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1 Fundamental group
1.1 Homotopy

Definition 1.1 (homotopy)

Suppose fg, f1 : X = Y are maps, we say that fy and f; are homotopic if there exists H: X x [ - Y such
that

H(-0)=f, and H(,1)=Ff

We write fo ~ f1, or £ N f1

Lemma 1.2. Homotopy is an equivalence relation.

Proof. Reflexivity and symmetry are clear, for transitivity use the gluing lemma.
Lemma 1.3. If fy ~ f; and go ~ g1, then ggo fy ~ gy 0 f.

Notation 1.4. We write cx, : X — Y for the constant map c(x) = p.

Definition 1.5 (contractible)

A topological space X is contractible if idx ~ cx,, for some p € X.

Proposition 1.6. If Y is contractible, then any fo, f1 : X - Y are homotopic.

Proposition 1.7. Any contractible space is path connected.

Definition 1.8 (homotopy equivalent)

Two topological spaces X, Y are homotopy equivalent if there exists maps f: X - Y and g : Y — X such
that fog ~idy and gof ~idx. We write X ~ Y.

Proposition 1.9. Homotopy equivalence is an equivalence relation.

Proposition 1.10. A topological space X is contractible if and only if X ~ *.

Definition 1.11 (homotopy rel)
Suppose fo, f1 : X - Y are maps, A € X. Then we say that fy and f; are homotopy equivalent rel A if
foR fand H(x,t) =fo=f forall te/ x e A



Lemma 1.12. Homotopy rel is an equivalence relation.

Lemma 1.13. Suppose fo ~ f1 rel A go ~ g1 rel f(A), then goofy~gyofy rel A

1.2 Paths and the fundamental group

Notation 1.14 (homotopy rel end points). If yo, y1 : | = X are paths, we write yo ~e y1 for yo ~ y1 rel {0,1}.

Lemma 1.15. If fo, f, : / > I, fo(0) = £(0) and fo(1) = f,(1), then fo ~e 1.

Proof. | is convex.

Proposition 1.16. Suppose f:/ -/, y: [ — X path, then
() If f(0)=0and f(1) =1, then foy ~.y.
(i) I £(0)=1(1) =0, then yof ~cy ).

Proof Immediate from the lemma.

Definition 1.17

Let X be a space, p,g € X, then write Q(X,p, q) be the set of paths from p to g. Write Q(X,p) =
Q(X, p, p) for the set of loops based at p.

Notation 1.18. Suppose y € Q(X, p, g) and n € Q(X, g, r), we can compose them to get yn € Q(X, p, r). Furthermore,
let y™' e Q(X, g, p) be the reverse of y.

Lemma 1.19. Suppose yp, y1 € Q(X,p,q) with yo ~e y1, and no, n1 € Q(X, g, r) with ny ~ m, then
Yollo ~e V1IN

Proposition 1.20. Let y € Q(X,p,q), v € Q(X,q,r) and y" € Q(X,r,s), then

(L) Cl,py ~e ¥V ~e YC/,q,
(i) vy ~e g and yy !~ cryp,

(i) (vy" )Y ~e v(¥'¥Y")

Definition 1.21 (fundamental group)
For a topological space X, xp € X, define

7T1(X,Xo):M

~e

This is a group with



Proposition 1.22 (functoriality). m; defines a functor from pointed spaces to groups.

Proof. We only need to check the map on morphisms. Suppose f: (X, x0) = (Y, yo) is a map, then we have an
induced map f, : 711 (X, x0) = (Y, yo), defined by . ([y]) = [foy] Itis easy to check that (gof). =g.of.
and id, = id. O

Proposition 1.23 (homotopy invariance). If fo ~ fy rel {xo}, then fo. = f1..

Definition 1.24 (retraction, strong deformation retraction)

Suppose Ac X, t: A— X is the inclusion map. Then
(i) r: X —>Alis aretraction if rot=1ida.

(it) r: X > A'is a strong deformation retraction if r is a retraction, and tor ~idx rel A

Proposition 1.25. If r is a retraction, then . is injective and r, is surjective.

Proposition 1.26. A strong deformation retraction defines a homotopy equivalence.

1.3 Nullhomotopy and extensions

Definition 1.27 (nullhomotopic)
A map f: X - Y is nullhomotopic if f ~ cx , for some pe Y.
Proposition 1.28. Let f: S — Y, then f extends to all of D? if and only if f is nullhomotopic.

Proof. One direction is clear. For the other use the homotopy to define an extension radially. O

Definition 1.29 (closed loop)
Let y € Q(X, xp). Define y: S" = X by

V(EZH“) _ )/(t')

Lemma 1.30.

1. If yo ~e v1, then Yy ~ ;.



2. yy' ~y'y.

Proof (i) is clear. For (ii), notice that the antipodal map S' - S" is homotopic to the identity. O

Let ®: D’ > I? be a homeomorphism, then h: d(/?) - X extends to /* if and only if h o ® extends to D’.
But we have seen this holds if and only if h o ® is nullhomotopic.
For i € {0,1}, define

a(t) =h(t,i) and Bi(t)=h(it)

a

BOL 181

ao

Then ho® = aBra; ' B

Proposition 1.31. Suppose yo, y1 € Q(X, p, q) are paths, then the following are equivalent.

(D) vo~e w1,
(it) yoyy! is nulthomotopic,

(i) [vovi']=1in mi(X,p).

Proof Consider h:d(/*) = X given by

Clp L Clg

Then we have that

Yo ~e Y1 <= h extends to &

< ho® extends to D’
<= Yociq¥7 ;) is nulthomotopic

< yoy; ' is nullhomotopic

So (i) <= (i)
Now consider h":d(/?) = X given by



Clp

Clp & A Clp

Yovi
Then we have that
vovi'1=1 < yovi' ~e ciyp

<= h' extends to /°

<= h'o® extends to D’

1

1 1 1 .
<= WY, c/,p—1c,’pc,’p is nullhomotopic

< yoy; ' is nullhomotopic
So (i) <= (iid).

Corollary 1.32. The following are equivalent.

() vo ~e v, for all yo, v € Q(X, p, q).
(i) any f:S" = X is nullhomotopic,
(i) (X, x0) =1

Definition 1.33 (simply connected)
We say that X is simply connected if X is path connected and any of the above conditions hold.

1.4 Change of base point

Definition 1.34 (change of base point map)
Given u € Q(X, xp, x), we can define a map u% : Q(X,x0) = Q(X, x) by

ug(y) =u'yu

Proposition 1.35. If y ~, ¥, then ux(y) ~ ux(y’), so ux gives a map ux : 711(X, x0) = 711 (X, x).

Proposition 1.36. u% is an isomorphism of groups.

Proof uy is a homomorphism is as for conjugation for groups, and note that uy is the inverse of (™).



Theorem 1.37. Suppose fo,f1: X > Y, fo ~fy via H: X x| - Y. Then let u(t) = H(xo, t), yo = fo(x0),
yq = fi (X1), then

f*
7T1(X,X0) L >JT1(Y,g1)

m (Y. yo)

commutes.

Proof We need to show that for all y € Q(X, x0), f1+[v] = unfo.[v] = ux[foo y]. Let y; = fi oy, then we want
to show y1 ~e u~"you. Consider h:d(/*) - Y given by

V1
uy WU
Yo
Then
h extends to I° <= youyfu*1 is nullhomotopic
< u~youyy" is nulthomotopic
— u_wyou ~e V1.
But h does extend to all of /2, given by H(x, t) = H(y(x), t). O

Proposition 1.38. Suppose X and Y are homotopy equivalent, via f : X - Y and g: Y — X. Then f, and
g, are isomorphisms.

Proof. By symmetry we only need to show g, is an isomorphism. Fix xo € X, and let yo = f(x0), x1 = g(yo), y1 =
f(x1). Then we have maps

fs * fs
7T1(X,XQ) _— 7T1(Y,y0) g—> 7T1(X,X1) _— 7T1(Y,y1)

Say id ~gof via H, then g, of, = ux o (idx). where u=H(xp, t) is a path from xo to x; by the previous
lemma. But us is an isomorphism, so g, is surjective. Similarly f o g ~ id implies that g. is injective. O

Corollary 1.39. If X s contractible, then 711 (X, x) = 1.

2 Covering spaces

2.1 Definitions and lifting



Definition 2.1 (evenly covered set)

Suppose p : X = X is continuous, we say that U ¢ X is evenly covered if p~'(U) = Ly Vo, where
plv, : Vg = U is a homeomorphism.

Definition 2.2 (covering map)

A mapp: X>Xisa covering map if for all x € X, there exists an open neighbourhood U, which is evenly
covered. In this case, we call X a covering space for X.

Definition 2.3 (lift)
Suppose p : X>Xisa covering map, f : Z - X continuous. Then we say that F:7- Xisaliftof fif

po f=f that is,
X
-
- X

7

commutes.

Lemma 2.4 (Lebesque covering). Suppose X is a compact metric space, {Uy}, is an open cover of X.
Then there exists 0 > 0 such that for all x € X, By (x) ¢ U, for some a.

Proof Given x € X, let a(x) and d(x) > 0 be such that Bys(y)(x) € Uy(yy. Then {BLW)}xsX is an open cover

of X. Therefore, by compactness there exists a finite subcover {Bg(xl)(x[)};. Let 0 =min{d(x1), ..., 0(x,)}
Then for all y € X, y € Bs(,)(x;) for all i. Then

Bs(y) € Bas(x) (xi) € U

Notation 2.5. We say a path y with y(0) = xo has the (unique) lifting property if for all & € p~' (xo), there exists a
(unique) lift § of y with $(0) = Ro.

Lemma 2.6. If f: Z — U, Z connected, im(f) ¢ U, where U is evenly covered, then y has the unique
lifting property.

Proof. Since U is evenly covered, p~'(U) = [, V. Then & € V,, for some aq. Then p’ = (P|\/a0)_1 ‘U Xis

continuous, with p’(xo) = %0, s0 = p’ o f is a lift of 1.
For uniqueness, notice that p™" (U) = UgU(Ugsa, Ve ), Which disconnects p='(U), and as im(f) is connected,
‘Lm(?) c Vg, But p’ above is a homeomorphism, so § is unique. O

Lemma 2.7. Suppose y: [a, b] = X with a" € [a, b], if y|[5,5] has the ULP at a and y|[, 5] has the ULP
at @’, then y has the ULP at a.



Proof We have a lift § : [a,a’] - X of Vl[a.or] at @, and a lift §, : [a’, b] —» X of Vl[or6] at @', such that
(a’) =92(a"). So 192 is a lift of y at a.

For uniqueness, suppose f} is any other lift. Then A[fq 41 is a lift of y|fg 41, 50 Alfa,er] = V1. This means that
A(a") = p(a’), so Aljar o) is a lift of y|[4 5}, which means that Aljgr p] = Alfer 5], SO = P1 92 O

Theorem 2.8 (path lifting). Any y:/ — X has the ULP.

Proof. p: X> Xisa covering map, so every x € X has an evenly covered neighbourhood Uy. Then {U, | x € X},
) {y’1 (Uy) | xe X} is an open cover of /. Thus, by the Lebesqgue covering lemma, there exists 0 > 0 such that
Bs(t) € v~ (Uy(ry) for any t.

Choose n such that 1/n <3, a; =i/n el Then [a;, a;+1] € Bs(a;), so y([a;, ai41]) € Uy, where a; = y(a;).
As U, is evenly covered, y | has the ULP at a;. By induction and the previous lemma, y has the ULP. O

[Ur:UHrW]

Theorem 2.9 (homotopy lifting). Suppose p : X>Xisa covering map, H: I x I - X is a homotopy, then
H has the lifting property at (0, 0).

Proof Suppose {Uj | x € X} is an open cover of X by evenly covered neighbourhoods. Since /% is compact, by
the Lebesgue covering lemma, there exists & > 0 such that Bs(v) ¢ H™' (Up,y) for each v e /.

Choose n such that \/2/n < . Then divide /* into squares with side lengths 1/n. Enumerate them
A A, A,2, starting from the bottom left and going right then up. Label the bottom left corner of A; as v;.
Now note that H(A;) € H(Bs(v;)) € U, is evenly covered. Thus, Ha has the ULP at v;, as /? is connected. Let
By = UL, A

We will prove by induction that H|g, has LP at (0,0). For k = 1,B; = A;, so we are done. Now suppose
H|Bk has a lift A : Bk - X with H(0,0) = & Now as H|s, has the lifting property at vi,q. So choose a lift
i s Ao = X with he(vir) = A ().

Now note that By N Ags1 is either one or two edges of Ags1, both coming from vi1. By uniqueness of path
lifting, /:/k\AMan = fA)k|AHmBk, so by the gluing lemma we have a well defined lift I:/kﬂ of H on Biiq. O

Proposition 2.10. Suppose yp, y1 € Q(X, x0,x1), Yo ~e Y. Suppose ¥; is a lift of X with $:(0) = %. Then
Y0 ~e P1. In particular, po(1) = P1(1).

Proof Suppose H: > — X is a homotopy between yy and .

V1

C/,X() A A C/,X1

Yo

By homotopy lifting, we have a lift /: /2 - X with H4(0,0) = %o. Let a;(t) = H(t, i) and Bi(t) = H(i, t).
By uniqueness of path lifting.



a =W

Bo = Cis A WBi=as

a = Yo

That is, P9 ~o P17 via H. O

Corollary 2.11. p, : m (X, %) - m (X, x0) is injective.

Proof.

p«[vo]l =p«[vi] = povo~epowi
= PpoYo~e POVI

= Yo ~e V1

2.2  Universal covers

Definition 2.12 (universal cover)

A covering p: X — X is called a universal cover of X if X is simply connected.

Suppose p: (X, %) = (X, x0) is a covering map, then we have a map g, Q(X, x0) = p~'(x0), given by

ep(v) =¥(1)
where ¥ is the lift of y at %. Furthermore, if vy ~o y1, then €,(v0) = €,(v1), so we have a map ¢, :
(X, x0) = p~ (x0).

Proposition 2.13. If p: (X, %) = (X, xo) is a universal cover, then g, (X, x) = p~'(x) is a bijection.

Proof. Suppose €,[vo] = €p[v1] = X1. Then o, 1 € Q()A(,)A(o,)h), and as X is simply connected, 5 ~o P1. So
Yo=poPo~epopr =y Thatis, [wo] =[vi]. So g, is injective.

Now given & € p~'(xo), as X is path connected, there exists a path € Q(X, %0, &). p(R) = xo, s0 f y = pon,
then y € Q(X, xo). Then n =y by uniqueness of lifts. So €,[y] = &. That is, &, is surjective. O

Theorem 2.14. m(S',1) =Z

Proof p:R — S', p(t) = e”™ is a universal cover. Then p~'(1) = Z, so €, : m(S',1) = Z is a bijection.
Suffices to show this is a homomorphism. Given n € Z, define ¢, : R - R by x = x+n. Then po ¢, = p, so if
y e Q(S" 1), ¥ lift of y to R, with #(0) =0. Then

po(dnof)=pop=y
so ¢poy is the lift of y with ¢,09(0) = n. Suppose €,[v] = n and €,[y'] = n’, then (1) = nand p'(1) = n".
So ¢, 0y is a lift of y'(1) starting at n. So yy’ = §(é, o §'). Thus,

CP([Y][V’]) :W(1) = d)n o f/,(’l) =n+ ﬂ,
So &, is a homomorphism. 0
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Proposition 2.15. Suppose z€ S, u,v e Q(S', z,1). Then uyg = vi.

1

Proof. Consider the composition v;' o us = (v' o u)%. Then

(vew)slv] = vu yuv ] = nlVI[n) " = [v]

where n=vu™" and as m(S', 1) = Z abelian. So vi = us. O

Definition 2.16 (degree)
The degree of a map f: S — S', is defined to be deg(f) = ux o £, (1) € Z.

Proposition 2.17.

(i) deg(zw~ 2") =n,

(it) g~ g’ if and only if deg(g) = deg(g").
(iii) g extends to D? if and only if deg(g) = 0.

Definition 2.18 (wedge product)
Suppose (X;, x;); pointed spaces, then the wedge product is

- x) = I—liXL
VD=2

2.3 Covering transformations

Definition 2.19 (locally path connected)

A space X is locally path connected if for every U € X open, x € U, there exists an open V < U such that
V' is path connected and x € V.

Proposition 2.20 (simply connected lifting). Suppose Z is simply connected and locally path connected.
Given f:(Z,20) = (X, x0), f has a unique lift to f: (Z,z0) = (X, %).

Proof. Suppose F:(Z, 20) - (X, %) is a lift of f. Given z € Z, choose veQ(Z,2,2), as Z is path connected.
Then oy is a lift of foy, smcepo(foy)_(pof)oy foy, and Foy(0)=TF(z0) =%, s0foy="Toy,as
path lifting is unique. So f(z) = f(y(1)) = foy(1) = Fo y(1), so  is unique.

Now if yo, y1 € Q(Z, 20, 2), then yy ~0 y1 as Z is simply connected. So foyy ~. goyy, iLe. 17‘07)(1) = m(ﬂ
So we can define 7(z) = Fo yo(1), where y € Q(Z, 2, z) arbitrary. Then

p((2)) =pofey(1)=foy(1)=1(2)

So fis alift. If z= 29, choosing y = ¢/, we find that foy = ¢/, and m = Crg,, Le IA’(ZO) = %o. Finally,
we need to show that f is continuous. Given U ¢ X open neighbourhood of ?(Z) we want to find V' open
neighbourhood of z such that (V) ¢ U.

Step 1: Find U’ c U, f(z) € U such that p(U’) is open and evenlg covered. Since p is a covering
map, there exists W ¢ X open, f(z) € W which is evenly covered. So p~ (W) = Lo Xo, and p(F(2)) = f(2),
so 1(z) € W, for some ap. Then W,, ¢ X open, and let U’ = Un W,,. Then f(z) € U'. Furthermore, as
plw,, : We, = W is a homeomorphism. So p(U’) is open and evenly covered.

"



Step 2: f:Z — X is continuous, so we can find V' € Z open such that z € V" with f(V') c p(U"). As Z is
locally path connected, there exists C ¢ V’ open, z € V such that V is path connected.

Step 3: We show ?(\/) c U. Given 7z’ € V, choose y' € Q(V,z,7"), then im(foy") c f(V) c p(U') is
evenly covered. So ' =p~'ofo y are lifts of y" with y (0) p ' (f(2)) = 1(2). Then yy' € Q(Z, z,7') and

folyy)=(fop)¥. So F(Z') = fo(yy)(1) =¥ (1) =p ' (F(Y'(1))) e U". O

Definition 2.21 (covering transformation)

Suppose p; : X; > X are covering maps, a covering transformation p : (p1,Xi) = (p2, X>) is a map
p: X1 = X5 such that

 —L2 5 %

N A

commutes. Equivalently, p is a lift of py to %.

Lemma 2.22. If X is locally path connected, p : (p1, X1) = (p2.X>) is a covering transformation, then
p: X=X is a covering map. That is, we have a tower of covering maps

A

Xi

hs}

P X2

~N

Proof. Given X; € )A(z, we want to find an evenly covered neighbourhood U of %,. Let x = p»(%), and as p1, p2
are covering maps, we have V4, V, evenly covered neighbourhoods of x by p1, p2 respectively. Then V = VinV,
is an open evenly covered neighbourhood for p1 and p>. As X is locally path connected, we can assume without
loss of generality that V' is a path connected open neighbourhood of x which is evenly covered by p; and p>.
Then

T(V)=1JA: and p3'(V) :Iglvs

a
where each A,  V = Vj are path connected. Fix a, and let x, = p1|;‘:(x)A Then p2(p1(xq)) = p1(xa) = x,
s0 p(xq) = xg for some B, where xg = p2|§; (x). Va, Vi are path connected, so p(V,) € Vg since the image of a

path connected space is path connected and each Vj is a path component of p5'(V).
Then pla, : Aq = Bpg satisfies ps|g, o p|a, = pila,. That s, p|a, = pz|§23 o p1]a, is @ homeomorphism. So

pBe)= I A

a st p(xa)=xg

and pla, : Ax = Bg is a homeomorphism. So the {Vj} are evenly covered, i.e. p is a covering map. O

Lemma 2.23. If p: ¥ >Yisa bijective covering map, then p is a homeomorphism.

12



Proof Letp™':Y - ¥ be the inverse of p. Since Y has an open cover {U,} so that U, is evenly covered. But
p is a bijection, then p‘1|Uy Uy = p‘W(UU) is a homeomorphism. SO p~' is continuous. O

Definition 2.24 (covering isomorphism)

p:(p1,X1) = (p2, %) is a covering isomorphism if p is a covering transformation and p is a homeomor-
phism.

A

From now on, suppose X is locally path connected, g : (X, %) — (X, x) is a universal cover, p : (X, %) —
(X, x0) is a covering map.

Proposition 2.25. There exists a unique covering transformation § making the following diagram commute.

(X, %0)
: p
(X, %) — (X.,x0)

Proof X is locally path connected as X is locally path connected, and X is simply connected, so existence and
uniqueness is just simply connected lifting. O

Corollary 2.26. If X is also a universal cover, then § is a covering isomorphism.

A

Proof X is simply connected, so § : X — X is a universal cover. This means that there is a bijection
g '(%) « m(X,%) =1, 50 § is a bijection. O

Definition 2.27 (deck group)
The deck group is

Cp(p) = {covering automorphisms g : (p, X) - (p)A()}
which is a group under composition, and it acts on X by the left, so g - & = g(&).

Theorem 2.28. Gp(q) ~ 11 (X, x0)

Proof First of all, we show that there is a bijection Gp(q) - g~ "(x0), given by g = g(%). Injectivity follows
from uniqueness, and surjectivity follows from existence in the proposition, i.e.

(X, g(%))
J q
(5(,)?0) ﬁ (X,Xo)

So we have bijections &4 : 74(X, x0) = g~ '(x0) and Gp(g) = g~ ' (xo). Composing these bijections, we get

VIY'] = eo([vy']) = v/ (1) = ¥(gyiy o V)

13



where gj(1) is the unique element of Gp(q) sending %o = y(1), since gy(1y o ¥’ is a lift of )’ starting at
y(1). So we have that

W (1) = (g5c1y 0 V)(1) = gyey (7' (1) = 951y (951 (R0))
So we have that the composition is [y][¥'] = gy(1) © gy(1), which is a homomorphism. O

2.4 Galois correspondence

Proposition 2.29 (towers of covering maps). Let G = Gp(q) = 711(X,x), H < G is a subgroup. Then we
have a tower of covering maps

X > Xy

TTH

>

PH

where

Xy = H\X =

h-x~x
is the orbit space, y is the quotient map, and py : Xy — X is the projection map py(H - x) = q(x).
In particular, if H = G, then pg is a bijective covering map, ie. X ~ G\X.

Proof First we show that py is well defined. Given & € X, g(h(%)) = q(%), so the output is independent of the
choice of X.
Now given x € X, choose a neighbourhood U of x which is evenly covered by g. Then

¢ (U)=Va= LI gV

9¢Gp(q)
where Xy € V. Furthermore,

pi (U) = (75 (pi (U))) = (g™ (U)) = L] 7(g- V)
HgeH\G

where we used the fact that 7y is surjective. To justify the fact that this is a disjoint union, we need to show
that if 1y (g-V)nmy(k-V) # @, then in fact g = hk for some h € H. To see this, suppose t € y(g-V)nmy(k-V).
Then there exists x, y € V such that [g-x] =t = [k-y], that is, g-x = h-k-y for some he H. Now z=g-x e g-V
and z=h-k-y € hk-V, so as we have a disjoint union, we must have that g = hk. Thus, U is an evenly covered
neighbourhood of x by py.

Finally, the preimage of each w;(g- V) is given by

o (ﬂH(g-V))=h% hg-V
gerg

so sy is also a covering map.
In the case where H = G, we can see that Gg = G, so there is only one preimage for every point. Thus pg
is a bijection. O

Suppose q: (X, %) = (X, x) is a universal cover, and suppose X is locally path connected. So X is path
connected and locally path connected. Define

° S(X,Xo) = {HS T (X,Xo)}
[ )

C(X,x) = {(p,X,)?o) | p: (X, %)= (X,x) covering map, X path connected}/ ~
where (p, X, %) ~ (p’, X', %) if there is a covering isomorphism between them. Define

e a:5(X,x)—~C(X,x) by
a(H) = (pr, Xpg, 1(X0) = xo0.1)

e B:C(X,x0) > S(X,x) by . .
B(p. X, %0) = p« (11(X, %))
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Theorem 2.30. o and B are inverse bijections.

Proof. B(a(H)) = pr«(m1(Xi, x0.14)), and we have isomorphisms

H ————— 11 (Xu, xo.1) [U]—N]> prx (11 (X, xo.H))

ye[mroy] ~[pron
where 7:/— X is the lift of y at (0) = %. These compose to give

[vl~ [promyoy]=[gov]=[vy]

So B(a(H)) = H. Conversely, a(B(p,X,%0)) = (pr, Xy, xo.1) where H = p,(m1(X, %)). Consider the
following diagram

(X, %) —F (X.x0)

As X is simply connected and locally path connected, we have a lift § of g. We want to show that there
exists p’ such that the diagram commutes. To see this, given h € H, h = [p o y] for some y e Q(X, %). Then
g(%) =gon(1) where ne Q(X, %, %). Let 6 € Q(X, X, h-%) and v = 5(hon), we get that gov = (qod)(gohon).
But he H< Gp(q), so goh =gq. Furthermore, go 0 ~, poy.

To see this, consider the lift 5oy : /- X at X5. By the definition of the isomorphism Gp(q) < (X, x0) 2
H > h, we have that poy(1) = h-%. So poy e Q(X %, h-%). As X is simply connected, oy ~o 0, S0
God~epoy. o

With all of this, we gat that go v ~, (poy)(gon), so in particular, Go v ~, y(qgo 0). Therefore,

q(h-x) =gqov(1) =gqon(1) = 4(x)
So @ factors as in the diagram. In this case, X is connected, so p! is surjective. Suffices to show p’ is injective.
Suppose §(%) = §(§) = &, then let y e Q(X, %, §). Then oy e Q(X, %) and [goy] =[po(Goy)] e H< GD(q
sends X to @, so st (%) = 7t5(§). Thus, p’ is a covering isomorphism, and a o B = id. O

Corollary 2.31.
[71(X. x0) = H] = [p™" ()|

Definition 2.32 (normal covering)

p: X = X is a normal cover if Gp(p) acts transitively on p~' (xo).

Proposition 2.33. The universal cover is always a normal cover.

Proposition 2.34. Conjugation corresponds to a change in base point. That is, gHg™' corresponds to
(pH, Xy, 9(1)), where g = [y] and ¥ is a lift of y in Xy starting at xg 4.

"There is a mild abuse of notation here, since what we have here is px (s (X, %)), but this is isomorphic to H.
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Corollary 2.35. H <4 G is a normal subgroup if and only if pyy: Xy — X is a normal covering. If so, then

G

Go(pn) = o

Proof If H is normal, then gHg™" = H, and so (pw, Xi, x0.1) and (pr, Xy, #(1)) are isomorphic. That is, we
have an element ¢ of Gp(py) such that ¢(xo ) = P(1). The converse holds by applying the inverse bijection
and the transitive action.

Now define a homomorphism ¢ : G - Gp(py) by sending [y] to the element t € Gp(py), defined by
(xo.) = (1), where ¥ is the lift of y by py starting at xoy. This defines a group homomorphism, which is
surjective (as covering transformations which agree at one point are the same). Moreoever, ker(¢) = H. The
result follows by the isomorphism theorem. O

3 Seifart van Kampen
3.1 Free groups

Definition 3.1 (free group)

A free group on a generating set S is a group Fs and a subset S € Fs such that whenever G is a group,
¢:S — G is a function, there exists a unique homomorphism & : Fs — G with ®|s = ¢.

Lemma 3.2. If Fs, F7 are free groups, ¢: S — T is a bijection, then ®: Fs — F7 is an isomorphism.

Proof Let ) = ¢!, then as Fr is free, there exists a homomorphism W : Fr — Fs, such that W o ®(s) = s for
all se S, so by uniqueness W o ® =idg,. Similarly, oW =idf,. O

Corollary 3.3. If Fs, F¢ are free groups on S, then Fs = F¢, so the isomorphism class onyl depends on

S|

Notation 3.4. Write F, = F¢q,, a3

Definition 3.5 (normal closure)

Define the normal closure of S ¢ G by

(Sh =Nrac st sen H
ie. it is the smallest normal subgroup of G containing S.

Definition 3.6 (presentation)
Given a set S, R ¢ Fg, define the presentation

s

SR = TRy

Proposition 3.7. Any group G can be written as a presentation.

Proof Let S=G, R=ker(¢: Fg - G). O
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Proposition 3.8. Given (S| R), w € Fs, then

(S|R);(SU{0(}|RU{O(W_1})

Proof We have natural homomorphisms ¢ : (S| R) - (Su{a} |RuU {aw‘w}) induced by S = Su{a}, and
Y induced byid: S-S and a - w. O
Similarly,
(i) If we R, we can replace w — sws™' for some se€ S.

(ii) If wy, wy € R, we can replace wy - wyw,, and keep w; as is.

3.2 Amalgamated free products

Suppose we have (1 : H — Gy and i : H - Gy homomorphisms.
Definition 3.9
A group G is an amalgamated free product of Gy and G, along H if

(i) There are homomorphisms ¢; : G; - G such that

H—" 5 G

2 l¢w

GZT>G
2

commutes, and

(i) if ji: G; > G are homomorphisms, then there exists a unique ¢ : G - G’ such that

commutes.
Proposition 3.10 (uniqueness of amalgamated free products). If G and G’ are both amalgamated free

products of Gy and G, along H, then G = G'.

Proof. We defined G via a universal property, so we have homomorphisms o : G — G’ and B: G' - G.
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Applying uniqueness in (ii) to the purple diagram, we get that Bo a = idg. Swapping G and G’ we get that
ao B =idg. Thus, a and B are inverses of each other, and G = G'. O

Proposition 3.11 (exisrence of amalgamated free products).

Proof. Choose presentations G; = (S; | R;} and H = (T | W). Then define

=(STUSUT|RIUR U{ty(t) | teT, j=1,2})
and ¢;: G; > G byseS;—»seS;. Now given j;: G; - G, define W: G- G by

5651 |—>j1(5)
seSy— jp(s)
teT = jjou(t)=jon(t)

3.3 Seifart van Kampen

Theorem 3.12. Suppose Uy, U; € X open, X = Uy u Uy, where Uy, Uy, Uy n U; are path connected, and
xo € Uyn Uy Let jj: U; > X be the inclusion maps, and ji, : 711 (U;, x0) = m11(X, x0) be the induced map
on fundamental groups. Then 71(X, xo) is generated by im(ji.) Uim(j).

Proof If y € Q(X, x), then y™'(U), y™1(Us) is an open cover of /. By the Lebesgue covering lemma, we can
find N € N such that for each j, [j/N,(j +1)/N] < y~'(U;) for some i. Label [j/N,(j+1)/N] as 1 or 2
accordingly (if it is in both, wlog choose 1).

Let 0=ty < t; <--- < tr =1 be the points j/N where the label changes, /; = [ti_1, t;] and y; = y|;. Then
each y(t;) e Uy nU; and (1) € U; modz]%and Y = Vi Vi

Choose nq, .. ., Nk—1, where each n; € Q(UynUs, y(t;), x0), which we can as Uy nU; is path connected. Then

-1 -1 -1
Y ~e Y T Yell2** Ni—2Vk=11k=1 Nk-1 Yk
—— —— N——— — —

01 0, Ok—1 Ok

Each 0; € QUi mod 2, %0), 50 [0;] € im(j(i mod 2)+)- Then [y] = [01]...[0k] is a product of elements in
lm(j”) U‘lm(jz*). O

Theorem 3.13 (Seifart van Kampen). Suppose X = Uy u U, U; € X open, Uy, Uy, Uy n U, are all path
connected, xg € Uy n U,. We have a diagram of inclusions

2We can assume without loss of generality that (/) € U.
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(U1 ﬂUz,Xo) ‘l—1> (U1,X0)

T

(Us,x0) ——2——5 (X, %)

which induces (by functoriality)

(U n s, xp) LN 7T1(U1:X0)

‘Z*J: ‘//1*

m (a2, x0) — m (X, x0)

and we have that 71 (X, x0) = Gy *y Gy, where G; = 11 (U;, x0) and H = 11 (Uy n Us, x0).

Proof Non-examinable, so omitted.

4 Simplicial complexes

41 Definitions

Definition 4.1 (n-simplex)

The n-simplex is

A”:{(Xo ,,,,, )(,,)E]R”M |X[20,in:1}

with the subspace topology from R™*".

Definition 4.2 (face)
For /c{0,..., n}, the /-th face of A" is

er={xeA" | x;=0fori¢l}
Let F(A")={e/|1<c{O0,..., n}} be the set of all faces of A"

Notation 4.3. If / = {io, ..., ix} with ig < i1 < -+ < ix, we write

€iy...iy = €1

Proposition 4.4.
(i) e/ cA" is closed, e; ~ Al
(i) ejc ey if and only if / ¢ J,

('lll) e ney=emn.
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Definition 4.5 (affine linear map)

A map |f|: A" - R™ is affine linear if it is the restriction of a linear map R"*" - R™. Equivalently,

" (z) - e

L

Definition 4.6 (simplicial map)

A map |f| : A" - A" is simplicial if it takes vertices of A” to vertices of A", ie. a map 7 : {0, ..., n}y -
{0,..., m} with |f|(e;) = ej,y. That is, [f[(er) = e)).

Definition 4.7 (affine linearly independent)
Vo, ..., v, € RN are affine linearly independent if whenever 3, t;v; =0 and Y t; =0, then t; =0 for all i.

Proposition 4.8. The following are equivalent.

0 vo,..., v, are affine linearly independent,
(i) whenever 3, tiv; = 3, tlv;, with Y. t; = 3, t/, then t; = ¢/ for all i,
(iit) the vectors vi — v, ..., v, — v are linearly independent,

(iv) the map |f|: A" - RN given by |f|(e;) = v; is injective.

Definition 4.9 (Euclidean simplex)
Ifvo, ..., v, are affine linearly independent, write [vy, . . ., vl =im(|f]) = {Z;xvi | Xixi =1, x> 0} for the

Euclidean simplex with vertices v, ..., V.
Proposition 4.10. |[f|: A" > [v, .. ., v,] is a homeomorphism.

Proof. By the topological inverse function theorem, as A" is compact and [v, .. ., v, ] ts Hausdorff. O

Lemma 4.11. For X cR”, let

Z(X):{XEX|fo:Ztixi,ti>O,Zti:1,xleXthen x; = x for some i}
i i

be the set of points in X which is not contained in the interior of any simplex contained in X. Then
Z([w, .., vo]) ={w. ..., Vp}.

Proof. ¢ is clear from the definition of a simplex, so we show that vy € Z([w, ..., vp]). Suppose v = ¥ tix;,
t;>0and X;t;=1. Then

n
Xi =Sy
j=0

as x; €[w,..., vp]. So v = 2 2i SV Since the v; are affine linearly independent, and Y Xitisiy=1, we
must have that 3, tis;; = 0 for j1 = 0. But ¢, >0 and s;; > 0, so the only case is when s;; = 0 for j # k. So x; = v,
for all j. O
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Corollary 4.12. [w, ..., Vol = [vgo-- -, v,] if and only if {w, ..., Vot ={vg. ..., v, }.

Proof. <= s obvious. == follows from applying Z to both sides..

Definition 4.13
Let S(R") be the set of Euclidean simplices o € R”.

4.2 Simplicial complexes

4.21 Abstract simplicial complexes

Definition 4.14 (abstract simplicial complex)
An abstract simplicial complex in A” is a subset K ¢ F(A") such that if e, e K and /€ J, e, € K.

Definition 4.15 (polyhedron)

If K is an abstract simplicial complex, its polyhedron is |[K| = Ugex €/ € A"

Definition 4.16 (skeleton, vertex set)

For =1 < r < n, the r-skeleton of an abstract simplicial complex K is

K.={ejeK||[|<r+1}
The vertex set of K is V(K) =|Kp|.

Definition 4.17 (dimension)
The dimension of an abstract simplicial complex is

dim(K) = max{dim(e;) = |/|-1] e, e K}

Definition 4.18 (simplicial map)

If K, L are abstract simplicial complexes in A", A™ respectively, a simplicial map f : K — L is a map

f: K — L such that there exists a simplicial map |f|: A" = A" such that f(e;) = |f|(e/) for all e, € K.

Equivalently, there is a map 7 : {0,..., n} —->{0,..., m} such that f(e/) = ey for all e/ € K, and

e; € K implies that f(e;) € L.

Definition 4.19 (simplicial isomorphism)

A simplicial map f: K — L is a simplicial isomorphism if it is a bijection.

4.2.2 Euclidean simplicial complexes

Definition 4.20 (Euclidean simplicial complex)
K cS(R") is a Euclidean simplicial complex if
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(i) K is finite,
(ii) If 0 e K and T € F(0), then T € K, where

is the set of faces of [w, ..., Vnl,

(i) If o9, 00 € K, then oy nau € F(01) N F(02). In particular, oy noy € K.

We define the polyhedron and r-skeleton as for abstract simplicial complexes.

Proposition 4.21. Suppose |¢|: A" - R" is affine linear, K is an ASC in A" and ||| x| is injective. Then
L=¢(K)={|¢|(es) | e e/} is an ESC.
In this case, we say that [ = ¢(K) is a realisation of K.

Proof. Property (i) folloes form the fact that since F(A") is finite, K must be finite, so L is finite. For (ii), if
o€ d(K), og=|¢|(e) where e, € K, and so if T is a fact of g, then 7 =|¢|(e;) for some Jc /. As K is an ASC,
e;eK. Sotep(K)=L

Finally, for (ii), suppose ¢ = |¢|(e/) and T = |p|(e)). Then o n 1 = |¢|(e;) nl|d|(e)) = |p|(e;ney) by
injectivity. But ejny = e;ne; € K as K is down-directed, and so 0 n 7 =|d|(ejny) € F(0) n F (7). O

Proposition 4.22. If L cR" is an ESC, then L = ¢(K) for some ASC K, and |¢|: K — L is a homeomor-
phism. That is, every ESC is the realisation of an ASC, and any two such K are isomorphic.

Proof Let V(L) = |Lo| = {w, ..., vp}. Define K = {e; € A" | [y, .-, v, ] € L}, and define |¢] : A" - R” by
[pl(ei) = vi.

We want to show that ||| is injective. If 0 = [v;, ..., vi.] € K, then v, ..., v, are affine linearly
independent, so |||, is injective.

Now suppose |9|(p) =|¢|(g) = x € R”, where pee;e L and g € ej € L. Then x € |p|(e;) n|¢|(es), which is
the intersection of simplices in L, so x € |¢|(ey) for some I € InJ. Since ||, and |@||e, are injective, we must
have that p, g € ey. But |9, is also injective, so p = gq. O

Definition 4.23

Suppose L1, L, are ESCs. Then f: [y — L; is a simplicial map if there are realisations ¢; : K; = L; and a
simplicial map F : Ky — K5 such that

K ;)Kz

commutes.

4.3 Barycentric subdivision

Definition 4.24 (boundary and interior)

Let 0 be an n-dimensional Euclidean simplex, F (o) be the set of faces of &, which is an Euclidean
simplicial complex with |F(a)| = . Define do = F(0),-1 = F(0) ~ 0, which is a Euclidean simplicial
complex. Then we can define
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do=|do| and 0°=0~do

4.3.1 Cones

Definition 4.25 (independent)

Let X cR” and p € R". We say that p is independent of X if for each x € X, the ray px from p to x has
pxn X ={x}.

Definition 4.26 (cone)
If p is independent of X, define the cone

C(X)={tp+(1—-t)x|te[0,1],x e X}

Proposition 4.27. If X = [w,..., v,], then p is independent to X if and only if v, ..., vy, p are affine

Definition 4.28 (cone of an ESC)
If K is an ESC in R”, and p is independent of |K], then define the cone of K,

Lemma 4.29. If p is independent of |K], then G,(K) is an ESC, and |C,(K)| = G, (|K]).

Definition 4.30 (barycentre)

Ifo=[w,..., v,] is a simplex, define its barycentre to be
’I n

D = Vi
n+14

Lemma 4.31. b, is independent of dg, and Cp,(d0) = 0.

Theorem 4.32 (barycentric subdivision). There exists maps B: S(R") = {ESCs in R"} and B: {ESCs in R"} -
{ESCs in R"} such that |B(¢)| = ¢ and |B(K)| = |K].

Proof. We will define B, B for simplices/ESCs of dimension < n inductively. More precisely, we have:

Proposition 4.33 (pi(n)). If o € S(RV) is an n -simplex, then B(0) is an ESC of dimension n, with
polyhedron |B(o)| = 0. Moreover, if T is a face of g, 0’ € B(0), then ¢’ n 7€ B(7).
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Proposition 4.34 (p2(n)). If K is an n-dimensional ESC, then B(K) is an n-dimensional ESC, with
polyhedron |B(K)| = |K].

Base case: p1(=1) and p,(=1). In this case, 0 =@, so B(0) =@, K = {@}, so B(K) =K.
Inductive case (i): p2(n—1) == pi1(n). Define

B(0) = Cg,(B(d0))

As do is an ESC of dimension n -1, B(do) is an ESC of dimension n -1 as well, by p2(n - 1), and
|B(00)| = |do| = do. Since by is independent of do = |B(da)|, we have that Gy, is an ESC with polyhedron
|Gy, |(B(da)) = Cp,(00) = 0. The statement about faces follows from:

Lemma 4.35. If 0 € C,(K), then 0 n |K| e K.

Inductive case (ii): p1(n) = p2(n). Define
B(K) = UKB(U)

Then we need to check that this is an ESC. (i) Finiteness is obvious. (ii) If o € B(K), then o € B(d") for
some ¢’ € K, so if T is a face of g, then 7€ B(d”") since B(d’) is an ESC. So 1€ B(K).

Finally for (iil), suppose o1, 02 € B(K), where ¢; € B(0/), g/ € K. Then gn02 € 01 n o) since |B(d])| = d/.
Let t=0{no)e K. Then oynt,0onteB(1) by pi(n), and as B(7) is an ESC, orn v =ynovnt =
(nnt)n(oan1)ep(1) as B(t) is an ESC. But B(1) € B(K), so g1 nay € B(K).

ThereforeB(K) is an ESC with |B(K)| = Usex |B(0)] = Ugek 0 = |K]. O

4.4 Simplicial approximation
4.41 Mesh

Lemma 4.36. If 0 € S(R"), x, w € g, then |w — x| < maX,ev(q) v = w|.

Proof Write x = Y. x;v;, w = Y x;w, then

[w-x| = ||le-(v(— W)H < ZX,'HV[ -wl < Zx[ max [vi—w]| = max [vi — w|

So |x-w| < maXxy eV (o) [v—v'|.

Definition 4.37 (mesh)
The mesh of a simplex o is
— — o = —
p(o) = S Iv=vl= maxx-w|

The mesh of an ESC is

H(K) =maxu(o)

Lemma 4.38. If b, is the barycentre of o =[vw, ..., v, ], then

n
— < -
max by — x| < ——— (o)

24



Proof As ||by — x| < max,ey(qy |bo = v|, suffices to prove the result for a vertex v € V(). Now

[bo = vill =

Z Vi —nv;

i+]

<

1
>y vl < (o)

1
n+1 n+1 & n

Corollary 4.39. Let o be an Euclidean simplex, dim(a) = n. Then p(B(0)) < -5 u(0). If K is an ESC
with dim(K) = n, then p(B(K)) < = u(K).

n+

Proof Let T € B(0). Suppose T € B(do). Then (1) < =1 u(B(do)) < -2 (o) by induction on n. Otherwise,
T=1[w...., vk, bs], where [w, ..., vi] € B(do), then |vi - v|| < Z=1p(o) by induction on n and |v; - by <

(o) by the lemma. As % < 45, we are done. O

4.4.2 Simplicial approximation

Lemma 4.40.
(1) if x € A", then there is a unique /¢ {0, ..., n} such that x € e,
(it) U x e e}, then xe ey if and only if e, S e; if and only if / € J.

(i) if K isan ASCin A", x e ef and x € |K|, then e, € K.

Proof. For (i), take /= {i| x; > 0}. Then (ii) follows from (i). For (iii), as x € |[K], x € e, for some e, € K. By (ii),
e; ey Since K is an ESC, e; e K. O

Corollary 4.41. Suppose K is an ESC, if x € |[K], then there is a unique o € K with x € ¢°.

Proof. Let ¢: L — K be a realisation of K, where [ is an ASC. Let x” = |<1>|_1 (x) € |K|. Then by (i) of the lemma,
there exists a unique / such that x € ef, so e, € L by (iii). So ¢(e;) = 0 os the unique 0 € K with xe g°. [

Definition 4.42 (star)
If K is an ESC, v e V(K), then the star of K at v is

Ste(v)= U o°

oeK st veo

Lemma 4.43.
(1) If x €|K], x € 0% then x € Stg(v) <= ve V(o).

(1)
Ste(W =K~ U e°=KI~n U o

oeK st v¢V(0) oeK st v¢V (o)

(ii) {Stx(v)|ve V(K)} is an open cover of |K|.

Proof. (i) follows form the fact that if x € |K|, then x € ¢° for a unique ¢ € K. (ii) the first equality follows form
(1), the second follows from the fact that if T € F(a), v ¢ V(o) then v ¢ V(7). (iii) from (ii), we have that Stx(v)
is the complement of a finite union of closed sets, so Stg(v) is open. If x € |K|, then x € ¢° for some o € K. If
ve V(o) then x € St (v). O
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Definition 4.44 (simplicial approximation)

Suppose K, L are ESCs, f : |K| = |L| continuous, § : V(K) = V(L) is called a simplicial approximation
to f if for all v e V(K),

f(Str(v)) € St(g(v))

Theorem 4.45. Let ¢ : K/ - K be a realisation of K, and define g’ : |[K'| > R", where L CR" to be the

affine linear map given by |g’|(v) = §(¢(v)) for all v e V(K). Let |g| = |g'| o |<Z>|_1. Then |g| defines a
simplicial map g: K —> L and |g| ~ f.

Proof. Let 0 € K, we want to show |g|(0) € L. Let x € ¢° be an arbitrary point in the interior. Then f(x) € [L],
so f(x) € T° with Te L. So x € Nyey (o) Stc(v), so

f(x)e N f(Stk())e ) St(g(v)
veV (o) veV (o)

as § is a simplicial approximation to f. Now if v e V(0g), f(x) € ° and f(x) € St;(g(v)), so g(v) € T by
part (i) of the lemma. So every vertex of |g|(c) is a vertex of 7, and so |g|(¢) is a face of T € L, so |g|(0) € L
as required. So g : K = L is simplicial.

For the homotopy, define H : |[K| x [ - R" by H(x, t) = t|g|(x) + (1= t)f(x). This is a homotopy in R”, so
we need to show that it is a homotopy in |L].

Suppose x € ¢° and f(x) € T° as before. Then x = ¥, ¢y (o) xivi, 50 |g](x) = Xy.ev (o) Xilgl(vi) € T since
lg|(v;) € T for all i. Since T is convex and |g|(x),f(x) € T, we must have that H(x,t) € 7 for t € [0,1]. So
H :|K| x | - |L|, which is the required homotopy. O

Theorem 4.46 (simplicial approximation). Let K, L be Euclidean simplicial complexes, f : |K| = |L| be a
continuous map. Then there exists r >0 and a simplicial map g : B"(K) — L such that |g| ~ f.

Proof We have an open cover {St;(v) |v e V(L)} of |L|. f:|K|—|L]|is continuous, so {f‘1(StL(v)) |ve \/(L)}
is an open cover of |[K|. |K]| is a compact metric space, so we can apply the Lebesgue covering lemma to find
0 >0 and a function |K| - V(L) sending each x € |K| to a vertex v, € V(L) such that Bs(x) € f~'(St;(v)).
Let r be such that y(B"(K)) < 0, and let K" = B"(K). If 0 e K" and x € V/(0), then ¢ € Bs(x) as u(K") < 0.
If xinV(K"), Then

StKI(X): U 0° ¢ U UEBg(X)

o st xeV(0) o st xeV(0)ocBs(x)

Hence f(Stx(x)) € f(Bs(x)) € St (v), so the function 7 : V(K") = V(L) given by §(x) = v, is a simplicial
approximation of f. So by the previous theorem, § determines a simplicial map g : K' - L with |g| ~ 1. O
5 Simplicial homology

5.1 Chain complexes

Definition 5.1 (chain complex)

A (finitely generated) chain complex (G, d) is

(1) (finitely generated) free ablelian groups (G)iez (where finitely many C; are nonzero),
(it) group homomorphisms d;: G; - Ci_1,

(i) such that d?=0, e diody =0 forall i.
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Notation 5.2. We write G =@; C; and d: C. — G given by d = @, d.

Definition 5.3 (reduced chain complex of simplex)
The reduced chain complex of A” is
G(a") = (e | Il =i+1)
with differential
k .
de/ = Z:(—;])/@/7
j=0

where if [ =ig... i, with ip <ij <--- < ik, then /7 = I~ Ay}

Proposition 5.4. d’ =0 in C,(A").

Proof The e; are a basiss for C,(A"), so suffices to show that d’(e;) = 0. But

dz(e/) = Z C/'ke//,;
j<k

where Iz =/~ {i;, ik} and

e = (<1 (D) + (<D (1) =0

which corresponds to removing j then k, and removing k then j respectively. O

Definition 5.5 (chain complex of a simplex)

The chain complex of A" is

C(A™) ifi#-1

C(A") =
(&) {o ifi = ~1

and differential as in the reduced case, except dg = 0.
Proposition 5.6. d” =0 in G(A").

Definition 5.7 (reduced chain complex of an abstract simplicial complex)

If K is an ASC in A", then we get a new chain complex with
C(K)=(e/| e/ e K, |l|=i+1) < CG(A")

Since K is an ASC, de; € K for any e, € K, so we get d: G;(K) = G_1(K).

We can define the chain complex of an ASC in the same way. Note both of these are chain complexes as
they are subcomplexes of the chain complexes of A”, and so we must have that d” = 0.

Definition 5.8 (cycle, closed, boundary, exact)

Given a chain complex (Cy, d), we say x is a cycle, or x is closed if dx =0. We say x is a boundary, or
x s exact if x = dy for some y.
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We write Zx(C,) = ker(dy) for the subgroup of cycles, and By (C.) = im(dx4+1) for the subgroup of
boundaries.

Remark 5.9. All boundaries are cycles as d” = 0.

Definition 5.10 (homology group of a chain complex)
Let (Cs, d) be a chain complex, then its k-th homology group is

Z(Cy)

Hk(Cx—) = Bk(C*)

Definition 5.11 ((reduced) homology group of a simplicial complex)
If K'isan ASC in A", define the i-th reduced homology group of K to be

Fi(K) = Hi(C.(K))
and the i-th homology group of K is

H(K) = H(C«(K))

5.2 Chain maps and chain homotopies
5.3 Chain maps
Definition 5.12 (chain map)
Suppose (Cy,d) and (C., d") are chain complexes. A chain map f: C, - C. is
(1) For each i, a group homomorphism f; : C; - C/,

(it) such that the following diagram commutes.

d;
G — G

I 4

i

Equivalently, if f =&, f;, then fd = d'f.

Proposition 5.13 (functoriality). Homology is functorial, that is, given a chain map f : C, - C., we have
an induced map f, : Hi(C.) = Hi(CL), given by f.[x] = [fx].

Proof. The only thing we need to check is that f, is well defined. But f(ker(d)) c ker(d") and f(im(d)) <
im(d"). So f, is well defined. O

5.3.1 Chain maps from simplicial maps

So far, we have simplices e, where | = iy... i with ip < --- < ip. We will now drop the assumption that
g < -+ < k.

Note: The definitions in this section are different to the ones in the notes, which involve crossings of
links and so on. This should be simpler and equivalent.
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Definition 5.14 (orientation)

Let /= (ip, ..., ir)€{0,..., n YT with g, .., i distinct. Then we define the orientation of / to be
S(1) = &(f)
where f € S, is the permutation sending (i, ..., ix) to (ig, ..., i), where ig, ..., i are ig,..., i, in

increasing order.

Definition 5.15 (oriented simplex)

Let /= (ip, ..., ix) be as above, and /" = ijy... . Then we define the oriented simplex

e = 5(/)6//

Remark 5.16. Note in the definition above we required the i; distinct. If not, we define e; = 0.

Proposition 5.17.
k .
d(er) = Y (=1)(er)
j=0

where /; is obtainted by omitting the j-th entry of /.

Proof. The only thing we need to do here is to keep track of the signs, which follows from the definition of
orientations. O

Definition 5.18 (induced chain map from simplicial map)
If f: K> Lis a simplicial map, define fx : C.(K) — C.(L) by f«(e/) = e

5.3.2 Chain homotopies

Definition 5.19 (chain homotopy)

Iff,g:(C,d)— (C' d") are chain maps, a chain homotopy from f to g is a map h: C. — C_,; such that
d'h+hd=1-g.

Lemma 5.20. If fo ~ f1, then fo, = f1, : Ho(C) = H. (C).

Proof. Suppose x € Z,(C). Then dx =0, so

fre[x] = fox[x] = [(fi = fo)x] = [(d"h + hd)x] = [d"(hx)] =0

Definition 5.21 (contractible)
We say that a chain complex (C, d) is contractible if id¢ ~ O¢.

29



Lemma 5.22. If (C, d) is contractible, then H,(C) =0.
Proof If [x] € Hs(C), [x] = id«[x] = 04[x] =[0] = 0. O

5.4 Homology groups of spheres

Definition 5.23 (cone of an ASC)
If K is an ASC in A", eg € K, the cone G, (K) is

CEO(K)=KU{€0/|€/€K}

Proposition 5.24. C,,(K) is an ASC, and if L =|K| is a realisation of K, then

|Cep (K] = G (D)

for some p independent of L.
Proposition 5.25. Define A” = {e/ eN™1|0¢ [} ~ A", then A" = C,, (A™).

Proposition 5.26. C(C,,(K)) is contractible.

Proof. Define h: C;(Cey(K)) = Cis1(Ce,(K)) by

0 ifOel
he)) =
(6’/) {6‘0/ ifO¢/

If 0 €/, then dh(e/) =0, and

k .
hd(e;) =h (Z(—1 )19/7) =h(enpy+>.er)=e
=0
where /" are such that 0 € /’. On the other hand, if 0 ¢ e;, then

dh((:‘/) = d(é‘o/) =e/+ Z(_1)/+1 eol, = e - /’Id(el)
In either case, (dh + hd)(e;) = e,. O

Corollary 5.27.
(L) /:/(CG()(K)) = 0'

Z iti=0
0 otherwise

(i) Hi(Cey(K)) ={

Proof. (i) is immediate from 6(Ceo(l<) being contractible. For (ii), when i # 0, -1 the homology and reduced
homology groups are the same, so we only need to check these two cases.
Now H_1(Ce,(K)) =0, so do: Co = C_1 = Z is surjective. Then we have that

Co Co _ Co _ ker(do)

2= im(do) = ker(E/o) - 'lm([?/1) i im(d1) _ im(d1)

= Ho(Cey(K))
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Corollary 5.28.
Z iti=0,n
0 otherwise

H.(S™) :{

Proof S"=A"~ {eq_,}.

5.5 Exact sequences and snake lemma

Definition 5.29

The sequence

frs fi

00— Ak+1 > Ak > Ak_1

v

is exact at Ag if ker(fy) = im(fes1). It is exact if it is exact at every Ag.

Definition 5.30 (short exact sequence)

A short exact sequence of is an exact sequence of the form

0 > A L B I —C > 0
Definition 5.31 (SES of chain complexes)
A SES of chain complexes is
0 > Ay L B, !¢ s 0
are chain maps f, g such that im(f) = ker(g), f injective and g surjective.
Lemma 5.32 (snake lemma). If
0 > A L~ B—"—C > 0

is a SES of chain complexes, then we have a LES

]

He(A) —L—— H(B) —Z—— H,(0)

a

f)(' *
Hie_ (A) — Hk_1(B) g_} Hk_1(C)
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definition of 0.

A f > By g —= Ce
d (‘ d d
A;_1 /ﬁ Bk’ 1 g > C\k,_q
(‘ d d d
Ak:Z f > B:_z 4 > C\k,_z

Given c € Z¢(C), we define 9[c] by
(i) As g is surjective, we have b € By such that g(b) = c.
(it) g(db)=d(gb)=dc=0,so dbeker(g)=im(f). Say db =fa for some a € A,_1.
(it) f(da) =df(a)=d(db)=0. As f is injective, da =0. So a € Z,_1(A).
(v) 9[c] = [a] € Hx=1(A).

5.5.1 Mayer-Vietoris
If K1, Ky are ASCs in A", then K4 n K, and Ky U K; are both ASCs in A”, and we have a squeare of simplicial

maps given by inclusion.
Ki

Kin K Kiu ks

S

K>

By functoriality, we have a square at the level of chain complexes,

C.(Ky)

/ \

C(KinK3) G (KiuKy)

G (K2)

Proposition 5.33. Define maps i : C.(K1nK>) - C.(Ky)@ G (Ky) and j: Co (K1) @ G (Ky) » Cu(Kjuky)
by

i(x) = (i (x), i#(x)) and  j(x,y) = jiz(x) = o (x)
Then
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0 — G(KinKy) ——— C(Ky) @ C.(K2) - CG(KiuKy)) — 0
is a SES of chain complexes.

Proof. It is easy to check exactness at each group. O

Theorem 5.34 (Mayer-Vietoris). We have a long exact sequence in homology

H(KnK) —— s H(K)) @ Hi(Ko) ——2—— Hi(Ky UKD)
9
H,‘_1(K1 N Kz) % H[_W(K1) ® H,'_1(K2) % H,'_1(/<1 U Kz)
Proof Snake lemma. O

Corollary 5.35. H{(Kul)=H;(K) & H;(L) for all i.

5.6 Euler characteristic and Lefschetz fixed point theorem

Let (C, d) be a chain complex over Q, so H,(C) is a Q-vector space. f: C — C is a chain map, which induces
fo : Ho(C) > H.(C). Both f, f, are linear endomorphisms of a vector space.

Definition 5.36 (Lefschetz number)

The Lefschetz number of f is

L(7) = Zk:(—ﬂktr(fk)

. and the Lefschetz number of f, is

L(f,) = ;(—1)ktr(fk*)

Proposition 5.37. L(f) = L(f.).

Proof Let Uy = im(dks1) < ker(dy) < C. Then ker(dy) = U @ Vi, and G = Up @ Vi @ U], With this,
d: U] = U is an isomorphism. With respect to this decomposition, we have that

0 0 [/
de=]0 0 O
0 00

Also, as f(im(dg41)) < im(dg+1) and f(ker(dy)) < ker(dy), we have that

Av Xg
fk =10 Bk *
0 0 A
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And df = fd implies A1 = AL, so

ker(dk) _ U ® Vi
tim(d+1) Uk

and by considering the matrix of the induced map on a quotient, we find that f, : H(C) = Hi(C) is given

Hk(C)I ﬁUk

by

folvl = [Biv]

Therefore,

L(F) = D=1 tr(fe) = S (DR (tr(A) + tr(Be) +tr(A=1)) = (-1 tr(By) = L(f.)

Definition 5.38 (Euler characteristic)
If K is a simplicial complex, C = C,(K), then define the Euler characteristic of K to be

x(K) = x(C) = L(idc) = Y (-1)* dim(H(K)) = > (=1)* dim(Ce(K))

Proposition 5.39. The Euler characteristic is a topological invariant, depending only on |K|.

Theorem 5.40 (Lefschetz fixed point theorem). Suppose F : |K| — |K| is continuous, L(F) # 0. Then F
has a fixed point.

Proof. We prove the contrapositive. Suppose £ has no fixed point. Then as |K] is compact, there exists € >0
such that ||F(x) —x| > € for all x € |[K]|. If f: B*"K — B'K is a simplicial approximation of F, then F,(0o)
does not contain ¢ for any 0 € B™*"K if the mesh is < e. So L(F) =L(f)=0. O

6 Homology of triangulable spaces

Theorem 6.1. If fy, f : K — L are simplicial approximations to F : |K| = ||, with fo# ~ f1%. Then fo, ~ 1.

Theorem 6.2. There is an isomorphism vk : H,(BK) - H,(K) such that v, = f,, where f: BK - K is
any simplicial approximation to the identity map on |[BK| =|K]|. That is, we have

H(BK) ——— A (BTK) ——— ~ ——= H(K)

VK.r

Definition 6.3 (induced map on homology of a continuous map)

Suppose F : |K| = |L] is continuous, let f : B'K — L be a simplicial approximation to F. Then define

34



Fu: Ho(K) = Ho (L) by

F*

H.(K) > H.(L)

1 f
VK r *

H,(B'K)

Theorem 6.4 (functoriality).

(i) F« is well defined, that is, it does not depend on the choice of f,

(it) (idk )« =dp, k),
(i) (Fo G)s = Fy oG,

Theorem 6.5 (homotopy invariance). If Fo, Fy1:|K| = |L|, with Fo ~ Fq, then Fox ~ Fr..

Proposition 6.6 (homotopy invariance of homology). If |[K| ~|L], then H.(K) ~ H.(L).

Proof Suppose F :|K| - |L|, G :|L| - |K]| are such that F o G ~id};; and Go F ~id|c. Then

Fuoly=(FoG).=idy =idy, )

and vice versa. O

Definition 6.7 (trianqulable)
A topological space X is triangulable if there exists an ASC K with |K]~ X.

Proposition 6.8. If X is triangulable, then there is a well defined homology group H,.(X) = H.(K).

Proposition 6.9. If |[K] is path connected, then Hy(K) ~ Z.

Proof. As |K| is path connected, if we define the maps F; : A — |K|, Fi(eo) = e;, then F; ~ F;. As Fi.[eo] = [ei],
[ei] =[e;] forall i, ;. O

Corollary 6.10.
HO(K) _ Znumber of path components of |K]

6.1 Brouwer

Proposition 6.11. There is no retraction r: D" - S"~",
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Proof S" ' D" - S"1 so if r is a retraction, rot=id, so (rot), =ryot, = idpy, (sn-1y- But this means we
get

id

Hy1 (S —% 5 H, (D" — 5% H,1(S")
| | |
Z 0 Z
which is clearly false. O

Theorem 6.12 (Brouwer). If F: D" — D" is continuous, then F has a fixed point.

Proof. Suppose not. Then consider the ray f(x)x for each x € D". The intersection of this ray with D" = S"~'
defines a retraction. Contradiction. O

6.2 Homology of surfaces

Theorem 6.13. If L, is a genus g compact orientable surface, then

Z if x=0,2
Ho(Zg) =37%9 if =1
0 otherwise

Theorem 6.14. If S, is the r-th compact non-orientable surface, obtained by gluing Mobius bands, then

Z'ezZ/2 ifx=1
H.(S/) =1Z if =0

0 otherwise

Both proofs involve an inductive construction of the surfaces, and using the Mayer-Vietoris sequence. Note
that the proofs given in lectures weren’t the nicest, so we will also give a different proof afterwards.

6.2.1 Proof of the orientable case

Let K be a triangulation of T2, and K{ = Kj \ 0, where o is a 2-simplex. Then 0K{ = do = S'. Inductively,
define

Ky=Kyqus K{ and Kf=K;No

where 0 € K is a 2-simplex.

Proposition 6.15 (p1(g)).

Z if »=0,2
Ho(Ky) =42%9 if »=1
0 otherwise
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Proposition 6.16 (p2(g)).

Z?q if x=1
H*(Kg’): Z if*=0
0 otherwise

Base case: pi(1). That is, the homology of the torus.  This is an easy Mayer-Vietoris computation,
where we take the square for 72 and cut it into two vertical rectangles.
Inductive case (i): p1(g) = p2(g). Using Mayer-Vietoris with

Ky =Kjun?

gives the required result.
Inductive case (ii): p2(g) = pi1(g+1). We will use the Mayer-Vietoris sequence with

Kys1 = Ké u Ky
gives the required result.

6.2.2 Proof of the non-orientable case

We will only go through the construction of the surfaces. The induction is the same as in the orientable case.
Let Ly be a triangulation of RP?,

L,+1 = L,’ Ugt Lq and L; = L, NGO

as before. The inductive hypotheses are:

Proposition 6.17 (g1(r)).
2072 if+=1

(L) =12 =0
0 otherwise
Proposition 6.18 (g2(r)).
7" it x=1

H.(l!)=3Z if+=0
0  otherwise

6.2.3 Proof: Gluing a 2-cell onto a wedge of circles

Consider the standard gluing pattern of the (non-)orientable surfaces, i.e.

_ ~1p-1 ~1p-1
Lg=a1byay by --agbgay by

S, = agagaiaq-+-a,a,

Therefore, by Mayer Vietoris, if we glue a 2 cell onto a wedge of circles, we get

0 —— H(Zy) Y/ > 729 > Hi(Z,) ——— 0

where the map ¢ is given by

(1) =[a1]+[b1] = [a1] = [b1] +---+[ag] + [bg] = [ag] = [bg] = 0
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which breaks the LES into two SES, and gives the required result.
In the non-orientable case, we have

N

00— H(S) b 29 S H(S,) ———— 0

where ( is given by

¢(1) = 2([ao] + [ar] +---+ [ay])

Then Hy(S,) = ker(¢) =0, and Hi(S;) = coker(¢) = Z" & (Z/27Z) by Smith normal form. Note the indexing
here is off by one compared to the previous section, t.e. S, = L,11.
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