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1 Definitions

In the context of this course, an optimisation problem has the form

minimise f subject to x € X

or

minimise f subject to x € X, h(x) = b

f is known as the objective function.

The components of x are known as decision variables.
e h(x) = b is a functional constraint

e x € X is a regional constraint



Definition 1.1 (Feasible)

For an optimisation problem, the feasible set is

X(b) ={x € X h(x) = b}
The problem is feasible if X(b) #+ @, and bounded if f(X(b)) is bounded below.

Definition 1.2 (Optimal)
x* € X(b) is optimal if it minimises f over mcX(b). The value f(x*) is known as the optimal cost.

1.1 Slack

Sometimes, for the functional constraint we have an inequality instead of an equality. Slack can be used to
transform the inequality into a regional constraint. In particular, given

minimise f subject to x € X', h(x) < b

We can write this as

minimise f subjectto x € X, s > 0,h(x)+s=0b

Therefore, we will now (unless otherwise specified) assume that the functional constraint is an equality.

2 Convexity

Definition 2.1 (Convex set)
S CR” is convex if for all x, y € S, A €0, 1], we have that

M—Ax+ryesS

Definition 2.2 (Convex function)
For a convex set S, a function f : S — R is convex if for all x,y € S, A €0, 1], we have that

(1 —A)x + Ay) < (1= A)f(x) + Af(y)

It is strictly convex if the inequality is strict on (0, 1).

2.1 Conditions for convexity

Theorem 2.3 (First order conditions for convexity). Let f : R” — R be differentiable. Then f is convex if
and only if for all x, y, we have that

Fy) = f(x) + (y = x) - VF(x)

Proof. First suppose if f is convex. We consider the n = 1 case first. Then we have that

Flx+tly —x) < (1= 0)f(x) + t1(y)

Rearranging, we get




Taking t — 0 we get that f(y) > f(x)+(y—x)f'(x) as required. For the general case, let g(t) = f(x+t(y—x)).
Then since f is convex, so is g, and ¢'(t) = (y — x) - V(f(x + t(y — x))). Using the result for n = 1, we get that

fy) = g(1) > g(0) + ¢'(0) = f(x) + (y — x) - V(x)
Now suppose the first order condition holds. Let x; = x + t(y — x). Then we have that

fx) 2 fixi) + tly = x) - VEx) (1)
fly) = Fxi) = (1 = t)(y —x) - VF(x) (2)
Then (1 —1¢)- (1) + t - (2) gives the required result. O

Definition 2.4 (Hessian)
Define the Hessian of a function f : R” — R by

o°f
2 0n =
(v f)(l aX[(an

Theorem 2.5 (Second order condition for convexity). Suppose f : R” — R is twice differentiable. Then f
is convex if V%f is positive semidefinite.

Proof. Using the multivariate Taylor theorem, we have that
1
fly) = Fx) + (g =x) - V) + 5(y —x)- V2f(2) - (y —x)
where z = x + t(y — x). Then as the Hessian is positive semidefinite, we have that

Hy) > 1x) +{y =x) - VIx)

So by the first order conditions, f is convex. O

2.2 Extreme points

Proposition 2.6. For a convex set C, f : C — R convex, if z € Int C, then f(z) cannot be the maximum of
f(x) in C.

Proof. Take any segment [x, y] such that z € [x, y]. O

Definition 2.7 (Extreme point)

For a convex set C, x € C is an extreme point if it cannot be written as
(1—290)y + oz

for some 0 € (0,1), y, z € C distinct.

Corollary 2.8. The maximum of a convex function must occur at an extreme point.

2.3 Smoothness



Definition 2.9 (B-smooth)
For a C' function f : R” — R, we say that f is S-smooth if V' is B-Lipschitz. That is,

IVfty) = Vit < Blly =]

Proposition 2.10. If f is C?, then B-smoothness implies that

V2f(x) < Bl <= Bl — V?f(x) is positive semidefinite

which means that all eigenvalues of V*f are less than B. Furthermore, we have that for all u € R”,

u" V2 f(x)u < u"(Blu = Bllull?

Proof. We have from the definition of the Hessian as the second derivative that

iy~ V1) = Vg )+ O [ly — )

Discarding the second order term, we get that

(y—x) - V)Y —x) = (y = x) - (Vy) = V) < |y = x[||[ V) = VI < Blly — x|’

Proposition 2.11. Let f be C?, convex and B-smooth. Then

B 2
fly) < 100+ (y —x) - V1) + S =y
Proof. By Taylor’s theorem we have that

fly)=f(x)+ (y — x) - VF(x)+ %(g — X)TVZf(z)(g —x) for some z &€ |[x,y]

<+ (g =) I+ Ely — o

Corollary 2.12.
2
I

1 1
f(x BVf(X)) < f(x) — £||Vf(x)

Proof. Define g(y) = f(x) + (y — x)' Vf(x) + gHg — XHZ. Minimising g as a function of y, we find that
0= 9(5) = 9, 19+ tg =191+ Elly =) = w110~ Blly ]

Letting y = x — %Vf(x) in the preceding proposition yields the required result.

Proposition 2.13 (Improved first order condition). For a convex, B-smooth function, we have that



1
ﬂwzﬂn+w4wfvmw+ﬂﬂvamfvamw

Proof. For any z, we have that

F(X) + (2 = x) VEX) < F(2) < Fly) + (2 — 4) 'V H(y 7||Z_g||

Which implies that
16— 11g) < (= 2TV + (2~ o) V1) + Bl — g
Minimising the right hand side in terms of z yields the required result.
2.4 Strong convexity

Definition 2.14 (a-strongly convex)

f:R"” — R is a-strongly convex if

Proposition 2.15. If f is C? and a-strongly convex, then

al < Vf

Proposition 2.16. Suppose f is a strongly convex, and let
pt = minf(y)
y

Then we have that for all x

P> 11— o[V

Proof. We have (by assumption) that

fly) > F(x) + (y —x)' VF(x) 2Hy—XH

Minimising the left and right hand sides with respect to y, we find that
p*zf(x)—kmyln (y —x)"'VF(x f||y—x|| )

Setting V of the RHS to be zero, and substituting we get the required result.

Proposition 2.17. Suppose f is a strongly convcex, and let
x* = argmin f(x)

Then for any x, we have that

2
b= x| < IV



Proof. By Cauchy-Schwarz, we have that

f(x*) > F(x) + (x" = x)"VF(x) + %Hx* —XHZ > f(x) + |

=T+ Sl =

Rearranging and using the fact that f(x*) — f(x) < 0 gives the required result. O

2.5 Gradient descent

One method for finding the minimum of a function is known as gradient descent.

Algorithm 1: Gradient descent

t« 0;

repeat
vt <« DescDir() ; // Choose a descending direction
ne < StepSize() ; // Choose a step size
X1 <= Xt + i Vi,
te—t+1;

until condition met, e.q. Vf(x;) =0, ort large;

where the descending direction v; is chosen such that v, - V£(x;) < 0.

Theorem 2.18. For f a-strongly convex and B-smooth, gradient descent with v, = =V f(x;) and n; = 1/B
satisfies
T /5’|

flxr) = ) < e F 5w =

Proof. We prove the stronger result

)
Flxr) — Fx°) < (1 - g) (o) — F(x°)

from which the required result can be shown. We have that

1
fxie1) — F(XT) < Fxe) — F(X7) — ﬁHVf(x,)HZ
< flx) — F(x7) — %mm — f(x)
a *
_ ( - B) () — 1)
and the result follows by induction. O

2.6 Newton's method

Gradient descent is a first order method. A second order method is known as Newton's method, and is given by

X1 = x— (V2(x)) ' VF(x)

3 Lagrange multipliers
Consider the minimisation problem

minimise f(x) subject to h(x) =b,x € X

We can convert this into an unconstrained problem by minimising the Lagrangian

L(x,A) = f(x) — AT(h(x) — b)



Theorem 3.1 (Lagrange sufficiency). Suppose we can find A* such that
Lnet)r;L(x,A ) = L(x*, A%)

for some x* (i.e. the minimum is attained). Furthermore, suppose x € X(b). Then x* is optimal for f.
That is,

in f(x) = f(x*
iy (x) = f(x%)

Proof. Since x* € X(b), we already have that min,ecx() f(x) < f(x*). So suffices to show the reverse inequality.

24, = i, (160 = ot = )

> min (f(x) — (A T(h(x) — b)) as X(b)C X

xeX

= min [(x, A%)

xeX
= L(x", )
= f(x7)

3.1 Slack variables
Given a problem of the fornﬂ

minimise f subjectto x € X, s > 0, h(x)+s=>

The Lagrangian is of the form
L(x, A, s) = f(x) = AT(h(x) + s — b)

and to find the optimal solution, we first consider the set

A= {)\: inf L(x, A s)> —oo}

xXeX,s>0
For each A € A, we find x*(A) and s*(A) such that the infimum is attained. Then we find A* € A such that
x*(A*) and s*(A*) are feasible.

3.2 Complementary slackness

The definition of the set A, and finding x*(A) and s*(A) involves the minimisation problem
minimise f(x) — Al (h(x) — b) — A's subject to x € X, s > 0
Proposition 3.2. Forany A € A\, A < 0.

Proof. Suppose if for some i, A; > 0. Then taking s; — oo we see that the problem is not bounded. O

Proposition 3.3 (Complementary slackness). At the optimum (x, A, s), for each i, A;s; = 0.

Proof.
_)\TS = — Z)\[S[ = Z(_)\[)Sl

is a sum of nonnegative terms, therefore the minimum is attained when they are all zero. O

"We have already converted the inequality into a regional constraint.



3.3 Duality

Definition 3.4 (Dual problem)

Given a minimisation problem

minimise f(x) subject to x € X, h(x) = b
with Lagrangian L(x, A) = f(x) — AT(h(x) — b). Define

gA) = Xten/_fv L(x, A)
and

maximise g(/A\) subject to A € A

is known as the dual problem. The original problem is known as the primal problem.

Theorem 3.5 (Weak duality).

inf f(x) > sup g(A
i (x) > AeRg( )

Proof. For any A € A, we have that

inf f(x)= inf L(x,A)
xeX(b) xeX(b)

> inf L(x,A)

xeX

Definition 3.6 (Duality gap, Strong duality)
Define the duality gap to be

inf  f(x) —sup g(A
A (x) Aeﬁg( )

If this is zero we say strong duality holds.

Remark 3.7. If the Lagrangian method works, then we have A* such that

inf L(x, A") = inf L(x, A")
XEX(b) xeX

and we get equality in the above. So strong duality holds. The converse is also true.

Definition 3.8 (Value function)

For a minimisation problem, define the value function

o(c) = inf f(x)

xXeX(c)

Definition 3.9 (Supporting hyperplane)
A function ¢ has a supporting hyperplane at b if there exists A such that for all c,



$l(c) > ¢(b) +A(c = b)

Theorem 3.10. Strong duality holds if and only if the value function ¢ has a supporting hyperplane at b.

Proof Suppose ¢ has a supporting hyperplane at b, say ¢(c) > ¢(b) + AT(c — b). Then we have that

g(A) = inf (1(x) = A"(h(x) - b))

=inf inf (f(x) = A" (h(x) = c) = AT(c — b))

¢ xeX(c)

= inf (¢(c) - Al(c— b))

> ¢(b) = Xégg;b) f(x)

Since weak duality gives us the reverse inequality, we must in fact have equality here. Conversely, if strong
duality holds, then we have A such that g(A) = ¢(b). Then

P(b) = g(4)
= inf (f(x) = AT(h(x) — b))
= inf (f(x) = AT(h(x) — ¢) — A" (c — b))

< ¢lc) = A'(c = b)
by weak duality. O

Theorem 3.11. A function ¢ : R” — R is convex if and only if it has a supporting hyperplane at every
b e R"

Proof Omitted. O

Theorem 3.12. Consider the minimisation problem

minimise f(x) subject to h(x) < b,x € X

with value function ¢. Then ¢ is convex if X is convex, f : R” — R convex, and h; :R" — R convex
for all 4.

Proof. Suppose b, c € X, and the minima are attained at x, and x. respectively. Let x = (1 — A)xp, + Axc.
Then x € X by convexity. Furthermore, by convexity h(x) < (1 — A)h(xp) + Ah(xc) < (1 —A)b + Ac, so x is in
X((1—=A)b + Ac).

Thus, we have that

P((1 = A)b + Ac) < fx) < (T =Af(xp) + Af(xc) = (1 = Ap(b) + Ag(c)

4 Linear programs



Definition 4.1 (Linear program)
A linear program is an optimisation problem where the objective function, functional and regional constraints
are all linear. In particular, we have

minimise c'x subject to conditions

where conditions include inequalities and equalities involving linear combinations of the decision
variables.

Remark 4.2. We note that < constraints can be written in the above form by negating, and equality constraints can
be written as a pair of inequalities. Regional constraints of the form x; > 0 can also be written in the above form.

Definition 4.3 (General form)

The general form of the above linear program is

minimise ¢'x subject to Ax > b

where A is an m x n matrix, and b € R”, with

T

A= : and b=

Definition 4.4 (Standard form)
A linear program is in standard form if it is of the form

minimise ¢'x subject to Ax = b,x >0

Proposition 4.5. Every linear program in general form can be written in standard form.

Proof. By adding slack variables, we can transform the inequality constraint into an equality and a regional

constraint on the slack variables. For the decision variables, let x; = x/.+ =X, where xf’, X; > 0. Then we get

minimise ¢! (x* — x7) subject to A(x™ —x7) = b;x, x, >0
Letting z = (xT, x7), we get

minimise (c', = ')z subject to (A, —A)z = b,z > 0

4.1 Basic solutions

In this section we will be considering linear programs in standard form. That is,

minimise ¢'x subject to Ax = b, x > 0

where Ais an m X n matrix, x € R", b € R™.

10



Definition 4.6 (Basic solution)
A point x is a basic solution if Ax = b, and x has at most m nonzero entries.

Definition 4.7 (Basic feasible solution)
A point x is a basic feasible solution if x is a basic solution and x > 0.

Finding basic solutions

Remark 4.8. From now on, we make the additional assumptions that

1. The rows of A are linearly independent.
2. Every m columns of A are linearly independent.

3. Every basic solution has exactly m nonzero entries (nondegeneracy).

Choose 1 < by < --- < b, < n to be the entries where x is nonzero. Then

0
; : Xb ; ; Xby
A1 Y A” = Ab1 o Abm = b
: : Xby : : Xb,
: B
0
Hence we have that
Xb,
=B""b
Xbm
Definition 4.9 (Basis)
B is called the basis matrix, xz = (Xs,, .. ., Xp,,) are called basis variables, and Ay, .. ., Ap, are known as

basis columns.

Remark 4.10. If B~'b > 0, then we have found a BFS.

Theorem 4.11. x is an extreme point of the feasible set X(b) = {x : Ax = b, x > 0} if and only if it is a
BFS.

Proof. First suppose x is a BFS and y,z are feasible points, with x = (1 —9d)y + 0z, 0 € (0,1). Let
by,..., by be the indices where x is nonzero. Then since y,z > 0, we must have that y;, = z; = 0 for
j & {b1,... by} Since y,z feasible, we must have Ay = Az = b. But this means that Byg = Bzg = b, so

Yyp=2p=XxXg =—= X =Y =27
Now suppose if x is not a BFS. Let the indices where x # 0 be iy, ..., i,, where r > m. Since rank(A) = m,
we must have that {A;,,..., A, } is linearly dependent. So we have w;,, ..., w;, such that

W,'WA,‘1 + -+ W,‘/,A,‘/, =0
Define

i



w;  ifi=1{;
wp =1 " !
0 otherwise

Then Aw = 0. Then for any €, we have that

Alx + ew) = Ax + eAw = Ax

Hence if we have € > 0 such that x + ew, x — ew are feasible, then

1
x=§(x+ew)+§x—sw

s not an extreme point.

4.2  Duality

Theorem 4.12. If a linear program is bounded and feasible, then it satisfies strong duality.

Proof. A linear program is convex.

Proposition 4.13 (Dual of a linear program in standard form). For a linear program

P - minimise c'x subject to Ax = b, x >0

the dual is

D : maximise A'b subject to ATA < "

Proof. The objective function in the dual is

g(A) = inf L(x, 2) = inf (c'x — AT(Ax — b)) =

x>0 x>0

inf(c" = ATA)x + ATh
x>0
For the inftmum to exist, we must have that

AN={r:c"=AA>0} ={1:A'A< "}

and the minimum occurs for x = 0, i.e. g(A) = ATh.

Proposition 4.14 (Dual of linear program in general form). For a linear program

P : minimise c¢'x subject to Ax > 0

the dual is

D : maximise A'bh subject to A'A=c", A >0
Proof Similar to the case of the standard form.

4.3 Optimality conditions
Theorem 4.15 (Fundamental theorem of Linear programs). Let x and p be feasible solutions to the primal
and dual problemd] respectively. Then x and p are optimal if and only if complementary slackness holds.

That s,

p'(Ax—b)=0 and (c—ATp)'x=0

In this case we have stated/proven this for linear programs in standard form, but this holds for any linear program. See Lecturer’s

12



notes for proof.

Proof. If x and p are feasible, then we have from weak duality that c'x < pr. Thus, if complementary slackness
holds, then we have equality. So strong duality holds and they are optimal.

Conversely, if we have optimal solutions, then by strong duality c'x = p'h. Since x is feasible, we have
that Ax = b. Combining these gives us the result required. O
Reduced costs
For a linear program in standard form, the above gives us the following optimality conditions.

1. x is primal feasible, that is, Ax = b, x > 0.

2. Ais dual feasible, that is, ATA < c.

3. Complementary slacknessE| x"(c—=ATA) =0.

Suppose xg is a BFS. Substituting into 3., we find that

xg(cg —B'A) =0

Since for a BFS xg > 0, we must have cg = B'A, and A = (B")"'cg. If this is dual feasible, then we have
an optimal solution. That is, if

t=c—A"B") 'z>0

¢ is known as the reduced costs.

Theorem 4.16. Let x be a BFS, B be the basis matrix. Let ¢ be the reduced costs. Then x is optimal if
and only if ¢ > 0.

Proof. By optimailty conditions, since the corresponding A gives us a dual feasible solution that satisfies
complementary slackness. O

4.4 Simplex method

Feasible direction

Definition 4.17 (Feasible direction)

Let x € X(b) = {x : Ax = b,x > 0}. Then d € R” is a feasible direction if there exists 6 > 0 such that
x+6d e X(b).

Definition 4.18 (j-th basic direction)

Let x be a BFS. Without loss of generality, assume b; = i. Then the j-th basic direction is the vector

0,...,1,...,0)

m'

where the 1 is at the j-th entry, and dg = —B~'A}, where A; is the j-th column of A.

Proposition 4.19.
Ad =0

Proof.
Ad = Bdg +A; =0

2The other equation holds automatically by condition 1.

13



Proposition 4.20. d is a feasible direction for a BFS x.

Proof.
x+ 6d = (xp, + 6dp,, ..., xp, + 0dyp,,0,..., 0,..., 0)>0

m

for @ sufficiently small, since by non-degeneracy, xg > 0. O

Proposition 4.21. The cost at x + 0d is ¢'x + 0¢;

Proof
c'(x+6d) = c'x + 0c'd = c'x + 0(c; — cfBTA)) = 'x + 0¢;

Minimising cost using simplex method

From the above, we can see that if ¢; < 0 for any ¢;, then we can reduce the cost by travelling along the j-th
basis direction d. The amount we can move is given by the largest 0 such that x 4+ 0d is feasible.

Algorithm 2: Simplex method

input: a BFS x with basis matrix B
¢ c—A(B"Y cg;
while ¢ % 0 do

j < ChooseBasicDir() ; // j is any index such that ¢; <0
u <« B'A;
if v <0 then
‘ return —oo ; // Problem is unbounded, the minimum cost is —co
else
0% «— min - // The amount by which we can move
ist u>0 U
[ « argmin bi . // The index along which we are moving
(st u;>0 ui
Xp, + 0%u; i i=bjand j# [
0 if i = b .
yi = o iz // The result of moving along the [-th
Hi=
0 otherwise
basis direction by 6%
X< y;; // and update B accordingly
¢ c—A (B cg;

end

end

In practice, these computations can be combined into a tableau.

Simplex tableau

Definition 4.22 (Simplex tableau)

The simplex tableau (for a given BFS x and basis matrix B) is a tableau of the form

—CEXB ‘ 1 S Cx
Xb1 :
BA, ... BA,
“ . .

m

14



where we say the “first” row is the zero-th row.

Algorithm 3: Simplex tableau

input: Simplex tableau
while ¢ % 0 do

j « ChooseBasicDir() ; // j is any index such that ¢; <0
U« B’1A/; // i.e. the j-th column of the simplex tableau
if v <0 then
| return —oco
else
0"« min -2 // The amount by which we can move
ist u>0 U
X
[ < argmin e // The index along which we are moving
ist u>0 Ui

add to each row (including the zeroth) a constant multiple of the [-th row such that u; =1, all
other entries of the pivot column are zero.
end

end

5 Applications
5.1 Game theory

Consider a zero-sum two player game, where player 1 (P1) has actions {1, ..., m}, and player 2 (P2) has

actions {1,..., n}t.

Definition 5.1 (Payoff matrix)
If P1 plays i and P2 plays j, then P1 wins a;; and P2 loses a;;. The matrix

A= (ay)

1<i<m1<j<n

is known as the payoff matrix.

Minmax

If P1 plays i first, they expect to get min a;;. This gives us the problem
J

maximise min a;; subject to 1 < i <m
1<j<n

and the related problem for P2,

minimise max a;; subjectto 1 < j < n
1<i<m

Mixed strategies

If instead we allow P1 and P2 to choose randomly, with probabilities (p1, .. ., pm)and (g1, ..., qn) respectively.
If P2 plays j, then the expected value for P1is ) a;p;. This gives us the optimisation problem

maximise v subject to Alp>ve,e'lp=1p>0

where e = (1, ..., 1) is a vector of ones.

Remark 5.2. The maxmin has been turned into an inequality of vectors.

15



For P2, we have the problem

minimise w subject to Ag < we,e'g=1,g>0

Proposition 5.3. These two problems are dual.

Corollary 5.4. A strategy p is optimal for P1 if there exists g, v such that
1. (Primal feasibility) ATp > ve,e'p=1,p >0
2. (Dual feasibility) Ag < we,e'g=1,q>0

3. (Complementary slackness) v = p'Ag

Proof. The complementary slackness equations are

Ag—we)'p=0 and q'(A'p—ve
q P qa\np
From which we get that v = w = p'Agq. O

Saddle points and dominating strategies

If in the (non-mixed) strategies we find the same (i, j), then this is known as a saddle point, and gives us an
optimum.

If there exists i, i’ such that apj > aj for all j, then i dominates i and we can drop row i without loss of
generality. Similarly we can find dominating strategies for P2.

5.2 Network flow

Definition 5.5 (Network flow)
Given a graph G = (V, E), where |V| = n, we have the following

e b € R”, where b; is the amount of flow entering vertex i. If b; > 0 then { is a source, and if b; <0
then i is a sink.

o C € R™", where ¢; is the cost per unit of flow from i to j.

e Matrices M, M are upper and lower bounds on the flow respectively.

The flow is given by a matrix X, where x;; is the amount of flow from i to j. The minimum cost flow is
given by the linear program

minimise Z cijxij subject to M < X < M, b; + Z Xji = Z Xij, Z b;=0
ij (j.i)eE (ij)eE i

Remark 5.6. The second condition can be expressed as a linear equality by defining a matrix A € RIVIXIEl where
1 ifi=
aik = —1 ifi=k

0 otherwise

5.3 Transport problem

Suppose we have the special case where G is a bipartite graph. Say we have n sources (called suppliers in
this case), and m sinks (called customers in this case). The suppliers have capacity s, ..., sn (which is just the

16



corresponding entries in b), and the customers have demand d1, ..., d,, (which is — of the corresponding entries
in b. Furthermore we assume that there is no upper/lower bound on the flow. This gives us the optimisation
problem

n

m
minimise > cijXij subject to E Xij = Si, E xij=dj x>0

i j=1 i=1

Theorem 5.7. Every minimum cost flow problem with finite capacities, or nonnegative costs, can be written
as a transportation problem.

Proof. First, we may assume M = 0 without loss of generality. Also, we note that if all the costs are nonnegative,
for any edge with infinite capacity, we can replace it by a sufficiently large capacity such that the optimal
solution is not changed.

For each vertex i in the transportation problem, create a customer with demand

Z My — by

(ik)eE

and for each edge (i, j), create a supplier with capacity

Le.

Suppose x;; flows from (i, j) to j, and m;; — x;; into i. Then we note that this satisfies the conservation
equations, and the optimal cost of this problem is the same as in the original problem. O

Theorem 5.8 (Optimality conditions for the transport problem). If we have x € R"*™ feasible, and dual
variables A € R" (suppliers) and y € R (customers). Suppose

o A +u; < cjforall (i, j) € E.
o Cij— (A +p))xi; = 0.

then x is optimal.
Proof. Consider the Lagrangian

n m n

m m n
L(X.)‘vU)ZZZCi/‘X:‘/—Z)\[ inj_si —ZN/(ZXU—C//)
i=1 j=1 i=1 j=1 Jj=1 i=1

n m

=2 > ley=A—m)xy+) Asi+) ud,
i j

i=1 j=1

Thus, for A, i to be dual feasible, we must have that A; + u; < cij. Furthermore,
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n m

> > e —A—m)xy

i=1 j=1

is a sum of nonnegative terms, which must be zero at the minimum, so we get the second equation, which
is complementary slackness. Thus, we have primal and dual feasibility, as well as complementary slackness,
which means that x is optimal. O

Remark 5.9. The values of the dual variables are not unique. If (A, y) are dual feasible, so are (A + Be, y — Be). To
reduce the degrees of freedom, we may without loss of generality assume A; = 0.

Initial assignment

To be able to solve the linear program using (a modified version of) the simplex method, we will need a BFS
to start off with. We can do this greedily.

Algorithm 4: Greedy initial assignment

ij<— T,
while i < n and j < m do
j—1 i—1
Xij—min | si— > xip. dj— Y xej | // Fill x; as much as possible
=1 =1
j
if > xijy = s then // If we have filled i then move on to the next supplier
J=1
‘ i—i+1;
end
i
if > xyj = dj then // If we have filled j then move on to the next customer
=1
| i+
end
end

Proposition 5.10. The set of edges with positive flow forms a spanning tree.

Remark 5.11. By complementary slackness, if x;; > 0 then A; + y; = ¢;;. Since we can assume A = 0, we will have
n 4+ m — 1 equations for n + m — 1 variables, which can then be solved.

Transportation tableau

Definition 5.12 (Transportation tableau)

The transportation tableau has the form

H T Hm
X11 o X1m

11 Cim

Xn1 . Xnm
Cn1 Chm

d1 o dm
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Algorithm 5: Transportation tableau

while Ji, j such that ¢;; < A; + u; do
Choose i, j such that ¢;; — A; — ; is least;
Increase flow along (i, j) as much as possible;
Recalculate the dual variables;

end

For the update step, note that we must have x;; = 0, so if we include the edge (i, j), we get a cycle in the
graph. For simplicity, suppose we get the cycle

Suppose we pass 8 along (i, j). Then we get an updated allocation with

Xij < ) v Xipp < X — 0 v Xij < Xijp — 6 and Xirjr <= Xijr +0

We see that & = min(x;y, x¢;) is the maximum allowable value, and this makes the corresponding entry zero.

5.4 Max flow, min cut

Now suppose we have one source and one sink in the network, and we wished to maximise the flow through
the network. This gives us the optimisation problem

0 ifi =1
maximise 0 subject to in/ — ZX/" =4 -0 fi=n ,0<X<LC
j i 0 otherwise

where X is the matrix of allocations, C is the matrix of capacities, and delta is the flow through the network.

Definition 5.13 (Cut)
A cut of a graph G = (V, E) is a partition of the vertices into two sets S, V . S.

Definition 5.14 (Capacity of a cut)
The capacity of a cut S is

o)=Y g

i€S,jeV\s

Theorem 5.15. Let x be a feasible flow, with value 0. Then for any cut S,V 'S such that 1 € S,
n e VS, we have that

0 < C(9)
Proof. For any X, Y C V, define

X)) = > xy

ieX,jey
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Then we have that

Z ;XU ZXN

€S i

=f(S,V)=1f(V,S)

(S, S)+ £(S,V~S) = (S, S) = f(V~S,9)
)
)

(S, VNS)—f(V\S,S)
f(S,V~5S
c(s)

I

Theorem 5.16 (Max flow, min cut). Let 0* be the value of the maximum flow. Then we have that

5" =min{C(S):SCV,1€S,n¢S}

Definition 5.17 (Path)
A path v ... v, in a graph G = (V, E) such that for all i, either (v;, vi11) € E or (visq, vi) € E[]

9The usual definition of a directed path in a graph is different to this.

Definition 5.18 (Augmenting path)

For an allocation, a path v ...v, is augmenting if for all i, either x,,, , <o, or Xyt <oy That s, either
the forwards direction has remaining capacity, or the reverse edge has nonzero flow.

Proof. Note that if we have an augementing path from 1 to n, then the allocation cannot be optimal, since
we can increase the flow by 6 along the forward edges, and decrease by n along the backward edges, for
sufficiently small 8. Now suppose x is optimal. Then let

S = {1} U {i: 3 augmenting path from 1 to i}

Then n & S by definition. Recall that 0 = f(S, VN S)—f(V S, S). We must have that f(V N\ S, S) =0,
since if not, say we have i ¢ S,j € S such that x;; > 0. Then concatenate any augmenting path from 1 to j
with the edge (J, i), and we get an augmenting path from 1 to i. But i ¢ S. Contradiction.

Thus 0" = (S, VN S) = C(S). O

Ford-Fulkerson

The above proof also gives us an algorithm for finding the maximum flow.

Algorithm 6: Ford-Fulkerson

input: Feasible flow x
while Augmenting path exists do
Increase flow as much as possible along augmenting path

end

Proposition 5.19. For integer (and by rescaling rational) capacities, the Ford-Fulkerson algorithm termi-
nates.
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Proof. Without loss of generality we may assume the capacities are integers. Then the value is an integer, and
in each step, this increases by at least 1. As the value is bounded above, the algorithm must terminate. O
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