Algebraic geometry

Shing Tak Lam

May 21, 2023

Contents

1 Affine varieties

1.1 Affine varieties

Definition 1.1 (affine *ⁿ*-space) Affine *ⁿ*-space over ^C is the set*[a](#page-0-2)*

 $\mathbb{A}^n = \mathbb{C}^n$

*a*Basically, we want the set, but not the vector space structure.

Notation 1.2. When *n* is clear, we write $\mathbb{C}[X] := \mathbb{C}[X_1, \ldots, X_n]$

Definition 1.3 (vanishing locus, affine variety)

Let *^S [⊆]* ^C[X] be any subset. The vanishing locus of *^S* is given by

 $V(S) = {P \in \mathbb{A}^n | f(P) = 0 \text{ for all } f \in S}$

An affine variety is any set of the form $V(S)$ for some $S \subseteq \mathbb{C}[X]$.

Theorem 1.4. Let $S \subseteq \mathbb{C}[X]$ be any subset. Then

- (i) Let $I = \langle S \rangle$ be the ideal generated by *S*. Then $\mathbb{V}(I) = \mathbb{V}(S)$.
- (ii) There exists a finite subset ${f_i} \subset S$ such that $\mathbb{V}(I) = \mathbb{V}(S)$.

Proof. (i) follows from basic properties of ideals.

(ii) We already have that $\mathbb{V}(S) = \mathbb{V}(I)$ by (i). By the Hilbert basis theorem, we have a finite set $\{h_1, \ldots, h_r\}$ of generators for *I*. Therefore, we have a finite subset $\{f_1, \ldots, f_m\} \subseteq S$, and $g_{ij} \in \mathbb{C}[X]$, such that

$$
h_i = \sum_{j=1}^m g_{ij} f_j
$$

Therefore $\{f_j\}$ are also a set of generators for *I*. Hence $\mathbb{V}(S) = \mathbb{V}(f_1, \ldots, f_m)$.

Proposition 1.5.

- (i) if $S \subset T$, then $\mathbb{V}(T) \subset \mathbb{V}(S)$,
- (ii) $\mathbb{V}(0) = \mathbb{A}^n$ and $\mathbb{V}(1) = \emptyset$,
- (iii) for any family of ideals *^I^j* , we have that

$$
\bigcap_j \mathbb{V}(l_j) = \mathbb{V}\left(\sum_j l_j\right)
$$

 (iv) $\mathbb{V}(I) \cup \mathbb{V}(J) = \mathbb{V}(I \cap J)$

Proof. (i) and (ii) are obvious. For (iii), notice that by definition,

$$
\bigcap_j \mathbb{V}(I_j) = \mathbb{V}\left(\bigcup_j I_j\right)
$$

and $\sum_{j} l_j$ is ideal generated by $\bigcup_j l_j$. Finally, for (iv), by defintion we have that

$$
\mathbb{V}(I) \cup \mathbb{V}(J) \subseteq \mathbb{V}(I \cap J)
$$

For the reverse containment. Suppose $P \in \mathbb{V}(I \cap J)$, and $P \notin \mathbb{V}(I)$. Then there exists $q \in I$ such that *g*(*P*) \neq 0. Moreover, for all *f* ∈ *J*, *f g* ∈ *I* ∩ *J*, so *f g*(*P*) = 0. Therefore, we must have that *f*(*P*) = 0, so $P \in V(I)$. □ $P \in \mathbb{V}(J)$.

Definition 1.6 (irreducible)

A variety *^V* is irreducible if it cannot be written as a union

V = V_1 ∪ V_2

of proper subvarieties.

Proposition 1.7. Every affine variety *V* is a finite union of irreducible varieties.

Proof. If *V* is irreducible we are done. Otherwise, we can write $V = V_1 \cup V'_1$. If V_1 , V'_1 irreducible variatios, then we are done. If not then we can write $V_1 = V_2 \cup V'_1$. Popositing 1. The state of the decreased we are done. If not, then we can write $V_1 = V_2 \cup V'_2$. Repeating this, we get irreducible varieties, then we are done. If not, then we can write $V_1 = V_2 \cup V'_2$. Repeating this, we get 2 . Repeating this, we get

$$
V = V_0 \supsetneq V_1 \supsetneq V_2 \supsetneq \ldots
$$

Suppose $V_j = \mathbb{V}(I_j)$. Define

$$
W = \bigcap_j V_j = \mathbb{V}\left(\sum_j I_j\right)
$$

Now $I = \sum_j I_j$ is finitely generated, as $\mathbb{C}[X]$ is Noetherian. Therefore, $I = \sum_{j \le N} I_j$ for some *N*, as the ascending chain stabilises. Therefore, we must have that

$$
W = \bigcap_{j \leq N} V_j
$$

so the descending chain stabilises.

Proposition 1.8. Let *V* be a variety. A minimal decomposition $V = \bigcup V_i$ into a finite union of distinct irreducible varieties is unique un to reerdering. irreducible varieties is unique up to reordering.

1.2 Topology

Definition 1.9 (Zariski topology)

The Zariski topology on \mathbb{A}^n is the topology where the closed sets are affine varieties on \mathbb{A}^n .

Definition 1.10 (Euclidean topology)

The Euclidean topology on \mathbb{A}^n is the topology coming from the metric topology on \mathbb{C}^n .

Proposition 1.11. Every Zariski closed subset is Euclidean closed. In addition, every Zariski open dense subset is Euclidean dense.

1.3 Nullstellensatz

Theorem 1.12 (Weak Nullstellensatz). Let $I \subsetneq \mathbb{C}[X]$ be a proper ideal. Then $\mathbb{V}(I)$ is nonempty.

Proof is in section [5.](#page-16-0) .

 \Box

Definition 1.13 (ideal of a varietu)

Let *V* be an affine variety. Then the ideal

$$
I(V) = \{ f \in \mathbb{C}[X] \mid f(P) = 0 \text{ for all } P \in V \}
$$

is called the ideal of *^V* .

Proposition 1.14. Let $V \subseteq \mathbb{A}^n$ be a variety.

- (i) if $V = V(S)$, then $S \subseteq I(V)$. In particular, $I(V)$ is the largest ideal of functions that vanish on V,
- (ii) $V = \mathbb{V}(I(V))$,
- (iii) two varieties V, W are equal if and only if $I(V) = I(W)$.

Proof. By definition.

Proposition 1.15. $V \subseteq W$ if and only if $I(W) \subseteq I(V)$.

Proof. Suppose $V \subseteq W$, then $I(W) \subseteq I(V)$ follows from definition. Conversely, if $V \nsubseteq W$, then we can choose $P \in V \setminus W$. Since $P \notin V(I(W))$, there exists $f \in I(W)$ such that $f(P) \neq 0$. In particular, $f \notin I(V)$. $P \in V \setminus W$. Since $P \notin V(I(W))$, there exists $f \in I(W)$ such that $f(P) \neq 0$. In particular, $f \notin I(V)$.

Proposition 1.16. A variety $V \subseteq \mathbb{A}^n$ is irreducible if and only if $I(V)$ is prime.

Proof. We have seen that $I(V_1 \cup V_2) = I(V_1 \cap V_2)$. Now suppose *V* was reducible. Then we can write $V = V_1 \cup V_2$ as a nontrivial union, then

*V*₁ ∉ *V*₂ ∉ *V*₂

Let $I_j = I(V_j)$, then $I(V) = I_1 \cap I_2$, and by the previous proposition, $I_1 \nsubseteq I_2 \nsubseteq I_1$. We can therefore find

$$
f_1 \in I_1 \setminus I_1 \quad \text{and} \quad f_2 \in I_2 \setminus I_1
$$

Then $f_i \notin I(V)$, but $f_1 f_2 \in I_1 \cap I_2 = I(V)$. So $I(V)$ is not prime. Conversely, suppose $f_1 f_2 \in I(V)$, with neither $f_1, f_2 \in I(V)$. Then we can define

$$
V_i = V \cap \mathbb{V}(f_i) = \{P \in V \mid f_i(P) = 0\}
$$

Since $f_i \notin I(V)$, $V_i \neq V$. Then

$$
P \in V \implies f_1(P)f_2(P) = 0 \implies P \in V_1 \cup V_2
$$

Hence $V = V_1 ∪ V_2$.

Definition 1.17 (radical of an ideal)

Let $I \trianglelefteq \mathbb{C}[X]$, then define the radical of *I* by

√ \overline{I} = {*f* $\in \mathbb{C}[X]$ | there exists an integer *m* > 0 such that *f*^{*m*} \in *I*}

Proposition 1.18.

 $\mathbb{V}(I) = \mathbb{V}(\sqrt{a})$ *I*)

4

 \Box

Proof. By definition.

Theorem 1.19 (Hilbert's strong Nullstellensatz). Let $I \subseteq \mathbb{C}[X]$, $V = \mathbb{V}(I)$. Then

 $I(V) = \sqrt{I}$

Corollary 1.20. If $\mathbb{V}(I) = \mathbb{V}(I)$, then $\sqrt{I} =$ *√ J*.

1.4 Morphisms of affine varieties

Definition 1.21 (coordinate ring)

The coordinate ring, or ring of regular functions of *^V* is defined as the quotient

$$
\mathcal{O}(V) = \mathbb{C}[V] = \frac{\mathbb{C}[X]}{I(V)}
$$

Proposition 1.22. Each element (i.e. coset) in $\mathbb{C}[V]$ gives a well defined function on *V*.

Proof. $f, g \in \mathbb{C}[X]$ restricts to the same function on *V* if and only if $f - g$ vanishes on *V*, i.e. $f - g \in I(V)$. \Box

Morally, each element in $\mathbb{C}[V]$ is a coset, or a function $V \to \mathbb{C}$. But when convenient, we may want to think of them by their representatives as polynomials.

Corollary 1.23. $V \subseteq \mathbb{A}^n$ is irreducible if and only if $\mathbb{C}[V]$ is an integral domain.

Definition 1.24 (morphism)

Let $V ⊆ \mathbb{C}^n$, $W ⊆ \mathbb{C}^m$ be varieties. A regular map, or morphism from V to W is a map

^φ : *^V [→] ^W*

such that there exists $f_1, \ldots, f_m \in \mathbb{C}[V]$, such that

$$
\varphi(P)=(f_1(P),\ldots,f_m(P))
$$

The set of morphisms from *^V* to *^W* is Mor(*V , W*).

Proposition 1.25. If $\varphi : V \to W$, $\psi : W \to Z$ are morphisms, then $\psi \circ \varphi : V \to Z$ is a morphism.

Proof. The composition of polynomials is a polynomial.

 \Box

Definition 1.26 (isomorphism) An isomorphism of affine varieties is a morphism with a 2-sided inverse.

Definition 1.27 (pullback) Suppose $q \in \mathbb{C}[W]$ $q \in \mathbb{C}[W]$ $q \in \mathbb{C}[W]$, $\varphi: V \to W$ is a morphism. Then the pullback of *q* by φ is^{*a*}

$$
\varphi^*g = g \circ \varphi \in \mathbb{C}[V]
$$

^{*a}Formally, we need to check that this is actually an element of* $\mathbb{C}[V]$ *. But this is immediate if we take a representative
<i>c* $\mathbb{C}[V]$ $\mathbb{C}[V]$ $\mathbb{C}[V]$ $\mathbb{C}[V]$ $\mathbb{C}[V]$ $\mathbb{C}[V]$ $\mathbb{C}[V]$ $\mathbb{C}[V]$ </sup> $\tilde{q} \in \mathbb{C}[Y_1,\ldots,Y_m]$ for q, then $q \circ \varphi$ gives us the same function as $\tilde{q}(\varphi_1(X),\ldots,\varphi_m(X)) \in \mathbb{C}[X_1,\ldots,X_n]$.

Proposition 1.28. The pullback map φ^* : $\mathbb{C}[W] \to \mathbb{C}[V]$ is a \mathbb{C} -algebra homomorphism.

Proof. Clear from definitions.

Theorem 1.29. Let $V \subseteq \mathbb{A}^n$, $W \subseteq \mathbb{A}^m$ be varieties. Then the map $\varphi \mapsto \varphi^*$ defines a bijection

 $Mor(V, W) \leftrightarrow \{ \mathbb{C}\text{-algebra homomorphisms } \mathbb{C}[W] \rightarrow \mathbb{C}[V] \}$

Proof. Let $x_1, \ldots, x_n \in \mathbb{C}[V]$ be the coordinate functions on $V, y_1, \ldots, y_m \in \mathbb{C}[W]$ be the coordinate functions on *^W* .

Injectivity: Suppose $P \in V$, $\varphi \in \text{Mor}(V, W)$. Then we have that

$$
\varphi(P) = (y_1(\varphi(P)), \ldots, y_m(\varphi(P))) = (\varphi^* y_1(P), \ldots, \varphi^* y_m(P))
$$

Therefore, the ^C-algebra homomorphism *^φ ∗* determines *^φ*.

Surjectivity: Let $\lambda : \mathbb{C}[W] \to \mathbb{C}[V]$ be a C-algebra homomorphism. Then each coordinate function y_i pull back to an element of $\mathbb{C}[V]$ via

$$
f_i = \lambda(y_i)
$$

Combine these to define a map

$$
\varphi=(f_1,\ldots,f_m):V\to\mathbb{A}^m
$$

First, we must show that $\varphi(V) \subseteq W$. Let $q \in \mathbb{C}[Y_1, \ldots, Y_m]$, then as λ is a homomorphism,

$$
g(f_1,\ldots,f_m)=g(\lambda(y_1),\ldots,\lambda(y_m))=\lambda(g)
$$

Therefor, if we evaluate the above at $P \in V$, and $g \in l(W)$, then $g(f_1(P), \ldots, f_m(P)) = 0$. Hence $\varphi(P) \in W$.
thermore, it follows from the definition of g that $\lambda = g^*$. Furthermore, it follows from the definition of φ that $\lambda = \varphi^*$.

Definition 1.30 (function field, rational functions, regular)

Let *^V [⊆]* ^A *n* be an irreducible affine variety. It's function field, or field of rational functions, is the fraction
...

$$
\mathbb{C}(V) = \mathsf{Frac}(\mathbb{C}[V])
$$

Elements of $\mathbb{C}(V)$ are called rational functions. $\varphi \in \mathbb{C}(V)$ is regular at a point P if we can write $\varphi = f/q$, with $f, q \in \mathbb{C}[V], q(P) \neq 0$.

the set of pairs (f, U) , where $f: U \to \mathbb{C}$ is a rational function¹, and U is a nonempty open subset of V. We
say that $(f, U) \approx (f', U')$ if $f = f'$ on some nonempty open set $V \subseteq U \cap U'$ say that $(f, U) \simeq (f', U')$ if $f = f'$ on some nonempty open set $V \subseteq U \cap U'$
This intuition makes some since nonempty open subsets of an irreduci

. This intuition makes sense, since nonempty open subsets of an irreducible variety are dense.

¹In the sense that $f = g/h$ on *U*, where $g, h \in \mathbb{C}[V]$.

Definition 1.31 (local ring)

Let *V* be an irreducible affine variety. The local ring at a point $P \in V$ is

 $\mathcal{O}_{V,P} = \{f \in \mathbb{C}(V) \mid f \text{ regular at } P\}$

Definition 1.32 (local ring)

A local ring*[a](#page-6-2) ^R* is a ring which has a unique maximal ideal.

*a*Yes this is the same name as above... Hopefully it should be clear from context what we mean.

Lemma 1.33. A ring *R* is a local ring if and only if $R \setminus R^{\times}$ is an ideal. If so, then $R \setminus R^{\times}$ movimal ideal of *P* is the unique maximal ideal of *^R*.

Proof. Suppose $R \setminus R^{\times}$
whole ring. Hence it mush whole ring. Hence it must be a maximal ideal. On the other hand, if $mfa \trianglelefteq R$ is a proper ideal, then it must
be contained in $B \setminus B^\times$ so it is the unique maximal ideal. be contained in $R \setminus R^{\times}$
Conversely suppose

Conversely, suppose *R* is a local ring, with unique maximal ideal **m**. Then **m** \subseteq *R* \setminus *R*[×]
z R \setminus *R*[×] Then \setminus *x* \setminus *H R* so \setminus *x* \setminus *C* **m** since if not then **m** + \setminus *x y* wou $x \in R \setminus R^{\times}$. Then $\langle x \rangle \neq R$, so $\langle x \rangle \subseteq \mathfrak{m}$, since if not, then $\mathfrak{m} + \langle x \rangle$ would be a proper ideal containing \mathfrak{m} .
Therefore $\mathfrak{m} = R \setminus R^{\times}$ Therefore, $\mathfrak{m} = R \setminus R^{\times}$.

Definition 1.34 (maximal ideal of a variety at a point) Let *V* be an irreducible affine variety, $P \in V$, the maximal ideal of $\mathcal{O}_{V,P}$ is

 $\mathfrak{m}_{V,P} = \{f \in \mathcal{O}_{V,P} \mid f(P) = 0\}$

Corollary 1.35. $O_{V,P}$ is a local ring.

2 Projective varieties

Notation 2.1. When clear, we will write $\mathbb{C}[X] = \mathbb{C}[X_0, \ldots, X_n]$.

2.1 Projective space

Definition 2.2 (projectivisation)

Let *^U* be a finite dimensional *^U*-vector space. Then the projectivisation of *^U* is

 $\mathbb{P}(U) = \{$ lines in *U* through 0 $\}$

Definition 2.3 (projective space)

Then projective *ⁿ*-space is

 $\mathbb{P}^n = \mathbb{P}(\mathbb{C}^{n+1})$

Notation 2.4. We will index the coordinate son \mathbb{C}^{n+1} by 0*, ..., n*. Then a line in \mathbb{C}^{n+1} is given by $\{(a_0t, a_1t, \ldots, a_nt) \mid t \in \mathbb{C}\}$ $t \in \mathbb{C}$ }. We will write $(a_0 : a_1 : \cdots : a_n)$ for the corresponding point in \mathbb{P}^n .

Proposition 2.5.

$$
\mathbb{P}^n = \frac{\mathbb{C}^{n+1} \setminus 0}{\sim}
$$

where $x \sim y$ if there exists $\lambda \in \mathbb{C}^\times$ such that $x = \lambda y$.

Proposition 2.6. We have a decomposition

$$
\mathbb{P}^n = \{(a_0 : \cdots : a_n) \mid a_0 \neq 0\} \sqcup \{(a_0 : \cdots : a_n) \mid a_0 = 0\} = \mathbb{A}^n \sqcup \mathbb{P}^{n-1}
$$

which gives us a decomposition

$$
\mathbb{P}^n = \mathbb{A}^n \sqcup \underbrace{\mathbb{A}^{n-1} \sqcup \cdots \sqcup \mathbb{A}^1 \sqcup \{pt\}}_{= \text{things at } \infty}
$$

Definition 2.7 (Euclidean, Zariski topology)

The Zariski and Euclidean topologies on ^P *n* are the ones induced from the Zarski and Euclidean topologies on \mathbb{C}^{n+1} .

$$
\mathbb{C}^{n+1} \xrightarrow{\text{subspace}} \mathbb{C}^{n+1} \setminus 0 \xrightarrow{\text{quotient}} \mathbb{C}^{n+1} \setminus 0
$$

Definition 2.8 (standard affine patch)

The *j*-th standard affine patch of \mathbb{P}^n is

$$
U_j=\big\{(a_0:\cdots:a_n)\in\mathbb{P}^n\mid a_j\neq 0\big\}
$$

Proposition 2.9. $U_j = \mathbb{A}^n$

Proof. Without loss of generality $a_j = 1$. Then the natural map gives us the identification.

 \Box

Proposition 2.10. We have an action of $GL_{n+1}(\mathbb{C})$ on \mathbb{P}^n , by acting on lines in \mathbb{C}^{n+1} . The normal subgroup of scalar matrices \mathbb{C}^{\times} acts trivially, and so we have an action on \mathbb{P}^n by the of scalar matrices \mathbb{C}^{\times} acts trivially, and so we have an action on \mathbb{P}^n by the projective general linear group

$$
\mathsf{PGL}_{n+1}(\mathbb{C}) = \frac{\mathsf{GL}_{n+1}(\mathbb{C})}{\mathbb{C}^\times}
$$

2.2 Projective varieties

Definition 2.11 (homogeneous polynomial)

A homogeneous polynomial of degree *^d* is a sum of monomials of degree *^d*.

Definition 2.12 (homogeneous parts)

For a polynomial $f \in \mathbb{C}[X]$, we there exists a unique decomposition

$$
f = \sum_i f_{[i]}
$$

with $f_{[i]}$ homogeneous of degree *i*. We call $f_{[i]}$ the degree *i* homogeneous part of *f*.

Lemma 2.13. Let $f \in \mathbb{C}[X]$ be homogeneous, $a = (a_0, \ldots, a_n) \in \mathbb{C}^{n+1}$ such that $f(a) = 0$. Then for any *^λ [∈]* ^C,

 $f(\lambda a_0, \ldots, \lambda a_n) = 0$

Proof. Suppose *^f* has degree *^d*. Then

$$
f(\lambda X_0,\ldots,\lambda X_n)=\lambda^d f(X_0,\ldots,X_n)
$$

 \Box

Corollary 2.14. Let *^f* be homogeneous of degree *^d*, then

$$
\mathbb{V}(f) = \{p \in \mathbb{P}^n \mid f(a) = 0 \text{ where } p = (a_0 : \dots : a_n)\}
$$

is well defined.

,

Definition 2.15 (homogeneous ideal)

An ideal $I \subseteq \mathbb{C}[X]$ is homogeneous if it is generated by homogeneous polynomials, not necessarily of the same degree.

Lemma 2.16. Let $I \subseteq \mathbb{C}[X]$, then *I* is homogeneous if and only if for any $f \in I$, $f_{[r]} \in I$ for all *r*.

Proof. Suppose *I* is homogeneous. Let $I = \langle g_1, \ldots, g_k \rangle$, with $d_j = \deg(g_j)$. If

$$
f = \sum_j h_j g_j \in I
$$

then we can plit each h_j into homogeneous parts $h_{j[r]}$. Then we can see that $h_{j[r]}g_j\in I$, so $f=\sum f_{[I]}$, with

$$
f_{[r]} = \sum_j h_{j[r-d_j]}g_j \in I
$$

homogeneous of degree *r*, where we define $f_{[k]} = 0$ for $k < 0$. For the converse, we can decompose the nerators of *l*. generators of *^I*.

Definition 2.17 (vanishing locus, projective variety)

Let *^I* be a homogeneous ideal, then define the vanishing locus of *^I* to be

 $\mathbb{V}(I) = \{p = (a_i) \in \mathbb{P}^n \mid f(a_i) = 0 \text{ for all } f \in I\}$

A projective variety is a subset of \mathbb{P}^n of the form $\mathbb{V}(l)$.

Proposition 2.18. Suppose $V = \mathbb{V}(I) \subseteq \mathbb{P}^n$, let $V_0 = V_0 \cap U_0 \subseteq \mathbb{A}^n$. Then $V_0 = \mathbb{V}(I_0)$, where

 $I_0 = \{F(1, Y_1, \ldots, Y_n) \mid F \in \text{Inomogeneous}\}$

Definition 2.19 (homogenisation)

For $f \in \mathbb{C}[Y_1, \ldots, Y_n]$ with total degree *d*, we define the homogenisation of *f* to be

$$
f^h(X_0,\ldots,X_n)=X_0^d f(X_1/X_0,\ldots,X_n/X_0)\in\mathbb{C}[X]
$$

which is a homogeneous polynomial of degree *^d*. The homogenisation of an ideal *^I* is

I h $\langle f^h | f \in I \rangle$

Definition 2.20 (projective closure)

Identifying $\mathbb{A}^n = U_0 \subseteq \mathbb{P}^n$. Let $V = \mathbb{V}(I) \subseteq \mathbb{A}^n$ be an affine variety. Then the projective variety

> $V^h = \mathbb{V}(I^h)$ $\overline{}$

is called the projective closure of V.

Proposition 2.21.

- 1. $V^h \cap \mathbb{A}^n = V$,
- 2. V^h is the Zariski closure of $V \subseteq A_n \subseteq \mathbb{P}^n$

Definition 2.22 (homogeneous vanishing ideal) Let *V* be a projective variety. Then define

 $I^h(V) = \{f \in \mathbb{C}[X] \mid f \text{ homogeneous and vanishes on } V\}$

Theorem 2.23 (Projective Nullstellensatz).

- (i) if $\mathbb{V}(I) = \emptyset$, then $\langle X_0^m, \ldots, X_n^m \rangle \leq I$ for some $m > 0$,
- (ii) if $V = \mathbb{V}(I) \neq \emptyset$, then $I^h(V) = \sqrt{I}$.

Proof. We reduce to the affine case, which will be proved in section [5.](#page-16-0) Let *^I* be a homogeneous ideal,

$$
V_a = \mathbb{V}(I) \subseteq \mathbb{A}^{n+1} \quad \text{and} \quad V_p = \mathbb{V}(I) \subseteq \mathbb{P}^n
$$

be the affine and projective varieties of *^I*. Note that ⁰ is always a point in *^V^a*. Furthermore, there is a natural quotient map

$$
V_a\setminus\{0\}\twoheadrightarrow V_p
$$

obtained by restricting the natural quotient map $\mathbb{C}^{n+1} \setminus 0 \to \mathbb{P}^n$. Therefore, V_ρ is empty if and only if *Va* \subseteq {0}. The latter is true if and only if $\sqrt{I} \supseteq \langle X_0, \ldots, X_n \rangle$. The second statement follows similarly.

Definition 2.24 (open, closed subvarities)

Let *^V* be a projective variety. If *^W [⊆] ^V* , where *^W* is a projective variety, we say *^W* is a closed subvariety of *V*. Similarly, $V \setminus W$ is an open subvariety of *V*.

Definition 2.25 (irreducible)

We say that a projective variety *V* is irreducible if it cannot be written as $V = V_1 \cup V_2$ for proper closed subvarieties V_1 , V_2 of V .

Proposition 2.26.

- (i) every projective variety is a finite union of irreducible projective varieities,
- (ii) V is irreducible if and only if $I^h(V)$ is prime.

Proof. (i) follows from the same proof as in the affine case. For (ii), notice if *^I* homogeneous and not prime, then there exists homogeneous polynomials F , $G \notin I$ such that $FG \in I$.

To see this, as *I* is not prime, let $f, g \in \mathbb{C}[X]$ be such that $f, g \notin I$, $fg \in I$. As $f, g \notin I$, we have r, s such that

*f*_{[0}]*, . . . , f*_[*r*−1] ∈ *I*, *f*_[*r*] ∉ *I* and *g*_{[0}]*, . . . , g*_[*s*−1] ∈ *I*, *g*_[*s*] ∉ *I*

Then we have that $(fg)_{[r+s]} \in I$, and

$$
(fg)_{[r+s]}=f_{[r]}g_{[s]}+\text{ stuff in }l
$$

So $f_{[r]}, g_{[s]} \notin I$, but $f_{[r]}g_{[s]} \in I$. With this, the same argument as in the affine case works.

 \Box

Proposition 2.27. Let $V \subseteq \mathbb{P}^n$ be irreducible, $W \subseteq V$ be a proper closed subvariety. Then $V \setminus W$ is dense in V . dense in V .

Proof. Let $f \in \mathbb{C}[X]$ be homogeneous, and vanishing on all of $V \setminus W$. As $W \neq V$, there exists $g \in I^h(W) \setminus I^h(V)$
by the projective pullstelleneatz. Then for vanishes on all of g , As $g \notin I^h(V)$ and $I^h(V)$ is prim by the projective nullstellensatz. Then *f g* vanishes on all of *g*. As $g \notin I^h(V)$, and $I^h(V)$ is prime, $f \in I^h(V)$.

2.3 Rational maps

Definition 2.28 (function field, field of rational functions)

Let *^V [⊆]* ^P *n* be an irreducible variety, then the function field, or field of rational functions of *^V* is defined as

$$
\mathbb{C}(V) = \left\{ \frac{F}{G} \middle| F, G \in \mathbb{C}[X] \text{ homogeneous of the same degree, } G \notin I^h(V) \right\} / \sim
$$

where $F_1/G_1 \sim F_2/G_2$ if $F_1G_2 - F_2G_1 \in I^h(V)$.

Lemma 2.29. *[∼]* above is an equivalence relation.

Proof. Reflexivity and symmetry are obvious. Now suppose we have F_1/G_1 , F_2/G_2 , F_3/G_3 with $G_i \notin I^h(V)$, and

$$
F_1G_2 - F_2G_1, F_2G_3 - F_3G_2 \in I^h(V)
$$

Now consider *^G*2(*F*1*G*³ *[−] ^F*3*G*1). Since *^G*² *∈/ ^I h* (*^V*) and *^I h* (*^V*) os prime, it suffices to show that this is in $I^h(V)$. Equivalently, we want to show that this expression is zero in $\mathbb{C}[X]/I^h(V)$. In the quotient ring, we have

$$
f_{\rm{max}}
$$

12

 $F_1 G_2 = F_2 G_1$ and $F_2 G_3 = F_3 G_2$

Therefore, by substitution, we have that

$$
F_1G_2G_3 - F_3G_1G_2 = F_2G_1G_3 - F_2G_1G_3 = 0 \in \mathbb{C}[X]/I^h(V)
$$

Proposition 2.30. $\mathbb{C}(V)/\mathbb{C}$ is a finite extension of fields.

Proof. Suppose *V* is nonempty. Then there is a coordinate X_i which does not vanish identically on *V*, i.e. *X*_i ∉ *I*^h(*V*). By reordering coordinates, wlog *X*₀ does not vanish on *V*. But then it is clear that monomials with total dogroe zero, i.e. total degree zero, i.e.

 $X_0^{a_0} \cdots X_n^{a_n}$

where $a_i \in \mathbb{Z}, \sum a_i = 0$ can be written in terms of X_i/X_0 . So we are done.

Corollary 2.31. Let $V \subseteq \mathbb{P}^n$ be an irreducible projective variety not contained in $\{X_0 = 0\}$. Let $V_0 = V \cap U_0$
be the affine variety in the 0 th affine patch Then be the affine variety in the 0-th affine patch.Then

$$
\mathbb{C}(V)=\mathbb{C}(V_0)
$$

Definition 2.32 (regular) Let $\varphi \in \mathbb{C}(V)$ and $P \in V$. Then φ is regular at P if we can write $\varphi = F/G$ with $G(P) \neq 0$.

We can define the local ring and its maximal ideal as in the affine case. That is,

 $\mathcal{O}_{V,P} = \{f \in \mathbb{C}(V) \mid f \text{ is regular at } P\}$ \mathfrak{m}_{V} $_P$ = { $f \in \mathbb{C}(V)$ | *f* is regular at P , $f(P) = 0$ }

Proposition 2.33. Suppose $V \subseteq \mathbb{P}^n$ is an irreducible projective variety not contained in $X_0 = 0$. Let $P \subseteq V \cap I$ $\subseteq V$ Then we have an isomorphism $P \in V \cap U_0 = V_0$. Then we have an isomorphism

$$
\mathcal{O}_{V,P}=\mathcal{O}_{V_0,P}
$$

Proof. Follows from the isomorphism $\mathbb{C}(V) = \mathbb{C}(V_0)$.

Definition 2.34 (rational maps)

Suppose *V* is an irreducible projective variety, then a rational map $\varphi : V \dashrightarrow \mathbb{P}^m$ is defined by

$$
\varphi=(F_0,\ldots,F_m)
$$

wh[e](#page-11-0)re $F_i \in \mathbb{C}[X]$ homogeneous, not all F_i contained in $I^h(V)$. Furthermore, we say that (F_i) , (G_i) are the same^{*a*} if $F_iG_j - F_jG_i \in I^h(V)$ for all *i*, *j*.

By clearing denominators, we can also think about rational maps as an tuple $\varphi = (F_0 : F_1 : \cdots : F_m)$ where $F_i \in \mathbb{C}(V)$.

 \Box

 \Box

a i.e. a rational map is an equivalence class

Definition 2.35 (regular point, domain, morphism)

A point $P \in V$ is a regular point of a rational map $\varphi : V \dashrightarrow \mathbb{P}^m$
 $\varphi = (C_0, C_1)$ such that $C(P) \neq 0$ for some *i*. That is $\varphi(P)$ is a well *φ* = (*G*₀, ..., *G*_{*m*}) such that *G*_{*i*}(*P*) \neq 0 for some *i*. That is, *φ*(*P*) is a well defined point in \mathbb{P}^n .
The demain dem(*a*) is the set of all reqular points of *a*. A rational map *a* : $V = \frac{$

The domain dom(φ) is the set of all regular points of φ . A rational map $\varphi : V \dashrightarrow \mathbb{P}^m$
 $\text{Hom}(\varphi) = V$ in this case we write $\varphi : V \longrightarrow \mathbb{P}^m$ is a morphism if dom $(\varphi) = V$. In this case, we write $\varphi : V \to \mathbb{P}^m$.

Definition 2.36 ({rational map, morphism} between varieties)

If *^W [⊆]* ^P *m* $\varphi: V \dashrightarrow \mathbb{P}^m$ (resp. $\varphi: V \to \mathbb{P}^m$) such that $\varphi(\text{dom}(\varphi)) \subseteq W$.

Definition 2.37 (dominant)

A rational map $\varphi : V \dashrightarrow W$ is dominant of φ (dom(φ)) $\subseteq W$ is dense in *W*.

Proposition 2.38. If φ is dominant, then for any rational map ψ , $\psi \circ \varphi$ is defined for any rational map ψ .

Proof. Let *U* be a dense open subset in dom(φ), *U'* an open subset in dom(ψ). Then let $U'' = U \cap \psi^{-1}(U'$
This is a nonomoty open subset of *V* and the composition is well defined bere \Box This is a nonempty open subset of *^V* and the composition is well defined here.

Definition 2.39 (birational)

Suppose φ : $V \dashrightarrow W$, ψ : $W \dashrightarrow V$ are rational maps, such that $\psi \circ \varphi$, $\varphi \circ \psi$ are well defined and equal to the identity maps of *V , W* respectively. Then we say that *^φ* and *^ψ* are birational.

Proposition 2.40. Rational maps are rational maps to $\mathbb{A}^1 \subseteq \mathbb{P}^1$. Therefore, given a dominant map $a: V \to W$ we have a well defined pullback $\varphi: V \to W$, we have a well defined pullback

$$
\varphi^*: \mathbb{C}(W) \to \mathbb{C}(V)
$$

where $\varphi^*(f) = f \circ \varphi$.

Theorem 2.41. Let *V , W* be irreducible varieties. Then *V , W* are birationally isomorphic if and only if there exists an isomorphism of fields $\mathbb{C}(V) \simeq \mathbb{C}(W)$.

2.4 Transformations, embeddings and products

Definition 2.42 (Veronese)

Let F_0, \ldots, F_m be the $m+1 = \binom{n+d}{d}$ degree *d* monomials in variables X_0, \ldots, X_n . Then we have a natural morphism morphism

 $v_d: \mathbb{P}^n \to \mathbb{P}^m$

defined by $v_d(a) = (F_0(a), \ldots, F_m(a))$.

Proposition 2.43. v_d is an injective map, and $v_d(\mathbb{P}^n)$ is a projective variety isomorphic to \mathbb{P}^n

Definition 2.44 (Segre embedding)

The Segre embedding is the map $\sigma_{mn} : \mathbb{P}^m \times \mathbb{P}^n \to \mathbb{P}^{mn+m+n}$, given by

 $\sigma_{mn}((x_i), (y_j)) = (x_i y_j)$

In this case, we label the variables in \mathbb{P}^{mn+m+n} as Z_{ij} , with $0 \le i \le m, 0 \le j \le n$.

Theorem 2.45. Let *^I* be the ideal generated by

*Z*_i*Z*_{pq}</sub> − *Z*_{iq}Z_{pj} for *i, p* ∈ {0*, . . . , m*}*, j, q* ∈ {0*, . . . , n*}*, i* \neq *p, j* \neq *q*

and let $V = \mathbb{V}(l)$. Then $\sigma_{mn} : \mathbb{P}^m \times \mathbb{P}^n \to V$ is a bijection. Moreover, V is irreducible.

Proof. Clearly $\sigma_{mn} \subseteq V$. Now consider the affine piece

 $V_{00} = V \cap \{Z_{00} \neq 0\} \subseteq \mathbb{A}^{mn+m+n}$

Then we have that $V_{00} = V(I_{00})$, where after setting $Y_{ii} = Z_{ii}/Z_{00}$, we see that

$$
I_00 = \left\langle Y_{ij} - Y_{i0}Y_{j0} \mid 1 \le i \le m, 1 \le j \le n \right\rangle
$$

It then follows that it contains all $Y_{ij}Y_{pq} - Y_{iq}Y_{pj}$, and σ_{mn} defines an isomorphism $\mathbb{A}^m \times \mathbb{A}^n \to V_{00}$, with inverse

$$
(Y_{ij}) \mapsto ((Y_{10}, \ldots, Y_{m0}), (Y_{01}, \ldots, Y_{0n}))
$$

Since affine space is irreducible, and the product of irreducible affine varieties is irreducible, we have that V_{00} is irreducible. Repeating this for the other affine pieces gives us the result.

Definition 2.46 (product) Suppose $V \subseteq \mathbb{P}^n$, $W \subseteq \mathbb{P}^m$ are projective varieties. Then we define the product to be

 $\sigma_{mn}(V \times W) \subseteq \mathbb{P}^{mn+m+n}$

with the subspace topology.

Note the induced topology from above is *not* the product topology.

3 Singularities and tangent spaces

Definition 3.1 (tangent space of affine varieties)

Let
$$
V \subseteq \mathbb{A}^n
$$
 be a affine variety, $P \in V$. The tangent space to V at P is

$$
T_{V,P} = \left\{ v \in \mathbb{C}^n \; \left| \; \sum_{i=1}^n v_i \frac{\partial f}{\partial X_i}(P) = 0 \text{ for all } f \in I(V) \right. \right\} \leq \mathbb{C}^n
$$

Definition 3.2 (tangent space of projective varieties) Let $V \subseteq \mathbb{P}^n$ be a projective variety, $P \in V$. Suppose $V_j = V \cap \{X_j \neq 0\}$ is an affine piece of V containing *^P*. Then define

$$
T_{V,P}=T_{V_j,P}
$$

where $T_{V_j,P}$ is the affine tangent space of the affine variety V_j at P .

Note that right now it is not clear that $T_{V,P}$ is well defined. However we will show that for different choices for j , the results are all naturally isomorphic^{[2](#page-14-0)}.

Definition 3.3 (derivative)

Let $V \subseteq \mathbb{P}^n$, $W \subseteq \mathbb{P}^m$ be projective varieties, $\varphi : V \dashrightarrow W$ a rational map, $P \in \text{dom}(\varphi)$. Assume wlog that $P \in V \cap L \subseteq W \cap M \cap M \cap M \cap M$ and we have a representative $\varphi = (F_0 : \ldots : F_n)$ $P \in V \cap U_0 = V \cap \mathbb{A}^n$, $\varphi(P) = Q \in W \cap U_0 = W \cap \mathbb{A}^m$, and we have a representative $\varphi = (F_0 : \dots : F_m)$,
where $F_n \in C[\mathbf{X}]$ homogeneous. Sot where $F_i \in \mathbb{C}[X]$ homogeneous. Set

$$
f_j = \frac{F_j}{F_0}(1, X_1, \ldots, X_n) \in \mathbb{C}[X_1, \ldots, X_n]
$$

Then define $d\varphi_P : T_{V,P} \to \mathbb{C}^m$ \overline{a}

$$
d\varphi_P(v) = \left(\sum_{i=1}^n v_i \frac{\partial f_j}{\partial X_i}(P)\right)_j
$$

Proposition 3.4.

- (i) $d\varphi_P(T_{V,P}) \subseteq T_{W,\varphi(P)}$,
- (ii) $d\varphi_P$ depends only on φ , and not on the (F_i) ,
- (iii) If $\psi : W \dashrightarrow Z$ is a rational map, with $\varphi(P) \in \text{dom}(\psi)$, then $d(\psi \circ \varphi)P = d\psi_{\varphi(P)} \circ d\varphi$
- (iv) if φ is birational, φ^{-1} regular at $\varphi(P)$, then $d\varphi_P$ is an isomorphism.

Proof. (i) By the definition of the tangent space, we may replace *V*, *W* by the affine pieces $V \cap \mathbb{A}^n$ and $W \cap \mathbb{A}^m$
repspectively Let $O = \omega(P)$ Let $a \in I(M)$. Pulling back a with ω we have that repspectively. Let $Q = \varphi(P)$. Let $q \in I(W)$. Pulling back q with φ , we have that

$$
h=g(f_1,\ldots,f_m)
$$

and choose a representative of *h* in $\mathbb{C}(X)$. This is a rational function on *V* which is regular at *P*, and is head on the points of *V* where it is regular. That is $h \in I(Y)$. Bu the chain rule we have vanishes on the points of *V* where it is regular. That is, $h \in I(V)$. By the chain rule, we have

$$
\frac{\partial h}{\partial X_i}(P) = \sum_j \frac{\partial g}{\partial Y_j}(Q) \frac{\partial f_j}{\partial X_i}(P)
$$

Thus, if $v \in T_{V,P}$, then $d\varphi_P(v) \in T_{W,Q}$, since we have that

$$
\sum_{i} v_i \frac{\partial h}{\partial X_i}(P) = 0
$$

(ii) If we choose another representation (F'_j) for φ , then the corresponding rational functions f'_j
proporty that $f'_j = f_j$ vanishes on *V* when defined So we have that $f'_j = f_j = g_j / g$, where $g_j \subset f_j$ (ii) if we choose another representation (r_j) for φ , then the corresponding rational functions r_j with have
the property that $f'_j - f_j$ vanishes on V when defined. So we have that $f'_j - f_j = p_j/q_j$, where $p_j \in I(V)$, q_j $\mathbb{C}[X]$, $q_j(P) \neq 0$. Therefore, by the quotient rule, we have that

$$
\frac{\partial f'_j - f_j}{\partial X_i}(P) = \frac{1}{q_j(P)} \frac{\partial p_j}{\partial X_i}(P)
$$

as $p_j(P) = 0$. Therefore, if we choose $v \in T_{V,P}$, then

$$
\sum_{i=1}^{n} v_i \frac{\partial f'_j - f_j}{\partial X_i} (P) = 0
$$

²Most importantly, the will have the same dimension.

So $d\varphi_P$ is independent of the choice of the (F_i) .). (iii) is just the chain rule, and (iv) follows from (iii).

Corollary 3.5. The tangent space of a projective variety is well defined.

Proof. Suppose $p \in U_i \cap U_j$. Then we have a birational map $\psi : U_i \dashrightarrow U_j$, induced by the identity map on $U_i \cap U_j$ and is defined at P . Therefore we have a natural isomorphism $\mathcal{L}_{U_i} \cap \mathcal{L}_{U_j}$. *U*^{*i*} ∩ *U*^{*j*}, and is defined at *P*. Therefore, we have a natural isomorphism $T_{V_i,P}$ → $T_{V_j,P}$.

Definition 3.6 (dimension, smooth, singular) Let *V* be an affine or projective variety. Then

- 1. if *V* is irreducible, define dim(*V*) = min $\{ \dim(T_{V,P} | P \in V) \}$,
- 2. if $P \in V$, V is irreducible, we say P is smooth if dim(T_{VP}) = dim(V), and P is singular otherwise.
- 3. if V is reducible, $\dim(V)$ is the maximum of the dimension of the irreducible components of V .

Theorem 3.7. The set of smooth points of *^V* is a non-empty open subvariety.

Proof. Nonempty follows by definition. We can assume $V \subseteq \mathbb{A}^n$
affine parts of a projective variety. Suppose $J(V) = \{f, f\}$ is an affine variety, since we can look at the Γ affine parts of a projective variety. Suppose $I(V) = \langle f_1, \ldots, f_m \rangle$. Then if $P \in V$,

$$
T_{V,P} = \left\{ v \in \mathbb{C}^n \middle| \sum_i v_i \frac{\partial f_j}{\partial X_i}(P) = 0 \right\}
$$

therefore, by some basic linear algebra,

$$
\dim(T_{V,P}) = n - \text{rank}\left(\frac{\partial f_j}{\partial X_i}\right)
$$

Therefore, we have that for any $r \in \mathbb{N}$,

$$
\{P \in V \mid \dim(T_{V,P}) \ge r\} = \left\{P \mid \text{rank}\left(\frac{\partial f_j}{\partial X_i}\right) \le n - r\right\}
$$

is the closed subvariety generated by the $(n - r) \times (n - r)$ minors of the Jacobian matrix.

 \Box

Corollary 3.8. Birational irreducible varieties have the same dimension.

4 Field theory

Definition 4.1 (transcendental)

Suppose *L/K* is a field extension, *^α [∈] ^L* is transcendental over *^K* if it is not the root of any nonzero polynomial in *^K*[*X*].

Definition 4.2 (algebraically independent)

Suppose *L/K* is a field extension, *^S [⊆] ^L* is algebraically independent over *^K* if for all *ⁿ*, there is no nonzero polynomial $f \in K[X_1, \ldots, X_n]$ such that $p(s_1, \ldots, s_n) = 0$, $s_i \in S$.

Definition 4.3 (pure transcendental extension)

A field extension *K/*^C is pure transcendental if

 $K = \mathbb{C}(x_1, \ldots, x_n)$

where x_1, \ldots, x_n are algebraically independent over \mathbb{C} .

Proposition 4.4. Let *K/*^C be a finitely generated field ext[en](#page-16-1)sion. Then there exists a pure transcendental field extension $K_0 = \mathbb{C}(x_1, \ldots, x_n)$ such that K/K_0 is finite^a. Moreover, $K = K_0(y)$ for some $y \in K$.

 \overline{a} e finite dimensional

Proof. Suppose $K = \mathbb{C}(x_1, \ldots, x_m)$. Then there is a maximal algebraically independent subset, which we can assume to be $\{x_1, \ldots, x_n\}$. Define $K_0 = \mathbb{C}(x_1, \ldots, x_n)$. Then each of x_{n+1}, \ldots, x_m is algebraic over K_0 , so K/K_0 is finite. The final statement is just the primitive element theorem from Galois theory is finite. The final statement is just the primitive element theorem from Galois theory.

Proposition 4.5. Let $K = \mathbb{C}(x_1, \ldots, x_n)$, with x_1, \ldots, x_n algebraically independent. Suppose x_{n+1} is algebraic over *^K*. Then

$$
I = \{ g \in \mathbb{C}[X_1, \ldots, X_{n+1}] \mid g(x_1, \ldots, x_n, x_{n+1}) = 0 \}
$$

is a principal ideal of $\mathbb{C}[X]$, generated by an irreducible $f \in \mathbb{C}[X]$. Moreover, if f contains the variable *Xi* , then *{x*1*, . . . , xi−*1*, xⁱ*+1*, . . . , xn}* are algebraically independent over ^C.

Proof. As x_1, \ldots, x_n are algebraically independent, the subring $R = \mathbb{C}[x_1, \ldots, x_n] \leq K$ is isomorphic to the polynomial ring $\mathbb{C}[X_1,\ldots,X_n]$, which is a UFD. Let $h \in K[T]$ be the minimal polynomial of x_{n+1} over *K*. By definition, *^h* is irreducible.

Now let *b* = lcm{denominators in coefficients of *h*(*T*)} ∈ *R*. By Gauss' lemma^{[3](#page-16-2)}, *f* = *bh* is irreducible in
1. By the isomorphism above we can think of *f* ∈ Cl *Y*. A and all *R*[*T*]. By the isomorphism above, we can think of $f \in \mathbb{C}[X_1, \ldots, X_{n+1}]$.

We will now show [th](#page-16-3)at *f* generates the ideal *I*. Suppose we have $q \in \mathbb{C}[X]$ such that $q(x_1, \ldots, x_{n+1}) = 0$. Then in $K[T]$, $g(x_1, \ldots, x_n, T)$ is divisible by $f(x_1, \ldots, x_n, T)$. Applying Gauss' lemma⁴, $f \mid g$ in $\mathbb{C}[x_1, \ldots, x_n]$
So f generates the ideal l So *^f* generates the ideal *^I*.

Corollary 4.6. Let *V* be any irreducible variety. Then *V* is birational to a hypersurface in \mathbb{A}^{n+1} , where $p = \dim(V)$ $n = \dim(V)$.

Proof. Let $K = \mathbb{C}(V)$. By the above, $K = \mathbb{C}(x_1, \ldots, x_{n+1})$, where $\{x_1, \ldots, x_n\}$ are algebraically independent, x_{n+1} is algebraic over $\mathbb{C}(x_1, \ldots, x_n)$. Then

$$
K = \mathbb{C}(x_1, \ldots, x_n) = \text{Frac}\left(\frac{\mathbb{C}[X_1, \ldots, X_{n+1}]}{\langle f \rangle}\right) = \mathbb{C}(\mathbb{V}(f))
$$

 \Box

5 Proof of the Nullstellensatz

We prove the weak Nullstellensatz. Then proof of the Strong Nullstellensatz is non-examinable, hence omitted.

³Since *^f* is primitive in *^R*[*^T*] and irreducible in *^K*[*^T*], it is irreducible in *^R*[*^T*]. We can assume *^f* is primitive by minimality of *^b* and the fact that *^h* is monic.

⁴ Since *f* is primitive, *f* $|q$ in *K* $|T|$ implies *f* $|q$ in R $|T|$.

Theorem 5.1 (Weak Nullstellensatz). Every maximal ideal in $\mathbb{C}[X]$ is of the form $\langle X_1 - a_1, \ldots, X_n - a_n \rangle$, where $a_1, \ldots, a_n \in \mathbb{C}$. Moreover, if *I* is anu non-unit ideal, then $\mathbb{V}(I) \neq \emptyset$.

Proof. Every ideal of this form has $\mathbb{C}[X]/I = \mathbb{C}$, so they are all maximal. Now suppose $\mathfrak{m} \trianglelefteq \mathbb{C}[X]$ be a maximal ideal, $K = \mathbb{C}[X]/m$. Then K is a field extension of C. Write $a_i = X_i + m$. If $a_i \in \mathbb{C}$ for all *i*, then we re done, as the ideal is just $\langle X_1 - a_1, \ldots, X_n - a_n \rangle$.

Otherwise, choose $t \in K \setminus \mathbb{C}$. As $\mathbb C$ is algebraically closed, *t* must be transcendental over $\mathbb C$. Let

$$
U_m = \operatorname{span}_{\mathbb{C}} \left\{ a_1^{r_1} \cdots a_n^{r_n} \middle| r_i \geq 0, \sum r_i \leq m \right\} \leq \mathbb{C}
$$

be the subspace of elements with exponenent at most *m*. Now as U_m is finite dimensional, $K = \bigcup_m U_m$ has
ptable dimension. However, the elements countable dimension. However, the elements

$$
\left\{ \frac{1}{t-c} \mid c \in \mathbb{C} \right\}
$$

are all ^C-linearly independent. So we have uncountably many linearly independent elements. Contradiction. Now suppose *I* is a non-unit ideal. Then there exists a maximal ideal **m** such that $I \supseteq m \subseteq \mathbb{C}[X]$, so \cap $\mathbb{V}(l) \supseteq \mathbb{V}(\mathfrak{m}) \neq \varnothing$.

6 Algebraic curves

6.1 Curves

Definition 6.1 (curve)

A curve is a (projective or affine) variety of dimension 1.

Furthermore, when we say a curve C, where $C = V(I) \subseteq \mathbb{P}^n$, we will often drop the $\subseteq \mathbb{P}^n$ and study curves up
to isomorphism and study curves up to isomorphism.

Proposition 6.2. Let *^C* be a curve, *^D [⊆] ^C* be a proper subvariety. Then *^D* is a finite set of points.

Proof. Suffices to prove this for affine irreducible curves $V \subseteq A^n$. If $W \subseteq V$ is an irreducible subvariety, we will show that $W \subseteq V$ is an irreducible subvariety, we will show that $W \subseteq V$ is an irreducible subvariety, will show that W is a point. By the Nullstellensatz, we have that $I(V) \subsetneq I(W)$. Suppose for contradiction that *W* is not a point. Then $\mathbb{C}[W] \neq \mathbb{C}$. Choose $t \in \mathbb{C}[W] \setminus \mathbb{C}$. Then *t* must be transcendental [o](#page-17-2)ver \mathbb{C} .

The inclusion map $\varphi : W \hookrightarrow V$ induces an algebra homomorphism $\varphi^* : \mathbb{C}[V] \twoheadrightarrow \mathbb{C}[W]^5$. Let $y \in (\varphi^*)^{-1}(t)$.
A choose $x \in \mathbb{C}[V]$ popzero with $\varphi^*(x) = 0$. Now x, y are algebraically independent in $\mathbb{C}[V]$ as Now choose $x \in \mathbb{C}[V]$ nonzero with $\varphi^*(x) = 0$. Now x, y are algebraically independent in $\mathbb{C}(V)$, as *t* is then condental. Contradiction since $\dim(V) - 1$ implies that the transcondence degree of $\mathbb{C}[V]$ is 1 transcendental. Contradiction, since dim(V) = 1 implies that the transcendence degree of $\mathbb{C}(V)$ is 1. \Box

Therefore, we have that $\mathbb{C}[W] = \mathbb{C}$, so W is a point.

Lemma 6.3 (Nakayama). Let *R* be a ring, *M* be a finitely generated *R*-module, $J \trianglelefteq R$ be an ideal. Then

(i) if $JM = M$, then there exists $r \in J$ such that $(1 + r)M = 0$.

(ii) if $N \leq M$ is a submodule such that $JM + N = M$, then there exists $r \in J$ such that $(1 + r)M \subseteq N$.

Proof. Some nonexaminable commutative algebra.

Theorem 6.4. Suppose *V* is an irreducible curve, $P \in V$ is a smooth point. Then the ideal $\mathfrak{m}_{V,P} \leq \mathcal{O}_{V,P}$

⁵The fact that this map is surjective comes from the definition of $\mathbb{C}[V]$ and $\mathbb{C}[W]$ as quotients.

is principal.

Proof. Suppose that *P* lies in an affine patch $V_0 \subseteq \mathbb{A}^n$ of $V \subseteq \mathbb{P}^n$
 $P_0 = (0, 0) \subseteq \mathbb{A}^n$. Then we have that . By a change of coordinates, wlog $P = (0, \ldots, 0) \in \mathbb{A}^n$. Then we have that

$$
\mathbb{C}[V_0] = \frac{\mathbb{C}[X_1, \dots, X_n]}{I(V_0)} = \mathbb{C}[x_1, \dots, x_n] \text{ where } x_i = X_i \text{ mod } I(V_0)
$$

$$
\mathcal{O}_P := \mathcal{O}_{V_0, P} = \left\{ \frac{f}{g} \middle| f, g \in \mathbb{C}[V_0], g \notin \langle x_1, \dots, x_n \rangle \right\}
$$

$$
\mathfrak{m}_P := \mathfrak{m}_{V_0, P} = \left\{ \frac{f}{g} \middle| f, g \in \mathbb{C}[V_0], f \in \langle x_1, \dots, x_n \rangle, g \notin \langle x_1, \dots, x_n \rangle \right\}
$$

$$
= x_1 \mathcal{O}_P + \dots + x_n \mathcal{O}_P
$$

More generally, if $J \subseteq \mathcal{O}_P$ is any ideal, then $f/g \in J \iff f \in J$, since g is a unit in \mathcal{O}_P . So we can write

$$
J = \left\{ \left. \frac{f}{g} \; \right| \; f \in J \cap \mathbb{C}[V_0], g \in \mathbb{C}[V_0], g(P) \neq 0 \right\}
$$

Hence by the Hilbert basis theorem, *^J* is finitely generated.

Since *P* is smooth, $T_{V,P}$ is a line in C^n . By a change of coordinates, we can assume wlog $T_{V,P} = \{x_2 = x_1, y_2, ..., y_n\}$ $x_n = 0$. We will now show that $\mathfrak{m}_p = (x_1)$.

Since $T_{V,P}$ is cut out by linearisations of polynomials in $I(V_0)$, and X_2, \ldots, X_n are such lienarisations, we must have $f_2, \ldots, f_n \in I(V_0)$ such that

$$
f_j = X_j - h_j
$$

where h_j has no terms of degree \lt 2. So in \mathcal{O}_P , we have

$$
x_j = h_j(x_1, \ldots, x_n) \in \left\langle x_1^2, x_1x_2, \ldots, x_n^2 \right\rangle = \mathfrak{m}_P^2
$$

Therefore, we have that

$$
\mathfrak{m}_P = \sum_{j=1}^n x_j \mathcal{O}_P = x_1 \mathcal{O}_P + \mathfrak{m}_P^2
$$

Applying (ii) of Nakayama's lemma, with $R = \mathcal{O}_P$, $J = \mathfrak{m}_P$, $N = (x_1)$ gives the required result.

\Box

Definition 6.5 (local parameter)

Suppose *^P* is a smooth point of *^V* , then any generator *^π^P* of ^m*V ,P* is called a local parameter, or local coordinate of *^P*.

Corollary 6.6. Let $V = \mathbb{V}(f) \subseteq \mathbb{A}^2$ be an irreducible affine plane curve, $P \in V$ be a smooth point of *V*.
Then the function $V \to \mathbb{C}$ given by Then the function $V \rightarrow \mathbb{C}$ given by

$$
Q \mapsto X(Q) - X(P)
$$

is a local parameter at *P* if and only if $\frac{\partial f}{\partial Y}(P) \neq 0$.

Proof. Same as the theorem.

Corollary 6.7. Let P be a smooth point of a curve V. Then there exists a surjective group homomorphism $\nu_p : \mathbb{C}(V)^\times \to \mathbb{Z}$ such that

OV,*P* = {0} ∪ {*f* ∈ $\mathbb{C}(V)^{\times}$ | *v_p*(*f*) ≥ 0} $\mathfrak{m}_{V,P}$ = {0} ∪ {*f* ∈ $\mathbb{C}(V)^{\times}$ | $v_p(f) > 0$ }

and if $f \in \mathbb{C}(V)^{\times}$, then for any local parameter π_{P} , we can write

$$
f = u \pi_P^{\nu_P(f)}
$$

where $u \in \mathcal{O}_{V,P}^{\times} = \mathcal{O}_{V,P} \setminus \mathfrak{m}_{V,P}$.

Proof. Let π_P be a local parameter at *P*. Then $\mathfrak{m}_P^n = \langle \pi_P^n \rangle$ for all *n*. Now notice that we have a descending chain of idoals chain of ideals,

$$
\mathcal{O}_P = \mathfrak{m}_P^0 \geq \mathfrak{m}_P^1 \geq \mathfrak{m}_P^2 \geq \dots
$$

Let

$$
J=\bigcap_n \mathfrak{m}_P^n
$$

be the limit of this descending chain. In the proof of the previous theorem, we have seen that *^J* is finitely generated. Furthermore, notice that

$$
\mathfrak{m}_P J = \pi_P J = J
$$

Hence by Nakayama's lemma, $J = 0$. Therefore, for any $f \in \mathcal{O}_P$, there exists $n \ge 0$ such that $f \in \mathfrak{m}_P^{n} \setminus \mathfrak{m}_P^{n+1}$
define $\mathcal{U}(f) = n$. Now potice that this means that $f = \epsilon \pi^n$ for some $\epsilon \in \mathcal{O}_P$. Bu .
+ We define $v_P(f) = n$. Now notice that this means that $f = c\pi_P^n$ for some $c \in \mathcal{O}_P$. But $f \notin \mathfrak{m}_P^{n+1}$ implies that $c \in \mathcal{O}_p \setminus \mathfrak{m}_P = \mathcal{O}_P^{\times}$

Now suppose $f \in \mathbb{C}(V)^{\times} \setminus \mathcal{O}_P$. We can write $f = g/h$, with $g, h \in \mathcal{O}_P^6$ $g, h \in \mathcal{O}_P^6$. By the above, we can write $g = u\pi_P^k$, $h = v\pi_P^{\ell}$, where $u, v \in \mathcal{O}_P^{\times}$. moreover, since $f \notin \mathcal{O}_P$, $k < \ell$. So we have that

$$
\frac{1}{f} = \pi_P^{\ell-k} \frac{v}{u} \in \mathcal{O}_P
$$

For such *f*, define $v_P(f) = -v_P(1/f)$. The fact that *v* is a homomorphism is clear from definitions. \Box

Definition 6.8 (valuation)

The homomorphism $v_P : \mathbb{C}(V)^\times \to \mathbb{Z}$ is called the valuation at P .

Corollary 6.9. Let *V* be an irreducible curve, $P \in V$ smooth, $f \in \mathbb{C}(V)$. Then at least one of f, f^{-1} is requier at P regular at *^P*.

Proof. At least one of $v_P(f)$, $v_P(1/f) = -v_P(f)$ is nonnegative.

Corollary 6.10. Let *V* be a smooth curve. Then any rational map $\varphi : V \dashrightarrow \mathbb{P}^m$ is a morphism.

Proof. By reordering coordinates, we can assume wlog that $\varphi(V)$ is not contained in $\{X_0 = 0\}$. So we can write weiter

$$
\varphi = (G_0: \cdots: G_m) = (1: g_1: \cdots: g_m) \text{ where } g_j = \frac{G_j}{G_0} \in \mathbb{C}(V)
$$

i.

i.

⁶This is obvious in the affine case, and in the projective case, we can assume wlog that *P* is in $\{X_0 \neq 0\}$. Then we can write $f = G/H$, where $G, H \in \mathbb{C}[X]$ are homogeneous polynomials of degree *d*. Then $f = (G/X_0^d) / (H/X_0^d)$ is a ratio of elements of \mathcal{O}_P .

If all $g_j \in \mathcal{O}_P$, then we are done. Otherwise, let $t = \min_j \{ v_P(g_j) \}$ $\}$. Now notice that min_j $\{v_P(\pi_P^{-t}g_j)\}$ ł Therefore,

$$
\varphi=(\pi_P^{-t}:\pi_P^{-t}g_1:\cdots:\pi_P^{-t}g_m)
$$

is regular at *^P*.

6.2 Degree and ramification

Proposition 6.11. Let *^φ* : *^V [→] ^W* be a nonconstant morphism of irreducible, *possibly singular* curves. Then the set of the set

- (i) for all $Q \in W$, $\varphi^{-1}(Q)$ is finite,
- (ii) the map φ induces an inclusion of function fields $\varphi^* : \mathbb{C}(W) \hookrightarrow \mathbb{C}(V)$ which makes $\mathbb{C}(V)$ a finite extension of $\mathbb{C}(M)$. extension of ^C(*^W*).

Proof. (i) $\varphi^{-1}(Q)$ is a closed subvariety of *V*, and as φ is not constant, it is not all of *V*. Hence it must be a
finite set of points

(ii) Since dim(*V*) > 0, *V* is infinite. So by (i), $\varphi(V)$ is also infinite. Thus, it is a dense subset of *W*.
Therefore, a is dominant so $\varphi^* : C(W) \to C(V)$ is well defined and injective. Let $t \in C(W) \setminus C$ and set Therefore, φ is dominant, so $\varphi^* : \mathbb{C}(W) \to \mathbb{C}(V)$ is well defined and injective. Let $t \in \mathbb{C}(W) \setminus \mathbb{C}$, and set $x = \varphi(t)$. Since $\mathbb{C}(V)/\mathbb{C}$ is finitely generated, and finite ever the degree 1 transcen $x = \varphi(t)$. Since $\mathbb{C}(V)/\mathbb{C}$ is finitely generated, and finite over the degree 1 transcendental extension $\mathbb{C}(X)/\mathbb{C}$, it must also be finite over the intermediate extension $\varphi^*(\mathbb{C}(W))$. must also be finite over the intermediate extension $\varphi^*(\mathbb{C}(W))$.

Definition 6.12 (degree)

Let $\varphi : V \to W$ be a non constant morphism of irreducible curves. Then the degree of φ is

$$
\deg(\varphi)=[\mathbb{C}(V):\varphi^*\mathbb{C}(W)]
$$

Definition 6.13 (ramification degree)

Suppose $P \in V$, $Q = \varphi(P) \in W$ are smooth points. Define the ramification degree of $\varphi : V \to W$ at P to be

$$
e_P = e(\varphi, P) = v_P(\varphi^* \pi_Q)
$$

where π ^{*Q*} is any local parameter for *W* at *Q*.

Definition 6.14 (quasiprojective variety)

A quasiprojective variety *^U* is a Zariski open subset of a projective variety *^V [⊆]* ^P *n* .

we can define invadently rational functions, rational maps and morphisms for quasiprojective varieties in the same way as for projective varieties.

Proposition 6.15. The projection m[a](#page-20-1)p^{*a*} $\mathbb{P}^n \times \mathbb{A}^m \to \mathbb{A}^m$ is a closed map.

*a*Where we consider $\mathbb{P}^n \times \mathbb{A}^m \subseteq \mathbb{P}^n \times \mathbb{P}^m$ is a quasiprojective variety, and the topology on $\mathbb{P}^n \times \mathbb{P}^m$ is the one coming from the are \mathbb{P}^n and the topology on $\mathbb{P}^n \times \mathbb{P}^m$ is th Segre embedding.

Proof. Omitted.

Proposition 6.16. Let $\varphi: V \to W$ be a morphism of quasiprojective varieties, and suppose V is projetcive. Then *^φ* is closed.

Proof. First of all, we can factorise *^φ* as

$$
V \longrightarrow \Gamma_{\varphi} = \{ (P, \varphi(P) \mid P \in V \} \longrightarrow W
$$

Now notice that the diagonal $\Delta \subseteq W \times W$ is closed^{[7](#page-21-0)}. Then $\Gamma_{\varphi} = (\varphi \times id)^{-1}$
Since $V \subseteq \mathbb{P}^n$ is closed suffices to show $\mathbb{P}^n \times W \to W$ is a closed man Since *V* \subseteq Pⁿ is closed, suffices to show Pⁿ \times *W* \rightarrow *W* is a closed map. Moreover, if *W* is covered by
Since *V* \subseteq Pⁿ is closed, suffices to show Pⁿ \times *W* \rightarrow *W* is a closed map. Moreover, if affines U_i , it suffices to show that $\mathbb{P}^n \times U_i \to U_i$ is closed. But now notice that each U_i is a closed subset of \mathbb{P}^n and the result follows from the provious proposition A *m*

Corollary 6.17. Let $\varphi : V \to W$ be a non constant morphism between irreducible projective, not necessarily smooth, curves. Then *^φ* is surjective.

Proof. im(*φ*) is a closed subvariety, and it is not a point, so it must be all of *W*.

Theorem 6.18 (finiteness theorem for curves). Suppose *V*, *W* smooth projective curves, $\varphi : V \to W$ a morphism, then for any $Q \in W$,

$$
\deg(\varphi) = \sum_{P \in \varphi^{-1}(Q)} e_P
$$

Furthermore, for all but finitely many $P \in V$, we have $e_P = 1$.

Proof. Omitted^{[9](#page-21-2)}. .

Corollary 6.19. Let *V* be a smooth projective irreducible curve, $f \in \mathbb{C}(V)^{\times}$

(i) if *f* is regular for all $P \in V$, then *f* is constant,

, and the result follows from the previous proposition.

(ii) the set of *P* such that $v_P(f) \neq 0$ is finite, and $\sum_{P \in V} v_P(f) = 0$.

Proof. Consider the morphism $\varphi : V \to \mathbb{P}^1$ given by

 $\varphi = (1 : f)$

Now $\varphi(P) = (0:1)$ if and only if *f* is not regular at *P*. Therefore, if *f* is regular at all *P*, then it can't be surjective, so it must be constant.

(ii) We can assume wlog that *f* is non constant. Let $t = X_1/X_0$. This is a local coordinate at the point $(1, 0) \in \mathbb{R}^1$. Now patica that $\alpha^*(t) = t \circ \alpha = f$. Therefore, if $f(D) = 0$, then $\alpha = -V_0(\alpha^*(t)) = V_0(f)$. $0 = (1:0) \in \mathbb{P}^1$. Now notice that $\varphi^*(t) = t \circ \varphi = f$. Therefore, if $f(P) = 0$, then $e_P = v_P(\varphi^*(t)) = v_P(f)$.
Similarly, $1/t = Y_t/Y_t$ is a local parameter part $\cos \varphi = (0:1) \in \mathbb{P}^1$, and if $f(P) = \infty$ then Similarly, $1/t = X_0/X_1$ is a local parameter near $\infty = (0:1) \in \mathbb{P}^1$, and if $f(P) = \infty$, then

$$
e_P = v_P(\varphi^*(1/t)) = -v_P(f)
$$

Finally, if $\varphi(P) \neq 0$, ∞ , then $v_P(f) = 0$, so by the finiteness theorem,

$$
\deg(\varphi) = \sum_{P \in \varphi^{-1}(p)} \nu_P(f) = - \sum_{P \in \varphi^{-1}(\infty)} \nu_P(f)
$$

and the result follows.

Morally, the number of zeros and poles of a rational function are the same, and most points are neither.

 \Box

 \Box

⁷Recall *^W [×] ^W* has the topology from the Segre map, *not* the product topology

⁸In the ambient $\mathbb{P}^n \times \mathbb{P}^m$
⁹In Dhru*i*c notes be set

⁹In Dhruv's notes he says that we prove the "Furthermore ..." sentence later on. One way would be to derive this as a corollary to Riemann-Hurwitz, but as the proof of Riemann-Roch is omitted, it's not clear that this is not circular. R_{in} Riemann-Hurwitz, but as the proof of Riemann-Roch is not contributed, it is not contributed, it

On the other hand we prove this theorem in the Riemann surfaces setting, called the valency theorem.

7 Divisors

From now on, curve $=$ "smooth projective irreducible curve"

7.1 Divisors

Definition 7.1 (divisor)

Let *^V* be a curve, then the set of divisors on *^V* is

$$
\text{Div}(V) = \bigoplus_{P \in C} \mathbb{Z} \cdot [P]
$$

where a divisor $D \in Div(V)$ is a finite integer linear combination $\sum n_P[P]$.

Definition 7.2 (degree of a divisor) The degree of a divisor $D = \sum n_P[P]$ is

$$
\deg(D) = \sum n_P \in \mathbb{Z}
$$

 $deg: Div(V) \to \mathbb{Z}$ is a homomorphism, and we write

$$
Div^0(V) = ker(\text{deg})
$$

for the degree zero divisors.

Definition 7.3 (valuation of a divisor) If $D = \sum_{P} p_{P} [P]$, we write $v_{P}(D) = n_{P}$.

Definition 7.4 (rational functions poles bounded by *^D*) Let *D* be a divisor on a curve *V*. Then the space of rational functions with poles bounded by *D* is

$$
L(D) = \{ f \in \mathbb{C}(V) \mid \forall P \in V, v_P(f) + v_P(D) \ge 0 \}
$$

That is, if $n_P \ge 0$, then *f* has a pole of order at most n_P at *P*. If $n_P < 0$, then *f* has a zero of order at least *|nP[|]* at *^P*.

Definition 7.5 (divisor of a function)

Let
$$
f \in \mathbb{C}(V)^{\times}
$$
 be a nonzero rational function. The divisor of f is

$$
\operatorname{div}(f) = \sum_{P \in V} v_P(f)[P]
$$

Divisors of this form are called principal divisors. We write Prin(*^V*) for the set of principal divisors.

Proposition 7.6. $Prin(V)$ is a subgroup of $Div^0(V)$.

Proof.

$$
\deg(\operatorname{div}(f)) = \sum_{P \in V} v_P(f) = 0
$$

by the finiteness theorem. Furthermore, $div(f) + div(g) = div(fg)$, so it is a subgroup.

Definition 7.7 (class group) The class group of *^V* is

$$
Cl(V) = \frac{Div(V)}{Prin(V)}
$$

Definition 7.8 (linearly equivalent)

Divisors *D* and *D'* are linearly equivalent if $D - D' \in \text{Prin}(V)$. That is, they give the same class in the class group.

Definition 7.9 (hyperplane section)

Let *^V [⊆]* ^P *n* be a curve, *^L* be a homogeneous linear function, *^V 6⊆* ^V(*L*). Then the hyperplane section of *^V* by ^V(*L*) is

$$
\operatorname{div}(L) = \sum_{P \in V} n_P[P] \quad \text{where} \quad n_P = v_P\left(\frac{L}{X_i}\right) \text{ for } i \text{ such that } X_i(P) \neq 0
$$

Proposition 7.10. The hyperplane section is well defined. That is, it does not depend on *ⁱ*. Furthermore, all $n_P \geq 0$.

Proof. If $X_i(P)$, $X_j(P) \neq 0$, then

$$
v_P\left(\frac{L}{X_i}\right) - v_P\left(\frac{L}{X_j}\right) = v_P\left(\frac{X_j}{X_i}\right) = 0
$$

Furthermore, $L/X_i \in \mathcal{O}_P$, so $v(L/X_i) \geq 0$.

P<mark>roposition 7.11.</mark> Let *V* be a curve, *L*, *L*^{*1*} linear homogeneous polynomials, neither vanishing on all of *V* .
Then Then

 $div(L) - div(L) = div(L/L')$

In particular, $div(L)$ and $div(L')$ are linearly equivalent, so $deg(div(L)) = deg(div(L'))$)).

Proof. By definition.

Definition 7.12 (degree of a curve)

Let $V \subseteq \mathbb{P}^n$ be a curve. Then the degree of V is

 $deg(V) = deg(div(L))$

for any *L* with $V \nsubseteq \mathbb{V}(L)$.

Definition 7.13 (effective divisor)

A divisor $D = \sum n_P[P]$ is effective if $n_P \ge 0$ for all P. Wr write this as $D \ge 0$.

 \Box

Proposition 7.14.

$$
L(D) = \{f \in \mathbb{C}(V) \mid f = 0 \text{ or } \text{div}(f) + D \ge 0\}
$$

Proof. By definitions.

Proposition 7.15. *L(D)* is a complex vector space.

Proof. If *f*, *g* are nonzero rational functions, then $v_P(f + g) \ge \min\{v_P(f), v_P(g)\}$, so $L(D)$ is closed under addition. It is clearly closed under scalar multiplication. addition. It is clearly closed under scalar multiplication.

Notation 7.16. We write $\ell(D) = \dim(L(D)).$

Proposition 7.17. Let *D* be a divisor on *V*. Then

- (i) if $deg(D) < 0$, then $L(D) = 0$,
- (ii) if deg(*D*) \geq 0, then $\ell(D) \leq$ deg(*D*) + 1,
- (iii) for any $P \in V$, $\ell(D) \leq \ell(D |P|) + 1$.

In particular, *^L*(*D*) is always finite dimensional.

Proof. (i) If $L(D) \neq 0$, then for $0 \neq f \in L(D)$, $E = \text{div}(f) + D > 0$. But then this means that $\text{deg}(D) = \text{deg}(E) > 0$. (iii) Let $n = v_P(D)$. Then define ev_P : $L(D) \to \mathbb{C}$ by $ev_P(f) = (\pi_P^p f)(P)$. This is a linear map, and the kernel is $L(D \to P)$. Hence by rank pullity $\ell(D \to P) \to \ell(D)$. 1 (ii) If $d = \text{deg}(D) \geq 0$, we see that *L*(*D* − *P*). Hence by rank nullity, ℓ (*D* − *P*) $\geq \ell$ (*D*) − 1. (ii) If *d* = deg(*D*) \geq 0, we see that

$$
\ell(D) \le \ell(D - (d+1)[P]) + d + 1 = d + 1
$$

since $\deg(D - (d + 1)[P]) < 0$, so $\ell(D - (d + 1)[P]) = 0$.

Proposition 7.18. If *D*, *E* are linearly equivalent divisors on a curve, then $\ell(D) = \ell(E)$.

Proof. Say $D - E = \text{div}(g)$. Then $f \mapsto fg$ defines a linear map $L(E) \rightarrow L(D)$, and $f \mapsto f/g$ defines the inverse map. map.

7.2 Bezout's theorem

Definition 7.19 (hypersurface section of a morphism)

Suppose $\varphi : V \to \mathbb{P}^n$ any non constant morphism, *G* homogeneous of degree *m*, with im(φ) $\nsubseteq \mathbb{V}(G)$. Then define

$$
\operatorname{div}(G) = \sum_{P \in V} n_P[P] \quad \text{where} \quad n_P = v_P\left(\frac{\varphi^*(G)}{\chi_l^m}\right) \text{ where } \chi_l(P) \neq 0
$$

Theorem 7.20 (weak Bezout). Let *V*, $W \subseteq \mathbb{P}^2$ be distinct smooth projective irreducible curves of degree *m, n* respectively. Then

|V ∩ W | ≤ mn

 \Box

Proof. Suppose $V = V(F)$, $W = V(G)$ where *F*, *G* are homogeneous polynomials of degree *m*, *n* respectively. We can replace *^G* by any other homogeneous polynomial of degree *^m*, since it will give a linearly equivalent divisor. Let *^ι* : *^V [→]* ^P ² be the inclusion map. Replacing *^G* with *^L n* , where *^L* is linear homogeneous, we see that

$$
|\mathbb{V}(L) \cap V| \leq m = \deg(V)
$$

and

$$
\operatorname{div}(t^*(G)) = \sum_{P \in V \cap \mathbb{V}(G)} n_P[P]
$$

But div(t^*G) = ndiv(t^*L) = ndiv(L), so deg(div(t^*G)) = n deg(div(L)) = mn. Furthermore, n_P > 0 if and only if *^G* vanishes at *^P*.

7.3 Differentials

Let K/\mathbb{C} be a field extension.

Definition 7.21 (differential)

The space of differentials is

$$
\Omega_{K/\mathbb{C}} = \frac{M}{N} = \frac{\text{span}_K \{ \delta x \mid x \in K \}}{\text{span}_K \{ \delta(x+y) - (\delta x + \delta y), \delta(xy) - (x\delta y + y\delta x), \delta a \mid x, y \in K, a \in \mathbb{C} \}}
$$

and define the differential of $x \in K$ to be $dx = \delta x$ mod *N*.

Proposition 7.22. $d(x + y) = dx + dy$, $d(xy) = x dy + y dx$, $da = 0$.

Definition 7.23 (exterior derivative)

The map $d: K \to \Omega_{K/\mathbb{C}}$ is called the exterior derivative.

Notation 7.24. We will write $\Omega_K = \Omega_{K/\mathbb{C}}$ as we are fixing the base field to be \mathbb{C} .

Definition 7.25 (derivation)

Let *U* be a *K*-vector space. A C linear map $D: K \to U$ is called a derivation of $D(xy) = xDy + yDx$.

Lemma 7.26 (universal properties of derivations). A linear map $D: K \to U$ is a derivation if and only if there exists a *K*-linear map $\lambda : \Omega_K \to U$ such that

commutes.

Lemma 7.27. For any derivation *^D*, we have That

$$
D\left(\frac{x}{y}\right) = \frac{yDx - xDy}{y^2}
$$

Proof. Expand $Dx = D(y(x/y))$ using Leibniz.

Lemma 7.28. Let $f = \mathbb{C}(X_1, \ldots, X_n)$ be a rational function, $y = f(x_1, \ldots, x_n)$. Then

$$
dy = \sum_{i} \frac{\partial f}{\partial X_i}(x_1, \dots, x_n) dx_i
$$

In particular, if $K = \mathbb{C}(x_1, \ldots, x_n)$, then Ω_K is spanned by dx_1, \ldots, dx_n .

Proof. Chain rule from calculus.

Theorem 7.29. Let $K/\mathbb{C}(t)$ be finite, where *t* is trasncendental over \mathbb{C} . Then Ω_K is a 1-dimensional *^K*-vector space, spanned by ^d*t*.

Proof. First we consider the case $K = \mathbb{C}(t)$. By the leamma, Ω_K is spanned by dt, so we need to show dt $\neq 0$. By the universal property, suffices to show that a nonzero derivation exists. $\frac{d}{dt}$: $\mathbb{C}(t) \to \mathbb{C}(t)$ works.
In the general case, let $K_0 = \mathbb{C}(t)$, $K = K_0(\alpha)$, let $h \in K_0[X]$ be the minimal polynomial of

In the general case, let *^K*⁰ ⁼ ^C(*t*)*, K* ⁼ *^K*0(*α*). Let *^h [∈] ^K*0[*X*] be the minimal polynomial of *^α*. As *^h* is minimal, $h'(\alpha) \neq 0$. Therefore, by the lemma, d*t*, d*α* span Ω_K .
For $f \subset K$ [X] write $D f = \frac{\partial f}{\partial T}$. Then by the chain rule w

For $f \in K_0[X]$, write $D_t f = \frac{\partial f}{\partial t}$. Then by the chain rule, we have that

$$
0 = d(h(\alpha)) = (D_t h)(\alpha)dt + h'(\alpha)d\alpha
$$

So ^Ω*^K* is spanned by ^d*t*. Therefore, suffices to write sown a non-zero derivation *^K [→] ^K*. First, define $D: K_0[X] \to K$ by

$$
D(f) = D_t(f) \text{ if } f \in K_0 \tag{1}
$$

$$
D(X) = -\frac{(D_t h)(\alpha)}{h'(\alpha)}\tag{2}
$$

$$
D(X^n) = n\alpha^{n-1}D(X)
$$
 (3)

Then $D(h) = 0$, so D vanishes on $hK_0[X] \leq K_0[X]$, so it gives us a derivation $D: K \to K$, with $Dt = 1$. \square

7.4 Differentials on curves

Definition 7.30 (rational differentials) Let *^V* be a curve, then define

$$
\Omega_V = \Omega_{\mathbb{C}(V)/\mathbb{C}}
$$

Definition 7.31 (regular)

A differential $\omega \in \Omega_V$ is regular at $P \in V$ if

$$
\omega = \sum_i f_i \mathrm{d} g_i
$$

where $f_i, g_i \in \mathcal{O}_{V,P}$. Write $\Omega_{V,P}$ for the set of all regular differentials at P .

 \Box

Remark 7.32. $\Omega_{V,P}$ is not a vector subspace of Ω_V .

Proposition 7.33. If $\omega \in \Omega_V$, then $\pi_P^k \omega \in \Omega_{V,P}$ for *k* sufficiently large.

Proof. Let *k* be such that $\pi_P^k f \in \mathcal{O}_{V,P}$ and ℓ be such that $\pi_P^{\ell} g \in \mathcal{O}_{V,P}$. Then

$$
\pi_P^{k+\ell+1} f \, dg = (\pi_P^k f)(\pi_P^{\ell+1} g) \n= (\pi_P^k f)(d(\pi_P^{\ell+1} g) - (\ell+1)\pi_P^{\ell} g \, d\pi_P) \n= \pi_P^k f \, d(\pi_P^{\ell+1} g) - (\ell+1)(\pi_P^k f)(\pi_P^{\ell} g) \, d\pi_P \in \Omega_{V,P}
$$

 \Box

Theorem 7.34. Ω_{VP} is a free \mathcal{O}_{VP} -module, generated by $d\pi_P$, where π_P is a local coordinate at *p*. That is,

$$
\Omega_{V,P} = \{ fd\pi_P \mid f \in \mathcal{O}_{V,P}\}
$$

Proof. Clearly we have that $\mathcal{O}_P d\pi_P \subseteq \Omega_{V,P}$. Now given $f \in \mathcal{O}_P$, we can write it as

$$
f = f(P) + \pi_P g \in \mathcal{O}_P = \mathbb{C} + \mathfrak{m}_P
$$

Then by the Leibniz rule, we have that

$$
df = g d\pi_P + \pi_P dg \in \mathcal{O}_P d\pi_P + \pi_P \Omega_{V,P}
$$

If we apply Nakayama's lemma, with $R = \mathcal{O}_P$, $J = \mathfrak{m}_P$, $M = \Omega_{V,P}$, $N = \mathcal{O}_P d \pi_P$, we get that $\Omega_{V,P} = \mathcal{O}_P d \pi_P$. Therefore, all we need to check is that $\Omega_{V,P}$ is a finitely generated O_P module. Choose an affine piece $V_0 \subseteq A^n$
of *V* containing *P* so $C[V_0] = C[V_1]$ and *N N* apparate $C[V_0]$ as a C algebra. Now for $f \subseteq O_P$ of *V* containing *P*, so $\mathbb{C}[V_0] = \mathbb{C}[x_1, \ldots, x_n]$, where the x_i generate $\mathbb{C}[V_0]$ as a \mathbb{C} -algebra. Now for $f \in \mathcal{O}_P$, then $f = q/h$ for polynomials q, h with $h(P) \neq 0$. Then by the quotient rule,

$$
\mathrm{d}f = \sum \frac{h \frac{\partial g}{\partial X_i} - g \frac{\partial h}{\partial X_i}}{h^2} (x) \mathrm{d}x_i
$$

Since $h(P) \neq 0$, the coefficient of dx_{*i*} is in \mathcal{O}_P . Therefore dx₁, . . . , dx_n generate $\Omega_{V,P}$ as a \mathcal{O}_P module.

Corollary 7.35. If π_P , π_P' are local parameters at *P*, then $d\pi_P' = ud\pi_P$, where $u \in \mathcal{O}_{V,P}^{\times}$.

Proof. Write $d\pi_p' = u d\pi_p$, $d\pi_p = v d\pi_p'$, then *uv* = 1.

Corollary 7.36. Any $\omega \in \Omega_V$ can be written as $\omega = f d \pi_P$ for some $f \in \mathbb{C}(V)$.

Proof. Let k be such that $\pi_P^k \omega \in \Omega_{V,P}$. Then we have that $\pi_P^k \omega = g d \pi_P$ for some $g \in \mathcal{O}_{V,P}$. So $\omega = \pi^{-k} g d \pi_P$ $π_P^{-k} g^dπ_P$.

Definition 7.37 (valuation of a differential) If $\omega \in \Omega_V$, $P \in V$, define

 $v_P(\omega) = v_P(f)$

28

where $\omega = f d \pi P^a$ $\omega = f d \pi P^a$ $\omega = f d \pi P^a$

*a*Different choices of local parameters will give *^f* which differ by a unit, so the valuation is the same.

Proposition 7.38. $v_P(\omega) \ge 0$ if and only of ω is regular at P.

Lemma 7.39. Let $\omega \in \Omega_V$ be a nonzero differential on a curve *V*. Then $v_P(\omega) = 0$ for all but finitely many $P \in V$.

Proof. $v_P(f) = 0$ for all but finitely many P^{10} P^{10} P^{10} .

Definition 7.40 (divisor) The divisor of $\omega \in \Omega$ _{*V*} is

$$
\operatorname{div}(\omega) = \sum_{P \in V} v_P(\omega)[P]
$$

Proposition 7.41. If ω , ω' are nonzero differentials on *V*, then div(ω) *−* div(ω') is principal.

Proof. Since Ω_V is a 1-dimensional $\mathbb{C}(V)$ vector space, $\omega = f\omega'$ for some $f \in \mathbb{C}(V)$. Then div(ω) = div(*f*) + $div(\omega')$).

Definition 7.42 (canonical class)

The class of div(*ω*) in Cl(*V*) for any nonzero $\omega \in \Omega_V$ is called the canonical class. We also call $D = \text{div}(\omega)$ a canonical divisor. a canonical divisor.

Definition 7.43 (genus) Let *V* be a curve, K_V a canonical divisor of *V*. Then the genus of *V* is

 $q(V) = \ell(K_V)$

where K_V is any canonical divisor on V .

Theorem 7.44. Let $V = \mathbb{V}(F) \subseteq \mathbb{P}^2$ be a plane curve of degree $d \geq 3$. Then $K_V = (d-3)H$, where *H* is the divisor of a bunomlane section the divisor of a hyperplane section.

Proof. Step 1: Choosing an appropriate differential. By a change of coordinates, wlog $(0:1:0) \notin V$. Let $x = X_1/X_0, y = X_2/X_0 \in \mathbb{C}(V)$. Let $f(X, Y) = F(1, X, Y)$, then $f(x, y) = 0$ in $\mathbb{C}(V)$. Differentiating this, we get

$$
\frac{\partial f}{\partial X}(x, y)dx + \frac{\partial f}{\partial Y}(x, y)dy = 0
$$

in Ω_V . We will consider the differential

$$
\omega = \frac{\mathrm{d}x}{\frac{\partial f}{\partial y}(x, y)} = -\frac{\mathrm{d}y}{\frac{\partial f}{\partial x}(x, y)}
$$

¹⁰ Dhruv's notes proves it for general *fdq*, but we don't need to since we already know that $ω = f dπρ$ for some *f*.

Then suffices to show that div(Ω) = (*d* − 3)div(X_0).

Step 2: Calculating in an affine patch. Here, we identify $U_0 = \mathbb{A}^2$. Let $P \in V \cap \mathbb{A}^2$. If $\frac{\partial f}{\partial Y}(P) \neq 0$, then $Y(P)$ is a local parameter at *P* so. $x - x(P)$ is a local parameter at *P*, so

$$
\nu_P(\omega) = \nu_P \left(\frac{1}{\frac{\partial f}{\partial y}(P)} \right) = 0
$$

Otherwise $\frac{\partial f}{\partial X}(P) \neq 0$, so $y - y(P)$ is a local parameter, and we also have $v_P(\omega) = 0$.

Step 3: Calculation at infinity^{[11](#page-29-1)}. Since we assumed that $(0:1:0) \notin V$, any point on *V* at infinity must
p $fX_2 \neq 0$. On this enon set we can reparametrize the surve by $g(z,w) = 0$ where be in $\{X_2 \neq 0\}$. On this open set, we can reparametrize the curve by $q(z, w) = 0$, where

$$
z = \frac{X_0}{X_2} = \frac{1}{y}
$$
, $w = \frac{X_1}{X_2} = \frac{x}{y}$ and $g(Z, W) = F(Z, W, 1)$

now constant and differential

$$
\eta = \frac{\mathrm{d}z}{\frac{\partial g}{\partial z}(z, w)} = -\frac{\mathrm{d}w}{\frac{\partial g}{\partial W}(z, w)}
$$

The same argument as in step 2 shows that $v_P(\eta) = 0$ for any $P \in U_2$. But we have that $f(X, Y) =$ *Y ^dg*(1*/Y , X/Y*). Differentiating this,

$$
\frac{\partial f}{\partial X} = Y^{d-1} \frac{\partial}{\partial g} (W)(1/Y, X/Y)
$$

and so we have that^{[12](#page-29-2)}

$$
\omega = -\frac{dy}{\frac{\partial f}{\partial x}(x, y)} = \frac{z^{-2}dz}{y^{d-1}(\frac{\partial g}{\partial w}(z, w))} = z^{d-3}\eta
$$

Therefore, if $X_2(P) \neq 0$, then $v_P(\omega) = (d-3)v_P(z) + v_P(\eta) = (d-3)v_P(z)$. Since $z = X_0/X_2$, $div(V_2)$ as claimed (*^d [−]* 3)div(*X*0) as claimed.

Proposition 7.45. If $f(x, y) = 0$ is an affine equation for a smooth projective plane curve, with deg(*f*) ≥ 3 , then

$$
\left\{ \frac{x^r y^s dx}{\frac{\partial f}{\partial y}} \mid 0 \le r + s \le d - 3 \right\}
$$

is a basis for $L(K_V)$ for the representative $K_V = (d-3)H$, where *H* is the hyperplane at infinity.

Proof. Non-examinable, omitted.

Corollary 7.46. If $d, d' \ge 2$ distinct integers, then no smooth plane curves of d, d' respectively can be isomorphic isomorphic.

8 Riemann-Roch

Theorem 8.1 (Riemann-Roch). Let *V* be a smooth projective irreducible curve, $g = g(V)$ and $K = K_V$ a canonical divisor. Then for any divisor *^D*,

$$
\ell(D) - \ell(K - D) = 1 - g + \deg(D)
$$

Proof. Omitted.

 \Box

 11 i.e. $X_0 = 0$

¹²d*^y* ⁼ *−z [−]*2d*^y* so the sign is correct.

Corollary 8.2. Let *K* be a canonical divisor on a curve *V*. Then deg(*K*) = $2q - 2$.

Proof. If we set $D = K$, we get $\ell(D) = \ell(K) = q$ and $\ell(K - D) = \ell(0) = 1$.

Corollary 8.3. A smooth projective plane curve of degree *d* has genus $\frac{(d-1)(d-2)}{2}$. .

Proof. The degree of K_V for a degree *d* plane curve with $d \geq 3$ is $(d-3)$ deg(V) = $d(d-3) = 2g - 2$. For the $d = 1, 2$ cases, $V \simeq \mathbb{P}^1$ and we can compute that $q(\mathbb{P}^1) = 0$. the $d = 1, 2$ cases, $V \simeq \mathbb{P}^1$ and we can compute that $g(\mathbb{P}^1) = 0$.

2

Corollary 8.4. If deg(*D*) > 2*g* − 2, then $\ell(D) = 1 - q + \text{deg}(D)$.

Proof. deg($K - D$) < 0, so $\ell(K - D) = 0$.

Corollary 8.5. If $q(V) = 1$, and $\text{deg}(D) > 0$, then $\ell(D) = \text{deg}(D)$.

Proof. For $V = \mathbb{P}^1$, $\ell(D) = \text{deg}(D) + 1$, $\ell(K) = 1$, result follows from Riemann-Roch.

8.1 Elliptic curves

Definition 8.6 (Elliptic curve) An elliptic curve is a pair $E = (V, P_0)$, where V is a genus 1 curve, $P_0 \in V$.

Definition 8.7 (group law) Let *P*, *Q* ∈ *E*. By Riemann Roch, ℓ (*P* + *Q* − *P*₀) = 1. Therefore there is a unique effective divisor of degree 1, i.e. a point *R* such that $P + Q - P_0 \sim R$. We define

$$
P+_{E}Q=R
$$

Theorem 8.8. $(E, +_E)$ is an abelian group with identity element P_0 . Moreover, the map $\beta : P \mapsto [P - P_0] \in$ $Cl^0(E)$ is an isomorphism between E and the group $Cl^0(E)$ of degree zero divisor classes on E .

Proof. β is injective. Suppose $β(P) = β(Q)$. Then $P - P_0 \sim Q - P_0$. So $P \sim Q$. However, $ℓ(P) = 1$ by Riemann-Roch, so *^P* ⁼ *^Q*.

β is surjective. Say *D* has degree 0. $\ell(D + P_0) = 1$, so there exists *P* such that $D + P_0 \sim P$. Hence $= R(P)$ $[D] = \beta(P)$.

8.2 Riemann-Hurwitz

Proposition 8.9. Let $\varphi: V \to W$ be a morphism of curves, $t \in \mathbb{C}(W)$ such that $\mathbb{C}(W)/\mathbb{C}(t)$ is finite. Then $\mathbb{C}(V)/\varphi^*\mathbb{C}(t)$ is finite, and Ω_V is generated by $d\varphi^*(t)$.

Definition 8.10 (pullback of differentials) Let $\omega = f dt \in \Omega_W$. Then define

 \Box

 \Box

 $\varphi^*(\omega) = \varphi^*(f) d\varphi^*(t)$

Lemma 8.11. Let *P* ∈ *V*, *Q* = *φ*(*P*) ∈ *W*, *eP* be the ramification degree of *φ* at *P*, and *πP*, *πQ* local parameters at *P, Q* respectively. Then

$$
v_P(\varphi^*(d\pi_Q))=e_P-1
$$

More generally,

$$
v_P(\varphi^*\omega)=e_Pv_Q(\omega)+e_P-1
$$

Proof. Write $\omega = u \pi_0^n d \pi_Q$, where $u \in \mathcal{O}_{V,P}^{\times}$. $\varphi^*(u)$ is a unit, so we can ignore it. By definition of e_P , we have that $\varphi^*(\pi_Q) = v \cdot \pi_P^{\varphi_P}$, where *v* is a unit. Finally, we have that

$$
\varphi^*(d\pi_Q) = d(\varphi^*(\pi_Q)) = v e_P \pi_P^{e_P - 1} d\pi_P
$$

where the first equality comes from the definition of the pullback.

Theorem 8.12. Let $\varphi : V \to W$ be a morphism of curves, then

$$
2g(V) - 2 = \deg(\varphi)(2g(W) - 2) + \sum_{p \in V} (e_P - 1)
$$

Proof. Let $\omega \in \Omega_W$ be a nonzero differential. Then

$$
2g(V) - 2 = deg(div(\varphi^*(\omega))) \quad \text{by Riemann-Roch}
$$

= $\sum_{P \in V} v_P(\varphi^*(\omega))$ by definition
= $\sum_{Q \in W} \sum_{P \in \varphi^{-1}(Q)} v_P(\varphi^*\omega)$
= $\sum_{Q \in W} \sim_{P \in \varphi^{-1}(Q)} (e_P v_Q(\omega) + e_P - 1)$ by lemma
= $\sum_{Q \in W} \left(deg(\varphi)v_Q(\omega) + \sum_{P \in \varphi^{-1}(Q)} (e_P - 1) \right)$
= $deg(\varphi) deg(div(\omega)) + \sum_{P \in V} (e_P - 1)$
= $deg(\varphi) (2g(W) - 2) + \sum_{P \in V} (e_P - 1)$

 \Box

8.3 Morphisms associated to divisors

Definition 8.13 (morphism associated to a divisor)

Let *V* be a curve with $\ell(D) = n + 1 \ge 2$. Let $B = \{f_0, \ldots, f_n\}$ be a basis for $L(D)$. Then the morphism associated to *^D* with respect to *^B* is

$$
\varphi_D: (f_0: f_1: \cdots: f_n): V \to \mathbb{P}^n
$$

We say that φ_D is an embedding if it is an isomorphism onto its image.

Not[a](#page-32-0)tion 8.14. We say that a divisor *D* satisfies property (★)^a if for every P , $Q \in V$, $\ell(D - P - Q) = \ell(D) - 2$. *a*Dhruv did not name this

Theorem 8.15. The morphism φ_D associated to *D* is an embedding if and only if (\bigstar) holds.

Proof. Omitted.

Corollary 8.16. Suppose *D* is a divisor of degree $>$ 2g. Then φ_D is an embedding.

Proof. By Riemann-Roch, *D* satisfies (*).

Corollary 8.17. Every curve of genus *^g* can be embedded into ^P *m* for some *^m* depending only on *^g*.

Proof. Let $m = \ell(2K_V)$ for $q \geq 3$ and $m = \ell(3K_V)$ for $q = 2$.

Definition 8.18 (hyperelliptic curve)

A curve of genus $g > 1$ is hyperelliptic if there exists a degree 2 morphism $V \to \mathbb{P}^1$.

Theorem 8.19. A curve of genus $q \ge 2$ is hyperelliptic if and only if there exists a divisor *D* of *V* such that $deg(D) = \ell(D) = 2$.

Proof. Omitted.

Theorem 8.20. Suppose V is not hyperellipic. Then $\varphi_{K_V}: V \to \mathbb{P}^{g-1}$ is an embedding.

Proof. Suppose φ_{K_V} was not an embedding. Then K_V does not satisfy (\star). So there exists $P, Q \in V$ such that $\ell(K_V - P - Q) > q - 1$. But by Riemann-Roch, $\ell(P + Q) > 2$. that ℓ (*K*_{*V*} − *P* − *Q*) ≥ *g* − 1. But by Riemann-Roch, ℓ (*P* + *Q*) ≥ 2.

 \Box

 \Box

 \Box