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This set of notes assumes knowledge of the Groups, Rings and Modules; Vectors and Matrices courses. Furthermore, itassumes some basic category theory. In addition, we assume that all vector spaces have a basis, which is equivalent to theaxiom of choice.
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1 Vector spaces

Definition 1.1 (Category of vector spaces)The category VectF of all F-vector space has
• as objects, all F-vector space.• as homs, all F-linear maps.
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Definition 1.2 (Isomorphism, Endomorphism, Automorphism)These are as defined in category theory.
Proposition 1.3. f ∈ Hom(V ,W ) is an isomorphism if and only if it is bijective.

1.1 Constructions

Definition 1.4 (Subspace)Let V be a F-vector space. Then W ⊆ V is a subspace of V , denoted by W ≤ V , if and only if W is a
F-vector space.
Definition 1.5 (Quotient)Let V be a F-vector space, W ≤ V . Then we have the quotient vector space V /W .
Definition 1.6 (Sum)Let V be a F-vector space, Ui ≤ V . Then we define the subspace∑

Ui = {∑uj : uj ∈ Uj
}

Definition 1.7 (Internal direct sum)Let V be a F-vector space, U,W ≤ V . Then we say V is the internal direct sum of (Ui)ni=1, V =⊕n
i=1 Ui,if and only if for all v ∈ V , there exists unique ui ∈ Ui such that v =∑n

i=1 ui.
Proposition 1.8 (Kernels and cokernels). Kernels and cokernels exist in VectF , and for any linear map
α : V → W , we have the exact sequence.

0 ker(α) V W coker(α) 0α

with α injective if and only if ker(α) = 0, α surjective if and only if coker(α) = 0.
Theorem 1.9 (First isomorphism theorem). Any α : V → W decomposes into

V V / ker(α) im(α) W
∼=

1.2 Basis and dimension

Definition 1.10 (Finite dimensional)A F-vector space is finite dimensional if and only if it has a finite basis.
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Theorem 1.11 (Steinitz exchange lemma). Let V be a finite dimensional F-vector space, v1, . . . , vm linearlyindependent, w1, . . . , wn spanning set. Then m ≤ n, and up to reordering, v1, . . . , vm, w1, . . . , wn spans V .
Proof. By induction on m. m = 0 is trivial. Suppose we have v1, . . . , vm−1, wm, . . . , wn spans V . Then
vm ∈ span{v1, . . . , vm−1, wm, . . . , wn}, so there exists αi, βi such that

vm =∑
i<m

αivi +∑
i≥m

βiwi

Since the vi are linearly independent, we must have that some βi is nonzero. Without loss of generality,
βm ̸= 0. Then we have that

wm = 1
βm

(
vm −

∑
i<m

αivi −
∑
i>m

βiwi

)
So v1, . . . , vm, wm+1, . . . , wn spans V . Necessarily, n ≥ m.

Corollary 1.12. For a finite dimensional vector space V , all bases have the same size.
Definition 1.13 (Dimension)Define dim(V ) to be the size of any basis of V .

1.2.1 Constructions

Proposition 1.14. Let U,W ≤ V . Then
dim(U +W ) = dim(U) + dim(W ) − dim(U ∩W )

Proof. Let v1, . . . , vm be a basis of U ∩W . Extend to bases v1, . . . , vm, u1, . . . , un and v1, . . . , vm, w1, . . . , wk of
U,W respectively. Then v1, . . . , vm, u1, . . . , un, w1, . . . , wk is a basis for U +W .

Lemma 1.15. The following are equivalent.
1. ∑

i
Vi =⊕

i
Vi

2. For all i,
Vi ∩

∑
j ̸=i Vj

 = 0
3. For any basis Bi of Vi, B = ⋃i Bi is a basis for ∑i Vi

Corollary 1.16.

dim(⊕
i
Vi

) =∑
i

dim(Vi)
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Proposition 1.17. Let U ≤ V . Then
dim(V /U) = dim(V ) − dim(U)

Proof. Let u1, . . . , um be a basis for U . Extend to a basis u1, . . . , um, v1, . . . , vn for V . Then v1 +U, . . . , vn +Uis a basis for V /U .
1.2.2 Extensionality

Lemma 1.18. Let V ,W be F-vector space, B a basis for V . Then any α : B → W can be extendeduniquely to a linear map V → W .
Theorem 1.19. If V is a F-vector space, dim(V ) = n, then V is isomorphic to Fn.

Proof. Map basis elements to basis elements.
Lemma 1.20. If α : V → W is an isomorphism, v1, . . . , vn is a basis for V , then α(v1), . . . , α(vn) is a basisfor W .
Corollary 1.21. Two finite dimensional F-vector space are isomorphic if and only if they have the samedimension.

1.2.3 Rank-nullity

Definition 1.22 (Rank, nullity)Let α : V → W be a linear map. Then
rank(α) = dim(im(α)) and null(α) = dim(ker(α))

Theorem 1.23 (Rank-nullity). Let α : V → W , V finite dimensional. Then
dim(U) = rank(α) + null(α)

Proof. Follows from first isomorphism theorem.
Corollary 1.24. Let V ,W be finite dimensional F-vector space, with dim(V ) = dim(U). Then α is injectiveif and only if it is surjective.

1.3 Dual space

Definition 1.25 (Dual space)Let V be an F-vector space. Then we define the dual of V is the F-vector space
V ∗ = Hom(V , F )
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Definition 1.26 (Dual basis)Let V be an f.d. F-vector space. Say e1, . . . , en be a basis for V , then we define the dual basis by
εi(ej ) = δij

Corollary 1.27. If V is finite dimensional, then V ∼= V ∗.
Definition 1.28 (Annihilitor)If U ≤ V , define the annihilitor of U by

U0 = Ann(U) = {α ∈ V ∗ : α(U) = 0} ≤ V ∗

Proposition 1.29. Suppose V is finite dimensional, U ≤ V , then
dim(V ) = dim(U) + dim(Ann(U))

Proof. Let u1, . . . , um be a basis for U , extend to a basis u1, . . . , um, v1, . . . , vn of V . Let ε1, . . . , εm, ξ1, . . . , ξnbe the dual basis for V ∗. Then u1, . . . , um is a basis for U , and ξ1, . . . , ξn is a basis for Ann(U).
Definition 1.30 (Dual map)Let α : V → W . Then we have the dual

α∗ : W ∗ → V ∗

by functoriality of the hom functor.
Lemma 1.31. Let α : V → W . Then

ker(α∗) = Ann(im(α))
Lemma 1.32. Let α : V → W . Then

Im(α∗) ≤ Ann(ker(α))Furthermore, if V ,W are finite dimensional, then equality holds, and α∗ is surjective if and only if αis injective.
1.3.1 Double dual

Definition 1.33 (Double dual)Let V be an F-vector space. Then we define the double dual of V to be
V ∗∗ = (V ∗)∗
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Definition 1.34 (Canonical embedding)Fix v ∈ V . Define v̂ : V ∗ → F by
v̂ (ε) = ε(v )

Theorem 1.35. v 7→ v̂ is an isomorphism.
Lemma 1.36. Let V be a finite dimensional F-vector space. Then

U ∼= Û = {û : u ∈ U} = Ann(Ann(U))
Lemma 1.37. Let V be a finite dimensional F-vector space. U,W ≤ V . Then

Ann(U +W ) = Ann(U) ∩ Ann(W ) and Ann(U ∩W ) = Ann(U) + Ann(W )
2 Matrices

Definition 2.1 (Matrix)Let R be a ring. Then the set of m× n R-matrices is denoted by
Matm,n(R )

Definition 2.2 (Representation of a linear map)Let α : V → W be a linear map, B = (v1, . . . , vn) be a basis for V , C = (w1, . . . , wm) be a basis for W .Then define
[α ]B,C = (aij )where α(vj ) =∑i aijwi.

Lemma 2.3. Fix bases B, C of V ,W respectively, with dim(V ) = n, dim(W ) = m. Then
α 7→ [α ]B,Cis an isomorphism Hom(V ,W ) ∼= Matm,n(F )

Lemma 2.4.
V W

Fn Fm

[ · ]B [ · ]C
α

[α ]B,C
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commutes.
2.1 Change of basis

Definition 2.5 (Change of basis matrix)Let B,B′ be bases for V . The change of basis matrix from B to B′ is
P = [id]B′,B

Proposition 2.6. [α ]B′,C ′ = [id]C,C ′ [α ]B,C [id]B′,Bor in matrix form,
A′ = Q−1AP

Definition 2.7 (Equivalent matrices)
A, B are equivalent if there exists invertible matrices P,Q such that

A = Q−1BP

Proposition 2.8. Let V ,W be f.d, α : V → W . Then we have bases B, C of V ,W respectively such that
[α ]B,C = ( Ir 00 0 )where r = rank(α).

Proof. Extend bases of kernel and image respectively.
Definition 2.9 (Column, row rank)The column (resp. row) rank of a matrix A is the dimension of the span of the columns (resp. rows) of A.
Proposition 2.10. Column rank of [α ]B,C = rank(α)
Proposition 2.11. Two matrices are equivalent if and only if they have the same column rank.
Theorem 2.12. Column rank = row rank

Proof.
A = Q−1( Ir 00 0 )PTaking the transpose gives the required result.
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Definition 2.13 (Similar, conjugate)Two matrices A, B are similar, or conjugate if there is an invertible matrix P such that
B = P−1AP

Proposition 2.14. [a]TB,C = [a∗]C ∗,B∗

Proposition 2.15. Let B, C be bases for V , P the change of basis matrix from B to C . Then the changeof basis matrix from C ∗ to B∗ is (P−1)T
2.2 Elementary operations

Definition 2.16 (Elementary operations)The elementary column (row) operations are
• Swap column (row) i and j .• Replace column (row) i with λ× column (row) i.• Add λ× column (row) j to column (row) i.

Definition 2.17 (Elementary matrix)For each elementary operation, let E be the result of performing the operation on the identity matrix. Then
E is called an elementary matrix.
Proposition 2.18. Each column (row) operation corresponds to right (left) multiplication by the corre-sponding elementary matrix.

Corollary 2.19. Every matrix is equivalent to ( Ir 00 0 ).
Proof. By elementary operations.

Proposition 2.20. If A is a square invertible matrix, then we can obtain In by column (row) operationsonly.
Proof. By recursion. Suppose after the k-th step we have

A(k ) = ( Ik 0
∗ ∗

)
We must have some j > k such that ak+1,j ̸= 0. By column operations, without loss of generality j = k +1,

ak+1,j = 1. Then we can use this to clear out the rest of the k + 1-th row. The result is
8



A(k+1) = ( Ik+1 0
∗ ∗

)

Corollary 2.21. Any invertible square matrix is a product of elementary matrices.
2.3 Trace

Definition 2.22 (Trace)For a square matrix A, define the trace
tr(A) =∑

i
Aii

Proposition 2.23. tr(AB) = tr(BA)
Proposition 2.24. If A, B similar, then tr(A) = tr(B).
Proposition 2.25. tr(A) = tr(AT)

Definition 2.26 (Trace of an endomorphism)For α ∈ End(V ), define tr(α) = tr([α ]B,B) for any basis B.
Proposition 2.27. tr(α) = tr(α∗)

3 Determinant

Definition 3.1 (Determinant)Let A ∈ Matn(F ). Define
det(A) = ∑

σ∈Sn

sign(σ )Aσ (1),1 · · ·Aσ (n),n

Lemma 3.2. If A is a (strict) upper triangular matrix, that is aij = 0 for i > j , then det(A) = tr(A).
Proof. The only nonzero term in the sum is σ = id.
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Lemma 3.3. det(A) = det(AT)

Definition 3.4 (Volume form)A volume form d on Fn is a multilinear map d : (Fn)n → F such that
d(v1, . . . , vi, . . . , vj , . . . , vn) = 0if vi = vj for some i ̸= ja.

aSo d is alternating

Proposition 3.5. det as a function on the columns of a matrix, is a volume form.
Lemma 3.6. Let d be a volume form, σ ∈ Sn. Then

d(vσ (1), . . . , vσ (n)) = sign(σ )d(v1, . . . , vn)
Proof. Suffices to consider a transposition (ij) since Sn is generated by transpositions. Expanding the righthand side of

0 = d(v1, . . . , vi−1, vi + vj , vi+1, . . . , vj−1, vi + vj , vj+1, . . . , vn)gives the required result.
Theorem 3.7. Let d be a volume form, A be a matrix, let A(i) be the columns of A. Then we have that

d(A(1), . . . , A(n)) = det(A)d(e1, . . . , en)
Proof. Expand using multilinearity, to get that the LHS is∑

i1,...,in
Ai1,1 · · ·Ain,nd(ei1 , . . . , ein )

and the volume form term forces i1, . . . , in = 1, . . . , n, so we are summing over permutations, which givesthe result required.
Lemma 3.8. det(AB) = det(A) det(B)

Proof. Define the volume form dA by
dA(v1, . . . , vn) = det(Av1, . . . , Avn)Then

det(AB) = dA(B(1), . . . , B(n)) = dA(e1, . . . , en) det(B) = det(A) det(B)
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Definition 3.9 (Singular)A square matrix A is singular if det(A) = 0, and it is nonsingular if det(A) ̸= 0.
Theorem 3.10. Let A ∈ Matn(F ). Then the following are equivalent.

(i) A is invertible.(ii) A is nonsingular.(iii) rank(A) = n.
Proof. (i) and (iii) are equivalent by rank-nullity. Suppose A is invertible. Then 1 = det(A) det(A−1), sodet(A) ̸= 0. Finally, suppose rank(A) < n. Then (A1, . . . , An) is linearly dependent. So det(A) = 0.

Definition 3.11 (Determinant of an endomorphism)For α : V → V , define
det(α) = det([α ]B)for any basis B of V .

Lemma 3.12 (Determinant in block matrix form). Suppose A ∈ Mk (F ), B ∈ Ml(F ), C ∈ Mk,l(F ), and
M = ( A C0 B

)
Then det(M) = det(A) det(B).

Proof. det(M) = ∑
σ∈Sn

sign(σ ) n∏
i=1 mσ (i),i

For this to be nonzero, we must have that σ (j) ≤ k for j ≤ k . So σ = σ1σ2, where σ1 is a permutation of1, . . . , k , and σ2 is a permutation of k + 1, . . . , n. Splitting the sum and products gives the required result.
Corollary 3.13. If

A =
λ1 ∗. . .

λn


Then det(A) = λ1 · · · λn.

Definition 3.14 (Minors)Let A be a matrix, let Ai,j be A with the i-th row and j-th column removed. Then define the (i, j) minor tobe det(Ai,j).
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Lemma 3.15 (Column/row expansion).
det(A) = n∑

i=1 (−1)i+jAij det(Ai,j) = n∑
j=1 (−1)i+j det(Ai,j)

Definition 3.16 (Adjugate)Define the adjugate matrix of A ∈ Matn(F ) by
(Adj(A))ij = (−1)i+j det(Aj ,i)

Proposition 3.17. (Adj(A))j ,i = det(A(1), . . . , A(j−1), ei, A(j+1), . . . , A(n))

Theorem 3.18. Adj(A)A = det(A)I
Proof. Compute each entry of Adj(A)A.
4 Eigenvectors and Eigenvalues

Definition 4.1 (Eigenvector, eigenvalue)Let α ∈ End(V ), λ ∈ F , v ∈ V ∖ 0. Then v is an eigenvector with eigenvalue λ if
α(v ) = λv

Definition 4.2 (Eigenspace)For an eignevalue λ, the eigenspace is
Vλ = {α(v ) = λv : v ∈ V } ≤ V

Lemma 4.3. λ is an eigenvalue if and only if det(α − λ id) = 0.
Definition 4.4 (Characteristic polynomial)For α ∈ End(V ), the characteristic polynomial of α is

χα (t) = det(α − t id)
Definition 4.5 (Triangulable)Let α ∈ End(V ). Then α is triangulable if there exists a basis B such that [α ]B is upper triangular. Thatis,
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[α ]B =
λ1 ∗. . .0 λn



Theorem 4.6. α ∈ End(V ) is triangulable if and only if χα can be written as a product of linear factors.
Proof. Suppose α is triangulable. Then we have that

[α ]B =
λ1 ∗. . .0 λn


which means that χα (t) = det(α − λ id) =∏(λi − λ).Now suppose χα is a product of linear factors. By induction on n. If n = 1, it is trivial. On the otherhand, suppose λ is a root of χα . Then let v1, . . . , vj be a basis of the eigenspace Vλ. Complete this to a basis

B = (v1, . . . , vj , . . . , vn) of V . Then
[α ]B = ( λIk ∗0 C

)
By computing the characteristic polynomial of this matrix, we find that

χA(t) = (λ− t)kχC (t)which means that χC is also a product of linear factors, and in a suitable basis is upper triangular.
Lemma 4.7. Suppose α ∈ End(V ), where F = R or C. Then say

χα (t) = (−1)ntn + cn−1tn−1 + · · · + c0Then c0 = det(α) and cn−1 = (−1)n−1 tr(α).
Proof. Since Matn(R) is a subring of Matn(C), without loss of generality assume F = C.

c0 = χα (0) = det(α)and α is triangulable over C, so we have that
χα (t) = det

a1 − t ∗. . .0 an − t


and cn−1 = (−1)n−1(a1 + · · · + an) = (−1)n−1 tr(α).

Definition 4.8 (Projection)For each j , let
qj (t) =∏

i̸=j
t − λi
λj − λi

be the j-th Lagrange basis polynomial. Then qj (λi) = δij . Let Πj = qj (α) be the projection operatoronto Vλj .
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Lemma 4.9. Let α ∈ End(V ), and λ1, . . . , λk be distinct eigenvalues. Then
k∑
i=1 Vλi = k⊕

i=1 Vλi

Proof. Let v ∈ Vλ1 ∩ (∑i≥2 Vλi ). From v ∈ Vλ1 , we have that Πj (v ) = v . On the other hand, for i ≥ 2, for any
wi ∈ Vλi , we have that Πj (wi) = 0. So v = 0. Thus the intersection is trivial and the sum is direct.

Theorem 4.10 (Diagonalisability criterion). Let α ∈ End(V ). Then α is diagonalisable if and only if thereexists p ∈ F [t] such that p is a product of distinct linear factors, and p(α) = 0.
Proof. Suppose α is diagonalisable, with λ1, . . . , λk being the distinct eigenvalues. Then p(t) = ∏k

i=1(t − λi)works.Conversely, suppose such a p exists. Let λ1, . . . , λk be the roots of p. Then note that these must be theeigenvalues of α . Let Vλi be the eigenspaces. Suffices to show that V = ∑
i Vλi , since the sum will be direct,and by considering a basis for each eigenspace we get the required result.Note that by construction, ∑j Πj = id, so for any vector v ∈ V , we have that

v =∑
j

Πj (v ) =∑
j
qj (α)(v )

Then
(α − λj id)(qj (α)(v )) = 1∏

i ̸=j λj − λi
p(α)(v ) = 0

So Πj (v ) ∈ Vλj , and V is a sum of the Vλi .
Theorem 4.11 (Simultaneous diagonalization). Let α, β ∈ End(V ) be diagonalisable. Then we have abasis B such that α, β are both diagonal if and only if αβ = βα .

Proof. If such a basis exists, then diagonal matrices commute. On the other hand, suppose α and β commute.We have that
V = k∑

i=1 Vλi where λi eigenvalues of α
Then for v ∈ Vλi , αβ(v ) = βα(v ) = β(λiv ) = λiβ(v ). So (α − λ id)(β(v )) = 0, and β(v ) ∈ Vλi . This meansthat for each λi we have an endomorphism βi = β|Vλi ∈ End(Vλi ).Since β diagonalisable, we have p ∈ F [t] such that p(β) = 0, p product of distinct linear factors. Then foreach i, we have that p(βi) = p(β) = 0, so each βi is diagonalisable. Let Bi be a basis of Vλi such that (βi)Bi isdiagonal. Then B = B1 ∪ · · · ∪ Bk works.

4.1 Minimal polynomial

Definition 4.12 (Minimal polynomial)Let V be a finite dimensional F-vector space, α ∈ End(V ). The minimal polynomial of α is mα (t), whichis the minimum degree (non-zero) polynomial such that mα (α) = 0.
Lemma 4.13. Let α ∈ End(V ). Then p(α) = 0 if and only if mα | p.
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Proof. ⇐= is obvious. Suppose p(α) = 0. Then we have that deg(p) ≥ deg(mα ), and we have that p = qmα+r ,with deg(r) < deg(mα ). By minimality of deg(mα ), we must have r = 0.
Corollary 4.14. Minimum polynomial is unique up to a constant.
Theorem 4.15 (Cayley-Hamilton).

χα (α) = 0
Remark 4.16. In the following proof, we will need to take the determinant and adjugate of matrices defined overgeneral rings, and not just fields. This is well defined, and the same formulae will work. Furthermore, we will usethe isomorphism Matn(F [t]) ∼= (Matn(F ))[t] throughout the proof without explicitly mentioning it.

Proof. Let A ∈ Matn(F ), det(t id −A) = (−1)nχα (t) = tn + an−1tn−1 + · · · + a0. Let B = t id −A ∈ Matn(F [t]).Then we have that
Adj(B) = Bn−1tn−1 + · · · + B1t + B0 ∈ (Matn(F ))[t]Then note that

(t id −A)(Bn−1tn−1 + · · · + B1t + B0) = (t id −A) Adj(B) = B Adj(B) = det(B) id = (tn + an−1tn−1 + · · · + a0) idEquating coefficients, we have that
Bn−1 = id, Bn−2 − ABn−1 = an−1 id, . . . ,−AB0 = a0 idRearranging, we find that

AnBn−1 = An, An−1Bn−2 − AnBn−1 = an−1An−1, . . . ,−AB0 = a0 idSumming these equations, we find that
An + an−1An−1 + · · · + a0 id = 0

Definition 4.17 (Algebraic, geometric multiplicity)For α ∈ End(V ), the algebraic multiplicity is aλ, which is the multiplicity of t − λ in χα (t). The geometricmultiplicity is gλ = dim(Vλ).
Lemma 4.18.

gλ ≤ aλ

Proof. Let v1, . . . , vgλ be a basis for vλ. Extend to a basis B = (v1, . . . , vgλ , . . . , vn) for V . Then we have that
[α ]B = ( λ idgλ ∗0 A

)
Then det(α − t id) = (λ− t)gλχA(t), so gλ | χα , and gλ ≤ aλ.

Lemma 4.19. Let cλ be the multiplicity of t − λ in mα (t). Then cλ ≤ aλ.
Proof. By Cayley-Hamilton mα | χα .
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Lemma 4.20 (Diagonalisation over C). Let α ∈ End(V ), where V is a finite dimensional C-vector space.Then the following are equivalent.
(i) α is diagonalisable.(ii) For all eigenvalues λ of α , aλ = gλ.(iii) For all eigenvalues λ of α , cλ = 1.

Proof. We have already shown that (i) ⇐⇒ (iii). Note that
V ≥

k⊕
i=1 VλiBy considering the dimensions, we get that (i) ⇐⇒ (ii).

4.2 Jordan normal form

Definition 4.21 (Jordan block)
Jn(λ) =


λ 1 0. . . . . .. . . 10 λ



Definition 4.22 (Jordan normal form)A matrix A ∈ Matn(C) is in Jordan normal form if it is a block diagonal matrix where each block is aJordan block.
Theorem 4.23 (Jordan normal form). Any A ∈ Matn(C) is similar to a matrix in Jordan normal form, whichis unique up to reordering of the Jordan blocks.

Proof. See GRM.
Proposition 4.24. From the JNF of a matrix, we can find

• aλ =∑ size of blocks with eigenvalue λ• gλ = number of blocks with eigenvalue λ• cλ = size of largest block with eigenvalue λ.
Theorem 4.25 (Generalised eigenspace decomposition). Let α ∈ End(V ), where V is a finite dimensional
C-vector space. Define the generalised eigenspace

Vj = ker((α − λj id)cj )Then
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V = k⊕
j=1 Vj

Proof. Let pj (t) = ∏
i ̸=j (t − λi)ci . Consider the ideal (p1, . . . , pk ) ⊴ C[t]. Since C is a field, C[t] is a PID. Sowe have f ∈ C[t] such that (p1, . . . , pk ) = (f ). In this case, since f | pi for all i, we must in fact have f ∈ C×.So (p1, . . . , pk ) = (1). This means that we have q1, . . . , qk such that

q1p1 + · · · + qkpk = 1Define the projection Πj = qjpj (α). Then ∑j Πj = id. Furthermore,
(a− λj id)cjΠj (v ) = (α − λj id)cjqjpj (α)(v ) = qjmα (α(v )) = 0So Πj (v ) ∈ Vj , which means that V = ∑

j Vj . Furthermore, note that for i ̸= j , ΠiΠj = 0, since mα | pipj ,which also means that Πi = Πi id = Πi
∑

j Πj = Π2
i . So Πi idempotent.This implies that the sum is direct, since if we have v ∈ V1 ∩ (∑i≥2 Vi). Since v ∈ V1, by constructionΠj (v ) = 0 for j ≥ 2, which means that Π1(v ) = v . On the other hand, for wi ∈ Vi for i ≥ 2, Π1(wi) = 0 by thesame argument. So v = Π1(v ) = 0.

5 Bilinear forms

Definition 5.1 (Bilinear form)A bilinear form φ : U × V → F is a function which is linear in each of its arguments.
Definition 5.2 (Representation of bilinear forms)Let B = (v1, . . . , vm) and C = (w1, . . . , wn), then

[φ]B,C = (φ(vi, wj ))i,j
Lemma 5.3.

φ(u, v ) = [u]TB [φ]B,C [v ]C
Definition 5.4 (Left (right) map)Given a bilinear form φ : U × V → F , define φL : U → V ∗ by

φL(u) = φ(u, ·)and define φR similarly.
Lemma 5.5. Let B, C be bases for U, V , and B∗, C ∗ the dual bases. Let A = [φ]B,C . Then [φL]B,C ∗ = AT ,and [φR ]C,B∗ = A.
Definition 5.6 (Non-degenerate)
φ is non-degenerate if ker(φL) = 0 and ker(φR ) = 0.
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Lemma 5.7. φ is non-degenerate if and only if A is invertible, and dim(U) = dim(V ).
Proof. By rank-nullity.

Corollary 5.8. If dimU = dimV , then choosing a non-degenerate bilinear form φ : U × V → F isequivalent to choosing an isomorphism φL : U → V ∗.
Definition 5.9 (Orthogonal)For T ⊆ U , define

T⊥ = {v ∈ V : φ(t, v ) = 0∀t ∈ T}and for S ⊆ V , define
⊥S = {u ∈ U : φ(u, s) = 0∀s ∈ S}

Proposition 5.10 (Change of basis). Let B,B′ be bases for U , C, C ′ bases for V . Then P,Q be therespective change of bases matrices. Then
[φ]B′,C ′ = PT[φ]B,CQ

Definition 5.11 (Rank)The rank of a bilinear form φ is the rank of any matrix representing it.
Definition 5.12 (Congruent)
A, B ∈ Matn(F ) are congruent if there exists P ∈ Matn(F ) invertible such that

A = PTBP

5.1 Symmetric bilinear forms

Definition 5.13 (Symmetric)A bilinear form φ : V × V → F is symmetric if φ(u, v ) = φ(v, u).
Proposition 5.14. φ is symmetric if and only if for any basis B, [φ]B is symmetric.
Proposition 5.15. [φ]B is diagonal only if φ is symmetric.
Definition 5.16 (Quadratic form)A map Q : V → F is a quadratic form if there exists a bilinear form φ such that Q(v ) = φ(v, v ).

18



Remark 5.17. The matrix representing a quadratic form with respect to a given basis need not be unique. If A is one,then so is 12 (A+ AT)a .
aThis is the symmetric part of A.

Proposition 5.18 (Polarisation identity). If φ is a symmetric bilinear form, Q(v ) = φ(v, v ) a quadratic form,then
φ(u, v ) = 12 (Q(u+ v ) − (Q(u) + Q(v )))

Proposition 5.19. If Q : V → F is a quadratic form, then there exists a unique symmetric bilinear form
φ : V × V → F such that Q(v ) = φ(v, v ).

Proof. Follows by the polarisation identity.
Theorem 5.20 (Diagonalisation of symmetric bilinear forms). Let φ : V × V → F be a symmetric bilinearform, with dim(V ) = n. Then there exists a basis B for V such that [φ]B is diagonal.

Proof. By induction on n. n = 1 is trivial. If φ(u, u) = 0 for all u, then by the polarisation identity φ = 0. Soif φ is nonzero, then there must be e1 such that φ(e1, e1) ̸= 0.Let U = (span{e1})⊥ = {v ∈ V : φ(e1, v ) = 0} = ker(φ(e1, ·)). Then V = span e1 ⊕ U , which meansthat dim(U) = n − 1. By the induction hypothesis, we can choose a basis e2, . . . , en for U such that φ|U×U :
U × U → F is diagonal. Then e1, . . . , en is a basis for V such that φ is diagonal.

Corollary 5.21. Over an algebraically closed field F (e.g. C), we have a basis for V such that
[φ] = ( Ir 00 0 )where r = rank(φ).

Proof. By rescaling and reordering the basis elements.
Corollary 5.22. Over R, we have a basis for V such that

[φ] =  Ip 0 00 −Iq 00 0 0


where p, q ≥ 0, p+ q = rank(φ).
Proof. Rescale and reorder the basis elements.
5.2 Sylvester’s law of inertia

Theorem 5.23 (Sylvester’s law of inertia). Suppose we have that
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[φ]B =  Ip 0 00 −Iq 00 0 0
 and [φ]B′ =  Ip′ 0 00 −Iq′ 00 0 0


Then p = p′, q = q′.

Remark 5.24. In the course we use positive definite to mean φ(u, u) > 0, and positive semidefinite to mean φ(u, u) ≥ 0.
Proof. Suffices to show p ≥ p′ by symmetry. Furthermore, the argument for p and q are similar so we onlyprove one case.Let U ≤ V be any subspace such that φ|U×U is positive definite. Let B = (v1, . . . , vp, . . . , vp+q, . . . , vn). Let
W = span{vp+1, . . . , vn}. Then φ is negative semidefinite on W , so U ∩W = 0. This means that

n ≥ dim(U) + dim(W ) = dim(U) + (n− p) =⇒ p ≥ dim(U)Let B′ = (v ′1, . . . , v ′
p, . . . , vp+q′ , . . . , v ′

n). Then setting U = span{v ′1, . . . , v ′
p} we get that p ≥ p′.

Definition 5.25 (Signature)For a symmetric bilinear form φ : V × V → R, define the signature to be
S(φ) = p− q

Definition 5.26 (Kernel)For a symmetric bilinear form φ, define the kernel
ker(φ) = {v ∈ V : ∀u ∈ U,φ(u, v ) = 0}

Lemma 5.27 (Rank-nullity). dim(ker(φ)) + rank(φ) = 0
Proposition 5.28. There exists a subspace T such that

φ|T = 0 and dim(T ) = n− (p+ q) + min(p, q)
Proof. Suppose B = (v1, . . . , vp, . . . , vp+q, . . . , vn) is a basis which makes φ into the form in Sylvester’s law ofinertia. Without loss of generality, assume p ≥ q. Then T = span{v1 + vp+1, . . . , vq + vp+q, vp+q+1, . . . , vn}works.

Proposition 5.29. dim(T ) in the previous proposition is maximal.
5.3 Sesquilinear forms

Definition 5.30 (Sesquilinear form)Let V ,W be C-vector space. Then φ : V ×W → C is a sesquilinear form if φ(·, w) is linear, and φ(v, ·)is conjugate linear.
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Definition 5.31 (Representation of a sesquilinear form)Let B = (v1, . . . , vm) and C = (w1, . . . , wn), then
[φ]B,C = (φ(vi, wj ))i,j

Lemma 5.32.
φ(v, w) = [u]TB [φ]B,C [v ]C

Definition 5.33 (Change of basis)
[φ]B′,C ′ = PT[φ]B,CQ

Definition 5.34 (Hermitian)Let φ : V × V → C be a sesquilinear form. Then φ is Hermitian if φ(u, v ) = φ(v, u).
Proposition 5.35. For a Hermitian form φ, φ(u, u) is real.
Remark 5.36. This means that we can refer to positive/negative (semi)definite Hermitian forms.
Lemma 5.37. φ is Hermitian if and only if for any basis B, we have that

[φ]B = [φ]TB
Lemma 5.38 (Polarisation). Let φ : V × V → C be sesquilinear, Q(v ) = φ(v, v ). Then

φ(u, v ) = 14 (Q(u+ v ) − Q(u− v )) + i4 (Q(u+ iv ) − Q(u− iv ))
Theorem 5.39 (Sylvester’s law of inertia). Let φ be a Hermitian form. Then we have a basis such that

[φ] =  Ip 0 00 −Iq 00 0 0


Furthermore, p, q are independent of the choice of basis.
Proof. Existence and uniqueness follows from similar proofs for the real case.
5.4 Skew-symmetric bilinear forms

Definition 5.40 (Skew-symmetric)Let φ : V × V → R be a bilinear form. Then it is skew-symmetric if φ(u, v ) = −φ(v, u).
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Proposition 5.41. φ(u, u) = 0.
Proposition 5.42. [φ]B = −[φ]TB
Proposition 5.43. Every square matrix is the sum of a symmetric and an antisymmetric matrix.

Proof.
A = 12 (A+ AT)+ 12 (A − AT)

Theorem 5.44 (Sylvester’s law of inertia). Let φ be a skew-symmetric form. Then we have a basis
B = (v1, w1, . . . , vm, wm, u2m+1, . . . , un) such that

[φ]B =

T . . .

T 0
 where T = ( 0 1

−1 0)

Proof. By induction on dim(V ). If φ = 0 then we are done. Otherwise, we have v1, w1 such that φ(v1, w1) ̸= 0.By rescaling, φ(v1, w1) = 1 and φ(w1, v1) = −1. Then let U = span {v1, w1}, and define
W = {v ∈ V : φ(v1, v ) = φ(w1, v ) = 0}Then V = U ⊕W .

Corollary 5.45. The rank of a skew-symmetric form is even.
6 Inner product spaces

Definition 6.1 (Inner product)Let V be a vector space over C, an inner product on V is a positive definite Hermitian form φ on V .
Remark 6.2. For real vector spaces, we have symmetric bilinear forms instead. However, most of the time we won’thave to worry about the difference.
Remark 6.3. We write ⟨u, v⟩ = φ(u, v ) to denote the inner product of u and v .
Theorem 6.4 (Cauchy-Schwarz inequality).

|⟨u, v⟩| ≤ ∥u∥∥v∥
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Corollary 6.5 (Triangle inequality). ∥u+ v∥ ≤ ∥u∥+ ∥v∥
6.1 Orthogonality

Definition 6.6 (Orthogonal)A set {e1, . . . , ek} of vectors are orthogonal if i ̸= j =⇒
〈
ei, ej

〉 = 0.
Definition 6.7 (Orthonormal)A set {e1, . . . , ek} of vectors is orthonormal if 〈ei, ej〉 = δij .
Lemma 6.8. A set of orthogonal nonzero vectors is linearly independent.
Lemma 6.9 (Parseval). If e1, . . . , en is an orthonormal basis, then

⟨u, v⟩ = n∑
i=1 uivi

Theorem 6.10 (Gram-Schmidt orthogonalisation). Let V be an inner product space, vi (i ∈ I ⊆ N) be acollection of linearly independent vectors. Then there exists ei orthonormal such that for all k ,
span {e1, . . . , ek} = span {v1, . . . , vk}

Proof. Define e1 = v1/∥∥v1∥∥, and
uk+1 = vk+1 −

k∑
i=1 ⟨vk+1, ei⟩ ei

and ek+1 = uk+1/∥∥uk+1∥∥.
Corollary 6.11. Any finite dimensional inner product space has an orthonormal basis.
Definition 6.12 (Orthogonal matrix)
A ∈ Matn(R) is orthogonal if ATA = id.
Proposition 6.13 (QR decomposition). Let A ∈ Matn(R) be nonsingular. Then Q can be written uniquelyas

A = QR
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where Q orthogonal, R upper triangular. If A ∈ Matn(C), then Q can be chosen to be unitary.
Proof. Gram-Schmidt on the columns of A. Or see IB Numerical Analysis for more computationally stablemethods.

Definition 6.14 (Orthogonal direct sum)Let V1, V2 ≤ V . Then we say that V is the orthogonal direct sum of V1, V2, written V = V1 ⊥
⊕ V2, if

V = V1 ⊕ V2 and for all v1 ∈ V1, v2 ∈ V2, ⟨v1, v2⟩ = 0.
Definition 6.15 (Orthogonal)For U ≤ V , define

U⊥ = {v ∈ V : ⟨u, v⟩ = 0} ≤ V

Proposition 6.16.
V = U

⊥
⊕ U⊥

Definition 6.17 (Projection)Suppose V = U ⊕W . Then define the projection onto W by Π : V → W by v = u+ w 7→ w .
Remark 6.18. In general, Π depends on U . However, we usually take U = W ⊥ .
Lemma 6.19. Let W ≤ V , e1, . . . , ek be a basis for W , Π projection onto W . Then

Π(v ) = k∑
i=1 ⟨v, ei⟩ ei

Proposition 6.20 (Least squares). For all v ∈ V , w ∈ W ,∥∥v − Π(v )∥∥ ≤ ∥v − w∥with equality holding if and only if w = Π(v ).
6.2 Adjoint

Proposition 6.21. Let α : V → W be a linear map. Then there is a unique linear map α∗ : W → V suchthat
⟨α(v ), w⟩ = ⟨v, α∗(w)⟩Moreover, if B, C are orthonormal bases of V ,W respectively, then

[α∗]C,B = [α ]TB,C
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Definition 6.22 (Adjoint)Define α∗ to be the adjoint of α .
Proposition 6.23. By identifying V ∼= V ∗ and W ∼= W ∗, the dual and adjoint are the same maps.
Definition 6.24 (Self adjoint)Let α ∈ End(V ). Then if α∗ = α , we say α is self adjoint.
Proposition 6.25. α self-adjoint if and only if ⟨α(u), v⟩ = ⟨u, α(v )⟩.
Proposition 6.26. If F = R, then self adjoint is equivalent to symmetric. If F = C, then self adjoint isequivalent to Hermitian.
Definition 6.27 (Isometry)Let α : V → W . If ⟨α(v ), α(w)⟩ = ⟨v, w⟩, then we say α is an isometry.
Proposition 6.28. α is an isometry if and only if α∗ = α−1.
Proposition 6.29. For endomorphisms over R, isometry is equivalent to orthogonal. For endomorphismsover C, isometry is equivalent to unitary.

6.3 Spectral theory

Lemma 6.30. Let α ∈ End(V ) be self adjoint. Then all eigenvalues of α are real, and eigenvectors withdistinct eigenvalues are orthogonal.
Theorem 6.31. Let α ∈ End(V ) be self adjoint. Then V has an orthonormal basis of eigenvectors.

Proof. By induction on n = dim(V ). n = 1 is trivial. By FTA, χα has a root over C. Since α is self adjoint, theroot is real. Let λ ∈ R, and let v be an eigenvector with eigenvalue λ and norm 1. Let U = (span {v})⊥. Thenwe have that α|U : U → U is a self-adjoint endomorphism.
Corollary 6.32. All self adjoint operators are diagonalisable by unitary operators.
Corollary 6.33. V is a direct sum of the eigenspaces.

25



Proposition 6.34. Let V be a complex inner product space, α ∈ End(V ) isometry (unitary). Then alleigenvalues of α have modulus 1, and eigenvectors with distinct eigenvalues are orthogonal.
Theorem 6.35. Let V be a complex inner product space, α ∈ End(V ) isometry (unitary). Then V has anorthonormal basis of eigenvectors.

Proof. By induction as for self-adjoint maps.
Proposition 6.36. A symmetric (Hermitian) matrix is diagonalisable by an orthogonal (unitary) matrix.

Proof. Matrix with eigenvectors as columns.
Proposition 6.37. Let φ be a symmetric (Hermitian) form, then there is an orthonormal basis of V suchthat φ is diagonal.

Proof. Basis of eigenvectors.
Remark 6.38. The diagonal entries are the eigenvalues. Furthermore, S(φ) = p−q, where p is the number of positiveeigenvalues and q is the number of negative eigenvalues.
Proposition 6.39 (Simultaneous diagonalisation). Let φ, ψ be symmetric (Hermitian) forms, φ is positivedefinite. Then there exists a basis of V such that φ, ψ are diagonal.

Proof. (V , φ) is an inner product space. So we have an orthonormal basis of (V , φ) such that ψ is diagonal.Furthermore, [φ] = id.
Proposition 6.40 (Simultaneous diagonalisation of matrices). Ley A, B be square symmetric (Hermitian)matrices, A positive definite. Then there exists Q ∈ Matn(R) (Q inMatn(C)) invertible such that

QTAQ (QTAQ) and QTBQ (QTBQ)are diagonal.
Proof. φ(u, v ) = uTAv is a positive symmetric (Hermitian) form, so apply previous result.
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