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1 Topological spaces

Definition 1.1 (Topological space)
Given a set X , a topology on X is a collection T of subsets of X such that

• ∅, X ∈ T

• If Ui ∈ T for all i ∈ I , then
⋃
i∈I
Ui ∈ T

• If U1, U2 ∈ T , then U1 ∩ U2 ∈ T .

and a topological space is a pair (X,T ).

Definition 1.2 (Open and closed sets)
For A ⊆ X , A is open if A ∈ T , and A is closed if X ∖ A ∈ T
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Proposition 1.3.

• ∅, X are closed

• If Ui are closed for all i ∈ I , then so is
⋂
i ∈ IUi

• If U1, U2 are closed, then so is U1 ∪ U2

Remark 1.4. This gives us an equivalent way to defining a topology, by specifying the closed sets. This can be useful,
eg. for the Zariski topology.

Definition 1.5 (Interior)
For A ⊆ X , define the interior of A to be

IntA =
⋃

U⊆A,U open
U

Definition 1.6 (Closure)
For A ⊆ X , define the closure of A to be

A =
⋂

U⊆X,U closed
U

Proposition 1.7. For all A, we have that IntA ⊆ A ⊆ A, with equality holding if and only if A open (closed
resp.).

Proposition 1.8. For all x ∈ X , we have that x ∈ IntA if and only if there exists U open such that
x ∈ U ⊆ A.

Proposition 1.9. For all x ∈ X , x ∈ A if and only if for all U open such that x ∈ U , U ∩ A ̸= ∅.

Proposition 1.10. For any A ⊆ X , U ⊆ A open, A ⊆ B closed, then

U ⊆ IntA ⊆ A ⊆ A ⊆ B

Definition 1.11 (Dense)
A ⊆ X is dense in X if A = X .

Definition 1.12 (Separable)
X is separable if it has a countable dense subset.
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Definition 1.13 (Hausdorff)
A topological space X is Hausdorff if for all x, y ∈ X distinct, we have open sets U, V such that x ∈ U ,
y ∈ V and U ∩ V = ∅.

Definition 1.14 (Convergence)
Let X be a topological space, x ∈ X . Then xn → x if for all neighbourhoods U of x , there exists N such
that for all n ≥ N , xn ∈ U .

Definition 1.15 (Continuity)
Let X, Y be topological spaces. f : X → Y is continuous if for all U ⊆ Y open, f−1(U) ⊆ X is open.

Definition 1.16 (Open map)
Let f : X → Y is open if for all U ⊆ X open, f (U) ⊆ Y is open.

Definition 1.17 (Homeomorphism)
f : X → Y is a homeomorphism if f is a bijection, f and f−1 are both continuous.

1.1 Constructions
Subspaces

Definition 1.18 (Subspace topology)
Suppose X is a topological space, Y ⊆ X . Then

{V ∩ Y : V open in X}

defines a topology on Y , known as the subspace topology.

Proposition 1.19. The inclusion map Y ↪→ X is continuous.

Proof. Let V ⊆ X be open, ι : Y ↪→ X be the inclusion map. Then ι−1V = V ∩ Y is open by definition of the
subspace topology.

Proposition 1.20 (Universal property of subspaces). Suppose Y ⊆ X and Z is any topological space,
f : Z → Y . Then

X

Z Yf

ι◦f ι

f is continuous if and only if ι ◦ f is continuous.
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Proof. Suppose f is continuous. Then ι ◦ f is a composition of continuous functions, so continuous.
Now suppose ι ◦ f is continuous. Let U ⊆ Y be open. Then there exists V ⊆ X open such that U = V ∩Y .

Then

(ι ◦ f )−1(V ) = f−1 (ι−1(V )
)

= f−1(U)
is open. So f is continuous.

Product topology

Definition 1.21 (Basis)
For a set X , a basis B for a topology on X is any collection of subsets of X such that

• B covers X , that is,
⋃
B∈B B = X ,

• For any B1, B2 ∈ B , x ∈ B1 ∩ B2, there exists B3 ∈ B such that x ∈ B3 ⊆ B1 ∩ B2.

Definition 1.22 (Generated topology)
Given a basis B , the collection

{
⋃

i∈I
Bi : Bi ∈ B

}

forms a topology on X .

Definition 1.23 (Box topology)
Let X, Y be topological spaces. The topology generated by the basis

{U × V : U open in X, V open in Y}

is known as the box topology (or the product topology for finite products) on X × Y .

Proposition 1.24. The projection maps X × Y → X and X × Y → Y are continuous.

Proposition 1.25 (Universal property of product topology). Suppose we have

X

Z X × Y

Y

f

πX ◦f

πX

πY

πY ◦f

Then f is continuous if and only if πX ◦ f and πY ◦ f are continuous.

Proof. If f is continuous then πX ◦ f and πY ◦ f are compositions of continuous functions. Now suppose πX ◦ f
and πY ◦ f are continuous.

Let W ⊆ X × Y be open. Without loss of generality, we may assume that W = U × V is a basis element.
Then we have that

f−1(U × V ) = f−1 ((U × Y ) ∩ (X × V )) = f−1 (πX (W )) ∩ f−1 (πY (W ))
is open. So f is continuous.
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Proposition 1.26. (xn, yn) → (x, y) if and only if xn → x and yn → y.

Proof. Suppose (xn, yn) → (x, y). For any neighbourhood U of x , then U × Y is a neighbourhood of (x, y). So
by convergence we have N such that for all n ≥ N , xn ∈ U for all n ≥ N .

Conversely, let W be a neighbourhood of (x, y). Without loss of generality, we may assume W = U × V .
Then for n sufficiently large, (xn, yn) ∈ W .

Quotient topology

Definition 1.27 (Quotient topology)
Let X be a topological space, q : X ↠ Y surjective. Then the collection

{
V : q−1(V ) open in X

}

defines a topology on Y .

Proposition 1.28. The quotient map q : X ↠ Y is continuous.

Proposition 1.29 (Universal property of quotient topology). Suppose we have

X Z

Y

q
f

f◦q

where Y has the quotient topology, then f is continuous if and only if f ◦ q is continuous.

Proof. Suppose f ◦ q continuous. Let V ⊆ Z be open. Then

(f ◦ q)−1(V ) = q−1 (f−1(V )
)

is open in X , which means that f−1(V ) is open in Y , so f is continuous.

Proposition 1.30. Suppose we have

X Z

Y

q
∃!f̃

f

Then if f is open, so is f̃ .

Proposition 1.31. Let X be a topological space, R be an equivalence relation on X . Suppose X/R is
Hausdorff. Then R ⊆ X × X is closed.

Proof. Let W = X × X ∖ R . Then for any (x, y) ∈ W , q(x) ̸= q(y). Then we have neighbourhoods S and S of
q(x), q(y) respectively such that S ∩ T = ∅. Now let U = q−1(S) and V = q−1(T ). Then (x, y) ∈ U ×V , and
U × V ∩ R = ∅. So W is open, and R is closed.
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Proposition 1.32. Let X be a topological space, and suppose R is an equivalence relation on X , R ⊆ X×X
closed, and q : X → X/R open. Then X/R is Hausdorff.

Proof. Let z, w be distinct points in X/R . Choose x, y ∈ X such that q(x) = z and q(y) = w . LetW = X×X∖R .
Then (x, y) ∈ W , which is open as R is closed. So we have U, V such that (x, y) ∈ U × V ⊆ W . Then q(U)
and q(V ) are disjoint neighbourhoods of z and w respectively.

2 Connectedness

Definition 2.1 (Connected)
A topological space X is disconnected by A, B if A, B ⊆ X open, A, B nonempty, A∩B = ∅ and X = A∪B.

X is connected if no such A, B exists.

Definition 2.2 (Interval)
I ⊆ R is an interval if for all x, z ∈ I , if x < y < z then y ∈ I .

Theorem 2.3. For a topological space X , the following are equivalent.

• X is connected.

• For any continuous function f : X → R, f (X ) is an interval.

• For any continuous function f : X → Z, f is constant.

Proof. For (i) implies (ii), we prove the contrapositive. Suppose f (X ) is not connected. Then we have x, z ∈ f (X ),
x < y < z , y /∈ f (X ). Then f−1 ((−∞,y)) and f−1 ((y,∞)) disconnect X .

For (ii) implies (iii), then consider X → Z ↪→ R, the image is an interval which only contains integers,
which must be a singleton.

For (iii) implies (i), suppose X = A ∪ B is not connected. Then f = 1A is continuous, but not constant.

Proposition 2.4. X is connected if and only if the only clopen sets are X and ∅.

Proposition 2.5. X ⊆ R is connected if and only if it is an interval.

Proposition 2.6. Let Y ⊆ X , then Y is disconnected if and only if we have U, V open such that

• U ∩ Y , V ∩ Y ̸= ∅,

• U ∩ V ∩ Y = ∅,

• Y ⊆ U ∪ V .

Proposition 2.7. If Y ⊆ X is connected, then Y is connected.

Proof. Suppose U, V disconnect Y . If U ∩ Y and V ∩ Y are both nonempty, then U and V will disconnect Y .
So without loss of generality, we may assume V ∩ Y = ∅. Then Y ⊆ X ∖ V , which is closed, so Y ⊆ X ∖ V ,
contradiction.
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Corollary 2.8. If Y ⊆ Z ⊆ Y , then if Y is connected, Z is connected.

Theorem 2.9. If f : X → Y is continuous, X is connected, then f (X ) is connected.

Proof. If U, V disconnect f (X ), then f−1(U), f−1(V ) disconnect X .

Corollary 2.10. If X is connected, then X/R is connected.

Lemma 2.11. Let A be a family of connected subsets of X . Suppose B is a connected subset of X such
that for all A ∈ A, A ∩ B ̸= ∅. Then

Y =
(
⋃

A∈A
A
)

∪ B

is connected.

Proof. Let f : Y → Z be continuous. For all A, f |A is constant. Similarly, f |B is constant. But for all A ∈ A,
A ∩ B ̸= ∅, so f is contant.

Theorem 2.12. If X, Y are connected, then X × Y is connected.

Proof. Fix x0 ∈ X . Let B = {x0} × Y , and A = {X × {y0} : y0 ∈ Y}. Then apply above lemma.

2.1 Path connectedness

Definition 2.13 (Path)
For x, y ∈ X , a path from x to y is a continuous function

γ : [0, 1] → X

such that γ(0) = x and γ(1) = y.

Definition 2.14 (Path connected)
A topological space X is path connected if for all x, y ∈ X , there exists a path from x to y.

Theorem 2.15. If X is path connected, then X is connected.

Proof. Suppose X = U ∪ V is disconnected. Let x ∈ U , y ∈ V , and γ : x → y path. Then γ−1(U) and γ−1(V )
disconnect [0, 1].

2.2 Components
Connected components
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Definition 2.16 (Connected components)
Let X be a topological space, define the equivalence relation ∼ on X where

x ∼ y ⇐⇒ ∃A connected, s.t. x, y ∈ A

The elements of X/ ∼ are known as connected components of X .

Proposition 2.17. The connected components are nonempty, maximal, connected, closed subsets of X .

Proof. Nonempty is clear as it is an element of a partition. Now suppose if C is a connected component, C ⊆ A
where A is connected. Then for any x ∈ C , y ∈ A, we have that x ∼ y. So A = C and C is maximal.

Fix x ∈ C . For any y ∈ C , we have Ay connected such that x, y ∈ Ay. Then A =
⋃
y∈C

Ay is connected, by

maximality, A = C , so C is connected.
Since C is connected, so is C , so by maximality C = C , so C is closed.

Path components

Definition 2.18 (Path components)
Let X bs a topological space, define the equivalence relation ∼ on X by

x ∼ y ⇐⇒ ∃ path γ : x → y

Theorem 2.19. Let U ⊆ Rn be open. Then U is connected if and only if U is path connected.

Proof. One implication is always true. Therefore, assume U connected. Without loss of generality, assume U
nonempty. Fix x0 ∈ U , and let P = {x ∈ U : ∃γ : x → x0}. We will show that P is clopen, and thus must be
the whole set U .

Fix x ∈ P , then there exists r > 0 such that D(x ; r) ⊆ U . Then D(x ; r) is path connected, so for any
y ∈ D(x ; r), we have a path x0 → x → y. Thus D(x ; r) ⊆ P , and P is open.

Now fix x ∈ U ∖ P , for any y ∈ D(x ; r), if y ∈ P then we have a path x0 → y → x . So D(x ; r) ⊆ U ∖ P ,
and P is closed.

3 Compactness

Definition 3.1 (Compact space)
A topological space X is compact if every open cover has a finite subcover.

Lemma 3.2. Let X be compact, (Ui) be a sequence of open sets, U1 ⊆ U2 ⊆ · · ·, and
⋃
i Ui = X . Then

there exists N such that for all n ≥ N , Un = UN = X .

Proof. The Ui form an open cover. Take a finite subcover.

Lemma 3.3. Let X be compact, (Ti) be a sequence of closed sets, T1 ⊇ T2 ⊇ · · ·, all Ti ̸= ∅. Then
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∞⋂

i=1
Ti ̸= ∅

Proof. Suppose not. Let Ui = X ∖ Ti. Then the Ui form an ascending chain, which covers X . So by previous
lemma, there exists N such that UN = X . But this means TN = ∅. Contradiction.

Theorem 3.4. Suppose f : X → R continuous, X compact, then f is bounded and attains its bounds.

Proof. For n ∈ N, let Un = {x ∈ X : |f (x)| < n}. By above lemma, Un is eventually constant, so the function
is bounded. Let α = inf f (X ), and suppose there is no x ∈ X such that f (x) = α . So for all x ∈ X , there exists
n such that f (x) > α + 1/n. Let Vn = {x ∈ X : f (x) > α + 1/n}. Again this is an increasing sequence, so
eventually constant. Thus we have some N such that for all x ∈ X , f (x) > α + 1/N . But α is the infimum of
the image. Contradiction.

Lemma 3.5. Suppose Y ⊆ X , then Y is compact if and only if for every collection U of open sets of X
such that Y ⊆

⋃
U∈U U , we have a finite subcollection which covers Y .

Theorem 3.6. [0, 1] ⊆ R is compact.

Proof. For A ⊆ [0, 1], we say that A is finitely covered by U if there is a finite subcollection of open sets in U
which cover U . Thus, we want to show that [0, 1] is finitely covered.

Suppose not. Then at least one of [0, 1/2] and [1/2, 1] is not finitely covered. Say [a1, b1]. Let c = 1
2 (a1 +b1).

Then at least one of [a1, c] and [c, b1] will not be finitely covered. Repeating this, we get

[a1, b1] ⊇ [a2, b2] ⊇ · · ·

Such that [an, bn] are all not finitely covered, and bn − an = 2−n. Then an → x and bn → x for some
x ∈ [0, 1]. Choose U ∈ U such that x ∈ U . Since U is open, there must be ε > 0 such that (x −ε, x+ε) ⊆ U .
Since an, bn → x , choose N such that x − ε ≤ aN ≤ x ≤ bN ≤ x + ε. Contradiction.

Theorem 3.7. Let Y ⊆ X , suppose X compact, Y closed in X . Then Y is compact.

Proof. Let U be an open cover of Y by sets open in X . Then U ∪ {X ∖ Y} is an open cover of X , so we have
a finite subcover, which must cover Y .

Theorem 3.8. Let Y ⊆ X , suppose X is Hausdorff, Y is compact, then Y is closed in X .

Proof. Fix x ∈ X ∖ Y . By the Hausdorff property, for all y ∈ Y , we have Uy, Vy neighbourhoods of x, y
respectively such that Uy ∩ Vy ̸= ∅. The Vys cover Y , so by compactness we have a finite subcover,

Vy1 ∪ · · · ∪ Vyn ⊇ Y

Thus, Uy1 ∩ · · · ∩ Uyn is a neighbourhood of x , which is disjoint from Y .

Theorem 3.9. Let f : X → Y , X is compact, then f (X ) is compact.
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Corollary 3.10. Any quotient of a compact space is compact.

Theorem 3.11 (Topological inverse function theorem). Let f : X → Y be a continuous bijection, X is
compact and Y Hausdorff. Then f−1 : Y → X is continuous. Equivalently, f is open, f is a homeomorphism.

Proof. Let U ⊆ X be open. Then K = X ∖ U is closed, so K is compact. So f (K ) is compact, and f (K ) is
closed in Y . Thus f (U) = Y ∖ f (K ) is open in Y .

Theorem 3.12 (Tychonoff). Let X, Y be compact. Then X × Y is compact.

Proof. Let U be an open cover. Without loss of generality, we may assume that all elements of U are basis
elements, ie. U × V . Then for all z ∈ X × Y , we have Uz , Vz such that z ∈ Uz × Vz ∈ U .

Fix x ∈ X . Then {x} × Y is compact, and we have an open cover by elements of U , so we have a finite
subcover, say

(
Ux,i × Vx,i

)nx
i=1

Let Ux =
nx⋂
i=1

Uxi . Then we have that

Ux × Y ⊆
nx⋃

i=1

(
Ux,i × Vx,i

)

Now (Ux )x∈X is an open cover of X , so we have a finite subcover, say Ux1 , . . . , Uxk . Then

X × Y =
k⋃

i=1

nxi⋃

j=1
(Uxi,j × Vxi,j )

is finitely covered.

Theorem 3.13 (Heine-Borel). K ⊆ Rn is compact if and only if it is closed and bounded.

Proof. Rn is Hausdorff, so if K is compact it must be closed. Furthermore, x 7→ ∥x∥ is continuous, so K is
bounded.

Conversely, if K is bounded, then K ⊆ [−M,M ]n for some M > 0. So it is a closed subspace of a compact
space, hence compact.

4 Metric spaces

Definition 4.1 (Metric space)
For a set X , a metric d : X × X → R is a function such that

• d(x, y) ≥ 0 for all x, y, with equality if and only if x = y,

• d(x, y) = d(y, x),

• d(x, z) ≤ d(x, y) + d(y, z).

A pair (X, d) where d is a metric on X is known as a metric space.
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Proposition 4.2. A normed space (X, ∥·∥) has a metric given by d(x, y) =
∥∥x − y

∥∥.

Proposition 4.3. Any metric space (X, d) is a topological space, with topology generated by the basis

B = {D(x ; r) : x ∈ X, r > 0}

Proposition 4.4. Any metric space is Hausdorff.

Definition 4.5 (Subspace)
For Y ⊆ X , d|Y×Y defines a metric on Y .

Proposition 4.6. For any metric space (X, d), and Y ⊆ X , we have that

(X, d) (Y , d|Y×Y )

(X,TX ) (Y ,TY )

metric topology metric topology

subspace metric

subspace topology

commutes.

Definition 4.7 (Product)
For p ∈ [1,∞],

d((x1, y1), (x2, y2)) = (dX (x1, x2)p + dY (y1, y2)p)1/p

defines a metric on X × Y . We write the product as X ⊕p Y .

Proposition 4.8. For a metric space (X, d), x ∈ X , we have that xn → x if and only if

∀ε > 0, ∃N s.t. ∀n ≥ N, d(xn, x) < ε

Proposition 4.9. For metric spaces (X, dX ), (Y , dY ), f : X → Y is continuous if and only if

∀x ∈ X, ∀ε > 0, ∃δ > 0 s.t. dX (x, y) < δ =⇒ dY (x, y)

Definition 4.10 (Isometric)
f : X → Y is isometric if for all x, y, we have that

d(f (x), f (y)) = d(x, y)
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Definition 4.11 (Lipschitz)
f : X → Y is Lipschitz with constant C if for all x, y, we have that

d(f (x), f (y)) ≤ Cd(x, y)

Definition 4.12 (Uniformly continuous)
f : X → Y is uniformly continuous if for all ε > 0, there exists δ > 0 such that for all x, y ∈ M ,

d(x, y) < δ =⇒ d(f (x), f (y)) < ε

Proposition 4.13. For fixed y, x 7→ (x, y) is an isometric map.

Proposition 4.14. Projection maps are 1-Lipschitz.

Proposition 4.15.

Isometric =⇒ Lipschitz =⇒ Uniform continuous =⇒ Continuous

Definition 4.16 (Equivalent metrics)
Two metrics d and d′ are equivalent if they induce the same topology. Equivalently, if the maps

id : (X, d) → (X, d′) and id : (X, d′) → (X, d)

are continuous.

Definition 4.17 (Uniformly equivalent metrics)
Two metrics d and d′ are uniformly equivalent if the maps

id : (X, d) → (X, d′) and id : (X, d′) → (X, d)

are uniformly continuous.

Definition 4.18 (Lipschitz equivalent metrics)
Two metrics d and d′ are Lipschitz equivalent if the maps

id : (X, d) → (X, d′) and id : (X, d′) → (X, d)

are Lipschitz.

5 Uniform convergence
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Definition 5.1 (Uniform metric)
For a set S , and a metric space (X, d), define a metrica d∞ on the set of all functions S → R by

d∞(f , g) = sup
x∈S

d(f (x), g(x))

aStrictly speaking this can also take value ∞

Definition 5.2 (Bounded functions)
Let S be a set, X be a metric space, then define

ℓ∞(S, X ) = {f : S → X : f bounded}

Definition 5.3 (Uniform convergence)
We say that a sequence fn converges uniformly to f on S if d∞(fn, f ) → 0. Equivalently,

∀ε > 0, ∃N, ∀n ≥ N, ∀x ∈ S, d(fn(x), f (x)) < ε

Definition 5.4 (Pointwise convergence)
We say fn converges to f pointwise on S if for all x ∈ S , fn(x) → f (x).

Proposition 5.5. Uniform convergence implies pointwise convergence.

Proposition 5.6. Suppose S is a topological space. fn : S → X for all n, and fn → f uniformly on S .
Suppose fn is continuous. Then f is continuous.

Proof. Let U ⊆ X be open, and let t ∈ f−1(U). Since f (t) ∈ U , there exists ε > 0 such that D(f (t), 3ε) ⊆ U .
As fn → f uniformly, there exists N such that for all s ∈ S , d(f (x), fN (x)) < ε. Let V = D(fN (t), ε), and f−1

N (V )
is open. Furthermore, t ∈ f−1

N (V ), so suffices to show f−1
N (V ) ⊆ f−1(U).

Let w ∈ f−1
N (V ). Then

d(f (w), f (t)) ≤ d(f (w), fN (w)) + d(fN (w), fN (t)) + d(fN (t), f (t)) < 3ε

So f (w) ∈ U .

Lemma 5.7. If fn → f uniformly on S , and fn is bounded for every n, then f is bounded.

Proof. Fix N such that for all x ∈ S , d(f (x), fN (x)) < 1. Since fN is bounded, there exists M , z ∈ X such that
d(f (x), z) < M for all x ∈ S . Then for all x ∈ S , we have that

d(f (x), z) ≤ d(f (x), fN (x)) + d(fN (x), z) < M + 1
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Theorem 5.8. Suppose fn : [a, b] → R is integrable for every n, and fn → f uniformly on [a, b]. Then f is
integrable. Furthermore, we have that

∫ b

a
fn →

∫ b

a
f

Proof. We have already shown that the uniform limit of bounded functions is bounded. Fix ε > 0, we have
N ∈ N such that for all x ∈ [a, b], |fN (x) − f (x)| < ε. Since fN is integrable, we have a dissection D such that

UD (f ) − LD (f ) < ε

For any x, y ∈ [xk−1, xk ] in D , we have that

|f (x) − f (y)| ≤ |f (x) − fN (x)| + |fN (x) − fN (y)| + |fN (y) − f (y)| < |fN (x) − fN (y)| + 2ε

Which means that

sup
x,y∈[xk−1,xk ]

|f (x) − f (y)| ≤ sup
x,y∈[xk−1,xk ]

|fN (x) − fN (y)| + 2ε

So
m∑

k=1
(xk − xk−1) sup

x,y∈[xk−1,xk ]
|f (x) − f (y)| ≤ UD (f ) − LD (f ) + 2ε(b − 1) ≤ (2(b − a) + 1)ε

Thus f is integrable. Furthermore, we have that
∣∣∣∣∣

∫ b

a
fn −

∫ b

a
f
∣∣∣∣∣ ≤

∫ b

a
|fn − f| ≤ (b − a) sup

x∈[a,b]
|fn(x) − f (x)| → 0

Corollary 5.9. Let fn be integrable for every n, and suppose
∑
fn converges uniformly on [a, b]. Then

x 7→
∑
fn is integrable, with

∫ b

a

∑

n
fn(x)dx =

∑

n

∫ b

a
fn(x)dx

Proof. For x ∈ [a, b], n ∈ N , define Fn(x) =
n∑
k=1

fk (x), and F (x) =
∑
fk (x). Then Fn → F uniformly on [a, b].

Each Fn is integrable, and result follows by above.

Theorem 5.10. Let fn : [a, b] → R be C 1, and suppose

•
∑
f ′
k converges uniformly on [a, b]

• There exists c ∈ [a, b] such that
∑
fk (c) converges.

Then
∑
f converges uniformly on [a, b] to a continuously differentiable function f , and

f ′(x) =
(
∑

k
fk (x)

)′

=
∑

k
f ′
k (x)

Proof. Let g(x) =
∑

k f ′
k (x), and λ =

∑
fk (c). Define

f (x) = λ+
∫ x

c
g(t)dt

14



Since g is the uniform limit of continuous functions, it is continuous. Furthermore, by FTC, we have that
f ′ = g on [a, b]. So f ′ is continuous, with f (c) = λ.

Also by FTC, fk (x) = fk (c) +
∫ x
c f ′

k (t)dt . Fix ε > 0. We have N such that

•
∣∣λ −

∑n
k=1 fk (c)

∣∣ < ε for all n ≥ N , and

•
∣∣g(t) −

∑n
k=1 f ′

k (t)
∣∣ < ε for all n ≥ N and t ∈ [a, b].

Then for n ≥ N , x ∈ [a, b], we have that

∣∣∣∣∣f (x) −
n∑

k=1
fk (x)

∣∣∣∣∣ =
∣∣∣∣∣λ+

∫ x

c
g(t)dt −

n∑

k=1

(
fk (c) +

∫ x

c
f ′
k (t)dt

)∣∣∣∣∣

≤
∣∣∣∣∣λ −

n∑

k=1
fk (c)

∣∣∣∣∣ +
∣∣∣∣∣

∫ c

x
g(t) −

n∑

k=1
f ′
k (t)dt

∣∣∣∣∣

≤ ε + |x − c|ε
≤ (b − a+ 1)ε

Definition 5.11 (Uniformly Cauchy)
A sequence (fn) of functions is uniformly Cauchy if

∀ε > 0, ∃N, ∀n,m ≥ N, ∀x ∈ S, d(fn(x), fm(x)) < ε

Theorem 5.12 (General principle of uniform convergence). Suppose X is a complete metric space, fn is
uniformly Cauchy on S . Then fn converges uniformly on S .

Proof. Fix x ∈ S . Then fn(x) is a Cauchy sequence, so by completeness we have f such that fn(x) → f (x).
Then fn → f pointwise.

Fix ε > 0, we have N such that for all n,m ≥ N , x ∈ S , d(fn(x), fm(x)) < ε. Fix x ∈ S , n ≥ N . Then for
all m ≥ N , d(fm(x), fn(x)) < ε, taking m → ∞1, we have that d(f (x), fn(x)) ≤ ε, so fn → f uniformly.

Theorem 5.13 (Weierstrass M-test). Let X be a complete normed spacea, fn : S → X . Assume for all
n ≥ N , there exists Mn ≥ 0 such that

∥∥fn(x)
∥∥ ≤ Mn for all x ∈ S . Furthermore, assume

∑
Mn converges.

Then
∑
fn converges uniformly.

aa Banach space

Proof. Let Fn(x) =
n∑
k=1

fk (x). Fix n > m, then

∥∥Fn(x) − Fm(x)
∥∥ =

∥∥∥∥∥

n∑

k=m+1
fk (x)

∥∥∥∥∥ ≤
n∑

k=m+1

∥∥fk (x)
∥∥ ≤

n∑

k=m+1
Mn

Thus, given ε > 0, we have N such that
∑∞

k=N+1Mn < ε, and for m, n ≥ N , we have that
∥∥Fn(x) − Fm(x)

∥∥ <
ε. So Fn is uniformly Cauchy.

Theorem 5.14. Suppose
∑
cnzn has radius of convergence R . Then for 0 ≤ r < R , the power series

converges uniformly on D(a; r).

1Strictly speaking we are assuming continuity of d.
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Proof. Fix w ∈ C such that r < |w| < R . Since
∑
cnwn converges, cnwn → 0, which means that cnwn is

bounded. Let ρ = r/|w|. Fix z ∈ D(a; r) and n ∈ N. Then

|cnzn| = |cnwn|
∣∣∣
z
w

∣∣∣
n

≤ Mρn

Since
∑
Mρn converges, by the M-test,

∑
cnzn converges uniformly on D(a; r).

Definition 5.15 (Local uniform convergence)
Let U ⊆ C be open, fn → f locally uniformly on U if for all w ∈ U , there exists D(w, δ) ⊆ U such that
fn → f uniformly on D(w, δ).

Proposition 5.16. A power series converges locally uniformly within its radius of convergence.

6 Uniform continuity

Definition 6.1 (Uniform continuity)
Let X, Y be metric spaces. Then f : X → Y is uniformly continuous if

∀ε > 0, ∃δ > 0, d(x, y) < δ =⇒ d(f (x), f (y)) < ε

Theorem 6.2. Let X be a compact metric space, Y be any metric space, f : X → Y continuous. Then f is
uniformly continuous.

Proof. Given ε > 0, for all x ∈ X , by continuity we have δx such that f (D(x, 2δx )) ⊆ D(f (x), ε). Then D(x, δx )
form an open cover of X , so we have a finite subcover (D(xi, δxi ))i. Let δ = mini δxi . Then for x, y ∈ X ,
d(x, y) < δ , since we have a cover, we have xi such that d(xi, x) < δxi . Then

d(y, xi) ≤ d(y, x) + d(x, xi) < δ + δxi ≤ 2δxi
Hence f (x), f (y) ∈ D(f (xi), ε), so d(f (x), d(y)) < 2ε.

Corollary 6.3. A continuous function f : [a, b] → R is integrable.

Proof. See IA Analysis.

7 Completeness

Definition 7.1 (Cauchy sequence)
Let X be a metric space, a sequence xn in X is Cauchy if

∀ε > 0, ∃N, ∀n,m ≥ N, d(xn, xm) < ε

Definition 7.2 (Complete metric space)

16



A metric space is complete if all Cauchy sequences converge in M .

Proposition 7.3. If X and Y are complete metric spaces, then so is X ⊕p Y .

Proof. Let (xn, yn) be a Cauchy sequence in X ⊕p Y . Since a sequence in the product converges if and only if
each component converges, suffices to show that xn is Cauchy. But this is immediate since

d(xn, xm) ≤ d((xn, yn), (xm, ym))

Proposition 7.4. Let X be a metric space, Y ⊆ X . If Y is complete, then Y is closed in X .

Proposition 7.5. Let X be a complete metric space, Y ⊆ X closed. Then Y is complete.

Theorem 7.6. Let S be any set, X be a complete metric space. Then ℓ∞(S, X ) is complete with respect
to the uniform metric.

Proof. Let fn be a Cauchy sequence. Then it is uniformly Cauchy, so converges uniformly to say f : S → X .
The uniform limit of bounded functions is bounded, so f ∈ ℓ∞(S, X ).

Definition 7.7 (Continuous bounded functions)
Let X be a topological space, Y be a metric space. Then define

CB(X, Y ) = {f : X → Y : f continuous, bounded} ≤ ℓ∞(X, Y )

Theorem 7.8. Let X be a topological space, Y be a complete metric space. Then CB(X, Y ) is complete.

Proof. Suffices to show it is closed in ℓ∞(X, Y ). This follows as the uniform limit of continuous functions is
continuous.

8 Sequential compactness

Definition 8.1 (Sequential compactness)
A topological space X is sequentially compact if every sequence has a convergent subsequence.

Definition 8.2 (Net)
For a metric space X , a subset F ⊆ X is an ε-net for X if

X =
⋃

y∈F
D(y, ε)

17



Definition 8.3 (Totally bounded)
A metric space X is totally bounded if there exists a finite ε-net for all ε > 0.

Definition 8.4 (Diameter)
The diameter of A ⊆ X is

diam(A) = sup
x,y∈A

d(x, y) ∈ [0,∞]

Lemma 8.5. Assume that X is totally bounded, A ⊆ M nonempty closed, and ε > 0. Then there exists
closed sets B1, . . . , Bk such that A = B1 ∪ · · · ∪ Bk , and diam(Bi) ≤ ε for all i.

Proof. Let F be a finite ε/2-net. Then
(
A ∩ D(x, ε/2) : x ∈ F, A ∩ D(x, ε/2) ̸= ∅

)
works.

Theorem 8.6. For a metric space X , the following are equivalent.

(i) X is compact.

(ii) X is sequentially compact.

(iii) X is complete and totally bounded.

Proof. (i) =⇒ (ii). First suppose X is compact, and let (xn) be a sequence in X . Let Tn = {xk : k > n}, then
the limit of any subsequence must be in T =

⋂
n Tn, which is nonempty by compactness. Let x ∈ T . Then

x ∈ T1 means that we have k1 > 1 such that xk1 ∈ T1 ∩D(x ; 1), and x ∈ Tk1 means we have k2 > k1 such that
xk2 ∈ Tk1 ∩ D(x ; 1/2), and so on. This gives us k1 < k2 < . . . such that d(x, xkn ) < 1/n, so xkn → x .

(ii) =⇒ (iii). Now suppose X is sequentially compact. Let (xn) be a Cauchy sequence in X , then it has a
convergent subsequence, so converges. So X is complete.

Now suppose if X is not totally bounded. Let ε be such that there is no finite ε-net. Fix x1 ∈ X . Then we
have x2 such that x2 /∈ D(x1, ε). More generally, we always have

xn+1 /∈
n⋃

i=1
D(xi, ε)

Then this sequence has no Cauchy subsequence, and so cannot have a convergent subsequence.
(iii) =⇒ (i). Let U be an open cover for X , and suppose U does not finitely cover X . Let A0 = X . Then

by lemma, we have closed sets B1, . . . , Bk such that A0 = B1 ∪ · · · ∪ Bk and diam(Bi) < 1. These can’t all be
finitely covered, without loss of generality assume Bk cannot be finitely covered. Then set A1 = Bk . Inductively,
we have A1 ⊇ A2 ⊇ . . . such that each Ai is closed, diam(An) < 2−n, and Ai is not finitely covered by U .

For each n, choose xn ∈ An. Then this is a Cauchy sequence, so by completeness converges to say x . Now
choose U ∈ U such that x ∈ U . Since U is open, we must have some n such that D(x ; 1/n) ⊆ U . But then U
finitely covers (say) An. Contradiction.

9 Contraction mapping

Definition 9.1 (Contraction map)
Let X, Y be metric spaces. Then f : X → Y is a contraction map if f is λ-Lipschitz for some 0 ≤ λ < 1.

18



Theorem 9.2 (Contraction mapping theorem, Banach’s fixed point theorem). Let X be a nonempty complete
metric space, f : M → M is a contraction map. Then f has a unique fixed point.

Proof. Suppose f is λ-Lipschitz, for some 0 ≤ λ < 1. Fix x0 ∈ X , and define xn = fn(x0). Inductively, we have
that

d(xn, xn+1) = d(f (xn−1), f (xn)) ≤ λd(xn−1, xn) ≤ · · · ≤ λnd(x0, x1)

and for m ≥ n, we have that

d(xm, xn) ≤
m−1∑

k=n
d(xk , xk+1) ≤

m−1∑

k=n
λnd(x0, x1) ≤ λn

1 − Λd(x0, x1) → 0 as n → ∞

So (xn) is Cauchy, and by completeness, xn → z for some z ∈ X . By continuity, f (xn) → f (z), but
f (xn) = xn+1 → z , so by uniqueness of limits, we must have that f (z) = z .

For uniqueness, suppose z and w are fixed points. Then

d(z, w) = d(f (z), f (w)) ≤ λd(z, w)

So we must have d(z, w) = 0, i.e. z = w .

Lemma 9.3. For f : R → Rn integrable (say componentwise), we have that
∥∥∥∥∥

∫ b

a
f (t)dt

∥∥∥∥∥ ≤
∫ b

a

∥∥f (t)
∥∥dt ≤ (b − a) sup

t∈[c,d]

∥∥f (t)
∥∥

Theorem 9.4 (Picard-Lindelöf). Suppose we have y0 ∈ Rn and R > 0, and

φ : [a, b] ×D(y0;R ) → Rn

where φ(t, ·) : Rn → Rn is k-Lipschitz for all t . Then there exists ε > 0 such that for all t0 ∈ [a, b],
the initial value problem

f ′(t) = φ(t, f (t)) with initial value f (t0) = y0

has a unique solution on [c, d] = [t0 − ε, t0 + ε] ∩ [a, b].

Proof. φ is a continuous function from a compact set, so it is bounded. Let C = sup
t∈[a,b],x∈D(y0 ;R )

∥∥φ(t, x)
∥∥. Let

ε = min
(R
c ,

δ
k
)

for any δ ∈ (0, 1). Fix t0 ∈ [a, b], and let [c, d] = [t0 − ε, t0 + ε] ∩ [a, b].
Now let X = C ([c, d], D(y0;R )). This is complete as D(y0;R ) is a compact metric space. Define T : X → X

by

Tg(t) = y0 +
∫ t

t0
φ(s, g(s))ds

We first need to check that T is well defined. For any t ∈ [c, d], we have that

∥∥Tg(t) − y0
∥∥ =

∥∥∥∥
∫ t

t0
φ(s, g(s))dx

∥∥∥∥ ≤ |t − t0| sup
s∈[t0,t]

∥∥φ(s, g(s))
∥∥ ≤ εC ≤ R

So Tg ∈ M . Now we will show that T is a contraction. Let g, h ∈ M . For t ∈ [c, d], we have that
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∥∥Tg(t) − Th(t)
∥∥ ≤

∥∥∥∥
∫ t

t0
φ(s, g(s)) − φ(s, h(s))ds

∥∥∥∥

≤ |t − t0| sup
s∈[t0,t]

∥∥φ(s, g(s)) − φ(s, h(s))
∥∥

≤ εk
∥∥g − h

∥∥
∞

≤ δ
∥∥g − h

∥∥
∞

So
∥∥Tg − Th

∥∥
∞ ≤ δ

∥∥g − h
∥∥

∞. Thus, by the contraction mapping theorem, T has a unique fixed point,
say f . Then

f (t) = y0 +
∫ t

t0
phi(s, f (s))ds

and the fundamental theorem of calculus shows that this satisfies the differential equation.

10 Differentiation

Definition 10.1 (Matrix norm)
For T ∈ L(Rm,Rn), we can identify T with a matrix (Tij ) with respect to the standard bases. Then we
define the (elementwise) norm as

∥∥T
∥∥ =




m∑

j=1

n∑

i=1
T 2
ij




1/2

=




m∑

j=1

∥∥Tei
∥∥2




1/2

Lemma 10.2. For T ∈ L(Rm,Rn), x ∈ Rm, we have that
∥∥Tx

∥∥ ≤
∥∥T
∥∥∥x∥

Proof.

∥∥Tx
∥∥ =

∥∥∥∥∥

m∑

i=1
xiTei

∥∥∥∥∥

≤
m∑

i=1
|xi|
∥∥Tei

∥∥ by Triangle-Ineq.

≤
( m∑

i=1
x2
i

)1/2( m∑

i=1

∥∥Tei
∥∥2
)1/2

by Cauchy-Schwarz

=
∥∥T
∥∥∥x∥

Corollary 10.3. Linear maps are Lipschitz, hence (uniform) continuous.

Lemma 10.4. For S ∈ L(Rn,Rp), T ∈ L(Rm,Rn), we have that
∥∥ST

∥∥ ≤
∥∥S
∥∥∥∥T

∥∥
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Proof.

∥∥ST
∥∥ =

( m∑

i=1

∥∥STei
∥∥2
)1/2

≤
( m∑

i=1

∥∥S
∥∥2∥∥Tei

∥∥2
)1/2

=
∥∥S
∥∥∥∥T

∥∥

Definition 10.5 (Differentiable)
Let f : Rm → Rn, a ∈ Rm. We say f is differentiable at a, with derivative Df (a) = f ′(a) = T ∈ L(Rm,Rn)
if

f (a+ h) − f (a) − T (h)∥∥h
∥∥ → 0 as h → 0

Proposition 10.6. f is differentiable if and only if there exists T ∈ L(Rm,Rn), ε : Rm → Rn continuous,
ε(0) = 0 such that

f (a+ h) = f (a) + T (h) +
∥∥h
∥∥ε(h)

Proposition 10.7. The derivative, if it exists, is unique.

Proof. Suppose we have S and T both satisfying the equation in the definition of a derivative. Fix x ∈ Rm

nonzero. Then for all k ∈ R, we have that x/k → 0, so

S(x) − T (x)
∥x∥ = S(x/k ) − T (x/k )∥∥x/k

∥∥ → 0

Proposition 10.8. Suppose f ∈ L(Rm,Rn). Then f is differentiable, with Df = f .

Proposition 10.9. Suppose f ∈ Bil(Rm × Rn,Rp). Then f is differentiable, with

Df (a, b)(h, k ) = f (a, k ) + f (h, b)

Definition 10.10 (Differentiable in a set)
Let U ⊆ Rn be open, f : U → Rn, a ∈ U . Then f is differentiable at a, with derivative Df = f ′(a) = T ∈
L(Rm,Rn) if

f (a+ h) − f (a) − T (h)∥∥h
∥∥ → 0 as h → 0

whenever a+ h ∈ U .
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Remark 10.11. For m = 1, we note that L(R,Rn) = (Rn)∗ ∼= Rn , so in this case we can write Df (a)(h) = v · h for
some v ∈ Rn .

Proposition 10.12. Let f : U → Rn be differentiable at a. Then f is continuous at a.

Proof. For x ∈ U , we have that

f (x) = f (a) + f ′(a)(x − a) + ∥x − a∥ε(x − a)

which is sum/product/composition of continuous function, hence continuous (at a).

Proposition 10.13 (Chain rule). Let f : U → Rn, g : V → Rp, f (V ) ⊆ V , and a ∈ U . Suppose that f is
differentiable at a, and g is differentiable at b = f (a). Then g ◦ f is differentiable at a, with

D(g ◦ f )(a) = Dg(f (a)) ◦ Df (a)

Proof. Let S = Df (a), T = Dg(f (a)). Then we have that

f (a+ h) = f (a) + S(h) +
∥∥h
∥∥ε(h) and g(b+ k ) = g(b) + T (k ) +

∥∥k
∥∥ζ(k )

So we get that

(g ◦ f )(a+ h) = g(f (a+ h))
= g(f (a) + S(h) +

∥∥h
∥∥ε(h))

= g(f (a)) + T (S(h) +
∥∥h
∥∥ε(h)) +

∥∥S(h) +
∥∥h
∥∥ε(h)

∥∥ζ(S(h) +
∥∥h
∥∥ε(h))

= g(f (a)) + (T ◦ S)(h) +
∥∥h
∥∥T (ε(h)) +

∥∥k (h)
∥∥ζ(k (h))

︸ ︷︷ ︸
=η(h)

Suffices to show that η(h)/
∥∥h
∥∥ → 0 as h → 0. Since T is continuous,

∥∥h
∥∥T (ε(h))/

∥∥h
∥∥ = T (ε(h)) → 0 as

h → 0.
∥∥k
∥∥

∥∥h
∥∥ ≤

∥∥S(h)
∥∥ +

∥∥h
∥∥∥∥ε(h)

∥∥
∥∥h
∥∥ ≤

∥∥S
∥∥∥∥h

∥∥ +
∥∥h
∥∥∥∥ε(h)

∥∥
∥∥h
∥∥ =

∥∥S
∥∥ +

∥∥ε(h)
∥∥

is bounded as h → 0, k (h) = S(h) +
∥∥h
∥∥ε(h) → 0 as h → 0, so we have that ζ(k (h)) → 0 as h → 0, which

means that η(h)/
∥∥h
∥∥ → 0 as h → 0.

Proposition 10.14 (Components of derivatives). Let f : U → Rn, a ∈ U . Let fj = πj ◦ f be the j-th
component of f . Then f is differentiable at a if and only if each fj is differentiable at a, with

Df (a)(h) =
n∑

j=1
Dfj (a)(h)ej

Equivalently,

πj (Df (a)) = D(πj ◦ f )(a)

Proof. First suppose f is differentiable. πj is linear, so differentiable. The chain rule gives the required result.
Conversely, suppose each fj is differentiable, with

fj (a+ h) = fj (a) + Dfj (a)(h) +
∥∥h
∥∥εj (h)

Then
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f (a+ h) = f (a) +
n∑

j=1
Dfj (a)(h)ej +

∥∥h
∥∥

n∑

j=1
εj (h)ej

and we have that
n∑
j=1

εj (h)ej → 0 as h → 0.

Proposition 10.15 (Linearity of derivative). For λ, µ ∈ R, f , g : U → Rn differentiable at a ∈ U , we have
that

D(λf + µg)(a) = λDf (a) + µDg(a)

Proposition 10.16 (Product rule). Let f : U → Rn and φ : U → R be differentiable at a. Then

D(φf )(a)(h) = φ(a)[Df (a)(h)] + [Dφ(a)(h)]f (a)

Proof. Define F : U → R × Rn by F (x) = (φ(x), f (x)) and G : R × Rn by G(λ, v ) = λv . Then φf = G ◦ F .
DF = (Dφ,Df ) by projections, and DG(λ, v )(µ, w) = λw + µv by bilinearity. The result follows by chain
rule.

Definition 10.17 (Directional derivative)
Let U ⊆ Rm be open, f : U → Rn, a ∈ U . Fix u ∈ Rm ∖ {0}. If

lim
t→0

f (a+ tu) − f (a)
t

exists, we call this the directional derivative of f at a, and write Duf (a) for the limit.

Definition 10.18 (Partial derivative)
We write Di = Dei for the i-th partial derivative of a function.

Proposition 10.19. If f is differentiable at a, then for all u, Duf (a) exists, with

Duf (a) = Df (a)(u)

Proof. Suppose f (a+ h) = f (a) + Df (a)(h) +
∥∥h
∥∥ε(h). Then

f (a+ tu) − f (a)
t = Df (a)(u) + |t|

t
∥u∥εtu → Df (a)(u)

So Duf (a) = Df (a)(u).

Corollary 10.20.

Df (a)(h) =
m∑

i=1
hiDif (a)
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Definition 10.21 (Jacobian)
The Jacobian matrix of a function f is Jf (a) = [Df (a)], i.e. Df with respect to standard bases.

Proposition 10.22. The i-th column of Jf (a) is Dif (a), and

(Jf (a))ij =
∂fj
∂xi

Theorem 10.23. Suppose Dif (x) exists for x ∈ V , where V ⊆ U is an open neighbourhood of a. Moreover,
x 7→ Dif (x) is continuous at a. Then f is differentiable at a.

Proof. Considering components of f , without loss of generality f : Rm → R. We will prove this by induction on
m. The case m = 1 is trivial. For h ∈ Rm, define

h(1) =
m−1∑

i=1
hiei and h(2) = hmem

Let

ψ(h) = f (a+ h) − f (a) +
m∑

i=1
hiDif (a)

We wish to show that ψ(h) is o(h). We have that

ψ(h) = f (a+ h) − f (a+ h(1)) − hmDmf (a)︸ ︷︷ ︸
(i)

+ f (a+ h(1)) − f (a) −
m−1∑

i=1
hiDif (a)

︸ ︷︷ ︸
(ii)

By the inductive hypothesis, (ii) is o(
∥∥h(1)∥∥) so o(

∥∥h
∥∥). Now let

φ(t) = f (a+ h(1) + th(2))

φ is differentiable, with φ′(t) = hmDmf (a+h(1) +h(2)). Then by the mean value theorem, we have t ∈ (0, 1)
such that φ(1) − φ(0) = φ′(t). Which means that

(i) = φ(1) − φ(0) − hmDmf (a) = hm(Dmf (a+ h(1) + th(2)) −Dmf (a))

As h → 0, the part in the brackets tends to zero by continuity. So (i) is o(|hm|), and hence o(
∥∥h
∥∥).

Theorem 10.24 (Mean value inequality). Suppose f : U → Rn differentiable, and M is such that∥∥f ′(z)
∥∥ ≤ M for all z ∈ [a, b] ⊆ U . then

∥∥f (b) − f (a)
∥∥ ≤ M

∥∥b − a
∥∥

Proof. Let u = b − a, v = f (b) − f (a). Without loss of generality, u ̸= 0. Then define γ(t) = a + tu. f ◦ γ is
differentiable, with

D(f ◦ γ)(t) = Df (γ(t))(Dγ(t)) = Df (a+ tu)(u)

Furthermore, let φ(t) = ⟨f (γ(t)), v⟩. Then
∥∥f (b) − f (a)

∥∥2 = φ(1) − φ(0), and φ′(t) = ⟨Df (a + tu)(u), v⟩.
Then by the mean value theorem, we have θ ∈ (0, 1) such that φ(1) − φ(0) = φ′(θ). So
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∥∥f (b) − f (a)
∥∥2 = φ(1) − φ(0)

= φ′(θ)
= ⟨Df (a+ θu)(u), v⟩
≤
∥∥Df (a+ θu)(u)

∥∥∥v∥

≤
∥∥Df (a+ θu)

∥∥∥u∥∥v∥

≤ M
∥∥b − a

∥∥∥∥f (b) − f (a)
∥∥

Corollary 10.25. Let U be open, f : U → Rn differentiable, Df = 0 on U . Then U is locally constant.

Proof. For any x ∈ U , we have a neighbourhood D(x ; r) ⊆ U . Then for any y ∈ D(x ; r), the segment [x, y] is
contained in U . Applying the mean value inequality we get the required result.

Corollary 10.26. Suppose U is open and connected, f : U → Rn differentiable, Df = 0 on U . Then U is
constant.

Proof. A locally constant function on a connected space is constant.

Proposition 10.27. Let f : V → W be a bijection, f differentiable at a and f−1 differentiable at f (a),
where V ⊆ Rm and W ⊆ Rn. Then m = n.

Proof. Let S = Df (a), and T = D(f−1)(f (a)). Then by the chain rule, TS = idRm and ST = idRn . So
m = tr(TS) = tr(ST ) = n.

Theorem 10.28 (Inverse function theorem). Let U ⊆ Rn be open, f : U → Rn is C 1, a ∈ U , f ′(a) is
invertible. Then there exists open neighbourhoods V , W of a, f (a) respectively, such that f |V : V → W is
a bijection, with inverse g : W → V that is C 1.

Furthermore, Dg(y) = (Df (g(y)))−1.

Proof. Let T = Df (a), h(x) = T−1(f (a + x) − f (a)). By the chain rule, h is differentiable, with h′(x) =
T−1 ◦ Df (a + x), which is a composition of continuous functions, so continuous. Furthermore, we have that
h(0) = 0, and Dh(0) = id. Since f (x) = T (h(x − a)) + f (a), suffices to prove the result for h. So without loss
of generality, we may assume a = f (a) = 0, and Df (0) = id.

Since Df is continuous, we have r > 0 such that D(0; r) ⊆ U and for all x ∈ D(0; r),
∥∥Df (x) − id

∥∥ ≤ 1
2 .

For x ∈ D(0; r), let p(x) = f (x) − x . Then Dp(x) = Df (x) − id. So for all x ∈ D(0; r),
∥∥Dp(x)

∥∥ ≤ 1
2 . So by

mean value inequality,
∥∥Dp(x) −Dp(y)

∥∥ ≤ 1
2
∥∥x − y

∥∥. As a result,

∥∥f (x) − f (y)
∥∥ =

∥∥p(x) − p(y) + x − y
∥∥ ≥

∥∥x − y
∥∥−

∥∥p(x) − p(y)
∥∥ ≥ 1

2
∥∥x − y

∥∥

Let W = D(0; r2 ) and fix w ∈ W . Let q(x) = w − f (x) + x = w −p(x). Since p(0) = f (0) = 0, we have that

∥∥q(x)
∥∥ ≤ ∥w∥ +

∥∥p(x)
∥∥ ≤ ∥w∥ + 1

2
∥x∥ < 2 · r2 = r

So q(D(0; r)) ⊆ D(0; r). Furthermore, we have that

∥∥q(x) − q(y)
∥∥ =

∥∥p(x) − p(y)
∥∥ ≤ 1

2
∥∥x − y

∥∥
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So q is a contraction mapping on the complete metric space D(0; r), and has a unique fixed point. That is,
a unique x such that f (x) = w . Since w is arbitrary, we have that D(0; r/2) ⊆ f (D(0; r)).

Let V = f−1(W ) ∩ D(0; r). Then V and W satisfy the requirements of the theorem, as V , W open,
f |V : V → W is a bijection. Let g be the inverse, we will show that g is continuous.

∥∥g(u) − g(v )
∥∥ ≤ 2

∥∥f (g(u)) − f (g(v ))
∥∥ = 2∥u − v∥

So g is Lipschitz, hence continuous. The proof that g is C 1 is non-examinable.

10.1 Second derivative

Definition 10.29 (Second derivative)
Let f : U → Rn be differentiable on V open, where a ∈ V ⊆ U . Then we say that f is twice differentiable
at a if

Df : V → L(Rm,Rn)

is differentiable at a. We write the result as f ′′(a) = D2f (a), where

D2f : V → L(Rm, L(Rm,Rn))

Remark 10.30.
L(Rm, L(Rm,Rn)) ∼= Bil(Rm × Rm,Rn)

via T (h)(k ) ↔ T (h, k ), so we do not make a distinction between the two.

Proposition 10.31. Let f : U → Rn be differentiable on V open, where a ∈ V ⊆ U . Then f is twice
differentiable at a if and only if there exists T ∈ Bil(Rm × Rm,Rn) such that

Df (a+ h)(k ) = Df (a)(k ) + T (h, k ) + o(
∥∥h
∥∥)

for each fixed k .

Proof. Assume f is twice differentiable at a. Then

Df (a+ h) = Df (a) + D2f (a)(h) +
∥∥h
∥∥ε(h)

Fix k ∈ Rm, and evaluating the above at k , we find that

Df (a+ h)(k ) = Df (a)(k ) + D2f (a)(h, k ) +
∥∥h
∥∥ε(h)(k )

Letting T = D2f (a),
∥∥ε(h)(k )

∥∥ ≤
∥∥ε(h)

∥∥∥∥k
∥∥ → 0 as h → 0, so the error is o(

∥∥h
∥∥).

Now suppose T exists. Let

ε(h) = Df (a+ h) −Df (a) − T (h)∥∥h
∥∥

Suffices to show that ε(h) → 0 as h → 0. For each fixed k ∈ Rm, ε(h)(k ) → 0 as h → 0. So we have that

∥∥ε(h)
∥∥ =

( m∑

i=1

∥∥ε(h)(ei)
∥∥2
)1/2

→ 0 as h → 0

Proposition 10.32. If f : Rm → Rn linear, then D2f ≡ 0.
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Proposition 10.33. If f ∈ Bil(Rm × Rm,Rn), then D2f = Df (up to identifying linear/bilinear forms).

Proof.
Df (a, b) = ((h, k ) 7→ f (a, k ) + f (h, b))

is linear in (a, b).

10.2 Partial derivatives

Proposition 10.34. Suppose f : U → Rn is twice differentiable at a. Then

DuDv f (a) = D2f (a)(u, v )

Proof. For each fixed k ∈ Rm, we have

Df (a+ h)(k ) = Df (a)(k ) + D2f (a)(h, k ) + o(
∥∥h
∥∥)

Putting k = v , we get that

Dv f (a+ h) = Dv f (a) + D2f (a)(h, v ) + o(
∥∥h
∥∥)

Which then gives us that Dv f : V → Rn is differentiable at a, with

D(Dv f )(a)(h) = D2(a)(h, v )
Seeting h = u gives the required result.

Theorem 10.35 (Symmetry of mixed partial derivatives). Suppose f : U → Rn is twice differentiable, with
D2f : V → Bil(Rm × Rm,Rn) continuous at a ∈ V ⊆ U . Then

DuDv f (a) = DvDuf (a)

Equivalently, D2f (a) is a symmetric bilinear map.

Proof. Since

(Duf )j (x) = (Duf (x))j = (Df (x)(u))j = Dfj (x)(u) = Dufj (x)
without loss of generality n = 1. Define

φ(s, t) = f (a+ su+ tv ) − f (a+ tv ) − f (a+ su) + f (a)
Fix s, t . Define ψ(y) = f (a+yu+ tv )−f (a+yu). Then φ(s, t) = ψ(s)−ψ(0). By the mean value theorem,

we have α ∈ (0, 1) such that

φ(s, t) = ψ(s) − ψ(0) = sψ ′(αs) = s (Duf (a+ αsu+ tv ) −Duf (a+ αsu))
Apply the mean value theorem to z 7→ Duf (a+ αsu+ zv ), we have some β ∈ (0, 1) such that

φ(s, t) = stDvDuf (a+ αsu+ βtv ) = stD2f (a+ αsu+ βtv )(v, u)
By continuity, we have that

φ(s, t)
st = D2f (a+ αsu+ βtv )(v, u) → D2f (a)(v, u) as s, t → 0

If instead we used ψ̃(y) = f (a+ su+ yv ) − f (a+ yv ), then we would get

φ(s, t)
st → D2f (u, v ) as s, t → 0

Uniqueness of limits gives the required result.
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