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1 Estimation
Unless explicitly mentioned, we have data X = (X1, . . . , Xn), where each one is iid with density fX (x | θ), θunknown parameter.

Definition 1.1 (Statistic)A statistic is a function on the data.
Definition 1.2 (Estimator)An estimator θ̂ of θ is a statistic which does not explicitly depend on θ, and can be used to estimate thetrue value of θ.
Definition 1.3 (Sampling distribution)Suppose T is an estimator. Then the distribution of (the random variable) T (X ) is known as the samplingdistribution.
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Definition 1.4 (Bias)The bias of an estimator is
bias(θ̂) = E

[
θ̂
]

− θ

Remark 1.5. bias(θ̂) is a function of the true parameter θ. If bias(θ̂) = 0 for all θ, then we say θ̂ is unbiased.
Definition 1.6 (Mean squared error)The mean squared error of an estimator is

mse(θ̂) = E
[(θ̂ − θ)2]

Proposition 1.7 (Bias-variance decomposition).
mse(θ̂) = Var(θ̂) + (bias(θ̂))2

1.1 Sufficiency

Definition 1.8 (Sufficient statistic)A statistic T is sufficient if the conditional distribution of X given T (X ) does not depend on θ.
Theorem 1.9 (Factorisation criterion). T is sufficient for θ if and only if fX (x | θ) = g(T (x), θ)h(x) forsome g, h.

Proof. We only prove the discrete case. Suppose the density factorises, and suppose T (x) = t . Then
f (x | T (x) = t) = P (X = x, T (x) = t)

P(T (x) = t)= g(T (x), θ)h(x)∑
y∈T −1{t} g(T (y), θ)h(y)

= g(t, θ)h(x)∑
y∈T −1{t} g(t, θ)h(y)

= h(x)∑
y∈T −1{t} h(y)

is independent of θ. Conversely, suppose T is sufficient.
f (x | θ) = P (X = x) = P(X = x, T (x) = T (x)) = P(X = x | T (X ) = T (x))P(T (X ) = T (x))

Definition 1.10 (Minimal sufficient)
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A sufficient statistic T is minimal sufficient if it is a function of every other sufficient statistic. In particular,if S is also a sufficient statistic, then S(x) = S(y) =⇒ T (x) = T (y).
Theorem 1.11. Suppose T (x) = T (y) if and only if f (x|θ)

f (y|θ) is constant in θ. Then T is minimal sufficient.
Remark 1.12. Write x ∼1 y for f (x | θ)

f (y | θ) is constant in θ, and x ∼2 y for T (x) = T (y). Then these define equivalencerelations. So we have that the equivalence classes are the same.
Proof. For any value t of the statistic, let zt be a representative from T −1 {t}. Then

f (x | θ) = f (zT (x) | θ) f (x | θ)
f (zT (x) | θ)So T is sufficient by factorisation. Now let S be any sufficient statistic. Then we have factorisation

f (x | θ) = g(S(x), θ)h(x) for some g, h. Suppose S(x) = S(y). Then
f (x | θ)
f (y | θ) = g(S(x), θ)h(x)

g(S(y), θ)h(y) = h(x)
h(y)is constant in θ. So x ∼1 y, which means that x ∼2 y, so T (x) = T (y).

Theorem 1.13 (Rao-Blackwell). Let T be a sufficient statistic for θ, and θ̃ be an estimator with finitesecond moment E[θ̃2]. Define θ̂ = E[θ̃ | T (X )]. Then mse(θ̂) ≤ mse(θ̃), where equality holds if and only if
θ̃ is a function of T . Furthermore, bias(θ̂) = bias(θ̃).

Proof.

mse(θ̂) = E
[(θ̂ − θ)2] = E

[(
E
[
θ̃ | T

]
− θ

)2] = E
[
E[θ̃ − θ | T ]2] ≤ E

[
E
[(θ̃ − θ)2 | T

]] = mse(θ̃)
By the tower law, E [θ̂] = E

[
E
[
θ̃ | T (X )]] = E

[
θ̃
], so bias(θ̂) = bias(θ̃).

1.2 Maximum likelihood estimators

Definition 1.14 (Likelihood)The likelihood function is
L(θ) = fX (x | θ) =∏

i
fXi (xi | θ)

Definition 1.15 (Log-likelihood)The log-likelihood function is
ℓ(θ) = log(L(θ)) =∑

i
log(fXi (xi | θ))

Definition 1.16 (Maximum likelihood estimator)A maxmimum likelihood estimator for θ is one that maxmimises L or ℓ over all θ.
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Proposition 1.17. If T is a sufficient statistic for θ, then the MLE is a function of T .
Proof. Since T is sufficient, we have that L(θ) = g(T (x), θ)h(x), so it only depends on T (x).

Proposition 1.18. If φ = H(θ), where H is a bijection, and θ̂ is the MLE for θ, then H(θ̂) is the MLE for
φ.
Proposition 1.19 (Asymptotic normality).

√
n
(

θ̂ − θ
)

≈ N(0, Σ) as n → ∞

1.3 Confidence intervals

Definition 1.20 (Confidence interval)For γ ∈ (0, 1), a 100γ% confidence interval for the parameter γ is a random interval [A(X ), B(X )] such that
P(A(X ) ≤ θ ≤ B(X )) = γfor all θ fixed.

Definition 1.21 (Pivot)A pivot R (X, θ) is a random variable whose distribution is independent of θ.
Remark 1.22. Finding a 100γ% CI for R gives us a way to find a 100γ% CI for θ.
Definition 1.23 (Confidence set)A random set A(X ) is a 100γ% confidence set if

P(θ ∈ A(X )) = γ

2 Bayesian inference

Definition 2.1 (Prior)The parameter θ is considered to be a random variable. We call the distribution of θ, π(θ) the prior.
Definition 2.2 (Posterior)The posterior distribution of θ, is

π(θ | x) = π(θ)f (x | θ)
f (x)
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where f (x | θ) is the likelihood.
Definition 2.3 (Bayes estimator)For a parameter θ, the Bayes estimator is the one which minimises

h(δ) = ∫ L(θ, δ)π(θ | x)dθ

where L(θ, δ) is a loss function.
Proposition 2.4. With L(θ, δ) = (θ − δ)2, the Bayes estimator is the expectation.
Proposition 2.5. With L(θ, δ) = |θ − δ|, the Bayes estimator is the median.
Definition 2.6 (Credible interval)For a fixed x , a 100γ% credible interval for the parameter θ is an interval [A(x), B(x)] such that

π(A(x) ≤ θ ≤ B(x)) = γ

3 Hypothesis testing

Definition 3.1 (Hypothesis)A hypothesis is an assumption about the distribution of the data X .
3.1 Simple hypotheses

Definition 3.2 (Simple hypothesis)A simple hypothesis is one which fully specifies the distribution of the data X . If a hypothesis isn’t simple,then we say that it is composite.
Definition 3.3 (Critical region)A test of H0 is defined by a critical region C , where we reject H0 if X ∈ C , and accept H0 if X /∈ C .
Definition 3.4 (Type I, II error)Type I error is H0 is true and we reject it (false positive). Type II error is H0 is false and we accept it(false negative).
Definition 3.5 (Size, power)For simple hypothese H0, H1 define

α = PH0 (X ∈ C ) and β = PH1 (X /∈ C )
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The size of the test C is α , and the power is 1 − β .
Definition 3.6 (Likelihood ratio test)Suppose H0, H1 are simple hypotheses, and we have distributions f0, f1 respetcively. Define the likelihoodratio

Λ = f1(x)
f0(x)The likelihood ratio test is

C = {x : Λ > k}

Theorem 3.7 (Neyman-Pearson). Suppose Supp(f0) = Supp(f1), and there exist k > 0 which gives alikelihood ratio test C of size α . Then among all tests with size ≤ α , the LRT has the smallest β .
Proof. Let C = X ∖ C . Then

α = ∫
C

f0(x)dx and β = ∫
C

f1(x)dx

Let C ∗ be any other test, with size α∗ ≤ α , and power 1 − β∗. Then
β − β∗ = ∫

C
f1(x)dx −

∫
C ∗

f1(x)dx

= ∫
C∩C ∗

f1(x)dx −
∫

C∩C ∗
f1(x)dx

= ∫
C∩C ∗

Λf0(x)dx −
∫

C∩C ∗
Λf0(x)dx

≤ k
(∫

C∩C ∗
f0(x)dx −

∫
C∩C ∗

f0(x)dx
)

= k
(∫

C ∗
f0(x)dx −

∫
C

f0(x)dx
)

= k (α∗ − α)
≤ 0

Definition 3.8 (p-value)For a test statistic T , and a critical region {x : T (x) > k}, then the p value of an observation x∗ is
p = PH0 (T (X ) ≥ T (x∗))

3.2 Compostite hypothesesSuppose we have hypotheses
H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1
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Definition 3.9 (Power)The power function for a test C is
W (θ) = Pθ (X ∈ C )

Definition 3.10 (Size)The size of a test C is
α = sup

θ∈Θ0 W (θ)

Definition 3.11 (Uniformly most powerful)A test C with power W and size α is UMP if for any other test C ∗ with size α∗ ≤ α , we have W (θ) ≥ W ∗(θ)for all θ ∈ Θ1.
Definition 3.12 (Generalised likelihood ratio)The GLR is

Λ = supθ∈Θ1 f (x | θ)supθ∈Θ0 f (x | θ)
Definition 3.13 (Dimension)The dimension of a hypothesis θ ∈ Θ is the number of free parameters in Θ.
Theorem 3.14 (Wilks’ theorem). Suppose Θ0 ⊆ Θ1, and dim(Θ1) − dim(Θ0) = p. X1, . . . , Xn are iid under
f (· | θ), and θ ∈ Int(θ0). Then as n → ∞, 2 log(Λ) → χ2

p .
3.3 Goodness of fit testsSuppose we have N1, . . . , Nk ∼ Multi(n; p1, . . . , pk ). A goodness of fit test is a test of the hypotheses

H0 : p = p̃ vs H1 : p arbitrary probability vectorThen L(p) ∝ pN11 · · · pNk
k , and

2 log(Λ) = 2∑Ni log( Ni
npi

) = 2∑Oi log(Oi
Ei

)
where Oi = Ni is the observed number of samples of type i, and Ei = npi is the expected number of samplesof type i.

Definition 3.15 (Pearson’s χ2 statistic)The Pearson’s χ2 statistic is ∑ (Oi − Ei)2
Ei
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Proposition 3.16. 2 log(Λ) ≈
∑ (Oi − Ei)2

Ei

3.4 Independence testsSuppose we have (X1, Y1), . . . , (Xn, Yn) iid variables in {1, . . . , r} × {1, . . . , c}. We wish to test whether X and
Y are independent. Define

Nij = #{l : (Xl, Yl) = (i, j)}Then Nij ∼ Multi(n; P). An independence test is a test of the hypotheses
H0 : Pij = Pi+P+j vs H1 : P arbitraryThen

2 log(Λ) = 2∑
i,j

Nij log( p̂ij

p̂i+p̂+j

)

3.5 Homoegeneity testsSuppose we have (Ni1, . . . , Nic) ∼ Multi(ni+; pi1, . . . , pic) independently for i ∈ {1, . . . , r}. Then we wish totest
H0 : p1j = · · · = prj for all j vs H1 : p arbitraryThen

2 log(Λ) =∑
i,j

Nij log( Nij
ni+N+j

n++

)
which is the same as the test for independence.

3.6 Confidence intervals

Definition 3.17 (Acceptance region)The acceptance region of a test C is A = X ∖ C

Theorem 3.18. Suppose for all θ0 ∈ Θ we have a test of size α for the hypothesis θ = θ0 and acceptanceregion A(θ). Then
I(X ) = {θ ∈ Θ : X ∈ A(θ)}is a 100(1 − α)% confidence set.

Theorem 3.19. Suppose we have I(X ) which is a 100(1 − α)% confidence set. Then the set
A(θ0) = {x : θ0 ∈ I(X )}is the acceptance region of a test with size α for the hypothesis θ = θ0.
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4 Multivariate normal models

Definition 4.1 (Multivariate normal)
X is multivariate normal if for all t ∈ Rn, tTX is normal.
Proposition 4.2. A MVN vector is fully specified by it’s mean and variance.

Proof. Suppose X has mean µ and variance Σ. Then consider the moment generating function
MX (t) = E

[
etTX

] = MtTX (1) = exp(tTµ + 12 tTΣt
)

which is a function of only µ and Σ.
4.1 Orthogonal projection

Definition 4.3 (Orthogonal projection)A matrix P is an orthogonal projection onto its image Col(P) if for all u ∈ Col(P), Pu = u, and for all
w ∈ Col(P)⊥, Pw = 0.
Proposition 4.4. P is an orthogonal projection if and only if P = PT and P2 = P .
Proposition 4.5. If P is an orthogonal projection, so is I − P .
Proposition 4.6. If P is an orthogonal projection, let r = rank(P). Then we have U ∈ Matn,r (R) such that
P = UUT and the columns of U are an orthonormal basis of Col(P).
Proposition 4.7. If P is an orthogonal projection, then rank(P) = tr(P).
Theorem 4.8. Suppose X ∼ N(0, σ 2I), and P is an orthogonal projection. Then

PX ∼ N(0, σ 2P) and (I − P)X ∼ N(0, σ 2(I − P))Furthermore, they are independent.
Proof. By computing the mean and variance of (PX, (I − P)X ) we get the above result. To show they areindependent, let Z1 ∼ N(0, σ 2P) and Z2 ∼ N(0, σ 2(I − P)) be independent. Then (Z1, Z2) has the samemean and variance as (PX, (I − P)X ), so they are independent as a MVN is characterised by its mean andvariance.

Theorem 4.9. Suppose X ∼ N(0, σ 2I), and P is an orthogonal projection. Then∥∥PX
∥∥2

σ 2 ∼ χ2rank(P)
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Proof. Note ∥∥PX
∥∥2 = ∥∥UTX

∥∥2, UTX ∼ N(0, σ 2Irank(P)), and the result follows.
Theorem 4.10. Suppose X1, . . . , Xn ∼ N(µ, σ 2) iid. Let X = 1

n
∑

Xi, and SXX =∑(Xi − X ). Then
X ∼ N(µ, 1

nσ 2) and SXX
σ 2 ∼ χ2

n−1Furthermore, these are independent.
Proof. Let J = (1, . . . , 1)T ∈ Rn, P = n−1JJT is a projection onto its image. Write X = µJ + ε, where
ε ∼ N(0, σ 2I). Then PX = µJ + Pε, and each element of PX is X . So X depends only on Pε. Furthermore,

SXX =∑(Xi − X )2 = ∥∥(I − P)X∥∥2 = ∥∥(I − P)ε∥∥2
which gives the required results.

4.2 Linear model

Definition 4.11 (Linear model)Let X ∈ Matn,p(R), where each row is a data point in Rp. β ∈ Rp, then a linear model is of the form
Y = Xβ + εwhere ε is a random vector with mean 0 and variance σ 2I .

Definition 4.12 (Moore-Penrose inverse)The Moore-Penrose inverse of a matrix X with linearly independent columns is (XTX )−1XT .
Definition 4.13 (Least squares estimator)The least squares estimator for β is β̂ = (XTX )−1XTY .
Proposition 4.14. β̂ minimises

S(β) = ∥∥Y − Xβ
∥∥2

Proposition 4.15.
E
[
β̂
] = β and Var(β̂) = σ 2(XTX )−1

Theorem 4.16 (Gauss-Markov). Let β∗ = CY be any other linear unbiased estimator. Then Var(β̂) ≤Var(β∗).
Remark 4.17. We define A ≤ B if B − A is positive semidefinite.
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Proof. Let A = C − (XTX )−1XT . Then E[AY ] = AXβ = 0, which means that AX = 0. Then
Var(β∗) = Var((A + (XTX )−1XT)Y ) = (A + (XTX )−1XT) Var(Y )(A + (XTX )−1XT)T = σ 2AAT + Var(β̂) ≥ Var(β̂)

Definition 4.18 (Fitted values)The fitted values are
Ŷ = Xβ̂ = PYwhere P = X (XTX )−1XT .

Definition 4.19 (Residuals)The residuals are Y − Ŷ = (I − P)Y .
Proposition 4.20. P is an orthogonal projection onto its image.

4.3 Normal linear modelFrom now on assume ε ∼ N(0, σ 2I). The log likelihood is
ℓ(β, σ 2) = const − n2 log(σ 2)− 12σ 2 ∥∥Y − Xβ

∥∥2

Proposition 4.21. The MLE for β is the least squares estimator.
Proposition 4.22. The MLE for σ 2 is given by

σ̂ 2 = ∥∥Y − Xβ
∥∥2

n =
∥∥∥Ŷ − Y

∥∥∥2
n = ∥∥(I − P)Y∥∥2

n

Theorem 4.23.
β̂ ∼ N(β, σ 2(XTX )−1) and σ̂ 2n

σ ∼ χ2
n−p

Proof. β̂ is a linear function of Y , so it is MVN. We have already computed the mean and variance previously.Note that
nσ̂ 2 = ∥∥(I − P)Y∥∥2 = ∥∥(I − P)(Xβ + ε)∥∥2 = ∥∥(I − P)ε∥∥2

since I − P is a projection onto Col(X )⊥, (I − P)X = 0. I − P has rank n − p, which gives the requiredresult.For independence, σ̂ 2 is a function of (I − P)ε, and β̂ is a function of Pε.
4.4 Hypothesis testing
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Definition 4.24 (Student t distribution)Suppose U ∼ N(0, 1), V ∼ χ2
n independent. Then

T = U√
V /N

∼ tn

Definition 4.25 (F distribution)Suppose V ∼ χ2
n , W ∼ χ2

m independent. Then
F = V /n

W /m ∼ Fn,m

Proposition 4.26.
βi−β̂i√(XTX )−1

ii√
σ̂ 2 n

n−p

∼ tn−p

Proof. Multiply numerator and denominator by σ .
Proposition 4.27.

I = β̂i ± tn−p

(α2)
√ (XTX )−1

ii σ̂ 2(n − p)/nis a 100(1 − α)% CI for βi.
Proposition 4.28. ∥∥∥X (β̂ − β ′)∥∥∥2

/p
σ̂ 2n/(n − p) ≤ Fp,n−p(α)

Defines a 100(1 − α)% confidence set for β .
Proof. Multiply numerator and denominator by σ .
F testWe wish to test

H0 : β1 = · · · = βp0 = 0 vs H1 : β arbitrary
Write X = (

X0 X1), where X0 ∈ Matn,p0 (R) and X1 ∈ Matn,p−p0 (R), and β = (
β (0) β (1))T , where

β0 ∈ Rp0 and β1 ∈ Rp−p0 .Then under H0, β (0) = 0, so Y = Xβ + ε = X1β (1) + ε. Define P = X (XTX )−1XT and P1 = X1(XT1 X1)−1XT1 .
Proposition 4.29. rank(P1) = p − p0
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Lemma 4.30. (I − P)(P − P1) = 0
Lemma 4.31. P − P1 is an orthogonal projection with rank p0.
The log-GLR is

2 log(Λ) = n
(log(∥∥(I − P1)Y∥∥2

n

)
− log(∥∥(I − P)Y∥∥2

n

))

which is monotone in ∥∥(I − P1)Y∥∥2∥∥(I − P)Y∥∥2 = ∥∥(I − P)Y∥∥2 + ∥∥(P − P1)Y∥∥2∥∥(I − P)Y∥∥2 .
Theorem 4.32. ∥∥(P − P1)Y∥∥2∥∥(I − P)Y∥∥2 ∼ Fp0,n−p

Proposition 4.33. When p0 = 1 we recover the t-test.
4.5 Applications
Categorical predictorsSuppose Xi,j ∈ {0, 1} for all i, j , and we wish to test the linear model with an intercept term. That is, Xi,1 = 1for all i. Then the design matrix X does not have full rank, so the Moore-Penrose inverse (XTX )−1XT is notinvertible. One way of fixing this is by removing one of the columns, or equivalently, setting the coefficient forone category to 0. The result will be the same as the matrix will have the same column space, so P and thefitted values will be the same.
ANOVASuppose we have Yij = α + µj + εij , i = 1, . . . , N and j = 1, . . . , J . Concatenating them along the i-axis, andusing the corner point constraint, we have a linear model. Then the F test is

F = 1
J−1 ∑J

j=1 N(Yj − Y )21
JN−J

∑J
j=1∑N

i=1(Yij − Yj )2which is known as the ANalysis Of VAriances test, as it is
F = Variance between groupsVariance within each group

Two sample testingSuppose Y1, . . . , Yn ∼ N(µ1, σ 2) iid, and Z1, . . . , Zm ∼ N(µ2, σ 2) iid. Furthermore, Y and Z are independent.We can test the hypotheses
H0 : µ1 = µ2 vs H1 : µ1 ̸= µ2using the F-test, by concatenating, and using an appropriate design matrix.
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