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1 Fundamental group
1.1 Homotopy

Definition 1.1 (homotopy)Suppose f0, f1 ∶ X → Y are maps, we say that f0 and f1 are homotopic if there exists H ∶ X × I → Y suchthat
H(⋅,0) = f0 and H(⋅,1) = f1We write f0 ∼ f1, or f0 H∼ f1

Lemma 1.2. Homotopy is an equivalence relation.
Proof. Reflexivity and symmetry are clear, for transitivity use the gluing lemma.

Lemma 1.3. If f0 ∼ f1 and g0 ∼ g1, then g0 ○ f0 ∼ g1 ○ f1.
Notation 1.4. We write cX,p ∶ X → Y for the constant map c(x) = p.
Definition 1.5 (contractible)A topological space X is contractible if idX ∼ cX,p for some p ∈ X .
Proposition 1.6. If Y is contractible, then any f0, f1 ∶ X → Y are homotopic.
Proposition 1.7. Any contractible space is path connected.
Definition 1.8 (homotopy equivalent)Two topological spaces X,Y are homotopy equivalent if there exists maps f ∶ X → Y and g ∶ Y → X suchthat f ○ g ∼ idY and g ○ f ∼ idX . We write X ∼ Y .
Proposition 1.9. Homotopy equivalence is an equivalence relation.
Proposition 1.10. A topological space X is contractible if and only if X ∼ ∗.
Definition 1.11 (homotopy rel)Suppose f0, f1 ∶ X → Y are maps, A ⊆ X . Then we say that f0 and f1 are homotopy equivalent rel A if
f0 H∼ f1 and H(x, t) = f0 = f1 for all t ∈ I, x ∈ A.
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Lemma 1.12. Homotopy rel is an equivalence relation.
Lemma 1.13. Suppose f0 ∼ f1 rel A, g0 ∼ g1 rel f(A), then g0 ○ f0 ∼ g1 ○ f1 rel A.

1.2 Paths and the fundamental group

Notation 1.14 (homotopy rel end points). If γ0, γ1 ∶ I → X are paths, we write γ0 ∼e γ1 for γ0 ∼ γ1 rel {0, 1}.
Lemma 1.15. If f0, f1 ∶ I → I , f0(0) = f1(0) and f0(1) = f1(1), then f0 ∼e f1.

Proof. I is convex.
Proposition 1.16. Suppose f ∶ I → I , γ ∶ I → X path, then

(i) If f(0) = 0 and f(1) = 1, then f ○ γ ∼e γ .(ii) If f(0) = f(1) = 0, then γ ○ f ∼ cI,γ(0).
Proof. Immediate from the lemma.

Definition 1.17Let X be a space, p,q ∈ X , then write Ω(X,p, q) be the set of paths from p to q. Write Ω(X,p) ∶=Ω(X,p, p) for the set of loops based at p.
Notation 1.18. Suppose γ ∈ Ω(X, p, q) and η ∈ Ω(X,q, r), we can compose them to get γη ∈ Ω(X, p, r). Furthermore,let γ−1 ∈ Ω(X,q, p) be the reverse of γ .
Lemma 1.19. Suppose γ0, γ1 ∈ Ω(X,p, q) with γ0 ∼e γ1, and η0, η1 ∈ Ω(X,q, r) with η0 ∼e η1, then
γ0η0 ∼e γ1η1.
Proposition 1.20. Let γ ∈ Ω(X,p, q), γ′ ∈ Ω(X,q, r) and γ′′ ∈ Ω(X, r, s), then

(i) cI,pγ ∼e γ ∼e γcI,q,(ii) γ−1γ ∼e cI,q and γγ−1 ∼e cI,p,(iii) (γγ′)γ′′ ∼e γ(γ′γ′′)
Definition 1.21 (fundamental group)For a topological space X , x0 ∈ X , define

π1(X, x0) = Ω(X, x0)
∼eThis is a group with
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(i) [γ0][γ1] = [γ0γ1](ii) id = 1 = [cI,x0](iii) [γ]−1 = [γ−1]
Proposition 1.22 (functoriality). π1 defines a functor from pointed spaces to groups.

Proof. We only need to check the map on morphisms. Suppose f ∶ (X, x0)→ (Y ,y0) is a map, then we have aninduced map f∗ ∶ π1(X, x0)→ π1(Y ,y0), defined by f∗([γ]) = [f ○ γ]. It is easy to check that (g ○ f)∗ = g∗ ○ f∗and id∗ = id.
Proposition 1.23 (homotopy invariance). If f0 ∼ f1 rel {x0}, then f0∗ = f1∗.
Definition 1.24 (retraction, strong deformation retraction)Suppose A ⊆ X , ι ∶ A → X is the inclusion map. Then

(i) r ∶ X → A is a retraction if r ○ ι = idA .(ii) r ∶ X → A is a strong deformation retraction if r is a retraction, and ι ○ r ∼ idX rel A.
Proposition 1.25. If r is a retraction, then ι∗ is injective and r∗ is surjective.
Proposition 1.26. A strong deformation retraction defines a homotopy equivalence.

1.3 Nullhomotopy and extensions

Definition 1.27 (nullhomotopic)A map f ∶ X → Y is nullhomotopic if f ∼ cX,p for some p ∈ Y .
Proposition 1.28. Let f ∶ S1 → Y , then f extends to all of D2 if and only if f is nullhomotopic.

Proof. One direction is clear. For the other use the homotopy to define an extension radially.
Definition 1.29 (closed loop)Let γ ∈ Ω(X, x0). Define γ ∶ S1 → X by

γ(e2πit) = γ(t)

Lemma 1.30.1. If γ0 ∼e γ1, then γ0 ∼ γ1.
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2. γγ′ ∼ γ′γ .
Proof. (i) is clear. For (ii), notice that the antipodal map S1 → S1 is homotopic to the identity.Let Φ ∶ D2 → I2 be a homeomorphism, then h ∶ ∂(I2) → X extends to I2 if and only if h ○ Φ extends to D2.But we have seen this holds if and only if h ○Φ is nullhomotopic.For i ∈ {0,1}, define

αi(t) = h(t, i) and βi(t) = h(i, t)

α0

β0

α1

β1

Then h ○Φ = α0β1α−11 β−11 .
Proposition 1.31. Suppose γ0, γ1 ∈ Ω(X,p, q) are paths, then the following are equivalent.

(i) γ0 ∼e γ1,(ii) γ0γ−11 is nullhomotopic,
(iii) [γ0γ−11 ] = 1 in π1(X,p).

Proof. Consider h ∶ ∂(I2)→ X given by

γ0

cI,p

γ1

cI,q

Then we have that
γ0 ∼e γ1 ⇐⇒ h extends to I2

⇐⇒ h ○Φ extends to D2
⇐⇒ γ0cI,qγ−11 c−1I,p is nullhomotopic
⇐⇒ γ0γ−11 is nullhomotopic

So (i) ⇐⇒ (ii).Now consider h′ ∶ ∂(I2)→ X given by
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γ0γ−11

cI,p

cI,p

cI,p

Then we have that
[γ0γ−11 ] = 1 ⇐⇒ γ0γ−11 ∼e cI,p

⇐⇒ h′ extends to I2
⇐⇒ h′ ○Φ extends to D2
⇐⇒ γ0γ−11 cI,p−1c−1I,pc−1I,p is nullhomotopic
⇐⇒ γ0γ−11 is nullhomotopic

So (ii) ⇐⇒ (iii).
Corollary 1.32. The following are equivalent.

(i) γ0 ∼e γ1, for all γ0, γ1 ∈ Ω(X,p, q),(ii) any f ∶ S1 → X is nullhomotopic,(iii) π1(X, x0) = 1
Definition 1.33 (simply connected)We say that X is simply connected if X is path connected and any of the above conditions hold.

1.4 Change of base point

Definition 1.34 (change of base point map)Given u ∈ Ω(X, x0, x), we can define a map u# ∶ Ω(X, x0)→ Ω(X, x) by
u#(γ) = u−1γu

Proposition 1.35. If γ ∼e γ′, then u#(γ) ∼ u#(γ′), so u# gives a map u# ∶ π1(X, x0)→ π1(X, x).
Proposition 1.36. u# is an isomorphism of groups.

Proof. u# is a homomorphism is as for conjugation for groups, and note that u# is the inverse of (u−1)#.
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Theorem 1.37. Suppose f0, f1 ∶ X → Y , f0 ∼ f1 via H ∶ X × I → Y . Then let u(t) = H(x0, t), y0 = f0(x0),
y1 = f1(x1), then

π1(X, x0) π1(Y ,y1)

π1(Y ,y0)
f0∗ u#

f1∗

commutes.
Proof. We need to show that for all γ ∈ Ω(X, x0), f1∗[γ] = u#f0∗[γ] = u#[f0 ○ γ]. Let γi = fi ○ γ , then we wantto show γ1 ∼e u−1γ0u. Consider h ∶ ∂(I2)→ Y given by

γ0

u

γ1

u

Then
h extends to I2 ⇐⇒ γ0uγ−11 u−1 is nullhomotopic

⇐⇒ u−1γ0uγ−11 is nullhomotopic
⇐⇒ u−1γ0u ∼e γ1.

But h does extend to all of I2, given by H̃(x, t) = H(γ(x), t).
Proposition 1.38. Suppose X and Y are homotopy equivalent, via f ∶ X → Y and g ∶ Y → X . Then f∗ and
g∗ are isomorphisms.

Proof. By symmetry we only need to show g∗ is an isomorphism. Fix x0 ∈ X , and let y0 = f(x0), x1 = g(y0), y1 =
f(x1). Then we have maps

π1(X, x0) π1(Y ,y0) π1(X, x1) π1(Y ,y1)f∗ g∗ f∗

Say id ∼ g ○ f via H , then g∗ ○ f∗ = u# ○ (idX)∗ where u = H(x0, t) is a path from x0 to x1 by the previouslemma. But u# is an isomorphism, so g∗ is surjective. Similarly f ○ g ∼ id implies that g∗ is injective.
Corollary 1.39. If X is contractible, then π1(X, x0) = 1.

2 Covering spaces
2.1 Definitions and lifting
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Definition 2.1 (evenly covered set)Suppose p ∶ X̂ → X is continuous, we say that U ⊆ X is evenly covered if p−1(U) = ⊔α Vα , where
p∣Vα ∶ Vα → U is a homeomorphism.
Definition 2.2 (covering map)A map p ∶ X̂ → X is a covering map if for all x ∈ X , there exists an open neighbourhood Ux which is evenlycovered. In this case, we call X̂ a covering space for X .
Definition 2.3 (lift)Suppose p ∶ X̂ → X is a covering map, f ∶ Z → X continuous. Then we say that f̂ ∶ Z → X̂ is a lift of f if
p ○ f̂ = f , that is,

X̂

Z X

f̂ p

fcommutes.
Lemma 2.4 (Lebesgue covering). Suppose X is a compact metric space, {Uα}α is an open cover of X .Then there exists δ > 0 such that for all x ∈ X , Bα(x) ⊆ Uα for some α .

Proof. Given x ∈ X , let α(x) and δ(x) > 0 be such that B2δ(x)(x) ⊆ Uα(x). Then {Bδ(x)}x∈X is an open coverof X . Therefore, by compactness there exists a finite subcover {Bδ(xi)(xi)}ni=1. Let δ = min{δ(x1), . . . , δ(xn)}.Then for all y ∈ X , y ∈ Bδ(xi)(xi) for all i. Then
Bδ(y) ⊆ B2δ(xi)(xi) ⊆ Uα(xi)

Notation 2.5. We say a path γ with γ(0) = x0 has the (unique) lifting property if for all x̂0 ∈ p−1(x0), there exists a(unique) lift γ̂ of γ with γ̂(0) = x̂0 .
Lemma 2.6. If f ∶ Z → U , Z connected, im(f) ⊆ U , where U is evenly covered, then γ has the uniquelifting property.

Proof. Since U is evenly covered, p−1(U) = ⊔α Vα . Then x̂ ∈ Vα0 for some α0. Then p′ = (p∣Vα0 )−1 ∶ U → X̂ iscontinuous, with p′(x0) = x̂0, so f̂ = p′ ○ f is a lift of f .For uniqueness, notice that p−1(U) = Uα0⊔(⊔α≠α0 Vα), which disconnects p−1(U), and as im(f) is connected,im(f̂) ⊆ Vα0 . But p′ above is a homeomorphism, so γ̂ is unique.
Lemma 2.7. Suppose γ ∶ [a,b]→ X with a′ ∈ [a,b], if γ∣[a,a′] has the ULP at a and γ∣[a′,b] has the ULPat a′, then γ has the ULP at a.
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Proof. We have a lift γ̂1 ∶ [a,a′] → X̂ of γ∣[a,a′] at a, and a lift γ̂2 ∶ [a′, b] → X̂ of γ∣[a′,b] at a′, such that
γ̂1(a′) = γ̂2(a′). So γ̂1γ̂2 is a lift of γ at a.For uniqueness, suppose η̂ is any other lift. Then η̂∣[a,a′] is a lift of γ∣[a′,a], so η̂∣[a,a′] = γ̂1. This means that
η̂(a′) = γ̂(a′), so η̂∣[a′,a] is a lift of γ∣[a′,b], which means that η̂∣[a′,b] = η̂∣[a′,b], so η̂ = γ̂1γ̂2.

Theorem 2.8 (path lifting). Any γ ∶ I → X has the ULP.
Proof. p ∶ X̂ → X is a covering map, so every x ∈ X has an evenly covered neighbourhood Ux . Then {Ux ∣ x ∈ X},so {γ−1(Ux) ∣ x ∈ X} is an open cover of I . Thus, by the Lebesgue covering lemma, there exists δ > 0 such that
Bδ(t) ⊆ γ−1(Ux(t)) for any t .Choose n such that 1/n < δ , ai = i/n ∈ I . Then [ai, ai+1] ⊆ Bδ(ai), so γ([ai, ai+1]) ⊆ Uxi , where ai = γ(ai).As Uxi is evenly covered, γ ∣[ai,ai+1] has the ULP at ai. By induction and the previous lemma, γ has the ULP.

Theorem 2.9 (homotopy lifting). Suppose p ∶ X̂ → X is a covering map, H ∶ I × I → X is a homotopy, then
H has the lifting property at (0,0).

Proof. Suppose {Ux ∣ x ∈ X} is an open cover of X by evenly covered neighbourhoods. Since I2 is compact, bythe Lebesgue covering lemma, there exists δ > 0 such that Bδ(v) ⊆ H−1(UH(v)) for each v ∈ I2.Choose n such that √2/n < δ . Then divide I2 into squares with side lengths 1/n. Enumerate them
A1, A2, . . . , An2 , starting from the bottom left and going right then up. Label the bottom left corner of Ai as vi.Now note that H(Ai) ⊆ H(Bδ(vi)) ⊆ Uxi is evenly covered. Thus, HAi has the ULP at vi, as I2 is connected. Let
Bk = ⋃ki=1 Ai.We will prove by induction that H ∣Bk has LP at (0,0). For k = 1,B1 = A1, so we are done. Now suppose
H ∣Bk has a lift Ĥ ∶ Bk → X with Ĥk(0,0) = x̂ . Now as H ∣Ak has the lifting property at vk+1. So choose a lift
ĥk ∶ Ak+1 → X̂ with ĥk(vk+1) = Ĥk(vk+1).Now note that Bk ∩ Ak+1 is either one or two edges of Ak+1, both coming from vk+1. By uniqueness of pathlifting, Ĥk ∣Ak+1∩Bk = ĥk ∣Ak+1∩Bk , so by the gluing lemma we have a well defined lift Ĥk+1 of H on Bk+1.

Proposition 2.10. Suppose γ0, γ1 ∈ Ω(X, x0, x1), γ0 ∼e γ1. Suppose γ̂i is a lift of X̂ with γ̂i(0) = x̂0. Then
γ̂0 ∼e γ̂1. In particular, γ̂0(1) = γ̂1(1).

Proof. Suppose H ∶ I2 → X is a homotopy between γ0 and γ1.

γ0

cI,x0

γ1

cI,x1

By homotopy lifting, we have a lift Ĥ ∶ I2 → X̂ with Ĥ(0,0) = x̂0. Let αi(t) = Ĥ(t, i) and βi(t) = Ĥ(i, t).By uniqueness of path lifting.
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α0 = γ̂0

β0 = cI,x̂0

α1 = γ̂1

β1 = cI,x̂1

That is, γ̂0 ∼e γ̂1 via Ĥ .
Corollary 2.11. p∗ ∶ π1(X̂ , x̂0)→ π1(X, x0) is injective.

Proof.

p∗[γ0] = p∗[γ1] Ô⇒ p ○ γ0 ∼e p ○ γ1
Ô⇒ p̂ ○ γ0 ∼e p̂ ○ γ1
Ô⇒ γ0 ∼e γ1

2.2 Universal covers

Definition 2.12 (universal cover)A covering p ∶ X̂ → X is called a universal cover of X if X̂ is simply connected.
Suppose p ∶ (X̂ , x̂0)→ (X, x0) is a covering map, then we have a map εp ∶ Ω(X, x0)→ p−1(x0), given by

εp(γ) = γ̂(1)where γ̂ is the lift of γ at x̂0. Furthermore, if γ0 ∼e γ1, then εp(γ0) = εp(γ1), so we have a map εp ∶
π1(X, x0)→ p−1(x0).

Proposition 2.13. If p ∶ (X̂ , x̂0)→ (X, x0) is a universal cover, then εp ∶ π1(X, x0)→ p−1(x0) is a bijection.
Proof. Suppose εp[γ0] = εp[γ1] = x̂1. Then γ̂0, γ̂1 ∈ Ω(X̂ , x̂0, x̂1), and as X̂ is simply connected, γ̂0 ∼e γ̂1. So
γ0 = p ○ γ̂0 ∼e p ○ γ̂1 = γ1. That is, [γ0] = [γ1]. So εp is injective.Now given x̂ ∈ p−1(x0), as X̂ is path connected, there exists a path η ∈ Ω(X̂ , x̂0, x̂). p(x̂) = x0, so if γ = p○η,then γ ∈ Ω(X, x0). Then η = γ̂ by uniqueness of lifts. So εp[γ] = x̂ . That is, εp is surjective.

Theorem 2.14. π1(S1,1) = Z
Proof. p ∶ R → S1, p(t) = e2πit is a universal cover. Then p−1(1) = Z, so εp ∶ π1(S1,1) → Z is a bijection.Suffices to show this is a homomorphism. Given n ∈ Z, define φn ∶ R → R by x ↦ x + n. Then p ○ φn = p, so if
γ ∈ Ω(S1,1), γ̂ lift of γ to R, with γ̂(0) = 0. Then

p ○ (φn ○ γ̂) = p ○ γ̂ = γso φn○ γ̂ is the lift of γ with φn○ γ̂(0) = n. Suppose εp[γ] = n and εp[γ′] = n′, then γ̂(1) = n and γ̂′(1) = n′.So φn ○ γ′ is a lift of γ′(1) starting at n. So γ̂γ′ = γ̂(φn ○ γ̂′). Thus,
εp([γ][γ′]) = γγ′(1) = φn ○ γ̂′(1) = n + n′So εp is a homomorphism.
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Proposition 2.15. Suppose z ∈ S1, u, v ∈ Ω(S1, z,1). Then u# = v#.
Proof. Consider the composition v−1# ○ u# = (v−1 ○ u)#. Then

(v−1 ○ u)#[γ] = [vu−1γuv−1] = [η][γ][η]−1 = [γ]where η = vu−1 and as π1(S1,1) = Z abelian. So v# = u#.
Definition 2.16 (degree)The degree of a map f ∶ S1 → S1, is defined to be deg(f) = u# ○ f∗(1) ∈ Z.
Proposition 2.17.(i) deg(z ↦ zn) = n,(ii) g ∼ g′ if and only if deg(g) = deg(g′).(iii) g extends to D2 if and only if deg(g) = 0.
Definition 2.18 (wedge product)Suppose (Xi, xi)i pointed spaces, then the wedge product is

⋁
i
(Xi, xi) =

⊔i Xi
{xi}

2.3 Covering transformations

Definition 2.19 (locally path connected)A space X is locally path connected if for every U ⊆ X open, x ∈ U , there exists an open V ⊆ U such that
V is path connected and x ∈ V .
Proposition 2.20 (simply connected lifting). Suppose Z is simply connected and locally path connected.Given f ∶ (Z, z0)→ (X, x0), f has a unique lift to f̂ ∶ (Z, z0)→ (X̂ , x̂0).

Proof. Suppose f̂ ∶ (Z, z0) → (X̂ , x̂0) is a lift of f . Given z ∈ Z , choose γ ∈ Ω(Z, z0, z), as Z is path connected.Then f̂ ○ γ is a lift of f ○ γ , since p ○ (f̂ ○ γ) = (p ○ f̂) ○ γ = f ○ γ , and f̂ ○ γ(0) = f̂(z0) = x̂0, so f̂ ○ γ = f̂ ○ γ , aspath lifting is unique. So f̂(z) = f̂(γ(1)) = f̂ ○ γ(1) = f̂ ○ γ(1), so f̂ is unique.Now if γ0, γ1 ∈ Ω(Z, z0, z), then γ0 ∼e γ1 as Z is simply connected. So f○γ0 ∼e g○γ1, i.e. f̂ ○ γ0(1) = f̂ ○ γ1(1).So we can define f̂(z) = f̂ ○ γ0(1), where γ ∈ Ω(Z, z0, z) arbitrary. Then
p(f̂(z)) = p ○ f̂ ○ γ(1) = f ○ γ(1) = f(z)So f̂ is a lift. If z = z0, choosing γ = cI,z0 , we find that f ○ γ = cI,x0 and f̂ ○ γ = cI,x̂0 , i.e. f̂(z0) = x̂0. Finally,we need to show that f̂ is continuous. Given U ⊆ X̂ open neighbourhood of f̂(z), we want to find V openneighbourhood of z such that f̂(V ) ⊆ U .

Step 1: Find U ′ ⊆ U , f̂(z) ∈ U ′ such that p(U ′) is open and evenly covered. Since p is a coveringmap, there exists W ⊆ X open, f(z) ∈ W which is evenly covered. So p−1(W ) = ⊔α Xα , and p(f̂(z)) = f(z),so f̂(z) ∈ Wα0 for some α0. Then Wα0 ⊆ X̂ open, and let U ′ = U ∩Wα0 . Then f̂(z) ∈ U ′. Furthermore, as
p∣Wα0 ∶Wα0 →W is a homeomorphism. So p(U ′) is open and evenly covered.
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Step 2: f ∶ Z → X is continuous, so we can find V ′ ⊆ Z open such that z ∈ V ′ with f(V ′) ⊆ p(U ′). As Z islocally path connected, there exists C ⊆ V ′ open, z ∈ V such that V is path connected.
Step 3: We show f̂(V ) ⊆ U . Given z′ ∈ V , choose γ′ ∈ Ω(V , z, z′), then im(f ○ γ′) ⊆ f(V ) ⊆ p(U ′) isevenly covered. So γ̃′ = p−1 ○ f ○ γ′ are lifts of γ′ with γ̃′(0) = p−1(f(z)) = f̂(z). Then γγ′ ∈ Ω(Z, z0, z′) and
̂f ○ (γγ′) = (f ○ γ̂)γ̃′. So f̂(z′) = ̂f ○ (γγ′)(1) = γ̃′(1) = p−1(f(γ′(1))) ∈ U ′.
Definition 2.21 (covering transformation)Suppose pi ∶ X̂i → X are covering maps, a covering transformation p ∶ (p1, X̂1) → (p2, X̂2) is a map
p ∶ X̂1 → X̂2 such that

X̂1 X̂2

X

p1 p2

p

commutes. Equivalently, p is a lift of p1 to X̂2.
Lemma 2.22. If X is locally path connected, p ∶ (p1, X̂1) → (p2, X̂2) is a covering transformation, then
p ∶ X̂1 → X̂2 is a covering map. That is, we have a tower of covering maps

X̂1

X̂2

X

p2

p

p1

Proof. Given x̂2 ∈ X̂2, we want to find an evenly covered neighbourhood U of x̂2. Let x = p2(x̂2), and as p1, p2are covering maps, we have V1, V2 evenly covered neighbourhoods of x by p1, p2 respectively. Then V = V1∩V2is an open evenly covered neighbourhood for p1 and p2. As X is locally path connected, we can assume withoutloss of generality that V is a path connected open neighbourhood of x which is evenly covered by p1 and p2.Then
p−11 (V ) =⊔

α
Aα and p−12 (V ) =⊔

β
Vβ

where each Aα ≃ V ≃ Vβ are path connected. Fix α , and let xα = p1∣−1Aα (x). Then p2(p1(xα)) = p1(xα) = x ,so p(xα) = xβ for some β , where xβ = p2∣−1Bβ(x). Vα , Vβ are path connected, so p(Vα) ⊆ Vβ since the image of apath connected space is path connected and each Vβ is a path component of p−12 (V ).Then p∣Aα ∶ Aα → Bβ satisfies p2∣Bβ ○ p∣Aα = p1∣Aα . That is, p∣Aα = p2∣−1Bβ ○ p1∣Aα is a homeomorphism. So
p−1(Bβ) = ⊔

α s.t. p(xα)=xβ Aαand p∣Aα ∶ Aα → Bβ is a homeomorphism. So the {Vβ} are evenly covered, i.e. p is a covering map.
Lemma 2.23. If p ∶ Ŷ → Y is a bijective covering map, then p is a homeomorphism.

12



Proof. Let p−1 ∶ Y → Ŷ be the inverse of p. Since Y has an open cover {Uy} so that Uy is evenly covered. But
p is a bijection, then p−1∣Uy ∶ Uy → p−1(Uy) is a homeomorphism. SO p−1 is continuous.

Definition 2.24 (covering isomorphism)
p ∶ (p1, X̂1) → (p2, X̂2) is a covering isomorphism if p is a covering transformation and p is a homeomor-phism.
From now on, suppose X is locally path connected, q ∶ (X̃ , x̃0)→ (X, x0) is a universal cover, p ∶ (X̂ , x̂0)→

(X, x0) is a covering map.
Proposition 2.25. There exists a unique covering transformation q̂ making the following diagram commute.

(X̂ , x̂0)

(X̃ , x̃0) (X, x0)
q̂

p

q

Proof. X̃ is locally path connected as X is locally path connected, and X̃ is simply connected, so existence anduniqueness is just simply connected lifting.
Corollary 2.26. If X̂ is also a universal cover, then q̂ is a covering isomorphism.

Proof. X̃ is simply connected, so q̂ ∶ X̃ → X̂ is a universal cover. This means that there is a bijection
q−1(x̂)↔ π1(X̂ , x̂) = 1, so q̂ is a bijection.

Definition 2.27 (deck group)The deck group is
GD(p) = {covering automorphisms g ∶ (p, X̂)→ (p, X̂)}which is a group under composition, and it acts on X̂ by the left, so g ⋅ x̂ = g(x̂).

Theorem 2.28. GD(q) ≃ π1(X, x0)
Proof. First of all, we show that there is a bijection GD(q) → q−1(x0), given by g ↦ g(x̃0). Injectivity followsfrom uniqueness, and surjectivity follows from existence in the proposition, i.e.

(X̃ , g(x̃0))

(X̃ , x̃0) (X, x0)
g

q

qSo we have bijections εq ∶ πq(X, x0)→ q−1(x0) and GD(q)→ q−1(x0). Composing these bijections, we get
[γ][γ′]↦ εq([γγ′]) = γ̃γ′(1) = γ̃(gγ̃(1) ○ γ̃′)
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where gγ̃(1) is the unique element of GD(q) sending x̃0 ↦ γ̃(1), since gγ̃(1) ○ γ̃′ is a lift of γ′ starting at
γ̃(1). So we have that

γ̃γ′(1) = (gγ̃(1) ○ γ̃′)(1) = gγ̃(1)(γ̃′(1)) = gγ̃(1)(gγ̃′(1)(x̃0))So we have that the composition is [γ][γ′]↦ gγ̃(1) ○ gγ̃′(1), which is a homomorphism.
2.4 Galois correspondence

Proposition 2.29 (towers of covering maps). Let G = GD(q) = π1(X, x0), H ≤ G is a subgroup. Then wehave a tower of covering maps
X̃ XH XπH pHwhere

XH = H/X̃ =
X̃

h ⋅ x ∼ xis the orbit space, πH is the quotient map, and pH ∶ XH → X is the projection map pH(H ⋅ x) = q(x).In particular, if H = G , then pG is a bijective covering map, i.e. X ≃ G/X̃ .
Proof. First we show that pH is well defined. Given x̃ ∈ X̃ , q(h(x̃)) = q(x̃), so the output is independent of thechoice of x̃ .Now given x ∈ X , choose a neighbourhood U of x which is evenly covered by q. Then

q−1(U) =⊔
α
Vα = ⊔

g∈GD(q)
g ⋅ V

where x̃0 ∈ V . Furthermore,
p−1H (U) = πH (π−1H (p−1H (U))) = πH(q−1(U)) = ⊔

Hg∈H/G
πH(g ⋅ V )

where we used the fact that πH is surjective. To justify the fact that this is a disjoint union, we need to showthat if πH(g⋅V )∩πH(k ⋅V ) ≠ ∅, then in fact g = hk for some h ∈ H . To see this, suppose t ∈ πH(g⋅V )∩πH(k ⋅V ).Then there exists x, y ∈ V such that [g ⋅x] = t = [k ⋅y], that is, g ⋅x = h ⋅k ⋅y for some h ∈ H . Now z = g ⋅x ∈ g ⋅Vand z = h ⋅k ⋅y ∈ hk ⋅V , so as we have a disjoint union, we must have that g = hk . Thus, U is an evenly coveredneighbourhood of x by pH .Finally, the preimage of each πH(g ⋅ V ) is given by
π−1H (πH(g ⋅ V )) = ⊔

hg∈Hg
hg ⋅ V

so πH is also a covering map.In the case where H = G , we can see that Gg = G , so there is only one preimage for every point. Thus pGis a bijection.Suppose q ∶ (X̃ , x̃0) → (X, x0) is a universal cover, and suppose X̃ is locally path connected. So X is pathconnected and locally path connected. Define• S(X, x0) = {H ≤ π1(X, x0)}•
C(X, x0) = {(p, X̂ , x̂0) ∣ p ∶ (X̂ , x̂0)→ (X, x0) covering map, X̂ path connected} / ∼

where (p, X̂ , x̂0) ∼ (p′, X̂ ′, x̂′0) if there is a covering isomorphism between them. Define• α ∶ S(X, x0)→ C(X, x0) by
α(H) = (pH , XH , πH(x̃0) = x0,H)• β ∶ C(X, x0)→ S(X, x0) by
β(p, X̂ , x̂0) = p∗(π1(X̂ , x̂0))
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Theorem 2.30. α and β are inverse bijections.
Proof. β(α(H)) = pH∗(π1(XH , x0,H)), and we have isomorphisms

H π1(XH , x0,H) pH∗(π1(XH , x0,H))γ↦[πH○γ̃] [η]↦[pH○η]
∼ ∼

where γ̃ ∶ I → X̃ is the lift of γ at γ̃(0) = x̃0. These compose to give
[γ]↦ [pH ○ πH ○ γ̃] = [q ○ γ̃] = [γ]So β(α(H)) = H . Conversely, α(β(p, X̂ , x̂0)) = (pH , XH , x0,H) where H = p∗(π1(X̂ , x̂0)). Consider thefollowing diagram
(XH , x0,H) (X̂ , x̂0)

(X̃ , x̃0) (X, x0)
πH

q

p
q̂

p′

pH

As X̃ is simply connected and locally path connected, we have a lift q̂ of q. We want to show that there
exists p′ such that the diagram commutes. To see this, given h ∈ H , h = [p ○ γ] for some γ ∈ Ω(X̂ , x̂0). Then
q̂(x̃) = q̂ ○ η(1) where η ∈ Ω(X̃ , x̃0, x̃). Let δ ∈ Ω(X̃ , x̃0, h⋅x̃0) and ν = δ(h○η), we get that q○ν = (q○δ)(q○h○η).But h ∈ H ≤ GD(q), so q ○ h = q. Furthermore, q ○ δ ∼e p ○ γ .To see this, consider the lift p̃ ○ γ ∶ I → X̃ at x̃0. By the definition of the isomorphism GD(q)↔ π1(X, x0) ≥
H ∋ h, we have that p̃ ○ γ(1) = h ⋅ x̃0. So p̃ ○ γ ∈ Ω(X̃ , x̃0, h ⋅ x̃0). As X̃ is simply connected, p̃ ○ γ ∼e δ , so
q ○ δ ∼e p ○ γ .With all of this, we gat that q ○ ν ∼e (p ○ γ)(q ○ η), so in particular, q̂ ○ ν ∼e γ(q̂ ○ δ). Therefore,

q̂(h ⋅ x̃) = q̂ ○ ν(1) = q̂ ○ η(1) = q̂(x̃)So q̂ factors as in the diagram. In this case, X̂ is connected, so p′ is surjective. Suffices to show p′ is injective.Suppose q̂(x̃) = q̂(ỹ) = x̂ , then let γ ∈ Ω(X̃ , x̃, ỹ). Then q̂○γ ∈ Ω(X̂ , x̂) and [q○γ] = [p○(q̂○γ)] ∈ H ≤ GD(q)1sends x̃ to ỹ, so πH(x̃) = πH(ỹ). Thus, p′ is a covering isomorphism, and α ○ β = id.
Corollary 2.31.

[π1(X, x0) ∶ H] = ∣p−1(x0)∣

Definition 2.32 (normal covering)
p ∶ X̂ → X is a normal cover if GD(p) acts transitively on p−1(x0).
Proposition 2.33. The universal cover is always a normal cover.
Proposition 2.34. Conjugation corresponds to a change in base point. That is, gHg−1 corresponds to
(pH , XH , γ̂(1)), where g = [γ] and γ̂ is a lift of γ in XH starting at x0,H .

1There is a mild abuse of notation here, since what we have here is p∗(π1(X̂ , x̂)), but this is isomorphic to H .
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Corollary 2.35. H ⊴ G is a normal subgroup if and only if pH ∶ XH → X is a normal covering. If so, then
GD(pH) ≃

G
H

Proof. If H is normal, then gHg−1 = H , and so (pH , XH , x0,H) and (pH , XH , γ̂(1)) are isomorphic. That is, wehave an element φ of GD(pH) such that φ(x0,H) = γ̂(1). The converse holds by applying the inverse bijectionand the transitive action.Now define a homomorphism φ ∶ G → GD(pH) by sending [γ] to the element τ ∈ GD(pH), defined by
τ(x0,H) = γ̂(1), where γ̂ is the lift of γ by pH starting at x0,H . This defines a group homomorphism, which issurjective (as covering transformations which agree at one point are the same). Moreoever, ker(φ) = H . Theresult follows by the isomorphism theorem.
3 Seifart van Kampen
3.1 Free groups

Definition 3.1 (free group)A free group on a generating set S is a group FS and a subset S ⊆ FS such that whenever G is a group,
φ ∶ S → G is a function, there exists a unique homomorphism Φ ∶ FS → G with Φ∣S = φ.
Lemma 3.2. If FS , FT are free groups, φ ∶ S → T is a bijection, then Φ ∶ FS → FT is an isomorphism.

Proof. Let ψ = φ−1, then as FT is free, there exists a homomorphism Ψ ∶ FT → FS , such that Ψ ○ Φ(s) = s forall s ∈ S , so by uniqueness Ψ ○Φ = idFS . Similarly, Φ ○Ψ = idFT .
Corollary 3.3. If FS , F ′S are free groups on S , then FS ≃ F ′S , so the isomorphism class onyl depends on
∣S ∣.
Notation 3.4. Write Fn = F{a1,...,an} .
Definition 3.5 (normal closure)Define the normal closure of S ⊆ G by
⟪S⟫ = ⋂H⊴G s.t. S⊆H Hi.e. it is the smallest normal subgroup of G containing S .

Definition 3.6 (presentation)Given a set S , R ⊆ FS , define the presentation
⟨S ∣ R⟩ = FS

⟪R⟫

Proposition 3.7. Any group G can be written as a presentation.
Proof. Let S = G , R = ker (Φ ∶ FG → G).
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Proposition 3.8. Given ⟨S ∣ R⟩, w ∈ FS , then
⟨S ∣ R⟩ ≅ ⟨S ∪ {α} ∣ R ∪ {αw−1}⟩

Proof. We have natural homomorphisms Φ ∶ ⟨S ∣ R⟩ → ⟨S ∪ {α} ∣ R ∪ {αw−1}⟩ induced by S ↪ S ∪ {α}, andΨ induced by id ∶ S → S and α ↦ w .Similarly,
(i) If w ∈ R , we can replace w → sws−1 for some s ∈ S .(ii) If w1, w2 ∈ R , we can replace w1 → w1w2, and keep w2 as is.

3.2 Amalgamated free productsSuppose we have ι1 ∶ H → G1 and ι2 ∶ H → G2 homomorphisms.
Definition 3.9A group G is an amalgamated free product of G1 and G2 along H if

(i) There are homomorphisms φi ∶ Gi → G such that
H G1

G2 G

ι2

ι1

φ1

φ2
commutes, and(ii) if ji ∶ Gi → G′ are homomorphisms, then there exists a unique ψ ∶ G → G′ such that

H G1

G2 G

G′

ι2

ι1

φ1

φ2
j1

j2 ψ

commutes.
Proposition 3.10 (uniqueness of amalgamated free products). If G and G′ are both amalgamated freeproducts of G1 and G2 along H , then G ≅ G′.

Proof. We defined G via a universal property, so we have homomorphisms α ∶ G → G′ and β ∶ G′ → G .
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G1

H G G′ G

G2

φ1

φ2

φ′1

φ′2 φ2

φ1ι1

ι2

α β

Applying uniqueness in (ii) to the purple diagram, we get that β ○α = idG . Swapping G and G′ we get that
α ○ β = idG′ . Thus, α and β are inverses of each other, and G ≅ G′.

Proposition 3.11 (exisrence of amalgamated free products).
Proof. Choose presentations Gi = ⟨Si ∣ Ri⟩ and H = ⟨T ∣W ⟩. Then define

G = ⟨S1 ∪ S2 ∪ T ∣ R1 ∪ R2 ∪ {t−1ιj(t) ∣ t ∈ T , j = 1,2}⟩and φi ∶ Gi → G by s ∈ Si ↦ s ∈ Si. Now given ji ∶ Gi → G′, define Ψ ∶ G → G′ by
s ∈ S1 ↦ j1(s)
s ∈ S2 ↦ j2(s)
t ∈ T ↦ j1 ○ ι1(t) = j2 ○ ι2(t)

3.3 Seifart van Kampen

Theorem 3.12. Suppose U1, U2 ⊆ X open, X = U1 ∪ U2, where U1, U2, U1 ∩ U2 are path connected, and
x0 ∈ U1 ∩ U2. Let jI ∶ Ui ↪ X be the inclusion maps, and ji∗ ∶ π1(Ui, x0) → π1(X, x0) be the induced mapon fundamental groups. Then π1(X, x0) is generated by im(j1∗) ∪ im(j2∗).

Proof. If γ ∈ Ω(X, x0), then γ−1(U1), γ−1(U2) is an open cover of I . By the Lebesgue covering lemma, we canfind N ∈ N such that for each j , [j/N, (j + 1)/N] ⊆ γ−1(Ui) for some i. Label [j/N, (j + 1)/N] as 1 or 2accordingly (if it is in both, wlog choose 1).Let 0 = t0 < t1 < ⋅ ⋅ ⋅ < tk = 1 be the points j/N where the label changes, Ii = [ti−1, ti] and γi = γ∣Ii . Theneach γ(ti) ∈ U1 ∩U2 and γ(Ii) ⊆ Ui mod 22 and γ = γ1⋯γk .Choose η1, . . . , ηk−1, where each ηi ∈ Ω(U1∩U2, γ(ti), x0), which we can as U1∩U2 is path connected. Then
γ ∼e γ1η1
±
δ1

η−11 γeη2
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

δ2
⋯η−1k−2γk−1ηk−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

δk−1
η−1k−1γk
´¹¹¹¹¹¹¸¹¹¹¹¹¶

δkEach δi ∈ Ω(Ui mod 2, x0), so [δi] ∈ im(j(i mod 2)∗). Then [γ] = [δ1] . . . [δk] is a product of elements inim(j1∗) ∪ im(j2∗).
Theorem 3.13 (Seifart van Kampen). Suppose X = U1 ∪ U2, Ui ⊆ X open, U1, U2, U1 ∩ U2 are all pathconnected, x0 ∈ U1 ∩U2. We have a diagram of inclusions

2We can assume without loss of generality that γ(I1) ⊆ U1 .
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(U1 ∩U2, x0) (U1, x0)

(U2, x0) (X, x0)
ι2

ι1

j1
j2

which induces (by functoriality)
π1(U1 ∩U2, x0) π1(U1, x0)

π1(U2, x0) π1(X, x0)
ι2∗

ι1∗

j1∗

j2∗and we have that π1(X, x0) = G1 ∗H G2, where Gi = π1(Ui, x0) and H = π1(U1 ∩U2, x0).
Proof. Non-examinable, so omitted.
4 Simplicial complexes
4.1 Definitions

Definition 4.1 (n-simplex)The n-simplex is
∆n = {(x0, . . . , xn) ∈ Rn+1 ∣ xi ≥ 0,∑

i
xi = 1}

with the subspace topology from Rn+1.
Definition 4.2 (face)For I ⊆ {0, . . . , n}, the I-th face of ∆n is

eI = {x ∈ ∆n ∣ xi = 0 for i ∉ I}Let F(∆n) = {eI ∣ I ⊆ {0, . . . , n}} be the set of all faces of ∆n.
Notation 4.3. If I = {i0, . . . , ik} with i0 < i1 < ⋅ ⋅ ⋅ < ik , we write

ei0...ik ∶= eI

Proposition 4.4.(i) eI ⊆ ∆n is closed, eI ≃ ∆∣I∣−1,(ii) eI ⊆ eJ if and only if I ⊆ J ,(iii) eI ∩ eJ = eI∩J .
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Definition 4.5 (affine linear map)A map ∣f ∣ ∶ ∆n → Rm is affine linear if it is the restriction of a linear map Rn+1 → Rm. Equivalently,
∣f ∣ (∑

i
xiei) =∑

i
xi∣f ∣(ei)

Definition 4.6 (simplicial map)A map ∣f ∣ ∶ ∆n → ∆m is simplicial if it takes vertices of ∆n to vertices of ∆m, i.e. a map f̂ ∶ {0, . . . , n} →
{0, . . . ,m} with ∣f ∣(ei) = ef̂(i). That is, ∣f ∣(eI) = ef̂(I).
Definition 4.7 (affine linearly independent)
v0, . . . , vn ∈ RN are affine linearly independent if whenever ∑i tivi = 0 and ∑i ti = 0, then ti = 0 for all i.
Proposition 4.8. The following are equivalent.

(i) v0, . . . , vn are affine linearly independent,(ii) whenever ∑i tivi = ∑i t′i vi, with ∑i ti = ∑i t′i , then ti = t′i for all i,(iii) the vectors v1 − v0, . . . , vn − v0 are linearly independent,(iv) the map ∣f ∣ ∶ ∆n → RN given by ∣f ∣(ei) = vi is injective.
Definition 4.9 (Euclidean simplex)If v0, . . . , vn are affine linearly independent, write [v0, . . . , vn] = im(∣f ∣) = {∑i xivi ∣ ∑i xi = 1, xi ≥ 0} for theEuclidean simplex with vertices v0, . . . , vn.
Proposition 4.10. ∣f ∣ ∶ ∆n → [v0, . . . , vn] is a homeomorphism.

Proof. By the topological inverse function theorem, as ∆n is compact and [v0, . . . , vn] is Hausdorff.
Lemma 4.11. For X ⊆ Rn, let

Z(X) = {x ∈ X ∣ if x =∑
i
tixi, ti > 0,∑

i
ti = 1, xi ∈ X then xi = x for some i}

be the set of points in X which is not contained in the interior of any simplex contained in X . Then
Z([v0, . . . , vn]) = {v0, . . . , vn}.

Proof. ⊆ is clear from the definition of a simplex, so we show that vk ∈ Z([v0, . . . , vn]). Suppose vk = ∑ tixi,
ti > 0 and ∑i ti = 1. Then

xi =
n
∑
j=0 sijvjas xj ∈ [v0, . . . , vn]. So vk = ∑j ∑i sijvj . Since the vj are affine linearly independent, and ∑j ∑i tisij = 1, wemust have that ∑i tisij = 0 for j! = 0. But ti > 0 and sij ≥ 0, so the only case is when sij = 0 for j ≠ k . So xj = vkfor all j .
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Corollary 4.12. [v0, . . . , vn] = [v ′0, . . . , v ′n] if and only if {v0, . . . , vn} = {v ′0, . . . , v ′n}.
Proof. ⇐Ô is obvious. Ô⇒ follows from applying Z to both sides..

Definition 4.13Let S(Rn) be the set of Euclidean simplices σ ⊆ Rn.
4.2 Simplicial complexes
4.2.1 Abstract simplicial complexes

Definition 4.14 (abstract simplicial complex)An abstract simplicial complex in ∆n is a subset K ⊆ F(∆n) such that if eJ ∈ K and I ⊆ J , eI ∈ K .
Definition 4.15 (polyhedron)If K is an abstract simplicial complex, its polyhedron is ∣K ∣ = ⋃eI∈K eI ⊆ ∆n

Definition 4.16 (skeleton, vertex set)For −1 ≤ r ≤ n, the r-skeleton of an abstract simplicial complex K is
Kr = {eI ∈ K ∣ ∣I ∣ ≤ r + 1}The vertex set of K is V (K ) = ∣K0∣.

Definition 4.17 (dimension)The dimension of an abstract simplicial complex is
dim(K ) = max {dim(eI) = ∣I ∣ − 1 ∣ eI ∈ K}

Definition 4.18 (simplicial map)If K, L are abstract simplicial complexes in ∆n,∆m respectively, a simplicial map f ∶ K → L is a map
f ∶ K → L such that there exists a simplicial map ∣f ∣ ∶ ∆n → ∆m such that f(eI) = ∣f ∣(eI) for all eI ∈ K .Equivalently, there is a map f̂ ∶ {0, . . . , n} → {0, . . . ,m} such that f(eI) = ef̂(I) for all eI ∈ K , and
eI ∈ K implies that f(eI) ∈ L.
Definition 4.19 (simplicial isomorphism)A simplicial map f ∶ K → L is a simplicial isomorphism if it is a bijection.

4.2.2 Euclidean simplicial complexes

Definition 4.20 (Euclidean simplicial complex)
K ⊆ S(Rn) is a Euclidean simplicial complex if
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(i) K is finite,(ii) If σ ∈ K and τ ∈ F(σ), then τ ∈ K , where
F([v0, . . . , vn]) = {[vi0 , . . . , vik ∣ I = i0 . . . ik ⊆ {0, . . . , n}]}is the set of faces of [v0, . . . , vn],(iii) If σ1, σ2 ∈ K , then σ1 ∩ σ2 ∈ F(σ1) ∩ F(σ2). In particular, σ1 ∩ σ2 ∈ K .

We define the polyhedron and r-skeleton as for abstract simplicial complexes.
Proposition 4.21. Suppose ∣φ∣ ∶ ∆n → Rn is affine linear, K is an ASC in ∆n and ∣φ∣∣∣K ∣ is injective. Then
L = φ(K ) = {∣φ∣(eI) ∣ eI ∈ J} is an ESC.In this case, we say that L = φ(K ) is a realisation of K .

Proof. Property (i) folloes form the fact that since F(∆n) is finite, K must be finite, so L is finite. For (ii), if
σ ∈ φ(K ), σ = ∣φ∣(eI) where eI ∈ K , and so if τ is a fact of σ , then τ = ∣φ∣(eJ) for some J ⊆ I . As K is an ASC,
eJ ∈ K . So τ ∈ φ(K ) = L.Finally, for (ii), suppose σ = ∣φ∣(eI) and τ = ∣φ∣(eJ). Then σ ∩ τ = ∣φ∣(eI) ∩ ∣φ∣(eJ) = ∣φ∣(eI ∩ eJ) byinjectivity. But eI∩J = eI ∩ eJ ∈ K as K is down-directed, and so σ ∩ τ = ∣φ∣(eI∩J) ∈ F(σ) ∩ F(τ).

Proposition 4.22. If L ⊆ Rn is an ESC, then L = φ(K ) for some ASC K , and ∣φ∣ ∶ K → L is a homeomor-phism. That is, every ESC is the realisation of an ASC, and any two such K are isomorphic.
Proof. Let V (L) = ∣L0∣ = {v0, . . . , vn}. Define K = {eI ∈ ∆n ∣ [vi0 , . . . , vik ] ∈ L}, and define ∣φ∣ ∶ ∆n → Rn by
∣φ∣(ei) = vi.We want to show that ∣φ∣∣∣K ∣ is injective. If σ = [vi0 , . . . , vik ] ∈ K , then vi0 , . . . , vik are affine linearlyindependent, so ∣φ∣∣eI is injective.Now suppose ∣φ∣(p) = ∣φ∣(q) = x ∈ Rn, where p ∈ eI ∈ L and q ∈ eJ ∈ L. Then x ∈ ∣φ∣(eI) ∩ ∣φ∣(eJ), which isthe intersection of simplices in L, so x ∈ ∣φ∣(eI′) for some I′ ⊆ I ∩ J . Since ∣φ∣∣eI and ∣φ∣∣eJ are injective, we musthave that p,q ∈ eI′ . But ∣φ∣∣eI′ is also injective, so p = q.

Definition 4.23Suppose L1, L2 are ESCs. Then f ∶ L1 → L2 is a simplicial map if there are realisations φi ∶ Ki → Li and asimplicial map F ∶ K1 → K2 such that
K1 K2

L1 L2
φ1 φ2

F

fcommutes.
4.3 Barycentric subdivision

Definition 4.24 (boundary and interior)Let σ be an n-dimensional Euclidean simplex, F(σ) be the set of faces of σ , which is an Euclideansimplicial complex with ∣F(σ)∣ = σ . Define /∂σ = F(σ)n−1 = F(σ) ∖ σ , which is a Euclidean simplicialcomplex. Then we can define
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∂σ = ∣ /∂σ ∣ and σo = σ ∖ ∂σ

4.3.1 Cones

Definition 4.25 (independent)Let X ⊆ Rn and p ∈ Rn. We say that p is independent of X if for each x ∈ X , the ray px from p to x has
px ∩ X = {x}.
Definition 4.26 (cone)If p is independent of X , define the cone

Cp(X) = {tp + (1 − t)x ∣ t ∈ [0,1], x ∈ X}
Proposition 4.27. If X = [v0, . . . , vn], then p is independent to X if and only if v0, . . . , vn, p are affinelinearly independent. In this case, Cp(X) = [v0, . . . , vn, p].
Definition 4.28 (cone of an ESC)If K is an ESC in Rn, and p is independent of ∣K ∣, then define the cone of K ,

Cp(K ) = K ∪ {[v0, . . . , vj , p] ∣ [v0, . . . , vj] ∈ K}

Lemma 4.29. If p is independent of ∣K ∣, then Cp(K ) is an ESC, and ∣Cp(K )∣ = Cp(∣K ∣).
Definition 4.30 (barycentre)If σ = [v0, . . . , vn] is a simplex, define its barycentre to be

bσ =
1

n + 1 n
∑
i=0 vi

Lemma 4.31. bσ is independent of ∂σ , and Cbσ (∂σ) = σ .
Theorem 4.32 (barycentric subdivision). There exists maps β ∶ S(Rn)→ {ESCs in Rn} and B ∶ {ESCs in Rn}→
{ESCs in Rn} such that ∣β(σ)∣ = σ and ∣B(K )∣ = ∣K ∣.

Proof. We will define β,B for simplices/ESCs of dimension ≤ n inductively. More precisely, we have:
Proposition 4.33 (p1(n)). If σ ∈ S(RN) is an n -simplex, then β(σ) is an ESC of dimension n, withpolyhedron ∣β(σ)∣ = σ . Moreover, if τ is a face of σ , σ ′ ∈ β(σ), then σ ′ ∩ τ ∈ β(τ).
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Proposition 4.34 (p2(n)). If K is an n-dimensional ESC, then B(K ) is an n-dimensional ESC, withpolyhedron ∣B(K )∣ = ∣K ∣.
Base case: p1(−1) and p2(−1). In this case, σ = ∅, so β(σ) = ∅, K = {∅}, so B(K ) = K .
Inductive case (i): p2(n − 1) Ô⇒ p1(n). Define

β(σ) = Cβσ (B(/∂σ))As /∂σ is an ESC of dimension n − 1, B(/∂σ) is an ESC of dimension n − 1 as well, by p2(n − 1), and
∣B(∂σ)∣ = ∣ /∂σ ∣ = ∂σ . Since bσ is independent of ∂σ = ∣B(/∂σ)∣, we have that Cbσ is an ESC with polyhedron
∣Cbσ ∣(B(/∂σ)) = Cbσ (∂σ) = σ . The statement about faces follows from:

Lemma 4.35. If σ ∈ Cp(K ), then σ ∩ ∣K ∣ ∈ K .
Inductive case (ii): p1(n) Ô⇒ p2(n). Define

B(K ) = ⋃
σ∈K

β(σ)

Then we need to check that this is an ESC. (i) Finiteness is obvious. (ii) If σ ∈ B(K ), then σ ∈ β(σ ′) forsome σ ′ ∈ K , so if τ is a face of σ , then τ ∈ β(σ ′) since β(σ ′) is an ESC. So τ ∈ B(K ).Finally for (iii), suppose σ1, σ2 ∈ B(K ), where σi ∈ β(σ ′i ), σ ′i ∈ K . Then σ∩σ2 ⊆ σ ′1 ∩ σ ′2 since ∣β(σ ′i )∣ = σ ′i .Let τ = σ ′1 ∩ σ ′2 ∈ K . Then σ1 ∩ τ, σ2 ∩ τ ∈ β(τ) by p1(n), and as β(τ) is an ESC, σ1 ∩ σ2 = σ1 ∩ σ2 ∩ τ =
(σ1 ∩ τ) ∩ (σ2 ∩ τ) ∈ β(τ) as β(τ) is an ESC. But β(τ) ⊆ B(K ), so σ1 ∩ σ2 ∈ B(K ).ThereforeB(K ) is an ESC with ∣B(K )∣ = ⋃σ∈K ∣β(σ)∣ = ⋃σ∈K σ = ∣K ∣.
4.4 Simplicial approximation
4.4.1 Mesh

Lemma 4.36. If σ ∈ S(Rn), x,w ∈ σ , then ∥w − x∥ ≤ maxv∈V (σ) ∥v −w∥.
Proof. Write x = ∑ xivi, w = ∑ xiw , then

∥w − x∥ = ∥∑ xi(vi −w)∥ ≤∑ xi∥vi −w∥ ≤∑ xi max
i
∥vi −w∥ = max

i
∥vi −w∥

So ∥x −w∥ ≤ maxv,v ′∈V (σ) ∥v − v ′∥.
Definition 4.37 (mesh)The mesh of a simplex σ is

µ(σ) = max
v,v ′∈V (σ)

∥v − v ′∥ = max
x,w∈σ
∥x −w∥

The mesh of an ESC is
µ(K ) = max

σ∈K
µ(σ)

Lemma 4.38. If bσ is the barycentre of σ = [v0, . . . , vn], then
max
x∈σ
∥bσ − x∥ ≤

n
n + 1µ(σ)
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Proof. As ∥bσ − x∥ ≤ maxv∈V (σ) ∥bσ − v∥, suffices to prove the result for a vertex v ∈ V (σ). Now
∥bσ − vi∥ =

1
n + 1XXXXXXXXXXX∑i≠j vj − nvi

XXXXXXXXXXX
≤ 1
n + 1∑i≠j ∥vj − vi∥ ≤ n

n + 1µ(σ)

Corollary 4.39. Let σ be an Euclidean simplex, dim(σ) = n. Then µ(β(σ)) ≤ n
n+1µ(σ). If K is an ESCwith dim(K ) = n, then µ(B(K )) ≤ n

n+1µ(K ).
Proof. Let τ ∈ β(σ). Suppose τ ∈ B(/∂σ). Then µ(τ) ≤ n−1

n µ(B(/∂σ)) ≤ n
n+1µ(σ) by induction on n. Otherwise,

τ = [v0, . . . , vk , bσ ], where [v0, . . . , vk] ∈ B(/∂σ), then ∥vi − vJ∥ ≤ n−1
n µ(σ) by induction on n and ∥vi − bσ∥ ≤

n
n+1µ(σ) by the lemma. As n−1

n ≤
n
n+1 , we are done.

4.4.2 Simplicial approximation

Lemma 4.40.(i) if x ∈ ∆n, then there is a unique I ⊆ {0, . . . , n} such that x ∈ eoI ,(ii) if x ∈ eoI , then x ∈ eJ if and only if eI ⊆ eJ if and only if I ⊆ J .(iii) if K is an ASC in ∆n, x ∈ eoI and x ∈ ∣K ∣, then eI ∈ K .
Proof. For (i), take I = {i ∣ xi > 0}. Then (ii) follows from (i). For (iii), as x ∈ ∣K ∣, x ∈ eJ for some eJ ∈ K . By (ii),
eI ⊆ eJ . Since K is an ESC, eI ∈ K .

Corollary 4.41. Suppose K is an ESC, if x ∈ ∣K ∣, then there is a unique σ ∈ K with x ∈ σo.
Proof. Let φ ∶ L → K be a realisation of K , where L is an ASC. Let x′ = ∣φ∣−1(x) ∈ ∣K ∣. Then by (i) of the lemma,there exists a unique I such that x ∈ eoI , so eI ∈ L by (iii). So φ(eI) = σ os the unique σ ∈ K with x ∈ σo.

Definition 4.42 (star)If K is an ESC, v ∈ V (K ), then the star of K at v is
StK (v) = ⋃

σ∈K s.t. v∈σ σo

Lemma 4.43.(i) If x ∈ ∣K ∣, x ∈ σo, then x ∈ StK (v) ⇐⇒ v ∈ V (σ).(ii) StK (v) = ∣K ∣ ∖ ⋃
σ∈K s.t. v∉V (σ) σo = ∣K ∣ ∖ ⋃

σ∈K s.t. v∉V (σ) σ
(iii) {StK (v) ∣ v ∈ V (K )} is an open cover of ∣K ∣.

Proof. (i) follows form the fact that if x ∈ ∣K ∣, then x ∈ σo for a unique σ ∈ K . (ii) the first equality follows form(i), the second follows from the fact that if τ ∈ F(σ), v ∉ V (σ) then v ∉ V (τ). (iii) from (ii), we have that StK (v)is the complement of a finite union of closed sets, so StK (v) is open. If x ∈ ∣K ∣, then x ∈ σo for some σ ∈ K . If
v ∈ V (σ), then x ∈ StK (v).
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Definition 4.44 (simplicial approximation)Suppose K, L are ESCs, f ∶ ∣K ∣ → ∣L∣ continuous, ĝ ∶ V (K ) → V (L) is called a simplicial approximationto f if for all v ∈ V (K ),
f(StK (v)) ⊆ StL(ĝ(v))

Theorem 4.45. Let φ ∶ K ′ → K be a realisation of K , and define g′ ∶ ∣K ′∣ → Rm, where L ⊆ Rm to be theaffine linear map given by ∣g′∣(v) = ĝ(φ(v)) for all v ∈ V (K ). Let ∣g∣ = ∣g′∣ ○ ∣φ∣−1. Then ∣g∣ defines asimplicial map g ∶ K → L and ∣g∣ ∼ f .
Proof. Let σ ∈ K , we want to show ∣g∣(σ) ∈ L. Let x ∈ σo be an arbitrary point in the interior. Then f(x) ∈ ∣L∣,so f(x) ∈ τo with τ ∈ L. So x ∈ ⋂v∈V (σ) StK (v), so

f(x) ∈ ⋂
v∈V (σ)

f(StK (v)) ⊆ ⋂
v∈V (σ)

StL(g(v))
as ĝ is a simplicial approximation to f . Now if v ∈ V (σ), f(x) ∈ τo and f(x) ∈ StL(g(v)), so g(v) ∈ τ bypart (i) of the lemma. So every vertex of ∣g∣(σ) is a vertex of τ , and so ∣g∣(σ) is a face of τ ∈ L, so ∣g∣(σ) ∈ Las required. So g ∶ K → L is simplicial.For the homotopy, define H ∶ ∣K ∣× I → Rm by H(x, t) = t∣g∣(x)+ (1− t)f(x). This is a homotopy in Rm, sowe need to show that it is a homotopy in ∣L∣.Suppose x ∈ σo and f(x) ∈ τo as before. Then x = ∑vi∈V (σ) xivi, so ∣g∣(x) = ∑vi∈V (σ) xi∣g∣(vi) ∈ τ since

∣g∣(vi) ∈ τ for all i. Since τ is convex and ∣g∣(x), f(x) ∈ τ , we must have that H(x, t) ∈ τ for t ∈ [0,1]. So
H ∶ ∣K ∣ × I → ∣L∣, which is the required homotopy.

Theorem 4.46 (simplicial approximation). Let K, L be Euclidean simplicial complexes, f ∶ ∣K ∣ → ∣L∣ be acontinuous map. Then there exists r > 0 and a simplicial map g ∶ Br(K )→ L such that ∣g∣ ∼ f .
Proof. We have an open cover {StL(v) ∣ v ∈ V (L)} of ∣L∣. f ∶ ∣K ∣→ ∣L∣ is continuous, so {f−1(StL(v)) ∣ v ∈ V (L)}is an open cover of ∣K ∣. ∣K ∣ is a compact metric space, so we can apply the Lebesgue covering lemma to find
δ > 0 and a function ∣K ∣ → V (L) sending each x ∈ ∣K ∣ to a vertex vx ∈ V (L) such that Bδ(x) ⊆ f−1(StL(vx)).Let r be such that µ(Br(K )) < δ , and let K ′ = Br(K ). If σ ∈ K ′ and x ∈ V (σ), then σ ⊆ Bδ(x) as µ(K ′) < δ .If xinV (K ′), Then StK ′(x) = ⋃

σ s.t. x∈V (σ) σo ⊆ ⋃
σ s.t. x∈V (σ)σ⊆Bδ(x) σ ⊆ Bδ(x)Hence f(StK ′(x)) ⊆ f(Bδ(x)) ⊆ StL(vx), so the function f̂ ∶ V (K ′)→ V (L) given by ĝ(x) = vx is a simplicialapproximation of f . So by the previous theorem, ĝ determines a simplicial map g ∶ K ′ → L with ∣g∣ ∼ f .

5 Simplicial homology
5.1 Chain complexes

Definition 5.1 (chain complex)A (finitely generated) chain complex (C●, d) is
(i) (finitely generated) free ablelian groups (Ci)i∈Z (where finitely many Ci are nonzero),(ii) group homomorphisms di ∶ Ci → Ci−1,(iii) such that d2 = 0, i.e. di ○ di+1 = 0 for all i.
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Notation 5.2. We write C∗ =⊕i CI and d ∶ C∗ → C∗ given by d =⊕i di .
Definition 5.3 (reduced chain complex of simplex)The reduced chain complex of ∆n is

C̃i(∆n) = ⟨eI ∣ ∣I ∣ = i + 1⟩with differential
deI =

k
∑
j=0(−1)jeÎjwhere if I = i0 . . . ik , with i0 < i1 < ⋅ ⋅ ⋅ < iK , then Îj = I ∖ {ij}.

Proposition 5.4. d2 = 0 in C̃∗(∆n).
Proof. The eI are a basiss for C̃∗(∆n), so suffices to show that d2(eI) = 0. But

d2(eI) =∑
j<k
cjkeIĵk

where Iĵk = I ∖ {ij , ik} and
cjk = (−1)j(−1)k−1 + (−1)k(−1)j = 0which corresponds to removing j then k , and removing k then j respectively.

Definition 5.5 (chain complex of a simplex)The chain complex of ∆n is
Ci(∆n) =

⎧⎪⎪⎨⎪⎪⎩

Ci(∆n) if i ≠ −10 ifi = −1and differential as in the reduced case, except d0 = 0.
Proposition 5.6. d2 = 0 in Ci(∆n).
Definition 5.7 (reduced chain complex of an abstract simplicial complex)If K is an ASC in ∆n, then we get a new chain complex with

C̃i(K ) = ⟨eI ∣ eI ∈ K, ∣I ∣ = i + 1⟩ ≤ C̃i(∆n)Since K is an ASC, deI ∈ K for any eI ∈ K , so we get d ∶ C̃i(K )→ C̃i−1(K ).
We can define the chain complex of an ASC in the same way. Note both of these are chain complexes asthey are subcomplexes of the chain complexes of ∆n, and so we must have that d2 = 0.

Definition 5.8 (cycle, closed, boundary, exact)Given a chain complex (C∗, d), we say x is a cycle, or x is closed if dx = 0. We say x is a boundary, or
x is exact if x = dy for some y.
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We write Zk(C∗) = ker(dk) for the subgroup of cycles, and Bk(C∗) = im(dk+1) for the subgroup ofboundaries.
Remark 5.9. All boundaries are cycles as d2 = 0.
Definition 5.10 (homology group of a chain complex)Let (C∗, d) be a chain complex, then its k-th homology group is

Hk(C∗) =
Zk(C∗)
Bk(C∗)

Definition 5.11 ((reduced) homology group of a simplicial complex)If K is an ASC in ∆n, define the i-th reduced homology group of K to be
H̃i(K ) = Hi(C̃∗(K ))and the i-th homology group of K is
Hi(K ) = Hi(C∗(K ))

5.2 Chain maps and chain homotopies
5.3 Chain maps

Definition 5.12 (chain map)Suppose (C∗, d) and (C ′∗, d′) are chain complexes. A chain map f ∶ C∗ → C ′∗ is
(i) For each i, a group homomorphism fi ∶ Ci → C ′i ,(ii) such that the following diagram commutes.

Ci Ci−1

C ′i C ′i−1
fi fi−1

di

d′i

Equivalently, if f =⊕i fi, then fd = d′f .
Proposition 5.13 (functoriality). Homology is functorial, that is, given a chain map f ∶ C∗ → C ′∗, we havean induced map f∗ ∶ Hi(C∗)→ Hi(C ′∗), given by f∗[x] = [f x].

Proof. The only thing we need to check is that f∗ is well defined. But f(ker(d)) ⊆ ker(d′) and f(im(d)) ⊆im(d′). So f∗ is well defined.
5.3.1 Chain maps from simplicial mapsSo far, we have simplices eI , where I = i0 . . . ik with i0 < ⋅ ⋅ ⋅ < ik . We will now drop the assumption that
i0 < ⋅ ⋅ ⋅ < ik .

Note: The definitions in this section are different to the ones in the notes, which involve crossings of
links and so on. This should be simpler and equivalent.
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Definition 5.14 (orientation)Let I = (i0, . . . , ik) ∈ {0, . . . , n}k+1, with i0, . . . , ik distinct. Then we define the orientation of I to be
S(I) = ε(f)where f ∈ Sn is the permutation sending (i0, . . . , ik) to (i′0, . . . , i′k), where i′0, . . . , i′k are i0, . . . , ik inincreasing order.

Definition 5.15 (oriented simplex)Let I = (i0, . . . , ik) be as above, and I′ = i′0 . . . i′k . Then we define the oriented simplex
eI = S(I)eI′

Remark 5.16. Note in the definition above we required the ij distinct. If not, we define eI = 0.
Proposition 5.17.

d(eI) =
k
∑
j=0(−1)j(eÎj )where Îj is obtainted by omitting the j-th entry of I .

Proof. The only thing we need to do here is to keep track of the signs, which follows from the definition oforientations.
Definition 5.18 (induced chain map from simplicial map)If f ∶ K → L is a simplicial map, define f# ∶ C∗(K )→ C∗(L) by f#(eI) = ef̂(I).

5.3.2 Chain homotopies

Definition 5.19 (chain homotopy)If f , g ∶ (C,d)→ (C ′, d′) are chain maps, a chain homotopy from f to g is a map h ∶ C∗ → C ′∗+1 such that
d′h + hd = f − g.
Lemma 5.20. If f0 ∼ f1, then f0∗ = f1∗ ∶ H∗(C)→ H∗(C ′).

Proof. Suppose x ∈ Z∗(C). Then dx = 0, so
f1∗[x] − f0∗[x] = [(f1 − f0)x] = [(d′h + hd)x] = [d′(hx)] = 0

Definition 5.21 (contractible)We say that a chain complex (C,d) is contractible if idC ∼ 0C .
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Lemma 5.22. If (C,d) is contractible, then H∗(C) = 0.
Proof. If [x] ∈ H∗(C), [x] = id∗[x] = 0∗[x] = [0] = 0.
5.4 Homology groups of spheres

Definition 5.23 (cone of an ASC)If K is an ASC in ∆n, e0 ∈ K , the cone Ce0(K ) is
Ce0(K ) = K ∪ {e0I ∣ eI ∈ K}

Proposition 5.24. Ce0(K ) is an ASC, and if L = ∣K ∣ is a realisation of K , then
∣Ce0(K )∣ = Cp(L)for some p independent of L.

Proposition 5.25. Define ∆̂n = {eI ∈ ∆n+1 ∣ 0 ∉ i} ≃ ∆n, then ∆n+1 = Ce0(∆̂n).
Proposition 5.26. C̃(Ce0(K )) is contractible.

Proof. Define h ∶ C̃j(Ce0(K ))→ C̃j+1(Ce0(K )) by
h(eI) =

⎧⎪⎪⎨⎪⎪⎩

0 if 0 ∈ I
e0I if 0 ∉ IIf 0 ∈ I , then dh(eI) = 0, and

hd(eI) = h
⎛
⎝

k
∑
j=0(−1)jeÎj⎞⎠ = h (eI∖{0} +∑eI′) = eI

where I′ are such that 0 ∈ I′. On the other hand, if 0 ∉ eI , then
dh(eI) = d(e0I) = eI +∑(−1)j+1e0Îj = eI − hd(eI)In either case, (dh + hd)(eI) = eI .

Corollary 5.27.

(i) H̃(Ce0(K )) = 0,
(ii) Hi(Ce0(K )) =

⎧⎪⎪⎨⎪⎪⎩

Z if i = 00 otherwise
Proof. (i) is immediate from C̃(Ce0(K ) being contractible. For (ii), when i ≠ 0,−1 the homology and reducedhomology groups are the same, so we only need to check these two cases.Now H̃−1(Ce0(K )) = 0, so d0 ∶ C̃0 → C̃−1 ≃ Z is surjective. Then we have that

Z ≃ im(d̃0) ≃ C̃0ker(d̃0) ≃
C̃0im(d̃1) =

C0im(d1) =
ker(d0)im(d1) = H0(Ce0(K ))
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Corollary 5.28.

Hi(Sn) =
⎧⎪⎪⎨⎪⎪⎩

Z if i = 0, n0 otherwise
Proof. Sn = ∆n ∖ {e0...n}.
5.5 Exact sequences and snake lemma

Definition 5.29The sequence
⋯ Ak+1 Ak Ak−1 ⋯fk+1 fk

is exact at Ak if ker(fk) = im(fk+1). It is exact if it is exact at every Ak .
Definition 5.30 (short exact sequence)A short exact sequence of is an exact sequence of the form

0 A B C 0f g

Definition 5.31 (SES of chain complexes)A SES of chain complexes is
0 A∗ B∗ C∗ 0f g

are chain maps f , g such that im(f) = ker(g), f injective and g surjective.
Lemma 5.32 (snake lemma). If

0 A B C 0f g

is a SES of chain complexes, then we have a LES
⋰

Hk(A) Hk(B) Hk(C)

Hk−1(A) Hk−1(B) Hk−1(C)
⋰

f∗ g∗

f∗ g∗

∂

∂

∂
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definition of ∂.
Ak Bk Ck

Ak−1 Bk−1 Ck−1

Ak−2 Bk−2 Ck−2

d d d

ddd

f g

f g

f g

Given c ∈ Zk(C), we define ∂[c] by
(i) As g is surjective, we have b ∈ Bk such that g(b) = c.(ii) g(db) = d(gb) = dc = 0, so db ∈ ker(g) = im(f). Say db = fa for some a ∈ Ak−1.(iii) f(da) = df(a) = d(db) = 0. As f is injective, da = 0. So a ∈ Zk−1(A).(iv) ∂[c] = [a] ∈ Hk−1(A).

5.5.1 Mayer-VietorisIf K1, K2 are ASCs in ∆n, then K1 ∩K2 and K1 ∪K2 are both ASCs in ∆n, and we have a squeare of simplicialmaps given by inclusion.
K1

K1 ∩K2 K1 ∪K2

K2
i2

i1 j1

j2

By functoriality, we have a square at the level of chain complexes,
C∗(K1)

C∗(K1 ∩K2) C∗(K1 ∪K2)

C∗(K2)
i2#

i1# j1#

j2#

Proposition 5.33. Define maps i ∶ C∗(K1∩K2)→ C∗(K1)⊕C∗(K2) and j ∶ C∗(K1)⊕C∗(K2)→ C∗(K1∪K2)by
i(x) = (i1#(x), i2#(x)) and j(x, y) = j1#(x) − j2#(x)Then
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0 C∗(K1 ∩K2) C∗(K1)⊕ C∗(K2) C∗(K1 ∪K2) 0i j

is a SES of chain complexes.
Proof. It is easy to check exactness at each group.

Theorem 5.34 (Mayer-Vietoris). We have a long exact sequence in homology
⋰

Hi(K1 ∩K2) Hi(K1)⊕Hi(K2) Hi(K1 ∪K2)

Hi−1(K1 ∩K2) Hi−1(K1)⊕Hi−1(K2) Hi−1(K1 ∪K2)
⋰

i∗ j∗

i∗ j∗

∂

Proof. Snake lemma.
Corollary 5.35. Hi(K ⊔ L) = Hi(K )⊕Hi(L) for all i.

5.6 Euler characteristic and Lefschetz fixed point theoremLet (C,d) be a chain complex over Q, so H∗(C) is a Q-vector space. f ∶ C→ C is a chain map, which induces
f∗ ∶ H∗(C)→ H∗(C). Both f , f∗ are linear endomorphisms of a vector space.

Definition 5.36 (Lefschetz number)The Lefschetz number of f is
L(f) =∑

k
(−1)k tr(fk)

, and the Lefschetz number of f∗ is
L(f∗) =∑

k
(−1)k tr(fk∗).

Proposition 5.37. L(f) = L(f∗).
Proof. Let Uk = im(dk+1) ≤ ker(dk) ≤ Ck . Then ker(dk) = Uk ⊕ Vk , and Ck = Uk ⊕ Vk ⊕ U ′k . With this,
d ∶ U ′k → Uk−1 is an isomorphism. With respect to this decomposition, we have that

dk =
⎛
⎜
⎝

0 0 I0 0 00 0 0
⎞
⎟
⎠Also, as f(im(dk+1)) ≤ im(dk+1) and f(ker(dk)) ≤ ker(dk), we have that

fk =
⎛
⎜
⎝

Ak XK ∗0 Bk ∗0 0 A′k

⎞
⎟
⎠
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And df = fd implies Ak−1 = A′k , so
Hk(C) =

ker(dk)im(dk+1) = Uk ⊕ VkUk
≃ Uk

and by considering the matrix of the induced map on a quotient, we find that f∗ ∶ Hk(C)→ Hk(C) is givenby
f∗[v] = [Bkv]Therefore,

L(f) =∑(−1)k tr(fk) =∑(−1)k(tr(Ak) + tr(Bk) + tr(Ak−1)) =∑(−1)k tr(Bk) = L(f∗)

Definition 5.38 (Euler characteristic)If K is a simplicial complex, C = C∗(K ), then define the Euler characteristic of K to be
χ(K ) = χ(C) = L(idC) =∑(−1)k dim(Hk(K )) =∑(−1)k dim(Ck(K ))

Proposition 5.39. The Euler characteristic is a topological invariant, depending only on ∣K ∣.
Theorem 5.40 (Lefschetz fixed point theorem). Suppose F ∶ ∣K ∣ → ∣K ∣ is continuous, L(F) ≠ 0. Then Fhas a fixed point.

Proof. We prove the contrapositive. Suppose F has no fixed point. Then as ∣K ∣ is compact, there exists ε > 0such that ∥F(x) − x∥ ≥ ε for all x ∈ ∣K ∣. If f ∶ Br+nK → BrK is a simplicial approximation of F , then F∗(σ)does not contain σ for any σ ∈ Br+nK if the mesh is < ε. So L(F) = L(f) = 0.
6 Homology of triangulable spaces

Theorem 6.1. If f0, f1 ∶ K → L are simplicial approximations to F ∶ ∣K ∣→ ∣L∣, with f0# ∼ f1#. Then f0∗ ∼ f1∗.
Theorem 6.2. There is an isomorphism νK ∶ H∗(BK ) → H∗(K ) such that ν∗ = f∗, where f ∶ BK → K isany simplicial approximation to the identity map on ∣BK ∣ = ∣K ∣. That is, we have

H∗(BkK ) H∗(Bk−1K ) ⋯ H∗(K )ν ν ν

νK,r

Definition 6.3 (induced map on homology of a continuous map)Suppose F ∶ ∣K ∣ → ∣L∣ is continuous, let f ∶ BrK → L be a simplicial approximation to F . Then define
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F∗ ∶ H∗(K )→ H∗(L) by
H∗(K ) H∗(L)

H∗(BrK )

f∗ν−1
K,r

F∗

Theorem 6.4 (functoriality).(i) F∗ is well defined, that is, it does not depend on the choice of f ,(ii) (idK )∗ = idH∗(K),(iii) (F ○G)∗ = F∗ ○G∗,
Theorem 6.5 (homotopy invariance). If F0, F1 ∶ ∣K ∣→ ∣L∣, with F0 ∼ F1, then F0∗ ∼ F1∗.
Proposition 6.6 (homotopy invariance of homology). If ∣K ∣ ∼ ∣L∣, then H∗(K ) ≃ H∗(L).

Proof. Suppose F ∶ ∣K ∣→ ∣L∣, G ∶ ∣L∣→ ∣K ∣ are such that F ○G ∼ id∣L∣ and G ○ F ∼ id∣K ∣. Then
F∗ ○G∗ = (F ○G)∗ = id∣L∣∗ = idH∗(L)and vice versa.

Definition 6.7 (triangulable)A topological space X is triangulable if there exists an ASC K with ∣K ∣ ≃ X .
Proposition 6.8. If X is triangulable, then there is a well defined homology group H∗(X) = H∗(K ).
Proposition 6.9. If ∣K ∣ is path connected, then H0(K ) ≃ Z.

Proof. As ∣K ∣ is path connected, if we define the maps Fi ∶ ∆0 → ∣K ∣, Fi(e0) = ei, then Fi ∼ Fj . As Fi∗[e0] = [ei],
[ei] = [ej] for all i, j .

Corollary 6.10.
H0(K ) = Znumber of path components of ∣K ∣

6.1 Brouwer

Proposition 6.11. There is no retraction r ∶ Dn → Sn−1.
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Proof. Sn−1 ↪ Dn → Sn−1, so if r is a retraction, r ○ ι = id, so (r ○ ι)∗ = r∗ ○ ι∗ = idH∗(Sn−1). But this means weget
Hn−1(Sn−1) Hn−1(Dn) Hn−1(Sn−1)

Z 0 Z

ι∗ r∗

id

which is clearly false.
Theorem 6.12 (Brouwer). If F ∶ Dn → Dn is continuous, then F has a fixed point.

Proof. Suppose not. Then consider the ray f(x)x for each x ∈ Dn. The intersection of this ray with ∂Dn = Sn−1defines a retraction. Contradiction.
6.2 Homology of surfaces

Theorem 6.13. If Σg is a genus g compact orientable surface, then
H∗(Σg) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z if ∗ = 0,2
Z2g if ∗ = 10 otherwise

Theorem 6.14. If Sr is the r-th compact non-orientable surface, obtained by gluing Möbius bands, then
H∗(Sr) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Zr−1 ⊕Z/2 if ∗ = 1
Z if ∗ = 00 otherwise

Both proofs involve an inductive construction of the surfaces, and using the Mayer-Vietoris sequence. Notethat the proofs given in lectures weren’t the nicest, so we will also give a different proof afterwards.
6.2.1 Proof of the orientable caseLet K1 be a triangulation of T 2, and K ′1 = K1 ∖ σ , where σ is a 2-simplex. Then ∂K ′1 = ∂σ = S1. Inductively,define

Kg = K ′g−1 ∪S1 K ′1 and K ′g = Kg ∖ σwhere σ ∈ Kg is a 2-simplex.
Proposition 6.15 (p1(g)).

H∗(Kg) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z if ∗ = 0,2
Z2g if ∗ = 10 otherwise
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Proposition 6.16 (p2(g)).
H∗(K ′g) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Z2g if ∗ = 1
Z if ∗ = 00 otherwise

Base case: p1(1). That is, the homology of the torus. This is an easy Mayer-Vietoris computation,where we take the square for T 2 and cut it into two vertical rectangles.
Inductive case (i): p1(g) Ô⇒ p2(g). Using Mayer-Vietoris with

Kg = K ′g ∪ ∆2
gives the required result.
Inductive case (ii): p2(g) Ô⇒ p1(g + 1). We will use the Mayer-Vietoris sequence with

Kg+1 = K ′g ∪K ′1gives the required result.
6.2.2 Proof of the non-orientable caseWe will only go through the construction of the surfaces. The induction is the same as in the orientable case.Let L1 be a triangulation of RP2,

Lr+1 = L′r ∪S1 L′1 and L′r = Lr ∖ σas before. The inductive hypotheses are:
Proposition 6.17 (q1(r)).

H∗(Lr) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Zr−1 ⊕Z/2 if ∗ = 1
Z if ∗ = 00 otherwise

Proposition 6.18 (q2(r)).
H∗(L′r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Zr if ∗ = 1
Z if ∗ = 00 otherwise

6.2.3 Proof: Gluing a 2-cell onto a wedge of circlesConsider the standard gluing pattern of the (non-)orientable surfaces, i.e.
Σg = a1b1a−11 b−11 ⋯agbga−1g b−1g

Sr = a0a0a1a1⋯ararTherefore, by Mayer Vietoris, if we glue a 2 cell onto a wedge of circles, we get
0 H2(Σg) Z Z2g H1(Σg) 0φ

where the map φ is given by
φ(1) = [a1] + [b1] − [a1] − [b1] + ⋅ ⋅ ⋅ + [ag] + [bg] − [ag] − [bg] = 0

37



which breaks the LES into two SES, and gives the required result.In the non-orientable case, we have
0 H2(Sr) Z Zg+1 H1(Sr) 0ψ

where ψ is given by
ψ(1) = 2([a0] + [a1] + ⋅ ⋅ ⋅ + [ag])Then H2(Sr) = ker(ψ) = 0, and H1(Sr) = coker(ψ) = Zr⊕(Z/2Z) by Smith normal form. Note the indexinghere is off by one compared to the previous section, i.e. Sr = Lr+1.
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