,

 $\forall \varepsilon > 0, \exists N, \forall n \geq N, \forall x \in S, d(f_n(x), f(x)) < \varepsilon$

Definition 5.4 (Pointwise convergence)

We say f_n converges to f pointwise on S if for all $x \in S$, $f_n(x) \to f(x)$.

Proposition 5.5. Uniform convergence implies pointwise convergence.

Proposition 5.6. Suppose *S* is a topological space. $f_n : S \to X$ for all *n*, and $f_n \to f$ uniformly on *S*. Suppose f_n is continuous. Then *f* is continuous.

Proof. Let $U \subseteq X$ be open, and let $t \in f^{-1}(U)$. Since $f(t) \in U$, there exists $\varepsilon > 0$ such that $D(f(t), 3\varepsilon) \subseteq U$. As $f_n \to f$ uniformly, there exists N such that for all $s \in S$, $d(f(x), f_N(x)) < \varepsilon$. Let $V = D(f_N(t), \varepsilon)$, and $f_N^{-1}(V)$ is open. Furthermore, $t \in f_N^{-1}(V)$, so suffices to show $f_N^{-1}(V) \subseteq f^{-1}(U)$. Let $w \in f_N^{-1}(V)$. Then

 $d(f(w), f(t)) \le d(f(w), f_N(w)) + d(f_N(w), f_N(t)) + d(f_N(t), f(t)) < 3\varepsilon$

So $f(w) \in U$.

Lemma 5.7. If $f_n \rightarrow f$ uniformly on *S*, and f_n is bounded for every *n*, then *f* is bounded.

Proof. Fix N such that for all $x \in S$, $d(f(x), f_N(x)) < 1$. Since f_N is bounded, there exists $M, z \in X$ such that d(f(x), z) < M for all $x \in S$. Then for all $x \in S$, we have that

$$d(f(x), z) \le d(f(x), f_N(x)) + d(f_N(x), z) < M + 1$$

Theorem 5.8. Suppose $f_n : [a, b] \to \mathbb{R}$ is integrable for every n, and $f_n \to f$ uniformly on [a, b]. Then f is integrable. Furthermore, we have that

$$\int_a^b f_n \to \int_a^b f$$

Proof. We have already shown that the uniform limit of bounded functions is bounded. Fix $\varepsilon > 0$, we have $N \in \mathbb{N}$ such that for all $x \in [a, b]$, $|f_N(x) - f(x)| < \varepsilon$. Since f_N is integrable, we have a dissection \mathscr{D} such that

$$\mathcal{U}_{\mathscr{D}}(f) - \mathcal{L}_{\mathscr{D}}(f) < \varepsilon$$

For any $x, y \in [x_{k-1}, x_k]$ in \mathcal{D} , we have that

$$|f(x) - f(y)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f(y)| < |f_N(x) - f_N(y)| + 2\varepsilon$$

Which means that

$$\sup_{x,y\in[x_{k-1},x_k]}|f(x)-f(y)| \le \sup_{x,y\in[x_{k-1},x_k]}|f_N(x)-f_N(y)|+2\varepsilon$$

So

$$\sum_{k=1}^{m} (x_k - x_{k-1}) \sup_{x,y \in [x_{k-1}, x_k]} |f(x) - f(y)| \le \mathcal{U}_{\mathscr{D}}(f) - \mathcal{L}_{\mathscr{D}}(f) + 2\varepsilon(b-1) \le (2(b-a)+1)\varepsilon$$

Thus f is integrable. Furthermore, we have that

$$\left| \int_{a}^{b} f_{n} - \int_{a}^{b} f \right| \leq \int_{a}^{b} |f_{n} - f| \leq (b - a) \sup_{x \in [a, b]} |f_{n}(x) - f(x)| \to 0$$

Corollary 5.9. Let f_n be integrable for every n, and suppose $\sum f_n$ converges uniformly on [a, b]. Then $x \mapsto \sum f_n$ is integrable, with

$$\int_{a}^{b} \sum_{n} f_{n}(x) \mathrm{d}x = \sum_{n} \int_{a}^{b} f_{n}(x) \mathrm{d}x$$

Proof. For $x \in [a, b]$, $n \in N$, define $F_n(x) = \sum_{k=1}^n f_k(x)$, and $F(x) = \sum f_k(x)$. Then $F_n \to F$ uniformly on [a, b]. Each F_n is integrable, and result follows by above.

Theorem 5.10. Let $f_n : [a, b] \to \mathbb{R}$ be C^1 , and suppose

- $\sum f'_k$ converges uniformly on [a, b]
- There exists $c \in [a, b]$ such that $\sum f_k(c)$ converges.

Then $\sum f$ converges uniformly on [a, b] to a continuously differentiable function f, and

$$f'(x) = \left(\sum_{k} f_k(x)\right)' = \sum_{k} f'_k(x)$$

Proof. Let $g(x) = \sum_k f'_k(x)$, and $\lambda = \sum f_k(c)$. Define

$$f(x) = \lambda + \int_c^x g(t) \mathrm{d}t$$

Since *g* is the uniform limit of continuous functions, it is continuous. Furthermore, by FTC, we have that f' = g on [a, b]. So f' is continuous, with $f(c) = \lambda$.

Also by FTC, $f_k(x) = f_k(c) + \int_c^x f'_k(t) dt$. Fix $\varepsilon > 0$. We have N such that

- $\left|\lambda \sum_{k=1}^{n} f_k(c)\right| < \varepsilon$ for all $n \ge N$, and
- $|g(t) \sum_{k=1}^{n} f'_{k}(t)| < \varepsilon$ for all $n \ge N$ and $t \in [a, b]$.

Then for $n \ge N$, $x \in [a, b]$, we have that

$$\left| f(x) - \sum_{k=1}^{n} f_k(x) \right| = \left| \lambda + \int_c^x g(t) dt - \sum_{k=1}^{n} \left(f_k(c) + \int_c^x f'_k(t) dt \right) \right|$$
$$\leq \left| \lambda - \sum_{k=1}^{n} f_k(c) \right| + \left| \int_x^c g(t) - \sum_{k=1}^{n} f'_k(t) dt \right|$$
$$\leq \varepsilon + |x - c|\varepsilon$$
$$\leq (b - a + 1)\varepsilon$$

Definition 5.11 (Uniformly Cauchy)

A sequence (f_n) of functions is uniformly Cauchy if

$$\forall \varepsilon > 0, \exists N, \forall n, m \geq N, \forall x \in S, d(f_n(x), f_m(x)) < \varepsilon$$

Theorem 5.12 (General principle of uniform convergence). Suppose X is a complete metric space, f_n is uniformly Cauchy on S. Then f_n converges uniformly on S.

Proof. Fix $x \in S$. Then $f_n(x)$ is a Cauchy sequence, so by completeness we have f such that $f_n(x) \to f(x)$. Then $f_n \to f$ pointwise.

Fix $\varepsilon > 0$, we have N such that for all $n, m \ge N$, $x \in S$, $d(f_n(x), f_m(x)) < \varepsilon$. Fix $x \in S$, $n \ge N$. Then for all $m \ge N$, $d(f_m(x), f_n(x)) < \varepsilon$, taking $m \to \infty^1$, we have that $d(f(x), f_n(x)) \le \varepsilon$, so $f_n \to f$ uniformly.

Theorem 5.13 (Weierstrass M-test). Let X be a complete normed space^{*a*}, $f_n : S \to X$. Assume for all $n \ge N$, there exists $M_n \ge 0$ such that $||f_n(x)|| \le M_n$ for all $x \in S$. Furthermore, assume $\sum M_n$ converges. Then $\sum f_n$ converges uniformly.

^aa Banach space

Proof. Let $F_n(x) = \sum_{k=1}^n f_k(x)$. Fix n > m, then $\|F_n(x) - F_m(x)\| = \left\|\sum_{k=m+1}^n f_k(x)\right\| \le \sum_{k=m+1}^n \|f_k(x)\| \le \sum_{k=m+1}^n M_n$

Thus, given $\varepsilon > 0$, we have N such that $\sum_{k=N+1}^{\infty} M_n < \varepsilon$, and for $m, n \ge N$, we have that $||F_n(x) - F_m(x)|| < \varepsilon$. So F_n is uniformly Cauchy.

Theorem 5.14. Suppose $\sum c_n z^n$ has radius of convergence R. Then for $0 \le r < R$, the power series converges uniformly on D(a; r).

¹Strictly speaking we are assuming continuity of d.

Proof. Fix $w \in \mathbb{C}$ such that r < |w| < R. Since $\sum c_n w^n$ converges, $c_n w^n \to 0$, which means that $c_n w^n$ is bounded. Let $\rho = r/|w|$. Fix $z \in D(a; r)$ and $n \in \mathbb{N}$. Then

$$|c_n z^n| = |c_n w^n| \left| \frac{z}{w} \right|^n \le M \rho^n$$

Since $\sum M\rho^n$ converges, by the M-test, $\sum c_n z^n$ converges uniformly on D(a; r).

Definition 5.15 (Local uniform convergence)

Let $U \subseteq \mathbb{C}$ be open, $f_n \to f$ locally uniformly on U if for all $w \in U$, there exists $D(w, \delta) \subseteq U$ such that $f_n \to f$ uniformly on $D(w, \delta)$.

Proposition 5.16. A power series converges locally uniformly within its radius of convergence.

6 Uniform continuity

Definition 6.1 (Uniform continuity)

Let *X*, *Y* be metric spaces. Then $f : X \to Y$ is uniformly continuous if

$$\forall \varepsilon > 0, \exists \delta > 0, d(x, y) < \delta \implies d(f(x), f(y)) < \varepsilon$$

Theorem 6.2. Let X be a compact metric space, Y be any metric space, $f : X \to Y$ continuous. Then f is uniformly continuous.

Proof. Given $\varepsilon > 0$, for all $x \in X$, by continuity we have δ_x such that $f(D(x, 2\delta_x)) \subseteq D(f(x), \varepsilon)$. Then $D(x, \delta_x)$ form an open cover of X, so we have a finite subcover $(D(x_i, \delta_{x_i}))_i$. Let $\delta = \min_i \delta_{x_i}$. Then for $x, y \in X$, $d(x, y) < \delta$, since we have a cover, we have x_i such that $d(x_i, x) < \delta_{x_i}$. Then

$$d(y, x_i) \le d(y, x) + d(x, x_i) < \delta + \delta_{x_i} \le 2\delta_{x_i}$$

Hence $f(x), f(y) \in D(f(x_i), \varepsilon)$, so $d(f(x), d(y)) < 2\varepsilon$.

Corollary 6.3. A continuous function $f : [a, b] \to \mathbb{R}$ is integrable.

Proof. See IA Analysis.

7 Completeness

Definition 7.1 (Cauchy sequence)

Let X be a metric space, a sequence x_n in X is Cauchy if

$$\forall \varepsilon > 0, \exists N, \forall n, m \geq N, d(x_n, x_m) < \varepsilon$$

Definition 7.2 (Complete metric space)

A metric space is complete if all Cauchy sequences converge in *M*.

Proposition 7.3. If *X* and *Y* are complete metric spaces, then so is $X \oplus_p Y$.

Proof. Let (x_n, y_n) be a Cauchy sequence in $X \oplus_p Y$. Since a sequence in the product converges if and only if each component converges, suffices to show that x_n is Cauchy. But this is immediate since

$$d(x_n, x_m) \leq d((x_n, y_n), (x_m, y_m))$$

Proposition 7.4. Let X be a metric space, $Y \subseteq X$. If Y is complete, then Y is closed in X.

Proposition 7.5. Let X be a complete metric space, $Y \subseteq X$ closed. Then Y is complete.

Theorem 7.6. Let *S* be any set, *X* be a complete metric space. Then $\ell_{\infty}(S, X)$ is complete with respect to the uniform metric.

Proof. Let f_n be a Cauchy sequence. Then it is uniformly Cauchy, so converges uniformly to say $f : S \to X$. The uniform limit of bounded functions is bounded, so $f \in \ell_{\infty}(S, X)$.

Definition 7.7 (Continuous bounded functions)

Let X be a topological space, Y be a metric space. Then define

 $C_B(X, Y) = \{f : X \to Y : f \text{ continuous, bounded}\} \le \ell_{\infty}(X, Y)$

Theorem 7.8. Let X be a topological space, Y be a complete metric space. Then $C_B(X, Y)$ is complete.

Proof. Suffices to show it is closed in $\ell_{\infty}(X, Y)$. This follows as the uniform limit of continuous functions is continuous.

8 Sequential compactness

Definition 8.1 (Sequential compactness)

A topological space X is sequentially compact if every sequence has a convergent subsequence.

Definition 8.2 (Net) For a metric space *X*, a subset $F \subseteq X$ is an ε -net for *X* if

 $X = \bigcup_{y \in F} \overline{D}(y, \varepsilon)$

Definition 8.3 (Totally bounded)

A metric space X is totally bounded if there exists a finite ε -net for all $\varepsilon > 0$.

Definition 8.4 (Diameter) The diameter of $A \subset X$ is

$$\operatorname{diam}(A) = \sup_{x,y \in A} d(x,y) \in [0,\infty]$$

Lemma 8.5. Assume that X is totally bounded, $A \subseteq M$ nonempty closed, and $\varepsilon > 0$. Then there exists closed sets B_1, \ldots, B_k such that $A = B_1 \cup \cdots \cup B_k$, and diam $(B_i) \le \varepsilon$ for all *i*.

Proof. Let *F* be a finite $\varepsilon/2$ -net. Then $(A \cap \overline{D}(x, \varepsilon/2) : x \in F, A \cap \overline{D}(x, \varepsilon/2) \neq \emptyset)$ works.

Theorem 8.6. For a metric space X, the following are equivalent.

- (i) X is compact.
- (ii) X is sequentially compact.
- (iii) X is complete and totally bounded.

Proof. (i) \implies (ii). First suppose *X* is compact, and let (x_n) be a sequence in *X*. Let $T_n = \{x_k : k > n\}$, then the limit of any subsequence must be in $T = \bigcap_n \overline{T_n}$, which is nonempty by compactness. Let $x \in T$. Then $x \in \overline{T_1}$ means that we have $k_1 > 1$ such that $x_{k_1} \in T_1 \cap D(x; 1)$, and $x \in \overline{T_{k_1}}$ means we have $k_2 > k_1$ such that $x_{k_2} \in T_{k_1} \cap D(x; 1/2)$, and so on. This gives us $k_1 < k_2 < \ldots$ such that $d(x, x_{k_n}) < 1/n$, so $x_{k_n} \to x$.

(ii) \implies (iii). Now suppose X is sequentially compact. Let (x_n) be a Cauchy sequence in X, then it has a convergent subsequence, so converges. So X is complete.

Now suppose if X is not totally bounded. Let ε be such that there is no finite ε -net. Fix $x_1 \in X$. Then we have x_2 such that $x_2 \notin \overline{D}(x_1, \varepsilon)$. More generally, we always have

$$x_{n+1} \notin \bigcup_{i=1}^n \overline{D}(x_i, \varepsilon)$$

Then this sequence has no Cauchy subsequence, and so cannot have a convergent subsequence.

(iii) \implies (i). Let \mathscr{U} be an open cover for X, and suppose \mathscr{U} does not finitely cover X. Let $A_0 = X$. Then by lemma, we have closed sets B_1, \ldots, B_k such that $A_0 = B_1 \cup \cdots \cup B_k$ and diam $(B_i) < 1$. These can't all be finitely covered, without loss of generality assume B_k cannot be finitely covered. Then set $A_1 = B_k$. Inductively, we have $A_1 \supseteq A_2 \supseteq \ldots$ such that each A_i is closed, diam $(A_n) < 2^{-n}$, and A_i is not finitely covered by \mathscr{U} .

For each *n*, choose $x_n \in A_n$. Then this is a Cauchy sequence, so by completeness converges to say *x*. Now choose $U \in \mathscr{U}$ such that $x \in U$. Since *U* is open, we must have some *n* such that $D(x; 1/n) \subseteq U$. But then \mathscr{U} finitely covers (say) A_n . Contradiction.

9 Contraction mapping

Definition 9.1 (Contraction map)

Let X, Y be metric spaces. Then $f : X \to Y$ is a contraction map if f is λ -Lipschitz for some $0 \le \lambda < 1$.

Theorem 9.2 (Contraction mapping theorem, Banach's fixed point theorem). Let *X* be a nonempty complete metric space, $f : M \to M$ is a contraction map. Then *f* has a unique fixed point.

Proof. Suppose f is λ -Lipschitz, for some $0 \le \lambda < 1$. Fix $x_0 \in X$, and define $x_n = f^n(x_0)$. Inductively, we have that

$$d(x_n, x_{n+1}) = d(f(x_{n-1}), f(x_n)) \le \lambda d(x_{n-1}, x_n) \le \cdots \le \lambda^n d(x_0, x_1)$$

and for $m \ge n$, we have that

$$d(x_m, x_n) \le \sum_{k=n}^{m-1} d(x_k, x_{k+1}) \le \sum_{k=n}^{m-1} \lambda^n d(x_0, x_1) \le \frac{\lambda^n}{1 - \Lambda} d(x_0, x_1) \to 0 \quad \text{as} \quad n \to \infty$$

So (x_n) is Cauchy, and by completeness, $x_n \to z$ for some $z \in X$. By continuity, $f(x_n) \to f(z)$, but $f(x_n) = x_{n+1} \to z$, so by uniqueness of limits, we must have that f(z) = z.

For uniqueness, suppose z and w are fixed points. Then

$$d(z, w) = d(f(z), f(w)) \le \lambda d(z, w)$$

So we must have d(z, w) = 0, i.e. z = w.

Lemma 9.3. For
$$f : \mathbb{R} \to \mathbb{R}^n$$
 integrable (say componentwise), we have that

$$\left\|\int_{a}^{b} f(t) \mathrm{d}t\right\| \leq \int_{a}^{b} \left\|f(t)\right\| \mathrm{d}t \leq (b-a) \sup_{t \in [c,d]} \left\|f(t)\right\|$$

Theorem 9.4 (Picard-Lindelöf). Suppose we have $y_0 \in \mathbb{R}^n$ and R > 0, and

$$\phi: [a, b] \times \overline{D}(y_0; R) \to \mathbb{R}^n$$

where $\phi(t, \cdot) : \mathbb{R}^n \to \mathbb{R}^n$ is k-Lipschitz for all t. Then there exists $\varepsilon > 0$ such that for all $t_0 \in [a, b]$, the initial value problem

$$f'(t) = \phi(t, f(t))$$
 with initial value $f(t_0) = y_0$

has a unique solution on $[c, d] = [t_0 - \varepsilon, t_0 + \varepsilon] \cap [a, b]$.

Proof. ϕ is a continuous function from a compact set, so it is bounded. Let $C = \sup_{t \in [a,b], x \in \overline{D}(y_0;R)} \|\phi(t,x)\|$. Let

 $\varepsilon = \min\left(\frac{R}{c}, \frac{\delta}{k}\right)$ for any $\delta \in (0, 1)$. Fix $t_0 \in [a, b]$, and let $[c, d] = [t_0 - \varepsilon, t_0 + \varepsilon] \cap [a, b]$.

Now let $X = C([c, d], \overline{D}(y_0; R))$. This is complete as $\overline{D}(y_0; R)$ is a compact metric space. Define $T : X \to X$ by

$$Tg(t) = y_0 + \int_{t_0}^t \phi(s, g(s)) \mathrm{d}s$$

We first need to check that T is well defined. For any $t \in [c, d]$, we have that

$$||Tg(t) - y_0|| = \left\| \int_{t_0}^t \phi(s, g(s)) dx \right\| \le |t - t_0| \sup_{s \in [t_0, t]} \|\phi(s, g(s))\| \le \varepsilon C \le R$$

So $Tq \in M$. Now we will show that T is a contraction. Let $q, h \in M$. For $t \in [c, d]$, we have that

$$\begin{aligned} \|Tg(t) - Th(t)\| &\leq \left\| \int_{t_0}^t \phi(s, g(s)) - \phi(s, h(s)) ds \right\| \\ &\leq |t - t_0| \sup_{s \in [t_0, t]} \|\phi(s, g(s)) - \phi(s, h(s))\| \\ &\leq \varepsilon k \|g - h\|_{\infty} \\ &\leq \delta \|g - h\|_{\infty} \end{aligned}$$

So $\|Tg - Th\|_{\infty} \le \delta \|g - h\|_{\infty}$. Thus, by the contraction mapping theorem, T has a unique fixed point, say f. Then

$$f(t) = y_0 + \int_{t_0}^t phi(s, f(s)) \mathrm{d}s$$

and the fundamental theorem of calculus shows that this satisfies the differential equation.

10 Differentiation

Definition 10.1 (Matrix norm)

For $T \in L(\mathbb{R}^m, \mathbb{R}^n)$, we can identify T with a matrix (T_{ij}) with respect to the standard bases. Then we define the (elementwise) norm as

$$||T|| = \left(\sum_{j=1}^{m} \sum_{i=1}^{n} T_{ij}^{2}\right)^{1/2} = \left(\sum_{j=1}^{m} ||Te_i||^{2}\right)^{1/2}$$

Lemma 10.2. For $T \in L(\mathbb{R}^m, \mathbb{R}^n)$, $x \in \mathbb{R}^m$, we have that

 $\left\|Tx\right\| \le \left\|T\right\| \|x\|$

Proof.

$$\begin{aligned} \left| Tx \right\| &= \left\| \sum_{i=1}^{m} x_i Te_i \right\| \\ &\leq \sum_{i=1}^{m} |x_i| \| Te_i \| \quad \text{by Triangle-Ineq.} \\ &\leq \left(\sum_{i=1}^{m} x_i^2 \right)^{1/2} \left(\sum_{i=1}^{m} \| Te_i \|^2 \right)^{1/2} \quad \text{by Cauchy-Schwarz} \\ &= \| T \| \|x\| \end{aligned}$$

Corollary 10.3. Linear maps are Lipschitz, hence (uniform) continuous.

Lemma 10.4. For $S \in L(\mathbb{R}^n, \mathbb{R}^p)$, $T \in L(\mathbb{R}^m, \mathbb{R}^n)$, we have that

 $\left\|ST\right\| \le \left\|S\right\| \left\|T\right\|$

Proof.

$$||ST|| = \left(\sum_{i=1}^{m} ||STe_i||^2\right)^{1/2}$$
$$\leq \left(\sum_{i=1}^{m} ||S||^2 ||Te_i||^2\right)^{1/2}$$
$$= ||S||||T||$$

-		_
L		
L		

Definition 10.5 (Differentiable) Let $f : \mathbb{R}^m \to \mathbb{R}^n$, $a \in \mathbb{R}^m$. We say f is differentiable at a, with derivative $Df(a) = f'(a) = T \in L(\mathbb{R}^m, \mathbb{R}^n)$ if

$$\frac{f(a+h) - f(a) - T(h)}{\|h\|} \to 0 \quad \text{as} \quad h \to 0$$

Proposition 10.6. *f* is differentiable if and only if there exists $T \in L(\mathbb{R}^m, \mathbb{R}^n)$, $\varepsilon : \mathbb{R}^m \to \mathbb{R}^n$ continuous, $\varepsilon(0) = 0$ such that

$$f(a+h) = f(a) + T(h) + ||h||\varepsilon(h)$$

Proposition 10.7. The derivative, if it exists, is unique.

Proof. Suppose we have *S* and *T* both satisfying the equation in the definition of a derivative. Fix $x \in \mathbb{R}^m$ nonzero. Then for all $k \in \mathbb{R}$, we have that $x/k \to 0$, so

$$\frac{S(x) - T(x)}{\|x\|} = \frac{S(x/k) - T(x/k)}{\|x/k\|} \to 0$$

Proposition 10.8. Suppose $f \in L(\mathbb{R}^m, \mathbb{R}^n)$. Then f is differentiable, with Df = f.

Proposition 10.9. Suppose $f \in Bil(\mathbb{R}^m \times \mathbb{R}^n, \mathbb{R}^p)$. Then f is differentiable, with

$$Df(a, b)(h, k) = f(a, k) + f(h, b)$$

Definition 10.10 (Differentiable in a set)

Let $U \subseteq \mathbb{R}^n$ be open, $f: U \to \mathbb{R}^n$, $a \in U$. Then f is differentiable at a, with derivative $Df = f'(a) = T \in L(\mathbb{R}^m, \mathbb{R}^n)$ if

$$\frac{f(a+h) - f(a) - T(h)}{\|h\|} \to 0 \quad \text{as} \quad h \to 0$$

whenever $a + h \in U$.

Remark 10.11. For m = 1, we note that $L(\mathbb{R}, \mathbb{R}^n) = (\mathbb{R}^n)^* \cong \mathbb{R}^n$, so in this case we can write $Df(a)(h) = v \cdot h$ for some $v \in \mathbb{R}^n$.

Proposition 10.12. Let $f: U \rightarrow R^n$ be differentiable at *a*. Then *f* is continuous at *a*.

Proof. For $x \in U$, we have that

$$f(x) = f(a) + f'(a)(x - a) + ||x - a||\varepsilon(x - a)$$

which is sum/product/composition of continuous function, hence continuous (at *a*).

Proposition 10.13 (Chain rule). Let $f : U \to \mathbb{R}^n$, $g : V \to \mathbb{R}^p$, $f(V) \subseteq V$, and $a \in U$. Suppose that f is differentiable at a, and g is differentiable at b = f(a). Then $g \circ f$ is differentiable at a, with

$$D(q \circ f)(a) = Dq(f(a)) \circ Df(a)$$

Proof. Let S = Df(a), T = Dg(f(a)). Then we have that

$$f(a + h) = f(a) + S(h) + ||h||\varepsilon(h)$$
 and $g(b + k) = g(b) + T(k) + ||k||\zeta(k)$

So we get that

$$(g \circ f)(a + h) = g(f(a + h)) = g(f(a) + S(h) + ||h||\varepsilon(h)) = g(f(a)) + T(S(h) + ||h||\varepsilon(h)) + ||S(h) + ||h||\varepsilon(h)||\zeta(S(h) + ||h||\varepsilon(h)) = g(f(a)) + (T \circ S)(h) + ||h||T(\varepsilon(h)) + ||k(h)||\zeta(k(h)) = g(h)$$

Suffices to show that $\eta(h)/||h|| \to 0$ as $h \to 0$. Since *T* is continuous, $||h||T(\varepsilon(h))/||h|| = T(\varepsilon(h)) \to 0$ as $h \to 0$.

$$\frac{\|k\|}{\|h\|} \le \frac{\|S(h)\| + \|h\|\|\varepsilon(h)\|}{\|h\|} \le \frac{\|S\|\|h\| + \|h\|\|\varepsilon(h)\|}{\|h\|} = \|S\| + \|\varepsilon(h)\|$$

is bounded as $h \to 0$, $k(h) = S(h) + ||h|| \varepsilon(h) \to 0$ as $h \to 0$, so we have that $\zeta(k(h)) \to 0$ as $h \to 0$, which means that $\eta(h)/||h|| \to 0$ as $h \to 0$.

Proposition 10.14 (Components of derivatives). Let $f : U \to \mathbb{R}^n$, $a \in U$. Let $f_j = \pi_j \circ f$ be the *j*-th component of *f*. Then *f* is differentiable at *a* if and only if each f_j is differentiable at *a*, with

$$Df(a)(h) = \sum_{j=1}^{n} Df_j(a)(h)e_j$$

Equivalently,

$$\pi_j(Df(a)) = D(\pi_j \circ f)(a)$$

Proof. First suppose f is differentiable. π_j is linear, so differentiable. The chain rule gives the required result. Conversely, suppose each f_j is differentiable, with

$$f_j(a+h) = f_j(a) + Df_j(a)(h) + \|h\|\varepsilon_j(h)$$

Then

$$f(a + h) = f(a) + \sum_{j=1}^{n} Df_j(a)(h)e_j + \|h\| \sum_{j=1}^{n} \varepsilon_j(h)e_j$$

and we have that $\sum_{j=1}^{n} \varepsilon_j(h) e_j \to 0$ as $h \to 0$.

Proposition 10.15 (Linearity of derivative). For $\lambda, \mu \in \mathbb{R}$, $f, g : U \to \mathbb{R}^n$ differentiable at $a \in U$, we have that

$$D(\lambda f + \mu q)(a) = \lambda Df(a) + \mu Dq(a)$$

Proposition 10.16 (Product rule). Let $f: U \to \mathbb{R}^n$ and $\phi: U \to \mathbb{R}$ be differentiable at a. Then

$$D(\phi f)(a)(h) = \phi(a)[Df(a)(h)] + [D\phi(a)(h)]f(a)$$

Proof. Define $F : U \to \mathbb{R} \times \mathbb{R}^n$ by $F(x) = (\phi(x), f(x))$ and $G : \mathbb{R} \times \mathbb{R}^n$ by $G(\lambda, v) = \lambda v$. Then $\phi f = G \circ F$. $DF = (D\phi, Df)$ by projections, and $DG(\lambda, v)(\mu, w) = \lambda w + \mu v$ by bilinearity. The result follows by chain rule.

Definition 10.17 (Directional derivative) Let $U \subseteq \mathbb{R}^m$ be open, $f : U \to \mathbb{R}^n$, $a \in U$. Fix $u \in \mathbb{R}^m \setminus \{0\}$. If

$$\lim_{t \to 0} \frac{f(a+tu) - f(a)}{t}$$

exists, we call this the directional derivative of f at a, and write $D_u f(a)$ for the limit.

Definition 10.18 (Partial derivative) We write $D_i = D_{e_i}$ for the *i*-th partial derivative of a function.

Proposition 10.19. If f is differentiable at a, then for all u, $D_u f(a)$ exists, with

 $D_u f(a) = Df(a)(u)$

Proof. Suppose $f(a + h) = f(a) + Df(a)(h) + ||h||\varepsilon(h)$. Then

$$\frac{f(a+tu)-f(a)}{t} = Df(a)(u) + \frac{|t|}{t} ||u|| \varepsilon tu \to Df(a)(u)$$

So $D_u f(a) = Df(a)(u)$.

Corollary 10.20.

$$Df(a)(h) = \sum_{i=1}^{m} h_i D_i f(a)$$

Definition 10.21 (Jacobian)

The Jacobian matrix of a function f is Jf(a) = [Df(a)], i.e. Df with respect to standard bases.

Proposition 10.22. The *i*-th column of Jf(a) is $D_if(a)$, and

$$(Jf(a))_{ij} = \frac{\partial f_j}{\partial x_i}$$

Theorem 10.23. Suppose $D_i f(x)$ exists for $x \in V$, where $V \subseteq U$ is an open neighbourhood of a. Moreover, $x \mapsto D_i f(x)$ is continuous at a. Then f is differentiable at a.

Proof. Considering components of f, without loss of generality $f : \mathbb{R}^m \to \mathbb{R}$. We will prove this by induction on m. The case m = 1 is trivial. For $h \in \mathbb{R}^m$, define

$$h^{(1)} = \sum_{i=1}^{m-1} h_i e_i$$
 and $h^{(2)} = h_m e_m$

Let

$$\psi(h) = f(a+h) - f(a) + \sum_{i=1}^{m} h_i D_i f(a)$$

We wish to show that $\psi(h)$ is o(h). We have that

$$\psi(h) = \underbrace{f(a+h) - f(a+h^{(1)}) - h_m D_m f(a)}_{(i)} + \underbrace{f(a+h^{(1)}) - f(a) - \sum_{i=1}^{m-1} h_i D_i f(a)}_{(ii)}$$

By the inductive hypothesis, (ii) is $o(||h^{(1)}||)$ so o(||h||). Now let

$$\phi(t) = f(a + h^{(1)} + th^{(2)})$$

 ϕ is differentiable, with $\phi'(t) = h_m D_m f(a + h^{(1)} + h^{(2)})$. Then by the mean value theorem, we have $t \in (0, 1)$ such that $\phi(1) - \phi(0) = \phi'(t)$. Which means that

$$(i) = \phi(1) - \phi(0) - h_m D_m f(a) = h_m (D_m f(a + h^{(1)} + th^{(2)}) - D_m f(a))$$

As $h \to 0$, the part in the brackets tends to zero by continuity. So (i) is $o(|h_m|)$, and hence o(||h||).

Theorem 10.24 (Mean value inequality). Suppose $f : U \to \mathbb{R}^n$ differentiable, and M is such that $||f'(z)|| \le M$ for all $z \in [a, b] \subseteq U$. then

$$\left\|f(b) - f(a)\right\| \le \mathcal{M}\left\|b - a\right\|$$

Proof. Let u = b - a, v = f(b) - f(a). Without loss of generality, $u \neq 0$. Then define $\gamma(t) = a + tu$. $f \circ \gamma$ is differentiable, with

$$D(f \circ \gamma)(t) = Df(\gamma(t))(D\gamma(t)) = Df(a + tu)(u)$$

Furthermore, let $\phi(t) = \langle f(\gamma(t)), v \rangle$. Then $||f(b) - f(a)||^2 = \phi(1) - \phi(0)$, and $\phi'(t) = \langle Df(a + tu)(u), v \rangle$. Then by the mean value theorem, we have $\theta \in (0, 1)$ such that $\phi(1) - \phi(0) = \phi'(\theta)$. So

$$\begin{aligned} \left\|f(b) - f(a)\right\|^2 &= \phi(1) - \phi(0) \\ &= \phi'(\theta) \\ &= \langle Df(a + \theta u)(u), v \rangle \\ &\leq \left\|Df(a + \theta u)(u)\right\| \|v\| \\ &\leq \left\|Df(a + \theta u)\right\| \|u\| \|v\| \\ &\leq M \left\|b - a\right\| \left\|f(b) - f(a)\right\| \end{aligned}$$

Corollary 10.25. Let U be open, $f: U \to \mathbb{R}^n$ differentiable, Df = 0 on U. Then U is locally constant.

Proof. For any $x \in U$, we have a neighbourhood $D(x; r) \subseteq U$. Then for any $y \in D(x; r)$, the segment [x, y] is contained in U. Applying the mean value inequality we get the required result.

Corollary 10.26. Suppose *U* is open and connected, $f : U \to \mathbb{R}^n$ differentiable, Df = 0 on *U*. Then *U* is constant.

Proof. A locally constant function on a connected space is constant.

Proposition 10.27. Let $f : V \to W$ be a bijection, f differentiable at a and f^{-1} differentiable at f(a), where $V \subseteq \mathbb{R}^m$ and $W \subseteq \mathbb{R}^n$. Then m = n.

Proof. Let S = Df(a), and $T = D(f^{-1})(f(a))$. Then by the chain rule, $TS = id_{\mathbb{R}^m}$ and $ST = id_{\mathbb{R}^n}$. So m = tr(TS) = tr(ST) = n.

Theorem 10.28 (Inverse function theorem). Let $U \subseteq \mathbb{R}^n$ be open, $f : U \to \mathbb{R}^n$ is C^1 , $a \in U$, f'(a) is invertible. Then there exists open neighbourhoods V, W of a, f(a) respectively, such that $f|_V : V \to W$ is a bijection, with inverse $g : W \to V$ that is C^1 . Furthermore, $Dq(y) = (Df(q(y)))^{-1}$.

Proof. Let T = Df(a), $h(x) = T^{-1}(f(a + x) - f(a))$. By the chain rule, h is differentiable, with $h'(x) = T^{-1} \circ Df(a + x)$, which is a composition of continuous functions, so continuous. Furthermore, we have that h(0) = 0, and Dh(0) = id. Since f(x) = T(h(x - a)) + f(a), suffices to prove the result for h. So without loss of generality, we may assume a = f(a) = 0, and Df(0) = id.

Since Df is continuous, we have r > 0 such that $\overline{D}(0; r) \subseteq U$ and for all $x \in \overline{D}(0; r)$, $||Df(x) - id|| \le \frac{1}{2}$. For $x \in \overline{D}(0; r)$, let p(x) = f(x) - x. Then Dp(x) = Df(x) - id. So for all $x \in \overline{D}(0; r)$, $||Dp(x)|| \le \frac{1}{2}$. So by mean value inequality, $||Dp(x) - Dp(y)|| \le \frac{1}{2}||x - y||$. As a result,

$$||f(x) - f(y)|| = ||p(x) - p(y) + x - y|| \ge ||x - y|| - ||p(x) - p(y)|| \ge \frac{1}{2}||x - y||$$

Let $W = D(0; \frac{r}{2})$ and fix $w \in W$. Let q(x) = w - f(x) + x = w - p(x). Since p(0) = f(0) = 0, we have that

$$||q(x)|| \le ||w|| + ||p(x)|| \le ||w|| + \frac{1}{2}||x|| < 2 \cdot \frac{r}{2} = r$$

So $q(\overline{D}(0; r)) \subseteq \overline{D}(0; r)$. Furthermore, we have that

$$||q(x) - q(y)|| = ||p(x) - p(y)|| \le \frac{1}{2}||x - y||$$

So *q* is a contraction mapping on the complete metric space $\overline{D}(0; r)$, and has a unique fixed point. That is, a unique *x* such that f(x) = w. Since *w* is arbitrary, we have that $D(0; r/2) \subseteq f(D(0; r))$.

Let $V = f^{-1}(W) \cap D(0; r)$. Then V and W satisfy the requirements of the theorem, as V, W open, $f|_V : V \to W$ is a bijection. Let q be the inverse, we will show that q is continuous.

$$||g(u) - g(v)|| \le 2||f(g(u)) - f(g(v))|| = 2||u - v||$$

So *q* is Lipschitz, hence continuous. The proof that *q* is C^1 is non-examinable.

10.1 Second derivative

Definition 10.29 (Second derivative)

Let $f : U \to \mathbb{R}^n$ be differentiable on V open, where $a \in V \subseteq U$. Then we say that f is twice differentiable at a if

$$Df: V \to L(\mathbb{R}^m, \mathbb{R}^n)$$

is differentiable at *a*. We write the result as $f''(a) = D^2 f(a)$, where

$$D^2f: V \to L(\mathbb{R}^m, L(\mathbb{R}^m, \mathbb{R}^n))$$

Remark 10.30.

 $L(\mathbb{R}^m, L(\mathbb{R}^m, \mathbb{R}^n)) \cong Bil(\mathbb{R}^m \times \mathbb{R}^m, \mathbb{R}^n)$

via $T(h)(k) \leftrightarrow T(h, k)$, so we do not make a distinction between the two.

Proposition 10.31. Let $f : U \to \mathbb{R}^n$ be differentiable on V open, where $a \in V \subseteq U$. Then f is twice differentiable at a if and only if there exists $T \in Bil(\mathbb{R}^m \times \mathbb{R}^m, \mathbb{R}^n)$ such that

$$Df(a + h)(k) = Df(a)(k) + T(h, k) + o(||h||)$$

for each fixed k.

Proof. Assume f is twice differentiable at a. Then

$$Df(a+h) = Df(a) + D^2f(a)(h) + ||h||\varepsilon(h)$$

Fix $k \in \mathbb{R}^m$, and evaluating the above at k, we find that

$$Df(a + h)(k) = Df(a)(k) + D^2f(a)(h, k) + ||h||\varepsilon(h)(k)$$

Letting $T = D^2 f(a)$, $\|\varepsilon(h)(k)\| \le \|\varepsilon(h)\| \|k\| \to 0$ as $h \to 0$, so the error is $o(\|h\|)$. Now suppose T exists. Let

$$\varepsilon(h) = \frac{Df(a+h) - Df(a) - T(h)}{\|h\|}$$

Suffices to show that $\varepsilon(h) \to 0$ as $h \to 0$. For each fixed $k \in \mathbb{R}^m$, $\varepsilon(h)(k) \to 0$ as $h \to 0$. So we have that

$$\left\|\varepsilon(h)\right\| = \left(\sum_{i=1}^{m} \left\|\varepsilon(h)(e_i)\right\|^2\right)^{1/2} \to 0 \text{ as } h \to 0$$

Proposition 10.32. If $f : \mathbb{R}^m \to \mathbb{R}^n$ linear, then $D^2 f \equiv 0$.

Proposition 10.33. If $f \in Bil(\mathbb{R}^m \times \mathbb{R}^m, \mathbb{R}^n)$, then $D^2 f = Df$ (up to identifying linear/bilinear forms).

Proof.

$$Df(a, b) = ((h, k) \mapsto f(a, k) + f(h, b))$$

is linear in (a, b).

10.2 Partial derivatives

Proposition 10.34. Suppose $f : U \to \mathbb{R}^n$ is twice differentiable at *a*. Then

 $D_u D_v f(a) = D^2 f(a)(u, v)$

Proof. For each fixed $k \in \mathbb{R}^m$, we have

$$Df(a + h)(k) = Df(a)(k) + D^2f(a)(h, k) + o(||h||)$$

Putting k = v, we get that

$$D_{v}f(a+h) = D_{v}f(a) + D^{2}f(a)(h, v) + o(||h||)$$

Which then gives us that $D_v f: V \to \mathbb{R}^n$ is differentiable at a, with

$$D(D_v f)(a)(h) = D^2(a)(h, v)$$

Seeting h = u gives the required result.

Theorem 10.35 (Symmetry of mixed partial derivatives). Suppose $f : U \to \mathbb{R}^n$ is twice differentiable, with $D^2f : V \to \text{Bil}(\mathbb{R}^m \times \mathbb{R}^m, \mathbb{R}^n)$ continuous at $a \in V \subseteq U$. Then

$$D_u D_v f(a) = D_v D_u f(a)$$

Equivalently, $D^2 f(a)$ is a symmetric bilinear map.

Proof. Since

$$(D_u f)_j(x) = (D_u f(x))_j = (Df(x)(u))_j = Df_j(x)(u) = D_u f_j(x)$$

without loss of generality n = 1. Define

$$\phi(s, t) = f(a + su + tv) - f(a + tv) - f(a + su) + f(a)$$

Fix s, t. Define $\psi(y) = f(a + yu + tv) - f(a + yu)$. Then $\phi(s, t) = \psi(s) - \psi(0)$. By the mean value theorem, we have $\alpha \in (0, 1)$ such that

$$\phi(s,t) = \psi(s) - \psi(0) = s\psi'(\alpha s) = s\left(D_u f(a + \alpha su + tv) - D_u f(a + \alpha su)\right)$$

Apply the mean value theorem to $z \mapsto D_u f(a + \alpha s u + z v)$, we have some $\beta \in (0, 1)$ such that

 $\phi(s,t) = stD_v D_u f(a + \alpha su + \beta tv) = stD^2 f(a + \alpha su + \beta tv)(v,u)$

By continuity, we have that

$$\frac{\phi(s,t)}{st} = D^2 f(a + \alpha su + \beta tv)(v,u) \to D^2 f(a)(v,u) \quad \text{as} \quad s,t \to 0$$

If instead we used $\tilde{\psi}(y) = f(a + su + yv) - f(a + yv)$, then we would get

$$\frac{\phi(s,t)}{st} \to D^2 f(u,v)$$
 as $s,t \to 0$

Uniqueness of limits gives the required result.