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1 Differentiation

Let U C C be open, f: U — C.

Definition 1.1 (Differentiable)
f is holomorphic at w € U if
flz)—f
(w) = lim 2= 1)
Z—W 77— W
exists. We call the result the derivative of f at w.

Definition 1.2 (Holomorphic)

f is holomorphic at @ € U if there exists € > 0 such that f is differentiable at all z € D(a, ¢€).

f is holomorphic in U if f is holomorphic at every point in U. Equivalently, f is differentiable at every
point in U.

Proposition 1.3. The map f +— f’ is linear.



Proposition 1.4 (Product rule).
(fg) =f'g+1g'

Proposition 1.5 (Chain rule).
(fog)(z) =f(g(2))g'(2)

Let f = u + iv, where u,v: U — R, and in addition, we identify C = R?, so we consider U to be an open
subset of RZ.

Theorem 1.6 (Cauchy-Riemann). f is differentiable at w = c+id € U if and only if u, v are differentiable
at (c, d), and

Ju  dv ou ov
aZ@ and @=_a at(C,d)

Furthermore, f'(w) = uy + ivy.

Proof. f is differentiable at w = ¢ + id, with derivative p + ig

S
)= f(w) ‘
S
i (D= 1)~z wip+iq) _
7—w |z — w]
=
i Yy —ulcd—px—9d+gly—d) _ 4
(xy)=(c.d) [(x. y) = (c. )
and
im Xy —vied —qk—d—ply—d) _,
(x.)—(c.d) [(x.y) = (c. )
=
u is differentiable at (c, d) with Du(c, d)(x, y) = px—qy, and v is differentiable at (c, d) with Dv(c, d)(x, y) =
gx + py.
S
u, v differentiable at (c, d) with u, = v, = p and vy, = —v, = q. O

Corollary 1.7. If f : U — C has continuous partial derivatives that satisfy the Cauchy-Riemann equations,
then f is differentiable ta U.

Proof. Continuous partial derivatives implies that f is differentiable. O

Definition 1.8 (Domain)

A domain U is a nonempty, open, path connected subset of C.

Corollary 1.9. If U is a domain, f : U — C holomorphic on U, and " =0 in U. Then f is constant.

Proof. By Cauchy-Riemann Du = 0 and Dv = 0, so u, v are constant. O



Definition 1.10 (Entire)

If f: C — C is holomorphic, then we say that f is entire.

1.1 Power series

Theorem 1.11. Suppose f(z) = Y 7, ca(z — a)" has radius of convergence R. Then f is holomorphic in
D(a, R), with derivative

f'(z) = i ncy(z —a)"!

n=0

which has the same radius of convergence R.

Proof. Without loss of generality, a = 0. The power series for f has radius of convergence R € [0, co].
Fix z € D(0, R), and choose p such that |z| < p < R. Then

for n large, since n — 0asn — o0 So R < Ry, as this means that ) nc,z" converges in D(0, R).

As [cal|2"] < nleal|2"| = |z|(nca|2z" ")), so if S n|ca||z]"”" converges, so does S |c,||z"|, which means
that R > Ry, so R = R.
To prove that f is differentiable, fix z € D(0, R), and let

fw) —1(2)
Wz
S ne, 2" fw=z
n=1

ifw#z
g(w) =

We want to show that g is continuous as z. Define

ch (W” _ Z”) A

—_— fw#z
hp(w) = w—z 7

ne, 2"’ fw=z

o0
Then g(w) =Y hp(w). h, is continuous at z, as it is the derivative of w +— ¢,w". Since
n=1

n n
wi—z 2 n—2 1

=7""" 4wz z+w'"

+t+w
w—z

Then for any r such that |z| < r < R, w € D(O,r), |h,(w)| < nlc,|r"~". Let M, = n|c,|r"~". Then Y_ M,
converges, so y _h, converges uniformly by the Weierstrass M-test. So g is the uniform limit of continuous
functions, s o it is continuous. O

Corollary 1.12. Suppose f(z) = Y 2 cy(z — a)” has radius of convergence R. If f = 0 in D(a, ) for
some € > 0, then f =0 in D(a, R).

Proof. We must have that ¢, = 0 for all n. O

Definition 1.13 (Exponential)



Proposition 1.14. exp is entire, with derivative exp.

Proposition 1.15. exp(z) # 0 for all z, and exp(z + w) = exp(z) exp(w).

Proof. Fix w € C, define F(z) = exp(z + w) exp(—z). Then

F'(z) = —exp(z + w) exp(—2) + exp(z + w)exp(—z) = 0
So F is constant, and F(z) = F(0) = exp(w).

Proposition 1.16. For x,y € R,

exp(x + iy) = e*(cos(x) + isin(y))

and

exp(z) =1 & z € 2niZ

Proposition 1.17. For z € C nonzero, we have w & C such that exp(w) = z.

Definition 1.18 (Logarithm)

Given z € C, we say w € C is a logarithm of z if exp(w) = z.

Definition 1.19 (Branch of logarithm)

Let U C C ~\ 0 be open. Then a branch of the logarithm on U is a continuous function A : U — C such
that
exp(A(2) = 2

forall z € U.

Proposition 1.20. If A is a branch of log on U, then A is holomorphic on U, so X(z) = %

Proof. Suppose w € U. Then
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Definition 1.21 (Principal branch)

The principal branch of log is the function

log:CN{xeR:x<0} >C
by Log(z) = log|z| + iarg(z), where we have arg(z) € (—, n).

Proposition 1.22. Log is a branch of log.

Proposition 1.23.

€9 (_1)nf1zn
Log(1+ 2) = Z — for |z] <1

n=1

Proof. Define for |z| < 1,

(71)”712’7

n

Flz) = Log(1+2) =)

n=1
Then F'=0,s0 F =0.
1.2 Conformal maps

Proposition 1.24. Let f : U — |C be holomorphic at w € U, f'(w) # 0. Let yy, 2 : [=1,1] = U be C'
curves such that y;1(0) = y2(0) = w, y;(0), 5(0) # 0. Then

arg(y1(0) — arg(y2(0)) = arg((f o y1)'(0)) — arg((f o 2)'(0))

Definition 1.25 (Conformal)
f:U— Cis conformal at w € U if f'(w) # 0.

Definition 1.26 (Conformal equivalence)



f: U — Uis a conformal equivalence if f is bijective and holomorphic, with /() # 0 for all z € U.

Proposition 1.27. Mobius maps are conformal.

2 Complex integration

Definition 2.1 (Complex (Riemann) integral)
Suppose f :[a, b] = R, with Re(f), Im(f) integrable. Then define

/b f()dt = /b Re(f(t))dt + 1/b Im(f(£))dt

Proposition 2.2.

< fb|f(r>|dts (b—a) sup If(t)

t€la,b)

/Ub F(t)dt

Proof It b f(t)dt = 0 we are done. If not, sa b f(H)dt = re®. Let M = su f(t)]. Then
a Y Jg Ptefa,b)

b b b
:r:e%/ f(t)dt:/ Re(e"@f(t))dt—i—[/ Im(e™¥f(t))dt

Since the left hand side of the equality is real, we must have that

/bf(t)dt —/b Re(eiQf(t))dt</b|ef9f(t)|dt—/bf(t)|dt

and the final inequality follows from real analysis.

Remark 2.3. Equality holds if and only if f is constant.

Definition 2.4 (Curve integral)
Let U C C be open, f : U — C continuous, y :[a, b] — U a C" curve. Then the integral of f along y is

b
/ fl2)dz = / ()Y (1t

Proposition 2.5. Integral is independent of parametrisation.

Proof. Chain rule.

Definition 2.6 (Length)
Define the length of a curve by



b
Length(y)=/ [V/(1)|dt

Proposition 2.7.

/f(z)dz

< Length(y) sup |f]
Y

Theorem 2.8 (FTC). Suppose F : U — C is C', then

/ F/(2)dz = F(y(b)) - F(¥(a)

14

Proof. By real FTC. O

Corollary 2.9. If y is a closed curve, then

/ F'(z)dz =0

Theorem 2.10 (FTC Il). Let U € C be a domain, f : U — C continuous, and for every closed curve y in U,

/yf(z)dz —0

Then f has an antiderivative in U.

Proof Fix ap € U. For w € U, define a curve y, : [0, 1] = U such that y,,(0) = ag and y, (1) = w. Since U
is path connected, one exists. Furthermore, we can take y,, polygonal and piecewise C'. Define

Note that £ is independent of the choice of y, since if y,,, , are both curves from ag to w, then y,, + (—¥w)
is a closed curve. Fix w € U. Since U is open, we have r > 0 such that D(w,r) C U. For h € C with
0 < |h| < r, define Op(t) = w + th for t €[0,1]. Now note that y = y,, + 0 + (—Vw+s) is a closed curve, so
J, f(z)dz = 0 by assumption.

Hence we have that

5)7 5/7

F(w+ h) = / f(z)dz = / f(z)dz+/ f(z)dz = F(w) + / f(z)dz = F(w) + hf(w) + / (f(z) — f(w))dz
Vwth 12 On

Suffices to show the error term is o(h).

7zl < 1 Length(dp) sup |f(z)—f(w) = sup |f(z)—fw)—0 as h—0
h 2€6,(0.1) 2€8,(0,1)

2.1 Cauchy's theorem for star domains



Definition 2.11 (Star shaped domain)

A domain U C C is star shaped if there exists ag € U such that for all z € U, the segment [ag, ] is
contained in U.

Definition 2.12 (Triangle)
A triangle T C C is the closed convex hull of three points in C.

Definition 2.13 (Boundary of the triangle)
We define the boundary of the triangle to be oriented anticlockwise.

Corollary 2.14. If U is star shaped, f : U — C is continuous, and

/ f(z)dz=0
aT

for all triangles T C U, then f has an antiderivative in U.

Proof. Modify proof of FTC II. O

Theorem 2.15 (Cauchy's theorem for triangles). Suppose U C C open, f : U — C holomorphic. Suppose
T C U is a triangle. Then
/ f(z)dz =0
aT

Proof. Let n(T) = [,; f(z)dz. Subdivide T into 4 smaller triangles T by connecting the midpoints of each
edge. Then as the inner edges cancel, n(T) = n(T™") + -~ + n(TW). By triangle inequality, we have i such
that

Define Ty =T, Ty = TW. Then

1 1
(Tl > Z[n(To)l and  Length(T;) = 5 Length(dTo)

Repeat the above process to get Ty, 71, T2, ... such that
1 1
(Tl > 5 1n(To)land  Length(@7,) = 5 Length(dTo)
Since diam(7,) — 0, by compactness we have that (1, T, = {z0}. Let € > 0, since f is differentiable at z,
we have 0 > 0 such that

Vze U, |lz—z| <o = |f(2)— f(z0) — '(20)(z — 20)| < €|z — 70
Now, by FTC we have that

n(Tn) = [ flz)dz = | (z) = f(z0) — "(20)(z — 20)dz
at, aT,

Choose n such that T, C D(zy, 9). Then



In(To)l = 4"[n(T)|

/N” f(z)dz

/aT f(2) — F(z0) — I'(20)(z — 20)dz
< 4" Length(9T,) sup [f(2) — f(z0) — F'(z0)(z — )]
zeadT,

< 4"¢Length(07,) sup |z — zo|
zedTl,

< 4"¢ Length(9T,)*
— ¢ Length(aTp)?

<4

— 4

But € > 0 is arbitrary. So n(7p) = 0. O

Theorem 2.16. Let U C C open, f : U — C continuous, S C U finite, f holomorphic on U~ S. Then for
evert triangle 7 C U, we have that
/ f(z)dz=0
aT

Proof. By the above process, subdivide T into N = 4" triangles, say T4, ..., Tn. Then the interiors cancel, so

N
/a ) f(z)dz = /Z /a , f(z)dz

Let /= {j: T;NnS = @}. By Cauchy theorem for triangles, for all j € J, faT, f(z)dz = 0. So we have that

/a ) f(z)dz = % /a , f(z)dz

Note that each point in S is in at most 6 triangles, so

Length(oT
/ f(z)dz| < 6|S]|sup f(z)dz Length(97) —0 as n— oo
aT zeT 2"
O
Corollary 2.17. Let U C C be a star domain, f : U — C continuous, holomorphic in U \'S, where S C U
finite. Then for any closed curve y in U,
/f(z)dz =0
y
Proof. f has an antiderivative, so result follows by FTC for star domains. O

2.2 Cauchy integral formula for a disc

Definition 2.18 (Boundary of a disc)
For D(a, r), we define the boundary dD(a, r) to be the path

t— a+ re?™t



Lemma 2.19 (Fundamental integral). Let r > 0, w € D(a, r). Then

/ 1
D(a,) £ — W

dz = 2mi

Proof
T 1 ] i w— a)/
z—wiz—a—f—a—w72—01—VZV;7 (z — a)t
j=
. (w—a) : . ‘
Since ( ] = |w — a|r < 1. Furthermore, by the Weierstrass M-test, the series converges uniformly.
z—a

So we have that

1 > - 1
dz = w — a) j ——dz
/aD(a,r) z—w .Z( ) oD(a,n) (2 —ay*!

j=0

By computing the integral explicitly for j = 0, and using FTC for j > 1 we find the required result. O

Theorem 2.20 (Cauchy integral formula for a disc). Let D = D(a,r), f : D — C holomorphic. Then for
nay 0 < p <r, we D(a, p), we have that

flw) = i/ ﬂdz
271 aD(a,p) zZ— W

Proof. Fix w, define h: D — C by
fz) = 1f(w)
h(z) = zZ—w Wz w
f'(w) ifz=w

Then h is continuous on D and holomorphic in D ~ {w}. By Cauchy's theorem for star domains, we have

that
/ h(z)dz =0
9D(a.p)

Substituting the definition of h, we get that

f(W)/ ! dz = / ﬂdz
aD(ap) £ — W aD(a,p) £ — W

Result then follows by the fundamental integral. O

Corollary 2.21 (Mean value property). Suppose f : D(a, R) — C holomorphic, 0 < p < R. Then

1
f(a) = / fla + pe®™)dt
0
Proof. By Cauchy integral formula for a disc. O

Proposition 2.22. If f : C — C is entire, for some K >0, a < 1, we have that

()] < K(1+2]°)

for all z € C, then f is constant.

10



Proof. Given w € C, p > |w/|, by the Cauchy integral formula, we have that

flw) = i/ @ 4,
27“ aD(a,p) Z— W

Then
= o) = 5| [Ty
27| Jop(a,p) Z — W z
< M Length@Dia, p)) sup |- ‘
27 7€0D(a,p) 2(z —w)
(WlK(1 +p)* _ [wIK(1+p%)
— 2mplp — |wl) p—wl
Letting p — oo, we get f(w) = f(0). O

Theorem 2.23 (Liouville). If f: C — C is entire, |f(z)] < K for all z € C, then f is constant.

Proof. Immediate by above proposition. O

Theorem 2.24 (Fundamental theorem of algebra). Every non constant polynomial with complex coefficients
has a root over C.

Proof Let n = deg(p) > 1, and without loss of generality, p monic, so p(z) = 2" + a, 1z2"~" + - 4+ ag. Then
for z # 0, we have that

p(z):z”(T—b—M—b—-'-—Fg)

which means that

n ‘Uﬂ*w |GO‘
'p(z)'”'(“( g +"'*w))

So |p(2)] = o0 as |z] = oo. So we have R > 0 such that if |z| > R, |p(z)| > 1. Furthermore, suppose
for contradiction p has no root over C. Define g(z) = ﬁ. Then g is entire. For |z]| > R, |g| < 1, and by

compactness and continuity of g, g is also bounded on D(0, R). But this means that g is constant, so p is
constant. Contradiction. O

Theorem 2.25 (Local maximum modulus). Suppose f : D(a, R) — C is holomorphic, |f(z)| < |f(a)| for all
z € D(a, R). Then f is constant.

Proof. By the mean value property, we have that for any 0 < p < R,

1
f(a) :/ f(a + pe”™")dt
0

So

1
fla)] = / f<a+pe2”“>dt‘g sup |f(a + pe?™)| < |f(a)
0

t€(0,1]

So equality holds. The first inequality gives us that f(a + pe®™) = ¢, constant. The second one gives that
|co| = |f(a)l, so |f(2)] is constant, and by Cauchy-Riemann, f is constant. O

i



2.3 Power series

Theorem 2.26. Let f : D(a, R) — C be holomorphic. Then

w) = i ch(w —a)”
n=0

where

1 f
Ly [
2716 aD(a,p) (Z — G)nJr1

Proof. Fix 0 < p < R. Then for w € D(a, p), we have that

(o]

1 flz) . 1 2 (w—a) o
0= 551 o 7% ™ 351 oy L e~ Lo =

n= n=0

where

1 f(z)
op) = =— g
¢ (,0) 2mi /GD(G,,O) (Z — U)/7+1 ‘

This gives us a power series representation of f, which means that f is infinitely differentiable, with

f(n)(a)
n!

n(p) =

So ¢,(p) is independent of p. O

Corollary 2.27. Let f : U — C be holomorphic. Then f is analytic.

Corollary 2.28.

Theorem 2.29 (Morera). Let U C C be open, f : U — C is continuous, and for every closed curve y in U,
J, f(z)dz = 0. Then f is holomorphic in U.

Proof f has an antiderivative F. Then f = F’ is holomorphic. O

2.4 Zeroes of a holomorphic function

Theorem 2.30 (Principle of isolated zeroes). Suppose f : D(a, R) — C is holomorphic, f & 0. Then there
exists r > 0 such that f(z) # 0 whenever 0 < |z —a| < r.

Proof If f(a) # 0 we are done by continuity. If f(a) = 0, then we have m > 1 such that f(z) = 2" g(z), where
g : D(a, R) — C holomorphic, g(a) # 0. Then we are done by continuity of g. O

Theorem 2.31 (Unique analytic continuation). Suppose U, V domains, U C V, g1,g> : V — C analytic,
g1 = gz on U. Then g1 = g».

12



Proof Let h = g1 — g. Then h =0 on U. Define

Vo={z€V:h=01insome D(z,r)} and V;={ze V:h")(z)+0 for some n >0}

By the principle of isolated zeroes, V and V4 partition V. By construction, Vo open, and by continuity of
the derivatives, V4 is open. Since V is connected and V{ nonempty, we must in fact have V = W, O

Proposition 2.32 (Identity principle). Suppose f, g : U — C holomorphic, and suppose

S={zeU:f(z) =1f(2)}
has a limit point. Then f = g.

Proof. Let h(z) = f(z) — g(z). Then by the principle of isolated zeroes, h must be identically zero. O

Corollary 2.33 (Global maximum modulus principle). Suppose U is bounded, f U — C continuous, f
holomorphic on U. Then |f| attains its maximum value on dU = U\ U.

Proof U is compact, so |f| is bounded and attains its maxima. Say for all z € U, |f(z)| < |[f(w)]. If w & U,
then w € dU and we are done.

On the other hand, if w € U, choose D = D(w, r) C U. Then by local maximum modulus principle, f is
constant on D, so by identity principle (or unique analytic continuation), f is constant on U. By continuity, f
is constant on U. O

Theorem 2.34 (Cauchy integral formula for derivatives). Suppose f : D(a, R) — C holomorphic, then for
any 0 < p < R, w € D(a, p), we have that

nl f(2)

£l = S ol A
(W) 27i aD(a,p) (Z — W)'7Jr1 ‘

Proof. By induction on n. n = 0 is the Cauchy integral formula.

_ L/ . N
Forn=1let g(z) = Pa—r This is holomorphic on D(a, R)~ {w}, with ¢'(z) = P pa—Es Since
dD(a, p) C D(a, R) \ {w}, we have that
/ g'(z)dz =0
9D(a,p)
which means that
[t
D(a,p) £ — W aD(a.p) (z—w)
Using the Cauchy integral formula for f/, we have that
270 Japlap Z — W 270 Japiap) (2 — w)
f(2) f'(z) (k+Df(z) .
Forn>2letn=k+1andg(z) = W Then ¢’(z) = Crw T Crwer Similarly, we

have that

/ g'(z)dz =0
dD(a.p)

which means that

13



f'(z) _ f(2)
/ao(a,p) (z — w)k dz=(k+1) /aD(a,p) (z — w)k+? 0z

which by the induction hypothesis gives the required result. O

3 Uniform limits

Proposition 3.1. (f,) converges locally uniformly on U if and only if (f,) converges on every compact
subset K C U.

Theorem 3.2. Let U C C be open, f, : U — C holomorphic, f, — f locally uniformly on U. Then f is
holomorphic, and £\ — f®) locally uniformly.

Proof. For a € U, let r > 0 be such that D(a, r) C U. Then f, — f uniformly on D(a, r, which means that f is
continuous on D(a, r) as the uniform limit of continuous functions. Let y be a closed curve in D(a, r), then by
Cauchy for star domains, we have that
/fn(z)dz =0
14

for all n. As fy fo(2)dz — fy f(z)dz by uniform convergence, we have that fv f(z)dz = 0. So by Morera, f
is holomorphic. By the Cauchy integral formula for derivatives, we have that

k! f(2) — f,(2)
k k
fl >(W) — M(w) = or /aD(a’r/Z) 7(2 e dz

which means that

1 f(z) fn(z)
k k z
|f( )(W) flg )(W)| B 27 /aD(a rl2) (Z W)k+1 ‘
1 ry?2 f(Z) — fn(Z)
< —2r|= _
27 ( 2 ) zeﬂsl)l:(?r/Z) (Z W)k !

<G sup |f(2)—fa(2)] >0 as n— o0
z€dD(a,r/2)

for some constant Cg. O

4 Winding numbers and topology
4.1 Winding numbers

Definition 4.1 (Continuous choice of argument)

For a curve y : [a,b] = C, w € C, we can write y(t) = w + r(t)e®® as long as w & Image(y). If y
continuous, then we can choose 6 continuous, and we call 8 a continuous choice of argument.

Definition 4.2 (Winding number)

Define the winding number, or index of y about w to be

6(b) — 6(a)

I(y; w) = >

14



Proposition 4.3. For a closed curve, /(y; w) is an integer.

Proof. _ _
ef)=0la) — 1« Q(b) — B(a) € 27Z
O

Proposition 4.4. A continuous choice of 6 exists, and for different choices, we get the same value of /(y; w).

Proof. Existence follows from taking local choices and using compactness. For uniqueness, note that
o(t) — Ot
-0 _,
27
is a continuous integer valued function from a connected set, so must be constant. O

Lemma 4.5. If w € C, y : [a,b] - C ~ {w} piecewise C', then we have 6 piecewise C', and if y is
closed, then

1 1
Hy; w) = — d
viw) ZJTi/yZ—W ‘

Proof Let

A0
h(t) = /a 7}/(5) — st

The integrand is bounded, and continuous at all but finitely many points, so h is continuous. Furthermore,

/
t
by FTC, h is piecewise C', with h'(t) = vi(f)
vt) —w

(v(t) = w)" = (y(t) = w)h(t) = 0
Using the integrating factor e=""), we find that

when y’ is continuous. This gives us an ODE for y — w,

d
dt

for all but finitely many t. Since (y(t) — w)e~ ") is continuous, it must in fact be constant. So

() = w)e ") =0

V(1) = w) = (v(a) — w)e" = [y(a) — w| R+

for some a. Then set O(t) = a + Im(h(t)). We have that

(y: w) = Q(b)z—ﬁé(a) _ Im(ZhJ(Tb))

For a closed curve y, e"?) =1, so Re(h(b)) = 0 and Im(h(b)) = @. Hence we have that

b
I(y; w) = hib) _ L/ h'(s)ds

1 (" yis) ’ 1 1

== == d
2ri J, y(s)—w 2mi ), z—w g

27T 27i

Proposition 4.6. For a closed curve y, w +— [/(y; w) is constant on each connected component of C \
Image(y).

15



Proposition 4.7. If y : [a, b] = D(zy, r) is a closed curve, then for all w & D(z, r), we have that /(y; w) =0

1
z—w

is holomorphic in D(zg, r). O

Proof. Apply convex Cauchy, as

Proposition 4.8. If y : [a, b] — C closed, then there exists a unique unbounded connected component ),
and for w € Q, I(y; w) = 0.

Proof. By compactness of Image(y), Image(y) is bounded, so there can only be one unbounded connected
component. Furthermore, as Image(y) is contained in a disc, apply previous proposition to a point in Q not in
the disc. O

4.2 Homology

Lemma 4.9. Suppose ¢ :[a, b] x [c, d] = R is continuous. Then

5|—>/d¢>(s,t)dt and t|—>/b¢(s,t)ds

are continuous.

Proof. Follows from ¢ being uniformly continuous as it is continuous on a compact set. O

Lemma 4.10 (Fubini). Suppose ¢ :[a, b] x [c, d] = R is continuous. Then

b d¢(5' t)dtds = ' b¢(s, t)dsdt
I I

Proof. Since ¢ is uniformly continuous, we have that ¢ is the uniform limit of step functions. That is, a partition
of R ={a, b) x [c, d) by sets of the form

Ry =laj b)) x[c;. d;)

and

glx.y) =) alglxy)
j=1

where a; constants. By cumputing the iterated integrals for the step functions, we get the required result. [

Lemma 4.11. Let f : U — C be holomorphic, define g : U x U — C by

flz) = f(w)
gzw)=1 z—w 2w
f'(z) ifz=w

Then g is continuous. Furthermore, if y is a closed curve in U, then

is holomorphic in U.
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Proof. For continuity, away from z = w we can take an open ball where g is continuous. Now suppose we
have (a,a) € U x U. Given € > 0, choose § > 0 such that

D(a,0) C U and |f'(z) = f'(a)| < € for all z € D(a, 0)
which exist by U being open and f’ being continuous respectively. Choose (z, w) € D(a, d) x D(a,9). If
z =w, then
|9z, w) = gla, a)| = |f'(z) = "(a)| < €
If z # w, then the path y(t) = tz + (1 — t)w is contained in D(a, 0) for t € [0, 1] by convexity. So

f(z) — f(w) = /01 %(tz — (1= tw)dt =(z —w) /01 f'(tz+ (1 — tyw)dt

This means that

9(z,w) = gla, a)] =

zZ— W

’ f(z) = flw) _ f,(a)’

)
/ f'ltz+ (1 — tyw) — f/(a)dt‘
0

< sup |tz + (1= t)w) — '(a)]
te[0,1]

<€

So g is continuous at (a, a). To show that h is holomorphic, we will apply Morera. First, we must show
that h is continuous. Fix wy € U, and a sequence w, — wy. Choose & > 0 such that D(wg, 8) C U. gis
continuous on U x U, so it is uniformly continuous on Image(y) x D(wg, 0) compact.

If gn(z) = g(z, wy) for z € Image(y), then g, — go uniformly on Image(y). So

biwa) = [ guleliz = [ guleidz = hiwn)

So h is continuous. Now say y : [a, b] — D(wp, 9) is any closed curve, and B : [c, d] — D(wy, d) is any

closed curve. Then
/h(W)dW: //g(z, w)dzdw
B By

d b
- / / glv(t), Bls)Y (118 s)dtds

b d
_ ] / gv(t), Bls)Y (118 s)dsdt

=//g(z, w)dwdz
v /B
=/0dz
v
=0

where since g(z, w) is continuous and holomorphic everywhere except z, by convex Cauchy we get that
fB g(z, w)dw = 0. By Morera, this then means that h is holomorphic. O

Definition 4.12 (Homologous to zero)

Let U C C be open, y : [a, b] = U be a closed curve. Then y is homologous to zero in U if /(y;w) =0
for all w & U.
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Theorem 4.13 (Cauchy integral formula). Let U C C be a nonempty open set, y closed curve in U
homologous to zero in U. Suppose f : U — C holomorphic, and w € U \ Image(y), then

v wW)F(w) = — / f2) 4,

27 ), z—w

Proof. Note that the statement is equivalent to showing that

/g(z, w)dz =0

)= fw)
where g(z, w) = z—w z+ " Define h(w) = fy g(z, w)dz. Then h is holomorphic in U, and
f'(z) fz=w

we wish to show that h = 0 by first extending it to an entire function H : C — C which has |H| — 0 as
|z] = 0.

Let V = {w € C ~ Image(y) : I(y; w) = 0}. Since y is homologous to zero in U, we have that C = U U V.
Since /(y; w) is locally constant, V' is open. Forw e UNV,

hiw) = /7'[(22): aw) dz — /7sz)wdz — hy(w)

where hq 1 V — C holomorphic. Hence the function H: C — C.

oy [Bw e U
D=1 twev

is well defined and holomorphic. Since Image(y) is compact, we have R > 0 such that Image(y) C D(0, R).
Since the winding number is locally constant, C ~. D(0, R) C V. So for |w| > R, we have that

/ f(2) dz' P Length(y)
y 2 B

sup
- w |W‘ —R z€lmage(y)

[H(w)| = [m(w)] =

[f(2)]

which shows that |H(w)| — 0 as |w| — oo. This means that H is bounded, so constant by Liouville, and
must be identically zero. O

Theorem 4.14 (Cauchy’s theorem). Suppose U is a nonempty open set, y closed curve in U homologous
to zero in U, and f : U — C holomorphic. Then

/yf(z)dz ~0

Proof. Equivalent to Cauchy integral formula. O

4.3 Homotopy

Definition 4.15 (Null homotopic)

y :[a, b] = U is null homotopic in U if it is homotopic ot a constant curve in U.

Lemma 4.16. If y, 0 closed piecewise C' curves, |y(t) — 8(t)| < |w — y(t)| for all t, then /(y; w) = I(0; w).

18



Theorem 4.17. If yp, y1 are homotopic closed curves, and w € C . U. Then I(yp; w) = I(y1; w).

Proof. Let H :[0,1] x [a, b] — U be a homotopy from yy to y1. Since K = H([0, 1] x [a, b]) is compact, we have

€ > 0 such that for all z € K, w ¢ D(z, 3¢). Furthermore, H is uniformly continuous, so choose n € N such
that

|s—s'|+[t—¢] <% = |H(s,t)— H(s', )| < €

For k=0,..., n, define [, (f) = H(% t). In particular, o = yp and I, = y1. Then by construction, for all
t €la, b], kK > 1, we have that

ITea(t) = Th(t)] < € < 3e < |w =T _4(1)]

Let (t) be the polygonal approximation with nodes at [y(t) at O, (b — a)/n, ..., 1. Suppose we chose n
such that

max(1, b — a)

|s—s'|+[t—t] < — |H(s,t) = H(s', )| < €

Then we have that for t € [a, b],

Fialt) = Flt)] < [Fcat) = a0 + et = Tat] < 2¢

and

W= Tea(t)] < ‘W - ﬁH(t). v ‘rH(t) - ﬁH(t)’

which means that

‘W _ Ilk,q(t)‘ > |w — T (f)] — ’rH(t) — ﬁH(t)’ > 2¢

~ Which gives us that I(Me—1;w) = I(l; w) by the lemma. Finally, checking that /(Fo; w) = /(yo; w) and
I(I"n; w) = I(y1; w) gives the required result. O

Corollary 4.18. If y is null homotopic then it is homologous to zero.

Corollary 4.19. If y1, y2 homotopic curves, f : U — C holomorphic, then

/V | f(z)dz = /y 2 f(z)dz

Proof. By theorem and Cauchy's integral formula. O

Definition 4.20 (Simply connected)

A domain U is simply connected if every closed curve in U is null homotopic.

Theorem 4.21 (Cauchy's theorem for simply connected domains). If U is simply connected, y closed curve
in U and f : U — C holomorphic, then
/f(z)dz =0
14
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5 Singularities

Definition 5.1 (Isolated singularity)
Let U C C be open, f: U~ {a} — C be holomorphic. Then f has an isolated singularity at a.

Definition 5.2 (Removable singularity)
An isolated singularity a is removable if f can be extended to a holomorphic function U — C.

Proposition 5.3. Let U C C be open, a € U, f : U~ {a} — C holomorphic. Then the following are
equivalent.

(i) a is a removable sinqularity.

(it) lim f(z) exists in C.

zZ—da

(it) There exists D(a, €) C C such that |f(z)| is bounded on D'(a, €).

(v) lim(z—a)f(z) =0

zZ—da

Proof. Suppose a is removable. Then we have g : U — C extending f. Then

lim f(z) = lim g(z) = g(a)

Z—a zZ—a

So (i) implies (it). By definitions, (ii) implies (iit), and (iii) implies (iv). Suppose (iv) holds. Consider
—a)’f if
by | e 240
0 fz=a
Then

im 1A= 000 (z—a)f(z) =0

z—a Z—a z—a

So h is differentiable at a, with h’(a) = 0. Thus h is holomorphic on U. Considering the Taylor series of
h, we have that h(z) = (z — a)?g(z) where g : U — C holomorphic. So g extends f, and a si removable. [

Definition 5.4 (Pole)

Suppose a € U is an isolated sinqularity of f, a is a pole of f if

lim |f(2)] = o0

zZ—a

Proposition 5.5. Let f : U~ {a} — C holomorphic. Then the following are equivalent.

(i) ais a pole.
(it) There exists € > 0, h : D(a, ) — C with h(a) = 0, h'(a) + 0 for z € D'(a, €) and f(z) = ﬁ for
ze D'a,e).
(i) There exists k > 1 such that g : U — C holomorphic, g(a) # 0, and f(z) = (z — a)~*
ze U~ {a}.

g(z) for
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Proof. Suppose (i) holds. Then we have € > 0 such that for z € D'(a,¢), |f(z)] # 1. So h(z) = ﬁ is

holomorphic and bounded in D'(a, ). This means that h has a removable singularity at a.
Now suppose (ii) holds. By the Taylor series, we have kK > 1 and hy : U — D(a, €) holomorphic, hy(z) # 0
for all z € D(a, €). Let g1(2) = ﬁ(z) Then f(z) = (z— a) % g1(z) in D'(a, €). Now define

(2) = gi(2) if ze€ Dla, €)
J (z—a)lf(z) ifze U~ {a}

Definition 5.6 (Order)

k above is unique, and called the order of the pole.

Definition 5.7 (Meromorphic function)

If U open, S C U discrete, f : U~ S — C holomorphic, and each a € S is a removable singularity or a
pole, then f is meromorphic.

Definition 5.8 (Essential sinqularity)
An isolated singularity a is essential if it is not removable and not a pole.

5.1 Laurent expansions

Theorem 5.9. let A={z€C:r<|z—a| <R} 0<r<R<oo f:A— C holomorphic. Then f has
a unique convergent series expansion

o

f(z) = Z Chlz—a)" = i Cnlz—a) "+ Z cnlz—a)"
n=1

n=—00
where the coefficients are given by for r < p < R,

1 f(2)

- g,
2mi aD(a p) (Z — G)n+1

Cn

and if r < p < p/ < R, the series for f converges uniformly on {z: p < |z —a| < p'}

f(z) — f(w) if 2 4
Proof Fix w € A let g(z) = zZ—w YT Then g is continuous on A, and is holomorphic on
f'(w) ifz=w

A~ {w}, so holomorphic in A. Choose pq, p> such that r < p; < |w —a| < p, < R. Within A, dD(a, p1) and
dD(a, p2) are homotopic, so

[ gee= | glae
aD(a,p1) 0D(a.p2)

Substituting the definition of g, we get that

/ ﬂdz—zml(aD(a.m w)f(w) :/
aD(a,p) £ — W "~

Since /(0D(a, p1); w) = 0 and /(0D(a, p2); w) = 1, we get that

flw) = i/ f(z) dz — L f(z) dz
27i aD(ap) Z— W 2i aDlap) Z— W

f(z)

WdZ —27ll(0D(a, p2); w)f(w)

ap) £
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For the first one, note that

and for the second,

Hence f(w) =) 2 qca(w—a)"+3 07, c_p(w—a)™", where

c {ZﬂtfaDapz) z— a,,+1C|Z ifn>0
=

27i fﬁDapw) (72— an+1 dz ifn < 0

Since dD(a, p1) and dD(a, p;) are homotopic to dD(a, p), we have that

1 f(2)

Cn = (Z _ a)n+1 dz

27ti aD(a.p)
and this gives us uniqueness of the expansion. Now suppose we have (any) ¢, such that

o0

flz)= )  calz—a)

n=—0Q

Then choose r < p < p/ < R. Then we have that

oo
E ch(z —a)"

n=0

_ converges for all z € A, so it has radius of convergence > R, which means that it converges uniformly on
D(a, p'). Letting { = (z —a)™",

o
2l
n=1

converges foe all z € A, so it has radius of convergence > 17 and converges uniformly for |{] < %A This
means that

o
Z Cnlz—a)™"
n=1

converges uniformly for |z — a|] > p. This means that

o¢]

Z Colz—a)"

n=—oo

converges uniformly for p < |z — a| < p’. Thus for any m € Z, we have that

a.p =

9D(a p)

Which gives us uniqueness of the expansion. O

Corollary 5.10. We have f; : D(a,R) — C and f, : C ~. D(a, r) — C holomorphic such that f = f; + £,
in A
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Proposition 5.11. Suppose we have f : D'(a, R) — C holomorphic, with series expansion

(o¢]

f(Z) = Z Cn(z - a)n

n=—oo

If ¢, =0 for all n < 0O, then @ is a removable singularity.

Proposition 5.12. Suppose we have f : D'(a, R) — C holomorphic, with series expansion

If ¢, # 0 for finiely many n < 0, then a is a pole.

Proposition 5.13. Suppose we have f : D'(a, R) — C holomorphic, with series expansion

(o¢]

flz)= Y  calz—a)

n=—0Q

If ¢, # O for infinitely many n < O, then a is an essential sinqularity.

5.2 Residue

Definition 5.14 (Residue)

Suppose f: D'(a, R) — C holomorphic, with series expansion

o0

flz)= )  calz—a)

n=—0Q

Then the residue of f at a is Resf(a) = c_1.

Definition 5.15 (Principal part)
Suppose f: D'(a, R) — C holomorphic, with series expansion

f(z) = i chlz—a)"

Then the principal part of f at a is

fo(2) =) conlz—a)™"
n=1

Theorem 5.16 (Residue theorem). Let U be open, ay, . . ., are U - U~{aq, ..., a,} — C holomorphic.
Suppose vy is a closed curve homologous to zero in U, a; € Image(y), then

n f(z)dz = Z I{y; a;) Res¢(a;)

27i
12 j:q

Proof Let



[9)
= Z C,nv/‘(Z — G/‘)in

n=1
be the pr'mc'tpa[ part of f at a;. Then f, ; is holomorphic on C\ {a;}, so it is holomorphic on C~\{ay, .. ., agt.

leth=f— Z/ 1 1. Then h is holomorphic on U\ {ay, ..., axt.
Fix j, then f —f,; has a removable singularity at a;, and for [ # j, f,; is holomorphic at a;, so h has a
removable sinqularity at a;. Which means that h can be extended to a holomorphic function h : U — C. By

Cauchy's theorem,
/f(z)dz =0
y
k

1 1
Z—m, Zz—m/fp/ ZIyaResfa/

j=1 j=1

Which means that

Proposition 5.17. If f = £, g, h holomorphic at @, g(a) # 0 and h(a) = 0, h'(a) # O, then

Lemma 5.18 (Jordan's lemma). Let f be a continuous complex valued function on the semicircle yp =
dD(0, R) N {z : Re(z) > 0, yr(t) = Re' for t €0, xr]. Then for a > 0,

Je'“dz <Z o sup |f(2)]

ZEVR

Proof Let Mg = sup,c,, |f(z)|- Then we have that

/ f(z)e'?dz| =
YR

< RMR /]T e—a,‘?sln(t)dt
0

/ﬂ I((Re[t)e—aRSll1(t)+aRi cos(t)iReitdt
0

72
_ ZRMR / efaRs'm(t)dt
0

Corollary 5.19. If f is continuous on {7 : Re(z) > 0, |z| > r}, and sup,,, |f(2)] = 0 as R — oo, then

/ f(z)e'“*dz
YR

—0 as R — o0
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Lemma 5.20. Let f : D'(a, R) — C be holomorphic, z = a be a simple pole, y(t) = a+ece " : [a, B] — C.
Then

l[m/ f(z)dz = (B — a)iRes¢(a)

el0 Ve

Proof.
c

f(z) = +9(2)

zZ—d

and by computing the separate integrals, we get the required result, since

/()dz—>0 and /

Ve

dz = (B — a)ic

5.3 Argument principle

Proposition 5.21. Suppose f has a zero (pole) of order kK > 1 at z = a. Then f’/f has a simple pole at
7z = a, with

Resy(a) = k if @ is a zero
AR if a is a pole

Proof. We only prove the case for a zero. Then we have D(a, r) such that
fl2) = (z—a)'q(2)
where g : D(a, r) — C is holomorphic and g(a) # 0. Then we have that

f'(z) = kiz—a) "+ (z— 0)"q(2)
So

f/ k /7
9
f z—a g

and ¢’/g is holomorphic at a, which gives the required result.
For a pole, use f(z) = (z — a)*g(z) instead.

Definition 5.22 (Order)

For a zero/pole a of f, write ord(a) for the order.

Theorem 5.23 (Argument principle). Let f be meromorphic on U with finitely many zeroes aq, ..., a,
finitely many poles b, ..., b;. Let y be a closed curve homologous to zero in U, a;, b; ¢ Image(y). Then
’ [
ﬂ Z/ya, )ords(a;) — Z/yb ords(b
Jj=1

Proof. Residue theorem with g(z) = '(z)/f(z) and previous proposition.

25



Definition 5.24 (Bound)

Let Q be a domain, y a closed curve in C. Then y bounds Q if for all w € Q, /{(y; w) = 1 and for all
w e C~ (QUImage(y)), I(y; w) = 0.

Corollary 5.25. If y bounds a domain Q, f meromorphic in U O Q U Image(y), with no zeroes/poles on
Image(y), N zeros and P poles in Q with multiplicity, then N, P are finite, and

1 [ f2)

N—P=—
27t ), F(z)

dz = I(T;0) = I(f o y; 0)

Proof Since Q is boun(jﬁd, Qs compact, and QO C U. Let S be the set of singularities of f. If ONSis
infinite, by compactness QN S has a limit point. Contradiction as the singularities are isolated. So P is finite.
Similarly by compactness and the principle of isolated zeroes, N is finite. The integral follows by the argument
principle. O

Definition 5.26 (Local degree)

Let f : D(a, R) — C be holomorphic, f non constant. Then the local degree of f at a is deg,(a), which is
the order of the zero of f(z) — f(a) at z = a.

Theorem 5.27 (Local degree). Let f : D(a, R) — C be holomorphic non constant, deg,(a) = d. Then there
exists ryp > 0 such that

Vr € (0,r0],3e > 0,Vw,0 < |f(a) — w| < € = f(a) = w has d roots in D'(a, r)

Proof Let g(z) = f(z) — f(a). Then g is non constant, so g’ % 0 in D(a, R). Applying the principle of isolated
zeroes to g and g’, we have ry € (0, R) such that g(z), g’(z) # 0 for all z € D'(a, o).

Fix r € (0, ro] and for t € [0, 1] define y(t) = a+ re’™ '(t) = g(y(t)). Since Image(y) is compact so closed,
and 0 € Image(y) since g is nonzero. So we have € > 0 such that D(0, €) C C \ Image(y).

Fix w with 0 < |f(a) — w| < e. Then w—f(a) € D(0, €) C C~Image(y). As z+— I(["; 2) is locally constant,
it is constant on D(0; €), so /(I'; w — f(a)) = I(I'; 0). Then we have that

. Y A 704G T flzy
/(F'W—"(G))*Tmfo = o [ ez =

by the argument principle, since g has one zero, with multiplicity d. Thus by the argument principle, f(z)—w
has d roots in D(a, r) as well. Since w # f(a), none of the zeros are at a. Since ' & 0 in D(a, r), the zeroes
are simple, so distinct. O

Corollary 5.28 (Open mapping theorem). A non constant holomorphic function is an open map.

Proof. Suppose f : U — C holomorphic, V C U open, b = f(a) € f(V). Then we have r > 0 such that
D(a, r) C V. Applying the local degree theorem, there exists € > 0 such that

w e D'(fla), ) = w e f(Da,r))

So D(f(a), €) C f(V), so f(V) is open. O

Theorem 5.29 (Rouché). Let y be a closed curve bounding a region Q, f, g holomorphic on U open, with
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U 2 QU lmage(y). If |f(z) — g(2)| < |g(z)| for z € Image(y), then f, g have the same number of zeroes in
Q (with multiplicity).

Proof. Note that the inequalities imply that f, g nonzero on Image(y). So we have V open, V' 2 Image(y) such
that f, g nonzero on V. Let h : f/g. Then h is holomorphic and never zero. Since g % 0 in Q, we have that
the zeroes of g in QU V are isolated, so h is meromorphic on QQ U V, with no zeroes or poles on Image(y).
Furthermore, f, g have finitely many zeroes on Q.

In addition, for z € Image(y), |h(z) — 1| < 1, so letting [ = h o y, we have that Image(I") C D(1,1), so
I(I;0) = 0.

By counting the zeroes and poles of h we get the required result. O
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