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1 Definitions
In this course, let I be a finite or countable set. The random variables will be defined in some probability space(Ω, F,P).

Definition 1.1 (Markov Chain)A stochastic process (Xn)n≥0 is a Markov chain if for all n ≥ 0, and x0, . . . , xn+1 ∈ I , we have that
P (Xn+1 = xn+1 | Xn = xn, . . . , X0 = x0) = P (Xn+1 = xn+1 | Xn = xn)

Definition 1.2 (Time homogeneous Markov chains)If P(Xn+1 = y | Xn = x) is independent of n, then X is called time homogeneous. Otherwise it is calledtime inhomogeous.
Remark 1.3. In this course, we will only study time homogeneous Markov chains.
Definition 1.4 (Transition matrix)The matrix P given by

1



Pij = P(i, j) = P(X1 = j | X0 = i)is known as the transition matrix of the Markov chain X .
Remark 1.5. P is a stochastic matrix, that is, the sum of each row is∑

j∈I

P(i, j) =∑
j∈I

P(X1 = j | X0 = i) = 1
In particular, this means that 1 is always an eigenvalue of P , with eigenvector (1, . . . , 1)T .

Definition 1.6 (Markov Distribution)We say that X ∼ Markov(λ, P) if λ(x) = P(X0 = x) is a probability distribution on I , and P is the transitionmatrix of X .
Theorem 1.7. A stochastic process X is Markov(λ, P) if and only if for all n ≥ 0, x0, . . . , xn ∈ I , we havethat

P(X0 = x0, . . . , Xn = xn) = λ(x0)P(x0, x1) · · · P(xn−1, xn)
Proof. For ( =⇒ ), condition and use Markov property. For ( ⇐= ), induct on n.
2 Simple Markov Property

Definition 2.1 (δ-mass)For i ∈ I , define the probability mass function δi on I by
δij = {1 if i = j0 otherwise

Theorem 2.2 (Simple Markov Property). Suppose X ∼ Markov(λ, P). Fix m ∈ N and i ∈ I . Thenconditional on Xm = i, the process (Xm+n)n≥0 is Markov(δi, P), and independent of X0, . . . , Xm.
Proof. First, we need to show that it is a Markov chain. We use theorem 1.7. By the law of total probability,we have that

P(Xm = xm, . . . , Xm+n = xm+n) = ∑
x0,...,xm−1∈I

P(X0 = x0, . . . , Xm−1 = xm−1, Xm = xm, . . . , Xm+n = xm+n)
= ∑

x0,...,xm−1∈I
λ(x0)P(x0, x1) · · · P(xm−1, xm)P(xm, xm+1) · · · P(xm+n−1, xm+n)

= P(Xm = xm)P(xm, xm+1) · · · P(xm+n−1, xm+n)
Thus, the conditional probability is
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P(Xm = xm, . . . , Xm+n = xm+n | Xm = i) = P(Xm = xm, . . . , Xm+n = xm+n, Xm = i)
P(Xm = i)= δixmP(Xm = xm, . . . , Xm+n = xm+n)

P(Xm = i)= δixmP(Xm = xm)P(xm, xm+1) · · · P(xm+n−1, xm+n)
P(Xm = i)= δixmP(xm, xm+1) · · · P(xm+n−1, xm+n)

and this shows that (Xm+n)n is Markov(δi, P). To show that this is independent to X0, . . . , Xm, let m ≤ i1 ≤
· · · ≤ ik , x0, . . . , xm, xi1 , . . . , xik ∈ I . Then

P(X0 = x0, . . ., Xm = xm, Xii = xi1 , . . . , Xik = xik | Xm = i)
= P(X0 = x0, . . . , Xm = xm, Xii = xi1 , . . . , Xik = xik )

P(Xm = i) where we assume that xm = i

= λx0P(x0, x1) · · · P(xm−1, xm)P(Xi1 = xi1 , . . . , Xik = xik | Xm = i)
P(Xm = i)= P(X0 = x0, . . . , Xm = xm | Xm = i)P(Xm+1 = xm+1, . . . , Xm+n = xm+n | Xm = i)

3 Eigenvalues of the transition matrix
Notation 3.1. Define the notations

Pi(·) = P(· | X0 = i)
pij (n) = (Pn)ij

Theorem 3.2. Suppose X ∼ Markov(λ, P). Considering X as a row vector, we have that
P(Xn = x) = (λPn)x

P(Xn = y | X0 = x) = (δxPn)y
Proof. Expand.Suppose P is a k × k matrix, and let λ1, . . . , λk be the eigenvalues. There are three cases.

• If all are real and distinct, then we can diagonalise P = UDU−1. Then Pn = UDnU−1, and (WLOG)
p11(n) = a1λn1 + · · · + akλn

k for some a1, . . . , ak .• If λi, λi are complex conjugate eigenvalues, say λi = reiθ , then p11(n) = (terms from other eigenvalues)+
a cos(nθ) + b sin(nθ).• If they are not distict, then we can consider the Jordan normal form of P , and we have terms of the form
q(n)λn where q(n) is a polynomial, with degree one less than the algebraic multiplicity of λ.

4 Hitting times
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Definition 4.1 (Hitting time, hitting probability, mean hitting time)Let A ⊆ I , then the hitting time TA is a random variable, known as the hitting time of A, defined by
TA(ω) = inf{n ≥ 0 : Xn(ω) ∈ A}where we take inf ∅ = ∞. The hitting probability hA is

hA = P(TA < ∞)and the mean hitting time is
kA = E(TA)

Remark 4.2. The hitting probability and mean hitting time starting at a given state, hA
i and kA

i are defined similarly,by replacing P with Pi and E with Ei .
Theorem 4.3. Let A ⊆ I . Then the vector (hA

i )i∈I is the minimal nonnegative solution to
hA

i = {1 if i ∈ A∑
j P(i, j)hA

j if i /∈ A

Proof. First we show that (hA
i ) is a solution. Suppose i ∈ A, then hA

i = 1. Now suppose i /∈ A. Then we canwrite
Pi(TA < ∞) = ∞∑

n=0 Pi(TA = n)
= ∞∑

n=1 Pi(X0 /∈ A, . . . , Xn−1 /∈ A, Xn ∈ A)
= ∞∑

n=1
∑
j∈I

P(X0 /∈ A, . . . , Xn−1 /∈ A, Xn ∈ A, X1 = j | X0 = i) (i)
=∑

j∈I
P(X1 ∈ A, X1 = j | X0 = i) + ∞∑

n=2
∑
j∈I

P(X1 /∈ A, . . . , Xn−1 /∈ A, Xn ∈ A, X1 = j | X0 = i)
=∑

j
P(i, j)P(X1 ∈ A | X1 = j , X0 = i)+
∑

j
P(i, j) ∞∑

n=2 P(X1 /∈ A, . . . , Xn−1 /∈ A, Xn ∈ A | X0 = i, X1 = j) (ii)
=∑

j
P(i, j)P(X0 ∈ A | X0 = j) +∑

j
P(i, j) ∞∑

n=2 P(X0 /∈ A, . . . , Xn−2 /∈ A, Xn−1 ∈ A | X0 = j)
(iii)

=∑
j

P(i, j) ∞∑
n=0 Pj (TA = n)

=∑
j

P(i, j)P(TA < ∞)
=∑

j
P(i, j)hA

i

Where for (i) we used the law of total probability, for (ii) we used properties of conditional probability, andfor (iii) we used the Markov property.
4



Now we will show that hA
i minimal. For i ∈ A this clearly holds. Now fix i /∈ A, and suppose xi is anothersolution to the equations. Then

xi =∑
j

P(i, j)xj

= ∑
j1∈A

P(i, j1)xj1 +∑
j1 /∈A

P(i, j1)xj1

= ∑
j1∈A

P(i, j1) + ∑
j1 /∈A,j2∈A

P(i, j1)P(j1, j2) + · · ·

≥
N∑

n=1 Pi(TA = n)
for all N . Taking the limit N → ∞ we get the required result.

Theorem 4.4. The vector (kA
i ) is the minimal nonnegative solution to

kA
i = {0 if i ∈ A1 +∑j P(i, j)kA

j if i /∈ A

Proof. The proof that kA
i is a solution follows as in the case of the hitting probability. The proof for minimalityfollows in a similar fashion, where we use

E(T ) = ∞∑
n=0 P(T > n)

5 Strong Markov Property

Definition 5.1 (Stopping time)A stopping time T is a random variable in N ∪ {∞}, where for all n ∈ N, the event {T = n} dependsonly on X0, . . . , Xn.
Theorem 5.2 (Strong Markov Property). Let X ∼ Markov(λ, P), and T be a stopping time. Conditional on
T < ∞ and XT = i, we have that the process

(XT+m)m≥0 ∼ Markov(λ, P)and is independent of X0, . . . , XT .
Proof. We want to show that

P(XT = x0, . . . ,XT+n = xn, (X0, . . . , XT ) = w | T < ∞, XT = i)= δi,x0P(x0, x1) · · · P(xn−1, xn)P((X0, . . . , XT ) = w | T < ∞, XT = i) (*)
For all x0, . . . , xn ∈ I , and for all w . Suppose T = k , and w = (w0, . . . , wk ) ∈ Ik+1. Then the LHS of (*)becomes

P(Xk = x0, . . . , Xk+n = xn, (X0, . . . , Xn) = w, T = k, Xk = i)
P(T < ∞, XT = i) († )
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Applying the simple Markov property, we find that
P(Xk = x0, . . . , Xk+n = xn | (X0, . . . , Xk ) = w, T = k, Xk = i)= P(Xk = x0, . . . , Xk+n = xn, Xk = i) as T is a stopping time= δix0P(x0, x1) · · · P(xn−1, xn)Substituting this into the RHS of (*) and using † we get the required result.

6 Communicating classes

Definition 6.1 (Leads to, communicates with)Let X ∼ Markov(λ, P). Then for x, y ∈ I , we say that x leads to y, x → y if
Px (∃n s.t. Xn = y) > 0We say x communicates with y, x ↔ y if x → y and y → x .

Theorem 6.2. The following are equivalent.
(i) x → y(ii) There exists a sequence x = x0, . . . , xk = y s.t. P(x0, x1) · · · P(xk−1, xk ) > 0.(iii) There exists n s.t. pxy(n) > 0.

Proof. First we show that (i) ⇐⇒ (iii). Consider the events
{∃n s.t. Xn = y} =⋃

n
Xn = y

If the LHS has positive probability, so must the RHS for some n. Conversely, if the RHS has a positiveprobability for some n, so must the LHS. To show that (ii) ⇐⇒ (iii), we note that
pxy(n) = ∑

x1,...,xn−1
P(x, x1) · · · P(xn−1, y)

Corollary 6.3. ↔ defines an equivalence relation.
Proof. Reflexivity follows by setting n = 0 in (iii). Symmetry is true by definition. Transitivity follows by(ii).

Definition 6.4 (Communicating classes)The equivalence classes of I under ↔ are known as communicating classes.
Definition 6.5 (Closed)A communicating class C is closed if when x ∈ C , x → y, we have that y ∈ C . Equivalently, if x ∈ Cand x → y, then y → x .
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Definition 6.6 (Irreducible)A transition matrix P is irreducible if it has a single communicating class.
Definition 6.7 (Absorbing state)A state x ∈ I is called absorbing if {x} is a closed class. Equivalently, there is no y ̸= x s.t. x → y.

7 Transience and recurrence

Definition 7.1 (Transient)A state x ∈ I is transient if
Pi(Xn = i for infinitely many n) = 0

Definition 7.2 (Recurrent)A state x ∈ I is recurrent if
Pi(Xn = i for infinitely many n) = 1

Definition 7.3 (Return time)Define the r-th return time inductively by
T (0)

i = 0
T (r+1)

i = inf{n ≥ T (r)
i + 1 : Xn = i}

and we write Ti = T (1)
i for the first return time.

Definition 7.4 (Return probability)The probability that the Markov chain will return to the state i is
fi = Pi(Ti < ∞)

Definition 7.5 (Visits)The number of visits by the Markov chain to the state i is
Vi = ∞∑

i=0 1(Xn = i)

Lemma 7.6. Pi(Vi > r) = f r
i for all r ∈ N.

Proof. By induction on r . The case r = 0 is true by definition as Vi ≥ 1. Now suppose it holds for r . Then
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Pi(Vi ≥ r + 1) = Pi(T (r+1)
i < ∞)= Pi(T (r+1)
i < ∞ | T (r)

i < ∞)Pi(T (r)
i < ∞)= Pi(T (r+1)

i < ∞ | T (r)
i < ∞)f r

i= Pi(Ti < ∞)f r
i by Strong Markov on the stopping time T (r)

i= f r+1
i

Theorem 7.7. Let X ∼ Markov(λ, P), i ∈ I . Then we have that
1. If fi = 1, then i is recurrent, and ∑∞

n=0 pii(n) = ∞2. If fi < 1, then i is transient, and ∑∞
n=0 pii(n) < ∞

Proof. First, we note that
Ei(Vi) = Ei

( ∞∑
n=1 1(Xn = i)) = ∞∑

n=1 Ei(1(Xn = i)) = ∞∑
n=1 Pi(Xn = i) = ∞∑

n=1 pii(n)
For (i), if fi = 1, then for all r , Pi(Vi > r) = 1. So Pi(Vi = ∞) = 1. Hence i is recurrent, and Ei(Vi) = ∞.For (ii), if fi < 1, then Vi ∼ Geo(fi). This has finite expectation, and Pi(Vi = ∞) = 0. So i is transient.

Theorem 7.8. Let x, y ∈ I , x ↔ y. Then either x, y are both recurrent, or x, y are both transient.
Proof. Since x ↔ y, we have m, l s.t. pxy(m), pyx (l) > 0. Suppose x recurrent. Then we have that∑

n
pyy(n) ≥

∑
n

pyy(n + m + l) ≥
∑

n
pyx (l)pxx (n)pxy(m) = pyx (l)pxy(m)∑

n
pxx (n) = ∞

So y is recurrent as well.
Corollary 7.9. Transience and recurrence is a communicating class property.
Theorem 7.10. Let C be a recurrent communicating class. Then C is closed.

Proof. Suppose not. Then we have x ∈ C, y /∈ C, x → y, y ̸→ x . Let m be s.t. pxy(m) > 0. Since if we everreach y we cannot reach x again, we must have that
Pi(Vi < ∞) ≥ Pi(Xm = y) > 0So x is not recurrent. Contradiction.

Theorem 7.11. A finite closed class is recurrent.
Proof. Let C be a finite closed class, x ∈ C . Then by (infinite) Pigeonhole, we must have y ∈ C such that

Px (Xn = y for infinitely many n) > 0Since x ↔ y, there must exist m such that pyx (m) > 0. Then
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Py(Xn = y for infinitely many n) ≥ Py(Xm = x, Xn = y for infinitely many n ≥ m)= Py(Xn = y for infinitely many n ≥ m | Xm = x)Py(Xm = x)= Px (Xn = y for infinitely many n ≥ m)pyx (m) by Markov property
> 0

Hence y is recurrent, so C is recurrent.
Theorem 7.12. Let P be irreducible and recurrent (ie. the only communicating class is recurrent). Thenfor all x, y, Px (Ty < ∞) = 1.

Proof. Let m be such that pxy(m) > 0. Then we have that
Py(Xn = y for infinitely many n) =∑

z
Py(Xm = z, Xn = y for infinitely many n)

=∑
z

Pz (Xn = y for infinitely many n)pyz (m) by Markov property (*)
Now we note that

Pz (Xn = y for infinitely many n) = Pz (Ty < ∞)Py(Xn = y for infinitely many n)by Strong Markov on the stopping time Ty, under the probability measure Pz . Substituting into (*), we findthat
1 =∑

z
Pz (Ty < ∞)pyz (m)

Since ∑z pyz (m) = 1, pyx (m) > 0 and Pz (Ty < ∞) ≤ 1 for all z , we must have that
Px (Ty < ∞) = 1

7.1 Random walks on Zd

Definition 7.13 (Simple Random Walk on Z d)Define the SRW on Z d to have the transition matrix
P(x, x + ei) = P(x, x − ei) = 12dwhere the ei are the basis vectors for Zd .

Theorem 7.14 (Polya). The simple random walk on Zd is recurrent for d = 1, 2, and transient for d ≥ 3.
Here, we will not prove the full theorem. We will prove it for d = 1, 2, 3. For d > 3, we can embed theSRW into a SRW on Z3, and the result follows.

Proof (d=1). In this case, P(x, x + 1) = P(x, x − 1) = 12 , and we will show that ∑n p00(n) diverges. In thiscase,
p00(n) = P0(Xn = 0) = {0 if n odd(2m

m
)2−2m if n = 2m
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Recall Stirling’s Formula, n! ∼ nne−n√2πn as n → ∞. Substituting, we find that
p00(2m) = (2m)!

m!m!
(12
)2m

∼
((2m)2me−2m√4πm(mme−m

√2πm)2
) 122m

= 1√
πm

Let n0 be s.t. ∀n ≥ n0, p00(2n) ≥ 12√
πn . Then∑

n
p00(n) ≥

∑
n≥n0

p00(2n) ≥
∑
n≥n0

12√
πndiverges.

Remark 7.15. In the asymmetric case,
p00(2n) = (2n

n

)(pq)n ∼ A (4pq)n√
nSo if p ̸= q, then 4pq < 1, and we can upper bound this by a geometric series, so the random walk is transient.

Proof (d = 2). In R2, we can project and get two independent simple random walks. In particular, let
f (x, y) = (x + y√2 , x − y√2

) and f (Xn) = (X+
n , X−

n )
Claim. X+

n and X−
n are independent simple random walks on 1√2Z.

Proof of claim. We can write Xn = ∑n
i=1 ξi, where

ξi
iid∼ Unif {(10) ,

(
−10 ) ,

(01) ,
( 0

−1)}Then we have that
X+

n = n∑
i=1

ξ (1)
i + ξ (2)

i√2 and X−
n = n∑

i=1
ξ (1)

i − ξ (2)
i√2From this we can show it is a simple random walk, and that the two are independent by considering thecases of ξi.Using the claim,

P(X2n = 0) = P(X+
n 0, X−

n = 0) = P(X+
n = 0)P(X−

n = 0) ∼ A
n

Proof (d = 3). In order to return 0 after 2n steps, we must have travelled i steps along e1 and −e1, j along e2and −e2, and k along e3 and −e3, where i + j + k = n. Then given i, j , k , we have( 2n
i, i, j, j , k, k

) = (2n)!
i!i!j!j!k !k !different paths, each with probability ( 16 )2n. So,

p00(2n) = ∑
i+j+k=n

( 2n
i, i, j, j , k, k

)(16
)2n = (2n

n

) 122n

∑
i+j+k=n

(
n

i, j, k

)2 132n
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Claim. ∑
i+j+k=n

(
n

i, j, k

) 13n = 1
Proof of claim. This is the total probability for placing n balls into 3 bins uniformly at random.Furthermore, if n = 3m, then we have that(

n
i, j, k

)
≤
(

n
m, m, m

)
So we get that

p00(6m) ≤
(2n

n

) 122n

(
n

m, m, m

) 13n ∼ A
n3/2 by Stirling

Note that we can bound p00(6m − 2) and p00(6m − 4) by p00(6m), so ∑n p00(2n) is finite as ∑n n−3/2converges. Hence 0 is transient.
8 Invariant distribution

Definition 8.1 (Invariant, (or Equilibrium, Stationary) distribution)Let P be a transition matrix. Then a probability distribution π is invariant if π = πP .
Theorem 8.2. If X ∼ Markov(π, P), then Xn ∼ π for all n.

Proof. πPn = π for all n.
Theorem 8.3. Suppose I finite, and there exists i ∈ I such that pij (n) → πj as n → ∞. Then π is aninvariant distribution.

Proof. ∑
j

πj =∑
j

lim
n→∞

pij (n) = lim
n→∞

∑
j

pij (n) = lim
n→∞

1 = 1
So π is a distribution. Furthermore,

πj = lim
n→∞

pij (n)
= lim

n→∞

∑
k

pik (n − 1)P(k, j)
=∑

k
lim

n→∞
pik (n − 1)P(k, j)

=∑
k

πkP(k, j)
= (πP)j

Remark 8.4. This does not have to be true for I infinite.
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Remark 8.5. By Perron-Frobenius, an invariant distribution always exists.
Definition 8.6 (Expected visits)Fix k ∈ I . Then for i ∈ I , define

νk (i) = Ek

(Tk −1∑
n=0 1(Xn = i))

That is, the expected number of visits to i during an excursion from k .
Theorem 8.7. If P is irreducible and recurrent, then νk is an invariant measure. That is, νk = νkP .Furthermore, νk (k ) = 1, and 0 < νk (i) < ∞ for all i.

Proof. Since P is recurrent, we have that Tk finite with probability 1, and XTk = X0 = k by definition. So wehave that
νk (i) = Ek

( Tk∑
n=1 1(Xn = i))

= Ek

( ∞∑
n=1 1(Xn = i, Tk ≥ n))

= ∞∑
n=1 Pk (Xn = i, Tk ≥ n)

= ∞∑
n=1
∑

j
Pk (Xn = i, Xn−1 = j , Tk ≥ n)

= ∞∑
n=1
∑

j
Pk (Xn = i | Xn−1 = j , Tk ≥ n)Pk (Xn−1 = j , Tk ≥ n)

Since Tk is a stopping time, {Tk ≥ n} = {Tk ≤ n − 1}C only depends on X0, . . . , Xn−1, we have by theMarkov property that
Pk (Xn = i | Xn−1 = j , Tk ≥ n) = Pk (Xn = i | Xn−1 = j) = P(j , i)So

νk (i) = ∞∑
n=1
∑

j
P(j , i)Pk (Xn−1 = j , Tk ≥ n)

=∑
j

P(j , i) ∞∑
n=1 Pk (Xn−1 = j , Tk ≥ n)

=∑
j

P(j , i)Ek

( ∞∑
n=1 1(Xn = j , Tk ≥ n))

=∑
j

P(j , i)νk (j)
Thus νk = νkP , and νk is an invariant measure. It is clear by definition that νk (k ) = 1. Since P irreducible,we must have n such that pki(n) > 0, and m such that pik (m) > 0. then
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νk (i) =∑
j

νk (j)Pn(j , i) ≥ νk (k )Pki(n) > 0
and

1 = νk (k ) =∑
j

νk (j)Pm(j , k ) ≥ νk (i)Pm(i, k )
So νk (i) ≤ 1

Pm(i, k ) < ∞

Theorem 8.8. Let P be irreducible, λ be an invariant measure with λk = 1. Then λ ≥ νk . Furthermore, if
P is recurrent, then λ = νk .

Proof. Fix i ∈ I . Then λi = ∑j λjP(j , i) as λ = λP . Thus,
λi = P(k, i) +∑

j1 ̸=k
λj1P(j1, i)

= P(k, i) +∑
j1 ̸=k

P(j1, i) + · · · + ∑
j1,...,jn−1 ̸=k

P(jn−1, jn−2) · · · P(j2, j1)P(j1, i)
+ ∑

j1,...,jn ̸=k
λjnP(jn, jn−1) · · · P(j2, j1)P(j1, i)

Since λ is a measure, λx ≥ 0 for all x . So we must have that
λi ≥ P(k, i) +∑

j1 ̸=k
P(j1, i) + · · · + ∑

j1,...,jn−1 ̸=k
P(jn−1, jn−2) · · · P(j2, j1)P(j1, i)

= Pk (X1 = i, Tk ≥ 1) + · · · + Pk (Xn = i, Tk ≥ n)
= n∑

ℓ=1 Pk (Xℓ = i, Tk ≥ ℓ)
→

∞∑
ℓ=1 Pk (Xℓ = i, Tk ≥ ℓ)

= νk (i)
So λi ≥ νk (i) for all i. Now suppose if P is recurrent. Then νk is an invariant measure, and so is λ − νk .By irreducibility, we have m such that pik (m) > 0. Then

0 = λi − νk (i) =∑
j

(λj − νk (j))pjk (m) ≥ (λi − νk (i))pik (m)
So we must have that λi = νk (i) for all i.
Remark 8.9. Thus, in the case where P is irreducible and recurrent, all invariant measures are unique up to multi-plication by a constant.
Remark 8.10. Fix k . If ∑i νk (i) < ∞, then

πi = νk (i)∑
j νk (j)is an invariant distribution. Furthermore,
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∑
j

νk (j) =∑
j

Ek

(Tk −1∑
n=0 1(Xn = j)) = Ek


Tk −1∑
n=0

∑
i
1(Xn = i)︸ ︷︷ ︸=1

 = Ek (Tk )
Thus, if Ek (Tk ) is finite, then we can normalise and get an invariant distribution.

Definition 8.11Let k ∈ I be recurrent. Then
• k is positive recurrent if Ek (Tk ) < ∞, and• k is null recurrent if Ek (Tk ) = ∞.

Theorem 8.12. Suppose P is irreducible. Then the following are equivalent.
(i) Every state is positive recurrent.(ii) Some state is positive recurrent.(iii) P has an invariant distribution π .

If any of the above hold, then we also have that
πi = 1

Ei(Ti)
Proof. (i) immediately implies (ii). To show that (ii) implies (iii), let k be positive recurrent. Then νk is aninvariant measure, and

πi = νk (i)
Ek (Tk )is an invariant distribution. To show that (iii) implies (i), let k be any state. In addition, we must have isuch that πi > 0. By irreducibility, we must have n such that pik (n) > 0. Then

πk =∑
j

πjPn(j , k ) ≥ πiPn(j , k ) > 0
So πk > 0 for all k . Define a new measure λi = πi

πk
. Then this is an invariant measure, with λk = 1. Sowe get that λ ≥ νk , and

Ek (Tk ) =∑
i

νk (i) ≤
∑

i
λi =∑

i

πi
πk

= 1
πk

< ∞ (*)
So k is positive recurrent. Furthermore, suppose (i), (ii) and (iii) hold. Then P is recurrent, and λ = νk , sowe get equalities in (*), and

πk = 1
Ek (Tk )

Corollary 8.13. If P is irreducible with invariant distribution π , then for all x, y,

14



νx (y) = πy

πx

9 Reversability

Theorem 9.1. Suppose X ∼ Markov(π, P), where P is irreducible, and has invariant distribution π . Fix
N ∈ N. Then (Yn)0≤n≤N defined by Yn = XN−n is a Markov chain, with transition matrix P̂ given by

P̂(x, y) = π(y)
π(x) P(y, x)

Moreover, P̂ is irreducible, and has invariant distribution π .
Proof. First we check that P̂ is a stochastic matrix.∑

y
P̂(x, y) =∑

y

π(y)
π(x) P(y, x) = π(x)

π(x) = 1
Now we show that Y is a Markov chain. Let y0, . . . , yN ∈ I . Then

P(Y0 = y0, . . . , YN = yN ) = P(X0 = yN , . . . , XN = y0)= π(yN )P(yN , yN1 ) · · · P(y1, y0)= π(y0)P̂(y0, y1) · · · P̂(yn−1, yN )
which shows that Y ∼ Markov(π, P̂). To show that π is invariant for P̂ , we have that∑

x
π(x)P̂(x, y) =∑

x

π(x)π(y)P(y, x)
π(x) =∑

x
π(y)P(y, x) = π(y)

and finally to show that P̂ is irreducible, we note that for x, y ∈ I , as P is irreducible we have x =
x0, . . . , xk = y such that P(x0, x1), . . . , P(xk−1, xk ) > 0. Then

P̂(xk , xk−1) · · · P̂(x1, x0) = π(x0)P(x0, x1) . . . P(xk−1, xk )
π(xk ) > 0

So P̂ is irreducible.
Definition 9.2 (Reversible invariant distribution)Let X ∼ Markov(π, P). Then the invariant distribution π is called reversible if P̂ = P . Equivalently, πsatisfies the detailed balance equations

π(x)P(x, y) = π(y)P(y, x)for all x, y ∈ I .
Remark 9.3. Equivalently, X is reversible if for all N ,

(X0, . . . , XN ) distr.= (XN , . . . , X0)
Lemma 9.4. Let P be a transition matrix, µ a distribution satisfying the detailed balance equations. Then
µ is an invariant distribution.
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Proof. ∑
x

µ(x)P(x, y) =∑
x

µ(y)P(y, x) = µ(y)

10 Convergence to equilibrium

Definition 10.1 (Period)Let P be a transition matrix, for i ∈ I , let
di = gcd{n ≥ 1 : Pn(i, i) > 0}This is known as the period of i. If di = 0, then i is called aperiodic.

Lemma 10.2. di = 1 if and only if Pn(i, i) > 0 for all n sufficiently large.
Proof. Suppose di = 1. Let D(i) = {n ≥ 1 : Pn(i, i) > 0}. First, we note that D(i) is closed under addition andscalar multiplication. Let r = minm̸=n,m,n∈D(i) |m − n|. If r = 1 we are done. Suppose if r ≥ 2. Let m, n ∈ D(i)with n = m + r . Furthermore, as di = 1 we must also have k such that k = ℓr + s with 0 < s < r . Let
a = (ℓ + 1)n and b = (ℓ + 1)m + k , we have that a and b are in D(i), with

0 < a − b = r − s < rContradiction as r minimal. So D(i) contains consecutive integers n1, n1 + 1. Then for n ≥ n21, n ∈ D(i).Converse is clear.
Lemma 10.3. Let P be irreducible, and i is aperiodic. Then j is aperiodic.

Proof. We have n, m such that Pn(i, j), Pm(j , i) > 0. Then
Pn+m+r (j , j) ≥ Pm(j , i)Pr (i, i)Pn(i, j) > 0 for r large

Remark 10.4. Thus aperiodicity is a property of communicating classes.
Theorem 10.5. Let P be irreducible, aperiodic with invariant distribution π , and let X ∼ Markov(λ, P).Then for all y ∈ I ,

P(Xn = y) → π(y) as n → ∞In particular, taking λ = δx , we have that
Pn(x, y) → π(y) as n → ∞

Proof. Let Y ∼ Markov(π, P) be independent to X . Then (Xn, Yn) defines a Markov chain on I × I , with initialdistribution λ × π , and transition matrix
P̃((x, y), (x ′, y′)) = P(x, x ′)P(y, y′)and invariant distribution π̃ = π × π . Now fix a ∈ I , and define
T = inf{n ≥ 1 : (Xn, Yn) = (a, a)}

16



Claim.
P(T < ∞) = 1

Proof of claim. Suffices to show that P̃ is irreducible, as this means that P̃ is irreducible with an invariantdistribution, and so is positive recurrent. Then T is a first return time, so bbP(T < ∞) = 1.Let x, x ′, y, y′ ∈ I . Then as P is irreducible, we have ℓ, m such that Pℓ (x, x ′) > 0 and Pm(y, y′) > 0. Then
P̃ℓ+m+n((x, x ′), (y, y′)) = Pℓ+m+n(x, x ′)Pℓ+m+n(y, y′) ≥ Pℓ (x, x ′)Pm+n(x, x ′)Pℓ+n(x, x ′)Pm(y, y′) > 0

For n sufficiently large, by aperiodicity of P . Hence P̃ is irreducible.Now define
Zn = {Xn n ≤ T

Yn n ≥ T

Claim. Z ∼ Markov(λ, P)
Proof of claim. P(Z0 = x) = P(X0 = x) = λ(x), so suffices to show that Z is a Markov chain with the giventransition matrix. Let A = {Zn−1 = zn−1, . . . , Z0 = z0. We want to show that P(Zn+1 = y | Zn = x, A) = P(x, y).

P(Zn+1 = y | Zn = x, A) = P(Zn+1 = y, T > n | Zn = x, A)
P(Zn+1 = y, T ≤ n | Zn = x, A)= P(Xn+1 = y | T > n, Zn = x, A)P(T > n | Zn = x, A)
P(Yn+1 = y | T ≤ n, Zn = x, A)P(T ≤ n | Zn = x, A)

Now note the event {T > n} depends only on {(X0, Y0), . . . , (Xn, Yn)}, so we have that
P(Xn+1 = y | T > n, Zn = x, A) = P(Yn+1 = y | T ≤ n, Zn = x, A) = P(x, y)So P(Zn+1 = y | Zn = x, A) = P(x, y), and Z ∼ Markov(λ, P) as required.Hence, we have that

|P(Xn = y) − π(y)| = |P(Zn = y) − P(Yn = y)|= |P(Xn = y, n < T ) + P(Yn = y, n > T ) − P(Yn = y, n ≤ T ) − P(Yn = y, n > T )|
≥ P(n < T ) → 0 as n → ∞ since P(T < ∞) = 1

Theorem 10.6. Let P be irreducible, aperiodic, null-recurrent. Then for all x, y, Pn(x, y) → 0 as n → ∞.
Proof. Define P̃ as in the previous theorem. Then we have already shown that P̃ is irreducible, given P isirreducible.Suppose if P̃ transient. Then ∑n P̃n((x, y), (x, y)) < ∞, but this implies that

P̃n((x, y), (x, y)) = (Pn(x, y))2 → 0So Pn(x, y) → 0.Now suppose if P̃ recurrent. Fix y ∈ I , and define the probability measure νy(x) as before. We have shownthat this is an invariant measure, and as P is null recurrent, we have that
νy(I) = Ey(Ty) = ∞
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Then for all M > 0, there must exists A ⊆ I finite such that νy(A) > M . Define a probability measure
µ(z) = µy,A(z) = νy(z)

νy(A)1(z ∈ A)
Then for z ∈ A, we have that

µPn(z) =∑
x

µ(z)Pn(x, z)
=∑

x∈A

νy(x)
νy(A)Pn(x, z)

≤ 1
νy(A) ∑x

νy(x)Pn(x, z)
= νy(z)

νy(A)
and note that the case where z /∈ A holds trivially. Let (X, Y ) ∼ Markov(µ × δx , P̃), and define the stoppingtime

T = inf n ≥ 0 : (Xn, Yn) = (x, x)which is finite with probability 1. Let
Zn = {Xn n ≤ T

Yn n ≥ T

We have shown that Z ∼ Markov(µ, P). We have that P(Zn = y) = µPn(y) ≤ νy(y)
νy(A) = 1

νy(A) < 1
M .Substituting, we find that

Pn(x, y) = Px (Yn = y)= Px (Yn = y, n ≥ T ) + Px (Yn = y, T > n)
≤ P(Zn = y) + P(T > n)

This then means that
lim sup

n→∞
Px (Yn = y) ≤ 1

Mas P(T < ∞) = 1. Since this holds for all M > 0, we get the required result.

18


	Definitions
	 Simple Markov Property
	Eigenvalues of the transition matrix
	Hitting times
	Strong Markov Property
	Communicating classes
	Transience and recurrence
	Random walks on Zd

	Invariant distribution
	Reversability
	Convergence to equilibrium

