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1 Estimation
Unless explicitly mentioned, we have data X = (X1, ..., X,), where each one is iid with density fx(x | 6), 0

unknown parameter.

Definition 1.1 (Statistic)

A statistic is a function on the data.

Definition 1.2 (Estimator)

An estimator 6 of 6 is a statistic which does not explicitly depend on 6, and can be used to estimate the

true value of 6.

Definition 1.3 (Sampling distribution)

Suppose T is an estimator. Then the distribution of (the random variable) T(X) is known as the sampling

distribution.



Definition 1.4 (Bias)

The bias of an estimator is

bias(d) = E [é] .y
Remark 1.5. bLas(@) is a function of the true parameter 6. If blas(@) =0 for all 6, then we say 0 is unbiased.

Definition 1.6 (Mean squared error)
The mean squared error of an estimator is

mse(d) = E [(é - 9)2]

Proposition 1.7 (Bias-variance decomposition).

A A A \2
mse(B) = Var(8) + (blas(@))

1.1 Sufficiency

Definition 1.8 (Sufficient statistic)
A statistic T is sufficient if the conditional distribution of X given T(X) does not depend on 6.

Theorem 1.9 (Factorisation criterion). T is sufficient for 6 if and only if fx(x | 6) = g(T(x), O)h(x) for
some g, h.

Proof. We only prove the discrete case. Suppose the density factorises, and suppose T(x) = t. Then

PX=x T(x)=1)
(T ( ): t)
g9(7(x), 0)h(x)
> yer1g 9(T(Y), O)h(y)
_ glton
deT "t} g(t
h(x)

C Yyerqn hy)

fx | Tx) =) =

X
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is independent of 6. Conversely, suppose T is sufficient.

fx]0)=PX=x)=PX=x,TKx)=TK)=PX =x| T(X)=TX)P(T(X)=T(x))

Definition 1.10 (Minimal sufficient)



A sufficient statistic T is minimal sufficient if it is a function of every other sufficient statistic. In particular,
if S is also a sufficient statistic, then S(x) = S(y) = T(x) = T(y).

Theorem 1.11. Suppose T(x) = T(y) if and only if ;é;l‘g; is constant in 6. Then T is minimal sufficient.

fix |8
Remark 1.12. Write x ~4 y for f((z l‘ 9; is constant in 6, and x ~, y for T(x) = T(y). Then these define equivalence
relations. So we have that the equivalence classes are the same.

Proof. For any value t of the statistic, let z; be a representative from 7' {t}. Then

f(x | 0)
f(ZT(X) \ 0)

So T is sufficient by factorisation. Now let S be any sufficient statistic. Then we have factorisation
f(x | 8) = g(S(x), B)h(x) for some g, h. Suppose S(x) = S(y). Then

fix [ 6) _ g(5K), 0)h(x) _ hix)

fix 1 0) = flzrp | )

fly16)  g(S(y). O)hly) — hiy)
is constant in 6. So x ~1 y, which means that x ~2 y, so T(x) = T(y). O

Theorem 1.13 (Rao-Blackwell). Let T be a sufficient statistic for 6, and 0 be an estimator with finite
second moment E[B?] Define 6 = E[@ | T(X)] Then mse(6) < mse(8), where equality holds if and only if
0 is a function of 7. Furthermore, blas(é) — bias(0).

Proof.

mse(d) = E [(é - 9)2] —E [(]E [é | T] - 9)2] —~E [E[é Y T]Z] <E [IE [(é— 0 | T” — mse(d)
By the tower law, E [é] —E []E [é | T(X)H —E [é], 50 bias(8) = bias(8). O

1.2 Maximum likelihood estimators

Definition 1.14 (Likelthood)

The likelithood function is

L(6) = fx(x | 6) = [ | fx(x | 6)

Definition 1.15 (Log-likelihood)
The log-likelihood function is

€(6) = log(L()) = Z_log(fx(Xz | 9))

Definition 1.16 (Maximum likelihood estimator)

A maxmimum likelthood estimator for 6 is one that maxmimises L or ¢ over all 6.



Proposition 1.17. If T is a sufficient statistic for 6, then the MLE is a function of T.

Proof. Since T is sufficient, we have that L(8) = g(T(x), 6)h(x), so it only depends on T(x).

Proposition 1.18. If ¢ = H(8), where H is a bijection, and 0 is the MLE for 0, then /—/(@) is the MLE for
0.

Proposition 1.19 (Asymptotic normality).

ﬁ(é—e) ~ N(0,I) as n— oo

1.3 Confidence intervals

Definition 1.20 (Confidence interval)
For y € (0,1), a 100y% confidence interval for the parameter y is a random interval [A(X), B(X)] such that

PAX) <0< B(X)) =y
for all @ fixed.

Definition 1.21 (Pivot)

A pivot R(X, 0) is a random variable whose distribution is independent of 6.

Remark 1.22. Finding a 100y% Cl for R gives us a way to find a 100y% ClI for 6.

Definition 1.23 (Confidence set)
A random set A(X) is a 100y% confidence set if

P6 € AX)) =y

2 Bayesian inference

Definition 2.1 (Prior)

The parameter 6 is considered to be a random variable. We call the distribution of 6, 7(6) the prior.

Definition 2.2 (Posterior)

The posterior distribution of 6, is



where f(x | 6) is the likelihood.

Definition 2.3 (Bayes estimator)

For a parameter 6, the Bayes estimator is the one which minimises

M®=1[M&5MWIﬂd9

where L(60, 0) is a loss function.
Proposition 2.4. With L(0, 0) = (6 — 0)%, the Bayes estimator is the expectation.
Proposition 2.5. With L(8, 0) = |6 — 0], the Bayes estimator is the median.

Definition 2.6 (Credible interval)

For a fixed x, a 100y% credible interval for the parameter 6 is an interval [A(x), B(x)] such that
7(Alx) < 8 < Bx)) =y

3 Hypothesis testing

Definition 3.1 (Hypothesis)
A hypothesis is an assumption about the distribution of the data X.

3.1 Simple hypotheses

Definition 3.2 (Simple hypothesis)

A simple hypothesis is one which fully specifies the distribution of the data X. If a hypothesis isn't simple,
then we say that it is composite.

Definition 3.3 (Critical region)
A test of Hp is defined by a critical region C, where we reject Hp if X € C, and accept Hp if X & C.

Definition 3.4 (Type |, Il error)

Type | error is Hp is true and we reject it (false positive). Type Il error is Hp is false and we accept it
(false negative).

Definition 3.5 (Size, power)
For simple hypothese Hy, H; define

a=Py (XEC) and B=Py (X ¢&O)



The size of the test C is a, and the power is 1 — B.

Definition 3.6 (Likelthood ratio test)

Suppose Hp, Hy are simple hypotheses, and we have distributions fy, f1 respetcively. Define the likelthood
ratio

The likelihood ratio test is

C={x:N>k}

Theorem 3.7 (Neyman-Pearson). Suppose Supp(fo) = Supp(fi), and there exist k > 0 which gives a
likelihood ratio test C of size a. Then among all tests with size < a, the LRT has the smallest B.

Proof Let C = X ~. C. Then

a=/cfo(x)dx and B=/ff1(x)dx

Let C* be any other test, with size o* < @, and power 1 — B*. Then

B—F =

f1(x)dx—/ f1(x)dx

C*

. f1(x)dx — /m? f1(x)dx
= /Emc* Afo(x)dx — /mﬁ/\fo(x)dx
< k (/mc* fo(x)dx — /mﬁ fo(x)dx)
= (/ fo(x)dx/fo(x)dx)

* c

I

Definition 3.8 (p-value)
For a test statistic T, and a critical region {x : T(x) > k}, then the p value of an observation x* is

p=Pr, (T(X) > T(x))

3.2 Compostite hypotheses

Suppose we have hypotheses

Hy:6€ 0y and H;,:0 € 06,



Definition 3.9 (Power)

The power function for a test C is

W(6) = Pg(X € C)

Definition 3.10 (Size)
The size of a test C is

a = sup W(0O)
66

Definition 3.11 (Uniformly most powerful)

Atest C with power W and size a is UMP if for any other test C* with size o* < a, we have W(6) > W*(0)
for all 6 € ©;.

Definition 3.12 (Generalised likelthood ratio)
The GLR is

SUPgeep, fix | 6)
SUPgeo, fix]0)

Definition 3.13 (Dimension)
The dimension of a hypothesis 8 € O is the number of free parameters in ©.

Theorem 3.14 (Wilks' theorem). Suppose By C ©4, and dim(61) —dim(G) = p. Xb, ..., X, are iid under
f(- ] ), and 6 € Int(6y). Then as n — oo, 2log(A) — Xp%

3.3 Goodness of fit tests
Suppose we have Np, ..., Ny ~ Multi(n; p1, ..., pk). A goodness of fit test is a test of the hypotheses

Ho:p=p vs H:p arbitrary probability vector
Then L(p) o pwN1 . -pka, and
N[ Ol
2log(A) = ZZ/\/ilog(npi) = 2201109(5)

where O; = N; is the observed number of samples of type i, and E; = np; is the expected number of samples
of type i.

Definition 3.15 (Pearson’s x? statistic)

The Pearson's x? statistic is



Proposition 3.16.
= B
2log(A\) = Z (O — £

3.4 Independence tests

Suppose we have (Xj, Y1), ..., (Xn, Yn) tid variables in {1,. .., rpx{1,..., c}. We wish to test whether X and
Y are independent. Define

Nij = #{L: (X, V) = (i, )}
Then Nj; ~ Multi(n; P). An independence test is a test of the hypotheses
Ho: Pj = P Pyj vs Hy: P arbitrary
Then

b[j
2log(\) =2 /\/,-'log(A - )
IZ/ ! Pit+P+j
3.5 Homoegeneity tests

Suppose we have (Ni, ..., Nic) ~ Multi(nit; par, - - -, pic) independently for i € {1,..., r}. Then we wish to
test

Ho:pij=--=p;jlorall j vs Hy:p arbitrary
Then
N
2log(\) =) Nijlog | )
i Ny

which is the same as the test for independence.

3.6 Confidence intervals

Definition 3.17 (Acceptance region)
The acceptance region of a test Cis A= X\ C

Theorem 3.18. Suppose for all 6y € © we have a test of size a for the hypothesis 8 = 6y and acceptance
region A(6). Then

IX)={0€0:XecA®b)}

is a 100(1 — a)% confidence set.

Theorem 3.19. Suppose we have /(X) which is a 100(1 — a)% confidence set. Then the set

ABo) = {x: 6o € I(X)}

is the acceptance region of a test with size a for the hypothesis 8 = 6.



4 Multivariate normal models

Definition 4.1 (Multivariate normal)

X is multivariate normal if for all t € R”, t"X is normal.

Proposition 4.2. A MVN vector is fully specified by it's mean and variance.

Proof. Suppose X has mean p and variance L. Then consider the moment generating function

1
My(t) = E [e”x] = Myix(1) = exp (ﬂu + ZtTZt)

which is a function of only ¢ and L. O

4.1 Orthogonal projection

Definition 4.3 (Orthogonal projection)

A matrix P is an orthogonal projection onto its image Col(P) if for all v € Col(P), Pu = u, and for all
w € Col(P)*, Pw = 0.

Proposition 4.4. P is an orthogonal projection if and only if P = P" and P> = P.
Proposition 4.5. If P is an orthogonal projection, so is / — P.

Proposition 4.6. If P is an orthogonal projection, let r = rank(P). Then we have U € Mat, (R) such that
P = UU" and the columns of U are an orthonormal basis of Col(P).

Proposition 4.7. If P is an orthogonal projection, then rank(P) = tr(P).

Theorem 4.8. Suppose X ~ N(0, 6°/), and P is an orthogonal projection. Then

PX ~ N(0,d%P) and (I—P)X ~ N(0,d*(I — P))

Furthermore, they are independent.

Proof. By computing the mean and variance of (PX, (I — P)X) we get the above result. To show they are
independent, let Z; ~ N(0,6°P) and 2, ~ N(0, d’(/ — P)) be independent. Then (7, Z5) has the same
mean and variance as (PX, (I — P)X), so they are independent as a MVN is characterised by its mean and
variance. O

Theorem 4.9. Suppose X ~ N(0, 6°/), and P is an orthogonal projection. Then

PX|°
7” UzH NXsank(P)



Proof Note [|PX||* = [[UTX]|", UTX ~ N0, 02 aniey), and the result follows, 0

Theorem 4.10. Suppose X, . .., Xy ~ N(u, 0?) iid. Let X = 15 X, and Syx = Y_(X; — X). Then

X ~ Ny, ;UZ) and o2 ~ X1

Furthermore, these are independent.

Proof. Let J = (1,..., N e R", P = n""J" is a projection onto its image. Write X' = p/ + ¢, where
€ ~ N(0,0°l). Then PX = i/ + Pe, and each element of PX is X. So X depends only on Pe. Furthermore,

Sxx =Y (X=X = (1= PX|" = |l P)e]’
which gives the required results. O

4.2 Linear model

Definition 4.11 (Linear model)
Let X € Mat, ,(R), where each row is a data point in R”?. 8 € RP, then a linear model is of the form

Y=XB+¢

where € is a random vector with mean 0 and variance /.

Definition 4.12 (Moore-Penrose inverse)

The Moore-Penrose inverse of a matrix X with linearly independent columns is (X' X)~'XT.

Definition 4.13 (Least squares estimator)
The least squares estimator for B is B = (X' X)"'XTY.

Proposition 4.14. B minimises

Se) = ||y - x8|*

Proposition 4.15.
)= o*(XTX)"!

&=
RN
—
Il
™
Q
=)
Q.
5
=

Theorem 4.16 (Gauss-Markov). Let B* = CY be any other linear unbiased estimator. Then Var(fg) <
Var(B8*).

Remark 4.17. We define A < B if B — A is positive semidefinite.

10



Proof Let A= C — (X"X)'X". Then E[AY] = AXB = 0, which means that AX = 0. Then

Var(B*) = Var((A + (X" X) ' XT)Y) = (A + (X"X) " XT) Var(Y)(A + (X" X)'XT)T = 6?AAT + Var(B) > Var(B)
O

Definition 4.18 (Fitted values)
The fitted values are

where P = X(XTX)~'XT.

Definition 4.19 (Residuals)
The residuals are Y — ¥ = (I—P)Y.

Proposition 4.20. P is an orthogonal projection onto its image.

4.3 Normal linear model

From now on assume € ~ N(0, %/). The log likelihood is

n 1 2
(B, 0?) = const — 5 log(0?) — ﬁHY—XBH

Proposition 4.21. The MLE for B is the least squares estimator.

Proposition 4.22. The MLE for ¢” is given by

A 2
Cy=xelr 1P qu=pvp

6_2

n n n

Theorem 4.23.
5%n

B~ NB o (XTX)T) and — ~ )i,
Proof. B is a linear function of Y, so it is MVN. We have already computed the mean and variance previously.

Note that

ne? = |1 = PYY|* = || = PUXB + &)l = ||( = P)el]

since | — P is a projection onto Col(X)*, (/ — P)X = 0. | — P has rank n — p, which gives the required
result. X
For independence, 67 is a function of (/ — P)e, and B is a function of Pe. O

4.4 Hypothesis testing

i



Definition 4.24 (Student t distribution)
Suppose U ~ N(0,1), V ~ x? independent. Then

(= v iy
VIN
Definition 4.25 (F distribution)
Suppose V ~ y2, W ~ x2 independent. Then
Vin
F= Wim ~ Fn,m
Proposition 4.26.
Bi—Bi
Ty )1
LTI
o2t
n—p
Proof. Multiply numerator and denominator by o. O
Proposition 4.27.
N TX)- 162
/:Biitn—p(g) (X X)“ g
2 (n—p)In
is a 100(1 — a)% Cl for B;.
Proposition 4.28.
n 2
[xe-slw
= '— & [Fy
62n/(n _P) = ' p P(a)
Defines a 100(1 — @)% confidence set for B.
Proof. Multiply numerator and denominator by o. O
F test
We wish to test
Ho:py = =By, =0 vs Hy:p arbitrary

Write X = (Xg X1), where Xo € Mat,,(R) and Xy € Mat,,_,(R), and 8 = (B(o) B(”)T, where
Bo € R and By € R0,
Then under Hy, B9 = 0,50 Y = XB+e = X;B + & Define P = X(X'X)7'X" and Py = Xi(X{ Xq)~' X/

Proposition 4.29.
rank(P1) = p — po

12



Lemma 4.30.
(1= P)(P — P1) = 0

Lemma 4.31. P — P; is an orthogonal projection with rank po.

The log-GLR is

n n

2log(A) = n (log(““mynz) _[OQ(HUP)YHZ))

[0 =PoYI* o= PP+ [P =PV
Ju—PY|f lu =P’

which is monotone in

Theorem 4.32. )
[(P—Py)Y]|

=Py "

Proposition 4.33. When py = 1 we recover the t-test.

4.5 Applications
Categorical predictors

Suppose X;; € {0,1} for all i, j, and we wish to test the linear model with an intercept term. That is, Xi1 =1
for all i. Then the design matrix X does not have full rank, so the Moore-Penrose inverse (X' X)~"XT is not
invertible. One way of fixing this is by removing one of the columns, or equivalently, setting the coefficient for
one category to 0. The result will be the same as the matrix will have the same column space, so P and the
fitted values will be the same.

ANOVA

Suppose we have Y = a+pyj+ g i=1..., Nandj=1,..., J. Concatenating them along the i-axis, and
using the corner point constraint, we have a linear model. Then the F test is

RN =YY
- J N v
//\/17/ Zj:1 Z[:1(Yi/' - Y/)Z

which is known as the ANalysis Of VAriances test, as it is

Variance between groups

~ Variance within each group

Two sample testing

Suppose Vi, ..., Yo ~ N, UZ) id, and 24, ..., Ly ~ Nz, UZ) iid. Furthermore, Y and Z are independent.
We can test the hypotheses

Ho:m = vs Hy:ip#mp

using the F-test, by concatenating, and using an appropriate design matrix.

13



	Estimation
	Sufficiency
	Maximum likelihood estimators
	Confidence intervals

	Bayesian inference
	Hypothesis testing
	Simple hypotheses
	Compostite hypotheses
	Goodness of fit tests
	Independence tests
	Homoegeneity tests
	Confidence intervals

	Multivariate normal models
	Orthogonal projection
	Linear model
	Normal linear model
	Hypothesis testing
	Applications


