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Throughout, we work over the complex numbers.

1 Affine varieties

1.1 Affine varieties

Definition 1.1 (affine n-space)
Affine n-space over C is the sefq]

A" =C"

9Basically, we want the set, but not the vector space structure.




Notation 1.2. When n is clear, we write C[X]:= C[X;, . .., X

Definition 1.3 (vanishing locus, affine variety)

Let S C C[X] be any subset. The vanishing locus of S is given by

V(S)={P A" |f(P)=0forall f € S}
An affine variety is any set of the form V(S) for some S C C[X].

Theorem 1.4. Let S C C[X] be any subset. Then
(i) Let / =(S) be the ideal generated by S. Then V(/) = V(S).
(i) There exists a finite subset {f;} C S such that V(/) = V(S).

Proof. (i) follows from basic properties of ideals.
(il) We already have that V(S) = V(/) by (i). By the Hilbert basis theorem, we have a finite set {hy, ..., h}

of generators for /. Therefore, we have a finite subset {fy, ..., fn} € S, and g;; € C[X] such that
b= Y
j=1
Therefore {f;} are also a set of generators for /. Hence V(S) = V(f, ..., fn)- O

Proposition 1.5.
() f SC T, then V(T) CV(S),
(it) V(0) = A" and V(1) = &,

(iit) for any family of ideals /;, we have that

(iv) V() UV() =V(nJ)

Proof. (i) and (il) are obvious. For (iil), notice that by definition,

(o

;
and Z/ l; is ideal generated by U/. l;. Finally, for (iv), by defintion we have that

V(HuvV{y)Ccv(inl)

For the reverse containment. Suppose P & V(I N J), and P & V(/). Then there exists g € [/ such that
g(P) #+ 0. Moreover, for all f € J, fg € INJ, so fg(P) = 0. Therefore, we must have that f(P) = 0, so
P e V(). O



Definition 1.6 (irreducible)

A variety V is irreducible if it cannot be written as a union

V=V,uV

of proper subvarieties.

Proposition 1.7. Every affine variety V' is a finite union of irreducible varieties.

Proof If V' is irreducible we are done. Otherwise, we can write V = V4, U V], If V4, V] are both unions of
irreducible varieties, then we are done. If not, then we can write V4 = V5 U V5. Repeating this, we get

V=WwWwoViD2V,2D. ..
Suppose V; = V(/;). Define

W:ﬂwzv Z}
J J

Now [ =) /; is finitely generated, as C[X] is Noetherian. Therefore, / =) . /; for some N, as the
ascending chain stabilises. Therefore, we must have that

W=V

Jj<N

so the descending chain stabilises. O

Proposition 1.8. Let V' be a variety. A minimal decomposition V' = [ JV; into a finite union of distinct
irreducible varieties is unique up to reordering.

1.2 Topology

Definition 1.9 (Zariski topology)
The Zariski topology on A" is the topology where the closed sets are affine varieties on A”.

Definition 1.10 (Euclidean topology)
The Euclidean topology on A" is the topology coming from the metric topology on C".

Proposition 1.11. Every Zariski closed subset is Euclidean closed. In addition, every Zariski open dense
subset is Euclidean dense.

1.3  Nullstellensatz

Theorem 1.12 (Weak Nullstellensatz). Let / C C[X] be a proper ideal. Then V(/) is nonempty.

Proof is in section[d . O



Definition 1.13 (ideal of a variety)
Let V be an affine variety. Then the ideal

I(V)={f € CIX]| f(P)=0forall P € V}
is called the ideal of V.

Proposition 1.14. Let V C A" be a variety.

(i) f V=V(S), then S C /(V). In particular, /(V) is the largest ideal of functions that vanish on V,
(i) V =V([(V)),
(iit) two varieties V, W are equal if and only if /(V) = [(W).

Proof. By definition. O

Proposition 1.15. V C W if and only if /(W) C /(V).

Proof. Suppose V C W, then (W) C (V) follows from definition. Conversely, if V' W, then we can choose
P e V\ W. Since P & V(I/(W)), there exists f € /(W) such that f(P) # 0. In particular, f & /(V). O

Proposition 1.16. A variety V C A" is irreducible if and only if /(V) is prime.

Proof. We have seen that /(V1UV,) = (V4N V3). Now suppose V was reducible. Then we can write V = VUV,
as a nontrivial union, then

Vig W, €V
Let /; = I(V}), then /(V) = Iy N |, and by the previous proposition, /1 € h» € /1. We can therefore find

fi 6/1\/1 and sz/z\/1

Then f; & I(V), but 1, € hNnl = 1(V). So I(V) is not prime.
Conversely, suppose f1f; € /(V), with neither f1, f, € /(V). Then we can define

Vi=VV() = {PeV|i(P) =0}
Since f; & I(V), Vi # V. Then

PeV = {(PhLP)=0 = PecViUV,
Hence V = V4 U V5. O]

Definition 1.17 (radical of an ideal)
Let / < C[X], then define the radical of / by

V1= {f eC[X]]| there exists an integer m > 0 such that " & I}

Proposition 1.18.



Proof. By definition. O

Theorem 1.19 (Hilbert's strong Nullstellensatz). Let / C C[X], V = V{(/). Then

Corollary 1.20. If V(/) = V(J), then /I = V/].

1.4 Morphisms of affine varieties

Definition 1.21 (coordinate ring)
The coordinate ring, or ring of reqular functions of V' is defined as the quotient

aw=qw=ﬁ§

Proposition 1.22. Each element (i.e. coset) in C[V] gives a well defined function on V.
Proof. f, g € C[X] restricts to the same function on V if and only if f — g vanishes on V, te. f —g € /(V). O
Morally, each element in C[V] is a coset, or a function V — C. But when convenient, we may want to think
of them by their representatives as polynomials.
Corollary 1.23. V C A" is irreducible if and only if C[V] is an integral domain.

Definition 1.24 (morphism)
Let V CC", W C C" be varieties. A regular map, or morphism from V' to W is a map

p:V->W
such that there exists f1, ..., fm € C[V], such that

The set of morphisms from V' to W is Mor(V, W).

Proposition 1.25. If ¢ : V — W, ¢ : W — Z are morphisms, then o ¢ : V — Z is a morphism.

Proof. The composition of polynomials is a polynomial. O

Definition 1.26 (isomorphism)

An isomorphism of affine varieties is a morphism with a 2-sided inverse.



Definition 1.27 (pullback)
Suppose g € C[W], ¢ : V — W is a morphism. Then the pullback of g by ¢ lsﬂ

p'g=gopec (V]

%Formally, we need to check that this is actually an element of C[V] But this is immediate if we take a representative
gedn,..., Y] for g, then g o @ gives us the same function as g(¢1(X), ..., on(X)) € ClX1, ..., Xal.

Proposition 1.28. The pullback map ¢* : C[W]— C[V] is a C-algebra homomorphism.

Proof Clear from definitions. O

Theorem 1.29. Let V C A", W C A" be varieties. Then the map ¢ — ¢* defines a bijection

Mor(V, W) « {C-algebra homomorphisms C[W] — C[V]}

Proof Let xq, ..., x, € C[V] be the coordinate functions on V, yy, ..., ym € C[W] be the coordinate functions
on W.
Injectivity: Suppose P € V, ¢ € Mor(V, W). Then we have that

Therefore, the C-algebra homomorphism ¢* determines ¢.
Surjectivity: Let A: C[W] — C[V] be a C-algebra homomorphism. Then each coordinate function y; pull
back to an element of C[V] via

Combine these to define a map

g, fn) = gAy1). - Alym)) = A(9)

Therefor, if we evaluate the above at P € V, and g € (W), then g(f(P), ..., fm(P)) = 0. Hence ¢(P) € W.
Furthermore, it follows from the definition of ¢ that A = ¢*. O

Definition 1.30 (function field, rational functions, reqular)

Let V C A" be an irreducible affine variety. It's function field, or field of rational functions, is the fraction
fleld

C(V) = Frac(C[V))

Elements of C(V) are called rational functions. ¢ & C(V) is regular at a point P if we can write
¢ = flg, with f,g € C[V], g(P) # 0.

Morally, we can think of rational functions in a very similar way to germs in Riemann surfaces. Consider
the set of pairs (f, U), where f : U — C is a rational functiorﬂ and U is a nonempty open subset of V. We
say that (f, U) =~ (f', U') if f = f" on some nonempty open set V C UN U

This intuition makes sense, since nonempty open subsets of an irreducible variety are dense.

TIn the sense that f = g/h on U, where g, h € C[V]



Definition 1.31 (local ring)
Let V' be an irreducible affine variety. The local ring at a point P € V' is

Oy p={f eC(V)|f regular at P}

Definition 1.32 (local ring)

A local rind” R is a ring which has a unique maximal ideal.

%es this is the same name as above.. Hopefully it should be clear from context what we mean.

Lemma 1.33. A ring R is a local ring if and only if R\ R* is an ideal. If so, then R\ R* is the unique
maximal ideal of R.

Proof. Suppose R\ R* was an ideal. Then any ideal properly containing it must contain a unit, so it is the
whole ring. Hence it must be a maximal ideal. On the other hand, if mfa < R is a proper ideal, then it must
be contained in R\ R*, so it is the unique maximal ideal.

Conversely, suppose R is a local ring, with unique maximal ideal m. Then m C R\ R*. Now suppose
x € R\ R*. Then (x) #+ R, so (x) C m, since if not, then m + (x) would be a proper ideal containing m.
Therefore, m = R\ R*. O

Definition 1.34 (maximal ideal of a variety at a point)

Let V' be an irreducible affine variety, P € V, the maximal ideal of Oy p is

myp = {f E O\/,,D | f(P) = O}

Corollary 1.35. Oy p is a local ring.

2 Projective varieties

Notation 2.1. When clear, we will write C[X] = C[Xy, .. ., X

2.1 Projective space

Definition 2.2 (projectivisation)
Let U be a finite dimensional U-vector space. Then the projectivisation of U is

P(U) = {lines in U through 0}

Definition 2.3 (projective space)

Then projective n-space is

P" = ]P)((Cn+1)



Notation 2.4. We will index the coordinate son C"*" by 0, . . ., n. Then a line in C"*" is given by {(aot, a1t, . . ., ant) |
t € C}. We will write (ag : @y : -+ : a,) for the corresponding point in P".

Proposition 2.5.
B Cn+‘| \0

PH

where x ~ y if there exists A € C* such that x = Ay.

Proposition 2.6. We have a decomposition
P" = {(ag:---:a,) | ao+ 0} U{(ag:--:a,)|ay=0}=A"LUP""
which gives us a decomposition

P =A"UA" " U A U {pt}

=things at co

Definition 2.7 (Euclidean, Zariski topology)
The Zariski and Euclidean topologies on P" are the ones induced from the Zarski and Euclidean topologies

on C™1.
subspace

1 e quotient . C"\0 _ pn
C C1\ 0 O _p

Definition 2.8 (standard affine patch)
The j-th standard affine patch of P" is

U={(ao: - :a,) €P"|a; + 0}

Proposition 2.9. U; = A",

Proof. Without loss of generality a; = 1. Then the natural map gives us the identification.

Proposition 2.10. We have an action of GL,,1(C) on P", by acting on lines in C"*'. The normal subgroup
of scalar matrices C* acts trivially, and so we have an action on IP" by the projective general linear group

 GLo(C)

PGL(C) = —g—

2.2 Projective varieties

Definition 2.11 (homogeneous polynomial)

A homogeneous polynomial of degree d is a sum of monomials of degree d.



Definition 2.12 (homogeneous parts)

For a polynomial f € C[X], we there exists a unique decomposition

f=me

with fi; homogeneous of degree i. We call f; the degree i homogeneous part of f.

Lemma 2.13. Let f € C[X] be homogeneous, a = (aq, . . ., a,) € C"*1 such that f(a) = 0. Then for any
reC,

Proof. Suppose f has degree d. Then

Corollary 2.14. Let f be homogeneous of degree d, then

V(fy={peP"|f(la) =0 where p=(ag:---:a,)}

is well defined.

Definition 2.15 (homogeneous ideal)

An ideal | < C[X] is homogeneous if it is generated by homogeneous polynomials, not necessarily of the
same degree.

Lemma 2.16. Let / S C[X], then / is homogeneous if and only if for any f € /, fi,; € / for all r.

Proof. Suppose / is homogeneous. Let | = (g1, .., gk), with d; = deg(gy). If
f= Z h/'g/‘ el
J
then we can plit each h; into homogeneous parts hj,. Then we can see that hj,g; € [, so f = ) _fr], with

fiy=> hjra)g, €1
J

homogeneous of degree r, where we define f[k] = 0 for k < 0. For the converse, we can decompose the
generators of /. O

Definition 2.17 (vanishing locus, projective variety)

Let / be a homogeneous ideal, then define the vanishing locus of / to be

V(ly ={p =(a) €P" | f(a) =0 forall f € I}
A projective variety is a subset of P" of the form V(/).



Proposition 2.18. Suppose V =V(/) CP", let Vo = Vo N Uy C A”. Then Vy = V(f), where

o={F(, Y1 ..., Y,) | F € Ihomogeneous}

Definition 2.19 (homogenisation)
For f e ClYs, ..., Y,] with total degree d, we define the homogenisation of f to be

"X, ..., X)) = X¢f(Xi/ X, - ., X,1X0) € CX]

which is a homogeneous polynomial of degree d. The homogenisation of an ideal / is

=" fel)

Definition 2.20 (projective closure)
Identifying A" = Uy CP". Let V = V(/) C A" be an affine variety. Then the projective variety

\//7 _ V(/h)

is called the projective closure of V.

Proposition 2.21.
1. VIinA" =V,

2. V" is the Zariski closure of V C A, C P".

Definition 2.22 (homogeneous vanishing ideal)

Let V' be a projective variety. Then define

I"(V) = {f € C[X]| f homogeneous and vanishes on V'}

Theorem 2.23 (Projective Nullstellensatz).
(i) f V(I) = &, then (X, ..., X™) < [ for some m > 0,

(ii) if V =V(l) + @, then I"(V) = V1.

Proof. We reduce to the affine case, which will be proved in section 5] Let / be a homogeneous ideal,

V, = V() CA™" and V, = V() CP"

be the affine and projective varieties of /. Note that 0 is always a point in V,. Furthermore, there is a
natural quotient map

Vo \ {0} =V,

obtained by restricting the natural quotient map C"*'\ 0 — P". Therefore, V,, is empty if and only if
V, C {0}. The latter is true if and only if v/ D (Xq, ..., Xp). The second statement follows similarly. O

10



Definition 2.24 (open, closed subvarities)

Let V' be a projective variety. If W C V, where W is a projective variety, we say W is a closed subvariety
of V. Similarly, V' \ W is an open subvariety of V.

Definition 2.25 (irreducible)

We say that a projective variety V' is irreducible if it cannot be written as V' = V4 U V for proper closed
subvarieties V4, V5 of V.

Proposition 2.26.
(i) every projective variety is a finite union of irreducible projective varieities,
(i) V is irreducible if and only if /"(V/) is prime.
Proof. (i) follows from the same proof as in the affine case. For (ii), notice if / homogeneous and not prime, then
there exists homogeneous polynomials F, G & [ such that FG € [.

To see this, as [ is not prime, let f, g € C[X] be such that f,g ¢ I,fg € I. As f,g & |, we have r, s such
that

f[o] ..... f[r,” el f[,] ¢/ and qgpo) - - Jgis—1] € l, gs) &/
Then we have that (fg);+s € /, and

(fg)[r+s] = f[r]g[s] + stuffin /
So f1, gis) & 1, but fiyg;s € 1. With this, the same argument as in the affine case works. O

Proposition 2.27. Let V C P be irreducible, W C V be a proper closed subvariety. Then V' \ W is
dense in V.

Proof Let f € C[X] be homogeneous, and vanishing on all of V\ W. As W # V, there exists g € I"(W)\ I"(V)
by the projective nullstellensatz. Then fg vanishes on all of g. As g & /"(V/), and I"(V) is prime, f € I"(V). O

2.3 Rational maps

Definition 2.28 (function field, field of rational functions)

Let V C P" be an irreducible variety, then the function field, or field of rational functions of V' is defined
as

F
C(V) = {G ‘ F, G € C[X] homogeneous of the same degree, G ¢ /”(\/)]» | ~

where /Gy ~ |G, if F1Gy — Gy € 1M(V).

Lemma 2.29. ~ above is an equivalence relation.

Proof. Reflexivity and symmetry are obvious. Now suppose we have F1/Gy, F2/Gy, F3/Gs with G; & /”(V), and

FiG — Gy, Gy — 3G, e I'(V)

Now consider G(F1Gs — F3Gy). Since Gy ¢ ["(V) and I"(V) os prime, it suffices to show that this is in
I"(V). Equivalently, we want to show that this expression is zero in C[X]//"(V/). In the quotient ring, we have

i



F1 Gz = FzG1 and /’_263 = Fng

Therefore, by substitution, we have that

F1GGs — F3G1Go = F>GiGs — G G; = 0 € CIX]/I"(V)

Proposition 2.30. C(V)/C is a finite extension of fields.

Proof. Suppose V' is nonempty. Then there is a coordinate X; which does not vanish identically on V, ie.
X; ¢ 1"(V). By reordering coordinates, wlog Xy does not vanish on V. But then it is clear that monomials with
total degree zero, ie.

ao ap
Xgo. .. X

where a; € Z,) _a; = 0 can be written in terms of X;/Xy. So we are done. O

Corollary 2.31. Let V C P” be an irreducible projective variety not contained in {Xop = 0}. Let Vo = VN
be the affine variety in the 0-th affine patch.Then

C(V) = C(\)
Definition 2.32 (reqular)
Let ¢ € C(V) and P € V. Then ¢ is reqular at P if we can write ¢ = F/G with G(P) # 0.

We can define the local ring and its maximal ideal as in the affine case. That is,

Oyp={feC(V)|fisregular at P}
myp={f € C(V)|fisreqular at P, f(P) =0}

Proposition 2.33. Suppose V C P" is an irreducible projective variety not contained in X = 0. Let
P e VU= V. Then we have an isomorphism

Ovp=0ypr

Proof. Follows from the isomorphism C(V) = C(Vp). O

Definition 2.34 (rational maps)

Suppose V' is an irreducible projective variety, then a rational map ¢ : V' --+ P” is defined by

where F; € C[X] homogeneous, not all F; contained in /"(V/). Furthermore, we say that (F;), (G;) are
the samd?| if F,G; — F;G; € I"(V) for all i, j.

%Le. a rational map is an equivalence class

By clearing denominators, we can also think about rational maps as an tuple ¢ = (Fg: F7 -+ : F,) where
Fi e C(V).

12



Definition 2.35 (reqular point, domain, morphism)

A point P € V is a reqular point of a rational map ¢ : V --» P7" if there exists a representative
o= (G, ..., Gp) such that Gi(P) # 0 for some i. That is, @(P) is a well defined point in P".

The domain dom(¢p) is the set of all regular points of ¢. A rational map ¢ : V --» P" is a morphism
if dom(¢p) = V. In this case, we write ¢ : V — P".

Definition 2.36 ({rational map, morphism} between varieties)

If W C P” is a projective variety, then a rational map (resp. morphism) is a rational map (resp. morphism)
@:V -—»P" (resp. ¢ : V — P") such that ¢(dom(¢)) C W.

Definition 2.37 (dominant)
A rational map ¢ : V --» W is dominant of ¢(dom(¢p)) C W is dense in W.

Proposition 2.38. If ¢ is dominant, then for any rational map ¢, ¢ o ¢ is defined for any rational map .

Proof. Let U be a dense open subset in dom(¢g), U’ an open subset in dom(¢). Then let U” = U N ¢~ (U)).
This is a nonempty open subset of V' and the composition is well defined here. O

Definition 2.39 (birational)

Suppose ¢ : V --» W, ¢y : W --» V are rational maps, such that ¢yo ¢, ¢ o (s are well defined and equal
to the identity maps of V, W respectively. Then we say that ¢ and ¢ are birational.

Proposition 2.40. Rational maps are rational maps to A' C P'. Therefore, given a dominant map
@:V — W, we have a well defined pullback

e C(W)— C(V)

where ¢*(f) = f o .

Theorem 2.41. Let V, W be irreducible varieties. Then V, W are birationally isomorphic if and only if
there exists an isomorphism of fields C(V) = C(W).

2.4 Transformations, embeddings and products

Definition 2.42 (Veronese)

Let Fg, ..., F, bethe m+1 = (”Zd) degree d monomials in variables Xy, .. ., X,. Then we have a natural
morphism

vg  P" — P7

defined by vy(a) = (Fo(a), ..., Fm(a)).

13



Proposition 2.43. vy is an injective map, and v4(P") is a projective variety isomorphic to P".

Definition 2.44 (Segre embedding)
The Segre embedding is the map gy, : P™ x P" — P™"*M™+" given by

Umn(<xl)' (g/)) = (lef)

In this case, we label the variables in P™"*"*" as Z;;, with 0 < i <m,0 < j < n.

Theorem 2.45. Let / be the ideal generated by

ZijZpqg — Ziglpj for i,p €{0,...,m}, g €{0,...n}i#pj+q

and let V' =V(/). Then g, : P” x P" — V is a bijection. Moreover, V is irreducible.

Proof. Clearly 0,, € V. Now consider the affine piece

\/00 =Vn {ZOO :,E O} g Amn+m+n
Then we have that Voo = V(ly), where after setting Y;; = Z;;/Zp0, we see that

0= (Y —YoYo | 1<i<m1<j<n)

It then follows that it contains all Yi;Y,q — YigYp;, and o, defines an isomorphism A" x A" — Vo, with
inverse

(Yy) = (a0, - Vo), (Yor. -, Yon))

Since affine space is irreducible, and the product of irreducible affine varieties is irreducible, we have that
Voo is irreducible. Repeating this for the other affine pieces gives us the result. O

Definition 2.46 (product)
Suppose V C P, W C P™ are projective varieties. Then we define the product to be

Umn(\/ % W) g ]P;mn+m+n

with the subspace topology.
Note the induced topology from above is not the product topology.

3 Singqularities and tangent spaces

Definition 3.1 (tangent space of affine varieties)
Let V C A" be a affine variety, P € V. The tangent space to V' at P is

Tvp = «[v ecC"| > vij—;(P) =0forall f e /(\/)} <C"
i=1 !

Definition 3.2 (tangent space of projective varieties)
Let V C IP" be a projective variety, P € V. Suppose V; = VN {X/ + O} is an affine piece of V' containing

14



P. Then define
Tvp=1Tvp

where Ty, p is the affine tangent space of the affine variety V; at P.

Note that right now it is not clear that Ty p is well defined. However we will show that for different choices
for j, the results are all naturally isomorpht

Definition 3.3 (derivative)

Let V C P", W C P" be projective varieties, ¢ : V' --» W a rational map, P € dom(¢). Assume wlog that
PeVnly=VNA" oP)=0¢c Wnly=WnNA", and we have a representative ¢ = (Fo: - : Fp),
where F; € C[X] homogeneous. Set

Proposition 3.4.
(0 dep(Tv.p) C Tw.gip).
(it) dep depends only on ¢, and not on the (F;),
(ii) If ¢ W --» Z is a rational map, with ¢(P) € dom(y), then d((f o @)p = diyp) o dep,

(iv) if @ is birational, ¢~ reqular at ¢(P), then dgp is an isomorphism.

Proof. (i) By the definition of the tangent space, we may replace V, W by the affine pieces VN A" and WNA™
repspectively. Let Q = ¢(P). Let g € /(W). Pulling back g with ¢, we have that

and choose a representative of h in C(X). This is a rational function on V' which is regular at P, and
vanishes on the points of V where it is reqular. That is, h € /(V). By the chain rule, we have

o ]

af,
axl-(P) el

ax;

Q)53 (P)

Thus, if v & Ty p, then dep(v) € Ty o, since we have that

dh

(i) If we choose another representation (F/) for ¢, then the corresponding rational functions f/ will have
the property that f/ — f; vanishes on V when defined. So we have that f/ — f; = p;/q;, where p; € I(V), q; €
C[X], q;(P) # 0. Therefore, by the quotient rule, we have that

ofi =1, 1 dp

as p;(P) = 0. Therefore, if we choose v € Ty p, then

“Most importantly, the will have the same dimension.

15



So dep is independent of the choice of the (F).
(iit) is just the chain rule, and (iv) follows from (iit). O

Corollary 3.5. The tangent space of a projective variety is well defined.

Proof. Suppose p € U; N U;. Then we have a birational map ¢ : U; --» U, induced by the identity map on
Ui N U, and is defined at P. Therefore, we have a natural isomorphism Ty, p — Ty, p. O

Definition 3.6 (dimension, smooth, singular)

Let V' be an affine or projective variety. Then
1. if V is urreducible, define dim(V) = min {dim(Typ | P € V)},
2. if P eV, Visirreducible, we say P is smooth if dim(7Ty p) = dim(V), and P is singular otherwise.

3. if V is reducible, dim(V) is the maximum of the dimension of the irreducible components of V.

Theorem 3.7. The set of smooth points of V' is a non-empty open subvariety.

Proof. Nonempty follows by definition. We can assume V C A" is an affine variety, since we can look at the
affine parts of a projective variety. Suppose /(V) = (fy, ..., fw). Thenif P €V,

of,
Zv[a)éi(/ﬂ) _o}

T\/’P: <|V€(Cn

therefore, by some basic linear algebra,

of;
dim(Ty p) = n — rank (6)éi )

of;
rank (0)([) gnr]»

is the closed subvariety generated by the (n — r) x (n — r) minors of the Jacobian matrix. O

Therefore, we have that for any r € N,

{PeV|dim(Typ)>r}= {P

Corollary 3.8. Birational irreducible varieties have the same dimension.

4  Field theory

Definition 4.1 (transcendental)

Suppose L/K is a field extension, a € L is transcendental over K if it is not the root of any nonzero
polynomial in K[X].

Definition 4.2 (algebraically independent)

Suppose L/K is a field extension, S C [ is algebraically independent over K if for all n, there is no
nonzero polynomial f € K[Xy, ..., Xy such that p(s1, ..., sn) =05 €5.
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Definition 4.3 (pure transcendental extension)

A field extension K/C is pure transcendental if

where xq, ..., X, are algebraically independent over C.

Proposition 4.4. Let K/C be a finitely generated field extension. Then there exists a pure transcendental
field extension Ky = C(xq, . .., Xp) such that K/Kp is ﬁnLteEl Moreover, K = Ko(y) for some y € K.

%.e. finite dimensional.

Proof. Suppose K = C(xq, ..., xm). Then there is a maximal algebraically independent subset, which we can

assume to be {x1, ..., xp}. Define Ky = C(x, .. ., xp). Then each of x,41,. .., X is algebraic over Ko, so K/Kp

is finite. The final statement is just the primitive element theorem from Galois theory. O
Proposition 4.5. Let K = C(x, ..., Xp), with x1, ..., x, algebraically independent. Suppose x,:+1 is

algebraic over K. Then

= {g € C[X] ~~~~~ Xn+1] | glxi, ..., X, Xp1) = O}

is a principal ideal of C[X], generated by an irreducible f € C[X]. Moreover, if f contains the variable
X, then {x1,..., Xi—1, Xid1, - s xp} are algebraically independent over C.

Proof As xq,..., x, are algebraically independent, the subring R = C[xy, ..., xp] < K is isomorphic to the
polynomial ring C[X3, ..., Xu], which is a UFD. Let h € K[T] be the minimal polynomial of x,.1 over K. By
definition, h is irreducible.

Now let b = lem{denominators in coefficients of h(T)} € R. By Gauss' lemm{l f = bh is irreducible in
R[T]. By the isomorphism above, we can think of f € C[X, ..., Xpt1].

We will now show that f generates the ideal /. Suppose we have g € C[X] such that g(x, ..., Xn+1) = 0.
Then in K[T], g(x1, ..., xp, T) is divisible by f(xq, ..., xp, T). Applying Gauss' lemm{l flginClx,..., Xp).
So f generates the ideal /. O

Corollary 4.6. Let V be any irreducible variety. Then V is birational to a hypersurface in A", where
n = dim(V).

Proof. Let K = C(V). By the above, K = C(x, ..., Xpt1), where {x1, ..., xp} are algebraically independent,
Xp11 is algebraic over C(xq, ..., xp). Then

(CWM ) = V()

5 Proof of the Nullstellensatz

We prove the weak Nullstellensatz. Then proof of the Strong Nullstellensatz is non-examinable, hence omitted.

3Since f is primitive in R[T] and irreducible in K[T], it is irreducible in R[T] We can assume f is primitive by minimality of b and the
fact that h is monic.
4Since f is primitive, f | g in K[T] implies f | g in R[T].
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Theorem 5.1 (Weak Nullstellensatz). Every maximal ideal in C[X] is of the form (X7 — a1, ..., Xy —an),
where aq, ..., a, € C. Moreover, if | is anu non-unit ideal, then V(/) #+ @.

Proof. Every ideal of this form has C[X]// = C, so they are all maximal. Now suppose m < C[X] be a maximal
ideal, K = C[X]/m. Then K is a field extension of C. Write a; = X; + m. If a; € C for all i, then we re done,
as the ideal is just (X7 —aq, ..., Xy —ap).

Otherwise, choose t € K\ C. As C is algebraically closed, t must be transcendental over C. Let

r[zo,Zrigm]»g(C

be the subspace of elements with exponenent at most m. Now as U, is finite dimensional, K = | J,, Un has
countable dimension. However, the elements
1
{ ce c}
t—c

are all C-linearly independent. So we have uncountably many linearly independent elements. Contradiction.
Now suppose / is a non-unit ideal. Then there exists a maximal ideal m such that / 2 m C C[X], so
V() 2 V(m) + @. O

'n

;
Un = spanec <|:G11 e dy

6 Algebraic curves

6.1 Curves

Definition 6.1 (curve)

A curve s a (projective or affine) variety of dimension 1.

Unless otherwise specified, by curve we will mean “smooth projective irreducible 1-dimensional variety”.
Furthermore, when we say a curve C, where C = V(/) C P", we will often drop the C P" and study curves up
to isomorphism.

Proposition 6.2. Let C be a curve, D C C be a proper subvariety. Then D is a finite set of points.

Proof. Suffices to prove this for affine irreducible curves V C A". If W C V is an irreducible subvariety, we
will show that W is a point. By the Nullstellensatz, we have that /(V) C /(W). Suppose for contradiction that
W is not a point. Then C[W] s C. Choose t € C[W]\ C. Then t must be transcendental over C.

The inclusion map ¢ : W — V induces an algebra homomorphism ¢* : C[V] — (C[WEl Let y € (¢*) 7 (1).
Now choose x € C[V] nonzero with ¢*(x) = 0. Now x, y are algebraically independent in C(V), as t is
transcendental. Contradiction, since dim(V) = 1 implies that the transcendence degree of C(V) is 1.

Therefore, we have that C[W] = C, so W is a point. O

Lemma 6.3 (Nakayama). Let R be a ring, M be a finitely generated R-module, / < R be an ideal. Then

(i) if JIM = M, then there exists r € J such that (1 + r)M = 0.
(it) if N < M is a submodule such that /M + N = M, then there exists r € J such that (1 + r)M C N.

Proof. Some nonexaminable commutative algebra. O

Theorem 6.4. Suppose V' is an irreducible curve, P € V is a smooth point. Then the ideal my p <Oy p

SThe fact that this map is surjective comes from the definition of C[V/] and C[W] as quotients.
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is principal.

Proof. Suppose that P lies in an affine patch Vy C A" of V C P". By a change of coordinates, wlog
P=(0,..., 0) € A”. Then we have that

=Clx,..., xp] where x; = X; mod /(W)

:X10p+--'+XnOp

More generally, if / < Op is any ideal, then f/g € | <= f & J, since g is a unit in O,. So we can write

)= {; ' felncVyl g e Vol g(P) 7&0}

Hence by the Hilbert basis theorem, J is finitely generated.
Since P is smooth, Ty p is a line in C". By a change of coordinates, we can assume wlog Ty p = {x; =
- = x, = 0}. We will now show that m, = (x1).
Since Ty p is cut out by linearisations of polynomials in /(Vp), and X5, ..., X, are such lienarisations, we
must have £, ..., f, € I(V) such that

=X h,

where h; has no terms of degree < 2. So in Op, we have

Therefore, we have that

n
mp = in(’)p = x10p +mf3
J=1

Applying (ii) of Nakayama’'s lemma, with R = Op, /] = mp, N = (xq) gives the required result. O

Definition 6.5 (local parameter)

Suppose P is a smooth point of V, then any generator ;1p of my p is called a local parameter, or local
coordinate of P.

Corollary 6.6. Let V = V(f) C A? be an irreducible affine plane curve, P € V be a smooth point of V.
Then the function V' — C given by

Q' X(Q)— X(P)

is a local parameter at P if and only if %(P) + 0.

Proof Same as the theorem. O

Corollary 6.7. Let P be a smooth point of a curve V. Then there exists a surjective group homomorphism
v, 1 C(V)* — Z such that
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Ovp = {0} U {F € C(V)* | v(f) > 0}
myp = {0} U{f € C(V)"|vy(f) >0}
and if f € C(V)*, then for any local parameter sp, we can write

= UJT);P“)

where u € Oy p = Oy p\ myp.

Proof. Let 7p be a local parameter at P. Then mp = (;p) for all n. Now notice that we have a descending
chain of ideals,

Let

be the limit of this descending chain. In the proof of the previous theorem, we have seen that J is finitely
generated. Furthermore, notice that

mpl =p) =/
Hence by Nakayama's lemma, / = 0. Therefore, for any f € Op, there exists n > 0 such that f € m}\mp'".
We define vp(f) = n. Now notice that this means that f = cp for some ¢ € Op. But f ¢ m,”;+1 implies that
ceO,\mp =05
Now suppose f € C(V)*\ Op. We can write f = g/h, with g,h € (’)pﬂ By the above, we can write
g= um’é, h = vnf;, where u, v € Of. moreover, since f ¢ Op, k < ¢. So we have that

1 LV
? = JTI{; kE S OP
For such f, define vp(f) = —vp(1/f). The fact that v is a homomorphism is clear from definitions. O

Definition 6.8 (valuation)
The homomorphism vp : C(V)

* — Z is called the valuation at P.

Corollary 6.9. Let V be an irreducible curve, P € V smooth, f € C(V). Then at least one of f,f~" is
reqular at P.

Proof. At least one of vp(f), vp(1/f) = —vp(f) is nonnegative. O

Corollary 6.10. Let V' be a smooth curve. Then any rational map ¢ : V' --+ P" is a morphism.

Proof. By reordering coordinates, we can assume wlog that ¢(V) is not contained in {Xo = 0}. So we can
write

G
<p:(Goz»-~:Gm):(1:g1:-~-:gm)vvhereg/:a/)€(C(\/)

OThis is obvious in the affine case, and in the projective case, we can assume wlog that P is in {Xo # 0}. Then we can write f = G/H,
where G, H € C[X] are homogeneous polynomials of degree d. Then f = (G/Xod)/(H/XOd) is a ratio of elements of Op.
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If all g; € Op, then we are done. Otherwise, let t = min; {vp(g;)}. Now notice that min; {vp(rp'g;)} = 0.
Therefore,

¢ =(mp' mplgr - p gm)

is regular at P. O

6.2 Degree and ramification

Proposition 6.11. Let ¢ : V — W be a nonconstant morphism of irreducible, possibly singular curves.
Then

(i) for all Q € W, ¢ 1(0Q) is finite,

(it) the map ¢ induces an inclusion of function fields ¢* : C(W) — C(V) which makes C(V) a finite
extension of C(W).

Proof. (i) ¢~ '(Q) is a closed subvariety of V, and as ¢ is not constant, it is not all of V. Hence it must be a
finite set of points.

(it) Since dim(V) > 0, V is infinite. So by (i), ¢(V) is also infinite. Thus, it is a dense subset of W.
Therefore, ¢ is dominant, so ¢* : C(W) — C(V) is well defined and injective. Let t € C(W)\ C, and set
x = ¢(t). Since C(V)/C is finitely generated, and finite over the degree 1 transcendental extension C(X)/C, it
must also be finite over the intermediate extension ¢*(C(W)). O

Definition 6.12 (degree)
Let ¢ : V — W be a non constant morphism of irreducible curves. Then the degree of ¢ is

deg(p) = [C(V) : ¢"C(W)]

Definition 6.13 (ramification degree)

Suppose P € V,Q = ¢(P) € W are smooth points. Define the ramification degree of ¢ : V — W at P
to be

ep = e(g, P) = vp(¢" 7o)

where g is any local parameter for W at Q.

Definition 6.14 (quasiprojective variety)

A quasiprojective variety U is a Zariski open subset of a projective variety V' C P".

We can define irreducibility, rational functions, rational maps and morphisms for quasiprojective varieties
in the same way as for projective varieties.

Proposition 6.15. The projection mag?] P” x A™ — A™ is a closed map.

“Where we consider P" x A™ C P" x P" is a quasiprojective variety, and the topology on P” x P is the one coming from the
Segre embedding.

Proof Omitted. O
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Proposition 6.16. Let ¢ : V — W be a morphism of quasiprojective varieties, and suppose V' is projetcive.
Then ¢ is closed.

Proof. First of all, we can factorise ¢ as

V——— I, ={(P.oP) | PEV}) ——m W

Now notice that the diagonal AC W x W' is dosec[l Then I, = (¢ x id)~"(A) is a closed selﬂ

Since V C P” is closed, suffices to show P" x W — W is a closed map. Moreover, if W is covered by
affines U, it suffices to show that P” x U; — U; is closed. But now notice that each U; is a closed subset of
A", and the result follows from the previous proposition. O

Corollary 6.17. Let ¢ : V — W be a non constant morphism between irreducible projective, not necessarily
smooth, curves. Then ¢ is surjective.

Proof. im(¢) is a closed subvariety, and it is not a point, so it must be all of W. O

Theorem 6.18 (finiteness theorem for curves). Suppose V, W smooth projective curves, ¢ : V. — W a
morphism, then for any Q € W,

deglp) = >  ep
Pep=(0Q)

Furthermore, for all but finitely many P € V, we have ep = 1.

Proof Omitted?] O

Corollary 6.19. Let V' be a smooth projective irreducible curve, f € C(V)*. Then

(i) if fisreqular for all P € V, then f is constant,

(ii) the set of P such that vp(f) # O is finite, and ) _p.\, vp(f) = 0.

Proof. Consider the morphism ¢ : V — P! given by

o= (1:1)
Now ¢(P) = (0: 1) if and only if f is not regular at P. Therefore, if f is regular at all P, then it can't be

surjective, so it must be constant.
(it) We can assume wlog that f is non constant. Let t = Xj/Xp. This is a local coordinate at the point

0= (1:0) € P'. Now notice that ¢*(t) = t o @ = f. Therefore, if f(P) = 0, then ep = vp(¢*(t)) = vp(f).
Similarly, 1/t = X/X; is a local parameter near co = (0 : 1) € P!, and if f(P) = oo, then

ep = vp(@"(1/0) = —vp(f)
Finally, if (P) < 0, 0o, then vp(f) = 0, so by the finiteness theorem,

deglp) = )  wvel=— > el

Pee~1(p) Pe@(o0)
and the result follows. O

Morally, the number of zeros and poles of a rational function are the same, and most points are neither.

’Recall W x W has the topology from the Segre map, not the product topology

8In the ambient P" x P™.

9n Dhruv's notes he says that we prove the “Furthermore ." sentence later on. One way would be to derive this as a corollary to
Riemann-Hurwitz, but as the proof of Riemann-Roch is omitted, it's not clear that this is not circular.

On the other hand we prove this theorem in the Riemann surfaces setting, called the valency theorem.
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7 Divisors

From now on, curve = “smooth projective irreducible curve’

7.1 Divisors

Definition 7.1 (divisor)

Let V be a curve, then the set of divisors on V is

Div(V) = Bz - [P]

PeC

where a divisor D € Div(V) is a finite integer linear combination ) _np[P]

Definition 7.2 (degree of a divisor)
The degree of a divisor D =) np[P] is

deg(D)=) np€Z

deqg : Div(V) — Z is a homomorphism, and we write

Div’(V) = ker(deq)

for the degree zero divisors.

Definition 7.3 (valuation of a divisor)
If D=3 np|P], we write vp(D) = np.

Definition 7.4 (rational functions poles bounded by D)
Let D be a divisor on a curve V. Then the space of rational functions with poles bounded by D is

L(D) = {f € C(V) | YP € V, vp(f) + vp(D) > 0}

That is, if np > 0, then f has a pole of order at most np at P. If np < 0, then f has a zero of order at least
|np| at P.

Definition 7.5 (divisor of a function)

Let f € C(V)* be a nonzero rational function. The divisor of f is

div(f) = 5 _ ve(f)P]

PeVv

Divisors of this form are called principal divisors. We write Prin(V) for the set of principal divisors.

Proposition 7.6. Prin(V) is a subgroup of Div’(V).

Proof.
deg(div(f)) = ) vp(f) =0
pev
by the finiteness theorem. Furthermore, div(f) + div(g) = div(fg), so it is a subgroup. O
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Definition 7.7 (class group)
The class group of V' is

Definition 7.8 (linearly equivalent)

Divisors D and D’ are linearly equivalent if D — D’ € Prin(V). That is, they give the same class in the
class group.

Definition 7.9 (hyperplane section)

Let V C P" be a curve, L be a homogeneous linear function, V' ¢ V(L). Then the hyperplane section of V
by V(L) is

div(L) = Z nplP] where np=vp (X

L
) for i such that Xi(P) # 0
pev

Proposition 7.10. The hyperplane section is well defined. That is, it does not depend on i. Furthermore,
all np > 0.

Proof If Xi(P), X;(P) # 0, then

v Ly_ v L)_ v & =0
PAX PAX) TN T
Furthermore, L/X; € Op, so v(L/X;) > 0.
Proposition 7.11. Let V be a curve, L, L’ linear homogeneous polynomials, neither vanishing on all of V.
Then
div(L) — div(L) = div(L/L)

In particular, div(L) and div(L’) are linearly equivalent, so deg(div(L)) = deg(div(L")).

Proof. By definition.

Definition 7.12 (degree of a curve)
Let V C P" be a curve. Then the degree of V' is

deg(V) = deg(div(L))
for any L with V' € V(L).

Definition 7.13 (effective divisor)
A divisor D =) np[P] is effective if np > 0 for all P. Wr write this as D > 0.
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Proposition 7.14.
LD)y={f € C(V)|f=0ordi(f)+ D >0}

Proof. By definitions. O

Proposition 7.15. [(D) is a complex vector space.

Proof If f, g are nonzero rational functions, then vp(f + g) > min{vp(f), ve(g)}, so L(D) is closed under
addition. It is clearly closed under scalar multiplication. O

Notation 7.16. We write ¢(D) = dim(L(D)).

Proposition 7.17. Let D be a divisor on V. Then
(i) if deg(D) < 0, then L(D) =0,
(it) if deg(D) > 0, then €(D) < deg(D) + 1,
(it) forany P € V, ¢(D) < (D —[P)) + 1.
In particular, L(D) is always finite dimensional.
Proof. (i) If L(D) # 0, thenfor 0  f € L(D), E = div(f)+D > 0. But then this means that deg(D) = deg(E) > 0.

(iit) Let n = vp(D). Then define evp : [(D) — C by evp(f) = (npf)(P). This is a linear map, and the kernel is
L(D — P). Hence by rank nullity, (D — P) > ¢(D) — 1. (ii) If d = deg(D) > 0, we see that

D)<OD—(d+NP)+d+1=d+1
since deg(D — (d + 1)[P]) < 0, so ¢(D — (d + 1)[P]) = 0. O

Proposition 7.18. If D, E are linearly equivalent divisors on a curve, then ¢(D) = ¢(E).

Proof. Say D — E = div(g). Then f +— fg defines a linear map L(E) — L(D), and f + f/g defines the inverse
map. O

7.2 Bezout’s theorem

Definition 7.19 (hypersurface section of a morphism)

Suppose ¢ : V — P any non constant morphism, G homogeneous of degree m, with im(¢p) € V(G). Then
define

(G
div(G) = };”P[P} where  n, = vp ( (p)((,-’” ) ) where X;(P) # 0

Theorem 7.20 (weak Bezout). Let V, W C P? be distinct smooth projective irreducible curves of degree
m, n respectively. Then

[V W] <mn
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Proof. Suppose V = V(F), W = V(G) where F, G are homogeneous polynomials of degree m, n respectively.
We can replace G by any other homogeneous polynomial of degree m, since it will give a linearly equivalent
divisor. Let t: V' — P? be the inclusion map. Replacing G with L", where L is linear homogeneous, we see that

V(L) N V] < m = deg(V)

and
dv(*(G) = > nplP]
PEVAV(G)
But div(t*G) = ndiv(c*L) = ndiv(L), so deg(div(c*G)) = n deg(div(L)) = mn. Furthermore, np > 0 if and only

if G vanishes at P. O
7.3 Differentials
Let K/C be a field extension.

Definition 7.21 (differential)

The space of differentials is

M spang {0x | x € K}

Qee = — =
METN spang {0(x + y) — (0x + dy), 6(xy) — (x0y + yox), da | x,y € K, a € C}

and define the differential of x € K to be dx = 0x mod N.
Proposition 7.22. d(x + y) = dx + dy, d(xy) = xdy + ydx, da = 0.

Definition 7.23 (exterior derivative)
The map d : K — Qg/c is called the exterior derivative.

Notation 7.24. We will write Qg = Qg/c as we are fixing the base field to be C.

Definition 7.25 (derivation)
Let U be a K-vector space. A C linear map D : K — U is called a derivation of D(xy) = xDy + yDx.

Lemma 7.26 (universal properties of derivations). A linear map D : K — U is a derivation if and only if
there exists a K-linear map A : Qg — U such that

K—2 vy

R

Qk

commutes.

Lemma 7.27. For any derivation D, we have That
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of
dy = o Xn)dx;
y [ (:‘)X, (X1 ! X ) X
In particular, if K = C(xy, ..., xp), then Qg is spanned by dxq, ..., dx,,.
Proof Chain rule from calculus. O

Theorem 7.29. Let K/C(t) be finite, where ¢t is trasncendental over C. Then Qg is a 1-dimensional
K-vector space, spanned by dt.

Proof. First we consider the case K = C(t). By the leamma, Qg is spanned by dt, so we need to show dt = 0.
By the universal property, suffices to show that a nonzero derivation exists. % - C(t) — C(t) works.

In the general case, let Ky = C(t), K = Kp(a). Let h € Ko[X] be the minimal polynomial of a. As h is
minimal, h'(a) # 0. Therefore, by the lemma, dt, da span Qk.

For f € Ko[X], write D,f = & Then by the chain rule, we have that

0 = d(h(a)) = (D;h)(a)dt + h'(a)da

So Qg is spanned by dt. Therefore, suffices to write sown a non-zero derivation K — K.
First, define D : Ky[X] — K by

D(f) = Di(f) if f € Ky (1)
__ (Dth)(a)

D(X) = — i) (2)

D(X") = na"~"D(X) (3)

Then D(h) = 0, so D vanishes on hKy[X] < Ko[X], so it gives us a derivation D : K — K, with Dt =1. O

7.4 Differentials on curves

Definition 7.30 (rational differentials)
Let V be a curve, then define

Qv = Qcw)ic

Definition 7.31 (regular)
A differential w € Qy is reqular at P € V' if

w = Z f,‘dg[

where f;, g; € Oy p. Write Qy p for the set of all regular differentials at P.
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Remark 7.32. Qy p is not a vector subspace of Qy.

Proposition 7.33. If w € Qy, then mhw € Qy p for k sufficiently large.

Proof Let k be such that 75f € Oy p and ¢ be such that 75g € Oy p. Then

s g = (rpf)(pt )
= (mpf)(d(7p""g) — (€ + ) pgdrp)
= spfd(7p"g) — (0 + N)(rpf)(pg)dnp € Qup

Theorem 7.34. Qy p is a free Oy p-module, generated by dzrp, where 7p is a local coordinate at p. That
(s,

Q\/’p = {fd]T,D ‘ fe O\/,P}

Proof. Clearly we have that Opdsp C Qv p. Now given f € Op, we can write it as

f=fP)+nmpgeOp=C+mp
Then by the Leibniz rule, we have that

df = gdnp + npdg € Opdrp + 7pQy p

If we apply Nakayama’s lemma, with R = Op, /) = mp, M = Qv p, N = Opdrp, we get that Qy p = Opdnp.
Therefore, all we need to check is that Qy p is a finitely generated Op module. Choose an affine piece Vy C A"
of V containing P, so C[W] = Clx, ..., xp), where the x; generate C[Vp] as a C-algebra. Now for f € Op,
then f = g/h for polynomials g, h with h(P) = 0. Then by the quotient rule,

h3%— g5
( 0X;
df =y —Z =Py,

Since h(P) # 0, the coefficient of dx; is in Op. Therefore dx, .. ., dx, generate Qy p as a Op module. O

Corollary 7.35. If 7p, 7 are local parameters at P, then drrp, = udsp, where u € Oy p.

Proof. Write dnp, = udsp, dip = vdsp, then uv = 1. O

Corollary 7.36. Any w € Qy can be written as w = fdsxp for some f € C(V).

Proof Let k be such that Jrféw € Qup. Then we have that JTI/EQ) = gdnp for some g € Ovp. So w =
—k
g gdrp. O

Definition 7.37 (valuation of a differential)
If we Qy, PeV, define

vp(w) = vp(f)
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where w = fdrA7

“Different choices of local parameters will give f which differ by a unit, so the valuation is the same.

Proposition 7.38. vp(w) > 0 if and only of w is reqular at P.

Lemma 7.39. Let w € Qy be a nonzero differential on a curve V. Then vp(w) = 0 for all but finitely
many P € V.

Proof. ve(f) = 0 for all but finitely many A" O

Definition 7.40 (divisor)
The divisor of w € Qy is

div(w) = 5 vp(w)[P]

PeVv

Proposition 7.41. If w, " are nonzero differentials on V/, then div(w) — div(w’) is principal.

Proof. Since Qy is a 1-dimensional C(V/) vector space, w = fu' for some f € C(V). Then div(w) = div(f) +
div(w'). O

Definition 7.42 (canonical class)

The class of div(w) in CL(V) for any nonzero w € Qy is called the canonical class. We also call D = div(w)
a canonical divisor.

Definition 7.43 (genus)

Let V be a curve, Ky a canonical divisor of V. Then the genus of V' is

g(V) = €(Kv)

where Ky is any canonical divisor on V.

Theorem 7.44. Let V = V(F) C IP? be a plane curve of degree d > 3. Then Ky = (d — 3)H, where H is
the divisor of a hyperplane section.

Proof. Step 1: Choosing an appropriate differential. By a change of coordinates, wlog (0 : 1:0) ¢ V. Let
x = X1/Xo,y = X2/ Xo € C(V). Let £(X,Y)=F(1,X,Y), then f(x,y) = 0 in C(V). Differentiating this, we get

of of
Ix X yldx 4 =2 (x, y)dy =0

in Q. We will consider the differential

dx dy
W= =T

Ay Ly

"ODhruv's notes proves it for general fdg, but we don't need to since we already know that w = fdsp for some f.
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Then suffices to show that div(Q) = (d — 3)div(Xp).
Step 2: Calculating in an affine patch. Here, we identify Uy = A% Let P € V N A% If SL(P) # 0, then
x — x(P) is a local parameter at P, so

1

ZP)

vp(w) = vp

Otherwise %(P) # 0, s0 y — y(P) is a local parameter, and we also have vp(w) = 0.
Step 3: Calculation at inﬁnitﬂ Since we assumed that (0:1:0) ¢ V, any point on V at infinity must
be in {X, # 0}. On this open set, we can reparametrize the curve by g(z, w) = 0, where

Xo 1 X1 X
=_=—, w=—"=2 and Z W)= F(Z W1
ey %y g(Z, W) = F( )

Now consider the differential

z

dz dw

=73 =773
Z(z,w) bz, w)

The same argument as in step 2 shows that vp(n) = 0 for any P € U,. But we have that f(X,VY) =
Y9g(1/Y, X|Y). Differentiating this,

o 0
aX_Y ag(\/\/)(T/Y,X/Y)

and so we have tha@
dy 77%dz d-3
W= T a1 99 =
BX(X'y) Y (aw(zf w))
Therefore, if X2(P) # 0, then vp(w) = (d — 3)vp(z) + vpe(n) = (d — 3)vp(z). Since z = Xp/ X5, div(w) =
(d — 3)div(Xp) as claimed. O

Proposition 7.45. If f(x, y) = 0 is an affine equation for a smooth projective plane curve, with deg(f) > 3,
then

El

de
1” X|0§r+sgd3}
dy

is a basis for L(Ky) for the representative Ky = (d — 3)H, where H is the hyperplane at infinity.

Proof Non-examinable, omitted. O

Corollary 7.46. If d,d’” > 2 distinct integers, then no smooth plane curves of d, d’ respectively can be
isomorphic.

8 Riemann-Roch

Theorem 8.1 (Riemann-Roch). Let V' be a smooth projective irreducible curve, g = g(V) and K = Ky a
canonical divisor. Then for any divisor D,

0(D) — ¢(K — D) = 1 — g + deg(D)

Proof Omitted. O

Mie. Xo=0
12dy = —z72dy so the sign is correct.
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Corollary 8.2. Let K be a canonical divisor on a curve V. Then deq(K) = 2g — 2.

Proof. If we set D = K, we get ¢(D) = ¢(K) =g and /(K — D) =¢(0) = 1. O

— (d=1)(d=2)
Corollary 8.3. A smooth projective plane curve of degree d has genus ———=.

Proof. The degree of Ky for a degree d plane curve with d > 3 is (d — 3)deg(V) = d(d — 3) = 2g — 2. For
the d = 1,2 cases, V ~ P' and we can compute that g(P') = 0. O

Corollary 8.4. If deg(D) > 2g — 2, then ¢(D) =1 — g + deg(D).

Proof. deg(K — D) < 0, so ¢(K — D) = 0. O

Corollary 8.5. If g(V) =1, and deg(D) > 0, then ¢(D) = deg(D).

Proof For V =P' ¢(D) = deg(D) + 1, ¢(K) = 1, result follows from Riemann-Roch. O

8.1 Elliptic curves

Definition 8.6 (Elliptic curve)
An elliptic curve is a pair E = (V, Py), where V is a genus 1 curve, Py € V.

Definition 8.7 (group law)

Let P,Q € E. By Riemann Roch, ¢(P + Q — Py) = 1. Therefore there is a unique effective divisor of
degree 1, iLe. a point R such that P+ Q — Py ~ R. We define

P+rQO=R

Theorem 8.8. (E, +f) is an abelian group with identity element £y. Moreover, the map B : P +— [P—FPy] €
CL°%(E) is an isomorphism between E and the group CL%E) of degree zero divisor classes on E.

Proof. B is injective. Suppose B(P) = B(Q). Then P— Py ~ Q — Py. So P ~ Q. However, ¢(P) = 1 by
Riemann-Roch, so P = Q.

B is surjective. Say D has degree 0. ¢(D + ) = 1, so there exists P such that D + Py ~ P. Hence
D] = B(P). O

8.2 Riemann-Hurwitz

Proposition 8.9. Let ¢ : V — W be a morphism of curves, t € C(W) such that C(W)/C(t) is finite. Then
C(V)]p*C(t) is finite, and Qv is generated by dg*(¢).

Definition 8.10 (pullback of differentials)
Let w = fdt € Q. Then define
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¢ (w) = ¢ ()dg™ (1)

Lemma 8.11. Let P € V, 0 = ¢(P) € W, ep be the ramification degree of ¢ at P, and mp, o local
parameters at P, Q respectively. Then

vp(@*(dmg)) = ep — 1
More generally,

vp(¢p*w) = epvo(w) + ep — 1

Proof. Write w = umpdig, where u € Oy p. ¢*(u) is a unit, so we can ignore it. By definition of ep, we have
that ¢*(g) = v - 17", where v is a unit. Finally, we have that

¢ (d7o) = d(¢"(70)) = vepry ™ drp

where the first equality comes from the definition of the pullback. O

Theorem 8.12. Let ¢ : V — W be a morphism of curves, then

29(V) = 2 = deg(@)(2g(W) = 2) + ) (ep —1)
peV

Proof Let w € Q be a nonzero differential. Then

2g(V) — 2 = deg(div(¢*(w))) by Riemann-Roch
= Z vp(@p*(w)) by definition

PeV
Y 5 wigw
QeW Pep1(Q)

= Z ~pey1(0) (epvo(w) +ep —1) by lemma
Qew

= > | deg(@volw)+ > (ep—1)

Qew Pep=1(0)

= deg(¢) deg(div(w)) + ) _(ep —1)
PeV

= deg(@)(2g(W) = 2) + ) _(ep —1)
PeV

8.3 Morphisms associated to divisors

Definition 8.13 (morphism associated to a divisor)

Let V be a curve with (D) =n+1>2 Let B={fg,..., f,} be a basis for L(D). Then the morphism
associated to D with respect to B is

op:(fo o f) VP
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We say that ¢p is an embedding if it is an isomorphism onto its image.

Notation 8.14. We say that a divisor D satisfies property (¥ []if for every P, Q € V, é(D — P — Q) = ¢(D) — 2.

Dhruv did not name this

Theorem 8.15. The morphism ¢p associated to D is an embedding if and only if (3) holds.

Proof Omitted. ]

Corollary 8.16. Suppose D is a divisor of degree > 2g. Then ¢p is an embedding.

Proof. By Riemann-Roch, D satisfies (¥). O

Corollary 8.17. Every curve of genus g can be embedded into P” for some m depending only on g.

Proof. Let m = ¢(2Ky) for g > 3 and m = ¢(3Ky) for g = 2. O

Definition 8.18 (hyperelliptic curve)

A curve of genus g > 1 is hyperelliptic if there exists a degree 2 morphism V — P'.

Theorem 8.19. A curve of genus g > 2 is hyperelliptic if and only if there exists a divisor D of V' such
that deg(D) = ¢(D) = 2.

Proof. Omitted. O

Theorem 8.20. Suppose V is not hyperellipic. Then @k, : V — P9~ is an embedding.

Proof. Suppose ¢k, was not an embedding. Then Ky does not satisfy (%). So there exists P, QO € V such
that ¢(Ky — P — Q) > g — 1. But by Riemann-Roch, (P + Q) > 2. O
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