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1 Differentiation
Let U ⊆ C be open, f : U → C.

Definition 1.1 (Differentiable)
f is holomorphic at w ∈ U if

f ′(w) = lim
z→w

f (z) − f (w)
z − wexists. We call the result the derivative of f at w .

Definition 1.2 (Holomorphic)
f is holomorphic at a ∈ U if there exists ε > 0 such that f is differentiable at all z ∈ D(a, ε).

f is holomorphic in U if f is holomorphic at every point in U . Equivalently, f is differentiable at everypoint in U .
Proposition 1.3. The map f 7→ f ′ is linear.
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Proposition 1.4 (Product rule). (fg)′ = f ′g + fg′

Proposition 1.5 (Chain rule). (f ◦ g)′(z) = f ′(g(z))g′(z)
Let f = u + iv , where u, v : U → R, and in addition, we identify C ∼= R2, so we consider U to be an opensubset of R2.

Theorem 1.6 (Cauchy-Riemann). f is differentiable at w = c+ id ∈ U if and only if u, v are differentiableat (c, d), and
∂u
∂x = ∂v

∂y and ∂u
∂y = −∂v

∂x at (c, d)
Furthermore, f ′(w) = ux + ivx .

Proof. f is differentiable at w = c + id, with derivative p + iq
⇐⇒

lim
z→w

f (z) − f (w)
z − w = p + iq

⇐⇒

lim
z→w

f (z) − f (w) − (z − w)(p + iq)
|z − w| = 0

⇐⇒

lim(x,y)→(c,d) u(x, y) − u(c, d) − p(x − c) + q(y − d)∥∥(x, y) − (c, d)∥∥ = 0
and

lim(x,y)→(c,d) v (x, y) − v (c, d) − q(x − c) − p(y − d)∥∥(x, y) − (c, d)∥∥ = 0
⇐⇒
u is differentiable at (c, d) with Du(c, d)(x, y) = px−qy, and v is differentiable at (c, d) with Dv (c, d)(x, y) =

qx + py.
⇐⇒
u, v differentiable at (c, d) with ux = vy = p and uy = −vx = q.

Corollary 1.7. If f : U → C has continuous partial derivatives that satisfy the Cauchy-Riemann equations,then f is differentiable ta U .
Proof. Continuous partial derivatives implies that f is differentiable.

Definition 1.8 (Domain)A domain U is a nonempty, open, path connected subset of C.
Corollary 1.9. If U is a domain, f : U → C holomorphic on U , and f ′ = 0 in U . Then f is constant.

Proof. By Cauchy-Riemann Du = 0 and Dv = 0, so u, v are constant.
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Definition 1.10 (Entire)If f : C → C is holomorphic, then we say that f is entire.
1.1 Power series

Theorem 1.11. Suppose f (z) = ∑∞
n=0 cn(z − a)n has radius of convergence R . Then f is holomorphic in

D(a, R ), with derivative
f ′(z) = ∞∑

n=0 ncn(z − a)n−1
which has the same radius of convergence R .

Proof. Without loss of generality, a = 0. The power series for f ′ has radius of convergence R1 ∈ [0, ∞].Fix z ∈ D(0, R ), and choose ρ such that |z| < ρ < R . Then
n|cn||z|n−1 = n|cn|

∣∣∣∣ z
ρ

∣∣∣∣n−1
ρn−1 ≤ |cn|ρn−1

for n large, since n
∣∣∣∣ z
ρ

∣∣∣∣n−1
→ 0 as n → ∞. So R ≤ R1, as this means that ∑

ncnzn−1 converges in D(0, R ).As |cn||zn| ≤ n|cn||zn| = |z|(ncn
∣∣zn−1∣∣), so if ∑

n|cn||z|n−1 converges, so does ∑
|cn||zn|, which meansthat R ≥ R1, so R = R1.To prove that f is differentiable, fix z ∈ D(0, R ), and let

g(w) =


f (w) − f (z)
w − z if w ̸= z

∞∑
n=1 ncnzn−1 if w = z

We want to show that g is continuous as z . Define
hn(w) =

cn (wn − zn)
w − z if w ̸= z

ncnzn−1 if w = z

Then g(w) = ∞∑
n=1 hn(w). hn is continuous at z , as it is the derivative of w 7→ cnwn. Since

wn − zn

w − z = zn−1 + wzn−2 + · · · + wn−2z + wn−1
Then for any r such that |z| < r < R , w ∈ D(0, r), |hn(w)| ≤ n|cn|rn−1. Let Mn = n|cn|rn−1. Then ∑

Mnconverges, so ∑
hn converges uniformly by the Weierstrass M-test. So g is the uniform limit of continuousfunctions, s o it is continuous.

Corollary 1.12. Suppose f (z) = ∑∞
n=0 cn(z − a)n has radius of convergence R . If f ≡ 0 in D(a, ε) forsome ε > 0, then f ≡ 0 in D(a, R ).

Proof. We must have that cn = 0 for all n.
Definition 1.13 (Exponential)
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exp(z) = ∞∑
n=1

zn

n!

Proposition 1.14. exp is entire, with derivative exp.
Proposition 1.15. exp(z) ̸= 0 for all z , and exp(z + w) = exp(z) exp(w).

Proof. Fix w ∈ C, define F (z) = exp(z + w) exp(−z). Then
F ′(z) = − exp(z + w) exp(−z) + exp(z + w) exp(−z) = 0So F is constant, and F (z) = F (0) = exp(w).

Proposition 1.16. For x, y ∈ R,
exp(x + iy) = ex (cos(x) + i sin(y))and

exp(z) = 1 ⇐⇒ z ∈ 2πiZ

Proposition 1.17. For z ∈ C nonzero, we have w ∈ C such that exp(w) = z .
Definition 1.18 (Logarithm)Given z ∈ C, we say w ∈ C is a logarithm of z if exp(w) = z .
Definition 1.19 (Branch of logarithm)Let U ⊆ C ∖ 0 be open. Then a branch of the logarithm on U is a continuous function λ : U → C suchthat exp(λ(z)) = zfor all z ∈ U .
Proposition 1.20. If λ is a branch of log on U , then λ is holomorphic on U , so λ′(z) = 1

z .
Proof. Suppose w ∈ U . Then
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lim
z→w

λ(z) − λ(w)
z − w = lim

z→w

λ(z) − λ(w)exp(λ(z)) − exp(λ(w))= lim
z→w

1exp(λ(z))−exp(λ(w))
λ(z)−λ(w)= 1exp(λ(w)) lim

z→w

1exp(λ(z)−λ(w))−1
λ(z)−λ(w)= 1exp(λ(w)) lim

h→0 1exp(h)−1
h= 1

w

Definition 1.21 (Principal branch)The principal branch of log is the function
Log : C∖ {x ∈ R : x ≤ 0} → Cby Log(z) = log |z| + i arg(z), where we have arg(z) ∈ (−π, π).

Proposition 1.22. Log is a branch of log.
Proposition 1.23. Log(1 + z) = ∞∑

n=1
(−1)n−1zn

n for |z| < 1
Proof. Define for |z| < 1,

F (z) = Log(1 + z) −
∞∑

n=1
(−1)n−1zn

n

Then F ′ = 0, so F = 0.
1.2 Conformal maps

Proposition 1.24. Let f : U → |C be holomorphic at w ∈ U , f ′(w) ̸= 0. Let γ1, γ2 : [−1, 1] → U be C 1curves such that γ1(0) = γ2(0) = w , γ ′1(0), γ ′2(0) ̸= 0. Then
arg(γ ′1(0)) − arg(γ ′2(0)) = arg((f ◦ γ1)′(0)) − arg((f ◦ γ2)′(0))

Definition 1.25 (Conformal)
f : U → C is conformal at w ∈ U if f ′(w) ̸= 0.
Definition 1.26 (Conformal equivalence)
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f : U → Ũ is a conformal equivalence if f is bijective and holomorphic, with f ′(z) ̸= 0 for all z ∈ U .
Proposition 1.27. Möbius maps are conformal.

2 Complex integration

Definition 2.1 (Complex (Riemann) integral)Suppose f : [a, b] → R, with Re(f ), Im(f ) integrable. Then define∫ b

a
f (t)dt = ∫ b

a
Re(f (t))dt + i

∫ b

a
Im(f (t))dt

Proposition 2.2. ∣∣∣∣∣∫ b

a
f (t)dt

∣∣∣∣∣ ≤
∫ b

a
|f (t)|dt ≤ (b − a) sup

t∈[a,b] |f (t)|
Proof. If ∫ b

a f (t)dt = 0 we are done. If not, say ∫ b
a f (t)dt = reiθ . Let M = supt∈[a,b] |f (t)|. Then∣∣∣∣∣∫ b

a
f (t)dt

∣∣∣∣∣ = r = e−iθ
∫ b

a
f (t)dt = ∫ b

a
Re(e−iθf (t))dt + i

∫ b

a
Im(e−iθf (t))dt

Since the left hand side of the equality is real, we must have that∣∣∣∣∣∫ b

a
f (t)dt

∣∣∣∣∣ = ∫ b

a
Re(e−iθf (t))dt ≤

∫ b

a

∣∣e−iθf (t)∣∣dt = ∫ b

a
|f (t)|dt

and the final inequality follows from real analysis.
Remark 2.3. Equality holds if and only if f is constant.
Definition 2.4 (Curve integral)Let U ⊆ C be open, f : U → C continuous, γ : [a, b] → U a C 1 curve. Then the integral of f along γ is∫

γ
f (z)dz = ∫ b

a
f (γ(t))γ ′(t)dt

Proposition 2.5. Integral is independent of parametrisation.
Proof. Chain rule.

Definition 2.6 (Length)Define the length of a curve by
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Length(γ) = ∫ b

a

∣∣γ ′(t)∣∣dt

Proposition 2.7. ∣∣∣∣∫
γ

f (z)dz
∣∣∣∣ ≤ Length(γ) sup

γ
|f |

Theorem 2.8 (FTC). Suppose F : U → C is C 1, then∫
γ

F ′(z)dz = F (γ(b)) − F (γ(a))
Proof. By real FTC.

Corollary 2.9. If γ is a closed curve, then ∫
γ

F ′(z)dz = 0

Theorem 2.10 (FTC II). Let U ⊆ C be a domain, f : U → C continuous, and for every closed curve γ in U ,∫
γ

f (z)dz = 0
Then f has an antiderivative in U .

Proof. Fix a0 ∈ U . For w ∈ U , define a curve γw : [0, 1] → U such that γw (0) = a0 and γw (1) = w . Since Uis path connected, one exists. Furthermore, we can take γw polygonal and piecewise C 1. Define
F (w) = ∫

γw

f (z)dz

Note that F is independent of the choice of γ , since if γw , γ̃w are both curves from a0 to w , then γw +(−γ̃w )is a closed curve. Fix w ∈ U . Since U is open, we have r > 0 such that D(w, r) ⊆ U . For h ∈ C with0 < |h| < r , define δh(t) = w + th for t ∈ [0, 1]. Now note that γ = γw + δh + (−γw+h) is a closed curve, so∫
γ f (z)dz = 0 by assumption.Hence we have that
F (w + h) = ∫

γw+h

f (z)dz = ∫
γw

f (z)dz + ∫
δh

f (z)dz = F (w) + ∫
δh

f (z)dz = F (w) + hf (w) + ∫
δh

(f (z) − f (w))dz

Suffices to show the error term is o(h).
1

|h|

∣∣∣∣∫
δh

f (z) − f (w)dz
∣∣∣∣ ≤ 1

h Length(δh) sup
z∈δh([0,1]) |f (z) − f (w)| = sup

z∈δh([0,1]) |f (z) − f (w)| → 0 as h → 0

2.1 Cauchy’s theorem for star domains
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Definition 2.11 (Star shaped domain)A domain U ⊆ C is star shaped if there exists a0 ∈ U such that for all z ∈ U , the segment [a0, z] iscontained in U .
Definition 2.12 (Triangle)A triangle T ⊆ C is the closed convex hull of three points in C.
Definition 2.13 (Boundary of the triangle)We define the boundary of the triangle to be oriented anticlockwise.
Corollary 2.14. If U is star shaped, f : U → C is continuous, and∫

∂T
f (z)dz = 0

for all triangles T ⊆ U , then f has an antiderivative in U .
Proof. Modify proof of FTC II.

Theorem 2.15 (Cauchy’s theorem for triangles). Suppose U ⊆ C open, f : U → C holomorphic. Suppose
T ⊆ U is a triangle. Then ∫

∂T
f (z)dz = 0

Proof. Let η(T ) = ∫
∂T f (z)dz . Subdivide T into 4 smaller triangles T (i) by connecting the midpoints of eachedge. Then as the inner edges cancel, η(T ) = η(T (1)) + · · · + η(T (4)). By triangle inequality, we have i suchthat ∣∣η(T (i))∣∣ ≥ |η(T )|4Define T0 = T , T1 = T (i). Then

|η(T1)| ≥ 14 |η(T0)| and Length(∂T1) = 12 Length(∂T0)Repeat the above process to get T0, T1, T2, . . . such that
|η(Tn)| ≥ 14n |η(T0)| and Length(∂Tn) = 12n Length(∂T0)Since diam(Tn) → 0, by compactness we have that ⋂

n Tn = {z0}. Let ε > 0, since f is differentiable at z0,we have δ > 0 such that
∀z ∈ U, |z − z0| < δ =⇒

∣∣f (z) − f (z0) − f ′(z0)(z − z0)∣∣ ≤ ε|z − z0|Now, by FTC we have that
η(Tn) = ∫

∂Tn

f (z)dz = ∫
∂Tn

f (z) − f (z0) − f ′(z0)(z − z0)dz

Choose n such that Tn ⊆ D(z0, δ). Then
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|η(T0)| = 4n|η(Tn)|
≤ 4n

∣∣∣∣∫
∂Tn

f (z)dz
∣∣∣∣

= 4n
∣∣∣∣∫

∂Tn

f (z) − f (z0) − f ′(z0)(z − z0)dz
∣∣∣∣

≤ 4n Length(∂Tn) sup
z∈∂Tn

∣∣f (z) − f (z0) − f ′(z0)(z − z0)∣∣
≤ 4nε Length(∂Tn) sup

z∈∂Tn

|z − z0|
≤ 4nε Length(∂Tn)2= ε Length(∂T0)2But ε > 0 is arbitrary. So η(T0) = 0.

Theorem 2.16. Let U ⊆ C open, f : U → C continuous, S ⊆ U finite, f holomorphic on U ∖ S . Then forevert triangle T ⊆ U , we have that ∫
∂T

f (z)dz = 0
Proof. By the above process, subdivide T into N = 4n triangles, say T1, . . . , TN . Then the interiors cancel, so∫

∂T
f (z)dz = N∑

j=1
∫

∂Tj

f (z)dz

Let J = {j : Tj ∩ S = ∅}. By Cauchy theorem for triangles, for all j ∈ J , ∫
∂Tj

f (z)dz = 0. So we have that∫
∂T

f (z)dz = ∑
j /∈J

∫
∂Tj

f (z)dz

Note that each point in S is in at most 6 triangles, so∣∣∣∣∫
∂T

f (z)dz
∣∣∣∣ ≤ 6|S|

∣∣∣∣sup
z∈T

f (z)dz
∣∣∣∣Length(∂T )2n → 0 as n → ∞

Corollary 2.17. Let U ⊆ C be a star domain, f : U → C continuous, holomorphic in U ∖S , where S ⊆ Ufinite. Then for any closed curve γ in U , ∫
γ

f (z)dz = 0
Proof. f has an antiderivative, so result follows by FTC for star domains.
2.2 Cauchy integral formula for a disc

Definition 2.18 (Boundary of a disc)For D(a, r), we define the boundary ∂D(a, r) to be the path
t 7→ a + re2πit
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Lemma 2.19 (Fundamental integral). Let r > 0, w ∈ D(a, r). Then∫
∂D(a,r)

1
z − w dz = 2πi

Proof. 1
z − w = 1

z − a + a − w = 1
z − a

11 − w−a
z−a

= ∞∑
j=0

(w − a)j(z − a)j+1
Since ∣∣∣∣ (w − a)(z − a)

∣∣∣∣ = |w − a|r < 1. Furthermore, by the Weierstrass M-test, the series converges uniformly.So we have that ∫
∂D(a,r)

1
z − w dz = ∞∑

j=0 (w − a)j ∫
∂D(a,r)

1(z − a)j+1 dz

By computing the integral explicitly for j = 0, and using FTC for j ≥ 1 we find the required result.
Theorem 2.20 (Cauchy integral formula for a disc). Let D = D(a, r), f : D → C holomorphic. Then fornay 0 < ρ < r , w ∈ D(a, ρ), we have that

f (w) = 12πi

∫
∂D(a,ρ)

f (z)
z − w dz

Proof. Fix w , define h : D → C by
h(z) =

 f (z) − f (w)
z − w if z ̸= w

f ′(w) if z = wThen h is continuous on D and holomorphic in D ∖ {w}. By Cauchy’s theorem for star domains, we havethat ∫
∂D(a,ρ) h(z)dz = 0

Substituting the definition of h, we get that
f (w) ∫

∂D(a,ρ)
1

z − w dz = ∫
∂D(a,ρ)

f (z)
z − w dz

Result then follows by the fundamental integral.
Corollary 2.21 (Mean value property). Suppose f : D(a, R ) → C holomorphic, 0 < ρ < R . Then

f (a) = ∫ 1
0 f (a + ρe2πit )dt

Proof. By Cauchy integral formula for a disc.
Proposition 2.22. If f : C → C is entire, for some K ≥ 0, α < 1, we have that

|f (z)| ≤ K (1 + |z|α )for all z ∈ C, then f is constant.
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Proof. Given w ∈ C, ρ > |w|, by the Cauchy integral formula, we have that
f (w) = 12πi

∫
∂D(a,ρ)

f (z)
z − w dz

Then
|f (w) − f (0)| = 12π

∣∣∣∣∫
∂D(a,ρ)

f (z)
z − w − f (z)

z dz
∣∣∣∣

≤ |w|2π Length(∂D(a, ρ)) sup
z∈∂D(a,ρ)

∣∣∣∣ f (z)
z(z − w)

∣∣∣∣
≤ |w|K (1 + ρ)α2πρ(ρ − |w|) = |w|K (1 + ρα )

ρ − |w|

Letting ρ → ∞, we get f (w) = f (0).
Theorem 2.23 (Liouville). If f : C → C is entire, |f (z)| ≤ K for all z ∈ C, then f is constant.

Proof. Immediate by above proposition.
Theorem 2.24 (Fundamental theorem of algebra). Every non constant polynomial with complex coefficientshas a root over C.

Proof. Let n = deg(p) ≥ 1, and without loss of generality, p monic, so p(z) = zn + an−1zn−1 + · · · + a0. Thenfor z ̸= 0, we have that
p(z) = zn

(1 + an−1
z + · · · + a0

zn

)
which means that

|p(z)| ≥ |zn|
(1 −

(
|an−1|

|z| + · · · + |a0|
|zn|

))
So |p(z)| → ∞ as |z| → ∞. So we have R > 0 such that if |z| > R , |p(z)| > 1. Furthermore, supposefor contradiction p has no root over C. Define g(z) = 1

p(z) . Then g is entire. For |z| > R , |g| < 1, and bycompactness and continuity of g, g is also bounded on D(0, R ). But this means that g is constant, so p isconstant. Contradiction.
Theorem 2.25 (Local maximum modulus). Suppose f : D(a, R ) → C is holomorphic, |f (z)| ≤ |f (a)| for all
z ∈ D(a, R ). Then f is constant.

Proof. By the mean value property, we have that for any 0 < ρ < R ,
f (a) = ∫ 1

0 f (a + ρe2πit )dt

So
|f (a)| = ∣∣∣∣∫ 1

0 f (a + ρe2πit )dt
∣∣∣∣ ≤ sup

t∈[0,1]
∣∣f (a + ρe2πit )∣∣ ≤ |f (a)|

So equality holds. The first inequality gives us that f (a + ρe2πit ) = cρ constant. The second one gives that∣∣cρ
∣∣ = |f (a)|, so |f (z)| is constant, and by Cauchy-Riemann, f is constant.
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2.3 Power series

Theorem 2.26. Let f : D(a, R ) → C be holomorphic. Then
f (w) = ∞∑

n=0 cn(w − a)n
where

cn = 12πi

∫
∂D(a,ρ)

f (z)(z − a)n+1 dz

Proof. Fix 0 < ρ < R . Then for w ∈ D(a, ρ), we have that
f (w) = 12πi

∫
∂D(a,ρ)

f (z)
z − w dz = 12πi

∫
∂D(a,ρ) f (z) ∞∑

n=0
(w − a)n(z − a)n+1 dz = ∞∑

n=0 cn(ρ)(w − a)n
where

cn(ρ) = 12πi

∫
∂D(a,ρ)

f (z)(z − a)n+1 dz

This gives us a power series representation of f , which means that f is infinitely differentiable, with
cn(ρ) = f (n)(a)

n!So cn(ρ) is independent of ρ.
Corollary 2.27. Let f : U → C be holomorphic. Then f is analytic.
Corollary 2.28.

f (n)(a) = n!2πi

∫
∂D(a,ρ)

f (z)(z − a)n+1 dz

Theorem 2.29 (Morera). Let U ⊆ C be open, f : U → C is continuous, and for every closed curve γ in U ,∫
γ f (z)dz = 0. Then f is holomorphic in U .

Proof. f has an antiderivative F . Then f = F ′ is holomorphic.
2.4 Zeroes of a holomorphic function

Theorem 2.30 (Principle of isolated zeroes). Suppose f : D(a, R ) → C is holomorphic, f ̸≡ 0. Then thereexists r > 0 such that f (z) ̸= 0 whenever 0 < |z − a| < r .
Proof. If f (a) ̸= 0 we are done by continuity. If f (a) = 0, then we have m ≥ 1 such that f (z) = zmg(z), where
g : D(a, R ) → C holomorphic, g(a) ̸= 0. Then we are done by continuity of g.

Theorem 2.31 (Unique analytic continuation). Suppose U, V domains, U ⊆ V , g1, g2 : V → C analytic,
g1 = g2 on U . Then g1 = g2.
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Proof. Let h = g1 − g2. Then h = 0 on U . Define
V0 = {z ∈ V : h ≡ 0 in some D(z, r)} and V1 = {

z ∈ V : h(n)(z) ̸= 0 for some n ≥ 0}
By the principle of isolated zeroes, V0 and V1 partition V . By construction, V0 open, and by continuity ofthe derivatives, V1 is open. Since V is connected and V0 nonempty, we must in fact have V = V0.

Proposition 2.32 (Identity principle). Suppose f , g : U → C holomorphic, and suppose
S = {z ∈ U : f (z) = f (z)}has a limit point. Then f = g.

Proof. Let h(z) = f (z) − g(z). Then by the principle of isolated zeroes, h must be identically zero.
Corollary 2.33 (Global maximum modulus principle). Suppose U is bounded, f : U → C continuous, fholomorphic on U . Then |f | attains its maximum value on ∂U = U ∖ U .

Proof. U is compact, so |f | is bounded and attains its maxima. Say for all z ∈ U , |f (z)| ≤ |f (w)|. If w /∈ U ,then w ∈ ∂U and we are done.On the other hand, if w ∈ U , choose D = D(w, r) ⊆ U . Then by local maximum modulus principle, f isconstant on D, so by identity principle (or unique analytic continuation), f is constant on U . By continuity, fis constant on U .
Theorem 2.34 (Cauchy integral formula for derivatives). Suppose f : D(a, R ) → C holomorphic, then forany 0 < ρ < R , w ∈ D(a, ρ), we have that

f (n)(w) = n!2πi

∫
∂D(a,ρ)

f (z)(z − w)n+1 dz

Proof. By induction on n. n = 0 is the Cauchy integral formula.For n = 1, let g(z) = f (z)
z − w . This is holomorphic on D(a, R )∖{w}, with g′(z) = f ′(z)

z − w − f (z)(z − w)2 . Since
∂D(a, ρ) ⊆ D(a, R ) ∖ {w}, we have that ∫

∂D(a,ρ) g′(z)dz = 0
which means that ∫

∂D(a,ρ)
f ′(z)

z − w = ∫
∂D(a,ρ)

f (z)(z − w)2 dz

Using the Cauchy integral formula for f ′, we have that
f ′(w) = 12πi

∫
∂D(a,ρ)

f ′(z)
z − w dz = 12πi

∫
∂D(a,ρ)

f (z)(z − w)2
For n ≥ 2, let n = k + 1 and g(z) = f (z)(z + w)k+1 . Then g′(z) = f ′(z)(z + w)k+1 − (k + 1)f (z)(z + w)k+2 . Similarly, wehave that ∫

∂D(a,ρ) g′(z)dz = 0
which means that

13



∫
∂D(a,ρ)

f ′(z)(z − w)k+1 dz = (k + 1) ∫
∂D(a,ρ)

f (z)(z − w)k+2 dz

which by the induction hypothesis gives the required result.
3 Uniform limits

Proposition 3.1. (fn) converges locally uniformly on U if and only if (fn) converges on every compactsubset K ⊆ U .
Theorem 3.2. Let U ⊆ C be open, fn : U → C holomorphic, fn → f locally uniformly on U . Then f isholomorphic, and f (k )

n → f (k ) locally uniformly.
Proof. For a ∈ U , let r > 0 be such that D(a, r) ⊆ U . Then fn → f uniformly on D(a, r , which means that f iscontinuous on D(a, r) as the uniform limit of continuous functions. Let γ be a closed curve in D(a, r), then byCauchy for star domains, we have that ∫

γ
fn(z)dz = 0

for all n. As ∫
γ fn(z)dz →

∫
γ f (z)dz by uniform convergence, we have that ∫

γ f (z)dz = 0. So by Morera, fis holomorphic. By the Cauchy integral formula for derivatives, we have that
f (k )(w) − f (k )

n (w) = k !2πi

∫
∂D(a,r/2)

f (z) − fn(z)(z − w)k+1 dz

which means that
∣∣f (k )(w) − f (k )

n (w)∣∣ = 12π

∣∣∣∣∫
∂D(a,r/2)

f (z) − fn(z)(z − w)k+1 dz
∣∣∣∣

≤ 12π 2π
( r2)2 sup

z∈∂D(a,r/2)
∣∣∣∣ f (z) − fn(z)(z − w)k+1

∣∣∣∣
≤ Ck sup

z∈∂D(a,r/2) |f (z) − fn(z)| → 0 as n → ∞

for some constant Ck .
4 Winding numbers and topology
4.1 Winding numbers

Definition 4.1 (Continuous choice of argument)For a curve γ : [a, b] → C, w ∈ C, we can write γ(t) = w + r(t)eiθ(t) as long as w /∈ Image(γ). If γcontinuous, then we can choose θ continuous, and we call θ a continuous choice of argument.
Definition 4.2 (Winding number)Define the winding number, or index of γ about w to be

I(γ; w) = θ(b) − θ(a)2π

14



Proposition 4.3. For a closed curve, I(γ; w) is an integer.
Proof.

eiθ(b)−iθ(a) = 1 ⇐⇒ θ(b) − θ(a) ∈ 2πZ

Proposition 4.4. A continuous choice of θ exists, and for different choices, we get the same value of I(γ; w).
Proof. Existence follows from taking local choices and using compactness. For uniqueness, note that

θ(t) − θ̃(t)2π ∈ Z

is a continuous integer valued function from a connected set, so must be constant.
Lemma 4.5. If w ∈ C, γ : [a, b] → C ∖ {w} piecewise C 1, then we have θ piecewise C 1, and if γ isclosed, then

I(γ; w) = 12πi

∫
γ

1
z − w dz

Proof. Let
h(t) = ∫ t

a

γ ′(s)
γ(s) − w ds

The integrand is bounded, and continuous at all but finitely many points, so h is continuous. Furthermore,by FTC, h is piecewise C 1, with h′(t) = γ ′(t)
γ(t) − w when γ ′ is continuous. This gives us an ODE for γ − w ,

(γ(t) − w)′ − (γ(t) − w)h(t) = 0Using the integrating factor e−h(t), we find thatddt
((γ(t) − w)e−h(t)) = 0

for all but finitely many t . Since (γ(t) − w)e−h(t) is continuous, it must in fact be constant. So
(γ(t) − w) = (γ(a) − w)eh(t) = |γ(a) − w|eRe(h(t))eIm(h(t))+α

for some α . Then set θ(t) = α + Im(h(t)). We have that
I(γ; w) = θ(b) − θ(a)2π = Im(h(b))2πFor a closed curve γ , eh(b) = 1, so Re(h(b)) = 0 and Im(h(b)) = h(b)

i . Hence we have that
I(γ; w) = h(b)2πi = 12πi

∫ b

a
h′(s)ds = 12πi

∫ b

a

γ ′(s)
γ(s) − w ds = 12πi

∫
γ

1
z − w dz

Proposition 4.6. For a closed curve γ , w 7→ I(γ; w) is constant on each connected component of C ∖Image(γ).
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Proposition 4.7. If γ : [a, b] → D(z0, r) is a closed curve, then for all w /∈ D(z0, r), we have that I(γ; w) = 0
Proof. Apply convex Cauchy, as 1

z−w is holomorphic in D(z0, r).
Proposition 4.8. If γ : [a, b] → C closed, then there exists a unique unbounded connected component Ω,and for w ∈ Ω, I(γ; w) = 0.

Proof. By compactness of Image(γ), Image(γ) is bounded, so there can only be one unbounded connectedcomponent. Furthermore, as Image(γ) is contained in a disc, apply previous proposition to a point in Ω not inthe disc.
4.2 Homology

Lemma 4.9. Suppose φ : [a, b] × [c, d] → R is continuous. Then
s 7→

∫ d

c
φ(s, t)dt and t 7→

∫ b

a
φ(s, t)ds

are continuous.
Proof. Follows from φ being uniformly continuous as it is continuous on a compact set.

Lemma 4.10 (Fubini). Suppose φ : [a, b] × [c, d] → R is continuous. Then∫ b

a

∫ d

c
φ(s, t)dtds = ∫ d

c

∫ b

a
φ(s, t)dsdt

Proof. Since φ is uniformly continuous, we have that φ is the uniform limit of step functions. That is, a partitionof R = [a, b) × [c, d) by sets of the form
Rj = [aj , bj ) × [cj , dj )

and
g(x, y) = n∑

j=1 αj1Rj (x, y)
where αj constants. By cumputing the iterated integrals for the step functions, we get the required result.

Lemma 4.11. Let f : U → C be holomorphic, define g : U × U → C by
g(z, w) =

 f (z) − f (w)
z − w if z ̸= w

f ′(z) if z = wThen g is continuous. Furthermore, if γ is a closed curve in U , then
h(w) = ∫

γ
g(z, w)dz

is holomorphic in U .
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Proof. For continuity, away from z = w we can take an open ball where g is continuous. Now suppose wehave (a, a) ∈ U × U . Given ε > 0, choose δ > 0 such that
D(a, δ) ⊆ U and ∣∣f ′(z) − f ′(a)∣∣ < ε for all z ∈ D(a, δ)which exist by U being open and f ′ being continuous respectively. Choose (z, w) ∈ D(a, δ) × D(a, δ). If

z = w , then
|g(z, w) − g(a, a)| = ∣∣f ′(z) − f ′(a)∣∣ < εIf z ̸= w , then the path γ(t) = tz + (1 − t)w is contained in D(a, δ) for t ∈ [0, 1] by convexity. So

f (z) − f (w) = ∫ 1
0

ddt (tz − (1 − t)w)dt = (z − w) ∫ 1
0 f ′(tz + (1 − t)w)dt

This means that
|g(z, w) − g(a, a)| = ∣∣∣∣ f (z) − f (w)

z − w − f ′(a)∣∣∣∣
= ∣∣∣∣∫ 1

0 f ′(tz + (1 − t)w) − f ′(a)dt
∣∣∣∣

≤ sup
t∈[0,1]

∣∣f ′(tz + (1 − t)w) − f ′(a)∣∣
< ε

So g is continuous at (a, a). To show that h is holomorphic, we will apply Morera. First, we must showthat h is continuous. Fix w0 ∈ U , and a sequence wn → w0. Choose δ > 0 such that D(w0, δ) ⊆ U . g iscontinuous on U × U , so it is uniformly continuous on Image(γ) × D(w0, δ) compact.If gn(z) = g(z, wn) for z ∈ Image(γ), then gn → g0 uniformly on Image(γ). So
h(wn) = ∫

γ
gn(z)dz →

∫
γ

g0(z)dz = h(w0)
So h is continuous. Now say γ : [a, b] → D(w0, δ) is any closed curve, and β : [c, d] → D(w0, δ) is anyclosed curve. Then

∫
β

h(w)dw = ∫
β

∫
γ

g(z, w)dzdw

= ∫ d

c

∫ b

a
g(γ(t), β(s))γ ′(t)β ′(s)dtds

= ∫ b

a

∫ d

c
g(γ(t), β(s))γ ′(t)β ′(s)dsdt

= ∫
γ

∫
β

g(z, w)dwdz

= ∫
γ
0dz

= 0
where since g(z, w) is continuous and holomorphic everywhere except z , by convex Cauchy we get that∫

β g(z, w)dw = 0. By Morera, this then means that h is holomorphic.
Definition 4.12 (Homologous to zero)Let U ⊆ C be open, γ : [a, b] → U be a closed curve. Then γ is homologous to zero in U if I(γ; w) = 0for all w /∈ U .
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Theorem 4.13 (Cauchy integral formula). Let U ⊆ C be a nonempty open set, γ closed curve in Uhomologous to zero in U . Suppose f : U → C holomorphic, and w ∈ U ∖ Image(γ), then
I(γ; w)f (w) = 12πi

∫
γ

f (z)
z − w dz

Proof. Note that the statement is equivalent to showing that∫
γ

g(z, w)dz = 0
where g(z, w) =

 f (z) − f (w)
z − w if z ̸= w

f ′(z) if z = w
. Define h(w) = ∫

γ g(z, w)dz . Then h is holomorphic in U , and
we wish to show that h = 0 by first extending it to an entire function H : C → C which has |H| → 0 as
|z| → ∞.Let V = {w ∈ C∖ Image(γ) : I(γ; w) = 0}. Since γ is homologous to zero in U , we have that C = U ∪ V .Since I(γ; w) is locally constant, V is open. For w ∈ U ∩ V ,

h(w) = ∫
γ

f (z) − f (w)
z − w dz = ∫

γ

f (z)
z − w dz = h1(w)

where h1 : V → C holomorphic. Hence the function H : C → C.
H(z) = {

h(w) if w ∈ U
h1(w) if w ∈ Vis well defined and holomorphic. Since Image(γ) is compact, we have R > 0 such that Image(γ) ⊆ D(0, R ).Since the winding number is locally constant, C∖ D(0, R ) ⊆ V . So for |w| > R , we have that

|H(w)| = |h1(w)| = ∣∣∣∣∫
γ

f (z)
z − w dz

∣∣∣∣ ≤ Length(γ)
|w| − R sup

z∈Image(γ) |f (z)|
which shows that |H(w)| → 0 as |w| → ∞. This means that H is bounded, so constant by Liouville, andmust be identically zero.

Theorem 4.14 (Cauchy’s theorem). Suppose U is a nonempty open set, γ closed curve in U homologousto zero in U , and f : U → C holomorphic. Then∫
γ

f (z)dz = 0
Proof. Equivalent to Cauchy integral formula.
4.3 Homotopy

Definition 4.15 (Null homotopic)
γ : [a, b] → U is null homotopic in U if it is homotopic ot a constant curve in U .
Lemma 4.16. If γ, δ closed piecewise C 1 curves, |γ(t) − δ(t)| < |w − γ(t)| for all t , then I(γ; w) = I(δ ; w).
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Theorem 4.17. If γ0, γ1 are homotopic closed curves, and w ∈ C∖ U . Then I(γ0; w) = I(γ1; w).
Proof. Let H : [0, 1] × [a, b] → U be a homotopy from γ0 to γ1. Since K = H([0, 1] × [a, b]) is compact, we have
ε > 0 such that for all z ∈ K , w /∈ D(z, 3ε). Furthermore, H is uniformly continuous, so choose n ∈ N suchthat ∣∣s − s′∣∣ + ∣∣t − t′∣∣ < 1

n =⇒
∣∣H(s, t) − H(s′, t′)∣∣ < ε

For k = 0, . . . , n, define Γk (t) = H( k
n , t). In particular, Γ0 = γ0 and Γn = γ1. Then by construction, for all

t ∈ [a, b], k ≥ 1, we have that
|Γk−1(t) − Γk (t)| < ε < 3ε < |w − Γk−1(t)|Let Γ̃k (t) be the polygonal approximation with nodes at Γk (t) at 0, (b − a)/n, . . . , 1. Suppose we chose nsuch that ∣∣s − s′∣∣ + ∣∣t − t′∣∣ < max(1, b − a)

n =⇒
∣∣H(s, t) − H(s′, t′)∣∣ < ε

Then we have that for t ∈ [a, b],∣∣∣Γ̃k−1(t) − Γ̃k (t)∣∣∣ ≤
∣∣∣Γ̃k−1(t) − Γk (t)∣∣∣ + ∣∣∣Γ̃k (t) − Γk (t)∣∣∣ < 2ε

and
|w − Γk−1(t)| ≤

∣∣∣w − Γ̃k−1(t)∣∣∣ + ∣∣∣Γk−1(t) − Γ̃k−1(t)∣∣∣which means that ∣∣∣w − Γ̃k−1(t)∣∣∣ ≥ |w − Γk−1(t)| −
∣∣∣Γk−1(t) − Γ̃k−1(t)∣∣∣ > 2ε

Which gives us that I(Γ̃k−1; w) = I(Γ̃k ; w) by the lemma. Finally, checking that I(Γ̃0; w) = I(γ0; w) and
I(Γ̃n; w) = I(γ1; w) gives the required result.

Corollary 4.18. If γ is null homotopic then it is homologous to zero.
Corollary 4.19. If γ1, γ2 homotopic curves, f : U → C holomorphic, then∫

γ1 f (z)dz = ∫
γ2 f (z)dz

Proof. By theorem and Cauchy’s integral formula.
Definition 4.20 (Simply connected)A domain U is simply connected if every closed curve in U is null homotopic.
Theorem 4.21 (Cauchy’s theorem for simply connected domains). If U is simply connected, γ closed curvein U and f : U → C holomorphic, then ∫

γ
f (z)dz = 0
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5 Singularities

Definition 5.1 (Isolated singularity)Let U ⊆ C be open, f : U ∖ {a} → C be holomorphic. Then f has an isolated singularity at a.
Definition 5.2 (Removable singularity)An isolated singularity a is removable if f can be extended to a holomorphic function U → C.
Proposition 5.3. Let U ⊆ C be open, a ∈ U , f : U ∖ {a} → C holomorphic. Then the following areequivalent.

(i) a is a removable singularity.(ii) lim
z→a

f (z) exists in C.
(iii) There exists D(a, ε) ⊆ C such that |f (z)| is bounded on D′(a, ε).(iv) lim

z→a
(z − a)f (z) = 0

Proof. Suppose a is removable. Then we have g : U → C extending f . Then
lim
z→a

f (z) = lim
z→a

g(z) = g(a)
So (i) implies (ii). By definitions, (ii) implies (iii), and (iii) implies (iv). Suppose (iv) holds. Consider

h(z) = {(z − a)2f (z) if z ̸= a0 if z = aThen
lim
z→a

h(z) − h(a)
z − a = lim

z→a
(z − a)f (z) = 0

So h is differentiable at a, with h′(a) = 0. Thus h is holomorphic on U . Considering the Taylor series of
h, we have that h(z) = (z − a)2g(z) where g : U → C holomorphic. So g extends f , and a si removable.

Definition 5.4 (Pole)Suppose a ∈ U is an isolated singularity of f , a is a pole of f if
lim
z→a

|f (z)| = ∞

Proposition 5.5. Let f : U ∖ {a} → C holomorphic. Then the following are equivalent.
(i) a is a pole.(ii) There exists ε > 0, h : D(a, ε) → C with h(a) = 0, h′(a) ̸= 0 for z ∈ D′(a, ε) and f (z) = 1

h(z) for
z ∈ D′(a, ε).(iii) There exists k ≥ 1 such that g : U → C holomorphic, g(a) ̸= 0, and f (z) = (z − a)−kg(z) for
z ∈ U ∖ {a}.
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Proof. Suppose (i) holds. Then we have ε > 0 such that for z ∈ D′(a, ε), |f (z)| ≠ 1. So h(z) = 1
h(z) isholomorphic and bounded in D′(a, ε). This means that h has a removable singularity at a.Now suppose (ii) holds. By the Taylor series, we have k ≥ 1 and h1 : U → D(a, ε) holomorphic, h1(z) ̸= 0for all z ∈ D(a, ε). Let g1(z) = 1

h1(z) . Then f (z) = (z − a)−kg1(z) in D′(a, ε). Now define
g(z) = {

g1(z) if z ∈ D(a, ε)(z − a)k f (z) if z ∈ U ∖ {a}

Definition 5.6 (Order)
k above is unique, and called the order of the pole.
Definition 5.7 (Meromorphic function)If U open, S ⊆ U discrete, f : U ∖ S → C holomorphic, and each a ∈ S is a removable singularity or apole, then f is meromorphic.
Definition 5.8 (Essential singularity)An isolated singularity a is essential if it is not removable and not a pole.

5.1 Laurent expansions

Theorem 5.9. Let A = {z ∈ C : r < |z − a| < R}, 0 ≤ r < R ≤ ∞, f : A → C holomorphic. Then f hasa unique convergent series expansion
f (z) = ∞∑

n=−∞
cn(z − a)n = −∞∑

n=1 c−n(z − a)−n + ∞∑
n=0 cn(z − a)n

where the coefficients are given by for r < ρ < R ,
cn = 12πi

∫
∂D(a,ρ)

f (z)(z − a)n+1 dz

and if r < ρ ≤ ρ′ < R , the series for f converges uniformly on {z : ρ ≤ |z − a| ≤ ρ′}

Proof. Fix w ∈ A, let g(z) =
 f (z) − f (w)

z − w if z ̸= w
f ′(w) if z = w

. Then g is continuous on A, and is holomorphic on
A ∖ {w}, so holomorphic in A. Choose ρ1, ρ2 such that r < ρ1 < |w − a| < ρ2 < R . Within A, ∂D(a, ρ1) and
∂D(a, ρ2) are homotopic, so ∫

∂D(a,ρ1) g(z)dz = ∫
∂D(a,ρ2) g(z)dz

Substituting the definition of g, we get that∫
∂D(a,ρ1)

f (z)
z − w dz − 2πiI(∂D(a, ρ1); w)f (w) = ∫

∂D(a,ρ2)
f (z)

z − w dz − 2πII(∂D(a, ρ2); w)f (w)
Since I(∂D(a, ρ1); w) = 0 and I(∂D(a, ρ2); w) = 1, we get that

f (w) = 12πi

∫
∂D(a,ρ2)

f (z)
z − w dz − 12πi

∫
∂D(a,ρ1)

f (z)
z − w dz
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For the first one, note that
1

z − w = ∞∑
n=0

(w − a)n(z − a)n+1
and for the second,

1
z − w = −

∞∑
n=0

(z − a)n(w − a)n+1
Hence f (w) = ∑∞

n=0 cn(w − a)n + ∑∞
n=1 c−n(w − a)−n, where

cn = { 12πi
∫

∂D(a,ρ2) f (z)(z−a)n+1 dz if n ≥ 012πi
∫

∂D(a,ρ1) f (z)(z−a)n+1 dz if n < 0Since ∂D(a, ρ1) and ∂D(a, ρ2) are homotopic to ∂D(a, ρ), we have that
cn = 12πi

∫
∂D(a,ρ)

f (z)(z − a)n+1 dz

and this gives us uniqueness of the expansion. Now suppose we have (any) cn such that
f (z) = ∞∑

n=−∞
cn(z − a)n

Then choose r < ρ ≤ ρ′ < R . Then we have that
∞∑

n=0 cn(z − a)n
converges for all z ∈ A, so it has radius of convergence ≥ R , which means that it converges uniformly on

D(a, ρ′). Letting ζ = (z − a)−1,
∞∑

n=1 c−nζn

converges foe all z ∈ A, so it has radius of convergence > 1
r , and converges uniformly for |ζ| ≤ 1

ρ . Thismeans that
∞∑

n=1 c−n(z − a)−n

converges uniformly for |z − a| ≥ ρ. This means that
∞∑

n=−∞
cn(z − a)n

converges uniformly for ρ ≤ |z − a| ≤ ρ′. Thus for any m ∈ Z, we have that∫
∂D(a,ρ)

f (z)(z − a)m+1 dz = ∞∑
n=−∞

cn

∫
∂D(a,ρ)(z − a)n−m−1dz = 2πicn

Which gives us uniqueness of the expansion.
Corollary 5.10. We have f1 : D(a, R ) → C and f2 : C ∖ D(a, r) → C holomorphic such that f = f1 + f2in A.
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Proposition 5.11. Suppose we have f : D′(a, R ) → C holomorphic, with series expansion
f (z) = ∞∑

n=−∞
cn(z − a)n

If cn = 0 for all n < 0, then a is a removable singularity.
Proposition 5.12. Suppose we have f : D′(a, R ) → C holomorphic, with series expansion

f (z) = ∞∑
n=−∞

cn(z − a)n
If cn ̸= 0 for finiely many n < 0, then a is a pole.

Proposition 5.13. Suppose we have f : D′(a, R ) → C holomorphic, with series expansion
f (z) = ∞∑

n=−∞
cn(z − a)n

If cn ̸= 0 for infinitely many n < 0, then a is an essential singularity.
5.2 Residue

Definition 5.14 (Residue)Suppose f : D′(a, R ) → C holomorphic, with series expansion
f (z) = ∞∑

n=−∞
cn(z − a)n

Then the residue of f at a is Resf (a) = c−1.
Definition 5.15 (Principal part)Suppose f : D′(a, R ) → C holomorphic, with series expansion

f (z) = ∞∑
n=−∞

cn(z − a)n
Then the principal part of f at a is

fp(z) = ∞∑
n=1 c−n(z − a)−n

Theorem 5.16 (Residue theorem). Let U be open, a1, . . . , ak ∈ U , f : U ∖{a1, . . . , an} → C holomorphic.Suppose γ is a closed curve homologous to zero in U , aj /∈ Image(γ), then
12πi

∫
γ

f (z)dz = k∑
j=1 I(γ; aj ) Resf (aj )

Proof. Let
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fp,j = ∞∑
n=1 c−n,j (z − aj )−n

be the principal part of f at aj . Then fp,j is holomorphic on C∖{aj}, so it is holomorphic on C∖{a1, . . . , ak}.Let h = f −
∑k

j=1 fp,j . Then h is holomorphic on U ∖ {a1, . . . , ak}.Fix j , then f − fp,j has a removable singularity at aj , and for l ̸= j , fp,j is holomorphic at al, so h has aremovable singularity at aj . Which means that h can be extended to a holomorphic function h : U → C. ByCauchy’s theorem, ∫
γ

f (z)dz = 0
Which means that

12πi

∫
γ

f (z)dz = k∑
j=1

12πi

∫
γ

fp,j (z)dz = k∑
j=1 I(γ; a) Resf (aj )

Proposition 5.17. If f = g
h , g, h holomorphic at a, g(a) ̸= 0 and h(a) = 0, h′(a) ̸= 0, then

Resf (a) = g(a)
h′(a)

Lemma 5.18 (Jordan’s lemma). Let f be a continuous complex valued function on the semicircle γR =
∂D(0, R ) ∩ {z : Re(z) ≥ 0, γR (t) = Reit for t ∈ [0, π]. Then for α > 0,∣∣∣∣∫

γR

f (z)eiαzdz
∣∣∣∣ ≤ π

α sup
z∈γR

|f (z)|
Proof. Let MR = supz∈γR

|f (z)|. Then we have that
∣∣∣∣∫

γR

f (z)eiαzdz
∣∣∣∣ = ∣∣∣∣∫ π

0 f (Reit )e−αR sin(t)+αRi cos(t)iReitdt
∣∣∣∣

≤ RMR

∫ π

0 e−αR sin(t)dt

= 2RMR

∫ π/2
0 e−αR sin(t)dt

≤ 2RMR

∫ π/2
0 e− 2αRt

π dt

= πMR
α (1 − e−2αR )

< π
α MR

Corollary 5.19. If f is continuous on {z : Re(z) > 0, |z| > r}, and supz∈γR
|f (z)| → 0 as R → ∞, then∣∣∣∣∫

γR

f (z)eiαzdz
∣∣∣∣ → 0 as R → ∞
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Lemma 5.20. Let f : D′(a, R ) → C be holomorphic, z = a be a simple pole, γε(t) = a+εe−it : [α, β ] → C.Then
lim
ε↓0

∫
γε

f (z)dz = (β − α)i Resf (a)
Proof.

f (z) = c
z − a + g(z)

and by computing the separate integrals, we get the required result, since∫
γε

g(z)dz → 0 and ∫
γε

c
z − adz = (β − α)ic

5.3 Argument principle

Proposition 5.21. Suppose f has a zero (pole) of order k ≥ 1 at z = a. Then f ′/f has a simple pole at
z = a, with

Resf (a) = {
k if a is a zero
−k if a is a pole

Proof. We only prove the case for a zero. Then we have D(a, r) such that
f (z) = (z − a)kg(z)where g : D(a, r) → C is holomorphic and g(a) ̸= 0. Then we have that

f ′(z) = k (z − a)k−1 + (z − a)kg′(z)So
f ′

f = k
z − a + g′

gand g′/g is holomorphic at a, which gives the required result.For a pole, use f (z) = (z − a)−kg(z) instead.
Definition 5.22 (Order)For a zero/pole a of f , write ordf (a) for the order.
Theorem 5.23 (Argument principle). Let f be meromorphic on U with finitely many zeroes a1, . . . , ak ,finitely many poles b1, . . . , bl. Let γ be a closed curve homologous to zero in U , ai, bi /∈ Image(γ). Then

12πi

∫
γ

f ′(z)
f (z) dz = k∑

j=1 I(γ; aj ) ordf (aj ) −
l∑

j=1 I(γ; bj ) ordf (bj )
Proof. Residue theorem with g(z) = f ′(z)/f (z) and previous proposition.
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Definition 5.24 (Bound)Let Ω be a domain, γ a closed curve in C. Then γ bounds Ω if for all w ∈ Ω, I(γ; w) = 1 and for all
w ∈ C∖ (Ω ∪ Image(γ)), I(γ; w) = 0.
Corollary 5.25. If γ bounds a domain Ω, f meromorphic in U ⊇ Ω ∪ Image(γ), with no zeroes/poles onImage(γ), N zeros and P poles in Ω with multiplicity, then N, P are finite, and

N − P = 12πi

∫
γ

f ′(z)
f (z) dz = I(Γ; 0) = I(f ◦ γ; 0)

Proof. Since Ω is bounded, Ω is compact, and Ω ⊆ U . Let S be the set of singularities of f . If Ω ∩ S isinfinite, by compactness Ω ∩ S has a limit point. Contradiction as the singularities are isolated. So P is finite.Similarly by compactness and the principle of isolated zeroes, N is finite. The integral follows by the argumentprinciple.
Definition 5.26 (Local degree)Let f : D(a, R ) → C be holomorphic, f non constant. Then the local degree of f at a is degf (a), which isthe order of the zero of f (z) − f (a) at z = a.
Theorem 5.27 (Local degree). Let f : D(a, R ) → C be holomorphic non constant, degf (a) = d. Then thereexists r0 > 0 such that

∀r ∈ (0, r0], ∃ε > 0, ∀w, 0 < |f (a) − w| < ε =⇒ f (a) = w has d roots in D′(a, r)
Proof. Let g(z) = f (z) − f (a). Then g is non constant, so g′ ̸≡ 0 in D(a, R ). Applying the principle of isolatedzeroes to g and g′, we have r0 ∈ (0, R ) such that g(z), g′(z) ̸= 0 for all z ∈ D′(a, r0).Fix r ∈ (0, r0] and for t ∈ [0, 1] define γ(t) = a+ re2πit , Γ(t) = g(γ(t)). Since Image(γ) is compact so closed,and 0 /∈ Image(γ) since g is nonzero. So we have ε > 0 such that D(0, ε) ⊆ C∖ Image(γ).Fix w with 0 < |f (a) − w| < ε. Then w −f (a) ∈ D(0, ε) ⊆ C∖ Image(γ). As z 7→ I(Γ; z) is locally constant,it is constant on D(0; ε), so I(Γ; w − f (a)) = I(Γ; 0). Then we have that

I(Γ; w − f (a)) = 12πi

∫ 1
0

g′(γ(t))γ ′(t)
g(γ(t)) − (w − f (a)) dt = 12πi

∫
∂D(a,r)

f ′(z)
f (z) − w dz = d

by the argument principle, since g has one zero, with multiplicity d. Thus by the argument principle, f (z)−whas d roots in D(a, r) as well. Since w ̸= f (a), none of the zeros are at a. Since f ′ ̸= 0 in D(a, r), the zeroesare simple, so distinct.
Corollary 5.28 (Open mapping theorem). A non constant holomorphic function is an open map.

Proof. Suppose f : U → C holomorphic, V ⊆ U open, b = f (a) ∈ f (V ). Then we have r > 0 such that
D(a, r) ⊆ V . Applying the local degree theorem, there exists ε > 0 such that

w ∈ D′(f (a), ε) =⇒ w ∈ f (D′(a, r))So D(f (a), ε) ⊆ f (V ), so f (V ) is open.
Theorem 5.29 (Rouché). Let γ be a closed curve bounding a region Ω, f , g holomorphic on U open, with
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U ⊇ Ω ∪ Image(γ). If |f (z) − g(z)| < |g(z)| for z ∈ Image(γ), then f , g have the same number of zeroes inΩ (with multiplicity).
Proof. Note that the inequalities imply that f , g nonzero on Image(γ). So we have V open, V ⊇ Image(γ) suchthat f , g nonzero on V . Let h : f /g. Then h is holomorphic and never zero. Since g ̸≡ 0 in Ω, we have thatthe zeroes of g in Ω ∪ V are isolated, so h is meromorphic on Ω ∪ V , with no zeroes or poles on Image(γ).Furthermore, f , g have finitely many zeroes on Ω.In addition, for z ∈ Image(γ), |h(z) − 1| < 1, so letting Γ = h ◦ γ , we have that Image(Γ) ⊆ D(1, 1), so
I(Γ; 0) = 0.By counting the zeroes and poles of h we get the required result.
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