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1 Simplicity of the alternating group
1.1 Group theory

Theorem 1.1 (Canonical decomposition). Let φ : G → H be a group homomorphism, then we have
G G/ ker(φ) im(φ) H

∼=

Proof. Suffices to define the middle isomorphism. Define the map Φ : G/ ker(φ) → im(φ) by Φ(x ker(φ)) = φ(x).First, we need to show that is is well defined. That is, it is independent of the choice of coset representative.Suppose x ker(φ) = y ker(φ). Then xy−1 ∈ ker(φ), so φ(xy−1) = φ(x)φ(y)−1 = 1. Thus φ(x) = φ(y). ClearlyΦ is a surjective homomorphism, so suffices to show that Φ is injective. But this follows as φ(x) = φ(y) if andonly if x ker(φ) = y ker(φ). So Φ is an isomorphism.
Theorem 1.2 (Second isomorphism theorem). Let H ≤ G,K ⊴ G , then

HK
K

∼= H
H ∩ K
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Proof. First, we need to show that HK is infact a group (equivalently, a subgroup of G). Clearly 1 ∈ HK . Ifwe have h1, h2 ∈ H , k1, k2 ∈ K , then
h1k1h2k2 = h1h2((h−12 k1h2)k2) ∈ HKSo HK is closed under multiplication. Finally, suppose h ∈ H, k ∈ K . Then

(hk )−1 = k−1h−1 = h−1hk−1h−1 ∈ HKSo HK is a subgroup of G . Now we need to show that K is a normal subgroup of HK . k = 1k , so K ≤ HK .Since K ⊴ G , we must have that K ⊴ HK . Finally, define the group homomorphism φ : H → HK/K by
φ(h) = hK . This is a group homomorphism, and ker(φ) = H ∩K . Applying the first isomorphism theorem givesthe required result.

Theorem 1.3 (Third isomorphism theorem). Let H,K ⊴ G , K ≤ H . Then
G/K
H/K

∼= G
H

Definition 1.4 (Simple group)A nontrivial group G is simple if the only normal subgroups of G are 1 and G .
Lemma 1.5. Suppose G is an abelian simple group. Then G is finite, and G ∼= Cp for some prime p.

Proof. G being an abelian simple group means that the only subgroups of G are 1 and G . Choose a nontrivialelement x ∈ G . Then x must in fact generate G , and have prime order.
Lemma 1.6. Suppose G is a finite group. Then G has a composition series

1 = G0 ⊴ G1 ⊴ · · · ⊴ Gm = Gwhere each Gi/Gi−1 is simple.
Proof. By induction on |G|. If |G| = 1, we are done. If |G| > 1, let Gn−1 be a proper normal subgroupwith maximal order. Then G/Gn−1 is simple, since if it has a proper normal subgroup, then we have a normalsubgroup of G properly containing Gn−1. Contradiction. Now apply the induction hypothesis on Gn−1.

Theorem 1.7. Let G be a nonabelian simple group, H ≤ G , |G : H| = n > 1. Then n ≥ 5, and G ↪→ An.
Proof. Let X = {gH : g ∈ G} = G/H , letting G act on X by left multiplication. Let φ : G → Sym(X ) be thepermutation representation. Since G is simple, ker(φ) = 1 or ker(φ) = G . If ker(φ) = G , then Im(φ) = 1, butthe action is transitive, and |X | > 1. Contradiction. So ker(φ) = 1, and we have φ : G ↪→ Sn.Considering G ≤ Sn, by the second isomorphism theorem, we have that

G
G ∩ An

∼= GAn
An

≤ Sn
An

∼= C2
Since G is simple, G ∩ An = 1 or G ∩ An = G . If G ∩ An = 1, then G ↪→ C2. But G is nonabelian, so

G = G ∩ An, and G ≤ An.
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Definition 1.8 (Normaliser)The normaliser of H ≤ G is
NG (H) = {g ∈ G : gHg−1 = H

}

Proposition 1.9. The normaliser is the kernel of the conjugation action of G on H . Furthermore, it is thelargest subgroup of G which H is normal in.
1.2 Alternating group

Lemma 1.10. An is generated by 3-cycles.
Proof. Each σ ∈ An can be written as a product of an even number of transpositions. Suffices to show theproduct of any two transpositions is a three cycle.

(a b)(c d) = (a c b)(a c d) and (a b)(b c) = (a b c)

Lemma 1.11. If n ≥ 5, then all 3-cycles in An are conjugate.
Proof. All 3-cycles in Sn are conjugate, so suffices to show that the conjugacy class does not split. But(1 2 3)(4 5) = (4 5)(1 2 3).

Theorem 1.12. An is simple for n ≥ 5.
Proof. Let N ⊴ An be a nontrivial normal subgroup. Suffices to show that it contains a 3-cycle, since thiswould mean that it conatins all 3-cycles.Fix σ ∈ N nontrivial, write σ as a product of disjoint cycles σ = σ1 . . . σn.

Case 1: σi has length ≥ 4 for some i. Without loss of generality, suppose σ1 = (1 . . . r) for r ≥ 4. Let
δ = (1 2 3). Then

σ−1δ−1σδ = (r . . . 1)(1 3 2)(1 . . . r)(1 2 3) = (2 3 r) ∈ N

Case 2: σ contains two 3-cycles. Without loss of generality, σ1 = (1 2 3) and σ2 = (4 5 6). Let δ = (1 2 4).Then
σ−1δ−1σδ = (1 3 2)(4 6 5)(1 4 2)(1 2 3)(4 5 6)(1 2 4) = (1 2 4 3 6) ∈ NThis then reduces to Case 1.

Case 3: σ contains two 2-cycles. Without loss of generality, σ1 = (1 2) and σ2 = (3 4). Let δ = (1 2 3).Then let
π = σ−1δ−1σδ = (1 2)(3 4)(1 3 2)(1 2)(3 4)(1 2 3) = (1 2 4)(1 2 3)(1 4)(2 4) ∈ NLet ε = (2 3 5). Then

π−1ε−1πε = (1 4)(2 3)(2 5 3)(1 4)(2 3 5) = (2 5 3)
Case 4: σ is a 3-cycle. Immediate.
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2 Sylow theorems
2.1 p-groups

Definition 2.1 (p-group)For a prime p, a finite group G is a p-group if |G| = pn for some n ≥ 1.
Theorem 2.2. Suppose G is a p group. Then Z (G) ̸= 1.

Proof. For g ∈ G , we have from the Orbit-Stabiliser theorem that |ccl(g)||C (g)| = |G| = pn. So the size ofeach conjugacy class must divide pn. As conjugacy classes partition, the number of g ∈ G such that |ccl(g)| = 1must be 0 (mod p). But ccl(1) = 1, so there is at least one, and the centre is nontrivial.
Corollary 2.3. Suppose G , |G| = pn, n ≥ 2. Then G is not simple.

Proof. If G is not abelian, note that Z (G) ⊴ G . If G is abelian, note that we have a subgroup of order p byCauchy’s theorem.
Corollary 2.4. Let G be a p-group, |G| = pn. For all 0 ≤ r ≤ n, G has a subgroup of order pr .

Proof. G has a composition series
1 = G0 ⊴ G1 ⊴ · · · ⊴ Gm = Gwhere each Gi/Gi−1 is simple. Since G is a p-group, Gi/Gi−1 is a p-group as well. But this means that

Gi/Gi−1 ∼= Cp. So |Gk | = pk .
Lemma 2.5. Let G be a group such that G/Z (G) is cyclic. Then G is abelian, and Z (G) = G .

Proof. Suppose G/Z (G) is generated by gZ (G). Let x, y ∈ G , since cosets partition, we must have n,m ∈ Z,
a, b ∈ Z (G) such that x = gna and y = gmb. Then

xy = gnagmb = gn+mab = gn+mba = gmbgna = yxSo G is abelian, and Z (G) = G .
Corollary 2.6. Every group of order p2 is abelian.

Proof. Since Z (G) is nontrivial, G/Z (G) = 1 or Cp. Both cases we are done by the previous lemma.
2.2 Sylow’s theorems

Definition 2.7 (Sylow-p subgroup)Let G be a finite group, p prime. Then P ≤ G is a Sylow-p subgroup if |G : P| is coprime to p. LetSylp(G) be the set of all Sylow-p subgroups of G .

4



Theorem 2.8 (Sylow I). Sylp(G) ̸= ∅

Proof. Suppose |G| = pam, where p,m coprime. Let
Ω = {S ⊆ G : |S| = pa}Then

|Ω| = (pampa
) = pam

pa · p
am− 1
pa − 1 · · · p

am− pa + 11For 0 ≤ k < pa, vp(pam − k ) = vp(pa − k ), where vp(n) is the p-adic valuation, or the exponent of thelargest power of p dividing n. So |Ω| is coprime to p. Let G ⟳Ω by left multiplication. By the orbit-stabilisertheorem, we have that for any X ∈ Ω,
|GX ||Orb(X )| = |G|Since |Ω| is coprime to p and orbits paritition, we must have X ∈ Ω such that |Orb(X )| is coprime to p. So

pa | |GX |. On the other hand, for g ∈ G, x ∈ X , g = gx−1x ∈ (gx−1)X , so
G = ⋃

g∈G

(
gx−1)X = ⋃

Y∈Orb(X )YWhich means that |G| ≤ |Orb(X )||X | = pa|Orb(X )|. Hence |GX | ≤ pa, so |GX | = pa, and GX ∈ Sylp(G).
Lemma 2.9. Suppose P ∈ Sylp(G), Q ≤ G is a p-subgroup. Then there exists g ∈ G such that
Q ≤ gPg−1 for all g ∈ G .

Proof. Let Q act on G/P by left multiplication. By orbit stabiliser, we have that
pk = |Q| = ∣∣GgP ∣∣|Orb(gP)|This means that the size of all orbits are a p-power. Since G/P has size coprime to p and orbits partition,we have an orbit of size 1. That is, we have g ∈ G such that for all q ∈ Q, qgP = gP . That is, g−1qg ∈ P ,or q ∈ gPg−1, so Q ≤ gPg−1.

Theorem 2.10 (Sylow II). For any P,Q ∈ Sylp(G), P,Q are conjugate.
Proof. By the previous lemma, we have g ∈ G such that Q ≤ gPg−1. By considering the orders, they must infact be equality. So P and Q are conjugate.

Theorem 2.11 (Sylow III). Let np = ∣∣∣Sylp(G)∣∣∣. Then np ≡ 1 (mod p) and np | |G|. That is, if |G| = pamwith m, p coprime, then np | m.
Proof. Let G act on Sylp(G) by conjugation. Sylow II implies that the action is transitive. So from orbitstabiliser, we have that

|G| = ∣∣∣Sylp(G)∣∣∣|GP | =⇒ np | |G|

Fix P ∈ Sylp(G), and let P act on Sylp(G) by conjugation. From orbit stabilier, the size of the orbits havesize dividing a power of p. Suffices to show there is only one orbit of size 1, namely {P}. Suppose {Q} is anorbit of size 1. Then pQp−1 = Q, so P ≤ NG (Q). Then P,Q are Sylow-p subgroups of NG (Q), so conjugateby Sylow II. Hence P = Q since Q ⊴ NG (Q).
5



3 Matrix groups

Definition 3.1 (General linear group)For a field F , the general linear group is
GLn(F ) = {M ∈ Matn(F ) : det(M) ̸= 0}

Definition 3.2 (Special linear group)The special linear group is
SLn(F ) = {M ∈ Matn(F ) : det(M) = 1} = ker(det) ≤ GLn(F )

Definition 3.3 (Projective general linear group)The projective general linear group is
P GLn(F ) = GLn(F )

Z where Z = {aI : a ∈ F×}

Definition 3.4 (Projective special linear group)The projective special linear group is
P SLn(F ) = SLn(F )

Z ∩ SLn(F )
Proposition 3.5.

P SLn(F ) ≤ P GLn(F )
Proof.

P SLn(F ) = SLn(F )
Z ∩ SLn(F ) ∼= Z SLn(F )

Z ≤ P GLn(F )

Definition 3.6 (Möbius map)For a fixed field F , P GL2(F ) acts on F ∪ {∞} by Möbius maps.
4 Rings

Theorem 4.1 (Canonical decomposition). Suppose φ : R → S is a ring homomorphism. Then we have thedecomposition
R R/ ker(φ) im(φ) S

∼=

6



Theorem 4.2 (Second isomorphism theorem). Suppose R ≤ S, J ⊴ S . Then
R

R ∩ J
∼= R + J

J

Theorem 4.3 (Third isomorphism theorem). Let I, J ⊴ R , I ≤ J . Then
R/I
J/I

∼= R
J

Proposition 4.4. For all rings R , there exists a unique homomorphism ι : Z → R .
Proof. ι(0) = 0 and ι(1) = 1 determines the homomorphism uniquely.

Definition 4.5 (Characteristic)Let ι : Z → R . Then ker(ι) ⊴ Z, so ker(ι) = nZ for some n. Define the characteristic of R to bechar(R ) = n.
Lemma 4.6. Suppose R is an integral domain. Then so is R [X ].

Proof. Suppose f , g ∈ R [X ], f = anXn + · · · + a0, g = bmXm + · · · + b0, where an, bm ̸= 0. The coefficient of
Xn+m in fg is anbm, which is nonzero as R has no zero divisors. Hence fg ̸= 0.

Lemma 4.7. Suppose R is an integral domain, f ∈ R [X ]. Then
|{a ∈ R : f (a) = 0}| ≤ deg(f )

Proof. f (x) = (x − a1) · · · (x − ak )g(x), and consider degrees.
Theorem 4.8. Let F be a field, G ≤ F× be a finite subgroup. Then G is cyclic.

Proof. By the structure theorem of finite abeliean groups, if G is not cyclic then there exists H ∼= Cd1 ×Cd2 ≤ G ,
d1, d2 ≥ 2, d1 | d2, and without loss of generality, we may assume d1 = d2. Then the polynomial

f (X ) = Xd1 − 1 ∈ F [X ]has degree d1 but at least d21 roots. Contradiction.
Proposition 4.9. Any finite integral domain is a field.

Proof. Left multiplication in an integral domain is injective. An injective map from a finite set to itself must bea bijection.
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Definition 4.10 (Field of fractions)Let R be an integral domain, then define the field of fractions of R to be
Frac(R ) = {ab : a, b ∈ R, b ̸= 0}

where we have thata
a
b = c

d ⇐⇒ ad = bc

and the operations are defined as in the field of rationals.
aFormally, the field of fractions is a quotient.

Theorem 4.11. Let R be an integral domain. Then Frac(R ) is a field, and R ≤ Frac(R ).
Definition 4.12 (Maximal ideal)Let R be a ring. An ideal I ⊴ R is maximal if for any ideal J such that I ≤ J ≤ R , J = I or J = R .
Lemma 4.13. A nonzero ring R is a field if and only if the only ideals are (0) and (1).

Proof. Suppose R is a field, and let I ⊴ R be an ideal. If I = 0 we are done. Otherwise, we have a ∈ R suchthat a ̸= 0. But then 1 = a−1a ∈ I , so I = (1) = R .Conversely, suppose the only ideals are (0) and (1). Let a ∈ R be nonzero. Then we must have that(a) = (1), so a is a unit.
Proposition 4.14. Let I ⊴ R be an ideal. Then I is maximal if and only if R/I is a field.

Proof. R/I is a field
⇐⇒ The only ideals of R/I are 0 = I/I and (1) = R/I .
⇐⇒ The only ideals in R containing I are I and R .

Definition 4.15 (Prime ideal)Let R be a ring, an ideal I ⊴ R is prime if I ̸= R and for any a, b ∈ R , if ab ∈ I then a ∈ I or b ∈ I .
Proposition 4.16. Let I ≤ R . Then I is prime if and only if R/I is an integral domain.

Proof. Suppose I is prime. Given a, b ∈ R , suppose (a+ I)(b+ I) = (ab+ I) = 0. Then ab ∈ I , so either a ∈ Ior b ∈ I . Thus, either a+ I = 0 or b+ I = 0.Conversely, suppose R/I is an integral domain. By considering (a + I)(b + I) as above, we see that I is aprime ideal.
Definition 4.17 (Noetherian)A ring R is Noetherian if every ascending chain of ideals is eventually constant.
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Theorem 4.18. A ring R is Noetherian if and only if every ideal in R is finitely generated.
Proof. Let I1 ≤ I2 ≤ . . . be ideals, I = ⋃n In. Then I is an ideal which is finitely generated, say I = (a1, . . . , aM ).Let N = maxi min{j : ai ∈ Ij

}. Then IN = I .Conversely, suppose if R satisfies the ascending chain condition, but J is an ideal which is not finitelygenerated. Choose a1 ∈ J nonzero, then J ̸= (a1). Now choose a2 ∈ J∖ (a1), . . . , an ∈ J∖ (a1, . . . , an−1). Then(a1) ≤ (a1, a2) ≤ . . . is an infinite ascending chain of ideals which is not eventually constant. Contradiction.
Theorem 4.19 (Hilbert basis theorem). If R is a Noetherian ring, then so is R [X ].

Proof. Suppose for contradiction we have J ⊴ R [X ] which is not finitely generated. Choose f1 ∈ J with minimaldegree, f2 ∈ J ∖ (f1), . . . , fn ∈ J ∖ (f1, . . . , fn−1) with minimal degrees. Then deg(f1) ≤ deg(f2) ≤ . . .. Let ai bethe leading coefficient of fi. We have a sequence of ideals
(a1) ≤ (a1, a2) ≤ . . .in R which must be eventually constant. So we have m such that am+1 ∈ (a1, . . . , am), so
am+1 = m∑

i=1 λiaiand
g = m∑

i=1 λiX
deg(fm+1)−deg(fi)fi

Then deg(g) = deg(fm+1), and they have the same leading coefficient. So fm+1 − g ∈ J , deg(fm+1 − g) <deg(fm+1). By minimality of degree, fm+1 − g ∈ (f1, . . . , fm). But g ∈ (f1, . . . , fm), so fm+1 ∈ (f1, . . . , fm).Contradiction.
Lemma 4.20. Let R be a Noetherian ring, I ⊴ R be an ideal. Then R/I is Noetherian.

Proof. The preimage of an ideal is an ideal.
5 Factorisation
In this section, R will be an integral domain.

Definition 5.1 (Divides)
a ∈ R divides b ∈ R , a | b, if (b) ⊆ (a).
Definition 5.2 (Associates)
a, b ∈ R are associates if (a) = (b).
Definition 5.3 (Irreducible)
a ∈ R is irreducible if r ̸= 0, r /∈ R× and if r = ab, then a ∈ R× or b ∈ R×.
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Definition 5.4 (Prime)
a ∈ R is prime if r ̸= 0, r /∈ R×, and if r | ab, then r | a or r | b.
Lemma 5.5. (r) ⊴ R is prime if and only if r = 0 or r is prime.

Proof. Suppose (r) is prime. If r = 0 we are done. Suppose r ̸= 0. Since a prime ideal is proper, we musthave that r is not a unit. Now suppose r | ab. Then ab ∈ (r). So we must have that a ∈ (r) or b ∈ (r). So
r | a or r | b.Conversely, (0) = 0 which is prime. If r is prime, then by the above reasoning we can see that (r) isprime.

Lemma 5.6. r ∈ R prime =⇒ r ∈ R irreducible.
Proof. Suppose r = xy is a product of two elements of R . Then r | xy, so we must have that r | x or r | y.Without loss of generality, assume r | x . Say x = rz . Then r = xy = ryz . As r ̸= 0, we must in fact have that
yz = 1. So y is a unit.

Definition 5.7 (Principal ideal domain)An integral domain R is a principal ideal domain if all ideals I ⊴ R are principal.
Lemma 5.8. Let r ∈ R , r ̸= 0. If (r) is maximal, then r is irreducible. Furthermore, if R is a PID, then theconverse implication also holds.

Proof. Suppose r = xy. Then (r) ≤ (x), and as (r) is a maximal ideal, (r) = (x) or (x) = (1). Which correspondsto y and x being a unit respectively.Suppose R is a PID, and suppose (r) is irreducible. Say (r) ≤ (a) ≤ (1). Then r = ab for some b ∈ R . But
r is irreducible, so a or b must be a unit, which corresponds to (a) = (1) and (r) = (a) respectively.

Proposition 5.9. Let R be a PID, r ∈ R is irreducible if and only if it is prime.
Proof. Suppose r is irreducible. Then (r) is maximal, so R/(r) is a field, which is an integral domain, so (r) isprime, and as r is nonzero, r must be prime.

Definition 5.10 (Euclidean domain)An integral domain R is a Euclidean domain if there exists a function
φ : R ∖ 0 → Z≥0such that

• If a | b, then φ(a) ≤ φ(b).• If a, b ∈ R , b ̸= 0, then there exists q, r ∈ R such that
a = bq+ r where r = 0 or φ(r) < φ(b)
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Proposition 5.11. If R is an ED then it is a PID.
Proof. Let I ⊴ R , I ̸= 0. Choose b ∈ I , b ̸= 0 such that φ(b) minimal. Then (b) ⊆ I , and for a ∈ I , write
a = bq+ r , where either r = 0 or φ(r) < φ(b). Note that r = a− bq ∈ I , so by minimality we must have that
r = 0. So b | a, and I = (b).

Definition 5.12 (Unique factorisation domain)An integral domain R is a unique factorisation domain if
• Every r ∈ R , r ̸= 0, r /∈ R× is a product of irreducible elements.• If p1 · · · pm = q1 · · ·qn where the pi, qi are irreducible, then m = n, and up to reordering, (pi) = (qi).

Proposition 5.13. Let R be an integral domain where every nonzero, nonunit element can be written asa product of irreducibles. Then R is a UFD if and only if every irreducible is prime.
Proof. Suppose R is an UFD and p ∈ R is irreducible. Suppose p | ab, so there exists c such that ab = pc.Writing a, b, c as a product of irreducibles, by the uniqueness of factorisation, p | a or p | b.Now suppose every irreducible is prime, and say we have p1 · · · pm = q1 · · ·qn, pi, qi irreducible. Since
p1 is prime, then we must have some qi such that p1 | qi. Without loss of generality, p1 | q1. Since q1 isirreducible, we must have that q1 = p1u for some u ∈ R×. But this means that (p1) = (q1). Cancelling (whichwe can do as we are in an integral domain), and using induction we get the required result.

Theorem 5.14. If R is a PID, then it is a UFD.
Proof. Since every irreducible is prime in a PID, suffices to show nonzero, nonunit elements can be written asa product of irreducibles. Suppose x is not a product of irreducibles. Then there exists x1, y1 ∈ R non unitssuch that x = x1y1. Without loss of generality x1 is not a product of irreducibles. Then x1 = x2y2 a product ofnonunits. This gives us a sequence x1, x2, . . ., and an ascending chain of ideals

(x1) ⊂ (x2) ⊂ . . .which does not terminate. Contradiction, as a PID is Noetherian.
Definition 5.15 (Greatest common divisor)Let R be an integral domain, d ∈ R is a gcd of a1, . . . , an ∈ R if

• d | a1, . . . , d | an.• If d′ | a1, . . . , d′ | an, then d | d′.
Definition 5.16 (Least common multiple)Let R be an integral domain, m ∈ R is a lcm of a1, . . . , an ∈ R if

• a1 | m, . . . , an | m.• If a1 | m′, . . . , an | m′, then m | m′.
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Remark 5.17. gcd(a1, . . . , an) and lcm(a1, . . . , an) are defined up to associates. Equivalently, we can define these asprincipal ideals, in which case it would be uniquely defined.
Proposition 5.18. In a UFD, gcd(a1, . . . , an) and lcm(a1, . . . , an) exist.

Proof. Write each as a product of irreducibles and use formula as in Z.
5.1 Polynomial ringsIn this section let R be a UFD, and F = Frac(R ) be its field of fractions.

Definition 5.19 (Content)The content of a polynomial f ∈ R [X ], f (X ) = anXn + · · · + a0 is c(f ) = gcd(a0, . . . , an).
Definition 5.20 (Primitive)A polynomial f ∈ R [X ] is primitive if c(f ) ∈ R×.
Lemma 5.21. If f , g are primitive, then so is fg.

Proof. Suppose not. Say we have a prime p such that p | c(fg). Furthermore, suppose f (X ) = anXn + · · · +a0and g(X ) = bmXm + · · · + b0. Since f and g are primitive, p ∤ c(f ) and p ∤ c(g). Let k = min{i : p ∤ ai} and
l = min{i : p ∤ bi}. The coefficient of X k+l in fg is

∑
i+j=k+laibj = akbl + k−1∑

i=0 aibk+l−i +
l−1∑
j=0 ak+l−jbjBy minimality, we have that p | ai for i ≤ k − 1, p | bj for j ≤ l− 1, and p |

∑
i+j=k+laibj . So p | akbl, and

p | ak or p | bl. Contradiction.
Lemma 5.22. If f , g ∈ R [X ], then c(fg) = c(f )c(g)a.

aEquality up to associates, or equivalently, equality of ideals.
Proof. Write f = c(f )f0 and g = c(g)g0, where f0, g0 primitive. Then

c(fg) = c(c(f )f0c(g)g0) = c(f )c(g)c(f0g0) = c(f )c(g)

Corollary 5.23. If p ∈ R is prime, then p is prime in R [X ].
Proof. R [X ]× = R×, so p is not a unit in R [X ]. Let f ∈ R [X ]. Then note that p | f in R [X ] if and only if p | c(f )in R . Thus,

p | fg ⇐⇒ p | c(fg) ⇐⇒ p | c(f )c(g) ⇐⇒ p | c(f ) ∨ p | c(g) ⇐⇒ p | f ∨ p | g
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Lemma 5.24. Let f , g ∈ R [X ], g primitive. If g | f in F [X ], then g | f in R [X ].
Proof. Suppose f = gh, where h ∈ F [X ]. Let a ∈ R be the lcm of the denominators of the coefficients of h.Then ah ∈ R [X ]. Let ah = c(ah)h0, with h0 ∈ R [X ] primitive. Then af = c(ah) h0g︸︷︷︸primitive

, so a | c(af ) implies
that a | c(ah). Thus, we must have that h ∈ R [X ].

Lemma 5.25 (Gauss). Let f ∈ R [X ] be primitive. Then f irreducible in R [X ] implies that f is irreduciblein F [X ].
Proof. We prove the contrapositive. Suppose f is not irreducible in F [X ], that is, we have g, h ∈ F [X ] non units(so deg(g), deg(h) > 0), such that f = gh. Let b ∈ R, b ̸= 0 be such that bg ∈ R [X ]. Then bg = c(bg)g0,where g0 is primitive. Let λ = c(bg)b−1. Then λ−1g = g0 ∈ R [X ] and is primitive. Thus, by considering
λ−1gλh, we may assume without loss of generality that g ∈ R [X ] primitive. But then g | f in F [X ] implies that
g | f in R [X ] by the previous lemma. So f = gh, where g, h ∈ R [X ] are non units. So f is not irreducible in
R [X ].

Lemma 5.26. Let g ∈ R [X ] be primitive. Then g ∈ F [X ] prime implies that g ∈ R [X ] prime.
Proof. Suppose f1, f2 ∈ R [X ], g | f1f2 in R [X ]. Then g | f1f2 in F [X ]. Without loss of generality, suppose g | f1in F [X ]. But as g is primitive, we have that g | f1 in R [X ].

Theorem 5.27. Let R be a UFD. Then R [X ] is a UFD.
Proof. Let f ∈ R [X ], where f = c(f )f0, f0 primitive. Then R is a UFD implies that c(f ) is a product ofirreducibles in R , which must then be a product of irreducibles in R [X ]. Suppose f0 is not irreducible, say
f0 = gh, g, h ∈ R [X ] non units. Then as f is primitive, so must g, h. By induction on the degree of f0, we havethat f0 is a product of irreducibles.Therefore, we have that every f ∈ R [X ] can be written as a product of irreducibles. Suffices to show thatall irreducibles in R [X ] are prime. Let f ∈ R [X ] be irreducible. Let f = c(f )f0, f0 ∈ R [X ] primitive. Since f isirreducible, we must have that f is constant or primitive.If f is constant, then it is irreducible in R , so prime in R , and thus prime in R [X ]. If f is primitive, then f isirreducible in F [X ], so prime in F [X ], so prime in R [X ].

Proposition 5.28 (Eisenstein’s criterion). Let R be a UFD, f ∈ R [X ], f = anXn + · · · + a0 primitive.Suppose we have a prime (or equivalently irreducible) p ∈ R such that
• p | an−1, . . . , p | a0,• p2 ∤ a0,• p ∤ an,
then f is irreducible over R [X ].

Proof. Suppose not. Say we have f = gh, g, h ∈ R [X ] non units. Then f primitive implies that deg(g), deg(h) >0. Say
g = rkX k + · · · + r0 and h = slX l + · · · + s0
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Since an = rksl, and p ∤ an, we have that p ∤ rk , p ∤ sl. a0 = r0s0, so p | a0 implies that p | r0 or p | s0.Without loss of generality, assume p | r0. Let j be such that p | a0, . . . , p | aj−1, and p ∤ aj (exists as gprimitive). Then
aj = r0sj + · · · + rj−1s1 + rjs0But as p | aj since j ≤ deg(g) ≤ n− 1, so p | rjs0, which means that p | s0. But p2 ∤ a0. Contradiction.

5.2 Algebraic integers

Definition 5.29 (Norm)Define the norm of a Gaussian integer to be N(a+ bi) = a2 + b2.
Proposition 5.30. Z[i] is a Euclidean domain with Euclidean function φ = N .
Proposition 5.31. Let p ∈ Z be prime. Then the following are equivalent.

(i) p is not prime in Z[i].(ii) p = a2 + b2 for some a, b ∈ Z.(iii) p = 2 or p ≡ 1 (mod 4).
Proof. Suppose p is not prime in Z[i]. Equivalently, p is not irreducible in Z[i]. Then p = xy, where x, y ∈ Z[i]non units. So

p2 = N(p) = N(x)N(y) =⇒ N(x) = N(y) = pLetting x = a+ ib, we have that p = N(x) = a2 + b2.Now suppose p = a2 + b2. Since all squares are 0 or 1 mod 4, we have the required result. Finally,suppose p = 2. Then 2 = (1+ i)(1 − i) is not irreducible. So suppose p ≡ 1 (mod 4). Then (Z/pZ)× is a cyclicgroup of order p − 1, and as 4 | p − 1, we have an element of order 4. So we have x ∈ Z such that x4 + 1(mod p), and x2 ̸≡ 1 (mod p). But then this means that x2 ≡ −1 (mod p), so p | x2 + 1 = (x − i)(x + i) in
Z[i].

Theorem 5.32. The primes in Z[i] are (up to associates)
(i) a+ bi, a, b ∈ Z, a2 + b2 = p prime with p = 2 or p ≡ 1 (mod 4),(ii) p ∈ Z, p ≡ 3 (mod 4).

Proof. First we need to show that these are primes. For (i), we have that N(a+ bi) = a2 + b2 = p, so it mustbe irreducible. For (ii), this follows immediately from the previous proposition.Now let z ∈ Z[i] be irreducible. Then z ∈ Z[i] is also irreducible. Then N(z) = zz is a factorisation of
N(z) into irreducibles in Z[i]. Let p ∈ Z be a prime, p | N(z). If p ≡ 3 (mod 4), then p is prime in Z[i], so p | zor p | z . Note that p | z if and only if p | z , so p is in fact an associate of z .If p = 2 or p ≡ 1 (mod 4), then p = a2 + b2 = (a + bi)(a − bi) is a product of irreducibles in Z[i]. Then(a+ bi)(a− bi) | zz , so by uniqueness of factorisation, z is an associate of a+ bi or a− bi.

Corollary 5.33. An integer n ≥ 1 is the sum of two squares if and only if every prime factor p | n where
p ≡ 3 (mod 4) has even multiplicity.
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Proof. The norms of primes of Z[i] are precisely
• 2,• p, where p ≡ 1 (mod 4),• p2, where p ≡ 3 (mod 4).

Definition 5.34 (Algebraic number)
α ∈ C is an algebraic number if there exists p ∈ Q[X ] nonzero such that p(α) = 0.
Definition 5.35 (Algebraic integer)
αinC is an algebraic integer if there exists p ∈ Z[X ] nonzero, monic such that p(α) = 0.
Definition 5.36 (Adjunction)Let R ≤ S be a subring, α ∈ S . Then define R [α ] to be the smallest subring of S that contains both Rand α .
Definition 5.37 (Minimal polynomial)For an algebraic number α , let φ : Q[X ] → C, φ(g) = g(α). Then as Q[X ] is a PID, ker(φ) = (f ) ̸= 0, as
α is an algebraic number. Without loss of generality f monic. Then f is the minimal polynomial of α .
Proposition 5.38. Suppose f is the minimal polynomial for α . Then

Q[x ](f ) ∼= Q[α ]

Proposition 5.39. Let α be an algebraic integer with minimal polynomial f . Then f ∈ Z[X ].
Proof. Let θ : Z[X ] → C, θ(g) = g(α) be the restriction of φ to Z[X ] ≤ Q[X ]. Let λ ∈ Q× be such that
λf ∈ Z[X ] and is primitive. Then λf (α) = 0, so λf ∈ ker(θ).Let g ∈ ker(θ). Then g ∈ ker(φ), so λf | g in Q[X ]. But then this means that λf | g in Z[X ]. Suppose
g ∈ ker(θ) nonzero monic. Then as f and g are both monic, λ = ±1, so f ∈ Z[X ].
6 Modules

Theorem 6.1 (Canonical decomposition). For a R-module homomorphism f : M → N , we have that
M M/ ker(f ) im(f ) N

∼=

Theorem 6.2 (Second isomorphism theorem). Let A, B ≤ M be R-submodules. Then
15



A
A ∩ B

∼= A+ B
B

Theorem 6.3 (Third isomorphism theorem). Let N ≤ L ≤ M , then
M/N
L/N

∼= M
L

Definition 6.4 (Annihilator)The annihilator of an R-module M is
AnnR (M) = {r ∈ R : ∀m ∈ M, rm = 0} ⊴ R

Definition 6.5 (Finitely generated module)An R-module M is finitely generated if there exists m1, . . . , mn such that
M = Rm1 + · · · + Rmn

Proposition 6.6. An R-module M is finitely generated if and only if there exists a surjective R-modulehomomorphism Rn ↠ M .
Corollary 6.7. Suppose N ≤ M , M is finitely generated. Then M/N is also finitely generated.
Definition 6.8 (Torsion)Let M be a R-module, m ∈ M is torsion if there exists r ∈ R , r ̸= 0 such that rm = 0.
Definition 6.9 (Torsion module)An R-module M is torsion if every element of M is torsion. M is torsion free if the only torsion elementis 0.
Definition 6.10 ((External) direct sum)Let M1, . . . ,Mn be R-modules, then define the direct sum

n⊕
i=1 Mi = {(m1, . . . , mn) : mi ∈ Mi}

with pointwise operations.
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Lemma 6.11. Suppose Ni ≤ Mi for all i. Then⊕n
i=1Mi⊕n
i=1Ni

∼= n⊕
i=1

Mi
Ni

Proof. Consider the canonical decomposition of the R-module homomorphism
(m1, . . . , mn) 7→ (m1 +N1, . . . , mn +Nn)

Definition 6.12 (Generator)Let S ⊆ M . If every element m ∈ M can be written as a finite R-linear combination of elements of S ,then S is a generator for M .
Definition 6.13 (Free generator)A generator S ⊆ M is free if any function φ : S → N , where N is a R-module, can be extended (uniquely)to an R-module homomorphism ψ : M → N .
Proposition 6.14. For S = {m1, . . . , mn} ⊆ M , the following are equivalent.

(i) S generates M freely.(ii) S generates M , S is R-linearly independent.(iii) Every element of M can be written uniquely as a R-linear combination of elements of S .(iv) The R-module homomorphism Rn ↠ M is an isomorphism.
Proposition 6.15 (Invariance of dimension). Suppose R ̸= 0, Rm ∼= Rn. Then m = n.

Proof. Let I ⊴ R be an ideal. For an R-module M , define
IM = {∑aimi : ai ∈ I, mi ∈ M

}
Then the quotient M/IM is an R/I module, by (r + I)(m+ IM) = (rm+ IM). From Zorn’s lemma, suppose Iis a maximal ideal. Then R/I is a field and we have an isomorphism of R/I modules. The result then followsfrom the corresponding result for vector spaces.

7 Structure theorem
Let R be a Euclidean domain with Euclidean function φ. Let A ∈ Matm(R ).

Definition 7.1 (Elementary row operations)The elementary rop operations are
(i) Add λ× (row i) to (row j).(ii) Swap rows i and j .
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(iii) Multiply row i by u, where u ∈ R×.
Proposition 7.2. Each row operation corresponds to left multiplication by an invertible matrix.
Remark 7.3. Column operations are defined similarly.
Definition 7.4 (Equivalent)
A, B ∈ Matm(R ) are equivalent if we have a sequence of elementary row/column operations taking A to
B. Equivalently, B = QAP , where P,Q invertible.
Definition 7.5 (Smith normal form)A diagonal matrix 

d1 . . .
dt 0 . . . 0


is in Smith Normal Form if each di is nonzero, and d1 | d2, d2 | d3, . . . , dt−1 | dt .

Theorem 7.6. A ∈ Matm,n(R ) is equivalent to a diagonal matrix in Smith normal form. The diagonal terms(di) are called invariant factors.
Proof. If A = 0 then we are done. Otherwise, we have aij ̸= 0. By swapping rows and columns, without loss ofgenerality a11 ̸= 0. Using the Euclidean algorithm with a11 and elements of the first row/column, we can make
φ(a11) minimal among the first row/column, and divides the first entry in each row/column. Using this, we canclear out the first row/column. If a11 ∤ aij for some i, j ≥ 2, add the i-th row to the first row and repeat. Thenwe get that a11 | aij for all i, j ≥ 2, the first row/column are zero except at a11. Repeating this process for the(m− 1) × (n− 1) submatrix in the bottom right gives the required result.

Definition 7.7 (Fitting ideal)The k-th Fitting ideal, Fitk (A), is the ideal generated by the k × k minors.
Lemma 7.8. If A and B are equivalent, then the Fitting ideals are the same.

Proof. Compute for each row/column op.
Proposition 7.9. The invariant factors are unique up to associates.

Proof. Fitk (A) = (d1 . . . dk )
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Lemma 7.10. Let R be a PID. Then any submodule of Rm is generated by at most m elements.
Proof. By induction on m. Let N ≤ Rm, and consider the ideal

I = {r ∈ R : ∃n = (n1, . . . , nm) ∈ N, n1 = r}

I is a principal ideal, say I = (a). Choose n ∈ N such that n = (a, a2, . . . , am). For (r1, . . . , rm) ∈ N ,
r1 = ra for some r , so (r1, . . . , rm) − rn = (0, x2, . . . , xm) ∈ N ′, where N ′ = N ∩

(0 × Rm−1) ↪→ Rm−1. Then
N = Rn⊕N ′, and using the induction hypothesis for N ′ we get the required result.

Theorem 7.11. Let R be an Euclidean domain, N ≤ Rm. Then there is a free basis x1, . . . , xm for Rmsuch that N = ⟨d1x1, . . . , dtxt⟩ for some t ≤ m, and d1 | d2, . . . , dt−1 | dt .
Proof. By previous lemma, N is generated by at y1, . . . , yn, where n ≤ m. Let A have columns yi. Then A isequivalent to a matrix in Smith Normal form. Each row operation corresponds to a change in free basis, andeach column operation is a change in the choice of generators of N .

Theorem 7.12 (Structure theorem). Let R be an Euclidean domain, M a finitely generated R-module.Then
M ∼= ( t⊕

i=1
R(di)
)

⊕ R k

where d1, . . . , dt nonzero, d1 | d2, . . . , dt−1 | dt . The (di) are called invariant factors.
Proof. Since M is finitely generated, we have φ : Rm ↠ M . Then the first isomorphism theorem gives us that

M ∼= Rmker(φ)By the previous theorem, there exists a free basis (x1, . . . , xm) for Rm such that ker(φ) = ⟨d1x1, . . . , dtxt⟩,with d1 | d2, . . . , dt−1 | dt . Define di = 0 for i > t, then
M ∼= ⊕m

i=1 R⊕m
i=1 diR ∼= m⊕

i=1
R(di)

Corollary 7.13. A finitely generated torsion free R-module over a Euclidean domain is free.
Theorem 7.14 (Structure theorem for finitely generated abelian groups). Any finitely generated abeliangroup G is isomorphic to

G ∼= ( m⊕
i=1

Z
diZ

)⊕
Zr

Proof. Abelian groups are Z-modules.
Lemma 7.15. Let R be a PID, a, b ∈ R such that gcd(a, b) = 1. Then
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R(ab) ∼= R(a) ⊕ R(b)as R-modules.
Proof. We have r, s ∈ R such that ra+ sb = 1.

Theorem 7.16 (Primary decomposition). Let R be a Euclidean domain, M a finitely generated R-module.Then
M ∼= ( k⊕

i=1
R(pnii )
)

⊕ Rm

where p1, . . . , pk primes.
Proof. By structure theorem and previous lemma.
8 Jordan normal form
Let F be a field, V be a F-vector space.

Definition 8.1Given α ∈ End(V ), Define the F [X ]-module Vα to be V , with the scalar product given by
f · v = f (α)(v )

Lemma 8.2. If V is finite dimensional, then Vα is finitely generated.
Proof. F ≤ F [X ] as rings, so the basis v1, . . . , vn for V still spans Vα .

Definition 8.3 (Companion matrix)Let f = Xn + an−1Xn−1 + · · · + a0 ∈ F [X ]. Then the companion matrix for f is
C (f ) =


0 . . . 0 −a01 . . . −a1. . . 0 ...0 1 −an−1



Proposition 8.4. Let f = Xn +an−1Xn−1 + · · · +a0 ∈ F [X ], and suppose Vα ∼= F [X ]/(f ) as F [X ]-modules.Then we have an isomorphism of F-vector spaces, and 1, X , . . . , Xn−1 forms a basis of Vα . Under thisbasis, α(x) = X · α has matrix C (f ).
Proof. Compute.

Theorem 8.5 (Rational canonical form). Let α ∈ End(V ), V be a finite dimensional F-vector space. Thenwe have a decomposition of the F [X ]-module Vα as
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F [X ] ∼= t⊕
i=1

F [X ](fi)where f1 | f2, . . . , ft−1 | ft . Moreover, with respect to a suitable basis, α as block diagonal matrixc(f1) . . .
c(ft )


Proof. Decomposition follows from the structure theorem for finitely generated modules. Furthermore, we can(as in finite dimensions the direct sum is the coproduct and the product) decompose α as αi ∈ End(F [X ]/(fi)).Then we have a basis for each one where we get the companion matrix for fi.

Remark 8.6. The minimal polynomial of α is ft , the characteristic polynomial is ∏t
i=1 fi .

Corollary 8.7 (Cayley-Hamilton). The minimum polynomial of α divides the characteristic polynomial of
α .
Corollary 8.8. AnnF [X ](Vα ) = (f )where f is the minimal polynomial of α .
Lemma 8.9. The primes (or equivalently irreducibles) in C[X ] are X − λ.

Proof. By fundamental theorem of algebra, if f ∈ C[X ], then there exists λ such that f (λ) = 0. So X − λ | f .Thus any irreducible element must have degree 1.
Definition 8.10 (Jordan block)A Jordan block Jn(λ) ∈ Matn(C) is a matrix of the form

Jn(λ) =

λ1 . . .. . . . . .1 λ



Remark 8.11. In Linear Algebra we had the 1s above the main diagonal, it is easy to modify the proof of the Jordannormal form (reverse basis) to get that.
Proposition 8.12. Suppose Vα ∼= F [X ]/((X − λ)n). Then with respect to the basis 1, X − λ, . . . , (X − λ)n−1,
α (or the action of multiplying by X ) has matrix Jn(λ).

Proof. Consider the action of X − λ. This has matrix
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01 . . .. . . . . .1 0


Then X = (X − λ) + λ has matrix 

λ1 . . .. . . . . .1 λ



Theorem 8.13 (Jordan normal form). Let V be a finite dimensional C-vector space, α ∈ End(V ). Then wehave a decomposition of the C[X ] module Vα as
Vα ∼= t⊕

i=1
C[X ]((X − λi)ni )where λi ∈ C not necessarily distinct. Furthermore, there exists a basis for V such that α has blockdiagonal matrix Jn1 (λ1) . . .
Jnt (λt )


Proof. Applying the primary decomposition theorem we get the decomposition of Vα . Restricting α to each partand using the previous proposition we get the required result.

Remark 8.14. By considering generalised eigenspaces ker((α − λ id)m), the Jordan blocks are determined up toreordering.
Proposition 8.15. The minimal polynomial for α is∏

λ
(X − λ)cλ

and the characteristic polynomial is ∏
λ

(X − λ)aλ
where cλ is size of the largest Jordan block with eigenvalue λ, and aλ is the sum of the sizes of the λvalues.

Proposition 8.16. The number of λ-blocks is dim(Vλ), or the geometric multiplicity of the eigenvalue λ.
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