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1 Topological surfaces

Definition 1.1 (Locally Euclidean)A topological space X is locally Euclidean if every p ∈ X has an open neighbourhood U of p homeomorphicto an open disc in R2.
Remark 1.2. Every open disc in R2 is homeomorphic to R2 .
Definition 1.3 (Topological surface)A topological surface Σ is a locally Euclidean, second countable, Hausdorff topological space.
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Definition 1.4 (Graph)Suppose f : Rn → Rm continuous. Define the graph of f to be
Γf = {(x, f (x)) ∈ Rn × Rm : x ∈ Rn} ⊆ Rn+m

Proposition 1.5. Suppose f : R2 → R continuous. Then Γf is a topological surface.
Proof. Since it is a subspace of R3, which is Hausdorff and second countable, it must in fact be second countable.Suffices to show that every point has a neighbourhood homeomorphic to an open disc. Let the neighbourhoodbe all of Γf , and note that

π(x, y, z) = (x, y) and σ (x, y) = (x, y, f (x, y))are both continuous, and inverses to eachother. So Γf is homeomorphic to R2.
Definition 1.6 (Unit sphere)The unit sphere in Rn+1 is

Sn = {x ∈ Rn+1 : ∥x∥ = 1}

Proposition 1.7. S2 is a topologial surface.
Proof. Since S2 ⊆ R3, it must be Hausdorff and second countable. Consider stereographic projection from thenorth pole N , that is,

π(x, y, z) = ( x1 − z ,
y1 − z

)
This defines a homeomorphism S2 ∖N ∼=h R2. By considering the stereographic projection from a differentpoint, we see that S2 is a topological surface.

Definition 1.8 (Real projective plane)Let a(x) = −x , a ∈ Homeo(S2). Then we define the real projective plane to be
RP2 = S2/⟨a⟩

Lemma 1.9. As a set, we have a bijection between lines in R3 through the origin and RP2.
Proof. Consider a line in R3 through the origin. It must intersect S2 at antipodal points x and −x , whichcorresponds to the equivalence class of x . Conversely, given an equivalence class, the line through x and −xgoes through the origin.

Lemma 1.10. RP2 is a topological surface.
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Definition 1.11 (Torus)Consider S1 = {z ∈ C : |z| = 1}. Then define the torus to be
T 2 = S1 × S1 ⊆ C × C

Lemma 1.12. T 2 is a topological surface.
Definition 1.13 (Connect sum)Suppose Σ1 and Σ2 are topological surfaces, D1 ⊆ Σ1, D2 ⊆ Σ2 open discs, then we define Σ1#Σ2 to thesurface obtained by gluing Σ1 ∖ D1 and Σ2 ∖ D2 by identifying ∂D1 and ∂D2.
Lemma 1.14. If Σ1 and Σ2 are topological surfaces, so is Σ1#Σ2.

1.1 Subdivisions

Definition 1.15 (Subdivision)A subdivision of a compact topological surface Σ is (V , E, F ), where V ⊆ Σ is a finite set of vertices,
E = {ei : [0, 1] → Σ} a finite set of edges, and F a set of faces, satisfying the following conditions:

(i) Each ei is an injection on (0, 1) (edges do not self intersect).(ii) e−1
i V = {0, 1} (edges only meets vertices at end points).(iii) ei[0, 1] ∩ ej [0, 1] ⊆ V (edges only meet at vertices).(iv) F is the set of connected components of

Σ ∖

(
V ∪

(⋃
i
ei[0, 1]))

and each f ∈ F is homeomorphic to an open disc on R2.
Proposition 1.16. For a face f ∈ F , ∂F ⊆ V ∪ E .
Definition 1.17 (Triangulation)A subdivision of Σ is a triangulation if every closed face has three edges, and for any two faces, they areeither disjoint ot meet at exactly one edge or vertex.
Definition 1.18 (Euler characteristic)The Euler characteristic of a topological surface is

χ (Σ) = #V − #E + #F
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Theorem 1.19. Every compact topological surface has a subdivision (equivalently, a triangulation).
Theorem 1.20. Euler characteristic is independent of the choice of subdivision.
Proposition 1.21. If Σ1,Σ2 compact topological surfaces, then

χ (Σ1#Σ2) = χ (Σ1) + χ (Σ2) − 2
Definition 1.22 (g-holed torus)For g ≥ 1, the g-holed torus Σg is the connect sum of g copies of T 2. g is called the genus of Σg.
Proposition 1.23. χ (Σg) = 2 − 2g.

1.2 Charts

Definition 1.24 (Chart)Suppose U ⊆open Σ, V ⊆open R2, φ : U ∼=h V . Then (U,φ) is a chart for Σ at p ∈ U .

Definition 1.25 (Atlas)A collection of charts (Ui, φi)i∈I is called an atlas if⋃
i∈I
Ui = Σ

Definition 1.26 (Local parametrisation)Suppose (U,φ) is a chart. Define σ = φ−1 : V ∼=h U . Then σ is called a local parametrisation of Σ.
Definition 1.27 (Transition map)For (U1, φ1), (U2, φ2) charts, the transition map from φ1 to φ2 is

φ2 ◦ φ−11 : φ1(U1 ∩ U2) ∼=h φ2(U1 ∩ U2)
2 Abstract smooth surfaces

Definition 2.1 (Smooth)For V ⊆open Rm and W ⊆open Rn, f : V → W is smooth if it is infinitely differentiable.
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Definition 2.2 (Smooth at)For Z ⊆ Rm, we say that f : Z → Rn continuous is smooth at p ∈ Z if there exists an open ball B, p ∈ B,and F : B → Rn smooth such that F|B∩Z = f |B∩Z .
Definition 2.3 (Diffeomorphism)For V ⊆open Rn and W ⊆open Rn, a homeomorphism f : V ∼=h W is a diffeomorphism if f and f−1 are smooth.

Definition 2.4 (Abstract smooth surface)A topological surface Σ is an abstract smooth surface if it has an atlas (Ui, φi)i∈I , such that all the transitionmaps
φ2 ◦ φ−11 : φ1(U1 ∩ U2) ∼=d φ2(U1 ∩ U2)are diffeomorphisms.

Proposition 2.5. S2 with charts given by stereographic projection is an abstract smooth surface.
Proposition 2.6. T 2 is an abstract smooth surface with parametrisation given by (s, t) 7→ (e2πis, e2πit ).
Definition 2.7 (Smooth map to Euclidean space)Let Σ be an abstrac smooth surface, f : Σ → Rn continuous, then we say that f is smooth at p ∈ Σ if forall charts (U,φ) such that p ∈ U , we have that

f ◦ φ−1 : φ(U) → Rn

is smooth at φ(p) ∈ φ(U) ⊆open R2.

Definition 2.8 (Smooth map between abstract smooth surfaces)Let Σ1,Σ2 be abstract smooth surfaces, f : Σ1 → Σ2 is smooth at p ∈ Σ1 if for all charts (U,φ) of p and(V , ψ) of f (p), we have that
ψ ◦ f ◦ φ−1 : φ(U) → ψ(V )is smooth at φ(p) ∈ φ(V ) ⊆open R2.

Definition 2.9 (Diffeomorphism)A diffeomorphism f : Σ1 ∼=d Σ2 between abstract smooth surfaces is a smooth homeomorphism with smoothinverse.
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Definition 2.10 (Pullback atlas)Suppose Σ1,Σ2 topological surfaces, Σ2 is an abstract smooth surface with atlas (Ui, φi)i∈I , f : Σ1 ∼=h Σ2.Then
(f−1Ui, φi ◦ f |f−1Ui )i∈Idefines an atlas on Σ1 which makes it an abstract smooth surface, with the same transition maps.

3 Embedded surfaces

Definition 3.1 (Smooth surface in R3)A smooth surface in R3 is a subspace Σ ⊆ R3 such that for all p ∈ Σ, thete exists U ⊆open Σ, p ∈ U suchthat U is diffeomorphic to an open subset of R2.
Theorem 3.2 (Implicit function theorem). Suppose p = (x0, y0) ∈ U ⊆open Rk ×Rl, f : U → Rl has f (p) = 0,and (∂f/∂yj )lj=1 an isomorphism at p. Then we have x0 ∈ V ⊆open Rk , g : V → Rl C 1 with g(x0) = y0,such that for any (x, y) ∈ U ∩ (V × Rl), f (x, y) = 0 if and only if g(x) = y.

Proof. Define F : U → Rk × Rl by F (x, y) = (x, f (x, y)). Then
DF = ( I 00 (

∂f
∂yj

)
j

)
which means that it is an isomorphism. The inverse function theorem they says that F is locally invertible,near F (x0, y0) = (x0, 0). Say we have V ⊆open Rk and W ⊆open Rl such that (x0, 0) ∈ V ×W , and G : V ×W →

U ⊆ Rk × Rl be the C 1 inverse, with F ◦ G = idV×W . Suppose G(x, y) = (φ(x, y), ψ(x, y)). Then
F (G(x, y)) = F (φ(x, y), ψ(x, y)) = (φ(x, y), f (φ(x, y), ψ(x, y))) = (x, y)Which means that φ(x, y) = x , and G(x, y) = (x, ψ(x, y)), with f (x, ψ(x, y)) = y when (x, y) ∈ V ×W . Thus

f (x, y) = 0 if and only if y = ψ(x, 0). Define g : V → Rl by x 7→ ψ(x, 0).
Definition 3.3 (Allowable parametrisation)Let Σ ⊆ R3, V ⊆open R2, U ⊆open Σ, σ : V → U is an allowable parametrisation of Σ at p ∈ U if σ is ahomeomorphism, and rank(Dσ (x)) = 2 for all x ∈ V .
Theorem 3.4. For Σ ∈ R3, the following are equivalent.

(i) Σ is an smooth surface.(ii) Σ is locally the graph of a smooth function over one of the x-y, x-z , y-z planes.(iii) Σ is locally the zero set of a smooth function with nonzero derivative.(iv) Σ is locally the image of an allowable parametrisation.
Proof. We will first show that (ii) implies all of the others. Suppose (ii) holds, and locally, Σ = {(x, y, g(x, y)) :(x, y) ∈ V}, then πXY gives a chart. So (i) holds. Similarly, Σ is the zero locus of z − g(x, y) = 0, which hasnonzero derivative, so (iii) holds.
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σ (x, y) = (x, y, g(x, y))defines an allowable parametrisation, and (iv) holds.Now suppose (i) holds. By the definition, each chart defines a diffeomorphism to an open subset of R2, sothe inverse defines an allowable parametrisation, and (iv) holds.Suppose (iii) holds. Without loss of generality, suppose Dzf (x0, y0, z0) ̸= 0. The implicit function theoremgives us a neighbourhood V ⊆open R2, with (x0, y0) ∈ V , g : V → R smooth, g(x0, y0) = z0 and locally, Σ is thegraph of g. So (ii) holds.Suppose (iv) holds, and we have an allowable parametrisation. Say
Dσ =  ∂σ1

∂x
∂σ2
∂x

∂σ1
∂y

∂σ2
∂y

∂σ1
∂z

∂σ3
∂z


As this has rank 2, without loss of generality the first two rows form an invertible matrix. Consider

πXY ◦σ : V → R2. The inverse function theorem says this is locally invertible, so Σ is locally given by a graph.So (ii) holds.
Definition 3.5 (Surface of revolution)Suppose γ = (f , 0, g) : [a, b] → R3, with γ injective, γ ′ ̸= 0 and f > 0. The surface of revolution has(local) parametrisation

σ (u, v ) = f (u) cos(v )
f (u) sin(v )
g(u)


where σ : (a, b) × (θ, θ + 2π) → R3.

4 Orientability

Definition 4.1 (Orientation preserving linear map)A linear map T : Rn → Rn is orientation preserving if det(T ) > 0. The subgroup of orientation preservinglinear maps is denote by GL+
n (R).

Definition 4.2 (Orientation preserving)Let V ,W ⊆open R2, then f : V → W is orientation preserving if Df (x) ∈ GL+2 (R) for all x ∈ V .

Definition 4.3 (Orientable surface)An abstract smooth surface Σ is orientable if there exists an atlas (Ui, φi)i∈I such that the transition mapsare orientation preserving diffeomorphisms. A choice of such an atlas is called an orientation.
Proposition 4.4. Orientability is a homeomorphism (and thus diffeomorphism) invariant.

Proof. Suppose Σ2 orientable, f : Σ1 ∼=h Σ2. Then by passing to the pullback atlas, we have an orientable atlasfor Σ1, as the transition maps are the same.
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Proposition 4.5. An abstract smooth surface is orientable if and only if it does not contain a subspacehomeomorphic to the Möbius band.
4.1 Embedded surfaces

Definition 4.6 (Tangent plane)Let Σ be a smooth surface in R3, and p ∈ Σ. Fix an allowable parametrisation σ near p with σ (0) = 0.Define the tangent plane
TpΣ = Im(Dσ (0))and the affine tangent plane TpΣ + p.

Lemma 4.7. TpΣ is well defined. That is, it is independent of the choice of Σ.
Proof. Suppose σ and σ̃ are choices of parametrisation at p. Then σ−1 ◦ σ̃ is a diffeomorphism, so D(σ−1 ◦ σ̃ )(0)is an isomorphism Im(Dσ̃ (0)) → Im(Dσ (0)).

Proposition 4.8.
TpΣ = span{γ ′(0) : γ smooth paths in Σ with γ(0) = p}

Definition 4.9 (Normal)Suppose Σ is a smooth surface in R3, p ∈ Σ. Then the normal direction at p is (TpΣ)⊥.
Definition 4.10 (Two sided)A smooth surface in R3 is two sided if it admits a continuous choice of unit normal vector.
Proposition 4.11. A smooth surface in R3 is orientable if and only if it is two sided.

Proof. First suppose Σ is orientable. We will show that we can define a continuous positive normal in one e,which agrees on the intersections.Suppose σ : V → U is an allowable parametrisation with σ (0) = p. Define the positive normal at p to be
nσ (p) = σu × σv∥∥σu × σv

∥∥Then the bases σu, σv , nσ (p) are related to the standard basis by a change of basis matrix with positivedeterminant. Suppose σ̃ is another parametrisation, with σ̃ (0) = p. Since Σ is orientable, we have an orientationpreserving transition map φ such that σ = σ̃ ◦ φ. This means that
σu × σv = det(Dφ(0))σ̃u × σ̃v (*)and as det(Dφ(0)) > 0, nσ (p) = nσ̃ (p). So this defines a continuous choice of unit normal vector for Σ.Conversely, suppose Σ is two sided, and we have a global continuous choice of normal. Consider thesubatlas where at each point p, we only have parametrisations σ where σu, σv , n(p) is a positively orientedbasis. Then this defines an orientation, by (*).
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Lemma 4.12. Suppose Σ is a smooth surface in R3, f : R3 → R3 smooth such that f (Σ) = Σ. Then for
p ∈ Σ, we have that

DA(p) : R3 → R3
sends Tp(Σ) to TA(p)(Σ).

Proof. By chain rule.
5 Geometry

Definition 5.1 (Length)Suppose γ : (a, b) → R3 smooth, then we define the length of γ to be
Length(γ) = ∫ b

a

∥∥γ ′(t)∥∥dt

Proposition 5.2. Length is independent of e.
Proposition 5.3. Suppose γ is a C 1 curve with γ ′(t) ̸= 0 for all t ∈ (a, b), then γ can be parametrised byarc length s, so ∥∥γ ′(s)∥∥ = 1.

5.1 First fundamental form

Definition 5.4 (First fundamental form)The first fundamental form of Σ in paramtrisation σ is the quadratic form(du dv)(E F
F G

)(dudv)where E = ⟨σu, σu⟩, F = ⟨σu, σv ⟩, G = ⟨σv , σv ⟩.
Proposition 5.5. Suppose γ(t) = σ (u(t), v (t)). Then

Length(γ) = ∫ b

a

(
E (u′)2 + 2Fu′v ′ + G(v ′)2)1/2 dt

Proof. Chain rule.
Proposition 5.6. The first fundamental form is the Euclidean inner product on TpΣ given in terms of thebasis σu, σv .
Definition 5.7 (Isometric)Suppose Σ1,Σ2 are smooth surfaces in R3, we say that f : Σ1 → Σ2 is an isometry if for all curves γ ,
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Length(γ) = Length(f ◦ γ)
Lemma 5.8. Smooth surfaces Σ1,Σ2 in R3 are locally isometric near p ∈ Σ1, q ∈ Σ2 if and only if thereexists allowable parametrisations

σ : V → U ⊆open Σ1 and σ̃ : V → Ũ ⊆open Σ2
for which the first fundamental forms are equivalent as functions on V .

Proof. By definition, the first fundamental form determines lengths. So suffices to show that the lengthsdetermine the FFF of a parametrisation.Given σ : V → U ⊆ Σ, without loss of generality, suppose V = D(0, δ) for some δ > 0 and σ0 = p.Consider the curve γε : [0, ε] → U , given by γ(t) = σ (t, 0). Then
ddε (Length(γε))∣∣∣∣

ε=0 = √E (0, 0)
So lengths determine E at p. Similarly F and G are determined by curves of the form σ (t, t) and σ (0, t).

Lemma 5.9. Suppose σ, σ̃ are parametrisations, f = σ̃−1 ◦ σ the transition map, then(
E F
F G

) = (Df )T (Ẽ F̃
F̃ G̃

) (Df )
Proof. (

E F
F G

) = (Dσ )T(Dσ )
and σ = σ̃ ◦ f , so the result follows by chain rule.

Definition 5.10 (Angle)Suppose v, w ∈ TpΣ, with v = Dσ (p)(v0) and w = Dσ (p)(w0). Let θ is the angle between v and w , σ isan allowable parametrisation, with first fundamental form (as a bilinear form) I(x, y). Then
cos(θ) = I(v0, w0)√

I(v0, v0)√I(w0, w0)
Lemma 5.11. σ is conformal, i.e. angle preserving if and only if E = G , F = 0.

Proof. Suppose γ, γ̃ curves in V , σ : V → U an allowable parametrisation, γ(0) = γ̃(0) = 0, σ (0) = p. Thenthe curves σ ◦ γ and σ ◦ γ̃ meet at angle θ on TpΣ, where
cos θ = Eu̇˙̃u+ F

(
u̇˙̃v + ˙̃uv̇) + Gv̇ ˙̃v(

Eu̇2 + 2Fu̇v̇ + Gv̇2)1/2 (E ˙̃u2 + 2F ˙̃u˙̃v + G˙̃v2)1/2
Choosing curves γ(t) = (t, 0) and γ̃(t) = (0, t) forces F = 0, and choosing γ(t) = (t, t) and γ̃(t) = (t, −t)force E = G .Converely, the first fundamental form is just a pointwise rescaling og the Euclidean FFF, which preservesangles.
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Definition 5.12 (Area)Let Σ be a smooth surface in R3, σ : V → U an allowable parametrisation. Then define
Area(U) = ∫

V

(
EG − F 2)1/2 dA

Proposition 5.13. Suppose σ, σ̃ are allowable parametrisations, with transition map φ = σ−1 ◦ σ̃ . Then√
ẼG̃ − F̃ 2 = |det(Dφ)|√EG − F 2

Corollary 5.14. Area is independent of parametrisation.
Proof. Above formula and change of variables for area integrals from vector calculus.
5.2 Second fundamental form

Definition 5.15 (Second fundamental form)The second fundamental form of the smooth surface Σ ⊆ R3, at the parametrisation σ , is the quadraticform (du dv)( L M
M N

)(dudv)where L = ⟨n, σuu⟩, M = ⟨n, σuv ⟩, N = ⟨n, σvv ⟩, where n is the positive unit normal with direction
σu × σv .
Lemma 5.16. The second fundamental form is also given by

−(Dn)T(Dσ ) = (− ⟨nu, σu⟩ − ⟨nu, σv ⟩
− ⟨nv , σu⟩ − ⟨nv , σv ⟩

)

Proof. By definition of n, ⟨n, σu⟩ = ⟨n, σv ⟩ = 0. Taking derivatives with respect to u and v gives the requiredresult.
Lemma 5.17. Suppose σ, σ̃ allowable parametrisations, φ = σ−1 ◦ σ̃ the transition map. Then(

L̃ M̃
M̃ Ñ

) = ±(Dφ)T ( L M
M N

) (Dφ)
where the sign is given by sign(det(Dφ)).

5.3 Gaussian curvature

Definition 5.18 (Gauss map)Let Σ ⊆ R3 be a smooth oriented surface, the Gauss map n : Σ → S2 sends a point p to the positive unitnormal n(p) at p.
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Lemma 5.19. n is smooth.
Proposition 5.20. Suppose Ip and IIp are the bilinear forms representing the first and second fundamentalforms respectively. Then

IIp(v, w) = Ip(−Dn(p)(v ), w)
Proof. Fix v ∈ TpΣ. Suppose we have a smooth curve γ : (−ε, ε) → Σ, with γ(0) = p, γ ′(0) = v . Then
n ◦ γ : (−ε, ε) → S2 has (n ◦ γ)(0) = n(p). Furthermore, by the chain rule,

Dn(p)(v ) = Dn(γ(0))(Dγ(0)) = D(n ◦ γ)(0) ∈ Tn(p)S2 = TpΣ
Which means that Dn(p) ∈ End(TpΣ). Regarding Dn as a matrix (a b

c d

) with respect to the basis σu, σv(i.e. a = ⟨Dnu, σu⟩ etc.), we have that(
L M
M N

) = −
(
a b
c d

)(
E F
F G

)
Finally, by noting that Ip(−Dn(p)(σu), σu) = −(aE + bF ) = −L etc., we get the required result.

Lemma 5.21. Dn(p) ∈ TpΣ is a self adjoint linear map with respect to the inner product Ip.
Proof. Both the first and second fundamental forms are symmetric.

Definition 5.22 (Gaussian curvature)Suppose Σ is a smooth surface in R3, then the Gaussian curvature is the function κ : Σ → R, given by
κ : p 7→ det(Dn(p))

Proposition 5.23. Suppose we have parametrisation σ , with first fundamental form Ip = (
E F
F G

) and
second fundamental form IIp = ( L M

M N

), then
κ = det(IIp)det(Ip) = LN −M2

EG − F 2
Proof. Write S = Dn(p) in the basis σu, σv , then we have that B = −STA, so S = (−BA−1)T . Takingdeterminants gives the required result.

Definition 5.24 (Flat)A surface Σ ⊆ R3 is flat if κ ≡ 0.
Definition 5.25 (Elliptic, parabolic, hyperbolic points)Let Σ ⊆ R3 be smooth, p ∈ Σ is

• Elliptic if κ(p) > 0,
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• Parabolic if κ(p) = 0,• Hyperbolic if κ(p) < 0.
Lemma 5.26. Suppose p ∈ Σ ⊆ R3 elliptic. Then for a sufficiently smapp neighbourhood of p, Σ lies onone side of TpΣ + p.

Proof. Fix a paramatrisation σ near p. Then κ = LN −M2
EG − F 2 , and as Ip is positive definite, EG − F 2 > 0, sosign(κ) = sign(LN −M2).Now note that

σ (u+ h, v + l) = σ (u, v ) + (hσu(u, v ) + lσv (u, v )) + 12 (h2σuu(u, v ) + 2hlσuv (u, v ) + l2σvv (u, v )) + O
(
h3, l3)

and as the linear term hσu(u, v ) + lσv (u, v ) lies within TpΣ, the signed perpendicular distance from Σ to thetangent plane TpΣ is given by 〈n, 12 (h2σuu(u, v ) + 2hlσuv (u, v ) + l2σvv (u, v ))〉 = 12 IIp(h, l).If p is elliptic, then within a sufficiently small neighbourhood, by continuity κ > 0. Then the quadraticform IIp must be positive or negative definite, as both the eigenvalues have the same sign. This means that thesigned distance always has the same sign.
Lemma 5.27. Suppose p ∈ Σ ⊆ R3 hyperbolic. Then for a sufficiently smapp neighbourhood of p, Σ lieson both sides of TpΣ + p.

Proof. From the above lemma, the eigenvalues must have different signs, so the signed distance takes bothsigns, so Σ lies on both sides of the tangent plane.
Proposition 5.28. Let Σ ⊆ R3 be a compact smooth surface in R3. Then Σ has an elliptic point.

Proof. Σ is closed and bounded, so for R sufficiently large, Σ ⊆ D(0, R ). Suppose R minimal. Up to ro-tation/translation, without loss of generality suppose the intersection occurs at p = (0, 0, z). Here, we havethat
Tp∂D(0, R ) = TpΣand that locally, Σ is the graph of a function f (u, v ) : V → R3, such that f −

√
R2 − u2 − v2 ≤ 0.Since fu = fv = 0 as f (0, 0) = p is a local maximum, we have from the Taylor series that12 (fuuu2 + 2fuvuv + fvvv2) + 12R (u2 + v2) ≤ 0

for sufficiently small u, v . So locally, ( L M
M N

) is negative definite and κ(p) > 0.
Theorem 5.29. Let Σ be a smooth surface in R3, p ∈ Σ has κ(p) ̸= 0. Let U be a small neighbourhoodof p, and we have a decreasing sequence (Ai) of open neighbourhoods of p, such that for all ε > 0, thereexists I such that for all i ≥ I , Ai ⊆ D(p, ε). Then

|κ(p)| = lim
ε→0 Area(n(Ai))Area(Ai)
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Proof. Fix a parametrisation σ : V → U near p, with σ (0) = p. Define Vi = σ−1Ai. Since Ai shrinks to p,⋂
Vi = {0}. By definition, we have that

Area(Ai) = ∫
Vi

√
EG − F 2dudv = ∫

Vi

∥∥σu × σv
∥∥dudv

By chain rule, we have that Dn(p) ∈ End(TpΣ), with σu 7→ nu and σv 7→ nv . Since κ(p) = κ(σ (0)) ̸= 0,
n ◦ σ : V → S2 defines an allowable parametrisation of an open neighbourhood of n(p) by the inverse functiontheorem. Therefore, we have that

Area(n(Ai)) = ∫
Vi

∥∥nu × nv
∥∥dudv

provided that Vi lies in the neighbourhood of 0 such that n ◦ σ is a diffeomorphism. But we have that
∫
Vi

∥∥nu × nv
∥∥dudv = ∫

Vi

∥∥Dn(σu) × Dn(σv )∥∥dudv
= ∫

Vi
|det(Dn)|∥∥σu × σv

∥∥dudv
= ∫

Vi
|κ|
∥∥σu × σv

∥∥dudv
Since κ is continuous, given ε > 0, we have δ > 0 such that if x ∈ D(0, δ) ⊆ V , then |κ(σ (x)) − κ(p)| < ε.Taking i large enough, this gives us the required result.

Theorem 5.30 (Theorema egregium). Suppose f : Σ1 ∼=d Σ2 is an isometry. Then
κ(p) = κ(f (p))for all p ∈ Σ1.

Theorem 5.31 (Gauss-Bonnet). Suppose Σ is a compact surface in R3, then∫
Σ κ(p)dA = 2πχ (Σ)

6 Geodesics

Definition 6.1 (Energy)For a smooth curve γ : [a, b] → R3, the energy of γ is
E (γ) = ∫ b

a

∥∥γ ′(t)∥∥2dt

Definition 6.2 (One parameter variation)Suppose γ : [a, b] → R3 is a smooth curve, a one parameter variation Γ : (−ε, ε) × [a, b] → R3 of γ is asmooth map such that Γ(0, ·) = γ , Γ(·, a) = γ(a) and Γ(·, b) = γ(b).We write γs(t) = Γ(s, t).
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Definition 6.3 (Geodesic)A smooth curve γ : [a, b] → R3 is a geodesic if for every variation γs, we have that
dds (E (γs))∣∣∣∣

s=0 = 0
That is, γ is a critical point of the energy functional.

Theorem 6.4 (Geodesic equations). A smooth γ : [a, b] → U ⊆open Σ, where we have a parametrisation
σ : V → U , is a geodesic if and only if it satisfies the geodesic equations.

ddt (Eu̇+ Fv̇ ) = 12Euu̇2 + Fuu̇v̇ + 12Guv̇2
ddt (Fu̇+ Gv̇ ) = 12Ev u̇2 + Fv u̇v̇ + 12Gv v̇2

Proof. Suppose γs is a one parameter variation. For s small, we can write
γs(t) = σ (u(s, t), v (s, t))Let R = Eu̇2 + 2Fu̇v̇ + Gv̇2, where dot denotes derivative with respect to t . Then
E (γs) = ∫ b

a
R (s, t)dt

By result from Analysis and Topology, we have that
dE (γs)ds = ∫ b

a

∂R
∂s dt

Computing the derivative,
∂R
∂s = (Euu̇2 + Fuu̇v̇ + Guv̇2) ∂u

∂s + (Ev u̇2 + Fv u̇v̇ + Gv v̇2) ∂v
∂s + 2 (Eu̇+ Fv̇ ) ∂u̇∂s + 2 (Fu̇+ Gv̇ ) ∂v̇∂sNoting that ∂u

∂s = ∂v
∂s = 0 for t = a, b, since we have fixed end points and integrating by parts, we get that

dds (E (γs))∣∣∣∣
s=0 = ∫ b

a
A∂u∂s + B∂v∂sdt

where
A = (Euu̇2 + Fuu̇v̇ + Guv̇2) − 2 ddt (Eu̇+ Fv̇ )
B = (Ev u̇2 + Fv u̇v̇ + Gv v̇2) − 2 ddt (Fu̇+ Gv̇ )

Remark 6.5. Note the above is just a special case of the Euler-Lagrange equations.
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Proposition 6.6. If γ has constant speed, and locally minimises length, then γ is a geodesic.
Proof. The Cauchy-Schwarz inequality gives us that

Length(γ)2 ≤ E (γ)(b − a)where equality holds if and only if √
R = ∥∥γ ′∥∥ is constant.

Corollary 6.7. If γ globally minimises energy, then it minimises length, and is parametrised at unit speed.
Proposition 6.8. Suppose Σ ⊆ R3 is a smooth surface, γ : (a, b) → Σ is a geodesic if and only if γ̈ iseverywhere normal to the surface Σ.

Proof. Since orthogonality and the geodesic equations are both local properties, we can with with a parametri-sation σ : V → U , with γ(t) = σ (u(t), v (t)). Then γ̇ = σuu̇ + σv v̇ , so γ̈ is normal to Σ if it is normal to
TpΣ = span{σu, σv}. This is true if and only if〈 ddt (σuu̇+ σv v̇ ), σu〉 = 〈 ddt (σuu̇+ σv v̇ ), σv〉 = 0

We only consider the first one, since the second one will be similar. Rearranging, it is equivalent to
ddt ⟨σuu̇+ σv v̇ , σu⟩ −

〈
σuu̇+ σv v̇ ,

ddt (σu)
〉 = 0

Using E = ⟨σu, σu⟩ etc, we get thatddt (Eu̇+ Fv̇ ) − ⟨σuu̇+ σv v̇ , σuuu̇+ σuv v̇ ⟩ = 0
which means thatddt (Eu̇+ Fv̇ ) −

(
u̇2 ⟨σu, σuu⟩ + u̇v̇ (⟨σu, σuv ⟩ + ⟨σv , σvu⟩) + v̇2 ⟨σv , σuv ⟩

) = 0
Computing Eu, Fu and Gu, we see that this is precisely the first geodesic equation.

Lemma 6.9. Suppose Σ is a smooth surface in R3, Π ⊆ R3 plane, where C = Π∩Σ is a smooth embeddedcurve, and Σ is preserved under reflection across Π. Then when parametrised at constant speed, C is ageodesic.
Definition 6.10 (Meridian)Suppose Σ is a surface of revolution, then a curve formed by the intersection of Σ and a plane through the
z-axis is known as a meridian.
Definition 6.11 (Parallel)Suppose Σ is a surface of revolution, then a curve formed by the intersection of Σ and a plane perpendicularto the the z-axis is known as a parallel.
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Proposition 6.12. All meridians are geodesics.
Lemma 6.13. A parallel is a geodesic if and only if it is at a critical point of f = r = √x2 + y2.
Proposition 6.14 (Clairaut’s relation). Suppose γ is a geodesic, ρ(t) = √

x2 + y2 and θ(t) is the anglebetween γ and the parallel passing through γ(t), thenddt (ρ cos(θ)) = 0
Proof. cos(θ) = ⟨σv , σuu̇+ σv v̇ ⟩∥∥σv∥∥∥∥σuu̇+ σv v̇

∥∥Without loss of generality, γ is parametrised by arc length, so ∥∥σuu̇+ σv v̇
∥∥ = 1. Furthermore, ∥∥σv∥∥ = ρ.Then the second geodesic equation gives us the required result.

6.1 Geodesic normal coordinates

Proposition 6.15. Suppose Σ ⊆ R3 is a smooth surface, for p ∈ Σ, v ∈ TpΣ, v ̸= 0, we have ε > 0 and ageodesic γ : [0, ε) → Σ such that γ(0) = 0 and γ ′(0) = v . Moreover, γ depends smoothly on (ρ, v ).
Proof. The geodesic equations can be written as

f [u, v ] = (E F
F G

)(
ü
v̈

)
which is a smooth function in u, v , and (E F

F G

) is invertible, so we can write the geodesic equations asa system
u̇ = p
v̇ = q
ṗ = A(u, v, p, q)
q̇ = B(u, v, p, q)

where A, B smooth. By the mean value inequality, a bound on ∥∥DA∥∥ and ∥∥DB∥∥ gives us the Lipschitzcondition we require for Picard-Lindelöf.
Definition 6.16 (Geodesic normal coordinates)Fix p > 0, let γ be a geodesic starting at p parametrised by arc length. γt be the geodesic such that
γt (0) = γ(t), γ ′

t (0) ∈ TpΣ orthogonal to γ ′(t) and γt parametrised by arc length.Define σ : [0, ε) × [0, δ) by σ (u, v ) = γv (u).
Proposition 6.17. For ε, δ sufficiently small, σ defines an allowable parametrisation of an open set of Σwhen restricted to Int([0, ε) × [0, δ).

Proof. Smoothness follows by Picard-Lindelöf. At (0, 0), by construction, σu, σv orthogonal so linearly indepen-dent. So by continuity on a small open set it defines a local diffeomorphism.
17



Proposition 6.18.
G(0, v ) = 1 and Gu(0, v ) = 0

Corollary 6.19. Any smooth surface Σ ⊆ R3 has local parametrisations for which the first fundamentalform has the form
du2 + G(u, v )dv2

where E = 1, F = 0.
Proof. Compute the first fundamental form for the geodesic normal coordinates.

Proposition 6.20. If the first fundamental form has the form
du2 + Gdv2

then the curvature is given by
κ = −(√G)uu√

G

Proposition 6.21. Suppose Σ ⊆ R3 is a smooth surface, if κ ≡ 0 then Σ is locally isometric to theEuclidean plane.
Proof. Passing to geodesic normal coordinates, we have that

d2du2
(√

G
) = 0

Solving the differential equations and using the boundary conditions for G we get that G ≡ 1.
Proposition 6.22. If Σ ⊆ R3 is a smooth surface, and κ ≡ 1, then Σ is locally isometric to the sphere(S2, du2 + cos(u)dv2).

Proof. Passing to geodesic normal coordinates and solving the differential equation we have that G ≡ cos2(u).
7 Abstract smooth surface

Definition 7.1 ((Abstract) Riemannian metric)Let V ⊆open R2, an (abstract) Riemannian metric on V is a smooth map
V 7→ {positive definite symmetric bilinear forms} ⊆ Mat2(R)In terms of matrices, we have that

v 7→
(
E (v ) F (v )
F (v ) G(v ))where E (v ), G(v ) > 0, E (v )G(v ) − F (v )2 > 0.
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Definition 7.2 (Length)If γ = (u, v ) : [a, b] → V smooth, define
Length(γ) = ∫ b

a

(
Eu̇2 + 2Fu̇v̇ + Gv̇2)1/2 dt

Definition 7.3 (Riemannian metric)Suppose Σ is an abstract smooth surface, (Ui, φi)i∈I smooth atlas for Σ. A Riemannian metric g or ds2 isa Riemannian metric on each Vi such that if σ, σ̃ parametrisations, f = σ̃−1 ◦ σ transition map, then werequire (
E F
F G

) = (Df )T (Ẽ F̃
F̃ G̃

) (Df )
That is Df defines an isometry of the open sets V and Ṽ .

Definition 7.4 (Isometry)Suppose (Σ1, g1) and (Σ2, g2) are abstract smooth surfaces with abstract Riemannian metrics, then adiffeomorphism
f : Σ1 ∼=d Σ2is an isometry if it preserves the lengths of all curves.

Definition 7.5 (Length metric)Given a Riemannian metric g on a connected abstract smooth surface Σ, define the length metric
d(p, q) = inf

γ:p→q piecewise smooth Length(γ)

Proposition 7.6. The length metric defines a metric.
Proof. Σ is path connected, and piecewise smoothness follows by compactness.

Proposition 7.7. The length metric defines the same topology as the one from the topological surfacestructure.
8 Hyperbolic geometry
8.1 Models of hyperbolic geometry

Definition 8.1 (Disc model)Let D = D(0, 1) ⊆ C, define the hyperbolic metric by
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g = 4(du2 + dv2)(1 − u2 − v2)2 = 4|dz|2(1 − |z|2)2
Proposition 8.2. The subgroup of the Möbius group that preserves the unit disc D is

M(D) = {T ∈ M : T (D) = D} = {z 7→ eiθ z − a1 − az : |a| < 1}

Lemma 8.3. The hyperbolic metric g is invariant under M(D). That is, M(D) acts by isometries.
Proof. Suffices to consider the generators. z 7→ eiθz is a rotation and preserves the metric. For the secondtype, let w = z − a1 − az , and by computing we find that

|dw|2(1 − |w|2)2 = |dz|2(1 − |z|2)2

Lemma 8.4. Every pair of points in (D, g) is joined by a unique geodesic.
Proof. By a Möbius map, we can consider one point being the origin. Then by computing, we find that thediameter of the circle is the unique geodesic.

Lemma 8.5. Geodesics in (D, g) are diameters of the disc, and circular arcs perpendicular to ∂D.
Proof. By above, diameters are geodesics, and as Möbius maps are conformal, and sending circles/lines tocircles/lines, we get the required result.

Corollary 8.6. If p, q ∈ D, then
d(p, q) = 2 artanh(∣∣∣∣ p − q1 − pq

∣∣∣∣)

Definition 8.7 (Half plane model)Let H be the (open) upper half plane, define the metric
g = dx2 + dy2

y2 = |dz|2Im(z)2
Lemma 8.8. (D, g) and (H,g) are isometric.

Proof. The Möbius map
T (w) = w − i

w + idefines an isometry D → H.
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Corollary 8.9. In (H,g) every pair of points are joined by a unique geodesic, where the geodesics arevertical lines or arcs of circles with centres on the real axis.
8.2 Inversion

Definition 8.10 (Inverse points)Let Γ ⊆ Ĉ be a line or circle. z, z′ ∈ Ĉ are inverse points if every line/circle orthogonal to Γ, passingthrough z also passes through z′.
Lemma 8.11. For every circle Γ ⊆ Ĉ , z ∈ C, there is a unique inverse point z′ for z .

Proof. Since Möbius maps are conformal and preserves circles, without loss of generality we may assume thatΓ = R ∪ {∞}. Then J(z) = z works.
Proposition 8.12. If Γ = S1 = {z : |z| = 1}, then inversion is given by z 7→ 1/z .
Proposition 8.13. A composition of two inversions is a Möbius map.
Lemma 8.14. An orientation preserving element of (H2, g) is an element of M(H2).
Definition 8.15 (Elliptic, parabolic, hyperbolic)Suppose α ∈ M(H2) is a non identity element, then

• α is elliptic if α fixes p ∈ H.• α is parabolic if α fixes a unique p ∈ ∂H.• α is hyperbolic if α fixes two points on ∂H.
8.3 Geometry

Definition 8.16 (Hyperbolic line)Geodesics in the hyperbolic plane are called hyperbolic lines.
Definition 8.17 (Parallel, ultraparallel, intersecting)Suppose l1, l2 are lines in H, then

• l1 and l2 are parallel if they meet at ∂H but not in H.• l1 and l2 are ultraparallel if they do not meet in H ∪ ∂H.• l1 and l2 are intersecting if they meet in H.
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Definition 8.18 (Hyperbolic triangle)A hyperbolic triangle is the region bound by three hyperbolic lines, no two of which are ultraparallel.
Definition 8.19 (Ideal vertices)For a hyperbolic polygon, vertices on ∂H are ideal vertices.
Proposition 8.20 (Hyperbolic cosh formula). Suppose we have a hyperbolic triangle with side lengths
A, B, C , and opposite angles α, β, γ ,

cosh(C ) = cosh(A) cosh(B) − sinh(A) sinh(B) sin(γ)
Proposition 8.21 (Area of triangle). The area of a hyperbolic triangle with angles α, β, γ is π−α−β−γ .

Lemma 8.22. Suppose n ≥ 3, then we have a regular n-gon with interior angle 2π
n .

Proof. Consider an ideal n-gon with has interior angle 0, and by intermediate value theorem we have such an
n-gon.

Theorem 8.23. For g ≥ 2, there is an abstract Riemannian metric on the compac surface of genus g withcurvature −1.
Proof. Consider a 4g-gon with gluing pattern a1b1a−11 b−11 . . . agbga−1

g b−1
g .

Lemma 8.24. For lα , lβ , lγ > 0, there exists a right angle hyperbolic hexagon with side lengths (in order)
lα , •, lβ , •, lγ , •.

Proof. For all t > 0, there exists (up to isometry) a unique configuration of ultraparallel lines, with a uniqueperpendicular and length t > 0. Taking t → ∞ we can get the required result.
8.4 Decompositions

Definition 8.25 (Pair of pants)A pair of pants is a topological space homeomorphic to S2 with three open discs removed.
Proposition 8.26. For lα , lβ , lγ > 0, there exists a hyperbolic pair of pants with boundary lengths lα , lβ , lγ .

Proof. Glue two copies of the same hyperbolic right angle hexagon together.
Proposition 8.27. Any compact surface of genus g ≥ 2 can be made by gluing pairs of pants.
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Theorem 8.28 (Local Gauss-Bonnet). Let Σ be an abstract smooth surface with Riemannian metric g. Let
R be a geodesic polygon in Σ. Then ∫

R
κdA =∑ αi − (n − 2)π

where the αi are the interior angles, and n is the number of sides.
Theorem 8.29 (Global Gauss-Bonnet). Let Σ be a compact smooth surface with Riemannian metric g.Then ∫

Σ κdA = 2πχ (Σ)

Lemma 8.30. A compact smooth surface has a subdivision into geodesic polygons.
Corollary 8.31. Local Gauss-Bonnet implies global Gauss-Bonnet.

9 Moduli
Recall we have a flat metric on T 2 by quotienting [0, 1]2. But this choice is not unique. For any parallelogram,we can glue it into a torus. Furthermore, in general these are not isometric.Considering the set of all parallelograms, quotienting out by dilations and isometries of R2, we have aparallelogram with vertices (0, 0), (1, 0), (x, y), (1 + x, y), where y > 0. This then gives us a map

H → Flat metrics on T 2Dilations
Lemma 9.1. SL2(Z) acts on T 2 = R2/Z2 by isometries.
Theorem 9.2. The map

H → Flat metrics on T 2Dilationsdefines a bijection map
HSL2(Z) ≡ Flat metrics on T 2Dilations, Diffeomorphisms+

where Diffeomorphisms+ is the group of orientation preserving diffeomorphisms. HSL2(Z) is called themoduli space of flat metrics on T 2.
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