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1 Functionals and multivariate calculus
1.1 Function spaces and functionalsIn this course, we will be trying to find the optimum value of a functional1. But to be able to do this, we willneed to first introduce some spaces2 of functions.

Definition 1.1 (C k functions)Let A be a subset of Rn. Then for k ∈ [0, ∞], define the space of k-times continuously differentiablefunctions.
C k (A) := {f : A → R : f k-times continuously differentiable}We write C (A) = C 0(A) for continuous functions, and

C k(α,β)(A) := {f : A → R : f k-times continuously differentiable, f (α) = f (β)}
1To be introduced later2These are vector spaces, as well as normed spaces with an appropriate domain/metric/norm.
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for the space of functions with fixed end points.
Definition 1.2 (Functional)A functional is a (real-valued) function from a space of functions.

1.2 Multivariate calculusIn this section, suppose f ∈ C 2(Rn). That is, f is twice differentiable with continuous second derivatives.
Definition 1.3 (Stationary point)
a ∈ Rn is a stationary point of f if

∇f (a) = (∂1f , · · · , ∂nf )(a) = 0where ∂if = ∂f
/

∂xi .
Definition 1.4 (Hessian)The Hessian of f is the matrix Hij = ∂i∂j f .
Theorem 1.5 (Multivariate Taylor Theorem).

f (a + h) = f (a) + h · ∇f (a) + 12hTHh + O
(∥∥h

∥∥2)

Proposition 1.6 (Classification of stationary points). Suppose (without loss of generality), ∇f (0) = 0. Let
λi be the eigenvalues of H . Then

(i) If all λi > 0, then f has a local minimum at 0.(ii) If all λi < 0, then f has a local maximum at 0.(iii) If some λi > 0, and some λi < 0, then f has a saddle point at 0.(iv) If any λi = 0, then we need higher order terms.
Proof. Since f has continuous second order derivatives, H is a symmetric matrix. Thus it can be diagonalisedby an orthogonal transformation. Hence without loss of generality, assume H diagonal. Then the multivariateTaylor theorem gives us that

f (x) − f (0) = x · ∇f (0)︸ ︷︷ ︸=0
+12x tHx + O

(∥x∥2) = ∑
λix2

i + O
(∥x∥2)

The result follows.
1.3 Lagrange multipliersSometimes, we have constraints which limit domain which we are optimising over. We can use the method ofLagrange multipliers for this.
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Definition 1.7 (Lagrange multipliers)Suppose we have f : Rn → R, and functions (gα )kα=1 : Rn → R, and we wish to optimise f subject to theconstraints gα = 0 for all α . Define h : Rn × Rk → R by
h(x, λ) = f (x) −

k∑
α=1 λαgα (x)

Then the optimum value can be found by considering ∇h = 0. λ is known as the Lagrange multiplier.
2 Convexity

Definition 2.1 (Convex set)A subset S ⊆ Rn is convex if for all x, y ∈ S , t ∈ [0, 1], we have that
(1 − t) · x + t · y ∈ S

Definition 2.2 (Convex function)For a convex set S , function f : S → R is convex if for all t ∈ [0, 1],
f ((1 − t) · x + t · y) ≤ (1 − t) · f (x) + t · f (y)We say that f is strictly convex if the inequality is strict on (0, 1).

Remark 2.3. We can define f is (strictly) concave if −f is (strictly) convex.
2.1 Conditions for convexity

Proposition 2.4. Suppose f is differentiable. Then f is convex if and only if for all x, y,
f (y) ≥ f (x) + (y − x) · ∇f (x) (*)

Proof. Suppose (*) holds. Let zt = (1 − t) · x + t · y. Then we have that
f (x) ≥ f (zt ) + (x − zt )∇f (zt ) and f (y) ≥ f (zt ) + (y − zt )∇f (zt )Then we get that

(1 − t) · f (x) + t · f (y) ≥ f (zt )Which means that f is convex. Suppose instead that f is differentiable and convex. Let
h(t) = (1 − t) · f (x) + t · f (y) − f ((1 − t) · x + t · y)Then h is differentiable, with h′(0) = −f (x) + f (y) − (y − x) · ∇f (x). So suffices to show that h′(0) ≥ 0.

h(0) = 0, and for t ∈ (0, 1), we have that
h(t) − h(0)

t = h(t)
t ≥ 0

Taking the limit t → 0, we get the required result.
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Corollary 2.5. If f is convex and differentiable, with ∇f (x) = 0. Then f has a global minimum at x .
Proof. If ∇f (x) = 0, then x is a local minimum. By convexity, a local minimum is a global minimum.

Proposition 2.6. Suppose f differentiable, with
(∇f (y) − ∇f (x)) · (y − x) ≥ 0 (**)for all x, y. Then f is convex.

Proof. We have that
f (y) − f (x) = [f ((1 − t) · x + t · y)]10

= ∫ 1
0

ddt (f ((1 − t) · x + t · y))dt

= ∫ 1
0 (y − x) · ∇f ((1 − t) · x + t · y)dt

Which means that
f (y) − f (x) − (y − x) · ∇f (x) = ∫ 1

0 (y − x) · (∇f ((1 − t) · x + t · y) − ∇f (x))dt

Setting y = (1 − t)x + ty in (**), we get that t(y − x) · (∇f ((1 − t) · x + t · y) − ∇f (x)) ≥ 0, which means that
f (y) ≥ f (x) + (y − x) · ∇f (x)So f is convex.

Remark 2.7. The converse is also true, but not proven here.
Proposition 2.8. Suppose f twice differentiable, then f is convex if and only if all eigenvalues of theHessian are nonnegative. Furthermore, it is strictly convex if and only if all are positive.

Proof. Suppose f convex. Then we have that for any h,
h · (∇f (x + h) − ∇f (x)) ≥ 0Furthermore, from the multivariate Taylor expansion, we have that

∂f
∂xi

= ∂f
∂xi

+ hj
∂2f

∂xi∂xj
(x) + O

(∥∥h
∥∥2) = ∂f

∂xi
+ hjHij (x) + O

(∥∥h2∥∥)
Hence taking the scalar product with h, we find that

hiHijhj + O
(∥∥h

∥∥3) ≥ 0
Hence all eigenvalues are nonnegative.

2.2 Legendre transform
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Definition 2.9 (Legendre transform)Let f : Rn → R, the Legendre transform of f is
f ∗(p) = sup

x
(p · x − f (x))

where the domain of f ∗ is the set of all p such that the supremum exists.
Proposition 2.10. The domain of f ∗ is a convex set, and f ∗ is a convex function.

Proof.

f ∗((1 − t) · p + t · q) = sup
x

((1 − t) · p · x + t · q · x − f (x))
= sup

x
((1 − t) · (p · x − f (x)) + t · (q · x − f (x)))

≤ (1 − t) · sup
x

(p · x − f (x)) + t · sup
x

(q · x − f (x))
= (1 − t) · f ∗(p) + t · f ∗(q)

Which both shows that the domain is convex, as well as f ∗ being convex.Since the properties of the Legendre transform on non-convex functions are not as well behaved, we nowlook at some properties assuming the function f is convex. First, we need the following lemma.
Lemma 2.11. Let f : S → R be convex, and p ∈ Rn fixed. Then the function

g(x) = f (x) − x · pis also convex.
Thus, for a convex function, the Legendre transform is simply the maximum of a concave function, which mustoccur either on ∂S (if ∇g ̸= 0 on S), or at a point where the gradient is zero. Thus, we get that

Proposition 2.12. For a convex differentiable function f : S → R, we have that
p = ∇f

Proof. We have that ∇g(x) = 0 ⇐⇒ p = ∇f (x).
2.3 Legendre transform in Thermodynamics

Definition 2.13 (Quantities in Thermodynamics)Define the following quantities
• Pressure - P• Volume - V• Temperature - T• Entropy - S
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Definition 2.14 (Energies in Thermodynamics)Define the following energies
• Internal energy - U(S, V )• Helmholtz free energy - F (T , V ) = −U∗(T , V )• Enthalpy - H(S, P) = −U∗(S, P)

3 Euler-Lagrange equations
We wish to extremise the functional

F [y] = ∫ β

α
f (x, y, y′)dx

subject to regularity conditions, as well as the boundary conditions y(α) = y1 and y(β) = y2. To do this,we will first need a lemma.
Lemma 3.1 (Fundamental lemma of calculus of variations). Ler g : [α, β ] → R be continuous, and supposefor all η : [α, β ] → R continuous, η(α) = η(β) = 0, we have that∫ β

α
g(x)η(x)dx = 0

Then g ≡ 0 on [α, β ].
Proof. We will prove the contrapositive. Suppose g ̸≡ 0. Say (without loss of generality) g(y) > 0 for some
y ∈ [α, β ]. Then by continuity, we have [a, b] such that g(x) > g(y)/2 > 0 for all x ∈ [a, b]. Let η be anycontinuous function which is zero outside [a, b] and positive in (a, b). Then∫ β

α
g(x)η(x)dx = ∫ b

a
g(x)η(x)dx > 0

Theorem 3.2 (Euler-Lagrange equation). A necessary condition for y to be an extremum of the functional
F [y] = ∫ β

α
f (x, y, y′)dx

is for it to satisfy the Euler-Lagrange equation
ddx

(
∂f
∂y′

)
− ∂f

∂y = 0
Proof. Fix y, and we consider a small perturbation y + εη, where ε ∈ R small and η satisfying the regularityconditions, as well as the boundary condition η(α) = η(β) = 0. Substituting, and expanding as a function of ε,we find that

F [y + εη] = ∫ β

α
f (x, y + εη, y′ + εη′)dx

= F [y] + ε
∫ β

α

(
∂f
∂yη + ∂f

∂y′ η
′
) dx + O

(
ε2)

For this to be an extremum, we want dF
/dε = 0. Integrating by parts, we find that
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0 = dFdε= ∫ β

α

(
∂f
∂yη + ∂f

∂y′ η
′
) dx

= ∫ β

α

(
∂f
∂yη − ddx

(
∂f
∂y′

)
η
) dx + [

∂f
∂y′ η

]β

α︸ ︷︷ ︸=0
= ∫ β

α

(
∂f
∂y − ddx

(
∂f
∂y

))
ηdx

Since this must hold for all η, applying the fundamental lemma we get the required result.
Remark 3.3. Euler-Lagrange is a second order ODE in y with boundary conditions.

3.1 First IntegralsIn some special cases, E-L reduces to a first order ODE.
Corollary 3.4. If in addition, ∂f

/
∂y = 0, then a necessary condition is

ddx

(
∂f
∂y′

) = 0 ⇐⇒ ∂f
∂y′ = const

Corollary 3.5. If instead ∂f
/

∂x = 0, then a necessary condition is
f − y′ ∂f

∂y′ = const
Proof. ddx

(
f − y′ ∂f

∂y′

) = ∂f
∂x + ∂f

∂yy′ + ∂f
∂y′ y

′′ − y′′ ∂f
∂y′ − y′ ddx

(
∂f
∂y′

)
= ∂f

∂x + y′
(

∂f
∂y − ddx

(
∂f
∂y′

))
= 0

3.2 Constrained E-L EquationsSuppose we wished to extremise
F [y] = ∫ β

α
f (x, y, y′)dx

subject to the constraint that
G[y] = ∫ β

α
g(x, y, y′)dx = 0

Then we can use Lagrange multipliers, and extremise
Φ[y, λ] = F [y] − λG[y]This then gives us
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Proposition 3.6. A necessary condition for y to be an extremum of the functional F , subject to the condition
G[y] = 0 as above, is

ddx

(
∂

∂y′ (f − λg)) − ∂
∂y (f − λg) = 0

Proof. Euler-Lagrange with the functional Φ.
3.2.1 Sturm-LiouvilleOne important example of this is known as the Sturm-Liouville operator.

Example 3.7 (Sturm-Liouville)Let ρ(x) > 0 on a set [α, β ], and σ (x) is any function. Then we wish to extremise the functional
F [y] = ∫ β

α
ρ(y′)2 + σy2dx

subject to the boundary conditions on y, as well as
G[y] = ∫ β

α
y2dx = 1

Define the functional Φ[y, λ] = F [y] − λ(G[y] − 1). Then the Euler-Lagrange equations give us
∂f
∂y′ = 2ρy′ and ∂h

∂y = 2σy − 2λy

Which means that
L[y] = − ddx

(
ρy′) + σy = λy

where L is known as the Sturm-Liouville operator. Since L is linear, we see that this is an eigenvalueproblem.
3.3 Several dependent variables

Theorem 3.8 (Euler-Lagrange with several dependent variables). Suppose we have y : R → Rn, anecessary condition for y to be an extremum of the functional
F [y] = ∫ β

α
f (x, y1, . . . , yn, y′1, . . . , y′

n)dx

is
ddx

(
∂f
∂y′

i

)
− ∂f

∂yi
for i = 1, . . . , n

Proof. Apply perturbation η : [α, β ] → Rn as in the proof of the single variable case.Like with the single variable case, we have first integrals
Corollary 3.9. For any j ∈ {1, . . . , n}, if ∂f

/
∂yj = 0, then
∂f
∂y′

j
= const
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Corollary 3.10. If ∂f
/

∂x = 0, then
f −

∑
i

y′
i

∂f
∂y′

i
= const

3.4 Several independent variablesNow, we consider the most general case, where we have φ : Rn → Rm. Instead of an interval in R, consider asubset D ⊆ Rn, and the boundary conditions will by imposed on the boundary ∂D .
Theorem 3.11. A necessary condition for φ : Rn → Rm to be an extremum for the functional

F [φ] = ∫
D

f (x, φ, φ′)dV

where φ′ is the (Fréchet) derivative of φ, i.e. a matrix of partial derivatives ∂φi
/

∂xj , is if
∂f
∂φi

−
n∑

j=1
∂

∂xj

(
∂f

∂(∂jφi)
) = 0 for i = 1, . . . , m

Proof. Apply perturbation φ + εη as before, where we have the boundary condition that η = 0 on ∂D , we havethat
F [φ + εη] − F [φ] = ε

m∑
i=1

∫
D

 ∂f
∂φi

ηi + n∑
j=1

∂f
∂(∂jφi)∂jηi

 dV

We must have that each of the integrals that we are summing over are zero, as we can perturb (further)only in one of the components. Hence we may assume without loss of generality that m = 1, and we will dropthe i subscripts. Then
F [φ + εη] − F [φ] = ε

∫
D

η ∂f
∂φ + ∑

j

∂f
∂(∂jφ)∂jηdV

= ε
∫

D
η ∂f

∂φ + ∇ ·
(

η ·
(

∂f
∂∂1φ, . . . , ∂f

∂∂nφ

))
︸ ︷︷ ︸=0 by Divergence Theorem as η=0 on ∂D

−η∇ ·
(

∂f
∂∂1φ, . . . , ∂f

∂∂nφ

)dV

= ε
∫

D

 ∂f
∂φ −

n∑
j=1

∂f
∂(∂jφ)

 ηdV

Applying the fundamental lemma gives the required result.
3.5 Higher order derivatives

Theorem 3.12. A necessary condition for y to be an extremum of the functional
F [y] = ∫ β

α
f (x, y, y′, . . . , y(n))dx

is if
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n∑
i=0 (−1)i dndxn

(
∂f

∂y(n)
) = 0

Proof. Apply perturbation y + εη, where we require η = η′ = · · · = η(n−1) = 0 at α, β . Then expanding wefind that
F [y + εη] − F [y] = ε

∫ β

α

(
∂f
∂yη + ∂f

∂yη′ + · · · + ∂f
∂y(n) η(n)) dx + O

(
ε2)

Leave the first term as is, integrate the second one by parts, and so on, where we integrate the last one byparts n times, we get the required result.
4 Dynamics
4.1 Least action principle

Definition 4.1 (Lagrangian)For a particle in R3 with kinetic energy T and potential energy V , the Lagrange is
L(x, ẋ, t) = T − V

Definition 4.2 (Action)The action of a particle is
S [x ] = ∫ t2

t1 L(x, ẋ, t)dt

Proposition 4.3 (Least action principle). The motion of a particle is such that S [x ] is stationary. That is,
x satisfies the Euler-Lagrange equations.

4.2 Noether’s theorem

Definition 4.4 (Continuous symmetry of Lagrangian)Suppose we have a functional
F [y] = ∫ β

α
f (x, y1, . . . , yn, y′1, . . . , y′

n)dx

Then a one parameter transformation Y (x, s) of y, where Y (x, 0) = y(x) is called a continuous symmetryof f if dds f (x, Y1(x, s), . . . , Yn(x, s), Y ′1(x, s), . . . , Y ′
n(x, s))

where primes denote derivatives with respect to x .
Theorem 4.5 (Noether’s theorem). Given a continuous symmetry Y (x, s) of f ,∑

i

∂f
∂yi

∂Yi
∂s

∣∣∣∣
s=0
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is a first integral of the Euler-Lagrange equations. That is, it is a conserved quantity.
Proof. In this proof we will use the summation convention.

ddx

(
∂f
∂yi

∂Yi
∂s

)∣∣∣∣
s=0 = ( ddx

(
∂f
∂y′

i

)
∂Yi
∂s + ∂f

∂y′
i

ddx

(
∂Yi
∂s

)) ∣∣∣∣
s=0= ∂f

∂yi

∂Yi
∂s

∣∣∣∣
s=0 + ∂f

∂y′
i

∂Y ′
i

∂s

∣∣∣∣
s=0= dfds

∣∣∣∣
s=0= 0

4.3 Hamilton’s equations

Definition 4.6 (Hamiltonian)Let L = L(q, q̇, t) = T − V be the Lagrangian of a system. Define the Hamiltonian
H(q, p, t) = sup

v
(p · v − L(q, v, t))

to be the Legendre transform of L with respect to v = q̇. p is called the generalised momentum.
Theorem 4.7 (Hamilton’s equations). Suppose that L is convex and differentiable. Then we have that

q̇i = ∂H
∂pi

and ṗi = − ∂H
∂qi

and ∂H
∂t = −∂L

∂t

Proof. First we note that (using the summation convention)
H = pivi − L(qi, vi, t)where vi(p) is a solution to pi = ∂L

/
∂q̇i . So we have that

∂H
∂qi

dqi + ∂H
∂pi

dpi + ∂H
∂t dt = dH

= pidvi + vidpi − ∂L
∂qi

dqi − ∂L
∂q̇i

dvi − ∂L
∂t dt

= vidpi − ∂L
∂qi

dqi − ∂L
∂t dt

Writing q̇i = vi and equating differentials gives the required result.
Alternative proof. Consider the functional

S [q, p] = ∫ t2
t1 q̇ipi − H(q, p, t)dt

Extremising and considering the Euler-Lagrange equations gives the required result.
5 Second variation
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Definition 5.1 (Second variation)For a functional
F [y] = ∫ β

α
f (x, y, y′)dx

Define the second variation
δ2F [y, η] = 12

∫ β

α
η2 ∂2f

∂y2 + (η′)2 ∂2f
∂(y′)2 + ddx

(
η2) ∂2f

∂y∂y′ dx

Proposition 5.2. Suppose y is a solution to the Euler-Lagrange equation. Then expanding F [y + εη] to
O

(
ε3), we get that

F [y + εη] − F [y] = ε2 δ2F [y, η] + O
(
ε3)

Proposition 5.3. Let
P = ∂2f

∂(y′)2 and Q = ∂2f
∂y2 − ddx

(
∂2f

∂y∂y′

)
Then

δ2F [y, η] = 12
∫ β

α
Qη2 + P(η′)2dx

Proof. Integrate ddx
(
η2) ∂2f

∂y∂y′ by parts, and use the boundary condition that η = 0 at α, β .
Proposition 5.4 (Legendre condition). If y(x) is a solution to the Euler-Lagrange equation, and Qη2 +
P(η′)2 > 0 for all η such that η = 0 at α, β , then y is a local minimum of F [y].
Proposition 5.5.

δ2F [y] = 12
∫ β

α
ηL[η]dx

where
L[η] = −(Pη′)′ + Qηis the Sturm-Liouville operator.

Proof. Integration by parts, and use boundary conditions.
Corollary 5.6. If there exists ω ∈ R, η such that

L[η] = −ω2ηThen y cannot be a minimiser.
Proof. Substituting we get that
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δ2F [y] = −12ω2 ∫ β

α
η2dx < 0

5.1 Jacobi condition

Theorem 5.7 (Jacobi accessory equation). Suppose P|y > 0 and we have u nonzero such that
−(Pu′)′ + Qu = 0Then we must have that δ2F [y, u] > 0, and y is a local minimum.

Proof. Let φ be any function. Note that we have
0 = ∫ β

α
(φη2)′dx = ∫ β

α
φ′η2 + 2ηη′φdx

Adding this to the second variation we find that
δ2F [y] = 12

∫ β

α
P(η′)2 + 2ηη′φ + (Q + φ′)ηdx

Completing the square, we have that
δ2F [y] = 12

∫ β

α
P

(
η′ + φ

P η
)2 + (

Q + φ′ − φ2
P

)
η2dx

We can make this postive if we can solve
Q + φ′ − φ2

P = 0 (*)
Since for ∫ β

α
P

(
η′ + φ

P η
)2 dx = 0

We must have that η ≡ 0. Now to solve ∗, we can transform it into a second order linear equation bysubstituting φ = −Pu′/u, and we get the required result.
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