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In this document, we go through the proof of the inverse function theorem as an example application of thecontraction mapping theorem.
Theorem (Inverse function theorem). Let f : U → Rn be C 1, where U ⊆open Rn. Suppose we have that
a ∈ U such that f ′(a) is invertible.Then we have neighbourhoods V , W of a, f (a) respectively such that f |V : V → W is a bijection with
C 1 inverse.

Step 1: SimplificationFirst of all, we will show that without loss of generality, we may assume that a = 0, f (a) = 0 and f ′(a) = id.To do this, we want to define a function h such that for a small change a + x , h(x) is the local linearapproximation to x , as this would be zero for x = 0, and would have derivative id. Formally, let T = Df (a),and h(x) = T −1(f (a + x) − f (a)). By the chain rule, we have that
h′(x) = T −1 ◦ Df (a + x)which is the composition of continuous functions, so continuous. In addition, we have that

h(0) = 0 and h′(0) = idSince f (a + x) = T (h(x)) + f (a), suffices to prove the result for h.
Step 2: ContinuityBy the continuity of Df , and U being open, we have r > 0 such that

D(0, r) ⊆ U and ∥∥Df (x) − id∥∥ ≤ 12 for all x ∈ D(0, r)
Note that here we take the closed ball, as we will be applying the contraction mapping theorem later, whichrequires a complete metric space.

Step 3: Contraction mapping theoremLet W = D(0, r/2). We wish to show that for all w ∈ W , the equation f (x) = w has a solution, with ∥x∥ < r .To do this, we will use the contraction mapping theorem. Fix w ∈ W , and let q : D(0, r) → D(0, r) be definedby
q(x) = (w − f (x)) + x = w − (f (x) − x)Then x is a fixed point of q if and only if f (x) = w . First, we must show that q(x) ∈ D(0, r). To do this,note that ∥∥q(x)∥∥ ≤ ∥w∥ + ∥∥p(x) − p(0)∥∥where p(x) = f (x) − x . Here, we have that Dp(x) = Df (x) − id, so ∥∥Dp(x)∥∥ ≤ 1/2 for all x ∈ D(0, r). Themean value inequality then gives us that
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∥∥p(x) − p(0)∥∥ ≤ 12∥∥x − 0∥∥ ≤ r2which gives us that ∥∥q(x)∥∥ < r as required. Also by the mean value inequality, we have that∥∥q(x) − q(y)∥∥ = ∥∥p(x) − p(y)∥∥ ≤ 12∥∥x − y
∥∥

So q is a contraction map, which has a unique fixed point z . Finally, we note that ∥z∥ = ∥∥q(z)∥∥ < r , soin fact z ∈ D(0, r). Since w was arbitrary, we must have that
D(0, r/2) ⊆ f (D(0, r))

Step 4: Constructing the inverseLet V = D(0, r) ∩ f −1(W ). By the previous step, we have that f |V : V → W is surjective as a fixed point exists,and injective as the fixed point is unique. So f |V is a bijection. Let g : W → V be the inverse. Showing g is
C 1 is beyond the scope of the course, however we will show that g is continuous. In fact, we will show that gis Lipschitz.From the mean value inequality, we have that∥∥f (x) − f (y)∥∥ = ∥∥(p(x) + x) − (p(y) + y)∥∥ ≥

∥∥x − y
∥∥ + ∥∥p(x) = p(y)∥∥ ≥ 12∥∥x − y

∥∥
Setting x = g(w) and y = g(z), we get that g is 2-Lipschitz.
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