Groups, rings and modules

Shing Tak Lam

May 11, 2022

Contents

1	Simplicity of the alternating group 1.1 Group theory 1.2 Alternating group	1 1 3
2	Sylow theorems 2.1 p-groups 2.2 Sylow's theorems	4 4 4
3	Matrix groups	6
4	Rings	6
5	Factorisation5.1Polynomial rings5.2Algebraic integers	9 12 14
6	Modules	15
7	Structure theorem	17
8	lordan normal form	20

1 Simplicity of the alternating group

1.1 Group theory

Theorem 1.1 (Canonical decomposition). Let $\phi : G \to H$ be a group homomorphism, then we have

 $G \xrightarrow{\simeq} G/\ker(\phi) \xrightarrow{\cong} \operatorname{im}(\phi) \hookrightarrow H$

Proof. Suffices to define the middle isomorphism. Define the map $\Phi : G/\ker(\phi) \to \operatorname{im}(\phi)$ by $\Phi(x \ker(\phi)) = \phi(x)$. First, we need to show that is is well defined. That is, it is independent of the choice of coset representative. Suppose $x \ker(\phi) = y \ker(\phi)$. Then $xy^{-1} \in \ker(\phi)$, so $\phi(xy^{-1}) = \phi(x)\phi(y)^{-1} = 1$. Thus $\phi(x) = \phi(y)$. Clearly Φ is a surjective homomorphism, so suffices to show that Φ is injective. But this follows as $\phi(x) = \phi(y)$ if and only if $x \ker(\phi) = y \ker(\phi)$. So Φ is an isomorphism.

Theorem 1.2 (Second isomorphism theorem). Let $H \leq G, K \leq G$, then

$$\frac{HK}{K} \cong \frac{H}{H \cap K}$$

Proof. First, we need to show that HK is infact a group (equivalently, a subgroup of *G*). Clearly $1 \in HK$. If we have $h_1, h_2 \in H$, $k_1, k_2 \in K$, then

$$h_1k_1h_2k_2 = h_1h_2((h_2^{-1}k_1h_2)k_2) \in HK$$

So *HK* is closed under multiplication. Finally, suppose $h \in H, k \in K$. Then

$$(hk)^{-1} = k^{-1}h^{-1} = h^{-1}hk^{-1}h^{-1} \in HK$$

So HK is a subgroup of G. Now we need to show that K is a normal subgroup of HK. k = 1k, so $K \leq HK$. Since $K \trianglelefteq G$, we must have that $K \trianglelefteq HK$. Finally, define the group homomorphism $\phi : H \to HK/K$ by $\phi(h) = hK$. This is a group homomorphism, and ker $(\phi) = H \cap K$. Applying the first isomorphism theorem gives the required result.

Theorem 1.3 (Third isomorphism theorem). Let $H, K \trianglelefteq G, K \le H$. Then

$$\frac{G/K}{H/K} \cong \frac{G}{H}$$

Definition 1.4 (Simple group)

A nontrivial group G is simple if the only normal subgroups of G are 1 and G.

Lemma 1.5. Suppose G is an abelian simple group. Then G is finite, and $G \cong C_p$ for some prime p.

Proof. G being an abelian simple group means that the only subgroups of *G* are 1 and *G*. Choose a nontrivial element $x \in G$. Then *x* must in fact generate *G*, and have prime order.

Lemma 1.6. Suppose *G* is a finite group. Then *G* has a composition series

$$I = G_0 \trianglelefteq G_1 \trianglelefteq \cdots \trianglelefteq G_m = G$$

where each G_i/G_{i-1} is simple.

Proof. By induction on |G|. If |G| = 1, we are done. If |G| > 1, let G_{n-1} be a proper normal subgroup with maximal order. Then G/G_{n-1} is simple, since if it has a proper normal subgroup, then we have a normal subgroup of G properly containing G_{n-1} . Contradiction. Now apply the induction hypothesis on G_{n-1} .

Theorem 1.7. Let *G* be a nonabelian simple group, $H \leq G$, |G:H| = n > 1. Then $n \geq 5$, and $G \hookrightarrow A_n$.

Proof. Let $X = \{gH : g \in G\} = G/H$, letting G act on X by left multiplication. Let $\phi : G \to \text{Sym}(X)$ be the permutation representation. Since G is simple, $\text{ker}(\phi) = 1$ or $\text{ker}(\phi) = G$. If $\text{ker}(\phi) = G$, then $\text{Im}(\phi) = 1$, but the action is transitive, and |X| > 1. Contradiction. So $\text{ker}(\phi) = 1$, and we have $\phi : G \hookrightarrow S_n$.

Considering $G \leq S_n$, by the second isomorphism theorem, we have that

$$\frac{G}{G \cap A_n} \cong \frac{GA_n}{A_n} \le \frac{S_n}{A_n} \cong C_2$$

Since *G* is simple, $G \cap A_n = 1$ or $G \cap A_n = G$. If $G \cap A_n = 1$, then $G \hookrightarrow C_2$. But *G* is nonabelian, so $G = G \cap A_n$, and $G \leq A_n$.

Definition 1.8 (Normaliser) The normaliser of $H \le G$ is

$$N_G(H) = \{ q \in G : qHq^{-1} = H \}$$

Proposition 1.9. The normaliser is the kernel of the conjugation action of G on H. Furthermore, it is the largest subgroup of G which H is normal in.

1.2 Alternating group

Lemma 1.10. *A_n* is generated by 3-cycles.

Proof. Each $\sigma \in A_n$ can be written as a product of an even number of transpositions. Suffices to show the product of any two transpositions is a three cycle.

$$(a \ b)(c \ d) = (a \ c \ b)(a \ c \ d)$$
 and $(a \ b)(b \ c) = (a \ b \ c)$

Lemma 1.11. If $n \ge 5$, then all 3-cycles in A_n are conjugate.

Proof. All 3-cycles in S_n are conjugate, so suffices to show that the conjugacy class does not split. But $(1 \ 2 \ 3)(4 \ 5) = (4 \ 5)(1 \ 2 \ 3)$.

Theorem 1.12. A_n is simple for $n \ge 5$.

Proof. Let $N \leq A_n$ be a nontrivial normal subgroup. Suffices to show that it contains a 3-cycle, since this would mean that it contains all 3-cycles.

Fix $\sigma \in N$ nontrivial, write σ as a product of disjoint cycles $\sigma = \sigma_1 \dots \sigma_n$.

Case 1: σ_i has length ≥ 4 for some *i*. Without loss of generality, suppose $\sigma_1 = (1 \dots r)$ for $r \geq 4$. Let $\delta = (1 \ 2 \ 3)$. Then

$$\sigma^{-1}\delta^{-1}\sigma\delta = (r \dots 1)(1 \ 3 \ 2)(1 \dots r)(1 \ 2 \ 3) = (2 \ 3 \ r) \in N$$

Case 2: σ contains two 3-cycles. Without loss of generality, $\sigma_1 = (1 \ 2 \ 3)$ and $\sigma_2 = (4 \ 5 \ 6)$. Let $\delta = (1 \ 2 \ 4)$. Then

$$\sigma^{-1}\delta^{-1}\sigma\delta = (1\ 3\ 2)(4\ 6\ 5)(1\ 4\ 2)(1\ 2\ 3)(4\ 5\ 6)(1\ 2\ 4) = (1\ 2\ 4\ 3\ 6) \in N$$

This then reduces to Case 1.

Case 3: σ contains two 2-cycles. Without loss of generality, $\sigma_1 = (1 \ 2)$ and $\sigma_2 = (3 \ 4)$. Let $\delta = (1 \ 2 \ 3)$. Then let

$$\pi = \sigma^{-1} \delta^{-1} \sigma \delta = (1 \ 2)(3 \ 4)(1 \ 3 \ 2)(1 \ 2)(3 \ 4)(1 \ 2 \ 3) = (1 \ 2 \ 4)(1 \ 2 \ 3)(1 \ 4)(2 \ 4) \in N$$

Let $\varepsilon = (2 \ 3 \ 5)$. Then

$$\pi^{-1}\varepsilon^{-1}\pi\varepsilon = (1 \ 4)(2 \ 3)(2 \ 5 \ 3)(1 \ 4)(2 \ 3 \ 5) = (2 \ 5 \ 3)$$

Case 4: *σ* is a 3-cycle. Immediate.

2 Sylow theorems

2.1 *p*-groups

Definition 2.1 (*p*-group)

For a prime *p*, a finite group *G* is a *p*-group if $|G| = p^n$ for some $n \ge 1$.

Theorem 2.2. Suppose *G* is a *p* group. Then $Z(G) \neq 1$.

Proof. For $g \in G$, we have from the Orbit-Stabiliser theorem that $|ccl(g)||C(g)| = |G| = p^n$. So the size of each conjugacy class must divide p^n . As conjugacy classes partition, the number of $g \in G$ such that |ccl(g)| = 1 must be 0 (mod p). But ccl(1) = 1, so there is at least one, and the centre is nontrivial.

Corollary 2.3. Suppose G, $|G| = p^n$, $n \ge 2$. Then G is not simple.

Proof. If G is not abelian, note that $Z(G) \trianglelefteq G$. If G is abelian, note that we have a subgroup of order p by Cauchy's theorem.

Corollary 2.4. Let G be a p-group, $|G| = p^n$. For all $0 \le r \le n$, G has a subgroup of order p^r .

Proof. G has a composition series

$$1 = G_0 \trianglelefteq G_1 \trianglelefteq \cdots \trianglelefteq G_m = G$$

where each G_i/G_{i-1} is simple. Since G is a p-group, G_i/G_{i-1} is a p-group as well. But this means that $G_i/G_{i-1} \cong C_p$. So $|G_k| = p^k$.

Lemma 2.5. Let G be a group such that G/Z(G) is cyclic. Then G is abelian, and Z(G) = G.

Proof. Suppose G/Z(G) is generated by gZ(G). Let $x, y \in G$, since cosets partition, we must have $n, m \in \mathbb{Z}$, $a, b \in Z(G)$ such that $x = g^n a$ and $y = g^m b$. Then

$$xy = g^n a g^m b = g^{n+m} a b = g^{n+m} b a = g^m b g^n a = yx$$

So G is abelian, and Z(G) = G.

Corollary 2.6. Every group of order p^2 is abelian.

Proof. Since Z(G) is nontrivial, G/Z(G) = 1 or C_p . Both cases we are done by the previous lemma.

2.2 Sylow's theorems

Definition 2.7 (Sylow-*p* subgroup)

Let G be a finite group, p prime. Then $P \leq G$ is a Sylow-p subgroup if |G : P| is coprime to p. Let $Syl_p(G)$ be the set of all Sylow-p subgroups of G.

Theorem 2.8 (Sylow I).

 $\operatorname{Syl}_p(G) \neq \emptyset$

Proof. Suppose $|G| = p^a m$, where p, m coprime. Let

$$\Omega = \{ S \subseteq G : |S| = p^a \}$$

Then

$$|\Omega| = \binom{p^a m}{p^a} = \frac{p^a m}{p^a} \cdot \frac{p^a m - 1}{p^a - 1} \cdots \frac{p^a m - p^a + 1}{1}$$

For $0 \le k < p^a$, $v_p(p^am - k) = v_p(p^a - k)$, where $v_p(n)$ is the *p*-adic valuation, or the exponent of the largest power of *p* dividing *n*. So $|\Omega|$ is coprime to *p*. Let $G \supseteq \Omega$ by left multiplication. By the orbit-stabiliser theorem, we have that for any $X \in \Omega$,

 $|G_X||\operatorname{Orb}(X)| = |G|$

Since $|\Omega|$ is coprime to p and orbits paritition, we must have $X \in \Omega$ such that |Orb(X)| is coprime to p. So $p^a \mid |G_X|$. On the other hand, for $g \in G$, $x \in X$, $g = gx^{-1}x \in (gx^{-1})X$, so

$$G = \bigcup_{g \in G} (gx^{-1}) X = \bigcup_{Y \in \operatorname{Orb}(X)} Y$$

Which means that $|G| \leq |\operatorname{Orb}(X)||X| = p^a |\operatorname{Orb}(X)|$. Hence $|G_X| \leq p^a$, so $|G_X| = p^a$, and $G_X \in \operatorname{Syl}_p(G)$. \Box

Lemma 2.9. Suppose $P \in Syl_p(G)$, $Q \leq G$ is a *p*-subgroup. Then there exists $g \in G$ such that $Q \leq gPg^{-1}$ for all $g \in G$.

Proof. Let Q act on G/P by left multiplication. By orbit stabiliser, we have that

$$p^k = |Q| = |G_{gP}| |\operatorname{Orb}(gP)|$$

This means that the size of all orbits are a *p*-power. Since G/P has size coprime to *p* and orbits partition, we have an orbit of size 1. That is, we have $g \in G$ such that for all $q \in Q$, qgP = gP. That is, $g^{-1}qg \in P$, or $q \in gPg^{-1}$, so $Q \leq gPg^{-1}$.

Theorem 2.10 (Sylow II). For any $P, Q \in Syl_p(G)$, P, Q are conjugate.

Proof. By the previous lemma, we have $g \in G$ such that $Q \leq gPg^{-1}$. By considering the orders, they must in fact be equality. So P and Q are conjugate.

Theorem 2.11 (Sylow III). Let $n_p = |Syl_p(G)|$. Then $n_p \equiv 1 \pmod{p}$ and $n_p \mid |G|$. That is, if $|G| = p^a m$ with m, p coprime, then $n_p \mid m$.

Proof. Let G act on $Syl_p(G)$ by conjugation. Sylow II implies that the action is transitive. So from orbit stabiliser, we have that

$$|G| = \left| \operatorname{Syl}_{p}(G) \right| |G_{P}| \implies n_{p} \mid |G|$$

Fix $P \in \text{Syl}_p(G)$, and let P act on $\text{Syl}_p(G)$ by conjugation. From orbit stabilier, the size of the orbits have size dividing a power of p. Suffices to show there is only one orbit of size 1, namely $\{P\}$. Suppose $\{Q\}$ is an orbit of size 1. Then $pQp^{-1} = Q$, so $P \leq N_G(Q)$. Then P, Q are Sylow-p subgroups of $N_G(Q)$, so conjugate by Sylow II. Hence P = Q since $Q \leq N_G(Q)$.

3 Matrix groups

Definition 3.1 (General linear group)

For a field F, the general linear group is

$$GL_n(F) = \{ \mathcal{M} \in Mat_n(F) : det(\mathcal{M}) \neq 0 \}$$

Definition 3.2 (Special linear group) The special linear group is

$$SL_n(F) = \{M \in Mat_n(F) : det(M) = 1\} = ker(det) \le GL_n(F)$$

Definition 3.3 (Projective general linear group) The projective general linear group is

$$P \operatorname{GL}_n(F) = \frac{\operatorname{GL}_n(F)}{Z}$$
 where $Z = \{aI : a \in F^{\times}\}$

Definition 3.4 (Projective special linear group) The projective special linear group is

$$P \operatorname{SL}_n(F) = \frac{\operatorname{SL}_n(F)}{Z \cap \operatorname{SL}_n(F)}$$

Proposition 3.5.

$$P \operatorname{SL}_n(F) \leq P \operatorname{GL}_n(F)$$

Proof.

$$P \operatorname{SL}_n(F) = \frac{\operatorname{SL}_n(F)}{Z \cap \operatorname{SL}_n(F)} \cong \frac{Z \operatorname{SL}_n(F)}{Z} \le P \operatorname{GL}_n(F)$$

Definition 3.6 (Möbius map)

For a fixed field F, $P \operatorname{GL}_2(F)$ acts on $F \cup \{\infty\}$ by Möbius maps.

4 Rings

Theorem 4.1 (Canonical decomposition). Suppose $\phi : R \to S$ is a ring homomorphism. Then we have the decomposition

 $R \xrightarrow{\qquad } R/\ker(\phi) \xrightarrow{\cong} \operatorname{im}(\phi) \xrightarrow{\qquad } S$

Theorem 4.2 (Second isomorphism theorem). Suppose $R \leq S$, $J \leq S$. Then

$$\frac{R}{R\cap J}\cong\frac{R+J}{J}$$

Theorem 4.3 (Third isomorphism theorem). Let $I, J \subseteq R, I \leq J$. Then

$$\frac{R/I}{J/I} \cong \frac{R}{J}$$

Proposition 4.4. For all rings *R*, there exists a unique homomorphism $\iota : \mathbb{Z} \to R$.

Proof. $\iota(0) = 0$ and $\iota(1) = 1$ determines the homomorphism uniquely.

Definition 4.5 (Characteristic) Let $\iota : \mathbb{Z} \to R$. Then ker $(\iota) \leq \mathbb{Z}$, so ker $(\iota) = n\mathbb{Z}$ for some *n*. Define the characteristic of *R* to be char(R) = n.

Lemma 4.6. Suppose *R* is an integral domain. Then so is R[X].

Proof. Suppose $f, g \in R[X]$, $f = a_n X^n + \dots + a_0$, $g = b_m X^m + \dots + b_0$, where $a_n, b_m \neq 0$. The coefficient of X^{n+m} in fg is $a_n b_m$, which is nonzero as R has no zero divisors. Hence $fg \neq 0$.

Lemma 4.7. Suppose *R* is an integral domain, $f \in R[X]$. Then

$$|\{a \in R : f(a) = 0\}| \le \deg(f)$$

Proof. $f(x) = (x - a_1) \cdots (x - a_k)g(x)$, and consider degrees.

Theorem 4.8. Let *F* be a field, $G \leq F^{\times}$ be a finite subgroup. Then *G* is cyclic.

Proof. By the structure theorem of finite abeliean groups, if *G* is not cyclic then there exists $H \cong C_{d_1} \times C_{d_2} \leq G$, $d_1, d_2 \geq 2, d_1 \mid d_2$, and without loss of generality, we may assume $d_1 = d_2$. Then the polynomial

$$f(X) = X^{d_1} - 1 \in F[X]$$

has degree d_1 but at least d_1^2 roots. Contradiction.

Proposition 4.9. Any finite integral domain is a field.

Proof. Left multiplication in an integral domain is injective. An injective map from a finite set to itself must be a bijection. \Box

Definition 4.10 (Field of fractions)

Let R be an integral domain, then define the field of fractions of R to be

$$\operatorname{Frac}(R) = \left\{ \frac{a}{b} : a, b \in R, b \neq 0 \right\}$$

where we have that^a

$$\frac{a}{b} = \frac{c}{d} \iff ad = bc$$

and the operations are defined as in the field of rationals.

^aFormally, the field of fractions is a quotient.

Theorem 4.11. Let *R* be an integral domain. Then Frac(R) is a field, and $R \leq Frac(R)$.

Definition 4.12 (Maximal ideal)

Let R be a ring. An ideal $I \leq R$ is maximal if for any ideal J such that $I \leq J \leq R$, J = I or J = R.

Lemma 4.13. A nonzero ring *R* is a field if and only if the only ideals are (0) and (1).

Proof. Suppose *R* is a field, and let $I \leq R$ be an ideal. If I = 0 we are done. Otherwise, we have $a \in R$ such that $a \neq 0$. But then $1 = a^{-1}a \in I$, so I = (1) = R.

Conversely, suppose the only ideals are (0) and (1). Let $a \in R$ be nonzero. Then we must have that (a) = (1), so a is a unit.

Proposition 4.14. Let $I \trianglelefteq R$ be an ideal. Then *I* is maximal if and only if R/I is a field.

Proof. R/I is a field

 \iff The only ideals of R/I are 0 = I/I and (1) = R/I.

 \iff The only ideals in *R* containing *I* are *I* and *R*.

Definition 4.15 (Prime ideal)

Let *R* be a ring, an ideal $I \leq R$ is prime if $I \neq R$ and for any $a, b \in R$, if $ab \in I$ then $a \in I$ or $b \in I$.

Proposition 4.16. Let $I \leq R$. Then *I* is prime if and only if R/I is an integral domain.

Proof. Suppose *I* is prime. Given $a, b \in R$, suppose (a + I)(b + I) = (ab + I) = 0. Then $ab \in I$, so either $a \in I$ or $b \in I$. Thus, either a + I = 0 or b + I = 0.

Conversely, suppose R/I is an integral domain. By considering (a + I)(b + I) as above, we see that I is a prime ideal.

Definition 4.17 (Noetherian) A ring *R* is Noetherian if every ascending chain of ideals is eventually constant.

Theorem 4.18. A ring *R* is Noetherian if and only if every ideal in *R* is finitely generated.

Proof. Let $I_1 \leq I_2 \leq \ldots$ be ideals, $I = \bigcup_n I_n$. Then I is an ideal which is finitely generated, say $I = (a_1, \ldots, a_M)$. Let $N = \max_i \min \{j : a_i \in I_j\}$. Then $I_N = I$.

Conversely, suppose if R satisfies the ascending chain condition, but J is an ideal which is not finitely generated. Choose $a_1 \in J$ nonzero, then $J \neq (a_1)$. Now choose $a_2 \in J \setminus (a_1), \ldots, a_n \in J \setminus (a_1, \ldots, a_{n-1})$. Then $(a_1) \leq (a_1, a_2) \leq \ldots$ is an infinite ascending chain of ideals which is not eventually constant. Contradiction. \Box

Theorem 4.19 (Hilbert basis theorem). If *R* is a Noetherian ring, then so is R[X].

Proof. Suppose for contradiction we have $J \subseteq R[X]$ which is not finitely generated. Choose $f_1 \in J$ with minimal degree, $f_2 \in J \setminus (f_1), \ldots, f_n \in J \setminus (f_1, \ldots, f_{n-1})$ with minimal degrees. Then $\deg(f_1) \leq \deg(f_2) \leq \ldots$. Let a_i be the leading coefficient of f_i . We have a sequence of ideals

$$(a_1) \leq (a_1, a_2) \leq \dots$$

in *R* which must be eventually constant. So we have *m* such that $a_{m+1} \in (a_1, \ldots, a_m)$, so

$$a_{m+1} = \sum_{i=1}^{m} \lambda_i a_i$$

and

$$g = \sum_{i=1}^{m} \lambda_i X^{\deg(f_{m+1}) - \deg(f_i)} f_i$$

Then deg(g) = deg(f_{m+1}), and they have the same leading coefficient. So $f_{m+1} - g \in J$, deg($f_{m+1} - g$) < deg(f_{m+1}). By minimality of degree, $f_{m+1} - g \in (f_1, \ldots, f_m)$. But $g \in (f_1, \ldots, f_m)$, so $f_{m+1} \in (f_1, \ldots, f_m)$. Contradiction.

Lemma 4.20. Let *R* be a Noetherian ring, $I \leq R$ be an ideal. Then *R*/*I* is Noetherian.

Proof. The preimage of an ideal is an ideal.

5 Factorisation

In this section, R will be an integral domain.

Definition 5.1 (Divides) $a \in R$ divides $b \in R$, $a \mid b$, if $(b) \subseteq (a)$.

Definition 5.2 (Associates) $a, b \in R$ are associates if (a) = (b).

Definition 5.3 (Irreducible) $a \in R$ is irreducible if $r \neq 0$, $r \notin R^{\times}$ and if r = ab, then $a \in R^{\times}$ or $b \in R^{\times}$.

Definition 5.4 (Prime) $a \in R$ is prime if $r \neq 0$, $r \notin R^{\times}$, and if $r \mid ab$, then $r \mid a$ or $r \mid b$.

Lemma 5.5. $(r) \leq R$ is prime if and only if r = 0 or r is prime.

Proof. Suppose (*r*) is prime. If r = 0 we are done. Suppose $r \neq 0$. Since a prime ideal is proper, we must have that *r* is not a unit. Now suppose $r \mid ab$. Then $ab \in (r)$. So we must have that $a \in (r)$ or $b \in (r)$. So $r \mid a$ or $r \mid b$.

Conversely, (0) = 0 which is prime. If *r* is prime, then by the above reasoning we can see that (*r*) is prime.

Lemma 5.6. $r \in R$ prime $\implies r \in R$ irreducible.

Proof. Suppose r = xy is a product of two elements of R. Then $r \mid xy$, so we must have that $r \mid x$ or $r \mid y$. Without loss of generality, assume $r \mid x$. Say x = rz. Then r = xy = ryz. As $r \neq 0$, we must in fact have that yz = 1. So y is a unit.

Definition 5.7 (Principal ideal domain)

An integral domain R is a principal ideal domain if all ideals $I \trianglelefteq R$ are principal.

Lemma 5.8. Let $r \in R$, $r \neq 0$. If (r) is maximal, then r is irreducible. Furthermore, if R is a PID, then the converse implication also holds.

Proof. Suppose r = xy. Then $(r) \le (x)$, and as (r) is a maximal ideal, (r) = (x) or (x) = (1). Which corresponds to y and x being a unit respectively.

Suppose *R* is a PID, and suppose (*r*) is irreducible. Say (*r*) \leq (*a*) \leq (1). Then *r* = *ab* for some *b* \in *R*. But *r* is irreducible, so *a* or *b* must be a unit, which corresponds to (*a*) = (1) and (*r*) = (*a*) respectively.

Proposition 5.9. Let *R* be a PID, $r \in R$ is irreducible if and only if it is prime.

Proof. Suppose *r* is irreducible. Then (*r*) is maximal, so R/(r) is a field, which is an integral domain, so (*r*) is prime, and as *r* is nonzero, *r* must be prime.

Definition 5.10 (Euclidean domain)

An integral domain R is a Euclidean domain if there exists a function

$$\phi: R \smallsetminus 0 \to \mathbb{Z}_{>0}$$

such that

- If $a \mid b$, then $\phi(a) \leq \phi(b)$.
- If $a, b \in R$, $b \neq 0$, then there exists $q, r \in R$ such that

a = bq + r where r = 0 or $\phi(r) < \phi(b)$

Proposition 5.11. If *R* is an ED then it is a PID.

Proof. Let $I \leq R$, $I \neq 0$. Choose $b \in I$, $b \neq 0$ such that $\phi(b)$ minimal. Then $(b) \subseteq I$, and for $a \in I$, write a = bq + r, where either r = 0 or $\phi(r) < \phi(b)$. Note that $r = a - bq \in I$, so by minimality we must have that r = 0. So $b \mid a$, and I = (b).

Definition 5.12 (Unique factorisation domain)

An integral domain R is a unique factorisation domain if

- Every $r \in R$, $r \neq 0$, $r \notin R^{\times}$ is a product of irreducible elements.
- If $p_1 \cdots p_m = q_1 \cdots q_n$ where the p_i , q_i are irreducible, then m = n, and up to reordering, $(p_i) = (q_i)$.

Proposition 5.13. Let R be an integral domain where every nonzero, nonunit element can be written as a product of irreducibles. Then R is a UFD if and only if every irreducible is prime.

Proof. Suppose *R* is an UFD and $p \in R$ is irreducible. Suppose $p \mid ab$, so there exists *c* such that ab = pc. Writing *a*, *b*, *c* as a product of irreducibles, by the uniqueness of factorisation, $p \mid a$ or $p \mid b$.

Now suppose every irreducible is prime, and say we have $p_1 \cdots p_m = q_1 \cdots q_n$, p_i , q_i irreducible. Since p_1 is prime, then we must have some q_i such that $p_1 | q_i$. Without loss of generality, $p_1 | q_1$. Since q_1 is irreducible, we must have that $q_1 = p_1 u$ for some $u \in \mathbb{R}^{\times}$. But this means that $(p_1) = (q_1)$. Cancelling (which we can do as we are in an integral domain), and using induction we get the required result.

Theorem 5.14. If R is a PID, then it is a UFD.

Proof. Since every irreducible is prime in a PID, suffices to show nonzero, nonunit elements can be written as a product of irreducibles. Suppose x is not a product of irreducibles. Then there exists $x_1, y_1 \in R$ non units such that $x = x_1y_1$. Without loss of generality x_1 is not a product of irreducibles. Then $x_1 = x_2y_2$ a product of nonunits. This gives us a sequence x_1, x_2, \ldots , and an ascending chain of ideals

$$(x_1) \subset (x_2) \subset \ldots$$

which does not terminate. Contradiction, as a PID is Noetherian.

Definition 5.15 (Greatest common divisor)

Let *R* be an integral domain, $d \in R$ is a gcd of $a_1, \ldots, a_n \in R$ if

- $d \mid a_1, ..., d \mid a_n$.
- If $d' \mid a_1, \ldots, d' \mid a_n$, then $d \mid d'$.

Definition 5.16 (Least common multiple)

Let R be an integral domain, $m \in R$ is a lcm of $a_1, \ldots, a_n \in R$ if

- $a_1 \mid m, \ldots, a_n \mid m$.
- If $a_1 | m', ..., a_n | m'$, then m | m'.

Remark 5.17. $gcd(a_1, \ldots, a_n)$ and $lcm(a_1, \ldots, a_n)$ are defined up to associates. Equivalently, we can define these as principal ideals, in which case it would be uniquely defined.

Proposition 5.18. In a UFD, $gcd(a_1, \ldots, a_n)$ and $lcm(a_1, \ldots, a_n)$ exist.

Proof. Write each as a product of irreducibles and use formula as in \mathbb{Z} .

5.1 Polynomial rings

In this section let *R* be a UFD, and F = Frac(R) be its field of fractions.

Definition 5.19 (Content)

The content of a polynomial $f \in R[X]$, $f(X) = a_n X^n + \cdots + a_0$ is $c(f) = gcd(a_0, \ldots, a_n)$.

Definition 5.20 (Primitive) A polynomial $f \in R[X]$ is primitive if $c(f) \in R^{\times}$.

Lemma 5.21. If f, g are primitive, then so is fg.

Proof. Suppose not. Say we have a prime p such that $p \mid c(fg)$. Furthermore, suppose $f(X) = a_n X^n + \cdots + a_0$ and $g(X) = b_m X^m + \cdots + b_0$. Since f and g are primitive, $p \nmid c(f)$ and $p \nmid c(g)$. Let $k = \min\{i : p \nmid a_i\}$ and $l = \min\{i : p \nmid b_i\}$. The coefficient of X^{k+l} in fg is

$$\sum_{i+j=k+l} a_i b_j = a_k b_l + \sum_{i=0}^{k-1} a_i b_{k+l-i} + \sum_{j=0}^{l-1} a_{k+l-j} b_j$$

By minimality, we have that $p \mid a_i$ for $i \leq k - 1$, $p \mid b_j$ for $j \leq l - 1$, and $p \mid \sum_{i+j=k+l} a_i b_j$. So $p \mid a_k b_l$, and $p \mid a_k$ or $p \mid b_l$. Contradiction.

Lemma 5.22. If $f, g \in R[X]$, then $c(fg) = c(f)c(g)^a$.

 a Equality up to associates, or equivalently, equality of ideals.

Proof. Write $f = c(f)f_0$ and $g = c(g)g_0$, where f_0, g_0 primitive. Then

$$c(fg) = c(c(f)f_0c(g)g_0) = c(f)c(g)c(f_0g_0) = c(f)c(g)$$

Corollary 5.23. If $p \in R$ is prime, then p is prime in R[X].

Proof. $R[X]^{\times} = R^{\times}$, so p is not a unit in R[X]. Let $f \in R[X]$. Then note that $p \mid f$ in R[X] if and only if $p \mid c(f)$ in R. Thus,

$$p \mid fg \iff p \mid c(fg) \iff p \mid c(f)c(g) \iff p \mid c(f) \lor p \mid c(g) \iff p \mid f \lor p \mid g$$

Lemma 5.24. Let $f, g \in R[X]$, g primitive. If $g \mid f$ in F[X], then $g \mid f$ in R[X].

Proof. Suppose f = gh, where $h \in F[X]$. Let $a \in R$ be the lcm of the denominators of the coefficients of h. Then $ah \in R[X]$. Let $ah = c(ah)h_0$, with $h_0 \in R[X]$ primitive. Then $af = c(ah) \underbrace{h_0 g}_{\text{primitive}}$, so $a \mid c(af)$ implies

that $a \mid c(ah)$. Thus, we must have that $h \in R[X]$.

Lemma 5.25 (Gauss). Let $f \in R[X]$ be primitive. Then f irreducible in R[X] implies that f is irreducible in F[X].

Proof. We prove the contrapositive. Suppose f is not irreducible in F[X], that is, we have $g, h \in F[X]$ non units (so deg(g), deg(h) > 0), such that f = gh. Let $b \in R$, $b \neq 0$ be such that $bg \in R[X]$. Then $bg = c(bg)g_0$, where g_0 is primitive. Let $\lambda = c(bg)b^{-1}$. Then $\lambda^{-1}g = g_0 \in R[X]$ and is primitive. Thus, by considering $\lambda^{-1}g\lambda h$, we may assume without loss of generality that $g \in R[X]$ primitive. But then $g \mid f$ in F[X] implies that $g \mid f$ in R[X] by the previous lemma. So f = gh, where $g, h \in R[X]$ are non units. So f is not irreducible in R[X].

Lemma 5.26. Let $g \in R[X]$ be primitive. Then $g \in F[X]$ prime implies that $g \in R[X]$ prime.

Proof. Suppose $f_1, f_2 \in R[X], g \mid f_1f_2$ in R[X]. Then $g \mid f_1f_2$ in F[X]. Without loss of generality, suppose $g \mid f_1$ in F[X]. But as g is primitive, we have that $g \mid f_1$ in R[X].

Theorem 5.27. Let *R* be a UFD. Then R[X] is a UFD.

Proof. Let $f \in R[X]$, where $f = c(f)f_0$, f_0 primitive. Then R is a UFD implies that c(f) is a product of irreducibles in R, which must then be a product of irreducibles in R[X]. Suppose f_0 is not irreducible, say $f_0 = gh$, g, $h \in R[X]$ non units. Then as f is primitive, so must g, h. By induction on the degree of f_0 , we have that f_0 is a product of irreducibles.

Therefore, we have that every $f \in R[X]$ can be written as a product of irreducibles. Suffices to show that all irreducibles in R[X] are prime. Let $f \in R[X]$ be irreducible. Let $f = c(f)f_0$, $f_0 \in R[X]$ primitive. Since f is irreducible, we must have that f is constant or primitive.

If *f* is constant, then it is irreducible in *R*, so prime in *R*, and thus prime in R[X]. If *f* is primitive, then *f* is irreducible in F[X], so prime in R[X].

Proposition 5.28 (Eisenstein's criterion). Let *R* be a UFD, $f \in R[X]$, $f = a_n X^n + \cdots + a_0$ primitive. Suppose we have a prime (or equivalently irreducible) $p \in R$ such that

- $p \mid a_{n-1}, ..., p \mid a_0,$
- $p^2 \nmid a_0$,
- $p \nmid a_n$

then f is irreducible over R[X].

Proof. Suppose not. Say we have f = gh, g, $h \in R[X]$ non units. Then f primitive implies that deg(g), deg(h) > 0. Say

$$q = r_k X^k + \dots + r_0$$
 and $h = s_l X^l + \dots + s_0$

Since $a_n = r_k s_l$, and $p \nmid a_n$, we have that $p \nmid r_k, p \nmid s_l$. $a_0 = r_0 s_0$, so $p \mid a_0$ implies that $p \mid r_0$ or $p \mid s_0$. Without loss of generality, assume $p \mid r_0$. Let j be such that $p \mid a_0, \ldots, p \mid a_{j-1}$, and $p \nmid a_j$ (exists as g primitive). Then

 $a_i = r_0 s_i + \dots + r_{i-1} s_1 + r_i s_0$

But as $p \mid a_j$ since $j \leq \deg(g) \leq n-1$, so $p \mid r_j s_0$, which means that $p \mid s_0$. But $p^2 \nmid a_0$. Contradiction. \Box

5.2 Algebraic integers

Definition 5.29 (Norm)

Define the norm of a Gaussian integer to be $N(a + bi) = a^2 + b^2$.

Proposition 5.30. $\mathbb{Z}[i]$ is a Euclidean domain with Euclidean function $\phi = N$.

Proposition 5.31. Let $p \in \mathbb{Z}$ be prime. Then the following are equivalent.

- (i) p is not prime in $\mathbb{Z}[i]$.
- (ii) $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$.
- (iii) p = 2 or $p \equiv 1 \pmod{4}$.

Proof. Suppose p is not prime in $\mathbb{Z}[i]$. Equivalently, p is not irreducible in $\mathbb{Z}[i]$. Then p = xy, where $x, y \in \mathbb{Z}[i]$ non units. So

$$p^2 = N(p) = N(x)N(y) \implies N(x) = N(y) = p$$

Letting x = a + ib, we have that $p = N(x) = a^2 + b^2$.

Now suppose $p = a^2 + b^2$. Since all squares are 0 or 1 mod 4, we have the required result. Finally, suppose p = 2. Then 2 = (1 + i)(1 - i) is not irreducible. So suppose $p \equiv 1 \pmod{4}$. Then $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is a cyclic group of order p - 1, and as $4 \mid p - 1$, we have an element of order 4. So we have $x \in \mathbb{Z}$ such that $x^4 + 1 \pmod{p}$, and $x^2 \not\equiv 1 \pmod{p}$. But then this means that $x^2 \equiv -1 \pmod{p}$, so $p \mid x^2 + 1 = (x - i)(x + i)$ in $\mathbb{Z}[i]$.

Theorem 5.32. The primes in $\mathbb{Z}[i]$ are (up to associates)

- (i) a + bi, $a, b \in \mathbb{Z}$, $a^2 + b^2 = p$ prime with p = 2 or $p \equiv 1 \pmod{4}$,
- (ii) $p \in \mathbb{Z}$, $p \equiv 3 \pmod{4}$.

Proof. First we need to show that these are primes. For (i), we have that $N(a + bi) = a^2 + b^2 = p$, so it must be irreducible. For (ii), this follows immediately from the previous proposition.

Now let $z \in \mathbb{Z}[i]$ be irreducible. Then $\overline{z} \in \mathbb{Z}[i]$ is also irreducible. Then $N(z) = z\overline{z}$ is a factorisation of N(z) into irreducibles in $\mathbb{Z}[i]$. Let $p \in \mathbb{Z}$ be a prime, $p \mid N(z)$. If $p \equiv 3 \pmod{4}$, then p is prime in $\mathbb{Z}[i]$, so $p \mid z$ or $p \mid \overline{z}$. Note that $p \mid z$ if and only if $p \mid \overline{z}$, so p is in fact an associate of z.

If p = 2 or $p \equiv 1 \pmod{4}$, then $p = a^2 + b^2 = (a + bi)(a - bi)$ is a product of irreducibles in $\mathbb{Z}[i]$. Then $(a + bi)(a - bi) \mid z\overline{z}$, so by uniqueness of factorisation, z is an associate of a + bi or a - bi.

Corollary 5.33. An integer $n \ge 1$ is the sum of two squares if and only if every prime factor $p \mid n$ where $p \equiv 3 \pmod{4}$ has even multiplicity.

Proof. The norms of primes of $\mathbb{Z}[i]$ are precisely

• 2,

- p, where $p \equiv 1 \pmod{4}$,
- p^2 , where $p \equiv 3 \pmod{4}$.

Definition 5.34 (Algebraic number)

 $\alpha \in \mathbb{C}$ is an algebraic number if there exists $p \in \mathbb{Q}[X]$ nonzero such that $p(\alpha) = 0$.

Definition 5.35 (Algebraic integer) $\alpha in\mathbb{C}$ is an algebraic integer if there exists $p \in \mathbb{Z}[X]$ nonzero, monic such that $p(\alpha) = 0$.

Definition 5.36 (Adjunction)

Let $R \leq S$ be a subring, $\alpha \in S$. Then define $R[\alpha]$ to be the smallest subring of S that contains both R and α .

Definition 5.37 (Minimal polynomial)

For an algebraic number α , let $\phi : \mathbb{Q}[X] \to \mathbb{C}$, $\phi(g) = g(\alpha)$. Then as $\mathbb{Q}[X]$ is a PID, ker $(\phi) = (f) \neq 0$, as α is an algebraic number. Without loss of generality f monic. Then f is the minimal polynomial of α .

Proposition 5.38. Suppose f is the minimal polynomial for α . Then

$$\frac{Q[x]}{(f)} \cong Q[\alpha]$$

Proposition 5.39. Let α be an algebraic integer with minimal polynomial f. Then $f \in \mathbb{Z}[X]$.

Proof. Let $\theta : \mathbb{Z}[X] \to \mathbb{C}$, $\theta(g) = g(\alpha)$ be the restriction of ϕ to $\mathbb{Z}[X] \leq \mathbb{Q}[X]$. Let $\lambda \in \mathbb{Q}^{\times}$ be such that $\lambda f \in \mathbb{Z}[X]$ and is primitive. Then $\lambda f(\alpha) = 0$, so $\lambda f \in \ker(\theta)$.

Let $g \in \ker(\theta)$. Then $g \in \ker(\phi)$, so $\lambda f \mid g$ in $\mathbb{Q}[X]$. But then this means that $\lambda f \mid g$ in $\mathbb{Z}[X]$. Suppose $g \in \ker(\theta)$ nonzero monic. Then as f and g are both monic, $\lambda = \pm 1$, so $f \in \mathbb{Z}[X]$.

6 Modules

Theorem 6.1 (Canonical decomposition). For a *R*-module homomorphism $f : M \to N$, we have that

 $M \xrightarrow{\qquad } M/\ker(f) \xrightarrow{\qquad \cong \qquad} \operatorname{im}(f) \xrightarrow{\qquad } N$

Theorem 6.2 (Second isomorphism theorem). Let $A, B \leq M$ be R-submodules. Then

$$\frac{A}{A\cap B}\cong \frac{A+B}{B}$$

Theorem 6.3 (Third isomorphism theorem). Let $N \le L \le M$, then

$$\frac{M/N}{L/N} \cong \frac{M}{L}$$

Definition 6.4 (Annihilator) The annihilator of an *R*-module *M* is

$$\operatorname{Ann}_{R}(M) = \{ r \in R : \forall m \in M, rm = 0 \} \leq R$$

Definition 6.5 (Finitely generated module) An *R*-module *M* is finitely generated if there exists m_1, \ldots, m_n such that

$$M = Rm_1 + \cdots + R_{m_n}$$

Proposition 6.6. An *R*-module *M* is finitely generated if and only if there exists a surjective *R*-module homomorphism $R^n \rightarrow M$.

Corollary 6.7. Suppose $N \leq M$, *M* is finitely generated. Then M/N is also finitely generated.

Definition 6.8 (Torsion) Let *M* be a *R*-module, $m \in M$ is torsion if there exists $r \in R$, $r \neq 0$ such that rm = 0.

Definition 6.9 (Torsion module)

An R-module M is torsion if every element of M is torsion. M is torsion free if the only torsion element is 0.

Definition 6.10 ((External) direct sum)

Let M_1, \ldots, M_n be *R*-modules, then define the direct sum

$$\bigoplus_{i=1}^n \mathcal{M}_i = \{(m_1, \ldots, m_n) : m_i \in \mathcal{M}_i\}$$

with pointwise operations.

Lemma 6.11. Suppose $N_i \leq M_i$ for all *i*. Then

$$\frac{\bigoplus_{i=1}^{n} M_i}{\bigoplus_{i=1}^{n} N_i} \cong \bigoplus_{i=1}^{n} \frac{M_i}{N_i}$$

Proof. Consider the canonical decomposition of the R-module homomorphism

$$(m_1,\ldots,m_n)\mapsto (m_1+N_1,\ldots,m_n+N_n)$$

Definition 6.12 (Generator)

Let $S \subseteq M$. If every element $m \in M$ can be written as a finite *R*-linear combination of elements of *S*, then *S* is a generator for *M*.

Definition 6.13 (Free generator)

A generator $S \subseteq M$ is free if any function $\phi : S \to N$, where N is a *R*-module, can be extended (uniquely) to an *R*-module homomorphism $\psi : M \to N$.

Proposition 6.14. For $S = \{m_1, \ldots, m_n\} \subseteq M$, the following are equivalent.

- (i) *S* generates *M* freely.
- (ii) S generates M, S is R-linearly independent.
- (iii) Every element of M can be written uniquely as a R-linear combination of elements of S.
- (iv) The *R*-module homomorphism $R^n \rightarrow M$ is an isomorphism.

Proposition 6.15 (Invariance of dimension). Suppose $R \neq 0$, $R^m \cong R^n$. Then m = n.

Proof. Let $I \trianglelefteq R$ be an ideal. For an *R*-module *M*, define

$$IM = \left\{ \sum a_i m_i : a_i \in I, m_i \in M \right\}$$

Then the quotient M/IM is an R/I module, by (r + I)(m + IM) = (rm + IM). From Zorn's lemma, suppose I is a maximal ideal. Then R/I is a field and we have an isomorphism of R/I modules. The result then follows from the corresponding result for vector spaces.

7 Structure theorem

Let *R* be a Euclidean domain with Euclidean function ϕ . Let $A \in Mat_m(R)$.

Definition 7.1 (Elementary row operations)

The elementary rop operations are

- (i) Add $\lambda \times$ (row *i*) to (row *j*).
- (ii) Swap rows *i* and *j*.

(iii) Multiply row *i* by *u*, where $u \in R^{\times}$.

Proposition 7.2. Each row operation corresponds to left multiplication by an invertible matrix.

Remark 7.3. Column operations are defined similarly.

Definition 7.4 (Equivalent)

 $A, B \in Mat_m(R)$ are equivalent if we have a sequence of elementary row/column operations taking A to B. Equivalently, B = QAP, where P, Q invertible.

Definition 7.5 (Smith normal form) A diagonal matrix

is in Smith Normal Form if each d_i is nonzero, and $d_1 \mid d_2, d_2 \mid d_3, \dots, d_{t-1} \mid d_t$.

Theorem 7.6. $A \in Mat_{m,n}(R)$ is equivalent to a diagonal matrix in Smith normal form. The diagonal terms (d_i) are called invariant factors.

Proof. If A = 0 then we are done. Otherwise, we have $a_{ij} \neq 0$. By swapping rows and columns, without loss of generality $a_{11} \neq 0$. Using the Euclidean algorithm with a_{11} and elements of the first row/column, we can make $\phi(a_{11})$ minimal among the first row/column, and divides the first entry in each row/column. Using this, we can clear out the first row/column. If $a_{11} \nmid a_{ij}$ for some $i, j \ge 2$, add the *i*-th row to the first row and repeat. Then we get that $a_{11} \mid a_{ij}$ for all $i, j \ge 2$, the first row/column are zero except at a_{11} . Repeating this process for the $(m-1) \times (n-1)$ submatrix in the bottom right gives the required result.

Definition 7.7 (Fitting ideal) The *k*-th Fitting ideal, Fit_k(A), is the ideal generated by the $k \times k$ minors.

Lemma 7.8. If A and B are equivalent, then the Fitting ideals are the same.

Proof. Compute for each row/column op.

Proposition 7.9. The invariant factors are unique up to associates.

Proof.

$$\operatorname{Fit}_k(A) = (d_1 \dots d_k)$$

Lemma 7.10. Let R be a PID. Then any submodule of R^m is generated by at most m elements.

Proof. By induction on *m*. Let $N \leq R^m$, and consider the ideal

$$I = \{r \in R : \exists n = (n_1, \dots, n_m) \in N, n_1 = r\}$$

I is a principal ideal, say I = (a). Choose $n \in N$ such that $n = (a, a_2, ..., a_m)$. For $(r_1, ..., r_m) \in N$, $r_1 = ra$ for some r, so $(r_1, ..., r_m) - rn = (0, x_2, ..., x_m) \in N'$, where $N' = N \cap (0 \times R^{m-1}) \hookrightarrow R^{m-1}$. Then $N = Rn \oplus N'$, and using the induction hypothesis for N' we get the required result.

Theorem 7.11. Let *R* be an Euclidean domain, $N \leq R^m$. Then there is a free basis x_1, \ldots, x_m for R^m such that $N = \langle d_1 x_1, \ldots, d_t x_t \rangle$ for some $t \leq m$, and $d_1 \mid d_2, \ldots, d_{t-1} \mid d_t$.

Proof. By previous lemma, N is generated by at y_1, \ldots, y_n , where $n \le m$. Let A have columns y_i . Then A is equivalent to a matrix in Smith Normal form. Each row operation corresponds to a change in free basis, and each column operation is a change in the choice of generators of N.

Theorem 7.12 (Structure theorem). Let R be an Euclidean domain, M a finitely generated R-module. Then

$$M \cong \left(\bigoplus_{i=1}^{t} \frac{R}{(d_i)}\right) \oplus R^{t}$$

where d_1, \ldots, d_t nonzero, $d_1 \mid d_2, \ldots, d_{t-1} \mid d_t$. The (d_i) are called invariant factors.

Proof. Since *M* is finitely generated, we have $\phi : \mathbb{R}^m \to M$. Then the first isomorphism theorem gives us that

$$\mathcal{M} \cong \frac{R^m}{\ker(\phi)}$$

By the previous theorem, there exists a free basis (x_1, \ldots, x_m) for R^m such that $\ker(\phi) = \langle d_1x_1, \ldots, d_tx_t \rangle$, with $d_1 \mid d_2, \ldots, d_{t-1} \mid d_t$. Define $d_i = 0$ for i > t, then

$$M \cong \frac{\bigoplus_{i=1}^{m} R}{\bigoplus_{i=1}^{m} d_i R} \cong \bigoplus_{i=1}^{m} \frac{R}{(d_i)}$$

Corollary 7.13. A finitely generated torsion free *R*-module over a Euclidean domain is free.

Theorem 7.14 (Structure theorem for finitely generated abelian groups). Any finitely generated abelian group G is isomorphic to

$$G \cong \left(\bigoplus_{i=1}^{m} \frac{\mathbb{Z}}{d_i \mathbb{Z}}\right) \bigoplus \mathbb{Z}^{t}$$

Proof. Abelian groups are \mathbb{Z} -modules.

Lemma 7.15. Let *R* be a PID, $a, b \in R$ such that gcd(a, b) = 1. Then

$$\frac{R}{(ab)} \cong \frac{R}{(a)} \oplus \frac{R}{(b)}$$

as *R*-modules.

Proof. We have $r, s \in R$ such that ra + sb = 1.

Theorem 7.16 (Primary decomposition). Let R be a Euclidean domain, M a finitely generated R-module. Then

$$\mathcal{M} \cong \left(\bigoplus_{i=1}^k \frac{R}{(p_i^{n_i})} \right) \oplus R^m$$

where p_1, \ldots, p_k primes.

Proof. By structure theorem and previous lemma.

8 Jordan normal form

Let F be a field, V be a F-vector space.

Definition 8.3 (Companion matrix)

basis, $\alpha(x) = X \cdot \alpha$ has matrix C(f).

Definition 8.1 Given $\alpha \in \text{End}(V)$, Define the F[X]-module V_{α} to be V, with the scalar product given by

 $f \cdot v = f(\alpha)(v)$

Lemma 8.2. If V is finite dimensional, then V_{α} is finitely generated.

Let $f = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in F[X]$. Then the companion matrix for f is

Proof. $F \leq F[X]$ as rings, so the basis v_1, \ldots, v_n for V still spans V_{α} .

Proposition 8.4. Let $f = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in F[X]$, and suppose $V_{\alpha} \cong F[X]/(f)$ as F[X]-modules.

Then we have an isomorphism of F-vector spaces, and $1, X, \ldots, X^{n-1}$ forms a basis of V_{α} . Under this

 $C(f) = \begin{pmatrix} 0 & \dots & 0 & -a_0 \\ 1 & \ddots & -a_1 \\ & \ddots & 0 & \vdots \\ 0 & & 1 & -a_{n-1} \end{pmatrix}$

Proof. Compute.

Theorem 8.5 (Rational canonical form). Let $\alpha \in End(V)$, V be a finite dimensional F-vector space. Then we have a decomposition of the F[X]-module V_{α} as

$$F[X] \cong \bigoplus_{i=1}^{t} \frac{F[X]}{(f_i)}$$

where $f_1 \mid f_2, \ldots, f_{t-1} \mid f_t$. Moreover, with respect to a suitable basis, α as block diagonal matrix

Proof. Decomposition follows from the structure theorem for finitely generated modules. Furthermore, we can (as in finite dimensions the direct sum is the coproduct *and* the product) decompose α as $\alpha_i \in \text{End}(F[X]/(f_i))$. Then we have a basis for each one where we get the companion matrix for f_i .

Remark 8.6. The minimal polynomial of α is f_t , the characteristic polynomial is $\prod_{i=1}^{t} f_i$.

Corollary 8.7 (Cayley-Hamilton). The minimum polynomial of α divides the characteristic polynomial of α .

Corollary 8.8.

$$\operatorname{Ann}_{F[X]}(V_{\alpha}) = (f)$$

where *f* is the minimal polynomial of α .

Lemma 8.9. The primes (or equivalently irreducibles) in $\mathbb{C}[X]$ are $X - \lambda$.

Proof. By fundamental theorem of algebra, if $f \in \mathbb{C}[X]$, then there exists λ such that $f(\lambda) = 0$. So $X - \lambda \mid f$. Thus any irreducible element must have degree 1.

Definition 8.10 (Jordan block)

A Jordan block $J_n(\lambda) \in Mat_n(\mathbb{C})$ is a matrix of the form

$$J_n(\lambda) = \begin{pmatrix} \lambda & & & \\ 1 & \ddots & & \\ & \ddots & \ddots & \\ & & 1 & \lambda \end{pmatrix}$$

Remark 8.11. In Linear Algebra we had the 1s above the main diagonal, it is easy to modify the proof of the Jordan normal form (reverse basis) to get that.

Proposition 8.12. Suppose $V_{\alpha} \cong F[X]/((X - \lambda)^n)$. Then with respect to the basis 1, $X - \lambda$, ..., $(X - \lambda)^{n-1}$, α (or the action of multiplying by X) has matrix $J_n(\lambda)$.

Proof. Consider the action of $X - \lambda$. This has matrix

$$\begin{pmatrix} 0 & & & \\ 1 & \ddots & & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{pmatrix}$$
$$\begin{pmatrix} \lambda & & & \\ 1 & \ddots & & \\ & \ddots & \ddots & \\ & & & 1 & \lambda \end{pmatrix}$$

Theorem 8.13 (Jordan normal form). Let V be a finite dimensional \mathbb{C} -vector space, $\alpha \in \text{End}(V)$. Then we have a decomposition of the $\mathbb{C}[X]$ module V_{α} as

$$V_{\alpha} \cong \bigoplus_{i=1}^{t} \frac{\mathbb{C}[X]}{((X - \lambda_i)^{n_i})}$$

where $\lambda_i \in \mathbb{C}$ not necessarily distinct. Furthermore, there exists a basis for V such that α has block diagonal matrix

$$\begin{pmatrix} J_{n_1}(\lambda_1) & & \\ & \ddots & \\ & & J_{n_t}(\lambda_t) \end{pmatrix}$$

Proof. Applying the primary decomposition theorem we get the decomposition of V_{α} . Restricting α to each part and using the previous proposition we get the required result.

Remark 8.14. By considering generalised eigenspaces ker($(\alpha - \lambda id)^m$), the Jordan blocks are determined up to reordering.

Proposition 8.15. The minimal polynomial for α is

$$\prod_{\lambda} (X - \lambda)^{c_{\lambda}}$$

and the characteristic polynomial is

Then $X = (X - \lambda) + \lambda$ has matrix

$$\lambda^{\lambda}$$
 $(X-\lambda)^{a_{\lambda}}$

where c_{λ} is size of the largest Jordan block with eigenvalue λ , and a_{λ} is the sum of the sizes of the λ values.

Proposition 8.16. The number of λ -blocks is dim(V_{λ}), or the geometric multiplicity of the eigenvalue λ .