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This set of notes assumes knowledge of the Groups, Rings and Modules; Vectors and Matrices courses. Furthermore, it
assumes some basic category theory. In addition, we assume that all vector spaces have a basis, which is equivalent to the
axiom of choice.
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1 Vector spaces
Definition 1.1 (Category of vector spaces)
The category Vectr of all F-vector space has

e as objects, all F-vector space.

e as homs, all F-linear maps.



Definition 1.2 (Isomorphism, Endomorphism, Automorphism)

These are as defined in category theory.

Proposition 1.3. f € Hom(V, W) is an isomorphism if and only if it is bijective.

1.1 Constructions

Definition 1.4 (Subspace)

Let V be a F-vector space. Then W C V is a subspace of V, denoted by W <V, if and only if W is a
F-vector space.

Definition 1.5 (Quotient)
Let V be a F-vector space, W < V. Then we have the quotient vector space V/W.

Definition 1.6 (Sum)
Let V be a F-vector space, U; < V. Then we define the subspace

ZU(:{ZU]'ZU/EU/}

Definition 1.7 (Internal direct sum)
Let V be a F-vector space, U, W < V. Then we say V is the internal direct sum of (U)"_,, V = P/, U,

n

if and only if for all v € V, there exists unique u; € U; such that v =3 ", u:.

Proposition 1.8 (Kernels and cokernels). Kernels and cokernels exist in Vectr, and for any linear map
a:V — W, we have the exact sequence.

0 ——— ker(a) % = 1% coker(a) ——— 0

with a injective if and only if ker(a) = 0, a surjective if and only if coker(a) = 0.

Theorem 1.9 (First isomorphism theorem). Any a : V' — W decomposes into

V. ——— V/ker(a) im(a) < W
1.2 Basis and dimension

Definition 1.10 (Finite dimensional)

A F-vector space is finite dimensional if and only if it has a finite basis.



Theorem 1.11 (Steinitz exchange lemma). Let V be a finite dimensional F-vector space, v

,,,,, v linearly
independent, wy, ..., w, spanning set. Then m < n, and up to reordering, v

,,,,, Vi, Wi, ..., W, spans V.
Proof. By induction on m. m = 0 is trivial. Suppose we have v, ..., Vi1, Wi, . ., w, spans V. Then
v € span{v, ..., Vi1, W - - ., w, }, so there exists a;, B; such that
Vi = E ;Vvi + g Biwi
i<m i>m

Since the v; are linearly independent, we must have that some S; is nonzero. Without loss of generality,
Bn # 0. Then we have that

1

Wn =5 [vm—> avi—) Bw
Bm i<m i>m
Sowvy, ..., Vins Winads - - -, w, spans V. Necessarily, n > m. O

Corollary 1.12. For a finite dimensional vector space V, all bases have the same size.

Definition 1.13 (Dimension)

Define dim(V) to be the size of any basis of V.
1.2.1  Constructions

Proposition 1.14. Let U, W < V. Then

dim(U + W) = dim(U) + dim(W) — dim(U N W)

Proof Let vy, ..., v be a basis of UN W. Extend to bases vq, ..., Vi, U1, ..., u, and vy, ..., Vi, W1, ..., wy of
U, W respectively. Then vy, ..., Vi, U1y Up, W1, ..., Wy is a basis for U + W. O

Lemma 1.15. The following are equivalent.

1.
Y- v

2. For all

vin[> V| =0

JF
3. For any basis B; of Vi, B =1, B; is a basis for ), V,

Corollary 1.16.

dtm(@w

= dim(V))



Proposition 1.17. Let U < V. Then

dim(V/U) = dim(V) — dim(U)

Proof Let uq, ..., u, be a basis for U. Extend to a basis uy, ..., Up V1, ..., v, for V. Thenvi + U, .. ., Vo + U
is a basis for V/U. O

1.2.2 Extensionality

Lemma 1.18. Let V, W be F-vector space, B a basis for V. Then any o : B — W can be extended
uniquely to a linear map V — W.

Theorem 1.19. If V is a F-vector space, dim(V) = n, then V' is isomorphic to F".

Proof. Map basis elements to basis elements. O
Lemma 1.20. If o : V — W is an isomorphism, v;, .. ., vy is a basis for V, then a(w), ..., a(vp) is a basis
for W.

Corollary 1.21. Two finite dimensional F-vector space are isomorphic if and only if they have the same
dimension.

1.2.3 Rank-nullity

Definition 1.22 (Rank, nullity)
Let a: V — W be a linear map. Then

rank(a) = dim(im(a)) and null(a) = dim(ker(a))

Theorem 1.23 (Rank-nullity). Let a : V — W, V finite dimensional. Then

dim(U) = rank(a) + null(a)

Proof. Follows from first isomorphism theorem. O

Corollary 1.24. Let V, W be finite dimensional F-vector space, with dim(V) = dim(U). Then «a is injective
if and only if it is surjective.

1.3 Dual space

Definition 1.25 (Dual space)
Let V be an F-vector space. Then we define the dual of V is the F-vector space

V* = Hom(V, F)



Definition 1.26 (Dual basis)
Let V be an fd. F-vector space. Say eq, ..., e, be a basis for V, then we define the dual basis by

ei(ej) = 0y

Corollary 1.27. If V is finite dimensional, then V = V*.

Definition 1.28 (Annihilitor)
If U <V, define the annihilitor of U by

U° = Ann(U) = {a € V*: a(U) = 0} < V*

Proposition 1.29. Suppose V' is finite dimensional, U < V, then

dim(V) = dim(U) + dim(Ann(U))

Proof Let uq, ..., U, be a basis for U, extend to a basis uy, ..., Up V1, -, v, of V. Let g, ..., Em &L
be the dual basis for V*. Then vy, ..., Uy, is a basis for U, and &, .. ., &, is a basis for Ann(U).

Definition 1.30 (Dual map)
Let a: V — W. Then we have the dual

a W= v*

by functoriality of the hom functor.

Lemma 1.31. Let a: V — W. Then

ker(a®) = Ann(im(a))

Lemma 1.32. Let a: V — W. Then

Im(a*) < Ann(ker(a))

Furthermore, if V, W are finite dimensional, then equality holds, and a* is surjective if and only if o
is injective.

1.3.1 Double dual

Definition 1.33 (Double dual)
Let V be an F-vector space. Then we define the double dual of V' to be

VA = (\/*)*



Definition 1.34 (Canonical embedding)
Fix ve V. Define I : V¥ — F by

Theorem 1.35. v — ¥ is an isomorphism.

Lemma 1.36. Let V be a finite dimensional F-vector space. Then

A

U=U={0:ue U} =Ann(Ann(U))

Lemma 1.37. Let V be a finite dimensional F-vector space. U, W < V. Then

Ann(U + W) = Ann(U) N Ann(W) and  Ann(U N W) = Ann(U) + Ann(W)

2 Matrices

Definition 2.1 (Matrix)
Let R be a ring. Then the set of m x n R-matrices is denoted by

Mat ;. n(R)
Definition 2.2 (Representation of a linear map)
Let a: V — W be a linear map, B = (v, ..., vy) be a basis for V, C = (wq, ..., wy,) be a basis for W.
Then define
lalg.c = (ai)

where a(vj) =) ; ajw;.

Lemma 2.3. Fix bases B, C of V, W respectively, with dim(V) = n, dim(W) = m. Then

a+— [a]B,C

is an isomorphism Hom(V, W) = Mat,, »(F)

Lemma 2.4.



commutes.

2.1 Change of basis

Definition 2.5 (Change of basis matrix)
Let B, B’ be bases for V. The change of basis matrix from B to B’ is

P == [‘Ld}B’,B

Proposition 2.6.
[als . = [id]c,clals clid]s .5

or in matrix form,

A =Q AP

Definition 2.7 (Equivalent matrices)

A, B are equivalent if there exists invertible matrices P, Q such that

A=0Q7'BP

Proposition 2.8. Let V, W be fd, a: V — W. Then we have bases B, C of V, W respectively such that

where r = rank(a).

Proof. Extend bases of kernel and image respectively.

Definition 2.9 (Column, row rank)

The column (resp. row) rank of a matrix A is the dimension of the span of the columns (resp. rows) of A.
Proposition 2.10. Column rank of [a]z ¢ = rank(a)
Proposition 2.11. Two matrices are equivalent if and only if they have the same column rank.

Theorem 2.12. Column rank = row rank

Proof o
_ N r
A—0 ( 4L )p

Taking the transpose gives the required result.



Definition 2.13 (Similar, conjugate)

Two matrices A, B are similar, or conjugate if there is an invertible matrix P such that

B =P AP

Proposition 2.14.
[al5.c = [a"]c-.5

Proposition 2.15. Let B, C be bases for V, P the change of basis matrix from B to C. Then the change
of basis matrix from C* to B* is (P~")T

2.2 Elementary operations

Definition 2.16 (Elementary operations)

The elementary column (row) operations are
e Swap column (row) i and ;.
e Replace column (row) i with Ax column (row) i.

e Add Ax column (row) j to column (row) i.

Definition 2.17 (Elementary matrix)

For each elementary operation, let £ be the result of performing the operation on the identity matrix. Then
E is called an elementary matrix.

Proposition 2.18. Each column (row) operation corresponds to right (left) multiplication by the corre-
sponding elementary matrix.

Corollary 2.19. Every matrix is equivalent to ( g 8 )

Proof. By elementary operations. O

Proposition 2.20. If A is a square invertible matrix, then we can obtain /, by column (row) operations
only.

Proof. By recursion. Suppose after the k-th step we have

A(k)z ( /k O )

* *

We must have some j > k such that ax41,; # 0. By column operations, without loss of generality j = kK +1,
axs1,; = 1. Then we can use this to clear out the rest of the k + 1-th row. The result is



AR+ ( liy1 | O )

* *

Corollary 2.21. Any invertible square matrix is a product of elementary matrices.

2.3 Trace

Definition 2.22 (Trace)
For a square matrix A, define the trace

Proposition 2.23.
tr(AB) = tr(BA)

Proposition 2.24. If A, B similar, then tr(A) = tr(B).

Proposition 2.25.

Definition 2.26 (Trace of an endomorphism)
For a € End(V), define tr(a) = tr([a]g 5) for any basis B.

Proposition 2.27.

3 Determinant

Definition 3.1 (Determinant)
Let A € Mat,(F). Define

det(A) = > sign(0)A(i)1 - As(n.n

geS,

Lemma 3.2. If Ais a (strict) upper triangular matrix, that is a;; = 0 for i > j, then det(A) = tr(A).

Proof. The only nonzero term in the sum is ¢ = id.



Lemma 3.3.
det(A) = det(A")

Definition 3.4 (Volume form)
A volume form d on F" is a multilinear map d : (F")” — F such that

if v, = v; for some i # f]

9So d is alternating

Proposition 3.5. det as a function on the columns of a matrix, is a volume form.

Lemma 3.6. Let d be a volume form, 0 € S,,. Then

Proof. Suffices to consider a transposition (ij) since S, is generated by transpositions. Expanding the right
hand side of

gives the required result. O

Theorem 3.7. Let d be a volume form, A be a matrix, let AY be the columns of A. Then we have that

and the volume form term forces i1, ..., i,=1..., n, so we are summing over permutations, which gives
the result required. O
Lemma 3.8.

det(AB) = det(A) det(B)

Proof. Define the volume form dx by

da(vy, ..., vp) = det(Avq, .. ., Av,)
Then

det(AB) = da(BY, ..., B™Y = dales, ..., e,) det(B) = det(A) det(B)

10



Definition 3.9 (Singular)
A square matrix A is singular if det(A) = 0, and it is nonsingular if det(A) <+ 0.

Theorem 3.10. Let A € Mat,(F). Then the following are equivalent.
(i) A is invertible.

(i) A is nonsingular.

(iit) rank(A) = n.

Proof. (i) and (iii) are equivalent by rank-nullity. Suppose A is invertible. Then 1 = det(A)det(A’1), so
det(A) #+ 0. Finally, suppose rank(A) < n. Then (Ay, ..., Ap) s linearly dependent. So det(A) = 0. O

Definition 3.11 (Determinant of an endomorphism)
For a:V — V, define
det(a) = det([a]p)

for any basis B of V.

Lemma 3.12 (Determinant in block matrix form). Suppose A € M (F), B € Mi(F), C € M (F), and

- (344)

Then det(M) = det(A) det(B).

Proof.

n

det(M) = Z sign(o) |_| M(i),i

geS, i=1

For this to be nonzero, we must have that o(j) < k for j < k. So 0 = 0102, where gy is a permutation of
1,..., k, and o, is a permutation of kK +1, ..., n. Splitting the sum and products gives the required result. [

Corollary 3.13. If

Then det(A) = Ay - - - A,

Definition 3.14 (Minors)
Let A be a matrix, let Ag; be A with the i-th row and j-th column removed. Then define the (i, j) minor to
be det(A;).

i



Lemma 3.15 (Column/row expansion).

n

det(A) = Y (=1)™A,; det(Ar; Z 1) det(Ar)

i=1 j=1

Definition 3.16 (Adjugate)
Define the adjugate matrix of A € Mat,(F) by

(Adj(A)y; = (=) det(Aﬁ)

Proposition 3.17. ‘ ’
(Adj(A));.i = det(A", .., A=Y o AUFD Alm)

Theorem 3.18.

Proof. Compute each entry of Adj(A)A.

4 Eigenvectors and Eigenvalues

Definition 4.1 (Eigenvector, eigenvalue)

Let a € End(V), A€ F, v € V0. Then v is an eigenvector with eigenvalue A if

a(v) = Av

Definition 4.2 (Eigenspace)
For an eignevalue A, the eigenspace is

Vi={alv)=Av:ve V}<V

Lemma 4.3. A is an eigenvalue if and only if det(a — Aid) = 0.

Definition 4.4 (Characteristic polynomial)

For a € End(V), the characteristic polynomial of « is

Xalt) = det(a — tid)

Definition 4.5 (Triangulable)

Let o € End(V). Then « is triangulable if there exists a basis B such that [a|s is upper trianqular. That
is,

12



Theorem 4.6. a € End(V) is triangulable if and only if x, can be written as a product of linear factors.

Proof. Suppose a is triangulable. Then we have that

)\1 *
[als = :
0 A
which means that y,(t) = det(a — Aid) = [ ](A — A).
Now suppose o is a product of linear factors. By induction on n. If n =1, it is trivial. On the other

hand, suppose A is a root of y,. Then let vy,.. ., v; be a basis of the eigenspace V). Complete this to a basis
B=(w,..., Vi vy) of V. Then

lals = ( /\ék z )

By computing the characteristic polynomial of this matrix, we find that

xalt) = (A= 1) xc(1)

which means that x¢ is also a product of linear factors, and in a suitable basis is upper triangular. O

Lemma 4.7. Suppose a € End(V), where £ =R or C. Then say
Xalt) = (=1)"t" + cprt" 4+ -+
Then ¢y = det(a) and c,_1 = (—=1)""" tr(a).
Proof. Since Mat,(R) is a subring of Mat,(C), without loss of generality assume F = C.

co = x«(0) = det(a)

and «a is triangulable over C, so we have that

ar —t *
Xa(t) = det :
0 a, —t
and ¢, = (=" Nay + - +a,) = (—=1)"""tr(a). O
Definition 4.8 (Projection)
For each j, let
t—A

be the j-th Lagrange basis polynomial. Then g;(A;) = d;;. Let I'1; = g;(a) be the projection operator
onto V).

13



Lemma 4.9. Let @ € End(V), and Aq, ..., Ak be distinct eigenvalues. Then

Proof Let v € V,, N (3_;», Vi) From v € V;,, we have that [j(v) = v. On the other hand, for i > 2, for any
w; € V), we have that 1;(w;) = 0. So v = 0. Thus the intersection is trivial and the sum is direct. O

Theorem 4.10 (Diagonalisability criterion). Let o € End(V). Then « is diagonalisable if and only if there
exists p € F[t] such that p is a product of distinct linear factors, and p(a) = 0.

Proof. Suppose « is diagonalisable, with A, ..., Ak being the distinct eigenvalues. Then p(t) = |_|L-k:7(t —A)
works.

Conversely, suppose such a p exists. Let Ay, ..., Ak be the roots of p. Then note that these must be the
eigenvalues of a. Let V), be the eigenspaces. Suffices to show that V' =) .V}, since the sum will be direct,
and by considering a basis for each eigenspace we get the required result.

Note that by construction, Z/- I; = id, so for any vector v € V, we have that

v=> M=) gy
J j
Then
(a = A;id)(g (a)(v)) =
So IM(v) € Vj, and V is a sum of the V. O

Theorem 4.11 (Simultaneous diagonalization). Let a, 8 € End(V) be diagonalisable. Then we have a
basis B such that a, B are both diagonal if and only if af = Be.

Proof. If such a basis exists, then diagonal matrices commute. On the other hand, suppose a and 8 commute.
We have that

k
V = Z V), where A; eigenvalues of a
i=1

Then for v € V), aB(v) = Ba(v) = B(Aiv) = AB(v). So (a — Aid)(B(v)) = 0, and B(v) € Vj,. This means
that for each A; we have an endomorphism §; = B[y, € End(V},).

Since B diagonalisable, we have p € FJt] such that p(B) = 0, p product of distinct linear factors. Then for
each i, we have that p(B;) = p(B) = 0, so each B; is diagonalisable. Let 5; be a basis of V), such that (5;)s, is
diagonal. Then B = By U --- U By works. O]

4.1 Minimal polynomial

Definition 4.12 (Minimal polynomial)

Let V be a finite dimensional F-vector space, a € End(V). The minimal polynomial of & is m(t), which
is the minimum degree (non-zero) polynomial such that m,(a) = 0.

Lemma 4.13. Let @ € End(V). Then p(a) =0 if and only if m, | p.

14



Proof <= is obvious. Suppose p(a) = 0. Then we have that deg(p) > deg(m,), and we have that p = gm,+r,
with deg(r) < deg(mg). By minimality of deg(mg), we must have r = 0. O

Corollary 4.14. Minimum polynomial is unique up to a constant.

Theorem 4.15 (Cayley-Hamilton).
Xal@) =0

Remark 4.16. In the following proof, we will need to take the determinant and adjugate of matrices defined over
general rings, and not just fields. This is well defined, and the same formulae will work. Furthermore, we will use
the isomorphism Mat, (F[t]) = (Mat,(F))[t] throughout the proof without explicitly mentioning it.

Proof. Let A € Mat,(F), det(tid —A) = (—=1)"xa(t) = t" + ap1t"" + -+ + ap. Let B = tid—A € Mat,(F|t)).
Then we have that

Adi(B) = By1t"™" + -+ Byt + By € (Mat, (F))[1]
Then note that

(tid—A)By1t"" + -+ Byt + By) = (tid —A) Adj(B) = BAdj(B) = det(B)id = (" + ap_1t"" + - + ag) id

Equating coefficients, we have that

B,.1=1id B, —AB,_4 = a,_411d, ..., —ABy = agid
Rearranging, we find that

A'By1 =A"AT'B, 5, —A'B,_q = a, A", ., —ABy = agid

Summing these equations, we find that

A"+ a, AT+ 4+ apid=0

Definition 4.17 (Algebraic, geometric multiplicity)

For o € End(V), the algebraic multiplicity is a,, which is the multiplicity of t — A in x4(t). The geometric
multiplicity is g, = dim(V}).

Lemma 4.18.
gy <L a,
Proof Let vy, ..., vg, be a basis for v,. Extend to a basis B = (v, ..., Z vy) for V. Then we have that
[ Aldg, | *
[G]B = ( 0 A )
Then det(a — tid) = (A — )% xa(t), s0 gi | X, and g, < a,. O

Lemma 4.19. Let ¢, be the multiplicity of t — A in m4(t). Then cx < a,.

Proof. By Cayley-Hamilton mg | xq. O

15



Lemma 4.20 (Diagonalisation over C). Let o € End(V/), where V is a finite dimensional C-vector space.
Then the following are equivalent.

(i) a is diagonalisable.
(it) For all eigenvalues A of a, a, = g,.

(iit) For all eigenvalues A of @, ¢, = 1.
Proof. We have already shown that (i) <= (iii). Note that
k
V> @ Vi
i=1
By considering the dimensions, we get that (i) < (ii).

4.2 Jordan normal form

Definition 4.21 (Jordan block)

A 0

jn()‘) =
1
0 A

Definition 4.22 (Jordan normal form)
A matrix A € Mat,(C) is in Jordan normal form if it is a block diagonal matrix where each block is a

Jordan block.

Theorem 4.23 (Jordan normal form). Any A € Mat,(C) is similar to a matrix in Jordan normal form, which

is unique up to reordering of the Jordan blocks.
Proof. See GRM.

Proposition 4.24. From the JNF of a matrix, we can find

e a, =) size of blocks with eigenvalue A
e g, = number of blocks with eigenvalue A

e ¢, = size of largest block with eigenvalue A.

Theorem 4.25 (Generalised eigenspace decomposition). Let o € End(V), where V' is a finite dimensional

C-vector space. Define the generalised eigenspace
Vi = ker((a — A;id)9)

Then

16



k
Vi
=1

-

J

Proof. Let pj(t) = [].,(t — A)“. Consider the ideal (p1,..., pr) < C[t]. Since C is a field, C[t] is a PID. So
we have f € C[t] such that (p1, ..., pk) = (f). In this case, since f | p; for all i, we must in fact have f € C*.
So (p1, ..., pk) = (1). This means that we have g, ..., gy such that

qipr+ -+ qepr =1
Define the projection 1; = g;p;(a). Then Z/ [; = id. Furthermore,
(a — A4 W) (V) = (a — A i) g py(a)(v) = gmafa(v)) = O
So [1(v) € Vj, which means that V' =}, V;. Furthermore, note that for i # j, [;[1; = 0, since mq | pip,
which also means that [, = I1;id = [1; Z/ M, = I_I[Z. So [1; idempotent.
This implies that the sum is direct, since if we have v € Vi N (3_,5, Vi). Since v € V4, by construction

M;(v) = 0 for j > 2, which means that [{(v) = v. On the other hand, for w; € V; for i > 2, T'1(w;) = 0 by the
same argument. So v = [4(v) = 0. O

5 Bilinear forms

Definition 5.1 (Bilinear form)

A bilinear form ¢ : U x V' — F is a function which is linear in each of its arguments.

Definition 5.2 (Representation of bilinear forms)
Let B=(w,..., vp) and C = (wy, ..., w,), then

[@lz.c = (¢(v, w,-))[’/_

Lemma 5.3.

d(u, v) = [u]5l]s,clv]c

Definition 5.4 (Left (right) map)
Given a bilinear form ¢ : U x V — F, define ¢, : U — V* by

and define ¢r similarly.

Lemma 5.5. Let B, C be bases for U, V, and B*, C* the dual bases. Let A = [¢]gc. Then [¢p/lg.c- = AT,
and [({bR}C,B* = A

Definition 5.6 (Non-degenerate)
¢ is non-degenerate if ker(¢;) = 0 and ker(¢r) = 0.

17



Lemma 5.7. ¢ is non-degenerate if and only if A is invertible, and dim(U) = dim(V).

Proof. By rank-nullity.

Corollary 5.8. If dimU = dim V, then choosing a non-degenerate bilinear form ¢ : U x V. — F is
equivalent to choosing an isomorphism ¢, : U — V*.

Definition 5.9 (Orthogonal)
For T C U, define

Ti={ve Vig(t,v)=0vte T}
and for S C V, define

LS={uecU: ¢u,s) =0Vs e S}

Proposition 5.10 (Change of basis). Let B, B’ be bases for U, C, C’ bases for V. Then P, Q be the
respective change of bases matrices. Then

(¢l = P'[¢l5,cO

Definition 5.11 (Rank)

The rank of a bilinear form ¢ is the rank of any matrix representing it.

Definition 5.12 (Congruent)
A, B € Mat,(F) are congruent if there exists P &€ Mat,(F) invertible such that
A= P'BP
5.1 Symmetric bilinear forms

Definition 5.13 (Symmetric)
A bilinear form ¢ : V x V — F is symmetric if ¢(u, v) = ¢(v, u).

Proposition 5.14. ¢ is symmetric if and only if for any basis B, [¢]s is symmetric.

Proposition 5.15. [¢] is diagonal only if ¢ is symmetric.

Definition 5.16 (Quadratic form)
A map Q:V — F is a quadratic form if there exists a bilinear form ¢ such that Q(v) = ¢(v, v).

18



Remark 5.17. The matrix representing a quadratic form with respect to a given basis need not be unique. If A is one,
then so is 3(A +ATE|

“This is the symmetric part of A.

Proposition 5.18 (Polarisation identity). If ¢ is a symmetric bilinear form, Q(v) = ¢(v, v) a quadratic form,
then

$lu.) = 2 (0lu -+ ) — (Olu) + OW)

Proposition 5.19. If Q : V — F is a quadratic form, then there exists a unique symmetric bilinear form
¢:V xV — F such that Q(v) = ¢(v, v).

Proof. Follows by the polarisation identity. O

Theorem 5.20 (Diagonalisation of symmetric bilinear forms). Let ¢ : V x V — F be a symmetric bilinear
form, with dim(V) = n. Then there exists a basis B for V' such that [¢] is diagonal.

Proof. By induction on n. n =1 is trivial. If ¢(u, u) = 0 for all u, then by the polarisation identity ¢ = 0. So
if ¢ is nonzero, then there must be eq such that ¢(eq, e1) # 0.

Let U = (span{e})* = {v € V : ¢(e1,v) = 0} = ker(p(eq,-)). Then V = spane; @ U, which means
that dim(U) = n — 1. By the induction hypothesis, we can choose a basis ey, ..., e, for U such that ¢|yxy :
Ux U — F is diagonal. Then eq, ..., e, is a basis for V such that ¢ is diagonal. O

Corollary 5.21. Over an algebraically closed field F (e.g. C), we have a basis for V' such that

4= (1]

where r = rank(¢).

Proof. By rescaling and reordering the basis elements. O

Corollary 5.22. Over R, we have a basis for V such that

L1 0 ]0
[¢]={ 0] —/lg |0
0| 0 |0
where p, g >0, p + g = rank(¢).
Proof Rescale and reorder the basis elements. O

5.2 Sylvester's law of inertia

Theorem 5.23 (Sylvester’s law of inertia). Suppose we have that

19



L] 0 |0 Iy 0
[pg=1| 0] -/ |0 and [¢lg=| 0] —Iy |0
0] 0 |0 0 0

Then p=p/, g=4q".

Remark 5.24. In the course we use positive definite to mean ¢(u, u) > 0, and positive semidefinite to mean ¢(u, u) > 0

Proof. Suffices to show p > p’ by symmetry. Furthermore, the argument for p and g are similar so we only
prove one case.

Let U < V be any subspace such that ¢|yxy is positive definite. Let B = (v, ..., Vo, oo, Votg: - vp). Let
W = span{vp41, ..., vp}. Then ¢ is negative semidefinite on W, so UN W = 0. This means that

n > dim(U) + dim(W) = dim(U) + (n — p) = p > dim(V)
Let B = (v, ..., Vi, Vosgls - vy). Then setting U = span{v], ..., v,} we get that p > p’. O

Definition 5.25 (Signature)

For a symmetric bilinear form ¢ : V x V — R, define the signature to be

S(¢)=p—gq

Definition 5.26 (Kernel)

For a symmetric bilinear form ¢, define the kernel

ker(¢) ={ve V:Vue U, ¢u,v)=0}

Lemma 5.27 (Rank-nullity).
dim(ker(¢)) + rank(¢) =0

Proposition 5.28. There exists a subspace T such that

¢lr=0 and dim(T)=n—(p+ qg)+ min(p, q)

Proof. Suppose B = (v, ..., 7 Votgs - vp) is a basis which makes ¢ into the form in Sylvester's law of
inertia. Without loss of generality, assume p > g. Then T = span{v; + Vit Vgt Vpags Vorgets - - Vo }
works. O

Proposition 5.29. dim(7T) in the previous proposition is maximal.

5.3 Sesquilinear forms

Definition 5.30 (Sesquilinear form)

Let V, W be C-vector space. Then ¢ : V x W — C is a sesquilinear form if ¢(-, w) is linear, and ¢(v, -)
is conjugate linear.
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Definition 5.31 (Representation of a sesquilinear form)
Llet B=(vy,..., vp) and C = (wyq, ..., w,), then

Lemma 5.32. .
¢(v, w) = [u]3[@lsc[Vlc

Definition 5.33 (Change of basis)

(¢l = P'[¢ls.cO

Definition 5.34 (Hermitian)
Let ¢ : V x V — C be a sesquilinear form. Then ¢ is Hermitian if ¢(u, v) = ¢(v, u).

Proposition 5.35. For a Hermitian form ¢, ¢(u, u) is real.

Remark 5.36. This means that we can refer to positive/negative (semi)definite Hermitian forms.

Lemma 5.37. ¢ is Hermitian if and only if for any basis B, we have that

[¢lz = [¢]5

Lemma 5.38 (Polarisation). Let ¢ : V' x V — C be sesquilinear, Q(v) = ¢(v, v). Then

=

$lu.v) = 7 (Qlu+v) — Qlu—v)) + %(Q(U + iv) = Qu = iv))

Theorem 5.39 (Sylvester's law of inertia). Let ¢ be a Hermitian form. Then we have a basis such that

L] 0 |0
[¢l=1 0]~/ |0
0] 0 |0

Furthermore, p, g are independent of the choice of basis.

Proof. Existence and uniqueness follows from similar proofs for the real case.

5.4 Skew-symmetric bilinear forms

Definition 5.40 (Skew-symmetric)
Let ¢ : V x V — R be a bilinear form. Then it is skew-symmetric if ¢(u, v) = —¢(v, u).
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Proposition 5.41. ¢(u, u) = 0.

Proposition 5.42.
(¢l = —[)5

Proposition 5.43. Every square matrix is the sum of a symmetric and an antisymmetric matrix.

Proof : ’
_ ! T LA T
A= (A+AT) +5(A=AT)

Theorem 5.44 (Sylvester's law of inertia). Let ¢ be a skew-symmetric form. Then we have a basis
B=(vww,. .., Vins Win, U2mats - - - up) such that

T

[9ls = where T—(_O1 2))

Proof. By induction on dim(V). If ¢ = 0 then we are done. Otherwise, we have vy, wy such that ¢(v1, wq) # 0.
By rescaling, ¢(vi, wq) =1 and ¢(wq, v1) = —1. Then let U = span {vy, wq}, and define

W={veV:pwv) =dw,v)=0}
Then V=Ugq W. O

Corollary 5.45. The rank of a skew-symmetric form is even.

6 Inner product spaces

Definition 6.1 (Inner product)

Let V' be a vector space over C, an inner product on V' is a positive definite Hermitian form ¢ on V.

Remark 6.2. For real vector spaces, we have symmetric bilinear forms instead. However, most of the time we won't
have to worry about the difference.

Remark 6.3. We write (u, v) = ¢(u, v) to denote the inner product of u and v.

Theorem 6.4 (Cauchy-Schwarz inequality).

[{u, v)| < lluliiivll
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Corollary 6.5 (Triangle inequality).
Hu +vIE < Hull + vl
6.1 Orthogonality

Definition 6.6 (Orthogonal)
Aset {e, ..., e} of vectors are orthogonal if i # j = (e;, e;) = 0.

Definition 6.7 (Orthonormal)

Aset {er, ..., er} of vectors is orthonormal if <el~, e/> = 0.
Lemma 6.8. A set of orthogonal nonzero vectors is linearly independent.

Lemma 6.9 (Parseval). If eq, ..., e, is an orthonormal basis, then

n
(u,v) = Z uiv;
i=1

Theorem 6.10 (Gram-Schmidt orthogonalisation). Let V' be an inner product space, v; (i € | C N) be a
collection of linearly independent vectors. Then there exists e; orthonormal such that for all k,

span{eq, ..., ex} =span{vy, ..., v }

Proof Define e = \/1/Hv1 || and

k

Uk+1 = V41 — § <Vk+1, €i> €
i=1

and e = Ut /||ugs -

Corollary 6.11. Any finite dimensional inner product space has an orthonormal basis.

Definition 6.12 (Orthogonal matrix)
A € Mat,(R) is orthogonal if ATA = id.

Proposition 6.13 (QOR decomposition). Let A € Mat,(R) be nonsingular. Then Q can be written uniquely
as

A=0R
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where Q orthogonal, R upper triangular. If A € Mat,(C), then O can be chosen to be unitary.

Proof. Gram-Schmidt on the columns of A. Or see IB Numerical Analysis for more computationally stable
methods. o

Definition 6.14 (Orthogonal direct sum)

1
Let V4, Vo < V. Then we say that V is the orthogonal direct sum of V4, V5, written V = Vi @ V5, if
V=VieV,andforall vy € Vi, v, € V5, (v, nn) = 0.

Definition 6.15 (Orthogonal)
For U <V, define

Ut={veV:{(uv)y=0}<V

Proposition 6.16.

Definition 6.17 (Projection)
Suppose V' = U @& W. Then define the projection onto W by I1:V — Wbyv=u+w— w.

Remark 6.18. In general, ['1 depends on U. However, we usually take U = W,

Lemma 6.19. Let W <V, eq,..., e, be a basis for W, I1 projection onto W. Then

k
M(v) = Z (v, e)e

i=1

Proposition 6.20 (Least squares). Forallve V, w e W,

v = 1) < v —wil
with equality holding if and only if w = T1(v).

6.2 Adjoint

Proposition 6.21. Let a: V — W be a linear map. Then there is a unique linear map a* : W — V such
that

(a(v), w) = (v, a*(w))

Moreover, if B, C are orthonormal bases of V, W respectively, then

[a*)c.s = [alf ¢

24



Definition 6.22 (Adjoint)

Define a* to be the adjoint of a.

Proposition 6.23. By identifying V = V* and W = W*, the dual and adjoint are the same maps.

Definition 6.24 (Self adjoint)
Let @ € End(V). Then if a* = a, we say a is self adjoint.

Proposition 6.25. a self-adjoint if and only if (a(u), v) = (u, a(v)).

Proposition 6.26. If £ = R, then self adjoint is equivalent to symmetric. If F = C, then self adjoint is
equivalent to Hermitian.

Definition 6.27 (Isometry)

Let a: V. — W. If {(a(v), a(w)) = (v, w), then we say «a is an isometry.

Proposition 6.28. a is an isometry if and only if o* = a~".

Proposition 6.29. For endomorphisms over R, isometry is equivalent to orthogonal. For endomorphisms
over C, isometry is equivalent to unitary.

6.3 Spectral theory

Lemma 6.30. Let a € End(V) be self adjoint. Then all eigenvalues of a are real, and eigenvectors with
distinct eigenvalues are orthogonal.

Theorem 6.31. Let o € End(V) be self adjoint. Then V has an orthonormal basis of eigenvectors.

Proof. By induction on n = dim(V). n =1 is trivial. By FTA, x, has a root over C. Since «a is self adjoint, the
root is real. Let A € R, and let v be an eigenvector with eigenvalue A and norm 1. Let U = (span {v})*. Then
we have that a|y : U — U is a self-adjoint endomorphism. O

Corollary 6.32. All self adjoint operators are diagonalisable by unitary operators.

Corollary 6.33. V is a direct sum of the eigenspaces.
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Proposition 6.34. Let V' be a complex inner product space, a € End(V) isometry (unitary). Then all
eigenvalues of a have modulus 1, and eigenvectors with distinct eigenvalues are orthogonal.

Theorem 6.35. Let V' be a complex inner product space, a € End(V) isometry (unitary). Then V has an
orthonormal basis of eigenvectors.

Proof. By induction as for self-adjoint maps.

Proposition 6.36. A symmetric (Hermitian) matrix is diagonalisable by an orthogonal (unitary) matrix.
Proof. Matrix with eigenvectors as columns.

Proposition 6.37. Let ¢ be a symmetric (Hermitian) form, then there is an orthonormal basis of V' such
that ¢ is diagonal.

Proof. Basis of eigenvectors.

Remark 6.38. The diagonal entries are the eigenvalues. Furthermore, S(¢) = p—g, where p is the number of positive
eigenvalues and g is the number of negative eigenvalues.

Proposition 6.39 (Simultaneous diagonalisation). Let ¢, ¢ be symmetric (Hermitian) forms, ¢ is positive
definite. Then there exists a basis of V such that ¢, ¢ are diagonal.

Proof. (V, ¢) is an inner product space. So we have an orthonormal basis of (V, ¢) such that ¢ is diagonal.
Furthermore, [¢] = id. O

Proposition 6.40 (Simultaneous diagonalisation of matrices). Ley A, B be square symmetric (Hermitian)
matrices, A positive definite. Then there exists Q € Mat,(R) (Q in Mat,(C)) invertible such that

Q'AQ (0'AQ) and Q'BO (Q'BO)

are diagonal.

Proof ¢(u,v) = u'Av is a positive symmetric (Hermitian) form, so apply previous result.
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