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1 Polynomial interpolation

Definition 1.1 (Fundamental Lagrange polynomial)Suppose x0, . . . , xn ∈ [a, b] distinct, i ∈ {0, . . . , n}, then the i-th fundamental Lagrange polynomial is
ℓi(x) = ∏

j ̸=i

x − xi
xj − xi

Proposition 1.2.
ℓi(xj ) = δij.

Definition 1.3 (Nodal polynomial)Suppose x0, . . . , xn ∈ [a, b] distinct, i ∈ {0, . . . , n}, then the nodal polynomial is
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ω(x) = n∏
i=0(x − xi)

Proposition 1.4.
ℓi(x) = ω(x)

ω′(xi)(x − xi)
Theorem 1.5. Suppose f : [a, b] → R, x0, . . . , xn ∈ [a, b] distinct. Then there exists unique p ∈ Pn suchthat p(xi) = f (xi) for all i.

Proof. Let
p(x) = n∑

i=0 f (xi)ℓi(x)
Then this satisfies the property required. On the other hand, if p and q are both polynomials which satisfythe required property, then p − q has degree at most n and n + 1 roots, so must be identically zero.

Definition 1.6 (Divided difference)Suppose f : [a, b] → R, x0, . . . , xk ∈ [a, b] distinct. Then the divided difference f [x0, . . . , xk ] is the leadingcoefficient of the polynomial pk ∈ Pk which interpolates f at those points.
Theorem 1.7 (Newton formula). Suppose f : [a, b] → R, x0, . . . , xn ∈ [a, b] distinct, pn ∈ Pn interpolates
f at those points. Then it can be written in Newton form

pn(x) = n∑
k=0 f [x0, . . . , xk ] k−1∏

i=0(x − xi)
Proof. By induction. n = 0 is trivial. Note that pn and pn+1 agree on x0, . . . , xn and has degree (at most)
n + 1, so we have that

pn+1(x) − pn(x) = An+1 n∏
i=0(x − xi)

Suffices to show An+1 = f [x0, . . . , xn+1]. By considering the degree xn+1 term on the left and right handsides, and using uniqueness we get the required result.
Theorem 1.8 (Recurrence relation for divided differences). Suppose x0, . . . , xk ∈ [a, b] distinct, with k ≥ 1,we have that

f [x0, . . . , xk ] = f [x1, . . . , xk ] − f [x0, . . . , xk−1]
xk − x0

Proof. Let q0, q1 ∈ Pk−1 be polynomials that interpolate f at x0, . . . , xk−1 and x1, . . . , xk respectively. Then let
p(x) = x − x0

xk − x0 q1(x) + xk − x
xk − x0 q0(x)Then p interpolates f at x0, . . . , xk , and computing the leading coefficients on both sides we get the requiredresult.
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Definition 1.9 (Horner form)For a polynomial p(x) = anxn + · · · + a0, the Horner form of the polynomial is
a0 + x(a1 + (a2 + x(a3 + · · · + x(an−1 + xan))))

1.1 Error bounds

Definition 1.10 (Interpolation error)Suppose f : [a, b] → R, pn ∈ Pn interpolates f at x0, . . . , xn ∈ [a, b] distinct, the interpolation error is
en(x) = f (x) − pn(x)

Theorem 1.11. Suppose pn ∈ Pn interpolates f at x0, . . . , xn. Then for any x /∈ (xi), we have that
en(x) = f (x) − pn(x) = f [x0, . . . , xn, x ]ω(x)

Proof. Suppose pn+1 interpolates f at x0, . . . , xn, xn+1 = x . Then noting that pn+1(x) = f (x) in the Newtonform gives the required result.
Lemma 1.12. Suppose g ∈ C k [a, b] has k + ℓ distinct zeroes. Then g(k ) has at least ℓ distinct zeroes in[a, b].

Proof. By Rolle and induction.
Theorem 1.13. Suppose x0, . . . , xk ∈ [a, b] distinct, and a = mini xi, b = maxi xi, f ∈ Ck [a, b]. Then thereexists ξ ∈ (a, b) such that

f [x0, . . . , xk ] = 1
k ! f (k )(ξ)

Proof. Suppose p ∈ Pk interpolates f at x0, . . . , xk . Then e = f − p has at least k + 1 distinct zeroes in [a, b],so by Rolle’s theorem, f (k ) − p(k ) must have a root ξ ∈ (a, b). But p(k ) ≡ k !f [x0, . . . , xk ].
Theorem 1.14. Suppose f ∈ Cn+1[a, b], and pn ∈ Pn interpolates f at x0, . . . , xn ∈ [a, b] distinct. Thenfor every x ∈ [a, b], there exists ξ ∈ [a, b] such that

en(x) = f (x) − pn(x) = 1(n + 1)!ω(x)f (n+1)(ξ)
Proof. If x = xi for some i, then both sides are zero, and we are done. Otherwise,

en(x) = f (x) − pn(x) = f [x0, . . . , xn, x ]ω(x) = 1(n + 1)!ω(x)f (n+1)(ξ)
from the previous theorems.

Corollary 1.15. For all x , we have that
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|en(x)| = |f (x) − pn(x)| ≤ 1(n + 1)! |ω(x)|∥∥f (n+1)∥∥
∞

Corollary 1.16. For any set ∆ of n + 1 interpolation points, p∆ interpolating polynomial for f in ∆, wehave that ∥∥e∆∥∥∞ = ∥∥f − p∆∥∥∞ ≤ 1(n + 1)!∥∥ω∆∥∥∞
∥∥f (n+1)∥∥

∞

1.2 Chebyshev polynomials

Definition 1.17 (Chebyshev polynomial)The Chebyshev polynomial of degree n on [−1, 1] is defined by
Tn(x) = cos(n arccos(x))

Proposition 1.18. Tn has maximum absolute value 1, and alternating signs.
Proposition 1.19. Tn has n distinct zeroes at

xk = cos(2k − 12n π
) for k = 1, . . . , n

Lemma 1.20. The Chebyshev polynomials satisfies the recurrence relation
T0(x) ≡ 1
T1(x) ≡ x

Tn+1(x) ≡ 2xTn(x) − Tn−1(x)
Proof. Substitute x = cos(θ) into cos((n + 1)θ) − cos((n − 1)θ) = 2 cos(θ) cos(nθ).

Corollary 1.21. Tn has degree n, and leading coefficient 2n−1.
Theorem 1.22. Let γn = 2−(n−1). Then among all monic polynomials with degree n, γnTn has the smallest
L∞ norm over [−1, 1]. That is,

inf
p∈Pn monic

∥∥p
∥∥

∞ = γn
∥∥Tn
∥∥

∞

Proof. Suppose q ∈ Pn monic, with ∥∥q
∥∥

∞ < γn. Consider r = γTn − q. Then r ∈ Pn−1. Furthermore,at tk = cos(πk
n
), k = 0, . . . n, γnTn(tk ) = (−1)kγn. Since ∥∥q

∥∥
∞ < γn, we must have that sign(r(tk )) =sign(γn(Tk )) = (−1)k . But this means that r has at least n zeroes in [−1, 1]. Contradiction as r ∈ Pn−1.
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Corollary 1.23. For a set of n interpolating points ∆, we have that12n ≤
∥∥ω∆∥∥∞

Theorem 1.24. For f ∈ Cn+1[−1, 1], the best choice of approximation points is
∆ = {cos(2k + 12n + 2π

) : k = 0, . . . , n
}

which achieves the above bound, and we have that∥∥e∆∥∥∞ = ∥∥f − p∆∥∥∞ ≤ 12n(n + 1)!∥∥f (n+1)∥∥
∞

1.3 Orthogonal polynomials

Definition 1.25 (Inner product)Let w ∈ C [a, b], w > 0. Then we have an inner product on C [a, b] defined by
⟨f , g⟩ = ⟨f , g⟩w = ∫ b

a
f (x)g(x)w(x)dx

Definition 1.26 (n-th orthogonal polynomial)
Qn ∈ Pn is an n-the degree orthogonal polynomial if for all p ∈ Pn−1, ⟨Qn, p⟩ = 0.
Lemma 1.27. There exists a unique orthonormal basis Q0, Q1, Q2, . . . of monic polynomials such thatdeg(Qn) = n.

Proof. Existence follows by applying Gram-Schmidt to 1, x, x2, . . .. For uniqueness, suppose we have Qn and
Q̃n. Then we note that 〈

Qn − Q̃n, Qn − Q̃n

〉 = 〈Qn, Qn − Q̃n

〉
−
〈

Q̃n, Qn − Q̃n

〉 = 0
Since Qn − Q̃n has degree n − 1. So Qn = Q̃n.

Theorem 1.28 (Three term recurrence). Monic orthogonal polynomials satisfy the relation
Qn+1(x) = (x − an)Qn(x) − bnQn−1(x)where Q−1(x) = 0, Q0(x) = 1 and

an = ⟨xQn, Qn⟩∥∥Qn
∥∥2 and bn = ∥∥Qn

∥∥2∥∥Qn−1∥∥2

Proof. Since the Qi form an orthonormal basis, we have that
xQn(x) = n+1∑

k=0 ckQk (x) where ck = ⟨xQn, Qk⟩∥∥Qk
∥∥2 = ⟨Qn, xQk⟩∥∥Qk

∥∥2
Then we have the follwoing cases.
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• k = n + 1 gives cn+1 = 1.• k = n gives cn = an by definition.• k = n − 1 gives us that ⟨Qn, xQn−1⟩ = ⟨Qn, Qn + (xQn−1 − Qn)⟩ = ⟨Qn, Qn⟩ as xQn−1 − Qn ∈ Pn−1.• k ≤ n − 2 has xQk ∈ Pn−1, so ⟨Qn, xQk⟩ = 0.
This then gives us that xQn(x) = Qn+1(x) + anQn(x) + bnQn−1(x).

Proposition 1.29. Suppose Qn+1 is orthogonal to all pn ∈ Pn on [a, b]. Then all of the zeroes of Qn+1are distinct and lie within the interval (a, b).
Proof. Let k be the number of sign changes of Qn+1 in (a, b). Suppose for contradiction k ≤ n. If k = 0, set
pk = 1, otherwise, let pk (x) = ∏k

i=1(x − ti) where the ti are where Qn+1 changes signs. Then ⟨Qn+1, pk⟩ = 0,as pk ∈ Pk ≤ Pn. On the other hand, by construction pkQn+1 does not change sign on (a, b), so
|⟨Qn+1, pk⟩| = ∣∣∣∣∣∫ b

a
Qn+1(x)pk (x)w(x)dx

∣∣∣∣∣ = ∫ b

a
|Qn+1(x)pk (x)|w(x)dx > 0

Contradiction. So k ≥ n + 1.
1.4 Least squares polynomial fitting

Theorem 1.30 (Least squares polynomial). Suppose Q0, . . . , Qn are an orthogonal basis for Pn, f ∈ C [a, v ],the least squares approximant p ∈ Pn for f is given by
p = n∑

k=0 ckQk where ck = ⟨f , Qk⟩∥∥Qk
∥∥2

and the error is given by
∥∥f − p

∥∥2 = ∥∥f
∥∥2 −

n∑
k=0

⟨f , Qk⟩2∥∥Qk
∥∥2 = ∥∥f

∥∥2 −
∥∥p
∥∥2

Proof. Since the Qk form a basis, for c = (c0, . . . , cn), let pc ∈ Pn where
pc = n∑

k=0 ckQk

Then define the function F : Rn+1 → R by
F (c) = ⟨f − pc, f − pc⟩ = 〈f −

n∑
k=0 ckQk , f −

n∑
k=0 ckQk

〉 = ∥∥f
∥∥2 − 2 n∑

k=0 ck ⟨f , Qk⟩ + n∑
k=0 c2

k
∥∥Qk

∥∥2

This is a quadratic in each ck , hence convex, so the minima is achieved when
∂F (c)
∂ck

= −2 ⟨f , Qk⟩ + 2ck
∥∥Qk

∥∥2 = 0
Substituting gives the required result. The expression for the error is given by this and orthogonality.

Theorem 1.31 (Parseval). Suppose we have a compact interval [a, b] for which we are approximating in.Then
6



∞∑
k=0

⟨f , Qk⟩2∥∥Qk
∥∥2 = ∥∥f

∥∥2

Proof. By the Weierstrass approximation theorem,
lim

n→∞
inf

p∈Pn

∥∥f − p
∥∥2 → 0

2 Approximation of linear functionals

Definition 2.1 (Linear functional)Given a real vector space V , we call the elements of the dual space V ∗ = Hom(V ,R) a linear functional.
Definition 2.2 (Interpolating formula)Given a linear functional λ : Cn+1[a, b] → R, distinct interpolating points x0, . . . , xn ∈ [a, b], we define theinterpolating formula

λ(f ) ≈
n∑

i=0 λ(ℓi)f (xi)

Definition 2.3 (Exact)Given a linear functional λ : Cn+1[a, b] → R, points x0, . . . , xn ∈ [a, b] distinct, the approximation
λ(f ) ≈

n∑
i=0 aif (xi)

is exact on Pn if for all p ∈ Pn, the above is an equality.
Proposition 2.4. An approximation is exact on Pn if and only if it is interpolating.

Proof. By definition, an interpolating formula is exact. Conversely, considering the basis ℓi of Pn, we get that
ai = λ(ℓi).
2.1 Numerical integration

Definition 2.5 (Quadrature)For a weight function w > 0, we have the quadrature
λ(f ) = ∫ b

a
f (x)w(x)dx ≈

n∑
i=0 aif (xi)

with nodes (xi) and weights (ai).
Proposition 2.6. No quadrature rule with n + 1 nodes is exact on Pm for m ≥ 2n + 2.
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Proof. Let p(x) = ∏(x − xi)2 ∈ P2n+2. Then λ(p) > 0, but any quadrature will be zero.
Theorem 2.7. Suppose a quadrature with nodes x0, . . . , xn is exact (i.e. interpolating) on Pn. Then it isexact on P2n+1 if and only if x0, . . . , xn are the zeroes of the (n + 1)-st orthogonal polynomial Qn+1.

Proof. Suppose a quadrature with nodes x0, . . . , xn is exact for all p ∈ P2n+1, let Qn+1(x) = ∏(x − xi) ∈ Pn+1,taking any qn ∈ Pn, we find that
⟨Qn+1(x), qn(x)⟩ = ∫ b

a
Qn+1(x)qn(x)w(x)dx = n∑

i=0 aiQn+1(xi)qn(xi) = 0
So Qn+1 is orthogonal to all qn ∈ Pn. On the other hand, suppose Qn+1 has zeroes at x0, . . . , xn. Givenany p2n+1 ∈ P2n+1, we have qn, rn ∈ Pn such that

p2n+1 = Qn+1qn + rnSince Qn+1 is orthogonal to qn, we have that
I(p2n+1) = ∫ b

a
p2n+1(x)w(x)dx = ∫ b

a
rn(x)w(x)dx = I(rn)

On the other hand, since Qn+1(xi) = 0 for all i, we have that
n∑

i=0 aip2n+1(xi) = n∑
i=1 aisn(xi) = I(sn)

since the approximation is exact on Pn.
Definition 2.8 (Gaussian quadrature)A quadrature with n + 1 nodes and is exact on P2n+1 is called Gaussian quadrature.

2.2 Approximation error

Definition 2.9 (Approximation error)Given a linear functional λ, and an approximation formula
λ(f ) ≈

n∑
i=0 aif (xi)

define the approximation error
eλ(f ) = λ(f ) −

n∑
i=0 aif (xi)

Definition 2.10 (Peano kernel)
Let gt (x) = (x − t)n+ = {(x − t)n x ≥ t0 x < t

. Then the Peano kernel for a linear functional λ is
Kλ(t) = λ(gt )
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Theorem 2.11 (Peano kernel theorem (General functional)). Suppose λ is a linear functional on Cn+1[a, b]such that we can exchange λ and ∫ b
a . Furthermore, suppose λ vanishes on Pn. Then we have an integralrepresentation

λ(f ) = 1
n!
∫ b

a
Kλ(t)f (n+1)(t)dt

Proof. Consider the Taylor series of f ∈ C [a, b] with integral remainder
f (x) = n∑

k=0
1
n! (x − a)nf (n)(a) + R (x) where R (x) = 1

n!
∫ x

a
(x − t)nf (n+1)(t)dt

Note that we can also write
qn(x) = n∑

k=0
1
n! (x − a)nf (n)(a) and R (x) = 1

n!
∫ b

a
(x − t)n+f (n+1)(t)dt

Since λ vanishes on Pn, λ(qn) = 0. So interchanging λ and ∫ b
a we have

λ(f ) = λ(R ) = 1
n!
∫ b

a
Kλ(t)f (n+1)(t)dt

Proposition 2.12. Let Λ0 be the set of linear functionals on Cn+1[a, b] spanned by
µ(f ) = f (k )(x) for 0 ≤ k ≤ n, x ∈ [a, b]and

µ(f ) = ∫ x

a
f (t)w(t)dt for x ∈ [a, b]

Then for any λ ∈ Λ0, we can exchange λ and ∫ b
a .

Theorem 2.13. Suppose λ ∈ Λ0, λ(f ) ≈
∑m

i=0 aif (xi) is an approximation which is exact on Pn. Then theerror functional satisfies
|eλ(f )| ≤ cλ

∥∥f (n+1)∥∥
∞ where cλ = 1

n!∥∥Keλ

∥∥1Furthermore, equality is achieved for some f ∈ Cn+1[a, b].
Proof.

|eλ| = 1
n!
∣∣∣∣∣∫ b

a
Keλ (t)f (n+1)(t)dt

∣∣∣∣∣ ≤ 1
n!∥∥Keλ

∥∥1∥∥f (n+1)∥∥
∞

Equality holds if we take (a sequence of functions converging to) the function f0 with f (n+1)0 (t) = sign(Keλ (t)).
3 Ordinary differential equations
3.1 Single step methods
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Definition 3.1 (Single step method)For a first order differential equation
y′ = f (t, y) 0 ≤ t ≤ Tand time step tn = nh, a single step method is

y(tn+1) ≈ yn+1 = φ(tn, yn)That is, yn+1 depends only on tn, h and yn.
Definition 3.2 (Euler method)The Euler method is

yn+1 = yn + hf (tn, yn)
Definition 3.3 (Convergence)Fix T > 0, and suppose for all h > 0, we have a sequence yn = yn,h for 0 ≤ n ≤ ⌊T /h⌋. Then we saythe method converges if

max
n

∥∥yn − y(tn)∥∥ → 0
as h → 0.

Theorem 3.4. Suppose f is λ-Lipschitz in the second argument (as in the statement of Picard-Lindelöf),and y is C 2. Then there exists c0 such that the error en = y(tn) − yn satisfies ∥∥en
∥∥ ≤ c0h. In particular,the Euler method converges.

Proof. Expanding y about tn we get that
y(tn+1) = y(tn) + hf (tn, y(tn)) + 12h2y′′(τn)

where τn ∈ (tn, tn+1). Subtracting the Euler method from this, and defining c = 12∥∥y′′∥∥
∞, we get that∥∥en+1∥∥ ≤

∥∥en
∥∥ + h

∥∥f (tn, y(tn)) − f (tn, yn)∥∥ + ch2 ≤ (1 + λh)∥∥en
∥∥ + ch2

Inductively, we have that
∥∥en+m

∥∥ ≤ (1 + λh)m∥∥en
∥∥ + ch2 m−1∑

i=0 (1 + λh)i
Since e0 = 0, setting n = 0 in the above, we get that

∥∥en
∥∥ ≤ ch2 n−1∑

i=0 (1 + λh)i = ch2 (1 + λh)n − 1(1 + λh) − 1 ≤ ch
λ (1 + λh)n ≤ ceλT

λ h

since 1 + λh ≤ eλh and nh ≤ T .
Definition 3.5 (Local truncation error)The local truncation error of a numerical method yn+1 = φh(tn, y0, . . . , yn) is the error of the method onthe true solution, that is,
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ηn+1 = y(tn+1) − φh(tn, y(t0), . . . , y(tn))
Definition 3.6 (Order)The order of a method is the largest integer p ≥ 0 such that

ηn+1 = O
(
hp+1)

for all h > 0, n ≥ 0 and f sufficiently smooth.
Definition 3.7 (Theta methods)For θ ∈ [0, 1], methods of the form

yn+1 = yn + h (θf (tn, yn) + (1 − θ)f (tn+1, yn+1))are called theta methods.
Definition 3.8 (Implicit)A method is implicit if for each time step we need to solve a system of algebraic equations to find thesolution. Otherwise, the method is called explicit.
Proposition 3.9. If θ < 1, then the theta method is implicit. If θ = 1, we recover the Euler method.
Remark 3.10. θ = 0 is called the backwards Euler method, and θ = 1/2 is called the trapezoidal rule.
Proposition 3.11. The local truncation error of the theta method is(

θ − 12
)

h2y′′(tn) + (12θ − 13
)

h3y′′′(tn) + O
(
h4)

Thus the theta method has order 1, except the trapezoidal rule has order 2.
3.2 Multistep methods

Definition 3.12 (Multistep method)For s ≥ 1, we say that
s∑

m=0 amyn+m = h
s∑

m=0 bmfn+m

where as = 1 and fn+m = f (tn+m, yn+m) is an s-step method.
Proposition 3.13. The method is implicit if bs ̸= 0, and explicit if bs = 0.
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Theorem 3.14. A multistep method has order p ≥ 1 if and only if
s∑

m=0 am = 0 and s∑
m=0 mkam = k

s∑
m=0 mk−1bm for k = 1, . . . , p

Proof. Substituting the exact solution and expanding into the the Taylor series about tn, we have that
s∑

m=0 amy(tn+m) − h
s∑

m=0 bmy′(tn+m) = s∑
m=0 am

∞∑
k=0

(mh)k
k ! y(k )(tn) − h

s∑
m=0 bm

∞∑
k=1

(mh)k−1(k − 1)! y(k )(tn)
= ( s∑

m=0 am

)
y(tn) + ∞∑

k=1
hk

k !
( s∑

m=0 mkam − k
s∑

m=0 mk−1bm

)
y(k )(tn)

For the method to be order p, it is necessary and sufficient for the coefficients of the hk to be zero for
k ≤ p.

Definition 3.15 (Characteristic polynomials)Given a s-step method, define the characteristic polynomials
ρ(w) = s∑

m=0 amwm and σ (w) = s∑
m=0 bmwm

Theorem 3.16. The multistep method is order p ≥ 1 if and only if
ρ(ez ) − zσ (ez ) = O

(
zp+1)

Proof. Expanding into Taylor series, we have that
ρ(ez ) − zσ (ez ) = s∑

m=0 amemz − z
s∑

m=0 bmemz

= s∑
m=0 am

∞∑
k=0

mkzk

k ! − z
s∑

m=0 bm

∞∑
k=0

mkzk

k !
= ( s∑

m=0 am

)+ ∞∑
k=1

zk

k !
( s∑

m=0 mkam − k
s∑

m=0 mk−1bm

)
and the result follows by the previous theorem.

Definition 3.17 (Convergence)For the multistep method, define the errors of the initial steps and the method respectively:
ê(h) = max0≤i<s

∥∥y(ti) − yi
∥∥ and e(h) = max0≤i≤N

∥∥y(ti) − yi
∥∥

We say that a method is convergent if for every ODE y′ = f (t, y) where f is Lipschitz in the secondargument, if h → 0 and ê(h) → 0, then e(h) → 0.
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Definition 3.18 (Root condition)For a polynomial p, we say that p satisfies the root condition if all roots have modulus at most 1, and theroots with modulus 1 are simple.
Theorem 3.19 (Dahlquist equivalence). The multistep method is convergent if and only if it is order p ≥ 1and ρ satisfies the root condition.
Proposition 3.20. For an arbitrary degree s polynomial satisfying the root condition and has ρ(1) = 0,define

σ (z) = ρ(w)log(w) + {O
(

|w − 1|s+1) implicit method
O
(
|w − 1|s

) explicit methodThen this defines a multistep method.
Definition 3.21 (Backwards differentiation formula)A backwards differentiation formula is a s-step, order s multistep method with σ (w) = ws. That is,

s∑
m=0 amyn+m = hfn+s

Lemma 3.22. The characteristic polynomial ρ of a BDF has the form
ρ(w) = s∑

k=1
1
k ws−k (w − 1)k

Proof. Setting w = ez , we need to show that
ρ(ez ) − zσ (ez ) = O

(
zs+1)

which becomes
ρ(w) − ws log(w) + O

(
|w − 1|s+1)

expanding in Taylor series about 1 gives the required result.
3.3 Runge-Kutta methods

Definition 3.23 (Explicit Runge-Kutta scheme)An s-stage Runge-Kutta scheme is a method of the form
yn+1 = yn + h

s∑
i=1 biki

where

13



ki = f

tn + cih, yn + h
i−1∑
j=1 aijkj



Definition 3.24 (Runge-Kutta methods)A general s-stage Runge-Kutta scheme is a method of the form
yn+1 = yn + h

s∑
i=1 biki

where
ki = f

tn + cih, yn + h
s∑

j=1 aijkj


an explicit method has aij = 0 for i ≤ j .

3.4 Stiffness and stability

Definition 3.25 (Stiff ODE)An ODE y′ = f (t, y) is stiff if (for some numerical methods) we need to reduce h for stability beyond therequirements for accuracy.
Definition 3.26 (Linear stability domain)Suppose a numerical method with constant h, applied to the ODE y′ = λy; y(0) = 1 generates thesequence (yn). We call the set

D = {z = λh : lim
n→∞

yn = 0}
the linear stability domain of the method.

Definition 3.27 (A-stable)A numerical method is A-stable if
{z : Re(z) < 0} ⊆ D

Proposition 3.28. The set of λ ∈ C such that y(t) = eλt → 0 as t → ∞ is {z : Re(z) < 0}. Thus anumerical method is A-stable if and only if the numerical solution exhibits the same behaviour.
Remark 3.29. If a method is A-stable, then we can just set the step size to fit the accuracy requirements and we donot need to decrease it further for stability.
Proposition 3.30. For a multistep method with characteristic polynomials ρ, σ , z = λh is in the linearstability domain if and only if the roots of the characteristic equation

14



p(x) = ρ(x) − zσ (x) = s∑
m=0 amxm − z

s∑
m=0 bmxm = 0

are less than one in modulus.
Proof. z = λh ∈ D if the sequence yn which is the solution to the recurrence relation

s∑
m=0 amyn+m = λh

s∑
m=0 bmyn+m

satisfies yn → 0.
Proposition 3.31. ∂D can be parametrised by the curve z(t) = ρ(eit )

σ (eit )
Proof. If z ∈ ∂D, then the charactertistic equation has a root with modulus one, say eit . Substituting andrearranging gives the required result.

Theorem 3.32 (Second Dahlquist barrier). No multistep method of order p ≥ 3 is A-stable.
Remark 3.33. The trapezoidal rule has p = 2 and is A-stable.
Definition 3.34 (A0-stable)A numerical method is A0 stable if we have α > 0 such that{

−reiθ : θ ∈ (−α, α)} ⊆ D

Theorem 3.35. All convergent BDF methods (i.e. order ≤ 6) are A0-stable.
Proposition 3.36. No explicit Runge-Kutta method is A0-stable. Hence there are no A-stable RK methods.

3.5 Implementation

Definition 3.37 (Milne device)The Milne device consists of a pair of multistep methods of the same order, one explicit (predictor, P) andone implicit (corrector, C).
Proposition 3.38. Suppose the predictor has truncation error (say)

y(tn+1) − yP
n+1 = cPhp+1y(p+1)(tn) + O

(
hp+2)

and the corrector has truncation error (say)
y(tn+1) − yC

n+1 = cC hp+1y(p+1)(tn) + O
(
hp+2)

Then we have that
15



hp+1y(p+1)(tn) ≈ yC
n+1 − yP

n+1
cC − cPand

y(tn+1) − yC
n+1 ≈ cC

cC − cP

(
yC

n+1 − yP
n+1)

Definition 3.39 (Embedded RK)An embedded RK contains a s-stage (explicit) RK method yn and a s + m stage (explicit) RK method ỹn,where the first s stages of yn and ỹn are the same. Then we have the error estimate
y(tn+1) − yn+1 ≈ ỹn+1 − yn+1

4 Numerical linear algebra
4.1 Sparse and band matrices

Definition 4.1 (Sparse matrix)A matrix A is sparse if nearly all elements are zero.
Definition 4.2 (Band matrix)A matrix A is a band matrix with bandwidth r if aij = 0 for all |i − j| > r .

4.2 LU factorisation

Definition 4.3 (LU factorisation)For a nonsingular matrix A, the LU factorisation of A is
A = LUwhere L is lower triangular and has diagonal entries one, and U is upper triangular.

Proposition 4.4. Suppose A = LU , lk is the k-th column of L, and uT
k is the k-th row of U . Let A = A(0)and define

A(k ) = A(k−1) − lkuT
kThen uT

k is the k-th row of A(k−1) and a(k−1)
kk · lk is the k-th column of A(k−1).

Definition 4.5 (Column pivoting)In each stage of the LU factorisation (i.e. suppose we already have A(k−1)), exchange two rows of A(k−1)such that the element with the largest magnitude in the k-th column is at the (k, k ) position. The result is
PA = LU ⇐⇒ A = PTLU

16



where P is a permutation matrix (which is orthogonal).
Proposition 4.6. If column pivoting is used to obtain A = PTLU , then every element of L has modulus atmost one.

Proof. Immediate from a(k−1)
kk · lk being the k-th column of A(k−1).

Definition 4.7 (Strictly regular)A square matrix A is strictly regular is the leading submatrices are all nonsingular.
Theorem 4.8. A has an LU factorisation if and only if it is strictly regular.
Theorem 4.9. The LU factorisation, if it exists, is unique.
Corollary 4.10. A strictly regular matrix A has a unique factorisation A = LDU where L and U have unitdiagonals, and D is diagonal.
Corollary 4.11. A strictly regular symmetric matrix has a unique factorisation A = LDLT .
Definition 4.12 (Symmetric positive definite)A matrix A is SPD if it is symmetric and positive definite.
Theorem 4.13. Let A ∈ Matn(R) be symmetric, it is positive definite if and only if it has a LDLTfactorisation, where all of the diagonal elements of D are positive.

Proof. Suppose such a factorisation exists. Then it is clear that A is SPD. On the other hand, suppose A ispositive definite. Then A is strictly regular, so has a LDLT factorisation, and clearly the diagonal elements areall positive.
Definition 4.14 (Cholesky factorisation)A SPD matrix has a factorisation

A = L̃L̃T
where L̃ is a lower triangular matrix.

Definition 4.15 (Strictly diagonally dominant)A matrix A is strictly diagonally dominant by rows if for all i,
17



|aii| >
∑
j ̸=i

∣∣aij
∣∣

Theorem 4.16. If A is strictly regular by rows, then it is strictly regular.
Theorem 4.17. Suppose A = LU . Then all leading zeroes in the rows of A to the left of the diagonal areinherited by L. Similarly, all leading zeroes in the columns of A above the diagonal are inherited by U .
Corollary 4.18. If A is a band matrix with bandwidth r , then so are L and U .

4.3 QR factorisation

Definition 4.19 (QR factorisation)The QR factorisation of a m × n matrix A is A = QR , where Q m × m orthogonal, and R m × n uppertriangular.
Theorem 4.20. Every matrix A has a QR factorisation. If A is square and nonsingular, then a factorisation
A = QR where the diagonal entries of R are positive is unique.

Proof. For existence we will consider three different algorithms in this section. For uniqueness, let A = QRbe nonsingular. Then ATA = RTR is SPD, so has a unique Cholesky decompositiion A = L̃L̃T , with L̃ having apositive main diagonal. So RT = L̃ is unique.
Proposition 4.21. Suppose A square nonsingular. Then by running the Gram-Schmidt algorithm on thecolumns of A we obtain a QR factorisation.
Definition 4.22 (Givens rotations)Given p, q, a, b, define the Givens rotation

Ω[p,q]
a,b =



1 . . .
c s. . .

−s c . . . 1


where c = a√

a2+b2 and s = b√
a2+b2 .
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Proposition 4.23.

Ω[p,q]
a,b



x1...
a...
b...
xn


=



x1...√
a2 + b2...0...

xn



Proposition 4.24. Suppose A is an m × n matrix, 1 ≤ p ≤ q ≤ m, Ã = Ω[p,q]
a,b A, where a = app and

b = aqp. Then ãqp = 0. Furthermore, all other rows are not changed.
Theorem 4.25. For any matrix A, there exists a sequence of Givens rotations such that

R = (Ω[m−1,m]) · · ·
(Ω[2,m] · · · Ω[2,3])(Ω[1,m] · · · Ω[1,2])A

is upper triangular.
Definition 4.26 ((Householder) Reflection)Given a nonzero vector u ∈ Rn, reflection in u has matrix

Hu = I − 2∥u∥2 uuT

Proposition 4.27. For any vectors a, b ∈ Rn, with ∥a∥ = ∥∥b
∥∥, let u = a − b. Then Hua = b.

Corollary 4.28. For any nonzero vector a, u = a ∓ ∥a∥ei has Hua = ∓∥a∥ei.
Remark 4.29. We prefer − for calculations by hand, + for numerical computations for stability reasons.
Theorem 4.30. For any matrix A, there exists a sequence of Householder reflections such that

R = Hn−1 · · · H2H1Ais an upper triangular matrix.
Proof. By recursion. H1 mapping the first column to ∥a∥e1 means H1A has as the first column ∥a∥e1.Suppose the first k − 1 columns of C = Hk−1 · · · H1A are upper triangular. Let c be the k-th column of C .Let γ2 = ∑m

i=k c2
i , u = c − γek . Then the last m − k entries of Huc are zero.

4.4 Least squares
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Definition 4.31 (Ordinary least squares)Given A ∈ Rm×n, y ∈ Rm, we wish to find
c∗ = argmin

c∈Rn

∥∥Ac − y
∥∥

Theorem 4.32. c∗ ∈ Rn is a solution to the OLS problem if and only if AT(Ac∗ − y) = 0.
Proof. If c∗ is a solution, then it minimises the quadratic form

F (x) = ⟨Ac − y, Ac − y⟩ = cTATAc − 2cTATy + yTyThen ∇F = 2ATAc − ATy = 0 at c = c∗.Conversely, if AT(Ac∗ − y) = 0. Let c = c∗ + d, and consider the quadratic form
G(d) = ∥∥Ac − y

∥∥2
= ⟨Ac − y, Ac − y⟩= ⟨Ad + (Ac∗ − y), Ad + (Ac∗ − y)⟩= ∥∥Ad

∥∥2 + 2〈AT(Ac∗ − y), d
〉 + ∥∥Ac∗ − y

∥∥2
= ∥∥Ad

∥∥2 + ∥∥Ac∗ − y
∥∥2

Then d minimises G if and only if G(d) ∈ ker(A). In particular, d = 0, so c = c∗ is a minimiser of F .
Corollary 4.33. If ker(A) = 0, then the minimiser is unique.

Proof. From proof of the above theorem.
Corollary 4.34. c∗ is optimal if and only if Ac∗ − y is orthogonal to all the columns of A, or equivalently,
Ac∗ is the projection of y onto the image of A.
Definition 4.35 (Normal equations)The normal equations are

ATAc∗ = ATywhere ATA is known as the Gram matrix, and c∗ is the normal solution.
Proposition 4.36. If A has linearly independent columns, and thus ker(A) = 0, then ATA is invertible, andthe solution is given by

c∗ = (ATA)−1ATywhere (ATA)−1AT is the Penrose-Moore pseudoinverse of A.
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Proposition 4.37. Suppose A = QR where Q orthogonal and R upper triangular. Then∥∥Ac − y
∥∥ = ∥∥QT(Ac − y)∥∥ = ∥∥Rc − QTy

∥∥
Proposition 4.38. Suppose A = QR , where rank(R ) = rank(A) = n. Then the bottom m − n rows of Rare zero, and a solution can be found by considering the first n equations of

Rc = QTywhich is nonsingular.
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