Complex Analysis

Shing Tak Lam

May 11, 2022

Contents

1	Differentiation 1.1 Power series 1.2 Conformal maps	1 3 5
2	Complex integration 2.1 Cauchy's theorem for star domains 2.2 Cauchy integral formula for a disc 2.3 Power series 2.4 Zeroes of a holomorphic function	6 7 9 12 12
3	Uniform limits	14
4	Winding numbers and topology4.1Winding numbers4.2Homology4.3Homotopy	14 14 16 18
5	Singularities 5.1 Laurent expansions 5.2 Residue 5.3 Argument principle	20 21 23 25

1 Differentiation

Let $U \subseteq \mathbb{C}$ be open, $f : U \to \mathbb{C}$.

Definition 1.1 (Differentiable) *f* is holomorphic at $w \in U$ if

$$f'(w) = \lim_{z \to w} \frac{f(z) - f(w)}{z - w}$$

exists. We call the result the derivative of f at w.

Definition 1.2 (Holomorphic)

f is holomorphic at $a \in U$ if there exists $\varepsilon > 0$ such that *f* is differentiable at all $z \in D(a, \varepsilon)$. *f* is holomorphic in *U* if *f* is holomorphic at every point in *U*. Equivalently, *f* is differentiable at every point in *U*.

Proposition 1.3. The map $f \mapsto f'$ is linear.

Proposition 1.4 (Product rule).

$$(fq)' = f'q + fq'$$

Proposition 1.5 (Chain rule).

$$(f \circ q)'(z) = f'(q(z))q'(z)$$

Let f = u + iv, where $u, v : U \to \mathbb{R}$, and in addition, we identify $\mathbb{C} \cong \mathbb{R}^2$, so we consider U to be an open subset of \mathbb{R}^2 .

Theorem 1.6 (Cauchy-Riemann). *f* is differentiable at $w = c + id \in U$ if and only if u, v are differentiable at (c, d), and

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ at (c, d)

Furthermore, $f'(w) = u_x + iv_x$.

Proof. f is differentiable at w = c + id, with derivative p + iq \iff

$$\lim_{z \to w} \frac{f(z) - f(w)}{z - w} = p + iq$$

 \Leftrightarrow

$$\lim_{z \to w} \frac{f(z) - f(w) - (z - w)(p + iq)}{|z - w|} = 0$$

 \iff

$$\lim_{(x,y)\to(c,d)}\frac{u(x,y)-u(c,d)-p(x-c)+q(y-d)}{\|(x,y)-(c,d)\|}=0$$

and

 \iff

 \iff

$$\lim_{(x,y)\to(c,d)}\frac{v(x,y)-v(c,d)-q(x-c)-p(y-d)}{\|(x,y)-(c,d)\|}=0$$

u is differentiable at (c, d) with Du(c, d)(x, y) = px - qy, and *v* is differentiable at (c, d) with Dv(c, d)(x, y) = qx + py.

u, v differentiable at (c, d) with $u_x = v_y = p$ and $u_y = -v_x = q$.

Corollary 1.7. If $f : U \to \mathbb{C}$ has continuous partial derivatives that satisfy the Cauchy-Riemann equations, then f is differentiable ta U.

Proof. Continuous partial derivatives implies that *f* is differentiable.

Definition 1.8 (Domain)

A domain U is a nonempty, open, path connected subset of $\mathbb{C}.$

Corollary 1.9. If U is a domain, $f : U \to \mathbb{C}$ holomorphic on U, and f' = 0 in U. Then f is constant.

Proof. By Cauchy-Riemann Du = 0 and Dv = 0, so u, v are constant.

Definition 1.10 (Entire)

If $f : \mathbb{C} \to \mathbb{C}$ is holomorphic, then we say that f is entire.

1.1 Power series

Theorem 1.11. Suppose $f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n$ has radius of convergence R. Then f is holomorphic in D(a, R), with derivative

$$f'(z) = \sum_{n=0}^{\infty} nc_n (z-a)^{n-1}$$

which has the same radius of convergence R.

Proof. Without loss of generality, a = 0. The power series for f' has radius of convergence $R_1 \in [0, \infty]$. Fix $z \in D(0, R)$, and choose ρ such that $|z| < \rho < R$. Then

$$n|c_n||z|^{n-1} = n|c_n|\left|\frac{z}{\rho}\right|^{n-1}\rho^{n-1} \le |c_n|\rho^{n-1}$$

for *n* large, since $n \left| \frac{z}{\rho} \right|^{n-1} \to 0$ as $n \to \infty$. So $R \le R_1$, as this means that $\sum nc_n z^{n-1}$ converges in D(0, R). As $|c_n||z^n| \le n|c_n||z^n| = |z|(nc_n|z^{n-1}|)$, so if $\sum n|c_n||z|^{n-1}$ converges, so does $\sum |c_n||z^n|$, which means that $R \ge R_1$, so $R = R_1$.

To prove that f is differentiable, fix $z \in D(0, R)$, and let

$$g(w) = \begin{cases} \frac{f(w) - f(z)}{w - z} & \text{if } w \neq z\\ \sum_{n=1}^{\infty} nc_n z^{n-1} & \text{if } w = z \end{cases}$$

We want to show that g is continuous as z. Define

$$h_n(w) = \begin{cases} \frac{c_n (w^n - z^n)}{w - z} & \text{if } w \neq z\\ nc_n z^{n-1} & \text{if } w = z \end{cases}$$

Then $g(w) = \sum_{n=1}^{\infty} h_n(w)$. h_n is continuous at z, as it is the derivative of $w \mapsto c_n w^n$. Since $\frac{w^n - z^n}{w - z} = z^{n-1} + wz^{n-2} + \dots + w^{n-2}z + w^{n-1}$

Then for any r such that |z| < r < R, $w \in D(0, r)$, $|h_n(w)| \le n|c_n|r^{n-1}$. Let $M_n = n|c_n|r^{n-1}$. Then $\sum M_n$ converges, so $\sum h_n$ converges uniformly by the Weierstrass M-test. So g is the uniform limit of continuous functions, s o it is continuous.

Corollary 1.12. Suppose $f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$ has radius of convergence R. If $f \equiv 0$ in $D(a, \varepsilon)$ for some $\varepsilon > 0$, then $f \equiv 0$ in D(a, R).

Proof. We must have that $c_n = 0$ for all n.

Definition 1.13 (Exponential)

$$\exp(z) = \sum_{n=1}^{\infty} \frac{z^n}{n!}$$

Proposition 1.14. exp is entire, with derivative exp.

Proposition 1.15. $\exp(z) \neq 0$ for all *z*, and $\exp(z + w) = \exp(z) \exp(w)$.

Proof. Fix $w \in \mathbb{C}$, define $F(z) = \exp(z + w) \exp(-z)$. Then

 $F'(z) = -\exp(z + w)\exp(-z) + \exp(z + w)\exp(-z) = 0$

So *F* is constant, and $F(z) = F(0) = \exp(w)$.

Proposition 1.16. For $x, y \in \mathbb{R}$,

$$\exp(x + iy) = e^{x}(\cos(x) + i\sin(y))$$

and

$$\exp(z) = 1 \iff z \in 2\pi i \mathbb{Z}$$

Proposition 1.17. For $z \in \mathbb{C}$ nonzero, we have $w \in \mathbb{C}$ such that $\exp(w) = z$.

Definition 1.18 (Logarithm) Given $z \in \mathbb{C}$, we say $w \in \mathbb{C}$ is a logarithm of z if exp(w) = z.

Definition 1.19 (Branch of logarithm)

Let $U \subseteq \mathbb{C} \setminus 0$ be open. Then a branch of the logarithm on U is a continuous function $\lambda : U \to \mathbb{C}$ such that $\exp(\lambda(z)) = z$

for all $z \in U$.

Proposition 1.20. If λ is a branch of log on U, then λ is holomorphic on U, so $\lambda'(z) = \frac{1}{z}$.

Proof. Suppose $w \in U$. Then

$$\lim_{z \to w} \frac{\lambda(z) - \lambda(w)}{z - w} = \lim_{z \to w} \frac{\lambda(z) - \lambda(w)}{\exp(\lambda(z)) - \exp(\lambda(w))}$$
$$= \lim_{z \to w} \frac{1}{\frac{\exp(\lambda(z)) - \exp(\lambda(w))}{\lambda(z) - \lambda(w)}}$$
$$= \frac{1}{\exp(\lambda(w))} \lim_{z \to w} \frac{1}{\frac{\exp(\lambda(z) - \lambda(w)) - 1}{\lambda(z) - \lambda(w)}}$$
$$= \frac{1}{\exp(\lambda(w))} \lim_{h \to 0} \frac{1}{\frac{\exp(h) - 1}{h}}$$
$$= \frac{1}{w}$$

Definition 1.21 (Principal branch)

The principal branch of log is the function

$$\mathsf{Log}: \mathbb{C} \smallsetminus \{x \in \mathbb{R} : x \le 0\} \to \mathbb{C}$$

by $Log(z) = \log |z| + i \arg(z)$, where we have $\arg(z) \in (-\pi, \pi)$.

Proposition 1.22. Log is a branch of log.

Proposition 1.23.

$$Log(1 + z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} z^n}{n}$$
 for $|z| < 1$

Proof. Define for |z| < 1,

$$F(z) = \log(1+z) - \sum_{n=1}^{\infty} \frac{(-1)^{n-1} z^n}{n}$$

Then F' = 0, so F = 0.

1.2 Conformal maps

Proposition 1.24. Let $f : U \to |C$ be holomorphic at $w \in U$, $f'(w) \neq 0$. Let $\gamma_1, \gamma_2 : [-1, 1] \to U$ be C^1 curves such that $\gamma_1(0) = \gamma_2(0) = w$, $\gamma'_1(0), \gamma'_2(0) \neq 0$. Then

$$\arg(\gamma'_{1}(0)) - \arg(\gamma'_{2}(0)) = \arg((f \circ \gamma_{1})'(0)) - \arg((f \circ \gamma_{2})'(0))$$

Definition 1.25 (Conformal) $f: U \to \mathbb{C}$ is conformal at $w \in U$ if $f'(w) \neq 0$.

Definition 1.26 (Conformal equivalence)

 $f: U \to \tilde{U}$ is a conformal equivalence if f is bijective and holomorphic, with $f'(z) \neq 0$ for all $z \in U$.

Proposition 1.27. Möbius maps are conformal.

2 Complex integration

Definition 2.1 (Complex (Riemann) integral) Suppose $f : [a, b] \rightarrow \mathbb{R}$, with Re(f), Im(f) integrable. Then define

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} \operatorname{Re}(f(t)) dt + i \int_{a}^{b} \operatorname{Im}(f(t)) dt$$

Proposition 2.2.

$$\left| \int_{a}^{b} f(t) \mathrm{d}t \right| \leq \left| \int_{a}^{b} |f(t)| \mathrm{d}t \leq (b-a) \sup_{t \in [a,b]} |f(t)|$$

Proof. If $\int_a^b f(t) dt = 0$ we are done. If not, say $\int_a^b f(t) dt = re^{i\theta}$. Let $M = \sup_{t \in [a,b]} |f(t)|$. Then

$$\left| \int_{a}^{b} f(t) dt \right| = r = e^{-i\theta} \int_{a}^{b} f(t) dt = \int_{a}^{b} \operatorname{Re}(e^{-i\theta}f(t)) dt + i \int_{a}^{b} \operatorname{Im}(e^{-i\theta}f(t)) dt$$

Since the left hand side of the equality is real, we must have that

$$\left|\int_{a}^{b} f(t) \mathrm{d}t\right| = \int_{a}^{b} \operatorname{Re}(e^{-i\theta}f(t)) \mathrm{d}t \le \int_{a}^{b} \left|e^{-i\theta}f(t)\right| \mathrm{d}t = \int_{a}^{b} |f(t)| \mathrm{d}t$$

and the final inequality follows from real analysis.

Remark 2.3. Equality holds if and only if f is constant.

Definition 2.4 (Curve integral)

Let $U \subseteq \mathbb{C}$ be open, $f: U \to \mathbb{C}$ continuous, $\gamma: [a, b] \to U$ a C^1 curve. Then the integral of f along γ is

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

Proposition 2.5. Integral is independent of parametrisation.

Proof. Chain rule.

Definition 2.6 (Length) Define the length of a curve by Length(
$$\gamma$$
) = $\int_{a}^{b} |\gamma'(t)| dt$

Proposition 2.7.

$$\left|\int_{\gamma} f(z) \mathrm{d}z\right| \leq \mathrm{Length}(\gamma) \sup_{\gamma} |f|$$

Theorem 2.8 (FTC). Suppose $F : U \to \mathbb{C}$ is C^1 , then

$$\int_{\gamma} F'(z) dz = F(\gamma(b)) - F(\gamma(a))$$

Proof. By real FTC.

Corollary 2.9. If γ is a closed curve, then

$$\int_{\gamma} F'(z) \mathrm{d} z = 0$$

Theorem 2.10 (FTC II). Let $U \subseteq \mathbb{C}$ be a domain, $f : U \to \mathbb{C}$ continuous, and for every closed curve γ in U,

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

Then f has an antiderivative in U.

Proof. Fix $a_0 \in U$. For $w \in U$, define a curve $\gamma_w : [0, 1] \to U$ such that $\gamma_w(0) = a_0$ and $\gamma_w(1) = w$. Since U is path connected, one exists. Furthermore, we can take γ_w polygonal and piecewise C^1 . Define

$$F(w) = \int_{\gamma_w} f(z) \mathrm{d}z$$

Note that *F* is independent of the choice of γ , since if γ_w , $\tilde{\gamma}_w$ are both curves from a_0 to *w*, then $\gamma_w + (-\tilde{\gamma}_w)$ is a closed curve. Fix $w \in U$. Since *U* is open, we have r > 0 such that $D(w, r) \subseteq U$. For $h \in \mathbb{C}$ with 0 < |h| < r, define $\delta_h(t) = w + th$ for $t \in [0, 1]$. Now note that $\gamma = \gamma_w + \delta_h + (-\gamma_{w+h})$ is a closed curve, so $\int_{\gamma} f(z) dz = 0$ by assumption.

Hence we have that

$$F(w+h) = \int_{\gamma_{w+h}} f(z) dz = \int_{\gamma_{w}} f(z) dz + \int_{\delta_{h}} f(z) dz = F(w) + \int_{\delta_{h}} f(z) dz = F(w) + hf(w) + \int_{\delta_{h}} (f(z) - f(w)) dz$$

Suffices to show the error term is o(h).

$$\frac{1}{|h|} \left| \int_{\delta_h} f(z) - f(w) dz \right| \le \frac{1}{h} \operatorname{Length}(\delta_h) \sup_{z \in \delta_h([0,1])} |f(z) - f(w)| = \sup_{z \in \delta_h([0,1])} |f(z) - f(w)| \to 0 \quad \text{as} \quad h \to 0$$

2.1 Cauchy's theorem for star domains

Definition 2.11 (Star shaped domain)

A domain $U \subseteq \mathbb{C}$ is star shaped if there exists $a_0 \in U$ such that for all $z \in U$, the segment $[a_0, z]$ is contained in U.

Definition 2.12 (Triangle) A triangle $T \subseteq \mathbb{C}$ is the closed convex hull of three points in \mathbb{C} .

Definition 2.13 (Boundary of the triangle)

We define the boundary of the triangle to be oriented anticlockwise.

Corollary 2.14. If U is star shaped, $f : U \to \mathbb{C}$ is continuous, and

$$\int_{\partial T} f(z) \mathrm{d}z = 0$$

for all triangles $T \subseteq U$, then f has an antiderivative in U.

Proof. Modify proof of FTC II.

Theorem 2.15 (Cauchy's theorem for triangles). Suppose $U \subseteq \mathbb{C}$ open, $f : U \to \mathbb{C}$ holomorphic. Suppose $T \subseteq U$ is a triangle. Then

$$\int_{\partial T} f(z) \mathrm{d} z = 0$$

Proof. Let $\eta(T) = \int_{\partial T} f(z) dz$. Subdivide T into 4 smaller triangles $T^{(i)}$ by connecting the midpoints of each edge. Then as the inner edges cancel, $\eta(T) = \eta(T^{(1)}) + \cdots + \eta(T^{(4)})$. By triangle inequality, we have i such that

$$\left|\eta(T^{(i)})\right| \geq \frac{\left|\eta(T)\right|}{4}$$

Define $T_0 = T$, $T_1 = T^{(i)}$. Then

$$|\eta(T_1)| \ge \frac{1}{4} |\eta(T_0)|$$
 and Length $(\partial T_1) = \frac{1}{2}$ Length (∂T_0)

Repeat the above process to get T_0 , T_1 , T_2 , ... such that

$$|\eta(T_n)| \ge \frac{1}{4^n} |\eta(T_0)|$$
 and Length $(\partial T_n) = \frac{1}{2^n}$ Length (∂T_0)

Since diam(T_n) \rightarrow 0, by compactness we have that $\bigcap_n T_n = \{z_0\}$. Let $\varepsilon > 0$, since f is differentiable at z_0 , we have $\delta > 0$ such that

$$\forall z \in U, |z - z_0| < \delta \implies |f(z) - f(z_0) - f'(z_0)(z - z_0)| \le \varepsilon |z - z_0|$$

Now, by FTC we have that

$$\eta(T_n) = \int_{\partial T_n} f(z) \mathrm{d}z = \int_{\partial T_n} f(z) - f(z_0) - f'(z_0)(z - z_0) \mathrm{d}z$$

Choose *n* such that $T_n \subseteq D(z_0, \delta)$. Then

$$\begin{split} \eta(T_0) &|= 4^n |\eta(T_n)| \\ &\leq 4^n \left| \int_{\partial T_n} f(z) dz \right| \\ &= 4^n \left| \int_{\partial T_n} f(z) - f(z_0) - f'(z_0)(z - z_0) dz \right| \\ &\leq 4^n \operatorname{Length}(\partial T_n) \sup_{z \in \partial T_n} |f(z) - f(z_0) - f'(z_0)(z - z_0)| \\ &\leq 4^n \varepsilon \operatorname{Length}(\partial T_n) \sup_{z \in \partial T_n} |z - z_0| \\ &\leq 4^n \varepsilon \operatorname{Length}(\partial T_n)^2 \\ &= \varepsilon \operatorname{Length}(\partial T_0)^2 \end{split}$$

But $\varepsilon > 0$ is arbitrary. So $\eta(T_0) = 0$.

Theorem 2.16. Let $U \subseteq \mathbb{C}$ open, $f : U \to \mathbb{C}$ continuous, $S \subseteq U$ finite, f holomorphic on $U \smallsetminus S$. Then for evert triangle $T \subseteq U$, we have that

$$\int_{\partial T} f(z) \mathrm{d} z = 0$$

Proof. By the above process, subdivide T into $N = 4^n$ triangles, say T_1, \ldots, T_N . Then the interiors cancel, so

$$\int_{\partial T} f(z) dz = \sum_{j=1}^{N} \int_{\partial T_j} f(z) dz$$

Let $J = \{j : T_j \cap S = \emptyset\}$. By Cauchy theorem for triangles, for all $j \in J$, $\int_{\partial T_i} f(z) dz = 0$. So we have that

$$\int_{\partial T} f(z) dz = \sum_{j \notin J} \int_{\partial T_j} f(z) dz$$

Note that each point in S is in at most 6 triangles, so

$$\left| \int_{\partial T} f(z) dz \right| \le 6|S| \left| \sup_{z \in T} f(z) dz \right| \frac{\text{Length}(\partial T)}{2^n} \to 0 \quad \text{as} \quad n \to \infty$$

Corollary 2.17. Let $U \subseteq \mathbb{C}$ be a star domain, $f : U \to \mathbb{C}$ continuous, holomorphic in $U \setminus S$, where $S \subseteq U$ finite. Then for any closed curve γ in U,

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

Proof. f has an antiderivative, so result follows by FTC for star domains.

2.2 Cauchy integral formula for a disc

Definition 2.18 (Boundary of a disc)

For D(a, r), we define the boundary $\partial D(a, r)$ to be the path

 $t \mapsto a + re^{2\pi i t}$

Lemma 2.19 (Fundamental integral). Let r > 0, $w \in D(a, r)$. Then

$$\int_{\partial D(a,r)} \frac{1}{z-w} \mathrm{d}z = 2\pi i$$

Proof.

$$\frac{1}{z-w} = \frac{1}{z-a+a-w} = \frac{1}{z-a} \frac{1}{1-\frac{w-a}{z-a}} = \sum_{j=0}^{\infty} \frac{(w-a)^j}{(z-a)^{j+1}}$$

Since $\left|\frac{(w-a)}{(z-a)}\right| = |w-a|r < 1$. Furthermore, by the Weierstrass M-test, the series converges uniformly. So we have that

$$\int_{\partial D(a,r)} \frac{1}{z-w} \mathrm{d}z = \sum_{j=0}^{\infty} (w-a)^j \int_{\partial D(a,r)} \frac{1}{(z-a)^{j+1}} \mathrm{d}z$$

By computing the integral explicitly for j = 0, and using FTC for $j \ge 1$ we find the required result.

Theorem 2.20 (Cauchy integral formula for a disc). Let D = D(a, r), $f : D \to \mathbb{C}$ holomorphic. Then for nay $0 < \rho < r$, $w \in D(a, \rho)$, we have that

$$f(w) = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{z - w} dz$$

Proof. Fix w, define $h: D \to \mathbb{C}$ by

$$h(z) = \begin{cases} \frac{f(z) - f(w)}{z - w} & \text{if } z \neq w\\ f'(w) & \text{if } z = w \end{cases}$$

Then *h* is continuous on *D* and holomorphic in $D \setminus \{w\}$. By Cauchy's theorem for star domains, we have that

$$\int_{\partial D(a,\rho)} h(z) \mathrm{d}z = 0$$

Substituting the definition of *h*, we get that

$$f(w) \int_{\partial D(a,\rho)} \frac{1}{z-w} dz = \int_{\partial D(a,\rho)} \frac{f(z)}{z-w} dz$$

Result then follows by the fundamental integral.

Corollary 2.21 (Mean value property). Suppose $f : D(a, R) \to \mathbb{C}$ holomorphic, $0 < \rho < R$. Then

$$f(a) = \int_0^1 f(a + \rho e^{2\pi i t}) \mathrm{d}t$$

Proof. By Cauchy integral formula for a disc.

Proposition 2.22. If $f : \mathbb{C} \to \mathbb{C}$ is entire, for some $K \ge 0$, $\alpha < 1$, we have that

$$|f(z)| \le K(1+|z|^{\alpha})$$

for all $z \in \mathbb{C}$, then f is constant.

Proof. Given $w \in \mathbb{C}$, $\rho > |w|$, by the Cauchy integral formula, we have that

$$f(w) = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{z - w} dz$$

Then

$$\begin{aligned} |f(w) - f(0)| &= \frac{1}{2\pi} \left| \int_{\partial D(a,\rho)} \frac{f(z)}{z - w} - \frac{f(z)}{z} dz \right| \\ &\leq \frac{|w|}{2\pi} \operatorname{Length}(\partial D(a,\rho)) \sup_{z \in \partial D(a,\rho)} \left| \frac{f(z)}{z(z - w)} \right| \\ &\leq \frac{|w| \mathcal{K}(1 + \rho)^{\alpha}}{2\pi \rho(\rho - |w|)} = \frac{|w| \mathcal{K}(1 + \rho^{\alpha})}{\rho - |w|} \end{aligned}$$

Letting $\rho \to \infty$, we get f(w) = f(0).

Theorem 2.23 (Liouville). If $f : \mathbb{C} \to \mathbb{C}$ is entire, $|f(z)| \leq K$ for all $z \in \mathbb{C}$, then f is constant.

Proof. Immediate by above proposition.

Theorem 2.24 (Fundamental theorem of algebra). Every non constant polynomial with complex coefficients has a root over \mathbb{C} .

Proof. Let $n = \deg(p) \ge 1$, and without loss of generality, p monic, so $p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$. Then for $z \ne 0$, we have that

$$p(z) = z^n \left(1 + \frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n}\right)$$

which means that

$$|p(z)| \ge |z^n| \left(1 - \left(\frac{|a_{n-1}|}{|z|} + \dots + \frac{|a_0|}{|z^n|} \right) \right)$$

So $|p(z)| \to \infty$ as $|z| \to \infty$. So we have R > 0 such that if |z| > R, |p(z)| > 1. Furthermore, suppose for contradiction p has no root over \mathbb{C} . Define $g(z) = \frac{1}{p(z)}$. Then g is entire. For |z| > R, |g| < 1, and by compactness and continuity of g, g is also bounded on $\overline{D}(0, R)$. But this means that g is constant, so p is constant. Contradiction.

Theorem 2.25 (Local maximum modulus). Suppose $f : D(a, R) \to \mathbb{C}$ is holomorphic, $|f(z)| \le |f(a)|$ for all $z \in D(a, R)$. Then f is constant.

Proof. By the mean value property, we have that for any $0 < \rho < R$,

$$f(a) = \int_0^1 f(a + \rho e^{2\pi i t}) \mathrm{d}t$$

So

$$|f(a)| = \left| \int_0^1 f(a + \rho e^{2\pi i t}) dt \right| \le \sup_{t \in [0,1]} \left| f(a + \rho e^{2\pi i t}) \right| \le |f(a)|$$

So equality holds. The first inequality gives us that $f(a + \rho e^{2\pi i t}) = c_{\rho}$ constant. The second one gives that $|c_{\rho}| = |f(a)|$, so |f(z)| is constant, and by Cauchy-Riemann, f is constant.

2.3 Power series

Theorem 2.26. Let $f : D(a, R) \to \mathbb{C}$ be holomorphic. Then

$$f(w) = \sum_{n=0}^{\infty} c_n (w - a)^n$$

where

$$c_n = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{(z-a)^{n+1}} \mathrm{d}z$$

Proof. Fix $0 < \rho < R$. Then for $w \in D(a, \rho)$, we have that

$$f(w) = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{z - w} dz = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} f(z) \sum_{n=0}^{\infty} \frac{(w - a)^n}{(z - a)^{n+1}} dz = \sum_{n=0}^{\infty} c_n(\rho)(w - a)^n$$

where

$$c_n(\rho) = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{(z-a)^{n+1}} \mathrm{d}z$$

This gives us a power series representation of f, which means that f is infinitely differentiable, with

$$c_n(\rho) = \frac{f^{(n)}(a)}{n!}$$

So $c_n(\rho)$ is independent of ρ .

Corollary 2.27. Let $f : U \to \mathbb{C}$ be holomorphic. Then f is analytic.

Corollary 2.28.

$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{(z-a)^{n+1}} \mathrm{d}z$$

Theorem 2.29 (Morera). Let $U \subseteq \mathbb{C}$ be open, $f : U \to \mathbb{C}$ is continuous, and for every closed curve γ in U, $\int_{V} f(z) dz = 0$. Then f is holomorphic in U.

Proof. f has an antiderivative F. Then f = F' is holomorphic.

2.4 Zeroes of a holomorphic function

Theorem 2.30 (Principle of isolated zeroes). Suppose $f : D(a, R) \to \mathbb{C}$ is holomorphic, $f \neq 0$. Then there exists r > 0 such that $f(z) \neq 0$ whenever 0 < |z - a| < r.

Proof. If $f(a) \neq 0$ we are done by continuity. If f(a) = 0, then we have $m \ge 1$ such that $f(z) = z^m g(z)$, where $g: D(a, R) \to \mathbb{C}$ holomorphic, $g(a) \neq 0$. Then we are done by continuity of g.

Theorem 2.31 (Unique analytic continuation). Suppose U, V domains, $U \subseteq V, g_1, g_2 : V \to \mathbb{C}$ analytic, $g_1 = g_2$ on U. Then $g_1 = g_2$.

Proof. Let $h = g_1 - g_2$. Then h = 0 on U. Define

 $V_0 = \{z \in V : h \equiv 0 \text{ in some } D(z, r)\}$ and $V_1 = \{z \in V : h^{(n)}(z) \neq 0 \text{ for some } n \ge 0\}$

By the principle of isolated zeroes, V_0 and V_1 partition V. By construction, V_0 open, and by continuity of the derivatives, V_1 is open. Since V is connected and V_0 nonempty, we must in fact have $V = V_0$.

Proposition 2.32 (Identity principle). Suppose $f, g: U \to \mathbb{C}$ holomorphic, and suppose

$$S = \{z \in U : f(z) = f(z)\}$$

has a limit point. Then f = g.

Proof. Let h(z) = f(z) - g(z). Then by the principle of isolated zeroes, h must be identically zero.

Corollary 2.33 (Global maximum modulus principle). Suppose U is bounded, $f : \overline{U} \to \mathbb{C}$ continuous, f holomorphic on U. Then |f| attains its maximum value on $\partial U = \overline{U} \setminus U$.

Proof. \overline{U} is compact, so |f| is bounded and attains its maxima. Say for all $z \in \overline{U}$, $|f(z)| \le |f(w)|$. If $w \notin U$, then $w \in \partial U$ and we are done.

On the other hand, if $w \in U$, choose $D = D(w, r) \subseteq U$. Then by local maximum modulus principle, f is constant on D, so by identity principle (or unique analytic continuation), f is constant on U. By continuity, f is constant on \overline{U} .

Theorem 2.34 (Cauchy integral formula for derivatives). Suppose $f : D(a, R) \to \mathbb{C}$ holomorphic, then for any $0 < \rho < R$, $w \in D(a, \rho)$, we have that

$$f^{(n)}(w) = \frac{n!}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{(z-w)^{n+1}} dz$$

Proof. By induction on n. n = 0 is the Cauchy integral formula.

For n = 1, let $g(z) = \frac{f(z)}{z - w}$. This is holomorphic on $D(a, R) \setminus \{w\}$, with $g'(z) = \frac{f'(z)}{z - w} - \frac{f(z)}{(z - w)^2}$. Since $\partial D(a, \rho) \subseteq D(a, R) \setminus \{w\}$, we have that

$$\int_{\partial D(a,\rho)} g'(z) \mathrm{d} z = 0$$

which means that

$$\int_{\partial D(a,\rho)} \frac{f'(z)}{z-w} = \int_{\partial D(a,\rho)} \frac{f(z)}{(z-w)^2} dz$$

Using the Cauchy integral formula for f', we have that

$$f'(w) = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} \frac{f'(z)}{z - w} dz = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{(z - w)^2}$$

 $n \ge 2$, let $n = k + 1$ and $g(z) = \frac{f(z)}{(z + w)^{k+1}}$. Then $g'(z) = \frac{f'(z)}{(z + w)^{k+1}} - \frac{(k + 1)f(z)}{(z + w)^{k+2}}$. Similarly, we at

For

$$\int_{\partial D(a,\rho)} g'(z) \mathrm{d} z = 0$$

which means that

$$\int_{\partial D(a,\rho)} \frac{f'(z)}{(z-w)^{k+1}} dz = (k+1) \int_{\partial D(a,\rho)} \frac{f(z)}{(z-w)^{k+2}} dz$$

which by the induction hypothesis gives the required result.

3 Uniform limits

Proposition 3.1. (f_n) converges locally uniformly on U if and only if (f_n) converges on every compact subset $K \subseteq U$.

Theorem 3.2. Let $U \subseteq \mathbb{C}$ be open, $f_n : U \to \mathbb{C}$ holomorphic, $f_n \to f$ locally uniformly on U. Then f is holomorphic, and $f_n^{(k)} \to f^{(k)}$ locally uniformly.

Proof. For $a \in U$, let r > 0 be such that $\overline{D}(a, r) \subseteq U$. Then $f_n \to f$ uniformly on D(a, r), which means that f is continuous on $\overline{D}(a, r)$ as the uniform limit of continuous functions. Let γ be a closed curve in D(a, r), then by Cauchy for star domains, we have that

$$\int_{\gamma} f_n(z) \mathrm{d}z = 0$$

for all *n*. As $\int_{\gamma} f_n(z) dz \to \int_{\gamma} f(z) dz$ by uniform convergence, we have that $\int_{\gamma} f(z) dz = 0$. So by Morera, *f* is holomorphic. By the Cauchy integral formula for derivatives, we have that

$$f^{(k)}(w) - f_n^{(k)}(w) = \frac{k!}{2\pi i} \int_{\partial D(a,r/2)} \frac{f(z) - f_n(z)}{(z - w)^{k+1}} dz$$

which means that

$$\begin{split} \left| f^{(k)}(w) - f_n^{(k)}(w) \right| &= \frac{1}{2\pi} \left| \int_{\partial D(a,r/2)} \frac{f(z) - f_n(z)}{(z - w)^{k+1}} dz \right| \\ &\leq \frac{1}{2\pi} 2\pi \left(\frac{r}{2}\right)^2 \sup_{z \in \partial D(a,r/2)} \left| \frac{f(z) - f_n(z)}{(z - w)^{k+1}} \right| \\ &\leq C_k \sup_{z \in \partial D(a,r/2)} |f(z) - f_n(z)| \to 0 \quad \text{as} \quad n \to \infty \end{split}$$

for some constant C_k .

4 Winding numbers and topology

4.1 Winding numbers

Definition 4.1 (Continuous choice of argument)

For a curve $\gamma : [a, b] \to \mathbb{C}$, $w \in \mathbb{C}$, we can write $\gamma(t) = w + r(t)e^{i\theta(t)}$ as long as $w \notin \text{Image}(\gamma)$. If γ continuous, then we can choose θ continuous, and we call θ a continuous choice of argument.

Definition 4.2 (Winding number)

Define the winding number, or index of γ about w to be

$$l(\gamma; w) = \frac{\theta(b) - \theta(a)}{2\pi}$$

Proposition 4.3. For a closed curve, $I(\gamma; w)$ is an integer.

Proof.

$$e^{i\theta(b)-i\theta(a)} = 1 \iff \theta(b) - \theta(a) \in 2\pi\mathbb{Z}$$

Proposition 4.4. A continuous choice of θ exists, and for different choices, we get the same value of I(y; w).

Proof. Existence follows from taking local choices and using compactness. For uniqueness, note that

$$\frac{\theta(t) - \tilde{\theta}(t)}{2\pi} \in \mathbb{Z}$$

is a continuous integer valued function from a connected set, so must be constant.

Lemma 4.5. If $w \in \mathbb{C}$, $\gamma : [a, b] \to \mathbb{C} \setminus \{w\}$ piecewise C^1 , then we have θ piecewise C^1 , and if γ is closed, then

$$I(\gamma; w) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - w} \mathrm{d}z$$

Proof. Let

$$h(t) = \int_{a}^{t} \frac{\gamma'(s)}{\gamma(s) - w} \mathrm{d}s$$

The integrand is bounded, and continuous at all but finitely many points, so *h* is continuous. Furthermore, by FTC, *h* is piecewise C^1 , with $h'(t) = \frac{\gamma'(t)}{\gamma(t) - w}$ when γ' is continuous. This gives us an ODE for $\gamma - w$, $(\gamma(t) - w)' - (\gamma(t) - w)h(t) = 0$

Using the integrating factor $e^{-h(t)}$, we find that

$$\frac{\mathrm{d}}{\mathrm{d}t}\big((\gamma(t)-w)e^{-h(t)}\big)=0$$

for all but finitely many t. Since $(\gamma(t) - w)e^{-h(t)}$ is continuous, it must in fact be constant. So

$$(\gamma(t) - w) = (\gamma(a) - w)e^{h(t)} = |\gamma(a) - w|e^{\operatorname{Re}(h(t))}e^{\operatorname{Im}(h(t)) + a}$$

for some α . Then set $\theta(t) = \alpha + \operatorname{Im}(h(t))$. We have that

$$I(\gamma; w) = \frac{\theta(b) - \theta(a)}{2\pi} = \frac{\mathrm{Im}(h(b))}{2\pi}$$

For a closed curve γ , $e^{h(b)} = 1$, so $\operatorname{Re}(h(b)) = 0$ and $\operatorname{Im}(h(b)) = \frac{h(b)}{i}$. Hence we have that

$$I(\gamma; w) = \frac{h(b)}{2\pi i} = \frac{1}{2\pi i} \int_{a}^{b} h'(s) ds = \frac{1}{2\pi i} \int_{a}^{b} \frac{\gamma'(s)}{\gamma(s) - w} ds = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - w} dz$$

Proposition 4.6. For a closed curve γ , $w \mapsto I(\gamma; w)$ is constant on each connected component of $\mathbb{C} \setminus \text{Image}(\gamma)$.

Proposition 4.7. If $\gamma : [a, b] \to D(z_0, r)$ is a closed curve, then for all $w \notin D(z_0, r)$, we have that $I(\gamma; w) = 0$

Proof. Apply convex Cauchy, as $\frac{1}{z-w}$ is holomorphic in $D(z_0, r)$.

Proposition 4.8. If $\gamma : [a, b] \to \mathbb{C}$ closed, then there exists a unique unbounded connected component Ω , and for $w \in \Omega$, $I(\gamma; w) = 0$.

Proof. By compactness of Image(γ), Image(γ) is bounded, so there can only be one unbounded connected component. Furthermore, as Image(γ) is contained in a disc, apply previous proposition to a point in Ω not in the disc.

4.2 Homology

Lemma 4.9. Suppose $\phi : [a, b] \times [c, d] \rightarrow \mathbb{R}$ is continuous. Then

$$s \mapsto \int_{c}^{d} \phi(s, t) \mathrm{d}t \quad \text{and} \quad t \mapsto \int_{a}^{b} \phi(s, t) \mathrm{d}s$$

are continuous.

Proof. Follows from ϕ being uniformly continuous as it is continuous on a compact set.

Lemma 4.10 (Fubini). Suppose $\phi : [a, b] \times [c, d] \rightarrow \mathbb{R}$ is continuous. Then

$$\int_{a}^{b} \int_{c}^{d} \phi(s, t) \mathrm{d}t \mathrm{d}s = \int_{c}^{d} \int_{a}^{b} \phi(s, t) \mathrm{d}s \mathrm{d}t$$

Proof. Since ϕ is uniformly continuous, we have that ϕ is the uniform limit of step functions. That is, a partition of $R = [a, b) \times [c, d)$ by sets of the form

$$R_j = [a_j, b_j) \times [c_j, d_j)$$

and

$$g(x, y) = \sum_{j=1}^{n} \alpha_j \mathbb{1}_{R_j}(x, y)$$

where α_i constants. By cumputing the iterated integrals for the step functions, we get the required result.

Lemma 4.11. Let $f : U \to \mathbb{C}$ be holomorphic, define $q : U \times U \to \mathbb{C}$ by

$$g(z, w) = \begin{cases} \frac{f(z) - f(w)}{z - w} & \text{if } z \neq w\\ f'(z) & \text{if } z = w \end{cases}$$

Then g is continuous. Furthermore, if γ is a closed curve in U, then

$$h(w) = \int_{\gamma} g(z, w) \mathrm{d}z$$

is holomorphic in U.

Proof. For continuity, away from z = w we can take an open ball where g is continuous. Now suppose we have $(a, a) \in U \times U$. Given $\varepsilon > 0$, choose $\delta > 0$ such that

$$D(a, \delta) \subseteq U$$
 and $|f'(z) - f'(a)| < \varepsilon$ for all $z \in D(a, \delta)$

which exist by U being open and f' being continuous respectively. Choose $(z, w) \in D(a, \delta) \times D(a, \delta)$. If z = w, then

$$|g(z, w) - g(a, a)| = |f'(z) - f'(a)| < \varepsilon$$

If $z \neq w$, then the path $\gamma(t) = tz + (1 - t)w$ is contained in $D(a, \delta)$ for $t \in [0, 1]$ by convexity. So

$$f(z) - f(w) = \int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} (tz - (1-t)w) \mathrm{d}t = (z-w) \int_0^1 f'(tz + (1-t)w) \mathrm{d}t$$

This means that

$$|g(z, w) - g(a, a)| = \left| \frac{f(z) - f(w)}{z - w} - f'(a) \right|$$

= $\left| \int_0^1 f'(tz + (1 - t)w) - f'(a) dt \right|$
 $\leq \sup_{t \in [0, 1]} \left| f'(tz + (1 - t)w) - f'(a) \right|$
 $< \varepsilon$

So *g* is continuous at (a, a). To show that *h* is holomorphic, we will apply Morera. First, we must show that *h* is continuous. Fix $w_0 \in U$, and a sequence $w_n \to w_0$. Choose $\delta > 0$ such that $\overline{D}(w_0, \delta) \subseteq U$. *g* is continuous on $U \times U$, so it is uniformly continuous on Image $(\gamma) \times \overline{D}(w_0, \delta)$ compact.

If $g_n(z) = g(z, w_n)$ for $z \in \text{Image}(\gamma)$, then $g_n \to g_0$ uniformly on Image (γ) . So

$$h(w_n) = \int_{\gamma} g_n(z) \mathrm{d}z \to \int_{\gamma} g_0(z) \mathrm{d}z = h(w_0)$$

So *h* is continuous. Now say $\gamma : [a, b] \to D(w_0, \delta)$ is any closed curve, and $\beta : [c, d] \to D(w_0, \delta)$ is any closed curve. Then

$$\int_{\beta} h(w) dw = \int_{\beta} \int_{\gamma} g(z, w) dz dw$$

= $\int_{c}^{d} \int_{a}^{b} g(\gamma(t), \beta(s)) \gamma'(t) \beta'(s) dt ds$
= $\int_{a}^{b} \int_{c}^{d} g(\gamma(t), \beta(s)) \gamma'(t) \beta'(s) ds dt$
= $\int_{\gamma} \int_{\beta} g(z, w) dw dz$
= $\int_{\gamma} 0 dz$
= 0

where since g(z, w) is continuous and holomorphic everywhere except z, by convex Cauchy we get that $\int_{B} g(z, w) dw = 0$. By Morera, this then means that h is holomorphic.

Definition 4.12 (Homologous to zero)

Let $U \subseteq \mathbb{C}$ be open, $\gamma : [a, b] \to U$ be a closed curve. Then γ is homologous to zero in U if $I(\gamma; w) = 0$ for all $w \notin U$.

Theorem 4.13 (Cauchy integral formula). Let $U \subseteq \mathbb{C}$ be a nonempty open set, γ closed curve in U homologous to zero in U. Suppose $f: U \to \mathbb{C}$ holomorphic, and $w \in U \setminus \text{Image}(\gamma)$, then

$$I(\gamma; w)f(w) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - w} dz$$

Proof. Note that the statement is equivalent to showing that

$$\int_{\gamma} g(z, w) \mathrm{d} z = 0$$

where $g(z, w) = \begin{cases} \frac{f(z) - f(w)}{z - w} & \text{if } z \neq w \\ f'(z) & \text{if } z = w \end{cases}$. Define $h(w) = \int_{\gamma} g(z, w) dz$. Then h is holomorphic in U, and we wish to show that h = 0 by first extending it to an entire function $H : \mathbb{C} \to \mathbb{C}$ which has $|H| \to 0$ as

 $|z| \rightarrow \infty$.

Let $V = \{w \in \mathbb{C} \setminus \text{Image}(\gamma) : I(\gamma; w) = 0\}$. Since γ is homologous to zero in U, we have that $\mathbb{C} = U \cup V$. Since $I(\gamma; w)$ is locally constant, V is open. For $w \in U \cap V$,

$$h(w) = \int_{\gamma} \frac{f(z) - f(w)}{z - w} \mathrm{d}z = \int_{\gamma} \frac{f(z)}{z - w} \mathrm{d}z = h_1(w)$$

where $h_1: V \to \mathbb{C}$ holomorphic. Hence the function $H: \mathbb{C} \to \mathbb{C}$.

$$H(z) = \begin{cases} h(w) & \text{if } w \in U \\ h_1(w) & \text{if } w \in V \end{cases}$$

is well defined and holomorphic. Since Image(γ) is compact, we have R > 0 such that Image(γ) $\subseteq D(0, R)$. Since the winding number is locally constant, $\mathbb{C} \setminus D(0, R) \subseteq V$. So for |w| > R, we have that

$$|H(w)| = |h_1(w)| = \left| \int_{\gamma} \frac{f(z)}{z - w} \mathrm{d}z \right| \le \frac{\mathrm{Length}(\gamma)}{|w| - R} \sup_{z \in \mathrm{Image}(\gamma)} |f(z)|$$

which shows that $|H(w)| \to 0$ as $|w| \to \infty$. This means that H is bounded, so constant by Liouville, and must be identically zero.

Theorem 4.14 (Cauchy's theorem). Suppose U is a nonempty open set, γ closed curve in U homologous to zero in U, and $f: U \to \mathbb{C}$ holomorphic. Then

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

Proof. Equivalent to Cauchy integral formula.

4.3 Homotopy

Definition 4.15 (Null homotopic)

 $\gamma: [a, b] \to U$ is null homotopic in U if it is homotopic of a constant curve in U.

Lemma 4.16. If γ , δ closed piecewise C^1 curves, $|\gamma(t) - \delta(t)| < |w - \gamma(t)|$ for all t, then $l(\gamma; w) = l(\delta; w)$.

Theorem 4.17. If γ_0 , γ_1 are homotopic closed curves, and $w \in \mathbb{C} \setminus U$. Then $I(\gamma_0; w) = I(\gamma_1; w)$.

Proof. Let $H : [0, 1] \times [a, b] \to U$ be a homotopy from γ_0 to γ_1 . Since $K = H([0, 1] \times [a, b])$ is compact, we have $\varepsilon > 0$ such that for all $z \in K$, $w \notin D(z, 3\varepsilon)$. Furthermore, H is uniformly continuous, so choose $n \in \mathbb{N}$ such that

$$\left|s-s'\right|+\left|t-t'\right|<\frac{1}{n}\implies \left|H(s,t)-H(s',t')\right|<\varepsilon$$

For k = 0, ..., n, define $\Gamma_k(t) = H(\frac{k}{n}, t)$. In particular, $\Gamma_0 = \gamma_0$ and $\Gamma_n = \gamma_1$. Then by construction, for all $t \in [a, b], k \ge 1$, we have that

$$|\Gamma_{k-1}(t) - \Gamma_k(t)| < \varepsilon < 3\varepsilon < |w - \Gamma_{k-1}(t)|$$

Let $\tilde{\Gamma}_k(t)$ be the polygonal approximation with nodes at $\Gamma_k(t)$ at 0, $(b-a)/n, \ldots, 1$. Suppose we chose n such that

$$\left|s-s'\right|+\left|t-t'\right|<\frac{\max(1,b-a)}{n}\implies \left|H(s,t)-H(s',t')\right|<\varepsilon$$

Then we have that for $t \in [a, b]$,

$$\left|\tilde{\Gamma}_{k-1}(t) - \tilde{\Gamma}_{k}(t)\right| \leq \left|\tilde{\Gamma}_{k-1}(t) - \Gamma_{k}(t)\right| + \left|\tilde{\Gamma}_{k}(t) - \Gamma_{k}(t)\right| < 2\varepsilon$$

and

$$|w - \Gamma_{k-1}(t)| \le \left|w - \tilde{\Gamma}_{k-1}(t)\right| + \left|\Gamma_{k-1}(t) - \tilde{\Gamma}_{k-1}(t)\right|$$

which means that

$$\left|w-\tilde{\Gamma}_{k-1}(t)\right| \geq \left|w-\Gamma_{k-1}(t)\right| - \left|\Gamma_{k-1}(t)-\tilde{\Gamma}_{k-1}(t)\right| > 2\varepsilon$$

Which gives us that $I(\tilde{\Gamma}_{k-1}; w) = I(\tilde{\Gamma}_k; w)$ by the lemma. Finally, checking that $I(\tilde{\Gamma}_0; w) = I(\gamma_0; w)$ and $I(\tilde{\Gamma}_n; w) = I(\gamma_1; w)$ gives the required result.

Corollary 4.18. If γ is null homotopic then it is homologous to zero.

Corollary 4.19. If γ_1 , γ_2 homotopic curves, $f: U \to \mathbb{C}$ holomorphic, then

$$\int_{\gamma_1} f(z) \mathrm{d} z = \int_{\gamma_2} f(z) \mathrm{d} z$$

Proof. By theorem and Cauchy's integral formula.

Definition 4.20 (Simply connected)

A domain U is simply connected if every closed curve in U is null homotopic.

Theorem 4.21 (Cauchy's theorem for simply connected domains). If U is simply connected, γ closed curve in U and $f : U \to \mathbb{C}$ holomorphic, then

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

5 Singularities

Definition 5.1 (Isolated singularity)

Let $U \subseteq \mathbb{C}$ be open, $f: U \setminus \{a\} \to \mathbb{C}$ be holomorphic. Then f has an isolated singularity at a.

Definition 5.2 (Removable singularity)

An isolated singularity *a* is removable if *f* can be extended to a holomorphic function $U \to \mathbb{C}$.

Proposition 5.3. Let $U \subseteq \mathbb{C}$ be open, $a \in U$, $f : U \setminus \{a\} \to \mathbb{C}$ holomorphic. Then the following are equivalent.

- (i) *a* is a removable singularity.
- (ii) $\lim_{z \to \infty} f(z)$ exists in \mathbb{C} .
- (iii) There exists $D(a, \varepsilon) \subseteq \mathbb{C}$ such that |f(z)| is bounded on $D'(a, \varepsilon)$.
- (iv) $\lim_{z \to a} (z a) f(z) = 0$

Proof. Suppose *a* is removable. Then we have $q: U \to \mathbb{C}$ extending *f*. Then

1

$$\lim_{z \to a} f(z) = \lim_{z \to a} g(z) = g(a)$$

So (i) implies (ii). By definitions, (ii) implies (iii), and (iii) implies (iv). Suppose (iv) holds. Consider

$$h(z) = \begin{cases} (z-a)^2 f(z) & \text{if } z \neq a \\ 0 & \text{if } z = a \end{cases}$$

Then

$$\lim_{z \to a} \frac{h(z) - h(a)}{z - a} = \lim_{z \to a} (z - a)f(z) = 0$$

So *h* is differentiable at *a*, with h'(a) = 0. Thus *h* is holomorphic on *U*. Considering the Taylor series of *h*, we have that $h(z) = (z - a)^2 q(z)$ where $q : U \to \mathbb{C}$ holomorphic. So *q* extends *f*, and *a* si removable.

Definition 5.4 (Pole)

Suppose $a \in U$ is an isolated singularity of f, a is a pole of f if

$$\lim_{z \to \infty} |f(z)| = \infty$$

Proposition 5.5. Let $f: U \setminus \{a\} \to \mathbb{C}$ holomorphic. Then the following are equivalent.

(i) *a* is a pole.

- (ii) There exists $\varepsilon > 0$, $h : D(a, \varepsilon) \to \mathbb{C}$ with h(a) = 0, $h'(a) \neq 0$ for $z \in D'(a, \varepsilon)$ and $f(z) = \frac{1}{h(z)}$ for $z \in D'(a, \varepsilon)$.
- (iii) There exists $k \ge 1$ such that $g : U \to \mathbb{C}$ holomorphic, $g(a) \ne 0$, and $f(z) = (z a)^{-k}g(z)$ for $z \in U \setminus \{a\}$.

Proof. Suppose (i) holds. Then we have $\varepsilon > 0$ such that for $z \in D'(a, \varepsilon)$, $|f(z)| \neq 1$. So $h(z) = \frac{1}{h(z)}$ is holomorphic and bounded in $D'(a, \varepsilon)$. This means that h has a removable singularity at a.

Now suppose (ii) holds. By the Taylor series, we have $k \ge 1$ and $h_1 : U \to D(a, \varepsilon)$ holomorphic, $h_1(z) \ne 0$ for all $z \in D(a, \varepsilon)$. Let $g_1(z) = \frac{1}{h_1(z)}$. Then $f(z) = (z - a)^{-k}g_1(z)$ in $D'(a, \varepsilon)$. Now define

$$g(z) = \begin{cases} g_1(z) & \text{if } z \in D(a, \varepsilon) \\ (z-a)^k f(z) & \text{if } z \in U \smallsetminus \{a\} \end{cases}$$

Definition 5.6 (Order)

k above is unique, and called the order of the pole.

Definition 5.7 (Meromorphic function)

If U open, $S \subseteq U$ discrete, $f : U \setminus S \to \mathbb{C}$ holomorphic, and each $a \in S$ is a removable singularity or a pole, then f is meromorphic.

Definition 5.8 (Essential singularity)

An isolated singularity *a* is essential if it is not removable and not a pole.

5.1 Laurent expansions

Theorem 5.9. Let $A = \{z \in \mathbb{C} : r < |z - a| < R\}$, $0 \le r < R \le \infty$, $f : A \to \mathbb{C}$ holomorphic. Then f has a unique convergent series expansion

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n = \sum_{n=1}^{-\infty} c_{-n} (z-a)^{-n} + \sum_{n=0}^{\infty} c_n (z-a)^n$$

where the coefficients are given by for $r < \rho < R$,

$$c_n = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{(z-a)^{n+1}} \mathrm{d}z$$

and if $r < \rho \le \rho' < R$, the series for f converges uniformly on $\{z : \rho \le |z - a| \le \rho'\}$

Proof. Fix $w \in A$, let $g(z) = \begin{cases} \frac{f(z) - f(w)}{z - w} & \text{if } z \neq w \\ f'(w) & \text{if } z = w \end{cases}$. Then g is continuous on A, and is holomorphic on

 $A \setminus \{w\}$, so holomorphic in A. Choose ρ_1, ρ_2 such that $r < \rho_1 < |w - a| < \rho_2 < R$. Within $A, \partial D(a, \rho_1)$ and $\partial D(a, \rho_2)$ are homotopic, so

$$\int_{\partial D(a,\rho_1)} g(z) \mathrm{d}z = \int_{\partial D(a,\rho_2)} g(z) \mathrm{d}z$$

Substituting the definition of q, we get that

$$\int_{\partial D(a,\rho_1)} \frac{f(z)}{z-w} \mathrm{d}z - 2\pi i I(\partial D(a,\rho_1);w)f(w) = \int_{\partial D(a,\rho_2)} \frac{f(z)}{z-w} \mathrm{d}z - 2\pi I I(\partial D(a,\rho_2);w)f(w)$$

Since $I(\partial D(a, \rho_1); w) = 0$ and $I(\partial D(a, \rho_2); w) = 1$, we get that

$$f(w) = \frac{1}{2\pi i} \int_{\partial D(a,\rho_2)} \frac{f(z)}{z-w} dz - \frac{1}{2\pi i} \int_{\partial D(a,\rho_1)} \frac{f(z)}{z-w} dz$$

For the first one, note that

$$\frac{1}{z - w} = \sum_{n=0}^{\infty} \frac{(w - a)^n}{(z - a)^{n+1}}$$

and for the second,

$$\frac{1}{z-w} = -\sum_{n=0}^{\infty} \frac{(z-a)^n}{(w-a)^{n+1}}$$

Hence $f(w) = \sum_{n=0}^{\infty} c_n (w - a)^n + \sum_{n=1}^{\infty} c_{-n} (w - a)^{-n}$, where

$$c_n = \begin{cases} \frac{1}{2\pi i} \int_{\partial D(a,\rho_2)} \frac{f(z)}{(z-a)^{n+1}} dz & \text{if } n \ge 0\\ \frac{1}{2\pi i} \int_{\partial D(a,\rho_1)} \frac{f(z)}{(z-a)^{n+1}} dz & \text{if } n < 0 \end{cases}$$

Since $\partial D(a, \rho_1)$ and $\partial D(a, \rho_2)$ are homotopic to $\partial D(a, \rho)$, we have that

$$c_n = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{(z-a)^{n+1}} \mathrm{d}z$$

and this gives us uniqueness of the expansion. Now suppose we have (any) c_n such that

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n$$

Then choose $r < \rho \le \rho' < R$. Then we have that

$$\sum_{n=0}^{\infty} c_n (z-a)^n$$

converges for all $z \in A$, so it has radius of convergence $\geq R$, which means that it converges uniformly on $\overline{D}(a, \rho')$. Letting $\zeta = (z - a)^{-1}$,

$$\sum_{n=1}^{\infty} c_{-n} \zeta^n$$

converges foe all $z \in A$, so it has radius of convergence $> \frac{1}{r}$, and converges uniformly for $|\zeta| \le \frac{1}{\rho}$. This means that

$$\sum_{n=1}^{\infty} c_{-n} (z-a)^{-n}$$

converges uniformly for $|z - a| \ge \rho$. This means that

$$\sum_{n=-\infty}^{\infty} c_n (z-a)^n$$

converges uniformly for $ho \leq |z-a| \leq
ho'.$ Thus for any $m \in \mathbb{Z}$, we have that

$$\int_{\partial D(a,\rho)} \frac{f(z)}{(z-a)^{m+1}} \mathrm{d}z = \sum_{n=-\infty}^{\infty} c_n \int_{\partial D(a,\rho)} (z-a)^{n-m-1} \mathrm{d}z = 2\pi i c_n$$

Which gives us uniqueness of the expansion.

Corollary 5.10. We have $f_1 : D(a, R) \to \mathbb{C}$ and $f_2 : \mathbb{C} \setminus \overline{D}(a, r) \to \mathbb{C}$ holomorphic such that $f = f_1 + f_2$ in A.

Proposition 5.11. Suppose we have $f : D'(a, R) \to \mathbb{C}$ holomorphic, with series expansion

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n$$

If $c_n = 0$ for all n < 0, then *a* is a removable singularity.

Proposition 5.12. Suppose we have $f : D'(a, R) \to \mathbb{C}$ holomorphic, with series expansion

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n$$

If $c_n \neq 0$ for finitly many n < 0, then *a* is a pole.

Proposition 5.13. Suppose we have $f : D'(a, R) \to \mathbb{C}$ holomorphic, with series expansion

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - a)^n$$

If $c_n \neq 0$ for infinitely many n < 0, then *a* is an essential singularity.

5.2 Residue

Definition 5.14 (Residue)

Suppose $f: D'(a, R) \to \mathbb{C}$ holomorphic, with series expansion

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n$$

Then the residue of *f* at *a* is $\text{Res}_f(a) = c_{-1}$.

Definition 5.15 (Principal part)

Suppose $f: D'(a, R) \to \mathbb{C}$ holomorphic, with series expansion

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n$$

Then the principal part of f at a is

$$f_{\rho}(z) = \sum_{n=1}^{\infty} c_{-n} (z-a)^{-n}$$

Theorem 5.16 (Residue theorem). Let U be open, $a_1, \ldots, a_k \in U$, $f : U \setminus \{a_1, \ldots, a_n\} \to \mathbb{C}$ holomorphic. Suppose γ is a closed curve homologous to zero in U, $a_i \notin \text{Image}(\gamma)$, then

$$\frac{1}{2\pi i} \int_{\gamma} f(z) \mathrm{d}z = \sum_{j=1}^{k} I(\gamma; a_j) \operatorname{Res}_f(a_j)$$

Proof. Let

$$f_{p,j} = \sum_{n=1}^{\infty} c_{-n,j} (z - a_j)^{-n}$$

be the principal part of f at a_j . Then $f_{p,j}$ is holomorphic on $\mathbb{C} \setminus \{a_j\}$, so it is holomorphic on $\mathbb{C} \setminus \{a_1, \ldots, a_k\}$.

Let $h = f - \sum_{j=1}^{k} f_{p,j}$. Then h is holomorphic on $U \setminus \{a_1, \ldots, a_k\}$. Fix j, then $f - f_{p,j}$ has a removable singularity at a_j , and for $l \neq j$, $f_{p,j}$ is holomorphic at a_l , so h has a removable singularity at a_j . Which means that h can be extended to a holomorphic function $h : U \to \mathbb{C}$. By Cauchy's theorem,

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

Which means that

$$\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_{j=1}^{k} \frac{1}{2\pi i} \int_{\gamma} f_{p,j}(z) dz = \sum_{j=1}^{k} I(\gamma; a) \operatorname{Res}_{f}(a_{j})$$

Proposition 5.17. If $f = \frac{g}{h}$, g, h holomorphic at a, $g(a) \neq 0$ and h(a) = 0, $h'(a) \neq 0$, then

$$\operatorname{Res}_f(a) = \frac{g(a)}{h'(a)}$$

Lemma 5.18 (Jordan's lemma). Let f be a continuous complex valued function on the semicircle γ_R = $\partial D(0, R) \cap \{z : \operatorname{Re}(z) \geq 0, \gamma_R(t) = Re^{it} \text{ for } t \in [0, \pi]. \text{ Then for } \alpha > 0,$

$$\left|\int_{\gamma_R} f(z) e^{i\alpha z} \mathrm{d}z\right| \leq \frac{\pi}{\alpha} \sup_{z \in \gamma_R} |f(z)|$$

Proof. Let $M_R = \sup_{z \in \gamma_R} |f(z)|$. Then we have that

$$\begin{split} \left| \int_{\gamma_R} f(z) e^{i\alpha z} dz \right| &= \left| \int_0^{\pi} f(Re^{it}) e^{-\alpha R \sin(t) + \alpha R i \cos(t)} i R e^{it} dt \right| \\ &\leq R M_R \int_0^{\pi} e^{-\alpha R \sin(t)} dt \\ &= 2R M_R \int_0^{\pi/2} e^{-\alpha R \sin(t)} dt \\ &\leq 2R M_R \int_0^{\pi/2} e^{-\frac{2\alpha R t}{\pi}} dt \\ &= \frac{\pi M_R}{\alpha} (1 - e^{-2\alpha R}) \\ &< \frac{\pi}{\alpha} M_R \end{split}$$

Corollary 5.19. If f is continuous on $\{z : \operatorname{Re}(z) > 0, |z| > r\}$, and $\sup_{z \in \gamma_R} |f(z)| \to 0$ as $R \to \infty$, then $\left|\int_{\gamma_R} f(z) e^{i\alpha z} \mathrm{d}z\right| \to 0 \quad \text{as} \quad R \to \infty$

-	_	
ь.	_	_

Lemma 5.20. Let $f : D'(a, R) \to \mathbb{C}$ be holomorphic, z = a be a simple pole, $\gamma_{\varepsilon}(t) = a + \varepsilon e^{-it} : [\alpha, \beta] \to \mathbb{C}$. Then

$$\lim_{\varepsilon \downarrow 0} \int_{\gamma_{\varepsilon}} f(z) \mathrm{d} z = (\beta - \alpha) i \operatorname{Res}_{t}(a)$$

Proof.

$$f(z) = \frac{c}{z-a} + g(z)$$

and by computing the separate integrals, we get the required result, since

$$\int_{\gamma_{\varepsilon}} g(z) dz \to 0 \quad \text{and} \quad \int_{\gamma_{\varepsilon}} \frac{c}{z-a} dz = (\beta - \alpha)i\alpha$$

5.3 Argument principle

Proposition 5.21. Suppose *f* has a zero (pole) of order $k \ge 1$ at z = a. Then f'/f has a simple pole at z = a, with

$$\operatorname{Res}_{f}(a) = \begin{cases} k & \text{if } a \text{ is a zero} \\ -k & \text{if } a \text{ is a pole} \end{cases}$$

Proof. We only prove the case for a zero. Then we have D(a, r) such that

$$f(z) = (z - a)^k q(z)$$

where $g: D(a, r) \to \mathbb{C}$ is holomorphic and $g(a) \neq 0$. Then we have that

$$f'(z) = k(z-a)^{k-1} + (z-a)^k g'(z)$$

So

$$\frac{f'}{f} = \frac{k}{z-a} + \frac{g'}{g}$$

and g'/g is holomorphic at a, which gives the required result. For a pole, use $f(z) = (z - a)^{-k}g(z)$ instead.

Definition 5.22 (Order)

For a zero/pole a of f, write $\operatorname{ord}_f(a)$ for the order.

Theorem 5.23 (Argument principle). Let f be meromorphic on U with finitely many zeroes a_1, \ldots, a_k , finitely many poles b_1, \ldots, b_l . Let γ be a closed curve homologous to zero in $U, a_i, b_i \notin \text{Image}(\gamma)$. Then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} \mathrm{d}z = \sum_{j=1}^{k} I(\gamma; a_j) \operatorname{ord}_f(a_j) - \sum_{j=1}^{l} I(\gamma; b_j) \operatorname{ord}_f(b_j)$$

Proof. Residue theorem with q(z) = f'(z)/f(z) and previous proposition.

Definition 5.24 (Bound)

Let Ω be a domain, γ a closed curve in \mathbb{C} . Then γ bounds Ω if for all $w \in \Omega$, $l(\gamma; w) = 1$ and for all $w \in \mathbb{C} \setminus (\Omega \cup \text{Image}(\gamma)), l(\gamma; w) = 0$.

Corollary 5.25. If γ bounds a domain Ω , f meromorphic in $U \supseteq \Omega \cup \text{Image}(\gamma)$, with no zeroes/poles on Image(γ), N zeros and P poles in Ω with multiplicity, then N, P are finite, and

$$N - P = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = I(\Gamma; 0) = I(f \circ \gamma; 0)$$

Proof. Since Ω is bounded, $\overline{\Omega}$ is compact, and $\overline{\Omega} \subseteq U$. Let S be the set of singularities of f. If $\overline{\Omega} \cap S$ is infinite, by compactness $\overline{\Omega} \cap S$ has a limit point. Contradiction as the singularities are isolated. So P is finite. Similarly by compactness and the principle of isolated zeroes, N is finite. The integral follows by the argument principle.

Definition 5.26 (Local degree)

Let $f: D(a, R) \to \mathbb{C}$ be holomorphic, f non constant. Then the local degree of f at a is deg_f(a), which is the order of the zero of f(z) - f(a) at z = a.

Theorem 5.27 (Local degree). Let $f : D(a, R) \to \mathbb{C}$ be holomorphic non constant, $\deg_f(a) = d$. Then there exists $r_0 > 0$ such that

$$\forall r \in (0, r_0], \exists \varepsilon > 0, \forall w, 0 < |f(a) - w| < \varepsilon \implies f(a) = w \text{ has } d \text{ roots in } D'(a, r)$$

Proof. Let g(z) = f(z) - f(a). Then g is non constant, so $g' \neq 0$ in D(a, R). Applying the principle of isolated zeroes to g and g', we have $r_0 \in (0, R)$ such that $g(z), g'(z) \neq 0$ for all $z \in D'(a, r_0)$.

Fix $r \in (0, r_0]$ and for $t \in [0, 1]$ define $\gamma(t) = a + re^{2\pi i t}$, $\Gamma(t) = g(\gamma(t))$. Since Image(γ) is compact so closed, and $0 \notin$ Image(γ) since q is nonzero. So we have $\varepsilon > 0$ such that $D(0, \varepsilon) \subseteq \mathbb{C} \setminus$ Image(γ).

Fix w with $0 < |f(a) - w| < \varepsilon$. Then $w - f(a) \in D(0, \varepsilon) \subseteq \mathbb{C} \setminus \text{Image}(\gamma)$. As $z \mapsto I(\Gamma; z)$ is locally constant, it is constant on $D(0; \varepsilon)$, so $I(\Gamma; w - f(a)) = I(\Gamma; 0)$. Then we have that

$$I(\Gamma; w - f(a)) = \frac{1}{2\pi i} \int_0^1 \frac{g'(\gamma(t))\gamma'(t)}{g(\gamma(t)) - (w - f(a))} dt = \frac{1}{2\pi i} \int_{\partial D(a,r)} \frac{f'(z)}{f(z) - w} dz = d$$

by the argument principle, since g has one zero, with multiplicity d. Thus by the argument principle, f(z) - w has d roots in D(a, r) as well. Since $w \neq f(a)$, none of the zeros are at a. Since $f' \neq 0$ in D(a, r), the zeroes are simple, so distinct.

Corollary 5.28 (Open mapping theorem). A non constant holomorphic function is an open map.

Proof. Suppose $f : U \to \mathbb{C}$ holomorphic, $V \subseteq U$ open, $b = f(a) \in f(V)$. Then we have r > 0 such that $D(a, r) \subseteq V$. Applying the local degree theorem, there exists $\varepsilon > 0$ such that

$$w \in D'(f(a), \varepsilon) \implies w \in f(D'(a, r))$$

So $D(f(a), \varepsilon) \subseteq f(V)$, so f(V) is open.

Theorem 5.29 (Rouché). Let γ be a closed curve bounding a region Ω , f, g holomorphic on U open, with

 $U \supseteq \Omega \cup \text{Image}(\gamma)$. If |f(z) - g(z)| < |g(z)| for $z \in \text{Image}(\gamma)$, then f, g have the same number of zeroes in Ω (with multiplicity).

Proof. Note that the inequalities imply that f, g nonzero on Image(γ). So we have V open, $V \supseteq$ Image(γ) such that f, g nonzero on V. Let h : f/g. Then h is holomorphic and never zero. Since $g \neq 0$ in Ω , we have that the zeroes of g in $\Omega \cup V$ are isolated, so h is meromorphic on $\Omega \cup V$, with no zeroes or poles on Image(γ). Furthermore, f, q have finitely many zeroes on Ω .

In addition, for $z \in \text{Image}(\gamma)$, |h(z) - 1| < 1, so letting $\Gamma = h \circ \gamma$, we have that $\text{Image}(\Gamma) \subseteq D(1, 1)$, so $I(\Gamma; 0) = 0.$

By counting the zeroes and poles of h we get the required result.