Complex Analysis

Shing Tak Lam

May 11, 2022

Contents

1 Differentiation

Let $U \subseteq \mathbb{C}$ be open, $f: U \to \mathbb{C}$.

Definition 1.1 (Differentiable) *^f* is holomorphic at *^w [∈] ^U* if

$$
f'(w) = \lim_{z \to w} \frac{f(z) - f(w)}{z - w}
$$

exists. We call the result the derivative of *^f* at *^w*.

Definition 1.2 (Holomorphic)

f is holomorphic at $a \in U$ if there exists $\varepsilon > 0$ such that *f* is differentiable at all $z \in D(a, \varepsilon)$. *^f* is holomorphic in *^U* if *^f* is holomorphic at every point in *^U*. Equivalently, *^f* is differentiable at every point in *^U*.

Proposition 1.3. The map $f \mapsto f'$ is linear. Proposition 1.4 (Product rule).

$$
(fg)' = f'g + fg'
$$

Proposition 1.5 (Chain rule).

$$
(f \circ g)'(z) = f'(g(z))g'(z)
$$

Let *f* = *u* + *iv*, where *u*, *v* : *U* → ℝ, and in addition, we identify $\mathbb{C} \cong \mathbb{R}^2$, so we consider *U* to be an open set of \mathbb{R}^2 subset of \mathbb{R}^2 .

Theorem 1.6 (Cauchy-Riemann). *f* is differentiable at $w = c + id \in U$ if and only if *u*, *v* are differentiable at (*c, d*), and

$$
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \text{and} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \text{ at } (c, d)
$$

Furthermore, $f'(w) = u_x + iv_x$.

Proof. f is differentiable at $w = c + id$, with derivative $p + iq$ *⇐⇒*

$$
\lim_{z \to w} \frac{f(z) - f(w)}{z - w} = p + iq
$$

⇐⇒

$$
\lim_{z \to w} \frac{f(z) - f(w) - (z - w)(p + iq)}{|z - w|} = 0
$$

⇐⇒

$$
\lim_{(x,y)\to(c,d)}\frac{u(x,y)-u(c,d)-p(x-c)+q(y-d)}{\|(x,y)-(c,d)\|}=0
$$

and

⇐⇒

⇐⇒

$$
\lim_{(x,y)\to(c,d)} \frac{v(x,y)-v(c,d)-q(x-c)-p(y-d)}{\|(x,y)-(c,d)\|}=0
$$

^u is differentiable at (*c, d*) with *Du*(*c, d*)(*x, y*) = *px−qy*, and *^v* is differentiable at (*c, d*) with *Dv*(*c, d*)(*x, y*) = *qx* ⁺ *py*.

u, *v* differentiable at (*c*, *d*) with $u_x = v_y = p$ and $u_y = -v_x = q$.

Corollary 1.7. If $f: U \to \mathbb{C}$ has continuous partial derivatives that satisfy the Cauchy-Riemann equations, then *^f* is differentiable ta *^U*.

Proof. Continuous partial derivatives implies that *^f* is differentiable.

Definition 1.8 (Domain)

A domain *^U* is a nonempty, open, path connected subset of ^C.

Corollary 1.9. If *U* is a domain, $f: U \to \mathbb{C}$ holomorphic on *U*, and $f' = 0$ in *U*. Then *f* is constant.

Proof. By Cauchy-Riemann $Du = 0$ and $Dv = 0$, so u, v are constant.

 \Box

 \Box

Definition 1.10 (Entire)

If $f: \mathbb{C} \to \mathbb{C}$ is holomorphic, then we say that *f* is entire.

1.1 Power series

Theorem 1.11. Suppose $f(z) = \sum_{n=0}^{\infty} c_n(z-a)^n$ has radius of convergence *R*. Then *f* is holomorphic in $D(a, B)$ with dorivative *^D*(*a, R*), with derivative

$$
f'(z) = \sum_{n=0}^{\infty} nc_n (z - a)^{n-1}
$$

which has the same radius of convergence *^R*.

Proof. Without loss of generality, $a = 0$. The power series for *f'* has radius of convergence $R_1 \in [0, \infty]$.
 Fix $z \in D(0, R)$ and chose a such that $|z| \leq c \leq R$. Then Fix $z \in D(0, R)$, and choose ρ such that $|z| < \rho < R$. Then

$$
n|c_n||z|^{n-1} = n|c_n|\left|\frac{z}{\rho}\right|^{n-1}\rho^{n-1} \leq |c_n|\rho^{n-1}
$$

for *ⁿ* large, since *ⁿ z ρ* $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ *n−*¹ → 0 as $n \to \infty$. So $R \le R_1$, as this means that $\sum nc_n z^{n-1}$ converges in $D(0, R)$. As $|c_n||z^n| \le n|c_n||z^n| = |z|(n c_n|z^{n-1}|)$, so if $\sum n|c_n||z|^{n-1}$ converges, so does $\sum |c_n||z^n|$, which means $P \ge R$, so $P = R$. that $R > R_1$, so $R = R_1$.

To prove that *f* is differentiable, fix $z \in D(0, R)$, and let

$$
g(w) = \begin{cases} \frac{f(w) - f(z)}{w - z} & \text{if } w \neq z\\ \sum_{n=1}^{\infty} n c_n z^{n-1} & \text{if } w = z \end{cases}
$$

We want to show that *^g* is continuous as *^z*. Define

$$
h_n(w) = \begin{cases} \frac{c_n (w^n - z^n)}{w - z} & \text{if } w \neq z \\ n c_n z^{n-1} & \text{if } w = z \end{cases}
$$

Then $g(w) = \sum_{n=1}^{\infty} h_n(w)$. h_n is continuous at *z*, as it is the derivative of $w \mapsto c_n w^n$. Since *w*^{*n*} − *z*^{*n*} *w* − *z* = *z*^{*n*−1} + *wz*^{*n*−2} + · · · + *w*^{*n*−2}*z* + *w*^{*n*−1}

Then for any r such that $|z| < r < R$, $w \in D(0, r)$, $|h_n(w)| \le n |c_n|r^{n-1}$. Let $M_n = n|c_n|r^{n-1}$. Then $\sum M_n$
verges so $\sum h$, converges uniformly by the Weierstrass M test. So a is the uniform limit of continuous converges, so $\sum h_n$ converges uniformly by the Weierstrass *M*-test. So *g* is the uniform limit of continuous functions, s o it is continuous.

Corollary 1.12. Suppose $f(z) = \sum_{n=0}^{\infty} c_n(z-a)^n$ has radius of convergence *R*. If $f \equiv 0$ in $D(a, \varepsilon)$ for some $\varepsilon > 0$, then $f \equiv 0$ in $D(a, R)$.

Proof. We must have that $c_n = 0$ for all *n*.

Definition 1.13 (Exponential)

$$
\exp(z) = \sum_{n=1}^{\infty} \frac{z^n}{n!}
$$

Proposition 1.14. exp is entire, with derivative exp.

Proposition 1.15. $exp(z) \neq 0$ for all *z*, and $exp(z + w) = exp(z) exp(w)$.

Proof. Fix $w \in \mathbb{C}$, define $F(z) = \exp(z + w) \exp(-z)$. Then

$$
F'(z) = -\exp(z + w)\exp(-z) + \exp(z + w)\exp(-z) = 0
$$

So *F* is constant, and $F(z) = F(0) = \exp(w)$.

Proposition 1.16. For $x, y \in \mathbb{R}$,

$$
\exp(x + iy) = e^x(\cos(x) + i\sin(y))
$$

and

$$
\exp(z) = 1 \iff z \in 2\pi i \mathbb{Z}
$$

Proposition 1.17. For $z \in \mathbb{C}$ nonzero, we have $w \in \mathbb{C}$ such that $exp(w) = z$.

Definition 1.18 (Logarithm) Given $z \in \mathbb{C}$, we say $w \in \mathbb{C}$ is a logarithm of *z* if $exp(w) = z$.

Definition 1.19 (Branch of logarithm)

Let *^U [⊆]* C ∖ ⁰ be open. Then a branch of the logarithm on *^U* is a continuous function *^λ* : *^U [→]* ^C such that

 $\exp(\lambda(z)) = z$

for all $z \in U$.

Proposition 1.20. If λ is a branch of log on *U*, then λ is holomorphic on *U*, so $\lambda'(z) = \frac{1}{z}$.

Proof. Suppose *^w [∈] ^U*. Then

$$
\lim_{z \to w} \frac{\lambda(z) - \lambda(w)}{z - w} = \lim_{z \to w} \frac{\lambda(z) - \lambda(w)}{\exp(\lambda(z)) - \exp(\lambda(w))}
$$
\n
$$
= \lim_{z \to w} \frac{1}{\frac{\exp(\lambda(z)) - \exp(\lambda(w))}{\lambda(z) - \lambda(w)}}
$$
\n
$$
= \frac{1}{\exp(\lambda(w))} \lim_{\lambda(z) \to \lambda(w)} \frac{1}{\frac{\exp(\lambda(z) - \lambda(w)) - 1}{\lambda(z) - \lambda(w)}}
$$
\n
$$
= \frac{1}{\exp(\lambda(w))} \lim_{h \to 0} \frac{1}{\frac{\exp(h) - 1}{h}}
$$
\n
$$
= \frac{1}{w}
$$

 \Box

Definition 1.21 (Principal branch)

The principal branch of log is the function

$$
\mathsf{Log} : \mathbb{C} \setminus \{x \in \mathbb{R} : x \leq 0\} \to \mathbb{C}
$$

by $Log(z) = log |z| + i arg(z)$, where we have $arg(z) \in (-\pi, \pi)$.

Proposition 1.22. Log is a branch of log.

Proposition 1.23.

Log(1 + z) =
$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1} z^n}{n}
$$
 for $|z| < 1$

Proof. Define for *|z| <* 1,

$$
F(z) = \text{Log}(1 + z) - \sum_{n=1}^{\infty} \frac{(-1)^{n-1}z^n}{n}
$$

Then $F' = 0$, so $F = 0$.

1.2 Conformal maps

Proposition 1.24. Let *f* : *U* → |*C* be holomorphic at *w* ∈ *U*, *f'*(*w*) ≠ 0. Let *γ*₁, *γ*₂ : [−1, 1] → *U* be *C*¹ curves such that $γ_1(0) = γ_2(0) = w$, $γ'_1(0)$, $γ'_2(0) \neq 0$. Then 1 2

$$
\arg(\gamma'_1(0)) - \arg(\gamma'_2(0)) = \arg((f \circ \gamma_1)'(0)) - \arg((f \circ \gamma_2)'(0))
$$

Definition 1.25 (Conformal) *f* : *U* \rightarrow \mathbb{C} is conformal at $w \in U$ if $f'(w) \neq 0$.

Definition 1.26 (Conformal equivalence)

f : *U* → \tilde{U} is a conformal equivalence if *f* is bijective and holomorphic, with $f'(z) \neq 0$ for all $z \in U$.

Proposition 1.27. Möbius maps are conformal.

2 Complex integration

Definition 2.1 (Complex (Riemann) integral) Suppose $f : [a, b] \to \mathbb{R}$, with $\text{Re}(f)$, $\text{Im}(f)$ integrable. Then define

$$
\int_a^b f(t)dt = \int_a^b \text{Re}(f(t))dt + i \int_a^b \text{Im}(f(t))dt
$$

Proposition 2.2.

$$
\left| \int_a^b f(t) dt \right| \leq \int_a^b |f(t)| dt \leq (b-a) \sup_{t \in [a,b]} |f(t)|
$$

Proof. If $\int_a^b f(t)dt = 0$ we are done. If not, say $\int_a^b f(t)dt = re^{i\theta}$. Let $M = \sup_{t \in [a,b]} |f(t)|$. Then

$$
\left| \int_a^b f(t) dt \right| = r = e^{-i\theta} \int_a^b f(t) dt = \int_a^b \text{Re}(e^{-i\theta} f(t)) dt + i \int_a^b \text{Im}(e^{-i\theta} f(t)) dt
$$

Since the left hand side of the equality is real, we must have that

$$
\left| \int_a^b f(t) dt \right| = \int_a^b \text{Re}(e^{-i\theta} f(t)) dt \le \int_a^b |e^{-i\theta} f(t)| dt = \int_a^b |f(t)| dt
$$

and the final inequality follows from real analysis.

Remark 2.3. Equality holds if and only if *^f* is constant.

Definition 2.4 (Curve integral)

Let $U \subseteq \mathbb{C}$ be open, $f: U \to \mathbb{C}$ continuous, $\gamma: [a, b] \to U$ a C^1 curve. Then the integral of f along γ is

$$
\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt
$$

Proposition 2.5. Integral is independent of parametrisation.

Proof. Chain rule.

Definition 2.6 (Length) Define the length of a curve by \Box

Length(
$$
\gamma
$$
) = $\int_a^b |\gamma'(t)| dt$

Proposition 2.7.

$$
\left|\int_{\gamma} f(z)dz\right| \leq \text{Length}(\gamma) \sup_{\gamma} |f|
$$

Theorem 2.8 (FTC). Suppose $F: U \to \mathbb{C}$ is C^1 , then

$$
\int_{\gamma} F'(z)dz = F(\gamma(b)) - F(\gamma(a))
$$

Proof. By real FTC.

Corollary 2.9. If *^γ* is a closed curve, then

$$
\int_{\gamma} F'(z) \mathrm{d} z = 0
$$

Theorem 2.10 (FTC II). Let *^U [⊆]* ^C be a domain, *^f* : *^U [→]* ^C continuous, and for every closed curve *^γ* in *^U*,

$$
\int_{\gamma} f(z) \mathrm{d} z = 0
$$

Then *^f* has an antiderivative in *^U*.

Proof. Fix $a_0 \in U$. For $w \in U$, define a curve $\gamma_w : [0, 1] \to U$ such that $\gamma_w(0) = a_0$ and $\gamma_w(1) = w$. Since U is path connected, one exists. Furthermore, we can take *^γ^w* polygonal and piecewise *^C* 1 . Define

$$
F(w) = \int_{\gamma_w} f(z) \mathrm{d} z
$$

Note that *F* is independent of the choice of *γ*, since if *γ_{<i>w*}</sub>, *γ*_{*w*} are both curves from *a*₀ to *w*, then *γ_{<i>w*} + (−γ_{*w*})</sub> is a closed curve. Fix $w \in U$. Since U is open, we have $r > 0$ such that $D(w, r) \subseteq U$. For $h \in \mathbb{C}$ with $0<|h|< r$, define $\delta_h(t)=w+th$ for $t\in[0,1]$. Now note that $\gamma=\gamma_w+\delta_h+(-\gamma_{w+h})$ is a closed curve, so $\int_{\gamma} f(z) dz = 0$ by assumption.

Hence we have that

$$
F(w+h) = \int_{\gamma_{w+h}} f(z)dz = \int_{\gamma_w} f(z)dz + \int_{\delta_h} f(z)dz = F(w) + \int_{\delta_h} f(z)dz = F(w) + hf(w) + \int_{\delta_h} (f(z) - f(w))dz
$$

Suffices to show the error term is *^o*(*h*).

$$
\frac{1}{|h|}\left|\int_{\delta_h} f(z) - f(w)dz\right| \leq \frac{1}{h}\operatorname{Length}(\delta_h) \sup_{z \in \delta_h([0,1])} |f(z) - f(w)| = \sup_{z \in \delta_h([0,1])} |f(z) - f(w)| \to 0 \quad \text{as} \quad h \to 0
$$

2.1 Cauchy's theorem for star domains

 \Box

Definition 2.11 (Star shaped domain)

A domain $U ⊆ C$ is star shaped if there exists $a_0 ∈ U$ such that for all $z ∈ U$, the seqment $[a_0, z]$ is contained in *^U*.

Definition 2.12 (Triangle) A triangle *^T [⊆]* ^C is the closed convex hull of three points in ^C.

Definition 2.13 (Boundary of the triangle)

We define the boundary of the triangle to be oriented anticlockwise.

Corollary 2.14. If *^U* is star shaped, *^f* : *^U [→]* ^C is continuous, and

$$
\int_{\partial T} f(z) \mathrm{d} z = 0
$$

for all triangles $T \subseteq U$, then *f* has an antiderivative in *U*.

Proof. Modify proof of FTC II.

Theorem 2.15 (Cauchy's theorem for triangles). Suppose *^U [⊆]* ^C open, *^f* : *^U [→]* ^C holomorphic. Suppose *^T [⊆] ^U* is a triangle. Then

$$
\int_{\partial T} f(z) \mathrm{d} z = 0
$$

Proof. Let $\eta(T) = \int_{\partial T} f(z) dz$. Subdivide *T* into 4 smaller triangles $T^{(i)}$ by connecting the midpoints of each conservative triangles $T^{(i)}$. $P^{(i)}$ *Ru triangle inequality we have i quality the midpoints of each c* edge. Then as the inner edges cancel, *^η*(*^T*) = *^η*(*^T* (1)) + *· · ·* ⁺ *^η*(*^T* (4)). By triangle inequality, we have *ⁱ* such that

$$
\left|\eta(T^{(i)})\right| \ge \frac{|\eta(T)|}{4}
$$

Define $T_0 = T$, $T_1 = T^{(i)}$. Then

$$
|\eta(T_1)| \ge \frac{1}{4} |\eta(T_0)| \quad \text{and} \quad \text{Length}(\partial T_1) = \frac{1}{2} \text{Length}(\partial T_0)
$$

Repeat the above process to get T_0 , T_1 , T_2 , . . . such that

$$
|\eta(T_n)| \ge \frac{1}{4^n} |\eta(T_0)| \quad \text{and} \quad \text{Length}(\partial T_n) = \frac{1}{2^n} \text{Length}(\partial T_0)
$$

Since diam(T_n) \rightarrow 0, by compactness we have that $\bigcap_n T_n = \{z_0\}$. Let $\varepsilon > 0$, since f is differentiable at z_0 , we have $\delta > 0$ such that

$$
\forall z \in U, |z - z_0| < \delta \implies \left| f(z) - f(z_0) - f'(z_0)(z - z_0) \right| \leq \varepsilon |z - z_0|
$$

Now, by FTC we have that

$$
\eta(T_n) = \int_{\partial T_n} f(z) dz = \int_{\partial T_n} f(z) - f(z_0) - f'(z_0)(z - z_0) dz
$$

Choose *n* such that $T_n \subseteq D(z_0, \delta)$. Then

$$
|\eta(T_0)| = 4^n |\eta(T_n)|
$$

\n
$$
\leq 4^n \left| \int_{\partial T_n} f(z) dz \right|
$$

\n
$$
= 4^n \left| \int_{\partial T_n} f(z) - f(z_0) - f'(z_0)(z - z_0) dz \right|
$$

\n
$$
\leq 4^n \operatorname{Length}(\partial T_n) \sup_{z \in \partial T_n} |f(z) - f(z_0) - f'(z_0)(z - z_0)|
$$

\n
$$
\leq 4^n \varepsilon \operatorname{Length}(\partial T_n) \sup_{z \in \partial T_n} |z - z_0|
$$

\n
$$
\leq 4^n \varepsilon \operatorname{Length}(\partial T_n)^2
$$

\n
$$
= \varepsilon \operatorname{Length}(\partial T_0)^2
$$

But $ε > 0$ is arbitrary. So $η(T₀) = 0$.

Theorem 2.16. Let $U ⊆ C$ open, $f : U → C$ continuous, $S ⊆ U$ finite, f holomorphic on $U \setminus S$. Then for evert triangle $T \subseteq U$, we have that

$$
\int_{\partial T} f(z) \mathrm{d} z = 0
$$

Proof. By the above process, subdivide T into $N = 4^n$ triangles, say T_1, \ldots, T_N . Then the interiors cancel, so

$$
\int_{\partial T} f(z) dz = \sum_{j=1}^{N} \int_{\partial T_j} f(z) dz
$$

Let $J = \{j : T_j \cap S = \varnothing\}$. By Cauchy theorem for triangles, for all $j \in J$, $\int_{\partial T_j} f(z) dz = 0$. So we have that

$$
\int_{\partial T} f(z) dz = \sum_{j \notin J} \int_{\partial T_j} f(z) dz
$$

Note that each point in *^S* is in at most 6 triangles, so

$$
\left| \int_{\partial T} f(z) dz \right| \le 6|S| \left| \sup_{z \in T} f(z) dz \right| \frac{\text{Length}(\partial T)}{2^n} \to 0 \quad \text{as} \quad n \to \infty
$$

Corollary 2.17. Let $U \subseteq \mathbb{C}$ be a star domain, $f : U \to \mathbb{C}$ continuous, holomorphic in $U \setminus S$, where $S \subseteq U$ finite. Then for any closed curve *^γ* in *^U*,

$$
\int_{\gamma} f(z) \mathrm{d} z = 0
$$

Proof. ^f has an antiderivative, so result follows by FTC for star domains.

2.2 Cauchy integral formula for a disc

Definition 2.18 (Boundary of a disc)

For *^D*(*a, r*), we define the boundary *∂D*(*a, r*) to be the path

$$
t \mapsto a + re^{2\pi it}
$$

 \Box

 \Box

Lemma 2.19 (Fundamental integral). Let $r > 0$, $w \in D(a, r)$. Then

$$
\int_{\partial D(a,r)} \frac{1}{z - w} dz = 2\pi i
$$

Proof.

$$
\frac{1}{z-w} = \frac{1}{z-a+a-w} = \frac{1}{z-a} \frac{1}{1-\frac{w-a}{z-a}} = \sum_{j=0}^{\infty} \frac{(w-a)^j}{(z-a)^{j+1}}
$$

Since $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ $\frac{(w-a)}{(w-a)}$ (*^z [−] ^a*) ⁼ *|w [−] a|r <* 1. Furthermore, by the Weierstrass M-test, the series converges uniformly. So we have that

$$
\int_{\partial D(a,r)} \frac{1}{z - w} dz = \sum_{j=0}^{\infty} (w - a)^j \int_{\partial D(a,r)} \frac{1}{(z - a)^{j+1}} dz
$$

By computing the integral explicitly for $j = 0$, and using FTC for $j \ge 1$ we find the required result. \Box

Theorem 2.20 (Cauchy integral formula for a disc). Let $D = D(a, r)$, $f : D \to \mathbb{C}$ holomorphic. Then for nay $0 < \rho < r$, $w \in D(a, \rho)$, we have that

$$
f(w) = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{z - w} dz
$$

Proof. Fix *w*, define $h: D \to \mathbb{C}$ by

$$
h(z) = \begin{cases} \frac{f(z) - f(w)}{z - w} & \text{if } z \neq w \\ f'(w) & \text{if } z = w \end{cases}
$$

Then *h* is continuous on *D* and holomorphic in $D \setminus \{w\}$. By Cauchy's theorem for star domains, we have that

$$
\int_{\partial D(a,\rho)} h(z) \mathrm{d} z = 0
$$

Substituting the definition of *^h*, we get that

$$
f(w) \int_{\partial D(a,\rho)} \frac{1}{z - w} dz = \int_{\partial D(a,\rho)} \frac{f(z)}{z - w} dz
$$

Result then follows by the fundamental integral.

Corollary 2.21 (Mean value property). Suppose $f: D(a, R) \to \mathbb{C}$ holomorphic, $0 < \rho < R$. Then

$$
f(a) = \int_0^1 f(a + \rho e^{2\pi i t}) dt
$$

Proof. By Cauchy integral formula for a disc.

Proposition 2.22. If $f : \mathbb{C} \to \mathbb{C}$ is entire, for some $K \geq 0$, $\alpha < 1$, we have that

$$
|f(z)| \leq K(1+|z|^{\alpha})
$$

for all $z \in \mathbb{C}$, then *f* is constant.

 \Box

Proof. Given $w \in \mathbb{C}$, $\rho > |w|$, by the Cauchy integral formula, we have that

$$
f(w) = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{z - w} dz
$$

Then

$$
|f(w) - f(0)| = \frac{1}{2\pi} \left| \int_{\partial D(a,\rho)} \frac{f(z)}{z - w} - \frac{f(z)}{z} dz \right|
$$

\n
$$
\leq \frac{|w|}{2\pi} \operatorname{Length}(\partial D(a,\rho)) \sup_{z \in \partial D(a,\rho)} \left| \frac{f(z)}{z(z - w)} \right|
$$

\n
$$
\leq \frac{|w|K(1 + \rho)^{\alpha}}{2\pi\rho(\rho - |w|)} = \frac{|w|K(1 + \rho^{\alpha})}{\rho - |w|}
$$

Letting $\rho \rightarrow \infty$, we get $f(w) = f(0)$.

Theorem 2.23 (Liouville). If $f : \mathbb{C} \to \mathbb{C}$ is entire, $|f(z)| \leq K$ for all $z \in \mathbb{C}$, then *f* is constant.

Proof. Immediate by above proposition.

Theorem 2.24 (Fundamental theorem of algebra). Every non constant polynomial with complex coefficients has a root over ^C.

Proof. Let $n = \deg(p) \geq 1$, and without loss of generality, p monic, so $p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$. Then for $z \neq 0$, we have that

$$
p(z) = z^n \left(1 + \frac{a_{n-1}}{z} + \cdots + \frac{a_0}{z^n} \right)
$$

which means that

$$
|p(z)| \geq |z^n| \left(1 - \left(\frac{|a_{n-1}|}{|z|} + \cdots + \frac{|a_0|}{|z^n|}\right)\right)
$$

So $|p(z)| \rightarrow \infty$ as $|z| \rightarrow \infty$. So we have $R > 0$ such that if $|z| > R$, $|p(z)| > 1$. Furthermore, suppose contradiction a bas no root over C . Define $q(z) = \frac{1}{z}$. Then g is ontire. For $|z| > R$, $|q| < 1$ and by for contradiction *p* has no root over C. Define $g(z) = \frac{1}{p(z)}$. Then *g* is entire. For $|z| > R$, $|g| < 1$, and by compactness and continuity of *^g*, *^g* is also bounded on *^D*(0*, R*). But this means that *^g* is constant, so *^p* is constant. Contradiction.

Theorem 2.25 (Local maximum modulus). Suppose $f: D(a, R) \to \mathbb{C}$ is holomorphic, $|f(z)| \leq |f(a)|$ for all $z \in D(a, R)$. Then *f* is constant.

Proof. By the mean value property, we have that for any ⁰ *< ρ < R*,

$$
f(a) = \int_0^1 f(a + \rho e^{2\pi i t}) dt
$$

So

$$
|f(a)| = \left| \int_0^1 f(a + \rho e^{2\pi i t}) dt \right| \le \sup_{t \in [0,1]} |f(a + \rho e^{2\pi i t})| \le |f(a)|
$$

So equality holds. The first inequality gives us that $f(a + \rho e^{2\pi it}) = c_{\rho}$ constant. The second one gives that $|c_{\rho}| = |f(a)|$, so $|f(z)|$ is constant, and by Cauchy-Riemann, f is constant.

 \Box

2.3 Power series

Theorem 2.26. Let $f: D(a, R) \to \mathbb{C}$ be holomorphic. Then

$$
f(w) = \sum_{n=0}^{\infty} c_n (w - a)^n
$$

where

$$
c_n = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{(z-a)^{n+1}} dz
$$

Proof. Fix $0 < \rho < R$. Then for $w \in D(a, \rho)$, we have that

$$
f(w) = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{z - w} dz = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} f(z) \sum_{n=0}^{\infty} \frac{(w - a)^n}{(z - a)^{n+1}} dz = \sum_{n=0}^{\infty} c_n(\rho)(w - a)^n
$$

where

$$
c_n(\rho) = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{(z-a)^{n+1}} dz
$$

This gives us a power series representation of *^f*, which means that *^f* is infinitely differentiable, with

$$
c_n(\rho)=\frac{f^{(n)}(a)}{n!}
$$

So $c_n(ρ)$ is independent of $ρ$.

Corollary 2.27. Let $f: U \to \mathbb{C}$ be holomorphic. Then *f* is analytic.

Corollary 2.28.

$$
f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{(z-a)^{n+1}} dz
$$

Theorem 2.29 (Morera). Let *^U [⊆]* ^C be open, *^f* : *^U [→]* ^C is continuous, and for every closed curve *^γ* in *^U*, $\int_{\gamma} f(z) dz = 0$. Then *f* is holomorphic in *U*.

Proof. f has an antiderivative *F*. Then $f = F'$ is holomorphic.

2.4 Zeroes of a holomorphic function

Theorem 2.30 (Principle of isolated zeroes). Suppose $f : D(a, R) \to \mathbb{C}$ is holomorphic, $f \neq 0$. Then there exists $r > 0$ such that $f(z) \neq 0$ whenever $0 < |z - a| < r$.

Proof. If $f(a) \neq 0$ we are done by continuity. If $f(a) = 0$, then we have $m \geq 1$ such that $f(z) = z^m g(z)$, where $a : D(a, B) \to \mathbb{C}$ belomernhic $g(a) \neq 0$. Then we are done by continuity of a . $g: D(a, R) \to \mathbb{C}$ holomorphic, $g(a) \neq 0$. Then we are done by continuity of *g*.

Theorem 2.31 (Unique analytic continuation). Suppose *U*, *V* domains, $U \subseteq V$, $q_1, q_2 : V \to \mathbb{C}$ analytic, $q_1 = q_2$ on *U*. Then $q_1 = q_2$.

 \Box

Proof. Let $h = g_1 - g_2$. Then $h = 0$ on *U*. Define

*V*₀ = { $z \in V : h ≡ 0$ in some *D*(*z, r*)} and *V*₁ = { $z \in V : h^{(n)}(z) ≠ 0$ for some *n* ≥ 0}

By the principle of isolated zeroes, V_0 and V_1 partition *V*. By construction, V_0 open, and by continuity of derivatives. V_1 is open. Since *V* is connected and V_0 nonemptu, we must in fact have $V = V_0$. the derivatives, V_1 is open. Since V is connected and V_0 nonempty, we must in fact have $V = V_0$.

Proposition 2.32 (Identity principle). Suppose $f, q : U \rightarrow \mathbb{C}$ holomorphic, and suppose

$$
S = \{z \in U : f(z) = f(z)\}
$$

has a limit point. Then $f = q$.

Proof. Let $h(z) = f(z) - g(z)$. Then by the principle of isolated zeroes, *h* must be identically zero.

 \Box

Corollary 2.33 (Global maximum modulus principle). Suppose *U* is bounded, $f : \overline{U} \to \mathbb{C}$ continuous, *f* holomorphic on *U*. Then |*f*| attains its maximum value on $\partial U = \overline{U} \setminus U$.

Proof. \overline{U} is compact, so |f| is bounded and attains its maxima. Say for all $z \in \overline{U}$, $|f(z)| \leq |f(w)|$. If $w \notin U$, then $w \in \partial U$ and we are done.

On the other hand, if $w \in U$, choose $D = D(w, r) \subseteq U$. Then by local maximum modulus principle, *f* is constant on *D*, so by identity principle (or unique analytic continuation), *f* is constant on *U*. By continuity, *f* is constant on \overline{U} . is constant on *^U*.

Theorem 2.34 (Cauchy integral formula for derivatives). Suppose $f: D(a, R) \to \mathbb{C}$ holomorphic, then for any $0 < \rho < R$, $w \in D(a, \rho)$, we have that

$$
f^{(n)}(w) = \frac{n!}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{(z-w)^{n+1}} dz
$$

Proof. By induction on *n*. $n = 0$ is the Cauchy integral formula.

For $n = 1$, let $g(z) = \frac{f(z)}{z - w}$. This is holomorphic on $D(a, R) \setminus \{w\}$, with $g'(z) = \frac{f'(z)}{z - w} - \frac{f(z)}{(z - w)}$ $(z - w)^2$ since $\partial D(a, \rho) \subseteq D(a, R) \setminus \{w\}$, we have that

$$
\int_{\partial D(a,\rho)} g'(z) \mathrm{d} z = 0
$$

which means that

$$
\int_{\partial D(\mathfrak{a},\rho)}\frac{f'(z)}{z-w}=\int_{\partial D(\mathfrak{a},\rho)}\frac{f(z)}{(z-w)^2}\mathrm{d}z
$$

Using the Cauchy integral formula for *^f ′* , we have that

$$
f'(w) = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} \frac{f'(z)}{z - w} dz = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{(z - w)^2}
$$

For $n \ge 2$, let $n = k + 1$ and $g(z) = \frac{f(z)}{(z + w)^{k+1}}$. Then $g'(z) = \frac{f'(z)}{(z + w)^{k+1}} - \frac{(k + 1)f(z)}{(z + w)^{k+2}}$. Similarly, we

have tha

$$
\int_{\partial D(a,\rho)} g'(z) \mathrm{d} z = 0
$$

which means that

$$
\int_{\partial D(a,\rho)} \frac{f'(z)}{(z-w)^{k+1}} dz = (k+1) \int_{\partial D(a,\rho)} \frac{f(z)}{(z-w)^{k+2}} dz
$$

which by the induction hypothesis gives the required result.

3 Uniform limits

Proposition 3.1. (f_n) converges locally uniformly on U if and only if (f_n) converges on every compact subset $K \subseteq U$.

Theorem 3.2. Let $U \subseteq \mathbb{C}$ be open, $f_n : U \to \mathbb{C}$ holomorphic, $f_n \to f$ locally uniformly on *U*. Then *f* is holomorphic, and $f_n^{(k)} \to f^{(k)}$ locally uniformly.

Proof. For $a \in U$, let $r > 0$ be such that $\overline{D}(a, r) \subseteq U$. Then $f_n \to f$ uniformly on $D(a, r,$ which means that *f* is continuous on *^D*(*a, r*) as the uniform limit of continuous functions. Let *^γ* be a closed curve in *^D*(*a, r*), then by Cauchy for star domains, we have that

$$
\int_{\gamma} f_n(z) \mathrm{d} z = 0
$$

for all *n*. As $\int_{\gamma} f_n(z) dz \to \int_{\gamma} f(z) dz$ by uniform convergence, we have that $\int_{\gamma} f(z) dz = 0$. So by Morera, *f*
clamerabic Bu the Couchy integral formula for derivatives we have that is holomorphic. By the Cauchy integral formula for derivatives, we have that

$$
f^{(k)}(w) - f_n^{(k)}(w) = \frac{k!}{2\pi i} \int_{\partial D(\sigma, r/2)} \frac{f(z) - f_n(z)}{(z - w)^{k+1}} dz
$$

which means that

$$
|f^{(k)}(w) - f_n^{(k)}(w)| = \frac{1}{2\pi} \left| \int_{\partial D(\alpha, r/2)} \frac{f(z) - f_n(z)}{(z - w)^{k+1}} dz \right|
$$

$$
\leq \frac{1}{2\pi} 2\pi \left(\frac{r}{2} \right)^2 \sup_{z \in \partial D(\alpha, r/2)} \left| \frac{f(z) - f_n(z)}{(z - w)^{k+1}} \right|
$$

$$
\leq C_k \sup_{z \in \partial D(\alpha, r/2)} |f(z) - f_n(z)| \to 0 \text{ as } n \to \infty
$$

for some constant *^C^k* .

4 Winding numbers and topology

4.1 Winding numbers

Definition 4.1 (Continuous choice of argument)

For a curve *γ* : [*a, b*] → ℂ*, w* ∈ ℂ*,* we can write *γ*(*t*) = *w* + *r*(*t*)*e*^{*iθ*(*t*)</sub> as long as *w* ∉ Image(*γ*). If *γ* continuous their *w* can choose *θ* continuous and we call *θ* a continuous choice of a} continuous, then we can choose *^θ* continuous, and we call *^θ* a continuous choice of argument.

Definition 4.2 (Winding number)

Define the winding number, or index of *^γ* about *^w* to be

$$
I(\gamma; w) = \frac{\theta(b) - \theta(a)}{2\pi}
$$

 \Box

Proposition 4.3. For a closed curve, *^I*(*γ*;*w*) is an integer.

Proof.

$$
e^{i\theta(b)-i\theta(a)}=1 \iff \theta(b)-\theta(a)\in 2\pi\mathbb{Z}
$$

Proposition 4.4. A continuous choice of *^θ* exists, and for different choices, we get the same value of *^I*(*γ*;*w*).

Proof. Existence follows from taking local choices and using compactness. For uniqueness, note that

$$
\frac{\theta(t)-\tilde{\theta}(t)}{2\pi}\in\mathbb{Z}
$$

is a continuous integer valued function from a connected set, so must be constant.

Lemma 4.5. If *w* ∈ ℂ, *γ* : [*a*, *b*] → ℂ \setminus {*w*} piecewise *C*¹, then we have *θ* piecewise *C*¹, and if *γ* is closed, then

$$
l(\gamma; w) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - w} dz
$$

Proof. Let

$$
h(t) = \int_a^t \frac{\gamma'(s)}{\gamma(s) - w} \, \mathrm{d} s
$$

The integrand is bounded, and continuous at all but finitely many points, so *^h* is continuous. Furthermore, by FTC, *h* is piecewise *C*¹, with $h'(t) = \frac{v'(t)}{v(t) - t}$ *γ*(*t*) *− w* when *γ'* is continuous. This gives us an ODE for *γ − w*,

$$
(\gamma(t)-w)'-(\gamma(t)-w)h(t)=0
$$

Using the integrating factor *^e −h*(*t*) , we find that

$$
\frac{\mathrm{d}}{\mathrm{d}t}\big((\gamma(t)-w)e^{-h(t)}\big)=0
$$

for all but finitely many *^t*. Since (*γ*(*t*) *[−] ^w*)*^e −h*(*t*) is continuous, it must in fact be constant. So

$$
(\gamma(t) - w) = (\gamma(a) - w)e^{h(t)} = |\gamma(a) - w|e^{\text{Re}(h(t))}e^{\text{Im}(h(t)) + \alpha}
$$

for some *^α*. Then set *^θ*(*t*) = *^α* + Im(*h*(*t*)). We have that

$$
I(\gamma; w) = \frac{\theta(b) - \theta(a)}{2\pi} = \frac{\ln(h(b))}{2\pi}
$$

For a closed curve *γ*, $e^{h(b)} = 1$, so Re(*h*(*b*)) = 0 and lm(*h*(*b*)) = $\frac{h(b)}{i}$. Hence we have that

$$
I(\gamma; w) = \frac{h(b)}{2\pi i} = \frac{1}{2\pi i} \int_a^b h'(s) \, \mathrm{d}s = \frac{1}{2\pi i} \int_a^b \frac{\gamma'(s)}{\gamma(s) - w} \, \mathrm{d}s = \frac{1}{2\pi i} \int_\gamma \frac{1}{z - w} \, \mathrm{d}z
$$

Proposition 4.6. For a closed curve *^γ*, *^w 7→ ^I*(*γ*;*w*) is constant on each connected component of C ∖ Image(*γ*).

 \Box

 \Box

Proposition 4.7. If γ : $[a, b] \to D(z_0, r)$ is a closed curve, then for all $w \notin D(z_0, r)$, we have that $I(\gamma; w) = 0$

Proof. Apply convex Cauchy, as $\frac{1}{z-w}$ is holomorphic in *D*(*z*₀*, r*).

Proposition 4.8. If *^γ* : [*a, b*] *[→]* ^C closed, then there exists a unique unbounded connected component Ω, and for $w \in \Omega$, $I(\gamma; w) = 0$.

Proof. By compactness of Image(*γ*), Image(*γ*) is bounded, so there can only be one unbounded connected component. Furthermore, as Image(*γ*) is contained in a disc, apply previous proposition to a point in ^Ω not in the disc.

4.2 Homology

Lemma 4.9. Suppose ϕ : $[a, b] \times [c, d] \rightarrow \mathbb{R}$ is continuous. Then

$$
s \mapsto \int_c^d \phi(s, t) dt \quad \text{and} \quad t \mapsto \int_a^b \phi(s, t) ds
$$

are continuous.

Proof. Follows from φ being uniformly continuous as it is continuous on a compact set.

Lemma 4.10 (Fubini). Suppose ϕ : [a, b] \times [c, d] $\rightarrow \mathbb{R}$ is continuous. Then

$$
\int_a^b \int_c^d \phi(s, t) dt ds = \int_c^d \int_a^b \phi(s, t) ds dt
$$

Proof. Since *^φ* is uniformly continuous, we have that *^φ* is the uniform limit of step functions. That is, a partition of $R = [a, b] \times [c, d]$ by sets of the form

$$
R_j = [a_j, b_j] \times [c_j, d_j]
$$

and

$$
g(x, y) = \sum_{j=1}^n \alpha_j \mathbb{1}_{R_j}(x, y)
$$

where *α_i* constants. By cumputing the iterated integrals for the step functions, we get the required result. $□$

Lemma 4.11. Let $f: U \to \mathbb{C}$ be holomorphic, define $q: U \times U \to \mathbb{C}$ by

$$
g(z, w) = \begin{cases} \frac{f(z) - f(w)}{z - w} & \text{if } z \neq w \\ f'(z) & \text{if } z = w \end{cases}
$$

Then *^g* is continuous. Furthermore, if *^γ* is a closed curve in *^U*, then

$$
h(w) = \int_{\gamma} g(z, w) \mathrm{d} z
$$

is holomorphic in *^U*.

 \Box

Proof. For continuity, away from $z = w$ we can take an open ball where q is continuous. Now suppose we have $(a, a) \in U \times U$. Given $\varepsilon > 0$, choose $\delta > 0$ such that

$$
D(a, \delta) \subseteq U
$$
 and $|f'(z) - f'(a)| < \varepsilon$ for all $z \in D(a, \delta)$

 w hich exist by *U* being open and *f'* being continuous respectively. Choose (*z*, *w*) ∈ *D*(*a*, *δ*) × *D*(*a*, *δ*). If $z = w$, then

$$
|g(z, w) - g(a, a)| = |f'(z) - f'(a)| < \varepsilon
$$

If *z* \neq *w*, then the path *γ*(*t*) = *tz* + (1 − *t*)*w* is contained in *D*(*a*, *δ*) for *t* ∈ [0, 1] by convexity. So

$$
f(z) - f(w) = \int_0^1 \frac{d}{dt} (tz - (1 - t)w) dt = (z - w) \int_0^1 f'(tz + (1 - t)w) dt
$$

This means that

$$
|g(z, w) - g(a, a)| = \left| \frac{f(z) - f(w)}{z - w} - f'(a) \right|
$$

=
$$
\left| \int_0^1 f'(tz + (1 - t)w) - f'(a)dt \right|
$$

$$
\leq \sup_{t \in [0, 1]} |f'(tz + (1 - t)w) - f'(a)|
$$

$$
< \varepsilon
$$

 $\overline{}$ $\overline{}$ I $\overline{}$

So *^g* is continuous at (*a, a*). To show that *^h* is holomorphic, we will apply Morera. First, we must show that *h* is continuous. Fix $w_0 \in U$, and a sequence $w_n \to w_0$. Choose $\delta > 0$ such that $\overline{D}(w_0, \delta) \subseteq U$. *q* is continuous on $U \times U$, so it is uniformly continuous on Image($γ$) $\times \overline{D}(w_0, δ)$ compact.

If $q_n(z) = q(z, w_n)$ for $z \in \text{Image}(\gamma)$, then $q_n \to q_0$ uniformly on Image(γ). So

$$
h(w_n) = \int_{\gamma} g_n(z) dz \to \int_{\gamma} g_0(z) dz = h(w_0)
$$

So *h* is continuous. Now say *γ* : [*a*, *b*] → *D*(*w*₀, *δ*) is any closed curve, and *β* : [*c*, *d*] → *D*(*w*₀, *δ*) is any closed curve. Then crosed curve. Then

$$
\int_{\beta} h(w)dw = \int_{\beta} \int_{\gamma} g(z, w)dzdw
$$

\n
$$
= \int_{c}^{d} \int_{a}^{b} g(\gamma(t), \beta(s))\gamma'(t)\beta'(s)dt ds
$$

\n
$$
= \int_{a}^{b} \int_{c}^{d} g(\gamma(t), \beta(s))\gamma'(t)\beta'(s)dsdt
$$

\n
$$
= \int_{\gamma} \int_{\beta} g(z, w)dwdz
$$

\n
$$
= \int_{\gamma} 0dz
$$

\n
$$
= 0
$$

where since $g(z, w)$ is continuous and holomorphic everywhere except *z*, by convex Cauchy we get that $g(z, w)dw = 0$. By Morera, this then means that *h* is holomorphic. $\int_{\beta} g(z, w) dw = 0$. By Morera, this then means that *h* is holomorphic.

 $\overline{}$

Definition 4.12 (Homologous to zero)

Let $U \subseteq \mathbb{C}$ be open, $\gamma : [a, b] \to U$ be a closed curve. Then γ is homologous to zero in U if $I(\gamma; w) = 0$ for all $w \notin U$.

Theorem 4.13 (Cauchy integral formula). Let *^U [⊆]* ^C be a nonempty open set, *^γ* closed curve in *^U* homologous to zero in *U*. Suppose $f: U \to \mathbb{C}$ holomorphic, and $w \in U \setminus \text{Image}(v)$, then

$$
l(\gamma; w)f(w) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - w} dz
$$

Proof. Note that the statement is equivalent to showing that

$$
\int_{\gamma} g(z, w) \mathrm{d} z = 0
$$

where $g(z, w) =$ $\sqrt{ }$ J L $\frac{f(z) - f(w)}{z - w}$ if $z \neq w$ $f'(z)$ if $z = w$. Define $h(w) = \int_{\gamma} g(z, w) dz$. Then *h* is holomorphic in *U*, and

we wish to show that $h = 0$ by first extending it to an entire function $H : \mathbb{C} \to \mathbb{C}$ which has $|H| \to 0$ as *|z| → ∞*.

Let $V = \{w \in \mathbb{C} \setminus \text{Image}(\gamma) : l(\gamma; w) = 0\}$. Since γ is homologous to zero in *U*, we have that $\mathbb{C} = U \cup V$. Since $I(\gamma; w)$ is locally constant, V is open. For $w \in U \cap V$,

$$
h(w) = \int_{\gamma} \frac{f(z) - f(w)}{z - w} dz = \int_{\gamma} \frac{f(z)}{z - w} dz = h_1(w)
$$

where $h_1: V \to \mathbb{C}$ holomorphic. Hence the function $H: \mathbb{C} \to \mathbb{C}$.

$$
H(z) = \begin{cases} h(w) & \text{if } w \in U \\ h_1(w) & \text{if } w \in V \end{cases}
$$

is well defined and holomorphic. Since Image(*γ*) is compact, we have *R >* ⁰ such that Image(*γ*) *[⊆] ^D*(0*, R*). Since the winding number is locally constant, $\mathbb{C} \setminus D(0, R) \subseteq V$. So for $|w| > R$, we have that

$$
|H(w)| = |h_1(w)| = \left| \int_{\gamma} \frac{f(z)}{z - w} dz \right| \leq \frac{\text{Length}(\gamma)}{|w| - R} \sup_{z \in \text{Image}(\gamma)} |f(z)|
$$

which shows that $|H(w)| \to 0$ as $|w| \to \infty$. This means that *H* is bounded, so constant by Liouville, and st be identically zero. must be identically zero.

Theorem 4.14 (Cauchy's theorem). Suppose *^U* is a nonempty open set, *^γ* closed curve in *^U* homologous to zero in U , and $f: U \to \mathbb{C}$ holomorphic. Then

$$
\int_{\gamma} f(z) \mathrm{d} z = 0
$$

Proof. Equivalent to Cauchy integral formula.

4.3 Homotopy

Definition 4.15 (Null homotopic)

^γ : [*a, b*] *[→] ^U* is null homotopic in *^U* if it is homotopic ot a constant curve in *^U*.

Lemma 4.16. If γ , δ closed piecewise C^1 curves, $|\gamma(t) - \delta(t)| < |w - \gamma(t)|$ for all t, then $l(\gamma; w) = l(\delta; w)$.

Theorem 4.17. If y_0, y_1 are homotopic closed curves, and $w \in \mathbb{C} \setminus U$. Then $I(y_0; w) = I(y_1; w)$.

Proof. Let $H:[0,1]\times [a,b]\to U$ be a homotopy from γ_0 to γ_1 . Since $K=H([0,1]\times [a,b])$ is compact, we have *ε* > 0 such that for all $z \in K$, $w \notin D(z, 3\varepsilon)$. Furthermore, *H* is uniformly continuous, so choose $n \in \mathbb{N}$ such that

$$
\left|s-s'\right|+\left|t-t'\right|<\frac{1}{n}\implies\left|H(s,t)-H(s',t')\right|<\varepsilon
$$

For $k = 0, \ldots, n$, define $\Gamma_k(t) = H(\frac{k}{n}, t)$. In particular, $\Gamma_0 = \gamma_0$ and $\Gamma_n = \gamma_1$. Then by construction, for all $k > 1$ we have that *t* ∈ [*a*, *b*], k ≥ 1, we have that

$$
|\Gamma_{k-1}(t)-\Gamma_k(t)|<\varepsilon<3\varepsilon<|w-\Gamma_{k-1}(t)|
$$

Let Γ
Γά *k* (*t*) be the polygonal approximation with nodes at $\Gamma_k(t)$ at 0*,* (*b − a*)/*n*, . . . , 1. Suppose we chose *n* such that

$$
\left|s-s'\right|+\left|t-t'\right|<\frac{\max(1,b-a)}{n}\implies\left|H(s,t)-H(s',t')\right|<\varepsilon
$$

Then we have that for $t \in [a, b]$,

$$
\left|\tilde{\Gamma}_{k-1}(t)-\tilde{\Gamma}_{k}(t)\right|\leq \left|\tilde{\Gamma}_{k-1}(t)-\Gamma_{k}(t)\right|+\left|\tilde{\Gamma}_{k}(t)-\Gamma_{k}(t)\right|<2\varepsilon
$$

and

$$
|w - \Gamma_{k-1}(t)| \le |w - \tilde{\Gamma}_{k-1}(t)| + |\Gamma_{k-1}(t) - \tilde{\Gamma}_{k-1}(t)|
$$

$$
\left|w-\tilde{\Gamma}_{k-1}(t)\right| \geq |w-\Gamma_{k-1}(t)|-\left|\Gamma_{k-1}(t)-\tilde{\Gamma}_{k-1}(t)\right| > 2\varepsilon
$$

Which gives us that *I*(Γ_{*k−*1}; *w*) = *I*(Γ_{*k*}; *w*) by the lemma. Finally, checking that *I*(Γ₀; *w*) = *I*(*γ*₀; *w*) and \Box $I(\Gamma_n; w) = I(\gamma_1; w)$ gives the required result.

Corollary 4.18. If *^γ* is null homotopic then it is homologous to zero.

Corollary 4.19. If *^γ*1*, γ*² homotopic curves, *^f* : *^U [→]* ^C holomorphic, then

$$
\int_{\gamma_1} f(z) \mathrm{d} z = \int_{\gamma_2} f(z) \mathrm{d} z
$$

Proof. By theorem and Cauchy's integral formula.

Definition 4.20 (Simply connected)

A domain *^U* is simply connected if every closed curve in *^U* is null homotopic.

Theorem 4.21 (Cauchy's theorem for simply connected domains). If *^U* is simply connected, *^γ* closed curve in *U* and $f: U \rightarrow \mathbb{C}$ holomorphic, then

$$
\int_{\gamma} f(z) \mathrm{d} z = 0
$$

5 Singularities

Definition 5.1 (Isolated singularity)

Let $U \subseteq \mathbb{C}$ be open, $f : U \setminus \{a\} \to \mathbb{C}$ be holomorphic. Then f has an isolated singularity at a.

Definition 5.2 (Removable singularity)

An isolated singularity *a* is removable if *f* can be extended to a holomorphic function $U \rightarrow \mathbb{C}$.

Proposition 5.3. Let $U \subseteq \mathbb{C}$ be open, $a \in U$, $f: U \setminus \{a\} \to \mathbb{C}$ holomorphic. Then the following are equivalent.

- (i) *^a* is a removable singularity.
- (ii) $\lim_{z \to a} f(z)$ exists in \mathbb{C} .
- (iii) There exists $D(a, \varepsilon) \subseteq \mathbb{C}$ such that $|f(z)|$ is bounded on $D'(a, \varepsilon)$.
- $\lim_{z \to a} (z a) f(z) = 0$

Proof. Suppose *a* is removable. Then we have $g: U \to \mathbb{C}$ extending *f*. Then

$$
\lim_{z \to a} f(z) = \lim_{z \to a} g(z) = g(a)
$$

So (i) implies (ii). By definitions, (ii) implies (iii), and (iii) implies (iv). Suppose (iv) holds. Consider

$$
h(z) = \begin{cases} (z-a)^2 f(z) & \text{if } z \neq a \\ 0 & \text{if } z = a \end{cases}
$$

$$
\lim_{z \to a} \frac{h(z) - h(a)}{z - a} = \lim_{z \to a} (z - a) f(z) = 0
$$

So *h* is differentiable at *a*, with $h'(a) = 0$. Thus *h* is holomorphic on *U*. Considering the Taylor series of *h*, we have that *h*(*z*) = $(z − a)^2 g(z)$ where $g: U \to \mathbb{C}$ holomorphic. So g extends f , and a si removable.

Definition 5.4 (Pole)

Suppose $a \in U$ is an isolated singularity of *f*, *a* is a pole of *f* if

$$
\lim_{z\to a}|f(z)|=\infty
$$

Proposition 5.5. Let $f: U \setminus \{a\} \to \mathbb{C}$ holomorphic. Then the following are equivalent.

(i) *^a* is a pole.

- (ii) There exists $\varepsilon > 0$, $h : D(a, \varepsilon) \to \mathbb{C}$ with $h(a) = 0$, $h'(a) \neq 0$ for $z \in D'(a, \varepsilon)$ and $f(z) = \frac{1}{h(z)}$ for *z ∈ D ′* (*a, ε*).
- (iii) There exists $k \ge 1$ such that $g: U \to \mathbb{C}$ holomorphic, $g(a) \ne 0$, and $f(z) = (z a)^{-k} g(z)$ for $z \in U$, $f(a)$ *^z [∈] ^U* [∖] *{a}*.

Proof. Suppose (i) holds. Then we have $\varepsilon > 0$ such that for $z \in D'(a, \varepsilon)$, $|f(z)| \neq 1$. So $h(z) = \frac{1}{h(z)}$ is holomorphic and bounded in $D'(a, \varepsilon)$. This means that *h* has a removable singularity at *a*.
Now suppose (ii) holds. By the Taylor series we have $k > 1$ and $h : L \rightarrow D(a, \varepsilon)$ hol

Now suppose (ii) holds. By the Taylor series, we have $k \ge 1$ and $h_1 : U \to D(a, \varepsilon)$ holomorphic, $h_1(z) \ne 0$ for all $z \in D(a, \varepsilon)$. Let $g_1(z) = \frac{1}{h_1(z)}$. Then $f(z) = (z - a)^{-k} g_1(z)$ in $D'(a, \varepsilon)$. Now define

$$
g(z) = \begin{cases} g_1(z) & \text{if } z \in D(a, \varepsilon) \\ (z - a)^k f(z) & \text{if } z \in U \setminus \{a\} \end{cases}
$$

 \Box

Definition 5.6 (Order)

^k above is unique, and called the order of the pole.

Definition 5.7 (Meromorphic function)

If *^U* open, *^S [⊆] ^U* discrete, *^f* : *^U* [∖] *^S [→]* ^C holomorphic, and each *^a [∈] ^S* is a removable singularity or a pole, then *^f* is meromorphic.

Definition 5.8 (Essential singularity)

An isolated singularity *^a* is essential if it is not removable and not a pole.

5.1 Laurent expansions

Theorem 5.9. Let $A = \{z \in \mathbb{C} : r < |z - a| < R\}$, $0 < r < R < \infty$, $f : A \to \mathbb{C}$ holomorphic. Then *f* has a unique convergent series expansion

$$
f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n = \sum_{n=1}^{-\infty} c_{-n} (z-a)^{-n} + \sum_{n=0}^{\infty} c_n (z-a)^n
$$

where the coefficients are given by for *r < ρ < R*,

$$
c_n = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{(z-a)^{n+1}} dz
$$

and if $r < \rho \le \rho' < R$, the series for *f* converges uniformly on $\{z : \rho \le |z - a| \le \rho'\}$

Proof. Fix *^w [∈] ^A*, let *^g*(*z*) = $\sqrt{ }$ J L $\frac{f(z) - f(w)}{z - w}$ if $z \neq w$ $f'(w)$ if $z = w$. Then *^g* is continuous on *^A*, and is holomorphic on

A \set{w} , so holomorphic in *A*. Choose ρ_1, ρ_2 such that $r < \rho_1 < |w - a| < \rho_2 < R$. Within *A*, $\partial D(a, \rho_1)$ and *∂D*(*a*, $ρ$) are homotopic, so

$$
\int_{\partial D(a,\rho_1)} g(z) dz = \int_{\partial D(a,\rho_2)} g(z) dz
$$

Substituting the definition of *^g*, we get that

$$
\int_{\partial D(a,\rho_1)} \frac{f(z)}{z-w} dz - 2\pi i I(\partial D(a,\rho_1); w) f(w) = \int_{\partial D(a,\rho_2)} \frac{f(z)}{z-w} dz - 2\pi I I(\partial D(a,\rho_2); w) f(w)
$$

Since $I(\partial D(a, \rho_1); w) = 0$ and $I(\partial D(a, \rho_2); w) = 1$, we get that

$$
f(w) = \frac{1}{2\pi i} \int_{\partial D(a,\rho_2)} \frac{f(z)}{z - w} dz - \frac{1}{2\pi i} \int_{\partial D(a,\rho_1)} \frac{f(z)}{z - w} dz
$$

For the first one, note that

$$
\frac{1}{z-w} = \sum_{n=0}^{\infty} \frac{(w-a)^n}{(z-a)^{n+1}}
$$

and for the second,

$$
\frac{1}{z-w} = -\sum_{n=0}^{\infty} \frac{(z-a)^n}{(w-a)^{n+1}}
$$

Hence $f(w) = \sum_{n=0}^{\infty} c_n (w - a)^n$ $+\sum_{n=1}^{\infty} c_{-n}(w-a)^{-n}$ $, \ldots$

$$
c_n = \begin{cases} \frac{1}{2\pi i} \int_{\partial D(a,\rho_2)} \frac{f(z)}{(z-a)^{n+1}} dz & \text{if } n \ge 0\\ \frac{1}{2\pi i} \int_{\partial D(a,\rho_1)} \frac{f(z)}{(z-a)^{n+1}} dz & \text{if } n < 0 \end{cases}
$$

Since *∂D*(*a, ρ*1) and *∂D*(*a, ρ*2) are homotopic to *∂D*(*a, ρ*), we have that

$$
c_n = \frac{1}{2\pi i} \int_{\partial D(a,\rho)} \frac{f(z)}{(z-a)^{n+1}} dz
$$

and this gives us uniqueness of the expansion. Now suppose we have (any) *^cⁿ* such that

$$
f(z) = \sum_{n=-\infty}^{\infty} c_n (z - a)^n
$$

Then choose $r < \rho \le \rho' < R$. Then we have that

$$
\sum_{n=0}^{\infty} c_n(z-a)^n
$$

converges for all *z* ∈ *A*, so it has radius of convergence ≥ *R*, which means that it converges uniformly on
c a¹) Lotting $\zeta = (z - a)^{-1}$ *D*(*a*, *ρ*[']). Letting $\zeta = (z - a)^{-1}$,

$$
\sum_{n=1}^{\infty} c_{-n} \zeta^n
$$

converges foe all $z \in A$, so it has radius of convergence $> \frac{1}{r}$, and converges uniformly for $|\zeta| \leq \frac{1}{\rho}$. This means that

$$
\sum_{n=1}^{\infty}c_{-n}(z-a)^{-n}
$$

converges uniformly for $|z - a| \ge \rho$. This means that

$$
\sum_{n=-\infty}^{\infty} c_n(z-a)^n
$$

converges uniformly for $\rho \leq |z - a| \leq \rho'$. Thus for any $m \in \mathbb{Z}$, we have that

$$
\int_{\partial D(\alpha,\rho)} \frac{f(z)}{(z-a)^{m+1}} dz = \sum_{n=-\infty}^{\infty} c_n \int_{\partial D(\alpha,\rho)} (z-a)^{n-m-1} dz = 2\pi i c_n
$$

Which gives us uniqueness of the expansion.

Corollary 5.10. We have $f_1 : D(a, R) \to \mathbb{C}$ and $f_2 : \mathbb{C} \setminus \overline{D}(a, r) \to \mathbb{C}$ holomorphic such that $f = f_1 + f_2$ in *^A*.

Proposition 5.11. Suppose we have $f: D'(a, R) \to \mathbb{C}$ holomorphic, with series expansion

$$
f(z) = \sum_{n=-\infty}^{\infty} c_n (z - a)^n
$$

If $c_n = 0$ for all $n < 0$, then a is a removable singularity.

Proposition 5.12. Suppose we have $f: D'(a, R) \to \mathbb{C}$ holomorphic, with series expansion

$$
f(z) = \sum_{n=-\infty}^{\infty} c_n (z - a)^n
$$

If $c_n \neq 0$ for finiely many $n < 0$, then *a* is a pole.

Proposition 5.13. Suppose we have $f: D'(a, R) \to \mathbb{C}$ holomorphic, with series expansion

$$
f(z) = \sum_{n = -\infty}^{\infty} c_n (z - a)^n
$$

If $c_n \neq 0$ for infinitely many $n < 0$, then *a* is an essential singularity.

5.2 Residue

Definition 5.14 (Residue)

Suppose $f: D'(a, R) \to \mathbb{C}$ holomorphic, with series expansion

$$
f(z) = \sum_{n=-\infty}^{\infty} c_n (z - a)^n
$$

Then the residue of *f* at *a* is $\text{Res}_{f}(a) = c_{-1}$.

Definition 5.15 (Principal part)

Suppose $f: D'(a, R) \to \mathbb{C}$ holomorphic, with series expansion

$$
f(z) = \sum_{n=-\infty}^{\infty} c_n (z - a)^n
$$

Then the principal part of *^f* at *^a* is

$$
f_p(z) = \sum_{n=1}^{\infty} c_{-n}(z - a)^{-n}
$$

Theorem 5.16 (Residue theorem). Let *U* be open, $a_1, \ldots, a_k \in U$, $f: U \setminus \{a_1, \ldots, a_n\} \to \mathbb{C}$ holomorphic. Suppose *γ* is a closed curve homologous to zero in *U*, $a_j \notin \text{Image}(γ)$, then

$$
\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_{j=1}^{k} I(\gamma; a_j) \operatorname{Res}_{f}(a_j)
$$

Proof. Let

$$
f_{p,j} = \sum_{n=1}^{\infty} c_{-n,j} (z - a_j)^{-n}
$$

be the principal part of *f* at a_j . Then $f_{p,j}$ is holomorphic on $\mathbb{C}\setminus\{a_j\}$, so it is holomorphic on $\mathbb{C}\setminus\{a_1,\ldots,a_k\}$. Let $h = f - \sum_{j=1}^{k} f_{p,j}$. Then *h* is holomorphic on $U \setminus \{a_1, \ldots, a_k\}$.
Fix *i* then $f = f$, has a removable singularity at *a*, and for

Fix j, then *f* − *f_{p,j}* has a removable singularity at *a_j*, and for *l* ≠ *j, f_{p,j}* is holomorphic at *a_l*, so *h* has a solomorphic singularity at *a*_{*l*}. Which moans that *h* can be extended to a belomorp removable singularity at *^a^j* . Which means that *^h* can be extended to a holomorphic function *^h* : *^U [→]* ^C. By Cauchy's theorem,

$$
\int_{\gamma} f(z) \mathrm{d} z = 0
$$

Which means that

$$
\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_{j=1}^{k} \frac{1}{2\pi i} \int_{\gamma} f_{p,j}(z) dz = \sum_{j=1}^{k} l(\gamma; a) \operatorname{Res}_{f}(a_{j})
$$

Proposition 5.17. If $f = \frac{g}{h}$ $\frac{g}{h}$, *g*, *h* holomorphic at *a*, *g*(*a*) \neq 0 and *h*(*a*) = 0, *h'*(*a*) \neq 0, then

$$
\operatorname{Res}_f(a) = \frac{g(a)}{h'(a)}
$$

Lemma 5.18 (Jordan's lemma). Let *f* be a continuous complex valued function on the semicircle *γ_R* = *∂D*(0*, R*) *∩ {z* : Re(*z*) *[≥]* 0, *^γ^R* (*t*) = *Reit* for *^t [∈]* [0*, π*]. Then for *α >* 0,

$$
\left| \int_{\gamma_R} f(z) e^{i\alpha z} dz \right| \leq \frac{\pi}{\alpha} \sup_{z \in \gamma_R} |f(z)|
$$

 $\overline{}$ \cdot $\overline{}$ $\overline{}$

Proof. Let $M_R = \sup_{z \in \gamma_R} |f(z)|$. Then we have that

$$
\left| \int_{\gamma_R} f(z) e^{i\alpha z} dz \right| = \left| \int_0^{\pi} f(Re^{it}) e^{-\alpha R \sin(t) + \alpha Ric \cos(t)} iRe^{it} dt \right|
$$

$$
\leq R M_R \int_0^{\pi} e^{-\alpha R \sin(t)} dt
$$

$$
= 2R M_R \int_0^{\pi/2} e^{-\alpha R \sin(t)} dt
$$

$$
\leq 2R M_R \int_0^{\pi/2} e^{-\frac{2\alpha Rt}{\pi}} dt
$$

$$
= \frac{\pi M_R}{\alpha} (1 - e^{-2\alpha R})
$$

$$
< \frac{\pi}{\alpha} M_R
$$

 \Box

Corollary 5.19. If *f* is continuous on $\{z : \text{Re}(z) > 0, |z| > r\}$, and $\sup_{z \in \gamma_R} |f(z)| \to 0$ as $R \to \infty$, then

$$
\left| \int_{\gamma_R} f(z) e^{i\alpha z} dz \right| \to 0 \quad \text{as} \quad R \to \infty
$$

Lemma 5.20. Let *f* : *D'*(*a*, *R*) → ℂ be holomorphic, *z* = *a* be a simple pole, $γ_ε(t) = a + εe^{-it}$: [α, β] → ℂ. Then

$$
\lim_{\varepsilon \downarrow 0} \int_{\gamma_{\varepsilon}} f(z) \mathrm{d} z = (\beta - \alpha) i \operatorname{Res}_{f}(\alpha)
$$

Proof.

$$
f(z) = \frac{c}{z-a} + g(z)
$$

and by computing the separate integrals, we get the required result, since

$$
\int_{\gamma_{\varepsilon}} g(z) dz \to 0 \quad \text{and} \quad \int_{\gamma_{\varepsilon}} \frac{c}{z - a} dz = (\beta - \alpha) i c
$$

5.3 Argument principle

Proposition 5.21. Suppose *f* has a zero (pole) of order $k \ge 1$ at $z = a$. Then f'/f has a simple pole at $z = a$, with $z = a$, with

$$
\operatorname{Res}_f(a) = \begin{cases} k & \text{if } a \text{ is a zero} \\ -k & \text{if } a \text{ is a pole} \end{cases}
$$

Proof. We only prove the case for a zero. Then we have *^D*(*a, r*) such that

$$
f(z) = (z - a)^k g(z)
$$

where $g: D(a, r) \to \mathbb{C}$ is holomorphic and $g(a) \neq 0$. Then we have that

$$
f'(z) = k(z - a)^{k-1} + (z - a)^k g'(z)
$$

$$
\frac{f'}{f} = \frac{k}{z-a} + \frac{g'}{g}
$$

and g'/g is holomorphic at *a*, which gives the required result.
For a polo *use* $f(z) = (z - a)^{-k}g(z)$ instead For a pole, use $f(z) = (z - a)^{-k}g(z)$ instead.

 \Box

Definition 5.22 (Order)

For a zero/pole a of f , write ord $_f(a)$ for the order.

Theorem 5.23 (Argument principle). Let *f* be meromorphic on *U* with finitely many zeroes a_1, \ldots, a_k finitely many poles *b*₁, . . . , *b*_{*l*}. Let γ be a closed curve homologous to zero in *U*, *α_i*, *b_i* ∉ lmage(γ). Then

$$
\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{j=1}^{k} l(\gamma; a_j) \operatorname{ord}_f(a_j) - \sum_{j=1}^{l} l(\gamma; b_j) \operatorname{ord}_f(b_j)
$$

Proof. Residue theorem with $g(z) = f'(z)/f(z)$ and previous proposition.

 \Box

Definition 5.24 (Bound)

Let ^Ω be a domain, *^γ* a closed curve in ^C. Then *^γ* bounds ^Ω if for all *^w [∈]* Ω, *^I*(*γ*;*w*) = 1 and for all $w ∈ C \setminus (Ω ∪ \text{Image}(γ)), I(γ; w) = 0.$

Corollary 5.25. If *^γ* bounds a domain Ω, *^f* meromorphic in *^U [⊇]* ^Ω *[∪]* Image(*γ*), with no zeroes/poles on Image(*γ*), *^N* zeros and *^P* poles in ^Ω with multiplicity, then *N, P* are finite, and

$$
N - P = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = I(\Gamma; 0) = I(f \circ \gamma; 0)
$$

Proof. Since Ω is bounded, $\overline{\Omega}$ is compact, and $\overline{\Omega} \subseteq U$. Let *S* be the set of singularities of *f*. If $\overline{\Omega} \cap S$ is infinite, by compactness ^Ω *[∩] ^S* has a limit point. Contradiction as the singularities are isolated. So *^P* is finite. Similarly by compactness and the principle of isolated zeroes, *^N* is finite. The integral follows by the argument principle.

Definition 5.26 (Local degree)

Let $f: D(a, R) \to \mathbb{C}$ be holomorphic, f non constant. Then the local degree of f at a is deg_f(a), which is the order of the zero of $f(z) - f(a)$ at $z = a$.

Theorem 5.27 (Local degree). Let $f: D(a, R) \to \mathbb{C}$ be holomorphic non constant, deg_f(*a*) = *d*. Then there exists $r_0 > 0$ such that

$$
\forall r \in (0, r_0], \exists \varepsilon > 0, \forall w, 0 < |f(a) - w| < \varepsilon \implies f(a) = w \text{ has } d \text{ roots in } D'(a, r)
$$

Proof. Let $g(z) = f(z) - f(a)$. Then *g* is non constant, so $g' \neq 0$ in $D(a, R)$. Applying the principle of isolated process to *a* and g' , we have $f_0 \in (0, R)$ such that $g(z)$, $g'(z) \neq 0$ for all $z \in D'(a, r_1)$. zeroes to *g* and *g'*, we have $r_0 \in (0, R)$ such that $g(z)$, $g'(z) \neq 0$ for all $z \in D'(a, r_0)$.
Fix $r \in (0, r_0]$ and for $t \in [0, 1]$ dofine $y(t) = a + r_0^2 \pi i t$, $\Gamma(t) = g(y(t))$. Since Γ

Fix *r* ∈ (0, *r*₀] and for *t* ∈ [0, 1] define *γ*(*t*) = *a* + *re*^{2*πit*}, Γ(*t*) = *g*(*γ*(*t*)). Since Image(*γ*) is compact so closed, 0 ⊄ Image(*v*) since *a* is popzere. So we have $c > 0$ such that $D(0, c) ⊂ C$ and $0 \notin \text{Image}(\gamma)$ since *q* is nonzero. So we have $\varepsilon > 0$ such that $D(0, \varepsilon) \subseteq \mathbb{C} \setminus \text{Image}(\gamma)$.

Fix w with $0 < |f(a) - w| < \varepsilon$. Then $w - f(a) \in D(0, \varepsilon) \subset \mathbb{C}$ \setminus Image(y). As $z \mapsto I(\Gamma; z)$ is locally constant, it is constant on $D(0; \varepsilon)$, so $I(\Gamma; w - f(a)) = I(\Gamma; 0)$. Then we have that

$$
I(\Gamma; w - f(a)) = \frac{1}{2\pi i} \int_0^1 \frac{g'(\gamma(t))\gamma'(t)}{g(\gamma(t)) - (w - f(a))} dt = \frac{1}{2\pi i} \int_{\partial D(a,r)} \frac{f'(z)}{f(z) - w} dz = d
$$

by the argument principle, since *^g* has one zero, with multiplicity *^d*. Thus by the argument principle, *^f*(*z*)*−w* has *d* roots in $D(a, r)$ as well. Since $w \neq f(a)$, none of the zeros are at *a*. Since $f' \neq 0$ in $D(a, r)$, the zeroes are simple, so distinct.

Corollary 5.28 (Open mapping theorem). A non constant holomorphic function is an open map.

Proof. Suppose $f: U \to \mathbb{C}$ holomorphic, $V \subseteq U$ open, $b = f(a) \in f(V)$. Then we have $r > 0$ such that $D(a, r) \subseteq V$. Applying the local degree theorem, there exists $\varepsilon > 0$ such that

$$
w \in D'(f(a), \varepsilon) \implies w \in f(D'(a, r))
$$

So $D(f(a), \varepsilon) \subseteq f(V)$, so $f(V)$ is open.

Theorem 5.29 (Rouché). Let *^γ* be a closed curve bounding a region Ω, *f, g* holomorphic on *^U* open, with

 $U \supseteq \Omega$ U Image(y). If $|f(z) - g(z)| < |g(z)|$ for $z \in \text{Image}(y)$, then f, g have the same number of zeroes in Ω (with multiplicity).

Proof. Note that the inequalities imply that *f, g* nonzero on Image(*γ*). So we have *^V* open, *^V [⊇]* Image(*γ*) such that *f*, *g* nonzero on *V*. Let *h* : *f*/*g*. Then *h* is holomorphic and never zero. Since *g* \neq 0 in Ω, we have that the zeroes of *^g* in ^Ω *[∪] ^V* are isolated, so *^h* is meromorphic on ^Ω *[∪] ^V* , with no zeroes or poles on Image(*γ*). Furthermore, *f, g* have finitely many zeroes on Ω.

In addition, for *^z [∈]* Image(*γ*), *|h*(*z*) *[−]* ¹*[|] <* 1, so letting Γ = *^h ◦ ^γ*, we have that Image(Γ) *[⊆] ^D*(1*,* 1), so $I(\Gamma; 0) = 0.$ \Box

By counting the zeroes and poles of *^h* we get the required result.