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1 Definitions

In this course, let / be a finite or countable set. The random variables will be defined in some probability space
Q,F,P).

Definition 1.1 (Markov Chain)

A stochastic process (X;),>0 is @ Markov chain if for all n >0, and xo, . .., Xpe1 € 1, we have that

]P(Xn+1 = Xp+1 | Xp = Xp, ..., Xo = XO) = P(Xn+1 = Xp+1 | Xy = Xn)

Definition 1.2 (Time homogeneous Markov chains)

If P(X,11 =y | X, = x) is independent of n, then X is called time homogeneous. Otherwise it is called
time inhomogeous.

Remark 1.3. In this course, we will only study time homogeneous Markov chains.

Definition 1.4 (Transition matrix)

The matrix P given by



Py =Pli, ) =PXi =j| Xo = i)

s known as the transition matrix of the Markov chain X.

Remark 1.5. P is a stochastic matrix, that is, the sum of each row is

Y Pli)=) PXi=j|Xo=10)=1

jel jel

In particular, this means that 1 is always an eigenvalue of P, with eigenvector (1, ..., 1)T4

Definition 1.6 (Markov Distribution)

We say that X ~ Markov(A, P) if A(x) = P(Xp = x) is a probability distribution on /, and P is the transition
matrix of X.

Theorem 1.7. A stochastic process X is Markov(A, P) if and only if for all n >0, xo, ..., x, € I, we have
that

PXo=xp,..., X = xp) = Ax0)P(x0, x1) - - - P(Xa—1, Xp)
Proof. For ( = ), condition and use Markov property. For ( <), induct on n. O

2 Simple Markov Property

Definition 2.1 (0-mass)
For i € /, define the probability mass function o; on / by

5 — 1 ifi=j
Y10 otherwise

Theorem 2.2 (Simple Markov Property). Suppose X ~ Markov(A, P). Fix m € N and i € /. Then
conditional on X, = i, the process (Xu+n)n>0 is Markov(d;, P), and independent of Xy, .. ., Xp.

Proof First, we need to show that it is a Markov chain. We use theorem |17| By the law of total probability,
we have that

Thus, the conditional probability is



IP)(Xm =Xms-- - Xm+n = Xm+n. Xn = [)

P(Xm =Xm,-- - Xm+n = Xm+n | Xp = i)

P(Xm = [)
_ 5£x,,,P(Xm =Xm,- - Xm+n = Xm+n)
IF)(Xm = i)
_ é[x,,,P(Xm = Xm)P(Xm: Xm+1) Co P(Xm+/7f1 ) Xm+n)
P(Xy, = i)

= 5ix,7,P(Xm: Xm+1) o P(Xln+l771 ) Xm+n)

and this shows that (Xj,1,), is Markov(o;, P). To show that this is independent to X, . . ., X, letm < iy <

]P)(XO = X0, - - Xm = Xnm, Xh = Xiyy - X[k = Xi, ‘ Xm = l)
= PXo=x.... X = X, X[',: Xor:o o X = %) where we assume that x,, = i
P(X, = i)
Ao Ploxa) - Pt xn)POX = xi,0 X, =xi, | X = 1)
P(X, = 1)
= ]P)(XO =X0,---, Xn = Xm | Xn = i)P(Xn1+T = Xm+1,- - Xm+n = Xm+n ‘ Xn = i)
O
3 Eigenvalues of the transition matrix
Notation 3.1. Define the notations
Pi() =P(- | Xo =1
pij(n) = (P");
Theorem 3.2. Suppose X ~ Markov(A, P). Considering X as a row vector, we have that
P(X, = x) = (AP"),
P(X, =y | Xo = x) = (0,P"),
Proof. Expand. O

Suppose P is a k x k matrix, and let Ay, ..., Ax be the eigenvalues. There are three cases.

e If all are real and distinct, then we can diagonalise P = UDU~'. Then P" = UD"U~", and (WLOG)
p11(n) = a1A] + - - + axA] for some ay, ..., ag.

e If A, A; are complex conjugate eigenvalues, say A; = re', then pi1(n) = (terms from other eigenvalues) +
acos(nB) + bsin(n6).

o |f they are not distict, then we can consider the Jordan normal form of P, and we have terms of the form
q(n)A" where g(n) is a polynomial, with degree one less than the algebraic multiplicity of A.

4 Hitting times



Definition 4.1 (Hitting time, hitting probability, mean hitting time)
Let A C /, then the hitting time T4 is a random variable, known as the hitting time of A, defined by

Ta(w) = inf{n > 0: X,(w) € A}
where we take inf @ = co. The hitting probability h* is
' = P(Ts < o)

and the mean hitting time is

KA = E(Ty)

Remark 4.2. The hitting probability and mean hitting time starting at a given state, h* and k* are defined similarly,
by replacing P with P; and E with E,.

Theorem 4.3. Let A C /. Then the vector (h/-4

L

WA 1 fieA
‘ > Pl A

)ies s the minimal nonnegative solution to

Proof First we show that (h?) is a solution. Suppose i € A, then h? = 1. Now suppose i ¢ A Then we can
write

n=0

=Y Pi(XodA. ., w1 & A X, €A
n=1

=Y Y PXodA. X EAX EAXI =] X =i (i)
n=1 jel

Z (X1EA X1—j|X0—L +ZZPX1€EA ,,,,, Xn_1$A,XnEA,X1:j|X0:[)
jel n=2 jel

=> P )PX €A Xy =), Xo = i)+
j
ZPU’/)ZP(X1 QA ~~~~~ anﬂ $A,Xn€A|X()=l,X1 =j) (lL)
1 n=2

/
=Y P j)PXo € A| Xo =) +ZP1/ZPX0$A ..... Xo 2 @ A Xy1 €A Xy =)
J

J n=2
(iid)

]

=Y P(i.j)) _P{Ta=n)
J n=0

P(i, j)P(Ta < 00)

\.M \.M

P(i, j)h!

Where for (i) we used the law of total probability, for (ii) we used properties of conditional probability, and
for (iit) we used the Markov property.



Now we will show that h* minimal. For i € A this clearly holds. Now fix i & A, and suppose x; is another
solution to the equations. Then

xi=> Plij)
j
=Y Pl + ) Plijix

HEA J1 A
=Y Pj)+ > P PG+
Ji A Ji €A,/2 A
N
> Pi(Ta=n)
n=1

for all N. Taking the limit N — oo we get the required result.

Theorem 4.4. The vector (k') is the minimal nonnegative solution to

WA 0 ficeA
' T+, Pli )k ifigA

Proof The proof that k' is a solution follows as in the case of the hitting probability. The proof for minimality
follows in a similar fashion, where we use

5 Strong Markov Property

Definition 5.1 (Stopping time)
A stopping time T is a random variable in N U {co}, where for all n € N, the event {T = n} depends
only on Xy, ..., X

Theorem 5.2 (Strong Markov Property). Let X ~ Markov(A, P), and T be a stopping time. Conditional on
T < o0 and X7 = i, we have that the process

(X74m)m>0 ~ Markov(A, P)

and is independent of Xy, .. ., X7.
Proof We want to show that

P(XT =X9, ..., XTan = Xn, (XO ,,,,, XT) =W ‘ T <oo, X7 = [)

= 0;. P(x0, X1) -+ - P(Xn—1, x2)P((X0, - - ., Xr)=w|T < oo, X =1 )

For all xo, ..., xp € 1, and for all w. Suppose T =k, and w = (wyp, .. ., wy) € 151 Then the LHS of ()
becomes

P(Xk = X0, -, Xk+n = Xp, (Xo ,,,,, Xn) = W, T = k,Xk = i) (./:.)




Applying the simple Markov property, we find that

= Oix, P(Xx0, X1) - - P(Xn—1, Xn)

Substituting this into the RHS of (*) and using ¥ we get the required result. O

6 Communicating classes
Definition 6.1 (Leads to, communicates with)

Let X ~ Markov(A, P). Then for x, y € I, we say that x leads to y, x — y if

P,(dn st. X, =y) >0

We say x communicates with y, x < y if x - y and y — x.

Theorem 6.2. The following are equivalent.
) x—y
(i) There exists a sequence x = x, . . ., Xk =y st Plxo, x1) - Plxk—1, xx) > 0.

(ii) There exists n s.t. py,(n) > 0.

Proof. First we show that (i) <= (iii). Consider the events
{Inst X, =y} = UX,, =y

If the LHS has positive probability, so must the RHS for some n. Conversely, if the RHS has a positive
probability for some n, so must the LHS. To show that (ii) <= (iii), we note that

pay(n) = > Plx,x)- Plxo1,y)

X10ey Xp—1

Corollary 6.3. < defines an equivalence relation.

Proof. Reflexivity follows by setting n = 0 in (iii). Symmetry is true by definition. Transitivity follows by
(i). O

Definition 6.4 (Communicating classes)

The equivalence classes of / under «<» are known as communicating classes.

Definition 6.5 (Closed)

A communicating class C is closed if when x € C, x — y, we have that y € C. Equivalently, if x € C
and x — y, then y — x.



Definition 6.6 (Irreducible)

A transition matrix P is irreducible if it has a single communicating class.

Definition 6.7 (Absorbing state)
A state x € [ is called absorbing if {x} is a closed class. Equivalently, there is no y # x st. x — y.

7 Transience and recurrence

Definition 7.1 (Transient)

A state x € [ is transient if

P;(X, = i for infinitely many n) =0
Definition 7.2 (Recurrent)
A state x € [ is recurrent if

P;(X, = i for infinitely many n) =1

Definition 7.3 (Return time)
Define the r-th return time inductively by

70 _
T —inf{n > TV +1: X, = i}

a

and we write T; = T[m for the first return time.

Definition 7.4 (Return probability)
The probability that the Markov chain will return to the state i is

Definition 7.5 (Visits)
The number of visits by the Markov chain to the state i is

v[:ilux,]:i)

i=0

Lemma 7.6. P;(V; > r) = f/ forall r € N.

Proof. By induction on r. The case r = 0 is true by definition as V; > 1. Now suppose it holds for r. Then



PV, > r+1) = P(T"" < o0)
=T < oo | T < co)Pi(T" < 00)
=P(T{""! <oo | T < oo)f]
=Pi(T; < o0)ff by Strong Markov on the stopping time 7—‘_<r)
— frt

Theorem 7.7. Let X ~ Markov(A, P), i € I. Then we have that

1. If fi =1, then i is recurrent, and Y 77 pii(n) = oo

2. If fi < 1, then i is transient, and ) 7, pii(n) < oo

Proof First, we note that

EdV) =B | 1(X, = i)) =) E(1(X,=0)=) PXo=0=) puln)
n=1 n=1 n=1 n=1

For (i), if fi =1, then for all r, Pi(V; > r) = 1. So Pi(V; = o0) = 1. Hence i is recurrent, and E;(V;) = co.
For (ii), if f; < 1, then V; ~ Geo(f;). This has finite expectation, and P;(V; = co) = 0. So i is transient. [

Theorem 7.8. Let x,y € /, x <> y. Then either x, y are both recurrent, or x, y are both transient.

Proof. Since x < y, we have m, [ st. p,,(m), pyx(l) > 0. Suppose x recurrent. Then we have that
> Puy(n) =) pyyln+m A0 > puDpu(n)pay(m) = pucpay(m) ) padn) = oo

So y is recurrent as well. O

Corollary 7.9. Transience and recurrence is a communicating class property.

Theorem 7.10. Let C be a recurrent communicating class. Then C is closed.

Proof. Suppose not. Then we have x € C,y & C,x — y,y + x. Let m be st. p,,(m) > 0. Since if we ever
reach y we cannot reach x again, we must have that

So x is not recurrent. Contradiction. O

Theorem 7.11. A finite closed class is recurrent.

Proof. Let C be a finite closed class, x € C. Then by (infinite) Pigeonhole, we must have y € C such that

P, (X, = y for infinitely many n) > 0

Since x <> y, there must exist m such that p,(m) > 0. Then



Py (X, = y for infinitely many n) > Py(X,, = x, X, = y for infinitely many n > m)
=P, (X, = y for infinitely many n > m | X, = x)Py(X,, = x)
= P,(X, = y for infinitely many n > m)py(m) by Markov property
>0

Hence y is recurrent, so C is recurrent.

Theorem 7.12. Let P be irreducible and recurrent (ie. the only communicating class is recurrent). Then
for all x, y, P,(7T, < o0) = 1.

Proof. Let m be such that p,,(m) > 0. Then we have that

Py (X, = y for infinitely many n) = Z]P’y(Xm = 7z, X,, = y for infinitely many n)

= ZPZ(Xn = y for infinitely many n)p,,(m) by Markov property )

Now we note that

P, (X, = y for infinitely many n) =P, (T, < 0o)P,(X, = y for infinitely many n)

by Strong Markov on the stopping time T,, under the probability measure P,. Substituting into (*), we find
that

1=) Pl < o0)pys(m)
Since ) , py.(m) =1, py(m) >0 and P,(T, < oo) < 1 for all z, we must have that

P (T, < 00) = 1

7.1 Random walks on Z?

Definition 7.13 (Simple Random Walk on Z9)
Define the SRW on Z9 to have the transition matrix

1

Px,x+e)=Px,x—e)= 54

where the e; are the basis vectors for Z?.

Theorem 7.14 (Polya). The simple random walk on Z? is recurrent for d = 1,2, and transient for d > 3.

Here, we will not prove the full theorem. We will prove it for d = 1,2,3. For d > 3, we can embed the
SRW into a SRW on Z?, and the result follows.

Proof (d=1). In this case, P(x,x +1) = P(x,x — 1) = % and we will show that ) poo(n) diverges. In this
case,

0 if n odd
ot = Bl =0 {(%)zm fn—2m



Recall Stirling's Formula, n! ~ n"e™"v2mn as n — oco. Substituting, we find that

w1\
@2m)?me=2m\/4mrm | 1
(mme=m\/2xm)? | 22"
1
Vom
Let ng be st. Vn > ng, poo(2n) > ZTW Then
1
> 2n) >
;POO(”) > n>Zn0 poo(2n) > WZHU SNeal
diverges. O

Remark 7.15. In the asymmetric case,

poo(2n) = (2:) (pq)" ~ A%

So if p # g, then 4pg < 1, and we can upper bound this by a geometric series, so the random walk is transient.

Proof (d = 2). In R?, we can project and get two independent simple random walks. In particular, let

i) = (L] and 100 = 65 %)
1

Claim. X; and X are independent simple random walks on L.

Proof of claim. We can write X, = Y | & where

e ()-(3)-0)-(5)

n 5(1) + 5(2) B n c"((w) _ 5(2)
Xr=Y *—=— and X;=) *——
= V2 - V2

From this we can show it is a simple random walk, and that the two are independent by considering the
cases of &. O

Then we have that

Using the claim,

A
P(Xzy = 0) = P(X,0, X, = 0) = P(X” = O)P(X, = 0) ~

O

Proof (d = 3). In order to return O after 2n steps, we must have travelled i steps along e; and —e, j along e;
and —ey, and k along e3 and —es, where i + j + k = n. Then given i, j, k, we have

0 )
L gk k] ik k!

different paths, each with probability (%)2”. So,

2n 1\ (2n\ 1 n o\’ 1
2n) = — — _ _
poi2e = ) (i.i.f.f,k,k) (6) (n)zzﬂ 2 (i.f,k) 3

i+j+k=n i+j+k=n

10



Claim.

n 1
> (z,j,/<)3n_1

i+j+k=n

Proof of claim. This is the total probability for placing n balls into 3 bins uniformly at random. O

Furthermore, if n = 3m, then we have that

[re) < o)

2n\ 1 n 1 A -
poo(bm) < ( 5 )22n (m,m,m) ETRadrsT by Stirling

So we get that

Note that we can bound poo(6m — 2) and poo(6m — 4) by poo(6m), so Y_, poo(2n) is finite as Y, n=3”
converges. Hence 0 is transient. O

8 Invariant distribution

Definition 8.1 (Invariant, (or Equilibrium, Stationary) distribution)

Let P be a transition matrix. Then a probability distribution s is invariant if 7 = 7P.

Theorem 8.2. If X ~ Markov(rm, P), then X, ~ 7 for all n.

Proof 7wP" = i for all n. ]

Theorem 8.3. Suppose / finite, and there exists i € / such that p;;(n) — 7; as n — oco. Then 7 is an
invariant distribution.

Proof.

S = X i o) = i o) = iy 1 =
] ] /

So 7 is a distribution. Furthermore,

;= lim pj(n)

n—o0

= lim ) puln =PIk, j)
k
=) lim pi(n = 1)P(k.j)
k

=Y mPlk,j)
‘
— (nP),

Remark 8.4. This does not have to be true for / infinite.

i



Remark 8.5. By Perron-Frobenius, an invariant distribution always exists.

Definition 8.6 (Expected visits)
Fix k € I. Then for i € I, define

V(i) = Ey

Te—1
> L, = i))

n=0

That is, the expected number of visits to i during an excursion from k.

Theorem 8.7. If P is irreducible and recurrent, then v, is an invariant measure. That is, v,y = v, P.
Furthermore, vi(k) =1, and 0 < v(i) < oo for all .

Proof. Since P is recurrent, we have that T finite with probability 1, and X7, = Xo = k by definition. So we

have that
.
1(X, =) )

i (X, =i, Te > n)

I
Mg

k(Xn = [r Tk 2 n)

I
LN

= [,X,7,1 :jr Tk 2 n)

MS ul\ﬂg

Z = (| Xoo1 =, T > Pe(Xo1 = j, Te > n)
J

n

Since Ty is a stopping time, {Tx > n} = {Tx < n — 1} only depends on X, ..., X,—1, we have by the
Markov property that

Pk(Xn = | Xn—1 :jy T > I’)) = IEJ>l<(Xn = ‘ Xo—1 :/) = P(/' [)
So

ve(i) = iZP(/’, OPL(Xo—1 =, Te > n)
=1
=Y Py i Xo1 =, Ty > n)
j =1
=Pl i =J, Tk=n)
= iP(j,i)Vk(j) _
j

Thus vk = v P, and v is an invariant measure. It is clear by definition that vi(k) = 1. Since P irreducible,
we must have n such that pg;(n) > 0, and m such that py(m) > 0. then

12



vili) = ) vkl)P" (. ) > vic(k)Pra(n) > O
-

and

T=vilk) =) vil)P" (. k) = vidi)P"(i, k)
J

) 1
So Vk([)gm<00

Theorem 8.8. Let P be irreducible, A be an invariant measure with Ay = 1. Then A > vi. Furthermore, if

P is recurrent, then A = v;.

Proof. Fix i € I. Then A; = Z,‘ AiP(j, i) as A= AP. Thus,

di= Pk, i)+ APl i)

h#Fk
=Pk,)+Y PG+ -+ Y Pliamtjo2)+ Pliz, 1) Pljr. )
jr#k Jtoojn1Fk
+ Y APlnjat) - Pl )Pl )
Jiofntk

Since A is a measure, A, > 0 for all x. So we must have that

A > Pk, i)+ ZP(jw, N+ + Z Pl ja—2) - P2, ) P(jr, 1)
h#k h ----- /ﬁ—W#k

:]Pk(X1 :[,Tk21)+"'+Pk(X,7:(,Tk2n)

=) PuXe=10Ti>0)
=1

=) BXe=iTi >0
=1

= vi(i)

So A; > vi(i) for all i. Now suppose if P is recurrent. Then v is an invariant measure, and so is A — vg.
By irreducibility, we have m such that py(m) > 0. Then

0= —vili) = ) (4 = vilDpjelm) > (A = vic()p(m)
i

So we must have that A; = v (i) for all i.

Remark 8.9. Thus, in the case where P is irreducible and recurrent, all invariant measures are unique up to multi-

plication by a constant.

Remark 8.10. Fix k. If ) . vi(i) < oo, then

Vi (i)

Zj Vi())

g =

is an invariant distribution. Furthermore,

13



Te—1 Te—1
D ovil) =) B[ Lo =))| =Ec| ) ) 1X. =0 |=ET)
J J n=0 n=0 i

=
Thus, if E¢(Tk) is finite, then we can normalise and get an invariant distribution.

Definition 8.11
Let kK € I be recurrent. Then

e k is positive recurrent if E¢(Ty) < oo, and

o k is null recurrent if E¢(T¢) = oo.

Theorem 8.12. Suppose P is irreducible. Then the following are equivalent.

(i) Every state is positive recurrent.
(i) Some state is positive recurrent.

(iit) P has an invariant distribution .

If any of the above hold, then we also have that

Proof. (i) immediately implies (ii). To show that (it) implies (iii), let k be positive recurrent. Then v, is an
tnvariant measure, and

_wli)
Ex(Tk)

is an invariant distribution. To show that (iii) implies (i), let k be any state. In addition, we must have i
such that 7; > 0. By irreducibility, we must have n such that py(n) > 0. Then

TT;

M=y mP"(j, k) > mP"(j, k) >0
J

T
So ¢ > 0 for all k. Define a new measure A; = ==. Then this is an invariant measure, with A, = 1. So
Tk
we get that A > vy, and

BT =Y wl <Y a=y Z—Lco ()

: - : s Tk

So k is positive recurrent. Furthermore, suppose (i), (it) and (iii) hold. Then P is recurrent, and A = v, so
we get equalities in (*), and

Corollary 8.13. If P is irreducible with invariant distribution s, then for all x, y,

14



Ty

vx(y) = JTX

9 Reversability

Theorem 9.1. Suppose X ~ Markov(rr, P), where P is irreducible, and has invariant distribution 7. Fix
N &€ N. Then (Y,)o<n<n defined by Y, = Xn_, is a Markov chain, with transition matrix P given by

N

Pix, y) = %P(w)

Moreover, Pis trreducible, and has invariant distribution .
Proof First we check that P is a stochastic matrix.
Y Py =Y Zppy, g - Ty
g — r(x) ()

Now we show that Y is a Markov chain. Let yo, ..., yn € 1. Then

m(yn)Plyn. yny) - Py, yo)
JT

(yo)Plyo, y1) - Pyn—1, yn)

which shows that Y ~ Markov(, /AD) To show that i is invariant for /5 we have that

Y Pl y) = 5 T 57 i) iy, ) = ()

X X X

and finally to show that P is irreducible, we note that for x,y € I, as P is irreducible we have x =
X0) .., xx = y such that P(xg, x1), . . ., P(x¢—1,x¢) > 0. Then

Plxe, xe_1) - P, xo) = JT(Xo)P(xo,XJT)().(%). P(xk_1, xx) -

So P is irreducible. O

Definition 9.2 (Reversible invariant distribution)

Let X ~ Markov(sr, P). Then the invariant distribution s is called reversible if P=r Equivalently, s
satisfies the detailed balance equations

7(x)Px, y) = 7ly)P(y. x)

forall x,y € I.

Remark 9.3. Equivalently, X is reversible if for all N,

Lemma 9.4. Let P be a transition matrix, y a distribution satisfying the detailed balance equations. Then
i is an invariant distribution.

15



Proof.
> wX)Ply) = u(y)Ply.x) = p(y)

X

10 Convergence to equilibrium

Definition 10.1 (Period)
Let P be a transition matrix, for i € /, let

di =gcd{n >1:P"(i,i) >0}

This is known as the period of i. If d; =0, then i is called aperiodic.

Lemma 10.2. d; =1 if and only if P"(i, i) > O for all n sufficiently large.

Proof. Suppose d; = 1. Let D(i) = {n >1: P"(i, {) > 0}. First, we note that D(i) is closed under addition and
scalar multiplication. Let r = mingn mnepp |m — nl. If r =1 we are done. Suppose if r > 2. Let m, n € D\i)
with n = m + r. Furthermore, as d; = 1 we must also have k such that kK = fr + s with 0 < s < r. Let
a=(@+1)nand b= (¢+1)m+ k, we have that a and b are in Dji), with

O<a—b=r—s<r

Contradiction as r minimal. So D(i) contains consecutive integers ny, ny + 1. Then for n > n%, n € D(i).
Converse is clear. O

Lemma 10.3. Let P be irreducible, and i is aperiodic. Then j is aperiodic.

Proof. We have n, m such that P"(i, j), P"(j, i) > 0. Then

Pn+m+r(j’j) > Pm(j, [)Pr([, [)P”(l‘,j) >0 for r [arge

Remark 10.4. Thus aperiodicity is a property of communicating classes.

Theorem 10.5. Let P be irreducible, aperiodic with invariant distribution 7, and let X ~ Markov(A, P).
Then for all y € /,

In particular, taking A = dy, we have that

P'(x,y) = 7(y) as n — o0

Proof Let Y ~ Markov(sr, P) be independent to X. Then (X, Y,) defines a Markov chain on / x /, with initial
distribution A x i, and transition matrix

P(lx.y). (X, ') = P, X)Ply. ¢)

and invariant distribution 7t = 7 x 1. Now fix a € /, and define

T = 'Lnf{n 2 1: (an Yn) = (G' Cl)}
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Claim.
P(T < oo)=1

Proof of claim. Suffices to show that P is irreducible, as this means that P is irreducible with an invariant
distribution, and so is positive recurrent. Then T is a first return time, so bbP(T < oo) = 1.
Let x, x",y,y’" € I. Then as P is irreducible, we have ¢, m such that Pg(x,x’) > 0and P"(y,y’) > 0. Then

F)€+m+n((X’ X/), (y, y/)) _ P€+m+n(X, X/)P€+m+n(y’ y/) > Pg(X, X/)P/71+H(XI X/)P€+n(X, X/)Pm(y, g/) >0
For n sufficiently large, by aperiodicity of P. Hence P is irreducible. O
Now define

Claim. Z ~ Markov(A, P)

Proof of claim. P(Zy = x) = P(Xo = x) = A(x), so suffices to show that Z is a Markov chain with the given
transition matrix. Let A ={Z,_1 =2z,.1,..., Zy = zp. We want to show that P(Z, 11 = y | Z, = x, A) = P(x, y).

PZoy1 =y | Zo=xA=P(Z1 =y T>n|Z,=xA)
P(Zyr =y, T <n|Z,=x,A)
—PXo1 =y | T>n 2 =x, AB(T > n | Zy = x, A)
P(Yoi =y | T<nZy=x, AB(T <nl|Z =xA

Now note the event {T > n} depends only on {(Xp, Y0), . .., (Xn, Ya)}, so we have that
PXos1=y| T>nZy=x,A) =PV =y | T <n2Z,=x,A)=Plx,y)
So P(Zyi1 =y | Zy = x,A) = P(x,y), and Z ~ Markov(4, P) as required. O

Hence, we have that

\ X—gn<T)+IP’(Y—gn>T) PY,=yn<T)=P(Y,=y,n>T)
Pn<T)—0 as n — oosince P(T <oo)=1

Theorem 10.6. Let P be irreducible, aperiodic, null-recurrent. Then for all x, y, P"(x, y) = 0 as n — oo.

Proof Define P as in the previous theorem. Then we have already shown that P is irreducible, given P is
trreducible. i
Suppose if P transient. Then ), P"((x, y), (x, y)) < oo, but this implies that

P((x, ), (x, y)) = (P"(x,y))* = 0

So P(x,y) — 0.
Now suppose if P recurrent. Fix y € /, and define the probability measure v,(x) as before. We have shown
that this is an invariant measure, and as P is null recurrent, we have that

vy(l) = E,(T,) = c0

17



Then for all M > 0, there must exists A C / finite such that v, (A) > M. Define a probability measure

W@y, e )
[

p(z) = pyalz) = W

V

Then for z € A, we have that

pP"(z) = w(2)P"(x,2)

vy(X) 5,
- XGZA vj(A)P (x,2)

/] n
< ;vng (x.2)
Vy(Z)
vy(A

and note that the case where z ¢ A holds trivially. Let (X, Y) ~ Markov(us x 8, P), and define the stopping
time

T=infn>0:(X, Y, = (x,x)
which is finite with probability 1. Let

Z - X, n<T
Yo n>T

! 1
We have shown that Z ~ Markov(y, P). We have that P(Z, = y) = pP"(y) < y(v) = <
Substituting, we find that

( y
YYo=y n>T)+P(Vo=y, T >n)
T

This then means that

. 1
U:LS;J)P PX(YN = y) < M

as P(T < oo) = 1. Since this holds for all M > 0, we get the required result. O
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