
Optimisation
Shing Tak LamMay 11, 2022

Contents
1 Definitions 11.1 Slack . 2
2 Convexity 22.1 Conditions for convexity . 22.2 Extreme points . 32.3 Smoothness . 32.4 Strong convexity . 52.5 Gradient descent . 62.6 Newton’s method . 6
3 Lagrange multipliers 63.1 Slack variables . 73.2 Complementary slackness . 73.3 Duality . 8
4 Linear programs 94.1 Basic solutions . 104.2 Duality . 124.3 Optimality conditions . 124.4 Simplex method . 13
5 Applications 155.1 Game theory . 155.2 Network flow . 165.3 Transport problem . 165.4 Max flow, min cut . 19
1 Definitions
In the context of this course, an optimisation problem has the form

minimise f subject to x ∈ Xor
minimise f subject to x ∈ X, h(x) = b

• f is known as the objective function.• The components of x are known as decision variables.• h(x) = b is a functional constraint• x ∈ X is a regional constraint

1

Definition 1.1 (Feasible)For an optimisation problem, the feasible set is
X (b) = {x ∈ X : h(x) = b}The problem is feasible if X (b) ̸= ∅, and bounded if f (X (b)) is bounded below.

Definition 1.2 (Optimal)
x∗ ∈ X (b) is optimal if it minimises f over mcX (b). The value f (x∗) is known as the optimal cost.

1.1 SlackSometimes, for the functional constraint we have an inequality instead of an equality. Slack can be used totransform the inequality into a regional constraint. In particular, given
minimise f subject to x ∈ X, h(x) ≤ bWe can write this as

minimise f subject to x ∈ X, s ≥ 0, h(x) + s = bTherefore, we will now (unless otherwise specified) assume that the functional constraint is an equality.
2 Convexity

Definition 2.1 (Convex set)
S ⊆ Rn is convex if for all x, y ∈ S , λ ∈ [0, 1], we have that

(1− λ)x + λy ∈ S

Definition 2.2 (Convex function)For a convex set S , a function f : S → R is convex if for all x, y ∈ S , λ ∈ [0, 1], we have that
f ((1− λ)x + λy) ≤ (1− λ)f (x) + λf (y)It is strictly convex if the inequality is strict on (0, 1).

2.1 Conditions for convexity

Theorem 2.3 (First order conditions for convexity). Let f : Rn → R be differentiable. Then f is convex ifand only if for all x, y, we have that
f (y) ≥ f (x) + (y − x) · ∇f (x)

Proof. First suppose if f is convex. We consider the n = 1 case first. Then we have that
f (x + t(y − x)) ≤ (1− t)f (x) + tf (y)Rearranging, we get

f (y) ≥ f (x + t(y − x)− (1− t)f (x))
t = f (x) + f (x + t(y − x)− f (x))

t

2

Taking t → 0 we get that f (y) ≥ f (x)+(y−x)f ′(x) as required. For the general case, let g(t) = f (x+t(y−x)).Then since f is convex, so is g, and g′(t) = (y− x) · ∇(f (x + t(y − x))). Using the result for n = 1, we get that
f (y) = g(1) ≥ g(0) + g′(0) = f (x) + (y − x) · ∇f (x)Now suppose the first order condition holds. Let xt = x + t(y − x). Then we have that

f (x) ≥ f (xt) + t(y − x) · ∇f (xt) (1)
f (y) ≥ f (xt)− (1− t)(y − x) · ∇f (xt) (2)

Then (1− t) · (1) + t · (2) gives the required result.
Definition 2.4 (Hessian)Define the Hessian of a function f : Rn → R by

(∇2f)ij = ∂2f
∂xi∂xj

Theorem 2.5 (Second order condition for convexity). Suppose f : Rn → R is twice differentiable. Then fis convex if ∇2f is positive semidefinite.
Proof. Using the multivariate Taylor theorem, we have that

f (y) = f (x) + (y − x) · ∇f (x) + 12 (y − x) · ∇2f (z) · (y − x)where z = x + t(y − x). Then as the Hessian is positive semidefinite, we have that
f (y) ≥ f (x) + (y − x) · ∇f (x)So by the first order conditions, f is convex.

2.2 Extreme points

Proposition 2.6. For a convex set C , f : C→ R convex, if z ∈ Int C , then f (z) cannot be the maximum of
f (x) in C .

Proof. Take any segment [x, y] such that z ∈ [x, y].
Definition 2.7 (Extreme point)For a convex set C , x ∈ C is an extreme point if it cannot be written as

(1− δ)y + δz

for some δ ∈ (0, 1), y, z ∈ C distinct.
Corollary 2.8. The maximum of a convex function must occur at an extreme point.

2.3 Smoothness

3

Definition 2.9 (β-smooth)For a C 1 function f : Rn → R, we say that f is β-smooth if ∇f is β-Lipschitz. That is,∥∥∇f (y)−∇f (x)∥∥ ≤ β
∥∥y − x

∥∥

Proposition 2.10. If f is C 2, then β-smoothness implies that
∇2f (x) ⪯ βI ⇐⇒ βI −∇2f (x) is positive semidefinitewhich means that all eigenvalues of ∇2f are less than β . Furthermore, we have that for all u ∈ Rn,

uT∇2f (x)u ≤ uT(βI)u = β∥u∥2

Proof. We have from the definition of the Hessian as the second derivative that
∇f (y)−∇f (x) = ∇2f (x)(y − x) +O(∥∥y − x

∥∥2)
Discarding the second order term, we get that

(y − x) · ∇2f (x)(y − x) = (y − x) · (∇f (y)−∇f (x)) ≤ ∥∥y − x
∥∥∥∥∇f (y)−∇f (x)∥∥ ≤ β

∥∥y − x
∥∥2

Proposition 2.11. Let f be C 2, convex and β-smooth. Then
f (y) ≤ f (x) + (y − x) · ∇f (x) + β2 ∥∥x − y

∥∥2

Proof. By Taylor’s theorem we have that
f (y) = f (x) + (y − x) · ∇f (x) + 12 (y − x)T∇2f (z)(y − x) for some z ∈ [x, y]
≤ f (x) + (y − x) · ∇f (x) + β2 ∥∥y − x

∥∥2

Corollary 2.12.

f
(

x − 1
β ∇f (x)) ≤ f (x)− 12β

∥∥∇f (x)∥∥2

Proof. Define g(y) = f (x) + (y − x)T∇f (x) + β2∥∥y − x
∥∥2. Minimising g as a function of y, we find that

0 = ∇g(y) = ∇y

(
f (x) + (y − x)T∇f (x) + β2 ∥∥y − x

∥∥2) = ∇f (x)− β
∥∥y − x

∥∥
Letting y = x − 1

β ∇f (x) in the preceding proposition yields the required result.
Proposition 2.13 (Improved first order condition). For a convex, β-smooth function, we have that

4

f (y) ≥ f (x) + (y − x)T∇f (x) + 12β
∥∥∇f (x)−∇f (y)∥∥2

Proof. For any z , we have that
f (x) + (z − x)T∇f (x) ≤ f (z) ≤ f (y) + (z − y)T∇f (y) + β2 ∥∥z − y

∥∥2
Which implies that

f (x)− f (y) ≤ (x − z)T∇f (x) + (z − y)T∇f (y) + β2 ∥∥z − y
∥∥

Minimising the right hand side in terms of z yields the required result.
2.4 Strong convexity

Definition 2.14 (α-strongly convex)
f : Rn → R is α-strongly convex if

f (y) ≥ f (x) + (y − x)T∇f (x) + α2 ∥∥y − x
∥∥2

Proposition 2.15. If f is C 2 and α-strongly convex, then
αI ⪯∇2f

Proposition 2.16. Suppose f is α strongly convex, and let
p∗ = min

y
f (y)

Then we have that for all x ,
p∗ ≥ f (x)− 12α

∥∥∇f (x)∥∥2

Proof. We have (by assumption) that
f (y) ≥ f (x) + (y − x)T∇f (x) + α2 ∥∥y − x

∥∥2
Minimising the left and right hand sides with respect to y, we find that

p∗ ≥ f (x) + min
y

((y − x)T∇f (x) + α2 ∥∥y − x
∥∥2)

Setting ∇ of the RHS to be zero, and substituting we get the required result.
Proposition 2.17. Suppose f is α strongly convcex, and let

x∗ = argmin
x

f (x)
Then for any x , we have that ∥∥x − x∗

∥∥ ≤ 2
α
∥∥∇f (x)∥∥

5

Proof. By Cauchy-Schwarz, we have that
f (x∗) ≥ f (x) + (x∗ − x)T∇f (x) + α2 ∥∥x∗ − x

∥∥2 ≥ f (x) + ∥∥x∗ − x
∥∥∥∥∇f (x)∥∥ + α2 ∥∥x∗ − x

∥∥2
Rearranging and using the fact that f (x∗)− f (x) ≤ 0 gives the required result.

2.5 Gradient descentOne method for finding the minimum of a function is known as gradient descent.
Algorithm 1: Gradient descent

t← 0;
repeat

vt ← DescDir() ; // Choose a descending direction
ηt ← StepSize() ; // Choose a step size
xt+1 ← xt + ηtvt ;
t← t + 1;

until condition met, e.g. ∇f (xt) = 0, or t large;
where the descending direction vt is chosen such that vt · ∇f (xt) < 0.

Theorem 2.18. For f α-strongly convex and β-smooth, gradient descent with vt = −∇f (xt) and ηt = 1/βsatisfies
f (xT)− f (x∗) ≤ e−

αT
β

β2 ∥∥x∗ − x0∥∥2

Proof. We prove the stronger result
f (xT)− f (x∗) ≤ (1− α

β

)T (f (x0)− f (x∗))
from which the required result can be shown. We have that

f (xt+1)− f (x∗) ≤ f (xt)− f (x∗)− 12β
∥∥∇f (xt)∥∥2

≤ f (xt)− f (x∗)− α
β (f (xt)− f (x∗))

= (1− α
β

) (f (xt)− f (x∗))
and the result follows by induction.

2.6 Newton’s methodGradient descent is a first order method. A second order method is known as Newton’s method, and is given by
xt+1 = xt −

(
∇2f (xt))−1 ∇f (xt)

3 Lagrange multipliers
Consider the minimisation problem

minimise f (x) subject to h(x) = b, x ∈ XWe can convert this into an unconstrained problem by minimising the Lagrangian
L(x, λ) = f (x)− λT(h(x)− b)

6

Theorem 3.1 (Lagrange sufficiency). Suppose we can find λ∗ such that
min
x∈X

L(x, λ∗) = L(x∗, λ∗)
for some x∗ (i.e. the minimum is attained). Furthermore, suppose x ∈ X (b). Then x∗ is optimal for f .That is,

min
x∈X (b) f (x) = f (x∗)

Proof. Since x∗ ∈ X (b), we already have that minx∈X (b) f (x) ≤ f (x∗). So suffices to show the reverse inequality.
min

x∈X (b) = min
x∈X (b)

(
f (x)− (λ∗)T(h(x)− b))

≥ min
x∈X

(
f (x)− (λ∗)T(h(x)− b)) as X (b) ⊆ X= min

x∈X
L(x, λ∗)= L(x∗, λ∗)= f (x∗)

3.1 Slack variablesGiven a problem of the form1
minimise f subject to x ∈ X, s ≥ 0, h(x) + s = bThe Lagrangian is of the form

L(x, λ, s) = f (x)− λT (h(x) + s − b)and to find the optimal solution, we first consider the set
Λ = {λ : inf

x∈X,s≥0 L(x, λ, s) > −∞
}

For each λ ∈ Λ, we find x∗(λ) and s∗(λ) such that the infimum is attained. Then we find λ∗ ∈ Λ such that
x∗(λ∗) and s∗(λ∗) are feasible.
3.2 Complementary slacknessThe definition of the set Λ, and finding x∗(λ) and s∗(λ) involves the minimisation problem

minimise f (x)− λT(h(x)− b)− λTs subject to x ∈ X, s ≥ 0
Proposition 3.2. For any λ ∈ Λ, λ ≤ 0.

Proof. Suppose if for some i, λi > 0. Then taking si →∞ we see that the problem is not bounded.
Proposition 3.3 (Complementary slackness). At the optimum (x, λ, s), for each i, λisi = 0.

Proof.
−λTs = −∑ λisi =∑(−λi)siis a sum of nonnegative terms, therefore the minimum is attained when they are all zero.

1We have already converted the inequality into a regional constraint.
7

3.3 Duality

Definition 3.4 (Dual problem)Given a minimisation problem
minimise f (x) subject to x ∈ X, h(x) = bwith Lagrangian L(x, λ) = f (x)− λT(h(x)− b). Define

g(λ) = inf
x∈X

L(x, λ)
and

maximise g(Λ) subject to λ ∈ Λis known as the dual problem. The original problem is known as the primal problem.
Theorem 3.5 (Weak duality). inf

x∈X (b) f (x) ≥ sup
λ∈Λ g(λ)

Proof. For any λ ∈ Λ, we have that
inf

x∈X (b) f (x) = inf
x∈X (b) L(x, λ)

≥ inf
x∈X

L(x, λ)= g(λ)

Definition 3.6 (Duality gap, Strong duality)Define the duality gap to be
inf

x∈X (b) f (x)− sup
λ∈Λ g(λ)

If this is zero we say strong duality holds.
Remark 3.7. If the Lagrangian method works, then we have λ∗ such that

inf
x∈X (b) L(x, λ∗) = inf

x∈X
L(x, λ∗)

and we get equality in the above. So strong duality holds. The converse is also true.
Definition 3.8 (Value function)For a minimisation problem, define the value function

φ(c) = inf
x∈X (c) f (x)

Definition 3.9 (Supporting hyperplane)A function φ has a supporting hyperplane at b if there exists λ such that for all c,
8

φ(c) ≥ φ(b) + λT(c − b)
Theorem 3.10. Strong duality holds if and only if the value function φ has a supporting hyperplane at b.

Proof. Suppose φ has a supporting hyperplane at b, say φ(c) ≥ φ(b) + λT(c − b). Then we have that
g(λ) = inf

x∈X

(
f (x)− λT(h(x)− b))

= inf
c

inf
x∈X (c)

(
f (x)− λT (h(x)− c)− λT (c − b))

= inf
c

(
φ(c)− λT (c − b))

≥ φ(b) = inf
x∈X (b) f (x)

Since weak duality gives us the reverse inequality, we must in fact have equality here. Conversely, if strongduality holds, then we have λ such that g(λ) = φ(b). Then
φ(b) = g(λ)= inf

x∈X

(
f (x)− λT(h(x)− b))

= inf
x∈X

(
f (x)− λT(h(x)− c)− λT(c − b))

≤ φ(c)− λT(c − b)
by weak duality.

Theorem 3.11. A function φ : Rn → R is convex if and only if it has a supporting hyperplane at every
b ∈ Rn.

Proof. Omitted.
Theorem 3.12. Consider the minimisation problem

minimise f (x) subject to h(x) ≤ b, x ∈ Xwith value function φ. Then φ is convex if X is convex, f : Rn → R convex, and hj : Rn → R convexfor all j .
Proof. Suppose b, c ∈ X , and the minima are attained at xb and xc respectively. Let x = (1 − λ)xb + λxc .Then x ∈ X by convexity. Furthermore, by convexity h(x) ≤ (1 − λ)h(xb) + λh(xc) ≤ (1 − λ)b + λc, so x is in
X ((1− λ)b + λc).Thus, we have that

φ((1− λ)b + λc) ≤ f (x) ≤ (1− λ)f (xb) + λf (xc) = (1− λ)φ(b) + λφ(c)

4 Linear programs

9

Definition 4.1 (Linear program)A linear program is an optimisation problem where the objective function, functional and regional constraintsare all linear. In particular, we have
minimise cTx subject to conditions

where conditions include inequalities and equalities involving linear combinations of the decisionvariables.
Remark 4.2. We note that ≤ constraints can be written in the above form by negating, and equality constraints canbe written as a pair of inequalities. Regional constraints of the form xj ≥ 0 can also be written in the above form.
Definition 4.3 (General form)The general form of the above linear program is

minimise cTx subject to Ax ≥ bwhere A is an m× n matrix, and b ∈ Rn, with
A =

· · · aT1 · · ·...
· · · aT

m · · ·

 and b =
b1...

bm



Definition 4.4 (Standard form)A linear program is in standard form if it is of the form
minimise cTx subject to Ax = b, x ≥ 0

Proposition 4.5. Every linear program in general form can be written in standard form.
Proof. By adding slack variables, we can transform the inequality constraint into an equality and a regionalconstraint on the slack variables. For the decision variables, let xj = x+

j − x−j , where x+
j , x−j ≥ 0. Then we get

minimise cT(x+ − x−) subject to A(x+ − x−) = b; x+, xi ≥ 0Letting z = (x+, x−), we get
minimise (cT, = cT)z subject to (A,−A)z = b, z ≥ 0

4.1 Basic solutionsIn this section we will be considering linear programs in standard form. That is,
minimise cTx subject to Ax = b, x ≥ 0where A is an m× n matrix, x ∈ Rn, b ∈ Rm.

10

Definition 4.6 (Basic solution)A point x is a basic solution if Ax = b, and x has at most m nonzero entries.
Definition 4.7 (Basic feasible solution)A point x is a basic feasible solution if x is a basic solution and x ≥ 0.

Finding basic solutions

Remark 4.8. From now on, we make the additional assumptions that1. The rows of A are linearly independent.2. Every m columns of A are linearly independent.3. Every basic solution has exactly m nonzero entries (nondegeneracy).
Choose 1 ≤ b1 ≤ · · · ≤ bm ≤ n to be the entries where x is nonzero. Then


... ...

A1 · · · An... ...




0...
xb1...
xbm...0


=


... ...
Ab1 · · · Abm... ...


︸ ︷︷ ︸

B

xb1...
xbm

 = b

Hence we have that xb1...
xbm

 = B−1b

Definition 4.9 (Basis)
B is called the basis matrix, xB = (xb1 , . . . , xbm) are called basis variables, and Ab1 , . . . , Abm are known asbasis columns.
Remark 4.10. If B−1b ≥ 0, then we have found a BFS.
Theorem 4.11. x is an extreme point of the feasible set X (b) = {x : Ax = b, x ≥ 0} if and only if it is aBFS.

Proof. First suppose x is a BFS and y, z are feasible points, with x = (1 − δ)y + δz , δ ∈ (0, 1). Let
b1, . . . , bm be the indices where x is nonzero. Then since y, z ≥ 0, we must have that yj = zj = 0 for
j /∈ {b1, . . . , bm}. Since y, z feasible, we must have Ay = Az = b. But this means that ByB = BzB = b, so
yB = zB = xB =⇒ x = y = z .Now suppose if x is not a BFS. Let the indices where x ̸= 0 be i1, . . . , ir , where r > m. Since rank(A) = m,we must have that {Ai1 , . . . , Air} is linearly dependent. So we have wi1 , . . . , wir such that

wi1Ai1 + · · ·+ wir Air = 0Define
11

wi = {wij if i = ij0 otherwiseThen Aw = 0. Then for any ε, we have that
A(x + εw) = Ax + εAw = AxHence if we have ε > 0 such that x + εw, x − εw are feasible, then
x = 12(x + εw) + 12x − εwis not an extreme point.

4.2 Duality

Theorem 4.12. If a linear program is bounded and feasible, then it satisfies strong duality.
Proof. A linear program is convex.

Proposition 4.13 (Dual of a linear program in standard form). For a linear program
P : minimise cTx subject to Ax = b, x ≥ 0the dual is

D : maximise λTb subject to λT A ≤ cT

Proof. The objective function in the dual is
g(λ) = inf

x≥0 L(x, λ) = inf
x≥0
(
cTx − λT (Ax − b)) = inf

x≥0(cT − λTA)x + λT b

For the infimum to exist, we must have that
Λ = {λ : cT − λTA ≥ 0} = {λ : λTA ≤ cT}

and the minimum occurs for x = 0, i.e. g(λ) = λTb.
Proposition 4.14 (Dual of linear program in general form). For a linear program

P : minimise cTx subject to Ax ≥ 0the dual is
D : maximise λTb subject to λTA = cT, λ ≥ 0

Proof. Similar to the case of the standard form.
4.3 Optimality conditions

Theorem 4.15 (Fundamental theorem of Linear programs). Let x and p be feasible solutions to the primaland dual problemsa respectively. Then x and p are optimal if and only if complementary slackness holds.That is,
pT(Ax − b) = 0 and (c − ATp)Tx = 0

aIn this case we have stated/proven this for linear programs in standard form, but this holds for any linear program. See Lecturer’s

12

notes for proof.
Proof. If x and p are feasible, then we have from weak duality that cTx ≤ pTb. Thus, if complementary slacknessholds, then we have equality. So strong duality holds and they are optimal.Conversely, if we have optimal solutions, then by strong duality cTx = pTb. Since x is feasible, we havethat Ax = b. Combining these gives us the result required.
Reduced costsFor a linear program in standard form, the above gives us the following optimality conditions.1. x is primal feasible, that is, Ax = b, x ≥ 0.2. λ is dual feasible, that is, ATλ ≤ c.3. Complementary slackness2, xT(c − ATλ) = 0.Suppose xB is a BFS. Substituting into 3., we find that

xB(cB − BT λ) = 0Since for a BFS xB > 0, we must have cB = BTλ, and λ = (BT)−1cB . If this is dual feasible, then we havean optimal solution. That is, if
c̄ = c − AT(BT)−1cB ≥ 0

c̄ is known as the reduced costs.
Theorem 4.16. Let x be a BFS, B be the basis matrix. Let c̄ be the reduced costs. Then x is optimal ifand only if c̄ ≥ 0.

Proof. By optimailty conditions, since the corresponding λ gives us a dual feasible solution that satisfiescomplementary slackness.
4.4 Simplex method
Feasible direction

Definition 4.17 (Feasible direction)Let x ∈ X (b) = {x : Ax = b, x ≥ 0}. Then d ∈ Rn is a feasible direction if there exists θ > 0 such that
x + θd ∈ X (b).
Definition 4.18 (j-th basic direction)Let x be a BFS. Without loss of generality, assume bi = i. Then the j-th basic direction is the vector

d = (db1 , . . . , dbm , 0, . . . , 1, . . . , 0)where the 1 is at the j-th entry, and dB = −B−1Aj , where Aj is the j-th column of A.
Proposition 4.19.

Ad = 0
Proof.

Ad = BdB + Aj = 0
2The other equation holds automatically by condition 1.

13

Proposition 4.20. d is a feasible direction for a BFS x .
Proof.

x + θd = (xb1 + θdb1 , . . . , xbm + θdbm , 0, . . . , θ, . . . , 0) ≥ 0for θ sufficiently small, since by non-degeneracy, xB > 0.
Proposition 4.21. The cost at x + θd is cTx + θc̄j

Proof.
cT(x + θd) = cTx + θcTd = cTx + θ(cj − cT

BB−1Aj) = cTx + θc̄j

Minimising cost using simplex methodFrom the above, we can see that if c̄j < 0 for any cj , then we can reduce the cost by travelling along the j-thbasis direction d. The amount we can move is given by the largest θ such that x + θd is feasible.
Algorithm 2: Simplex method

input: a BFS x with basis matrix B
c̄ ← c − AT(BT)−1cB ;
while c̄ ̸≥ 0 do

j ← ChooseBasicDir() ; // j is any index such that cj < 0
u ← B−1Aj ;
if u ≤ 0 then

return −∞ ; // Problem is unbounded, the minimum cost is −∞
else

θ∗ ← min
i s.t. ui>0 xbi

ui
; // The amount by which we can move

l ← arg min
i s.t. ui>0

xbi

ui
; // The index along which we are moving

yi =


xbj + θ∗uj if i = bj and j ̸= l0 if i = bl

θ∗ if i = j0 otherwise
; // The result of moving along the l-th

basis direction by θ∗
x ← y; ; // and update B accordingly
c̄ ← c − AT(BT)−1cB ;

end
end

In practice, these computations can be combined into a tableau.
Simplex tableau

Definition 4.22 (Simplex tableau)The simplex tableau (for a given BFS x and basis matrix B) is a tableau of the form
−cT

BxB c̄1 . . . c̄n

xb1
... B−1A1 . . . B−1An

xbm

... ...
14

where we say the “first” row is the zero-th row.
Algorithm 3: Simplex tableau

input: Simplex tableau
while c̄ ̸≥ 0 do

j ← ChooseBasicDir() ; // j is any index such that cj < 0
u ← B−1Aj ; // i.e. the j-th column of the simplex tableau
if u ≤ 0 then

return −∞
else

θ∗ ← min
i s.t. ui>0 xbi

ui
; // The amount by which we can move

l ← arg min
i s.t. ui>0

xbi

ui
; // The index along which we are movingadd to each row (including the zeroth) a constant multiple of the l-th row such that ul = 1, allother entries of the pivot column are zero.

end
end

5 Applications
5.1 Game theoryConsider a zero-sum two player game, where player 1 (P1) has actions {1, . . . , m}, and player 2 (P2) hasactions {1, . . . , n}.

Definition 5.1 (Payoff matrix)If P1 plays i and P2 plays j , then P1 wins aij and P2 loses aij . The matrix
A = (aij

)1≤i≤m,1≤j≤nis known as the payoff matrix.
MinmaxIf P1 plays i first, they expect to get min

j
aij . This gives us the problem

maximise min1≤j≤n
aij subject to 1 ≤ i ≤ m

and the related problem for P2,
minimise max1≤i≤m

aij subject to 1 ≤ j ≤ n

Mixed strategiesIf instead we allow P1 and P2 to choose randomly, with probabilities (p1, . . . , pm) and (q1, . . . , qn) respectively.If P2 plays j , then the expected value for P1 is ∑
i

aijpi. This gives us the optimisation problem
maximise v subject to ATp ≥ ve, eTp = 1, p ≥ 0where e = (1, . . . , 1) is a vector of ones.

Remark 5.2. The max min has been turned into an inequality of vectors.

15

For P2, we have the problem
minimise w subject to Aq ≤ we, eTq = 1, q ≥ 0

Proposition 5.3. These two problems are dual.
Corollary 5.4. A strategy p is optimal for P1 if there exists q, v such that

1. (Primal feasibility) ATp ≥ ve, eTp = 1, p ≥ 02. (Dual feasibility) Aq ≤ we, eTq = 1, q ≥ 03. (Complementary slackness) v = pTAq

Proof. The complementary slackness equations are
(Aq − we)Tp = 0 and qT(ATp − ve)From which we get that v = w = pTAq.

Saddle points and dominating strategiesIf in the (non-mixed) strategies we find the same (i, j), then this is known as a saddle point, and gives us anoptimum.If there exists i, i′ such that ai′j ≥ aij for all j , then i′ dominates i and we can drop row i without loss ofgenerality. Similarly we can find dominating strategies for P2.
5.2 Network flow

Definition 5.5 (Network flow)Given a graph G = (V , E), where |V | = n, we have the following
• b ∈ Rn, where bi is the amount of flow entering vertex i. If bi > 0 then i is a source, and if bi < 0then i is a sink.• C ∈ Rn×n, where cij is the cost per unit of flow from i to j .
• Matrices M, M are upper and lower bounds on the flow respectively.
The flow is given by a matrix X , where xij is the amount of flow from i to j . The minimum cost flow isgiven by the linear program

minimise ∑
i,j

cijxij subject to M ≤ X ≤ M, bi + ∑
(j ,i)∈E

xji = ∑
(i,j)∈E

xij ,
∑

i
bi = 0

Remark 5.6. The second condition can be expressed as a linear equality by defining a matrix A ∈ R|V |×|E| , where
ai,(j ,k) =


1 if i = j
−1 if i = k0 otherwise

5.3 Transport problemSuppose we have the special case where G is a bipartite graph. Say we have n sources (called suppliers inthis case), and m sinks (called customers in this case). The suppliers have capacity s1, . . . , sn (which is just the
16

corresponding entries in b), and the customers have demand d1, . . . , dm (which is − of the corresponding entriesin b. Furthermore we assume that there is no upper/lower bound on the flow. This gives us the optimisationproblem
minimise ∑

i,j
cijxij subject to m∑

j=1 xij = si,
n∑

i=1 xij = dj , x ≥ 0
Theorem 5.7. Every minimum cost flow problem with finite capacities, or nonnegative costs, can be writtenas a transportation problem.

Proof. First, we may assume M = 0 without loss of generality. Also, we note that if all the costs are nonnegative,for any edge with infinite capacity, we can replace it by a sufficiently large capacity such that the optimalsolution is not changed.For each vertex i in the transportation problem, create a customer with demand∑
(i,k)∈E

mik − bi

and for each edge (i, j), create a supplier with capacity
miji.e.

i •

• (i, j)
j •

0
cij

mij

∑
k mik−bi

∑
k mjk−bj

Suppose xij flows from (i, j) to j , and mij − xij into i. Then we note that this satisfies the conservationequations, and the optimal cost of this problem is the same as in the original problem.
Theorem 5.8 (Optimality conditions for the transport problem). If we have x ∈ Rn×m feasible, and dualvariables λ ∈ Rn (suppliers) and µ ∈ Rm (customers). Suppose

• λi + µj ≤ cij for all (i, j) ∈ E .• cij − (λi + µj))xij = 0.
then x is optimal.

Proof. Consider the Lagrangian
L(x, λ, µ) = n∑

i=1
m∑

j=1 cijxij −
n∑

i=1 λi

 m∑
j=1 xij − si

− m∑
j=1 µj

(n∑
i=1 xij − dj

)

= n∑
i=1

m∑
j=1
(
cij − λi − µj

)
xij +∑

i
λisi +∑

j
µjdj

Thus, for λ, µ to be dual feasible, we must have that λi + µj ≤ cij . Furthermore,
17

n∑
i=1

m∑
j=1
(
cij − λi − µj

)
xij

is a sum of nonnegative terms, which must be zero at the minimum, so we get the second equation, whichis complementary slackness. Thus, we have primal and dual feasibility, as well as complementary slackness,which means that x is optimal.
Remark 5.9. The values of the dual variables are not unique. If (λ, µ) are dual feasible, so are (λ + θe, µ − θe). Toreduce the degrees of freedom, we may without loss of generality assume λ1 = 0.

Initial assignmentTo be able to solve the linear program using (a modified version of) the simplex method, we will need a BFSto start off with. We can do this greedily.
Algorithm 4: Greedy initial assignment

i, j← 1;
while i ≤ n and j ≤ m do

xij ← min(si −
j−1∑
j ′=1 xij ′ , dj −

i−1∑
i′=1 xi′j

); // Fill xij as much as possible

if
j∑

j ′=1 xij ′ = si then // If we have filled i then move on to the next supplier

i← i + 1;
end

if
i∑

i′=1 xi′j = dj then // If we have filled j then move on to the next customer

j← j + 1;
end

end

Proposition 5.10. The set of edges with positive flow forms a spanning tree.
Remark 5.11. By complementary slackness, if xij > 0 then λi + µj = cij . Since we can assume λ1 = 0, we will have
n + m− 1 equations for n + m− 1 variables, which can then be solved.

Transportation tableau

Definition 5.12 (Transportation tableau)The transportation tableau has the form
µ1 · · · µm

λ1 x11 · · · x1m s1c11 c1m...
λn

xn1 · · · xnm sncn1 cnm
d1 · · · dm

18

Algorithm 5: Transportation tableau
while ∃i, j such that cij < λi + µj doChoose i, j such that cij − λi − µj is least;Increase flow along (i, j) as much as possible;Recalculate the dual variables;
end

For the update step, note that we must have xij = 0, so if we include the edge (i, j), we get a cycle in thegraph. For simplicity, suppose we get the cycle
i j

i′ j ′Suppose we pass θ along (i, j). Then we get an updated allocation with
xij ← θ , xij ′ ← xij ′ − θ , xi′j ← xij ′ − θ and xi′j ′ ← xi′j ′ + θWe see that θ = min(xij ′ , xi′j) is the maximum allowable value, and this makes the corresponding entry zero.

5.4 Max flow, min cutNow suppose we have one source and one sink in the network, and we wished to maximise the flow throughthe network. This gives us the optimisation problem
maximise δ subject to ∑

j
xij −

∑
j

xji =


δ if i = 1
−δ if i = n0 otherwise , 0 ≤ X ≤ C

where X is the matrix of allocations, C is the matrix of capacities, and delta is the flow through the network.
Definition 5.13 (Cut)A cut of a graph G = (V , E) is a partition of the vertices into two sets S, V ∖ S .
Definition 5.14 (Capacity of a cut)The capacity of a cut S is

C (s) = ∑
i∈S,j∈V∖S

cij

Theorem 5.15. Let x be a feasible flow, with value δ . Then for any cut S, V ∖ S such that 1 ∈ S ,
n ∈ V ∖ S , we have that

δ ≤ C (S)
Proof. For any X, Y ⊆ V , define

f (X, Y) = ∑
i∈X,j∈Y

xij

19

Then we have that
δ =∑

i∈S

∑
j

xij −
∑

j
xji


= f (S, V)− f (V , S)= f (S, S) + f (S, V ∖ S)− f (S, S)− f (V ∖ S, S)= f (S, V ∖ S)− f (V ∖ S, S)
≤ f (S, V ∖ S)= C (S)

Theorem 5.16 (Max flow, min cut). Let δ∗ be the value of the maximum flow. Then we have that
δ∗ = min {C (S) : S ⊆ V , 1 ∈ S, n /∈ S}

Definition 5.17 (Path)A path v0 . . . vn in a graph G = (V , E) such that for all i, either (vi, vi+1) ∈ E or (vi+1, vi) ∈ Ea.
aThe usual definition of a directed path in a graph is different to this.

Definition 5.18 (Augmenting path)For an allocation, a path v0 . . . vn is augmenting if for all i, either xvivi−1<0, or xvivi+1<cvivi+1 . That is, eitherthe forwards direction has remaining capacity, or the reverse edge has nonzero flow.
Proof. Note that if we have an augementing path from 1 to n, then the allocation cannot be optimal, sincewe can increase the flow by θ along the forward edges, and decrease by η along the backward edges, forsufficiently small θ. Now suppose x is optimal. Then let

S = {1} ∪ {i : ∃ augmenting path from 1 to i}Then n /∈ S by definition. Recall that δ = f (S, V ∖ S)− f (V ∖ S, S). We must have that f (V ∖ S, S) = 0,since if not, say we have i /∈ S, j ∈ S such that xij > 0. Then concatenate any augmenting path from 1 to jwith the edge (j , i), and we get an augmenting path from 1 to i. But i /∈ S . Contradiction.Thus δ∗ = f (S, V ∖ S) = C (S).
Ford-FulkersonThe above proof also gives us an algorithm for finding the maximum flow.

Algorithm 6: Ford-Fulkerson
input: Feasible flow x
while Augmenting path exists doIncrease flow as much as possible along augmenting path
end

Proposition 5.19. For integer (and by rescaling rational) capacities, the Ford-Fulkerson algorithm termi-nates.
20

Proof. Without loss of generality we may assume the capacities are integers. Then the value is an integer, andin each step, this increases by at least 1. As the value is bounded above, the algorithm must terminate.

21

	Definitions
	Slack

	Convexity
	Conditions for convexity
	Extreme points
	Smoothness
	Strong convexity
	Gradient descent
	Newton's method

	Lagrange multipliers
	Slack variables
	Complementary slackness
	Duality

	Linear programs
	Basic solutions
	Duality
	Optimality conditions
	Simplex method

	Applications
	Game theory
	Network flow
	Transport problem
	Max flow, min cut

