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1 Polynomial interpolation

Definition 1.1 (Fundamental Lagrange polynomial)
Suppose xg, . .., X, € [a, b] distinct, i € {0, ..., n}, then the i-th fundamental Lagrange polynomial is

=12

j#i
Proposition 1.2.
gi(Xj) 61]
Definition 1.3 (Nodal polynomial)
Suppose xg, . . ., x, € [a, b] distinet, i € {0, ..., n}, then the nodal polynomial is



Proposition 1.4.

Theorem 1.5. Suppose f :[a,b] > R, xo, ..., X, € [a, b] distinct. Then there exists unique p € P, such
that p(x;) = f(x;) for all i.

Proof Let

px) = > flx)(x)
=0

Then this satisfies the property required. On the other hand, if p and g are both polynomials which satisfy
the required property, then p — g has degree at most n and n + 1 roots, so must be identically zero. O

Definition 1.6 (Divided difference)

Suppose f :]a,b] = R, x, ..., xx € [a, b] distinct. Then the divided difference f[x, ..., xi| is the leading
coefficient of the polynomial py € P which interpolates f at those points.

Theorem 1.7 (Newton formula). Suppose f :[a,b] = R, xo, ..., xp € la, b] distinct, p, € P, interpolates
f at those points. Then it can be written in Newton form
n k—1
pa(x) = Z flxo, ..., xe]| [(x = x0)
k=0 i=0
Proof. By induction. n = 0 is trivial. Note that p, and p,;+1 agree on xg, ..., x, and has degree (at most)

n -+ 1, so we have that

Pas1(x) = palx) = Angr [ ](x = x)
i=0

Suffices to show A,11 = flxo, ..., Xp+1). By considering the degree x"*' term on the left and right hand
sides, and using uniqueness we get the required result. O
Theorem 1.8 (Recurrence relation for divided differences). Suppose xo, . .., x¢ € [a, b] distinct, with k > 1,

we have that

flxa, ..., — flxo, ..., -
o, ] = [x1 x¢] — fxo X—1]
Xk — X0
Proof. Let go, g1 € Pk—1 be polynomials that interpolate f at xp, .. ., Xe—1 and xq, ..., xy respectively. Then let
X — X0 Xk — X
plx) = o q1(x) + P qo(x)
Then p interpolates f at xp, . . ., X, and computing the leading coefficients on both sides we get the required
result. O



Definition 1.9 (Horner form)
For a polynomial p(x) = a,x" + - - - + ao, the Horner form of the polynomial is

ao + x(a1 + (a2 + x(a3 + - + x(a,—1 + xa,))))

1.1  Error bounds

Definition 1.10 (Interpolation error)
Suppose f :[a,b] = R, p, € P, interpolates f at xg, .. ., xp € [a, b] distinct, the interpolation error is

en(X) = f(X) - pl?(X)

en(x) = f(x) = palx) = Mlxo, .., X, XJ(x)
Proof. Suppose p,4+1 interpolates f at xp, ..., Xn, Xn+1 = X. Then noting that p,41(x) = f(x) in the Newton
form gives the required result. O
Lemma 1.12. Suppose g € C¥a, b] has k + ¢ distinct zeroes. Then g} has at least ¢ distinct zeroes in
[a, b]
O

Proof. By Rolle and induction.

Theorem 1.13. Suppose xp, . . ., xc € [a, b] distinct, and @ = min; x;, b = max; x;, f € C¥[a, b]. Then there
exists & € (a, b) such that
o] = F(8)
(I k| — k‘

Proof. Suppose p € Py interpolates f at x, .. ., xi. Then e = f — p has at least k + 1 distinct zeroes in [a, b,
so by Rolle’s theorem, f*) — p) must have a root & € (a, b). But p*) = klf[xo, .. ., X O

Theorem 1.14. Suppose f € C"*'[a, b], and p, € P, interpolates f at xg, . . ., X, € [a, b] distinct. Then
for every x € [a, b], there exists & € [a, b] such that
1

en(X) = f(x) — palx) = CESIL w(x)f (&)

Proof If x = x; for some i, then both sides are zero, and we are done. Otherwise,

en(x) = f(x) = pa(x) = flxo, ..., Xn, X|w(x) = w(x)f" (&)

from the previous theorems.

Corollary 1.15. For all x, we have that



1
|9n(X)| = |f(X) 7p”(X)| < m

w7V

Corollary 1.16. For any set A of n + 1 interpolation points, pa interpolating polynomial for f in A, we
have that

1
lealloe = [If = palls < meAHOOHf(nH)HOO

1.2 Chebyshev polynomials

Definition 1.17 (Chebyshev polynomial)
The Chebyshev polynomial of degree n on [—1,1] is defined by

T, (x) = cos(n arccos(x))
Proposition 1.18. T, has maximum absolute value 1, and alternating signs.

Proposition 1.19. T, has n distinct zeroes at

2/<—1]T
2n

xk=cos(

Lemma 1.20. The Chebyshev polynomials satisfies the recurrence relation

To(x) =1
Ti(x) = x
T (x) = 2xTh(x) — Thoa(x)
Proof. Substitute x = cos(6) into cos((n + 1)8) — cos((n — 1)6) = 2 cos(6) cos(nH). O

Corollary 1.21. T, has degree n, and leading coefficient 27",

Theorem 1.22. Let y, = 27~V Then among all monic polynomials with degree n, y, T, has the smallest
L* norm over [—1,1]. That is,

inf NPl = voll Tallos

pEP, monic

Proof Suppose g € P, monic, with Hquo < yn. Consider r = yT, — qg. Then r € P,_1. Furthermore,
at fr = cos(Z), k = 0,...n, yaTu(te) = (=1)ys. Since ||q]|., < v we must have that sign(r(t)) =
sign(y,(Tx)) = (—1)*. But this means that r has at least n zeroes in [—1, 1]. Contradiction as r € P, . O



Corollary 1.23. For a set of n interpolating points A, we have that

Theorem 1.24. For f € C"*'[—1,1], the best choice of approximation points is

2k +1
A—{cos(2n+2n)k—0 AAAAA n}

which achieves the above bound, and we have that

[ee]

1 n
HGAHOO = Hf_PAHOO < m“f( +1)H

1.3 Orthogonal polynomials

Definition 1.25 (Inner product)
Let w € Cla, b w > 0. Then we have an inner product on Cla, b] defined by

b
(f.g) = (. ), = / F(x)g(xIwix)dx

Definition 1.26 (n-th orthogonal polynomial)
O, € P, is an n-the degree orthogonal polynomial if for all p € P,_1, (O, p) = 0.

Lemma 1.27. There exists a unique orthonormal basis Qp, Q1, Q2, ... of monic polynomials such that
deg(Q,) = n.
Proof. Existence follows by applying Gram-Schmidt to 1, x, x?, .. .. For uniqueness, suppose we have Q, and

0,. Then we note that

(00— 010, =0,) = (01,0, = 0)) = (01,0~ 0,) =0
Since O, — 0, has degree n —1. So Q, = 0,. O

Theorem 1.28 (Three term recurrence). Monic orthogonal polynomials satisfy the relation

Qn+1(X) = (X - Gn)on(x) - ann—1(X)
where Q_1(x) =0, Qp(x) =1 and

_<XQ,7,Q,7> and b, — HQ”HZ

n — 2 n — 2
(oA [re|
Proof Since the Q; form an orthonormal basis, we have that
n+1
xQp(x) = Z ckOQk(x)  where ¢, = (< Cn. sz> = <QH'XQZ/<>
an O] reaf

Then we have the follwoing cases.



e k=n+1gives chpq =1.

e k = n gives ¢, = a, by definition.

e k=n—1 gives us that (Q,, xQn_1) = (Qp, Op + (xOp—1 — Qp)) = (0,, Oy) as xQn—1 — Q, € P,_1.
e k< n—2has xQr €P,_1,50 (Q,, xOQ) =0.

This then gives us that xQ,(X) = Qns1(x) + an On(x) + by On—1(x). O

Proposition 1.29. Suppose Q,.1 is orthogonal to all p, € P, on [a, b]. Then all of the zeroes of Q44
are distinct and lie within the interval (a, b).

Proof. Let k be the number of sign changes of Q,11 in (a, b). Suppose for contradiction k < n. If k =0, set
prx =1, otherwise, let py(x) = |_|[k:1 (x — t;) where the t; are where Q,41 changes signs. Then {(Qp+1, px) =0,
as pr € Pr < P,. On the other hand, by construction pxQ,+1 does not change sign on (a, b), so

b
(O, pi)| = - / |0n1(x)pi () W) dx > 0

b
j O 1(X)px (X)W (x)dlx

Contradiction. So k > n + 1. O

1.4 Least squares polynomial fitting

Theorem 1.30 (Least squares polynomial). Suppose Qy, . . ., O, are an orthogonal basis for P, f € C[a, V],
the least squares approximant p € P, for f is given by

p= Z kO where ¢ = {f. Qk2>
k=0 HQkH

and the error is given by

n f,Q 2
Ir=pl? = = 3 T2 = P = o

Proof. Since the Qy form a basis, for ¢ = (¢, . . ., cn) let pc € P, where

pec= Z Ok
k=0
Then define the function F : R™*" — R by

n n

Fle)=(f —pef—pe) = <f—chQk,f— chok> = [IfIF =2 atf. o)+ cdflodf
k=0 k=0 k=0 k=0

This is a quadratic in each ¢k, hence convex, so the minima is achieved when

dF(c)
aCk

— —2(f,0) + 2|0 F =0

Substituting gives the required result. The expression for the error is given by this and orthogonality. [

Theorem 1.31 (Parseval). Suppose we have a compact interval [a, b] for which we are approximating in.
Then



Proof. By the Weierstrass approximation theorem,
2
im inf ||f—
n&n;optenpn H ,DH —0
2 Approximation of linear functionals

Definition 2.1 (Linear functional)

Given a real vector space V, we call the elements of the dual space V* = Hom(V,R) a linear functional.

Definition 2.2 (Interpolating formula)

Given a linear functional A : C"*'[a, b] — R, distinct interpolating points xp, . . ., xp € [a, b], we define the
interpolating formula

Alf) =y A8)f(x)
i=0

Definition 2.3 (Exact)

Given a linear functional A : C"*'[a, b] — R, points xo, . . ., xn € [a, b] distinct, the approximation
M)~ aif(x)
i=0

is exact on P, if for all p € P,, the above is an equality.

Proposition 2.4. An approximation is exact on P, if and only if it is interpolating.

Proof. By definition, an interpolating formula is exact. Conversely, considering the basis ¢; of P,, we get that
a; = A4). O

2.1 Numerical integration

Definition 2.5 (Quadrature)
For a weight function w > 0, we have the quadrature

Af) = /b f(x)w(x)dx = i aif(x)

i=0

with nodes (x;) and weights (a;).

Proposition 2.6. No quadrature rule with n + 1 nodes is exact on P, for m > 2n + 2.



Proof Let p(x) = [](x — x;)> € P2,12. Then A(p) > 0, but any quadrature will be zero. O

Theorem 2.7. Suppose a quadrature with nodes xo, ..., X, s exact (i.e. interpolating) on P,. Then it is
exact on Pa,41 if and only if xp, . .., X, are the zeroes of the (n 4 1)-st orthogonal polynomial Q1.

Proof. Suppose a quadrature with nodes xg, . . ., x, is exact for all p € Paypq, let Qpq(x) =[x —x;) € Pria,
taking any g, € P,,, we find that

b n
(Qns1(x), qulx)) = / Or1 ()gaIWX)dx = Y 0,0p1(x)qnlx) = O

i=0
So Q41 is orthogonal to all g, € P,. On the other hand, suppose Q,;1 has zeroes at xo, .. ., x,. Given
any pan+1 € Pany1, we have g, r, € P, such that

Pon+1 = Qn+1 dn +ry

Since Q,41 is orthogonal to g,, we have that

b b
/(,D2/7+1) :/ P2n+1(X)W(X)dX=/ r/?(X)W(X)dX: /(rn)

On the other hand, since Q,11(x;) = 0 for all i, we have that
Y aipansalx) =Y aisa(x) = I(sy)
i=0 i=1
since the approximation is exact on P,. O

Definition 2.8 (Gaussian quadrature)
A quadrature with n 4+ 1 nodes and is exact on P,,41 is called Gaussian quadrature.

2.2 Approximation error

Definition 2.9 (Approximation error)

Given a linear functional A, and an approximation formula

Af) = i aif(x)
i=0

define the approximation error

Definition 2.10 (Peano kernel)

Let gi(x) = (x — t)} = K=" x2 t. Then the Peano kernel for a linear functional A is
7 Too <t

Ki(t) = Agt)



Theorem 2.11 (Peano kernel theorem (General functional)). Suppose A is a linear functional on C"*"[a, b]
such that we can exchange A and fab. Furthermore, suppose A vanishes on P,,. Then we have an integral

representation

Alf) = ! /b Ky(t) D (t)dt

ol

Proof. Consider the Taylor series of f € Cla, b] with integral remainder

=

f(x) = Z —b— a)"f"Na) + R(x) where R(x) = nl /X(x — 1) (¢)dt

k=0

Note that we can also write

n b
qn(x) = Z l(x —a)"f"a) and R(x)= l/ (x — )L F T (¢)dt

n! n!
k=0
Since A vanishes on P,, A(g,) = 0. So interchanging A and fab we have
1 b
AMf) = A(R) = F/ K () F" () dt

Proposition 2.12. Let /Ay be the set of linear functionals on C"*'[a, b] spanned by

p(f) = fOx) for 0< k< n x&la b

and

u(f) = /X f(tyw(t)dt for x € [a,b]

Then for any A € A, we can exchange A and fab.

Theorem 2.13. Suppose A € N, A(f) = Y_", a;f(x;) is an approximation which is exact on P,. Then the

error functional satisfies

1
lex()| < C*Hf(nH)Hoo where ¢, = HHKEAM

Furthermore, equality is achieved for some f € C"*[a, b].

Proof

1
lea = —

1
n! = HHKE"

b
/ K, (t)F" D (t)dt

Al

(o]

Equality holds if we take (a sequence of functions converging to) the function fy with f(()”“)(t) = sign(Ke, (1))

3 Ordinary differential equations

3.1 Single step methods

O



Definition 3.1 (Single step method)
For a first order differential equation
y'="fltly 0<t<T
and time step t, = nh, a single step method is

Y(tas1) = Ynr1 = P(tn, Yn)
That is, y,+1 depends only on t,, h and y,.

Definition 3.2 (Euler method)
The Euler method is

Yn+1 = Yn + hf(tnv gﬂ)

Definition 3.3 (Convergence)

Fix T > 0, and suppose for all h > 0, we have a sequence y, = y,, for 0 < n < |T/h|. Then we say
the method converges if

max ||y — y(ta)]| — 0

as h — 0.

Theorem 3.4. Suppose f is A-Lipschitz in the second argument (as in the statement of Picard-Lindelof),
and y is C2. Then there exists ¢y such that the error e, = y(tn) — y, satisfies HenH < coh. In particular,
the Euler method converges.

Proof. Expanding y about ¢, we get that

Y(tns1) = y(ta) + hf(ta, y(ta)) + %hzy”(fn)

where 1, € (t,, t,41). Subtracting the Euler method from this, and defining ¢ = %Hg”Hw, we get that

lewnll < lleal + Bt yltal) = Fltn, )| + ch? < (1 4+ At Jes]| + cb?
Inductively, we have that

m—1

[entml| < (14 Ah)"|[en|| + ch? > (1 + Ah)'
i=0

Since eg = 0, setting n = 0 in the above, we get that

n—1
) T+ Ah)" =1 ch cel
Wl <eh?y (1 amyi = cp20EANT =T chg e o h
lenl < ¢ ;( ANt =ch e =y < 7 A< =3
since 1+ Ah < eand nh < T.
Definition 3.5 (Local truncation error)
The local truncation error of a numerical method y,+1 = ¢n(ts, yo. ..., Yn) is the error of the method on

the true solution, that is,

10



N1 = Y(tar1) — Gnltn, ylto), - . -, y(tn))

Definition 3.6 (Order)
The order of a method is the largest integer p > 0 such that

Nn1 = O(th)
forall h >0, n > 0 and f sufficiently smooth.

Definition 3.7 (Theta methods)
For 6 € [0, 1], methods of the form

Yn+1 = Yn + h (Qf(tn: yn) + (1 - Q)f(tn+1: yn+1))

are called theta methods.

Definition 3.8 (Implicit)
A method is implicit if for each time step we need to solve a system of algebraic equations to find the
solution. Otherwise, the method is called explicit.

Proposition 3.9. If 6 < 1, then the theta method is implicit. If & =1, we recover the Euler method.

Remark 3.10. 6 = 0 is called the backwards Euler method, and 6 = 1/2 is called the trapezoidal rule.

Proposition 3.11. The local truncation error of the theta method is
9_1 th//(t)+ 19_1 hBy///(t)+O(h4)
2 " 2 3 !

Thus the theta method has order 1, except the trapezoidal rule has order 2.

3.2 Multistep methods

Definition 3.12 (Multistep method)
For s > 1, we say that

s s
Z AmYn+m = h Z bnfoim
m=0

m=0

where as =1 and f,1n = f(them, Ynim) is an s-step method.

Proposition 3.13. The method is implicit if bs # 0, and explicit if bs = 0.

i



Theorem 3.14. A multistep method has order p > 1 if and only if

iam:O and imkan7:kimk4bm fork=1,..., p

m=0 m=0 m=0

Proof. Substituting the exact solution and expanding into the the Taylor series about t,, we have that

S S S oo k
Zamy(rm)—thmg’(th):Zamz(mkhl) thmZ -~ [y‘k’(tn)

m=0 m=0 m=0 k=0 m=0 k=1

= (i am) y(ty) + i%f (Z mkam - ki mk_1bm U(k)(tn)
—_

m=0 m=0 m=0

For the method to be order p, it is necessary and sufficient for the coefficients of the h* to be zero for
k< p. O

Definition 3.15 (Characteristic polynomials)
Given a s-step method, define the characteristic polynomials

S
= Z apw” and a(w mew
m=0

m=0

Theorem 3.16. The multistep method is order p > 1 if and only if

ple?) — za(e?) = O(zP+")

Proof. Expanding into Taylor series, we have that

ple?) — zo(e Zome —szme

m=0 m=0
-3 a > beY
m=0 k=0 m=0 k=0
m=0
and the result follows by the previous theorem. O

Definition 3.17 (Convergence)

For the multistep method, define the errors of the initial steps and the method respectively:
é(h) = t) ; d h) = (k) =
elh) = max lly(t) =yl and - e(h) = max [lu(t) - ui

We say that a method is convergent if for every ODE ¢’ = f(t, y) where f is Lipschitz in the second
argument, if h — 0 and é(h) — O, then e(h) — 0.

12



Definition 3.18 (Root condition)

For a polynomial p, we say that p satisfies the root condition if all roots have modulus at most 1, and the
roots with modulus 1 are simple.

Theorem 3.19 (Dahlquist equivalence). The multistep method is convergent if and only if it is order p > 1
and p satisfies the root condition.

Proposition 3.20. For an arbitrary degree s polynomial satisfying the root condition and has p(1) = 0,
define

o(2) = p(w) N O(|W - 1|5+1) implicit method
log(w) O(lw—1I) explicit method

Then this defines a multistep method.

Definition 3.21 (Backwards differentiation formula)

A backwards differentiation formula is a s-step, order s multistep method with a(w) = w®. That is,

s
Z AmYnitm = hinss

m=0

Lemma 3.22. The characteristic polynomial p of a BDF has the form

°

Proof. Setting w = e, we need to show that

p(e?) — za(e?) = O (™)

which becomes
p(w) — w? log(w) + O(\W — 1 )
expanding in Taylor series about 1 gives the required result.
3.3 Runge-Kutta methods

Definition 3.23 (Explicit Runge-Kutta scheme)
An s-stage Runge-Kutta scheme is a method of the form

S
Yot =Yn +h Z bik;
i=1

where

13



i—1
kl‘ =f t,7+C,‘h,yn+hZG,‘/‘kj
j=1

Definition 3.24 (Runge-Kutta methods)

A general s-stage Runge-Kutta scheme is a method of the form

Ynt1 = Yn+h) bik
i=1

where

ki=f|ta+chy,+h) ayk
j=1

an explicit method has a;; = 0 for i <.

3.4 Stiffness and stability

Definition 3.25 (Stiff ODE)

An ODE y" = f(t, y) is stiff if (for some numerical methods) we need to reduce h for stability beyond the
requirements for accuracy.

Definition 3.26 (Linear stability domain)

Suppose a numerical method with constant h, applied to the ODE y’ = Ay;y(0) = 1 generates the
sequence (y,). We call the set

D:{z:Ah:ntggogn:O}

the linear stability domain of the method.

Definition 3.27 (A-stable)
A numerical method is A-stable if

{z:Re(z) < 0} CD

Proposition 3.28. The set of A € C such that y(t) = e’ — 0 as t — oo is {z: Re(z) < 0}. Thus a
numerical method is A-stable if and only if the numerical solution exhibits the same behaviour.

Remark 3.29. If a method is A-stable, then we can just set the step size to fit the accuracy requirements and we do
not need to decrease it further for stability.

Proposition 3.30. For a multistep method with characteristic polynomials p, g, z = Ah is in the linear
stability domain if and only if the roots of the characteristic equation

14



P(X) = P(X) *ZU(X) = igmxm 7Zibmxm -0

m=0 m=0

are less than one in modulus.

Proof z = Ah € D if the sequence y, which is the solution to the recurrence relation

Z AnYn+m = Ah Z bmgn+m

m=0 m=0

satisfies y, — 0.

Proposition 3.31. dD can be parametrised by the curve z(t) = %

Proof. If z € 9D, then the charactertistic equation has a root with modulus one, say elt. Substituting and

rearranging gives the required result. O

Theorem 3.32 (Second Dahlquist barrier). No multistep method of order p > 3 is A-stable.

Remark 3.33. The trapezoidal rule has p = 2 and is A-stable.

Definition 3.34 (Ap-stable)
A numerical method is Ay stable if we have a > 0 such that

{-re®:0€(—a,a}CD
Theorem 3.35. All convergent BDF methods (i.e. order < 0) are Ap-stable.

Proposition 3.36. No explicit Runge-Kutta method is Ap-stable. Hence there are no A-stable RK methods.

3.5 Implementation

Definition 3.37 (Milne device)
The Milne device consists of a pair of multistep methods of the same order, one explicit (predictor, P) and
one implicit (corrector, C).

Proposition 3.38. Suppose the predictor has truncation error (say)
y(tn+1) - gfl;j+1 = CPhp+1y(p+1)(tn) + O(hp+2)
and the corrector has truncation error (say)
Y(the) — gSH = CCthy(pH)(fn) + O(hp+2)

Then we have that

15



c P
RPH P (£ ) Yne1 = Ynia
y (tn) =~
Cc — Cp
and

C

Y(tost) — YSiq = (yS1 —yha)

Cc — Cp

Definition 3.39 (Embedded RK)

An embedded RK contains a s-stage (explicit) RK method y, and a s + m stage (explicit) RK method §,,
where the first s stages of y, and §, are the same. Then we have the error estimate

g(tn—H) —Yn+1 = gn+1 — Yn+1

4 Numerical linear algebra
4.1 Sparse and band matrices

Definition 4.1 (Sparse matrix)
A matrix A is sparse if nearly all elements are zero.

Definition 4.2 (Band matrix)
A matrix A is a band matrix with bandwidth r if a;; = 0 for all |i — j| > r.

4.2 LU factorisation

Definition 4.3 (LU factorisation)

For a nonsingular matrix A, the LU factorisation of A is

A=LU

where L is lower trianqular and has diagonal entries one, and U is upper triangular.

Proposition 4.4. Suppose A = LU, l; is the k-th column of L, and u] is the k-th row of U. Let A= A©
and define

AR — A= ]

Then u] is the k-th row of A*=1 and a! " I, is the k-th column of A=,

Definition 4.5 (Column pivoting)

In each stage of the LU factorisation (i.e. suppose we already have A=) exchange two rows of Ak="

such that the element with the largest magnitude in the k-th column is at the (k, k) position. The result is

PA=IU & A=P'LU

16



where P is a permutation matrix (which is orthogonal).

Proposition 4.6. If column pivoting is used to obtain A = PTLU, then every element of L has modulus at
most one.

Proof. Immediate from a(kkkq) -lx being the k-th column of A=), O

Definition 4.7 (Strictly regular)
A square matrix A is strictly reqular is the leading submatrices are all nonsingular.

Theorem 4.8. A has an LU factorisation if and only if it is strictly regular.

Theorem 4.9. The LU factorisation, if it exists, is unique.

Corollary 4.10. A strictly reqular matrix A has a unique factorisation A = LDU where [ and U have unit
diagonals, and D is diagonal.

Corollary 4.11. A strictly regular symmetric matrix has a unique factorisation A = LDL.

Definition 4.12 (Symmetric positive definite)

A matrix A is SPD if it is symmetric and positive definite.

Theorem 4.13. Let A € Mat,(R) be symmetric, it is positive definite if and only if it has a LDL'
factorisation, where all of the diagonal elements of D are positive.

Proof Suppose such a factorisation exists. Then it is clear that A is SPD. On the other hand, suppose A is
positive definite. Then A is strictly reqular, so has a LDL" factorisation, and clearly the diagonal elements are
all positive. O

Definition 4.14 (Cholesky factorisation)

A SPD matrix has a factorisation

where L is a lower triangular matrix.

Definition 4.15 (Strictly diagonally dominant)

A matrix A is strictly diagonally dominant by rows if for all i,

17



Jail > |ay]

J#i

Theorem 4.16. If A is strictly reqular by rows, then it is strictly regular.

Theorem 4.17. Suppose A = LU. Then all leading zeroes in the rows of A to the left of the diagonal are
inherited by L. Similarly, all leading zeroes in the columns of A above the diagonal are inherited by U.

Corollary 4.18. If A is a band matrix with bandwidth r, then so are L and U.

4.3 OR factorisation

Definition 4.19 (OR factorisation)

The QR factorisation of a m x n matrix A is A = QR, where Q m x m orthogonal, and R m x n upper
trianqular.

Theorem 4.20. Every matrix A has a QR factorisation. If A is square and nonsingular, then a factorisation
A = QR where the diagonal entries of R are positive is unique.

Proof. For existence we will consider three different algorithms in this section. For uniqueness, let A = OR
be nonsingular. Then ATA = RTR is SPD, so has a unique Cholesky decompositiion A= LLT, with L having a
positive main diagonal. So R" = L is unique. O

Proposition 4.21. Suppose A square nonsingular. Then by running the Gram-Schmidt algorithm on the
columns of A we obtain a OR factorisation.

Definition 4.22 (Givens rotations)
Given p, g, a, b, define the Givens rotation

1
c s
Q[é”viﬂ
—s c
1
where ¢ = ﬁ and \/ﬁ.
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Proposition 4.23.
X1 X1

a,b

Xn Xn

[p.q]

Proposition 4.24. Suppose A is an m x n matrix, 1 < p < g < m, A = Qa’g

b = agp. Then a4, = 0. Furthermore, all other rows are not changed.

A, where a = a,, and

Theorem 4.25. For any matrix A, there exists a sequence of Givens rotations such that

R— (Q[/Hm]) (Q[2'"7].HQ[23]) (Qh.my..QM A

is upper triangular.

Definition 4.26 ((Householder) Reflection)

Given a nonzero vector u € R”, reflection in v has matrix

H,=1-— — _ud"
Il

Proposition 4.27. For any vectors a, b € R", with llall = ||b|| let u=a—b. Then H,a = b.

Corollary 4.28. For any nonzero vector a, u = a F llalle; has H,a = Fllalle;.

Remark 4.29. We prefer — for calculations by hand, + for numerical computations for stability reasons.

Theorem 4.30. For any matrix A, there exists a sequence of Householder reflections such that

R=Hp_1- HHA

is an upper triangular matrix.

Proof. By recursion. H; mapping the first column to [lalle; means H1A has as the first column llalles.
Suppose the first k —1 columns of C = Hy_q --- H1A are upper triangular. Let ¢ be the k-th column of C.
Let y> =Y ", ¢/, u = c — yei. Then the last m — k entries of H,c are zero. O

4.4 Least squares
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Definition 4.31 (Ordinary least squares)
Given A € R™", y € R™, we wish to find

¢* = argmin [|Ac — |
ccR"

Theorem 4.32. ¢* € R” is a solution to the OLS problem if and only if AT(Ac* — y) = 0.

Proof If ¢* is a solution, then it minimises the quadratic form

F(x) = (Ac—y,Ac — y) = c'ATAc = 2c"ATy + yTy

Then VF =2ATAc — Ay =0 at c = ¢*.
Conversely, if AT(Ac* — y) = 0. Let ¢ = ¢* + d, and consider the quadratic form

G(d) = |[Ac—y|°
= (Ac—y,Ac—y)
— (Ad + (Ac* — y), Ad + (Ac* — y))

= |Ad||* + 2 (AT(AC" — y), d) + ||Ac” — y]|°
— ||Ad||” + [|Ac* — y|*

Then d minimises G if and only if G(d) € ker(A). In particular, d = 0, so ¢ = ¢* is a minimiser of F.

Corollary 4.33. If ker(A) = 0, then the minimiser is unique.

Proof. From proof of the above theorem.

Corollary 4.34. c* is optimal if and only if Ac* — y is orthogonal to all the columns of A, or equivalently,
Ac* is the projection of y onto the image of A.

Definition 4.35 (Normal equations)

The normal equations are

ATACr = Ay

where ATA is known as the Gram matrix, and ¢* is the normal solution.

Proposition 4.36. If A has linearly independent columns, and thus ker(A) = 0, then ATA is invertible, and
the solution is given by

= (ATA) ATy

where (ATA)'AT is the Penrose-Moore pseudoinverse of A.
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Proposition 4.37. Suppose A = QR where Q orthogonal and R upper triangular. Then

1Ac =yl = |0 (Ac = )| = [Re = O'y]

Proposition 4.38. Suppose A = QR, where rank(R) = rank(A) = n. Then the bottom m — n rows of R
are zero, and a solution can be found by considering the first n equations of

Rc=0Q'y

which is nonsingular.
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