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1 Functionals and multivariate calculus

1.1 Function spaces and functionals

In this course, we will be trying to find the optimum value of a functLona\EI But to be able to do this, we will
need to first introduce some spacesﬂ of functions.

Definition 1.1 (C* functions)

Let A be a subset of R". Then for k &€ [0, 0], define the space of k-times continuously differentiable
functions.

CK(A) .= {f : A= R : f k-times continuously differentiable}

We write C(A) = C°(A) for continuous functions, and

C(@’B)(A) ={f:A— R:f k-times continuously differentiable, f(a) = f(B)}

To be introduced later
“These are vector spaces, as well as normed spaces with an appropriate domain/metric/norm.



for the space of functions with fixed end points.

Definition 1.2 (Functional)

A functional is a (real-valued) function from a space of functions.

1.2  Multivariate calculus

In this section, suppose f € C*(R"). That is,  is twice differentiable with continuous second derivatives.

Definition 1.3 (Stationary point)

a € R" is a stationary point of f if

Vi(a) = (0+f, - ,0,f)(a) =0
where 0,f = af/éx,;

Definition 1.4 (Hessian)
The Hessian of f is the matrix H;; = d,0,f.

Theorem 1.5 (Multivariate Taylor Theorem).

fla+ h) = f(a) + h - VF(a) + %hTHh + O(HhHZ)

Proposition 1.6 (Classification of stationary points). Suppose (without loss of generality), V£(0) = 0. Let
Ai be the eigenvalues of H. Then

(i) Ifall A; > 0, then f has a local minimum at 0.
(it) If all A; < 0, then f has a local maximum at 0.
(iit) If some A; > 0, and some A; < 0, then f has a saddle point at 0.

(iv) If any A; = 0, then we need higher order terms.

Proof. Since f has continuous second order derivatives, H is a symmetric matrix. Thus it can be diagonalised
by an orthogonal transformation. Hence without loss of generality, assume H diagonal. Then the multivariate
Taylor theorem gives us that

f(x) — £(0) = x - V£(0) +%xtHX +O(Ix1%) =Y Ax? +0(1x1%)
=0

The result follows. O

1.3 Lagrange multipliers

Sometimes, we have constraints which limit domain which we are optimising over. We can use the method of
Lagrange multipliers for this.



Definition 1.7 (Lagrange multipliers)
Suppose we have f : R" — R, and functions (g.)%_; : R” — R, and we wish to optimise / subject to the
constraints g, = 0 for all . Define h: R” x R¥ — R by

k
hix, ) = F(x) = ) AaGa(x)
a=1

Then the optimum value can be found by considering Vh = 0. A is known as the Lagrange multiplier.

2 Convexity

Definition 2.1 (Convex set)
A subset S CR” is convex if for all x,y € S, t €0, 1], we have that

M1=t)-x+t-yes

Definition 2.2 (Convex function)
For a convex set S, function f: S — R is convex if for all t €0, 1],

(1=t - x+t-y) < (T —1t)- f(x)+t-f(y)
We say that f is strictly convex if the inequality is strict on (0, 1).

Remark 2.3. We can define f is (strictly) concave if —f is (strictly) convex.

2.1 Conditions for convexity
Proposition 2.4. Suppose f is differentiable. Then f is convex if and only if for all x, y,

Hy) > F(x) +(y =x) - VIx) ()

Proof Suppose (*) holds. Let zz = (1 —t)- x4+ t-y. Then we have that

f(x) > f(zt) + (x —z)V(z:) and fly) > f(zt) + (y — z)V(z)

Then we get that

(1=t -f(x)+t-fly) > f(z)

Which means that f is convex. Suppose instead that f is differentiable and convex. Let

hity=(1—1t)-fx)+t-fly) —f(1T—¢t)-x+t-y)
Then h is differentiable, with h'(0) = —f(x) + f(y) — (y — x) - V£(x). So suffices to show that h’'(0) > 0.
h(0) =0, and for t € (0, 1), we have that

hio)— h(O) _ hit)
t t

Taking the limit t — O, we get the required result. O



Corollary 2.5. If f is convex and differentiable, with Vf(x) = 0. Then f has a global minimum at x.

Proof. If Vf(x) =0, then x is a local minimum. By convexity, a local minimum is a global minimum. O

Proposition 2.6. Suppose f differentiable, with
(VHy) = VHx) - (y =x) >0 ()

for all x, y. Then f is convex.

Proof We have that

fly)— ) =[F((1 =) x+t Y

Td
=/O (=1 x4+t y)dt

_/1(gx)-Vf((1t)‘X+t'U)dt
0

Which means that

1
Fy) = fx) = (y =x) - VIx) =/O (Y =x)- (VT =) - x+t-y) = VIx))dt
Setting y = (1 —t)x + ty in (), we get that t(y —x)- (VI((1—1t) - x+t-y)— V{(x)) > 0, which means that

fy) = F(x) + (y = x) - VF(x)

So f is convex. O

Remark 2.7. The converse is also true, but not proven here.

Proposition 2.8. Suppose f twice differentiable, then f is convex if and only if all eigenvalues of the
Hessian are nonnegative. Furthermore, it is strictly convex if and only if all are positive.

Proof. Suppose f convex. Then we have that for any h,

h - (VF(x+h) — Vf(x) > 0

Furthermore, from the multivariate Taylor expansion, we have that

of
W+ 0(IBIF) = 2L+ by + (7))

o _or ., o1
0X[ N 6x[ /aX,‘aX/‘

Hence taking the scalar product with h, we find that
hiHih; +O([|n]") > 0

Hence all eigenvalues are nonnegative. O

2.2 Legendre transform



Definition 2.9 (Legendre transform)
Let f : R"” — R, the Legendre transform of f is

F*(p) = sup(p - x — f(x)

where the domain of f* is the set of all p such that the supremum exists.

Proposition 2.10. The domain of /* is a convex set, and * is a convex function.

Proof
f*((1—t)-p+t-q)=sgp((1—t)-P-XH‘q'X—f(X))
=supl(T =)+ p-x = 1) + £+ {q - x = F(x)
< (1= 1) suplp - x = fx) + - sup(q - x — (X))

=(1=0-p)+t-(q)

O

Which both shows that the domain is convex, as well as f* being convex.

Since the properties of the Legendre transform on non-convex functions are not as well behaved, we now
look at some properties assuming the function f is convex. First, we need the following lemma.

Lemma 2.11. Let f: S — R be convex, and p € R” fixed. Then the function

glx) = flx) =x-p

is also convex.

Thus, for a convex function, the Legendre transform is simply the maximum of a concave function, which must
occur either on 0S5 (if Vg # 0 on S), or at a point where the gradient is zero. Thus, we get that

Proposition 2.12. For a convex differentiable function f : S — R, we have that

p=VIf

Proof. We have that Vg(x) =0 < p = V{(x).

2.3 Legendre transform in Thermodynamics

Definition 2.13 (Quantities in Thermodynamics)

Define the following quantities

e Pressure - P
e Volume - V
e Temperature - T

e Entropy - S



Definition 2.14 (Energies in Thermodynamics)

Define the following energies

e Internal energy - U(S, V)
e Helmholtz free energy - F(T, V) = —-U*(T, V)
e Enthalpy - H(S, P) = —U*(S, P)

3 FEuler-Lagrange equations

We wish to extremise the functional

B
Fly) = [ flx, g, y')dx

subject to reqgularity conditions, as well as the boundary conditions y(a) = y1 and y(B) = y2. To do this,
we will first need a lemma.

Lemma 3.1 (Fundamental lemma of calculus of variations). Ler g : [a, B] — R be continuous, and suppose
for all n:[a, B] = R continuous, n(a) = n(B) = 0, we have that

B
[ gintriax =0
Then g =0 on [a, B]

Proof. We will prove the contrapositive. Suppose g = 0. Say (without loss of generality) g(y) > 0 for some
y € [a, B]. Then by continuity, we have [a, b] such that g(x) > g(y)/2 > O for all x € [a, b]. Let n be any
continuous function which is zero outside [a, b] and positive in (a, b). Then

B b
/ glx)nx)dx = [ g0)n(x)dx > 0

Theorem 3.2 (Euler-Lagrange equation). A necessary condition for y to be an extremum of the functional

B
Fly] :/ f(x, y, y')dx

is for it to satisfy the Euler-Lagrange equation

dfary o g
dx \ dy’ dy

Proof. Fix y, and we consider a small perturbation y + en, where € € R small and n satisfying the reqularity
conditions, as well as the boundary condition n(a) = n(B) = 0. Substituting, and expanding as a function of ¢,
we find that

B
Fly + en] = / fix,y+eny + en)dx

Blof  of , 5
:F[y}‘i‘g/a (ag/']—.—ag/f])d)(‘i‘o(g)

For this to be an extremum, we want dF/ds = 0. Integrating by parts, we find that



_ / Plor _d(ar))
), \dy  dx\ay 1
Since this must hold for all n, applying the fundamental lemma we get the required result.

Remark 3.3. Euler-Lagrange is a second order ODE in y with boundary conditions.

3.1 First Integrals

In some special cases, E-L reduces to a first order ODE.

Corollary 3.4. If in addition, 0f /dy = 0, then a necessary condition is

i a—f =0 < a—f*const
dx \ay | oy’

Corollary 3.5. If instead df/ax = 0, then a necessary condition is

of
f—y' = = const
dy

;=

Proof.

oy oY Y ey Y

_of (o _d(or
“ox Y dy dx \dy

=0

d ( /af) of of , of , , Of d (af)
f “
ay’

3.2 Constrained E-L Equations

Suppose we wished to extremise

B
Fly) = / flx, g, y')dx

subject to the constraint that
B /
Glyl :/ glx.y,y)dx =0
Then we can use Lagrange multipliers, and extremise

Py, A = Fly] — Adly]

This then gives us



Proposition 3.6. A necessary condition for y to be an extremum of the functional F, subject to the condition
Gly] = 0 as above, is

d [ o 0
dx(ay,<f—Ag))—ag(f—Ag>=o

Proof. Euler-Lagrange with the functional ¢.

3.2.1  Sturm-Liouville

One important example of this is known as the Sturm-Liouville operator.

Example 3.7 (Sturm-Liouville)
Let p(x) > 0 on a set [@, B] and a(x) is any function. Then we wish to extremise the functional

B
Fly] = / ply)* + oydx

subject to the boundary conditions on y, as well as

B
Gly] = / y?dx =1
a
Define the functional @[y, A] = Fly] — A(Gly] — 1). Then the Euler-Lagrange equations give us

of oh
o =2py’ and & =20y — 2y

Which means that

d ;
Lly] = —a(py ) +oy =Xy

where L is known as the Sturm-Liouville operator. Since L is linear, we see that this is an eigenvalue
problem.

3.3 Several dependent variables

Theorem 3.8 (Euler-Lagrange with several dependent variables). Suppose we have y : R — R", a
necessary condition for y to be an extremum of the functional

B
F[g]:/ f gt yn gy - gh)dx
a

Proof. Apply perturbation 1 : [a, B] = R" as in the proof of the single variable case.

Like with the single variable case, we have first integrals

Corollary 3.9. Forany j € {1,..., n}, if 0f /dy; =0, then

— = const
0y;-



Corollary 3.10. If 9f /ox = 0, then

of
f— ngay‘ = const
i L

3.4 Several independent variables

Now, we consider the most general case, where we have ¢ : R” — R". Instead of an interval in R, consider a
subset D C R”, and the boundary conditions will by imposed on the boundary oD.

Theorem 3.11. A necessary condition for ¢ : R" — R"™ to be an extremum for the functional

Flg] = [D e, 6, )V

where ¢’ is the (Fréchet) derivative of ¢, L.e. a matrix of partial derivatives 0(;‘)[-/6)(/-, is if

of "9 of
_ — = f (=1 ...
5%, Zax,(a<a,¢,-)) O for i=tm

j=1

Proof. Apply perturbation ¢ + €n as before, where we have the boundary condition that n = 0 on dD, we have
that

m

F[¢>+sn]—F[¢]=€Z/
i=1 7D

We must have that each of the integrals that we are summing over are zero, as we can perturb (further)
only in one of the components. Hence we may assume without loss of generality that m = 1, and we will drop
the i subscripts. Then

of _of
—ni4+ Y ——on | dV
0¢; ;6(6@[) !

of of
Flg+en—Flol e [ nz+ > a0

of of of of of
- AR - PR L | R e 1Y
E/D”aqﬁw (” (aaﬂzv' 'aanczb)) v (am' 30,8 °

=0 by Divergence Theorem as n=0 on 0D

of < of
e, 36~ a9 ) "

Applying the fundamental lemma gives the required result. O

3.5 Higher order derivatives

Theorem 3.12. A necessary condition for y to be an extremum of the functional

B
Fly] = [ fix,y.y,.. ., g(”))dx

is if



2 ,d" [ of
LV (o) ¢

Proof. Apply perturbation y + en, where we require n = = --- = 7"~ = 0 at a, 8. Then expanding we
find that

Plofr  of of
e . L AN () 2
(0gn+6gn+ * am" )dx+(9(6)

Leave the first term as is, integrate the second one by parts, and so on, where we integrate the last one by
parts n times, we get the required result. O

Fwen]—ﬂg}:s/

a

4 Dynamics
4.1 Least action principle

Definition 4.1 (Lagrangian)
For a particle in R? with kinetic energy T and potential energy V, the Lagrange is

Lix, i, ) =T —V

Definition 4.2 (Action)

The action of a particle is

S[x] = [fz L(x, x, t)dt

Proposition 4.3 (Least action principle). The motion of a particle is such that S[x] is stationary. That is,
x satisfies the Euler-Lagrange equations.

4.2 Noether’s theorem

Definition 4.4 (Continuous symmetry of Lagrangian)

Suppose we have a functional

8
Flyl = / fa g, ogn g yn)dx
a

Then a one parameter transformation Y(x, s) of y, where Y(x, 0) = y(x) is called a continuous symmetry
of f if

where primes denote derivatives with respect to x.

Theorem 4.5 (Noether's theorem). Given a continuous symmetry Y(x, s) of f,

af av;
Z@T,/l ds

s=0

10



is a first integral of the Euler-Lagrange equations. That is, it is a conserved quantity.

Proof. In this proof we will use the summation convention.

A (V)| _(d(aryav of d (o
dx \ dy; 0Os o \dxloy/ ) ds = oyl dx\ os <=0
of av; of avy!
= +
ayi ds s=0 ay; s s=0
_ 4
a ds s=0
=0

4.3 Hamilton's equations

Definition 4.6 (Hamiltonian)
Let L =L(g,g,t) = T — V be the Lagrangian of a system. Define the Hamiltonian

H(g.p.t) = Suvp(p -v—1L(g,v. 1)

to be the Legendre transform of L with respect to v = §. p is called the generalised momentum.

Theorem 4.7 (Hamilton's equations). Suppose that L is convex and differentiable. Then we have that

Oy M _ ol
ot  odt

d p=—
= and p; a0,

.4
ql - a
Proof. First we note that (using the summation convention)

H = pivi — L(q,‘, Vi, T)
where v;(p) is a solution to p; = aL/aq, So we have that

oH oH oH
—dg; + —dp; + —dt = dH
9g. %t 55, P T G
oL oL oL
= p[d\/[' =+ \/[dp[ — aiqldqt — dew — Edt
oL oL
= V[dpi — 7aqldq( — Edt

Writing ¢; = v; and equating differentials gives the required result.

Alternative proof. Consider the functional

t
Slg. p| = / gipi — H(q, p, t)dt
t

Extremising and considering the Euler-Lagrange equations gives the required result.

5 Second variation

i



Definition 5.1 (Second variation)

For a functional

B
Fly) = / fx, g, o )dx

Define the second variation

1 (B 0%f o%f d o%f
OFly.n=s | n's=+(0)25—= +—(n*)s==d
[U,W] Z/a n agz + (f)) a(y/)z + dX(n )ayay/ X

Proposition 5.2. Suppose y is a solution to the Euler-Lagrange equation. Then expanding Fly + €n] to
(’)(63), we get that

Fly + en] — Flyl = € 8°F ly, n] + O(€°)

Proposition 5.3. Let

0%f 0%f d 0%f
P = d O==——-—|=—
agr ™ 9= dx(ayay')
Then
1 B
O*Flynl=>5 | Qn*+ P(n)dx

Proof. Integrate %(nz) aZ;fgf by parts, and use the boundary condition that n =0 at o, B.

Proposition 5.4 (Legendre condition). If y(x) is a solution to the Euler-Lagrange equation, and Qn® +
P(/)? > 0 for all n such that n =0 at a, B, then y is a local minimum of Fy].

Proposition 5.5.
1 (B
#Flyl= 5 [ nclnlex

a

where

Llnl=—(Pn')' + On

is the Sturm-Liouville operator.

Proof. Integration by parts, and use boundary conditions.

Corollary 5.6. If there exists w € R, n such that

Lln) = —w’n

Then y cannot be a minimiser.

Proof. Substituting we get that

12



1 B
0*F [y] = —in/ n’dx <0

5.1 Jacobi condition

Theorem 5.7 (Jacobi accessory equation). Suppose P|, > 0 and we have u nonzero such that

—(PuY +Qu=0

Then we must have that 6°F[y, u] > 0, and y is a local minimum.

Proof. Let ¢ be any function. Note that we have
B B
0 [ (oniYax = [ i+ 20 gx
a a
Adding this to the second variation we find that
1 (B
FFlyl =5 [ P+ 2076+ 10+ ¢ nd
Completing the square, we have that
O Fly] = 1/BP (r/+ ¢rz)2+ (Q+¢’— 2) n°dx
2 J, P P
We can make this postive if we can solve

2
Q+¢/—$:O ()

B ¢ 2
/a P(n’+Pn) dx =0

We must have that n = 0. Now to solve %, we can transform it into a second order linear equation by
substituting ¢ = —Pu’/u, and we get the required result. O

Since for

13
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