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1 Measure theory and integration
1.1 Lp spaces

Definition 1.1 (convolution)For f , g ∶ Rn → R, the convolution of f , g is f ∗ g ∶ Rn → R, defined by
(f ∗ g)(x) = ∫

Rn
f(x − y)g(y)dy

whenever the integral exists.
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Proposition 1.2.

(i) f ∗ g = g ∗ f ,(ii) (f ∗ g) ∗ h = f ∗ (g ∗ h),(iii) and if f(x − y)g(y) is dydx measurable, then
∫
Rn
(f ∗ g)(x)dx = (∫

Rn
f(x)dx)(∫

Rn
g(y)dy)

Definition 1.3 (Lploc.(Rn))For f ∶ Rn → R, f ∈ Lploc.(Rn) if f1K ∈ Lp(Rn) for all compact K ⊆ Rn.
Proposition 1.4. Let f ∈ L1loc.(Rn), g ∈ C k

c (Rn), then f ∗ g ∈ C k(Rn), with
∇
α(f ∗ g) = f ∗ (∇αg)for all ∣α ∣ ≤ k .

Proof. Case k = 0. Define the translation
Tzf(x) = f(x − z)then we have the following properties.

• Tz(f ∗ g) = f ∗ Tzg, which follows by the definition of convolution.• Tzg→ g pointwise as z → 0, as g is continuous,• ∣Tzg(x)∣ ≤ ∥g∥L∞1BR(0)(x), for ∥z∥ ≤ 1, ∥x∥ + 1 < R and supp(g) ⊆ BR(0), which follows from g beingcompactly supported.
With all of this, we get that

∣f(y)Tzg(x − y)∣ ≤ ∥g∥L∞ ∣f(y)∣1BR(0)(x − y)which is an integrable function of y as f ∈ L1loc.. Thus, by the dominated convergence therem, we have that
Tz(f ∗ g)(x) = (f ∗ Tzg)(x) = ∫

Rn
f(y)Tzg(x − y)dy→ ∫

Rn
f(y)g(x − y)dy = (f ∗ g)(x)

So f ∗ g ∈ C 0.
Case k = 1. Define the difference quotient

∆h
i g(x) =

g(x + hei) − g(x)
hThen by the definition of the partial derivatives, we have that for all x ∈ Rn,

∆h
i g(x)→ ∇ig(x)as h→ 0. Fix x, h. Then by the mean value theorem, there exists t with ∣t∣ < ∣h∣ such that

∆h
i g(x) = ∇ig(x + tei)which means that

∣∆h
i g(x)∣ ≤ ∥∇ig(x)∥L∞1BR(0)(x)
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as before. Applying the dominated convergence theorem, we get that
∆h
i (f ∗ g) = f ∗ (∆h

i )→ f ∗∇igwhich means that f ∗ g ∈ C 1, with derivative given by the above.
Case k > 1. In this case, suffices to notice that by the k = 1 case, we have for ∣α ∣ ≤ k − 1,

∇
α
∇j(f ∗ g) = ∇α(f ∗∇jg)But f ∈ L1loc. and ∇jg ∈ C k−1

c , so by the k − 1 case, we have that
∇
α(f ∗∇jg) = f ∗ (∇α∇ig)

Theorem 1.5 (Minkowski’s inequality). Let p <∞, f ∶ Rn → Rn → R be Borel. Then
(∫

Rn
∣∫

Rn
f(x, y)dx∣pdy)1/p ≤ ∫

Rn
(∫

Rn
∣f(x, y)∣p)

1/p dx

Proposition 1.6. Let p <∞, g ∈ Lp(Rn), then
∥Tzg − g∥Lp → 0as z → 0.

Proof. If g = 1R , where R is a rectanle, then the result is clearly true. Similarly, the result is clearly true for afinite union of (disjoint) rectangles. Now let B be a Borel set with ∣B∣ <∞. Then for all ε > 0, there exists afinite union of rectangles R = R1 ∪ ⋅ ⋅ ⋅ ∪ Rm, such that
∥1B − 1R∥Lp = ∣R∆B∣1/p < εWhich means that

∥Tz1B − 1B∥p ≤ ∥Tz1B − Tz1R∥p
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∥1B−1R∥<ε by translation invariance
+ ∥Tz1R − 1R∥p
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<ε for z small

+ ∥1R − 1B∥p
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

<ε

< 3ε for z small
Thus the result holds for g = 1B , and hence the result holds for simple functions. Finally, for g ∈ Lp, thenthere exists g̃ simple such that ∥g − g̃∥p < ε. Thus

∥Tzg − g∥p ≤ ∥Tzg − Tz g̃∥p + ∥Tz g̃ − g̃∥p + ∥g − g̃∥p < 3εfor z small enough.
Definition 1.7 (smooth molifier)
φ ∈ Cc(Rn) is called a smooth molifier if φ ≥ 0, and ∫ φdx = 1.
Theorem 1.8. Smooth molifiers exist. Furthermore, if φ is a smooth mollifier, set φε(x) = ε−nφ(x/ε).Then for g ∈ Lp(Rn), p <∞, we have that

φε ∗ g ∈ C∞(Rn) and φε ∗ g→ g in Lp as ε → 0
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Proof. First, notice that we have
∣φε ∗ g(x) − g(x)∣ = ∣∫

Rn
φε(y) (g(x − y) − g(x))dy)∣

= ∣∫
Rn
φ(z) (g(x − εz) − g(z))dz∣

≤ ∫
Rn
φ(z)∣Tεzg(x) − g(x)∣dz

Using the above, and Minkowski’s integral inequality, we get that
∥φε ∗ g − g∥Lp = (∫Rn

∣φε ∗ g − g∣pdx)1/p
≤ ∫

Rn
(∫

Rn
φ(z)p∣Tεzg(x) − g(x)∣pdx)1/p dz

= ∫
Rn
φ(z)∥Tεzg − g∥Lpdz → 0 as ε → 0

by the dominated convergence theorem.
Corollary 1.9. C∞c (Rn) is dense in Lp(Rn) for p <∞.

Proof. The theorem implies that C∞ ∩ Lp(Rn) is dense in Lp(Rn). But since ∥f − f1BR(0)∥Lp → 0 as R → ∞by the dominated convergence theorem. Furthermore, f , g are compactly supported, then so is f ∗g. Hence wehave that C∞c (Rn) is dense in Lp(Rn).
1.2 Lebesgue differentiation theorem

Notation 1.10 (average). Define the average of a function f on a measurable set A with finite measure by
⨏
A
fdx = 1

∣A∣ ∫A
fdx

Definition 1.11 (Hardy-Littlewood maximal function)For f ∈ L1(Rn), the Hardy-Littlewood maximal function Mf ∶ Rn → [0,∞] is defined by
Mf(x) = sup

r>0
1

Br(x) ∫Br(x)
∣f(y)∣dy = sup

r>0 ⨏Br(x) ∣f(y)∣dy

Proposition 1.12. For f ∈ L1(Rn), then Mf is a Borel function which is finite a.e. and
∣{Mf > λ}∣ ≤ 3n

λ
∥f∥L1

Proof. Define Aλ = {Mf > λ}. For x ∈ Aλ, there exists rx > 0 such that
⨏
Brx (x)

∣f(y)∣dy > λ
To show that Mf is measurable, suffices to show Aλ = (Mf)−1((λ,∞]) is open. Equivalently, ACλ is closed.Let (xk) be a sequence in ACλ , and say xk → x . Now suppose if x ∈ Aλ. Then by the dominated convergencetheorem, we have that

⨏
Brx (xk)

∣f(y)∣dy→ ⨏
Brx (x)

∣f(y)∣dy
4



Since xk ∉ Aλ for all k , the left hand side is ≤ λ for all k . Hence in the limit, the right hand side is ≤ λ.Contradiction as x ∈ Aλ. Thus x ∈ ACλ , so ACλ is closed.For the inequality, by the inner regularity of the Lebesgue measure, suffices to prove it for K ⊆ Aλ compact.Now {Brx (x) ∣ x ∈ K} is an open cover of K , so by compactness we have a finite subcover. Write Bi = Bri(xi),and we have K ⊆ B1 ∪ ⋅ ⋅ ⋅ ∪BN .By Wiener’s covering lemma, there exists a finite subcollection Bik which are pairwise disjoint, and with
⋃
i
Bi ⊆⋃

k
3Bik

where 3Bik = B3rik (xik ). This means that we have that
∣K ∣ ≤ ∣⋃

i
Bi∣ ≤ 3n∑

k
∣Bik ∣ ≤

3n
λ ∑k

∫
Bik
∣f(y)∣dy ≤ 3n

λ ∫Rn
∣f(y)∣dy = 3n

λ
∥f∥L1

Theorem 1.13 (Lebesgue differentiation theorem). Let f ∈ L1(Rn), then
lim
r→0⨏Br(x) ∣f(y) − f(x)∣dy = 0

for almost every x . The x such that the limit exists are called Lebesgue points of f .
Proof. Let

Aλ = {x ∈ Rn ∣ lim sup
r→0 ⨏Br(x) ∣f(y) − f(x)∣dy > 2λ}

Suffices to show that ∣Aλ∣ = 0 for all λ > 0, since the set of non-Lebesgue points are ⋃n A1/n, which wouldthen have measure zero by countable subadditivity.Given ε > 0, take g ∈ C∞c (Rn) with ∥f − g∥L1 < ε. Then
⨏
Br(x)
∣f(y) − f(x)∣dy ≤ ⨏

Br(x)
∣f(y) − g(y)∣dy

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤M(f−g)(x)

+∣f(x) − g(x)∣ + ⨏
Br(x)
∣g(x) − g(y)∣dy

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0 as r→0 since g∈C∞cSo we have that

lim sup
r→0 ⨏Br(x) ∣f(y) − f(x)∣dy ≤M(f − g)(x) + ∣f(x) − g(x)∣If x ∈ Aλ, then we must have that M(f − g)(x) > λ or ∣f(x) − g(x)∣ > λ. But we have that

∣{M(f − g) > λ}∣ ≤ 3n
λ
∥f − g∥L1and by Markov’s inequality, we have that

∣{∣f − g∣ > λ}∣ ≤
∥f − g∥L1

λHence we have that
∣Aλ∣ ≤

3n + 1
λ
∥f − g∥L1 < 3n + 1

λ
ε

But ε > 0 was arbitrary, so we are done.
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1.3 Egorov, Lusin

Theorem 1.14 (Egorov). Let E ⊆ Rn measurable, ∣E ∣ < ∞, fk ∶ E → R measurable such that fk → f a.e.Then for any ε > 0, there exists a closed subset Aε ⊆ E such that ∣E ∖ Aε ∣ < ε and fk → f uniformly on Aε .
Proof. Without loss of generality, we may assume fk(x)→ f(x) on all of E . Then define

Ek,n = {x ∈ E ∣ ∣fj(x) − f(x)∣ <
1
n

for all j > k}
Then Ek,n ⊆ Ek+1,n for all k , and as the fk converges pointwise, ⋃k Ek,n = E . So ∣Ek,n∣↗ ∣E ∣ as k →∞. Let

kn be such that ∣E ∖ Ekn,n∣ < 2−n. Then set
AN = ⋂

n≥N
Ekn,nWe have that

∣E ∖ AN ∣ ≤ ∑
n≥N
∣E ∖ Ekn,n∣ ≤ 2−N+1 → 0 as N →∞

Therefore suffices to show that fj → f uniformly on AN . For x ∈ AN , and any n ≥ N , x ∈ Ekn,n, so we havethat
∣fj(x) − f(x)∣ <

1
n

for all j > knSo we must have that
lim sup
j→∞

sup
x∈AN
∣fj(x) − f(x)∣ ≤

1
nBut n ≥ N was arbitrary, so we are done.

Theorem 1.15 (Lusin). Let f ∶ E → R be Borel, where E ⊆ Rn, with ∣E ∣ <∞. Then for every ε > 0, thereexists Fε ⊆ E closed, such that ∣E ∖ Fε ∣ < ε, and f ∣Fε is continuous.
Remark 1.16. This does not imply f itself is continuous at all x ∈ Fε , since Fε has the subspace topology.

Proof. Step 1: The statement is true if f is simple1. Let f = ∑Mm=1 am1Am , where the Am are disjoint sets offinite measure. Without loss of generality, we can assume ⋃m Am = E .Fix ε > 0. By the inner regularity of the Lebesgure measure, there exists compact sets Km ⊆ Am with
∣Am ∖Km∣ < ε/M . Then define

Fε =⋃
m
Kmwhich means that ∣E ∖ Fε ∣ < ε. Since f is constant on each Km, Km compact and d(Km, Kℓ) > 0 for all

m ≠ ℓ . So f is continuous on Fε .
Step 2: The result for measurable f . First take simple functions fn → f a.e.. By step 1, we have Cn ⊆ E besuch that ∣Cn∣ < 2−n, fn∣E∖Cn continuous. Fix ε > 0. By Egorov, there exists a set Aε such that fn → f uniformlyon Aε and ∣E ∖ Aε ∣ < ε. Set

Fε,N = Aε ∖ ⋃
m≥N

Cm

Then ∣E ∖ Fε,N ∣ < 2ε if N is sufficiently large. Since for n ≥ N , fn∣Fε,N are all continuous, and fn → funiformly on Fε,N , f ∶ Fε,N is continuous. Finally, Fε,N is not necessarily closed, but by the regularity of theLebesgue measure we can choose Fε ⊆ Fε,N closed, with ∣Fε,N ∖ Fε ∣ < ε. So
∣E ∖ Fε ∣ < 3εwith f ∣Fε continuous, and Fε closed.1In this course, simple does not necessarily mean nonnegative. We allow negative scalars.
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2 Banach and Hilbert spaces

Notation 2.1 (Inner product). In this course, for the inner product (of two functions in L2), we use the convention thatit is conjugate linear in the first argument, and linear in the second argument. That is,
⟨f , g⟩L2 = ∫

E
fgdµ

2.1 Radon-Nikodym

Definition 2.2 (absolutely continuous)Let (E,E) be a measurable space, µ, ν measures on (E,E). Then ν is absolutely continuous with respectto µ, written ν ≪ µ if for all A ∈ E with µ(A) = 0, ν(A) = 0.
Definition 2.3 (mutually singular)Let (E,E) be a measurable space, µ, ν measures on (E,E). Then µ and ν are mutually singular, written
µ ⊥ ν if there exists B ∈ E such that µ(B) = ν(BC) = 0.
Theorem 2.4 (Radon-Nikodym). Let µ, ν be finite measures on (E,E), with ν ≪ µ. Then there exists
ω ∈ L1(E,E , µ) such that for all A ∈ E ,

ν(A) = ∫
A
ωdµ

or equivalently, for all h ∶ E → [0,∞] Borel,
∫
E
hdν = ∫

E
hωdµ

Proof. Step 1: Riesz representation. Set α = µ + 2ν , β = 2µ + ν . Then α and β are finite measures. Definethe functional
Λ(f) = ∫

E
fdβThen

∣Λ(f)∣ ≤ ∫
E
∣f ∣dβ ≤ 2∫

E
∣f ∣dα ≤ 2√α(E)∥f∥L2(α)So Λ ∶ L2(α) → R is a bounded linear map. Hence by the Riesz representation theorem, there exists

g ∈ L2(α) such that Λ(f) = ⟨g, f ⟩L2(α) for all f ∈ L2(α). This means that
Λ(f) = ∫ fdβ = ∫ gfdα ⇐⇒ ∫

E
f(2 − g)dν = ∫

E
f(2g − 1)dµ (*)

Step 2: g ≥ 1/2 µ-a.e. and ν-a.e. Set
f = 1Aj where Aj = {x ∈ E ∣ g(x) <

12 − 1
j
}

This gives us that
∫
E
f(2g − 1)dν ≤ −2

j
ν(Aj) and ∫

E
f(2 − g)dµ ≥ 32µ(Aj)Which means that ν(Aj) = µ(Aj) = 0 for all j , so g ≥ 12 µ-a.e. and ν-a.e.

Step 3: µ({g = 1/2}) = 0. Set f = 1Z , where Z = {g = 1/2}, to get that32µ(Z) = 0 Ô⇒ µ(Z) = 0
7



Step 4: g ≤ 2 µ-a.e. and ν-a.e. Set
Aj = {x ∈ E ∣ g(x) > 2 + 1

j
}

and proceed as in step 2.
Step 5: Defining ω. By the monotone convergence theorem, we can extend (*) to all f ≥ 0. Now given has in the statement, set

f(x) = h(x)2g(x) − 1 and ω(x) = 2 − g(x)2g(x) − 1where f(x) <∞ µ-a.e. by step 3. Then we have that
∫
E
hdν = ∫

E
f(2g − 1)dν = ∫

E
f(2 − g)dµ = ∫

E
hωdµ

In particular, setting h = 1 and using the fact that µ(E) <∞, ω ∈ L1(µ).
2.2 Dual of Lp

Notation 2.5. Let q ∈ [1,∞], then for every g ∈ Lq(Rn), define the function Λg ∈ Lp(Rn)→ F by
Λg(f) = ∫ fgdx

Notation 2.6. We denote X ′ = B(X,F) for the dual of X .
Proposition 2.7. Λg ∈ (Lp(Rn))′ and ∥Λg∥(Lp)′ = ∥g∥Lq .

Proof. By Hölder’s inequality, we have that ∣Λg(f)∣ ≤ ∥f∥Lp∥g∥Lq , so Λg ∈ (Lp(Rn))′. Furthermore, equalityholds since we have that
∥g∥Lq = ∫ ∣g(x)∣h(x)dx where h(x) = ∣g∣

q−1
∥f∥q−1Lqand h ∈ Lp, with ∥h∥Lp = 1.

Corollary 2.8. The map J ∶ Lq(Rn)→ Lp(Rn)′ given by g↦ Λg is a linear isometry.
Definition 2.9 (positive opertor)Λ ∈ Lp(Rn)′ is positive if Λ(f) ≥ 0 for all f ∈ Lp(Rn) with f ≥ 0 a.e.
Lemma 2.10. Let Λ ∈ Lp(Rn)′ be positive. Then there exists g ∈ Lq(Rn) ≥ 0 such that Λ = Λg. That is,

Λ(f) = ∫ fgdx
for all f ∈ Lp(Rn).

Proof. Let dµ = e−∣x∣2dx be the Gaussian measure, then µ(Rn) = 1 <∞. Define
ν(A) = Λ(e−∣x∣2/p1A)
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To check that ν is a finite measure, clerly ν(∅) = 0 and ν(Rn) <∞. Let (Ak) ⊆ B(Rn) be disjoint, and set
Bm = ⋃mk=1 Ak . Then

∣ν(B∞) − ν(Bm)∣ ≤ ∥Λ∥∥e−∣x∣2∥Lp ≤ ∥Λ∥µ(B∞ −Bm)1/p → 0
as m → ∞, so ν is countably additive. Furthermore, if µ(A) = 0, then ∣ν(A)∣ ≤ ∥Λ∥µ(A)1/p = 0, so ν ≪ µ.Therefore, by Radon-Nikodym, we have ω ∈ L1(µ) nonnegative such that

ν(A) = ∫
A
ωdµ = ∫

A
ωe−∣x∣

2dx
for all A ∈ B(Rn). Now let f̃ be simple, and f = e−∣x∣2/p f̃ . Then by linearity of Λ, we have that

Λ(f) = ∫ f̃dν = ∫ f̃ωe−∣x∣
2dx = ∫ f ω̃dx where ω̃ = ωe−∣x∣

2
/q

Thus, Λ(f) = ∫ f ω̃dx for all f of the above form, which are dense in Lp, so we are done. Remains to showthat ω̃ ∈ Lq. But
∥ω̃∥Lq = sup{∫ ∣f ω̃∣dx ∣ ∥f∥Lp ≤ 1} ≤ ∥Λ∥ <∞

In fact, equality holds by Hölder.
Theorem 2.11. If p <∞ then J is surjective. That is, J ∶ Lq(Rn) ≃ Lp(Rn)′.

Proof of real valued case. Given Λ ∈ Lp(Rn)′ real valued, there exists Λ± bounded positive such that Λ = Λ+−Λ−.The result then follows by the lemma.
Proof of the complex valued case. If Λ ∈ Lp(Rn)′ is complex valued, then Λr(f) =R(Λ(f)) and Λi(f) = I(Λ(f))are R-linear, such that

Λ(fr + fi) = Λr(fr) − Λi(fi) + iΛr(fi) + iΛi(fr)and the result then follows from the real valued case.
2.3 Riesz-Markov

Theorem 2.12 (Riesz-Markov). Given Λ ∶ Cc(Rn)→ R positive bounded linear, there exists a unique finiteBorel measure µ on Rn such that
Λ(f) = ∫

Rn
fdµ

for all f ∈ Cc(Rn).
Definition 2.13 (signed measure)A signed measure is the difference of two mutually singular positive finite measures.
Corollary 2.14. The dual space of Cc(Rn) with the L1 norm is the space of signed measures on Rn.

2.4 Hahn-Banach

Definition 2.15 (sublinear)Let X be a real vector space, then p ∶ X → R is sublinear if
9



(i) p(x + y) ≤ p(x) + p(y),(ii) p(tx) = tp(x) for all x ∈ X, t > 0.
Lemma 2.16 (codimension 1 case of Hahn-Banach). Let X be a real vector space, p ∶ X → R sublinear,
M ⊆ X is a subspace. Suppose ℓ ∶ M → R is linear, with ℓ(y) ≤ p(y) for all y ∈ M . Then for x ∈ X ∖M ,let M̃ = M ⊕ span{x}. Then there is an extension ℓ̃ ∶ M̃ → R linear, such that ℓ̃ ∣M = ℓ , and ℓ(z) ≤ p(z)for all z ∈ M̃ .

Proof. If z ∈ M̃ , then there exists unique y ∈M and λ ∈ R such that z = y + λx . Therefore, by linearity, sufficesto define a = ℓ̃(x). Let
a = sup{ℓ(y) − p(y − x) ∣ y ∈M}As 0 ∈M , we only need to check that it is bounded above. For y, z ∈M , we have that

ℓ(y) + ℓ(z) = ℓ(y = z) ≤ p(y + z) ≤ p(y − x) + p(z + x)Hence ℓ(y)− p(y− x) ≤ p(z + x)− ℓ(z), so the sup is well defined, with ℓ(y)−a ≤ p(y− x) for all y ∈M .In addition, we have that
ℓ(z) + a ≤ p(z + x) + p(y − x) − ℓ(y) + afor all y, z ∈M . Taking the infimum over all y, we find that

ℓ(z) + a ≤ p(z + x) − sup
y
{ℓ(y) − p(y − x)} + a = p(z + x)

Therefore, we find that
ℓ̃(y + λx) = ℓ(y) + λa =

⎧⎪⎪⎨⎪⎪⎩

λ (ℓ ( 1
λy) + a) ≤ λp (

1
λy + x) = p(y + λx) if λ > 0

∣λ∣ (ℓ ( 1
∣λ∣y) − a) ≤ ∣λ∣p (

1
∣λ∣y − x) = p(y + λx) if λ < 0

Hence ℓ̃(z) ≤ p(z) for all z ∈ M̃ .
Corollary 2.17. If dim(X/M) <∞, then any ℓ ∶ M → R with ℓ(y) ≤ p(y) for all y ∈ M can be extendedto ℓ̃ ∶ X → R with ℓ(x) ≤ p(x) for all x ∈ X .
Theorem 2.18 (Hahn-Banach). Let X be a real vector space, p ∶ X → R be sublinear, M ⊆ X . Then forany ℓ ∶M → R linear with ℓ(y) ≤ p(y) for all y ∈M , there exists ℓ̃ ∶ X → R linear such that ℓ̃ ∣M = ℓ , and
ℓ̃(x) ≤ p(x) for all x ∈ X .

Proof. Define
S = {(N, ℓ̃) ∣M ≤ N ≤ X, ℓ̃ ∶ N → R linear, ℓ̃(x) ≤ p(x) for all x ∈ N, ℓ̃ ∣M = ℓ}Define the ordering (N1, ℓ̃1) ≤ (N2, ℓ̃2) if N1 ≤ N2, with ℓ̃2∣N1 = ℓ̃1. For every chain T ⊆ S , we have anupper bound

NT = ⋃
(N,ℓ̃)∈T

N and ℓ̃T = ℓ̃(x)

where x ∈ N, (N, ℓ̃) ∈ T . Then ℓ̃T is well defined as T is a chain. Hence by Zorn’s lemma, S has a maximalelement (N, ℓ̃). By maximality and the codimension 1 case, N = X .
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Corollary 2.19. Let X be a normed vector space over F = R or C, M ≤ X subspace. For every boundedlinear functional Λ ∶M → F, there is a bounded linear Λ̃ ∶ X → F such that
∥Λ̃∥ = ∥Λ∥ and Λ̃∣M = Λ

Proof. If F = R, p(x) = ∥Λ∥∥x∥ is sublinear, and the result follows from Hahn-Banach.If F = C, then Λ(x) = ℓ(x) − iℓ(ix), with ℓ(x) = R(Λ(x)) real linear. Since ∣Λ(x)∣ = ℓ(eiθx) for some θ,we have that
sup

x∈N,∥x∥≤1 ∥Λ(x)∥ = sup
x∈N,∥x∥≤1 ℓ(x)for any subspace N of X . Apply Hahn-Banach to ℓ and define Λ̃ as above.

Corollary 2.20. If X is a normed vector space, x ∈ X , then there exists Λx ∈ X ′ such that ∥Λx∥ = 1,Λx(x) = ∥x∥. Λx is called a support functional for X .
Proof. Define ℓ(tx) = t∥x∥, and extend by Hahn-Banach.

Corollary 2.21. Let X be a normed vector space, x ∈ X , then x = 0 if and only if Λ(x) = 0 for all Λ ∈ X ′.
Corollary 2.22. Let X be a normed vector space, x, y ∈ X distinct, then there exists Λ ∈ X ′ such thatΛ(x) ≠ Λ(y).
Corollary 2.23. The map Φ ∶ X → X ′′, with Φ(x) = x̂ , x̂(Λ) = Λ(x) is an isometry.
Definition 2.24 (reflexive)
X is reflexive if Φ is surjective, i.e. X ′′ = X .
Theorem 2.25 (Geometric Hahn-Banach). Let A,B ⊆ X be disjoint nonempty convex subsets of a Banachspace X over R or C. Then

(i) if A is open, then there exists Λ ∈ X ′ and γ ∈ R such that
R(Λ(y)) < γ ≤R(Λ(y))

for all x ∈ A,y ∈ B. Furthermore, if B is also open, we can make γ <R(Λ(y)) strict.(ii) if A is compact and B is closed, then there exists Λ ∈ X ′ and γ1, γ2 ∈ R such that
R(Λ(x)) < γ1 < γ2 <R(Λ(y))

for all x ∈ A,y ∈ B.
Proof. We can assume without loss of generality that X is a real vector space, since we can apply the argumentto the real part of a linear functional.(i) Choose a0 ∈ A,b0 ∈ B, and set x0 = b0 − a0 and
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C = A −B + x0 = {a − b + x0 ∣ a ∈ A,b ∈ B}Then 0 ∈ C , C is convex, x0 ∉ C as A ∩ B = ∅. Let p(x) = inf {t > 0 ∣ t−1x ∈ C}. Then p is sublinear, with
p(x) ≤ k∥x∥ for all x ∈ X , and p(x) < 1 if and only if x ∈ C . Let M = span{x0}, and define ℓ ∶ M → R by
ℓ(tx0) = t . Then we have that

ℓ(tx0) = ⎧⎪⎪⎨⎪⎪⎩
t ≤ tp(x0) = p(tx0) if t ≥ 0
t < 0 ≤ p(tx0) if t < 0Hence by Hahn-Banach, we can extend ℓ to Λ ∶ X → R, with Λ(x) ≤ p(x) for all x ∈ X . Moreoever,

−k∥x∥ ≤ −p(−x) ≤ Λ(x) ≤ p(x) ≤ k∥x∥ Ô⇒ ∣Λ(x)∣ ≤ k∥x∥so Λ ∈ X ′ with ∥Λ∥ ≤ k . Furthermore, for any a ∈ A,b ∈ B,
Λ(a − b + x0) ≤ p(a − b + x0) < 1So Λ(a) − Λ(b) + Λ(x0) < 1. But Λ(x0) = ℓ(x0) = 1. So Λ(a) < Λ(b). Now as Λ ∈ X ′ is nonzero, Λ is anopen map. So Λ(A) is open, and Λ(A),Λ(B) are connected, so Λ(A),Λ(B) are disjoint intervals in R. Theresult then follows.(ii) Since A is compact and B is closed,
d = inf {∥a − b∥ ∣ a ∈ A,b ∈ b} > 0Let V = Bd/2(0). Then A + V os open, convex and disjoint from B. Apply (i) with A + V ,B, we have Λ ∈ X ′such that Λ(A + V ),Λ(B) are disjoint intervals in R. Finally, note that Λ(A) ⊆ Λ(A + V ) is compact, whichgives the required result.

Corollary 2.26. Let X be a Banach space, M ≤ X a subspace, x0 ∉M . Then there exists Λ ∈ X ′ such thatΛx0 = 1 and Λ(x) = 0 for all x ∈M .
Proof. Use (ii) of the above with A = {x0} and B =M .
3 Weak topology and compactness

Definition 3.1 (seminorm)A seminorm p on a vector space X is a map p ∶ X → R such that
(i) p(x + y) ≤ p(x) + p(y),(ii) p(λx) = ∣λ∣p(x),(iii) p(x) ≥ 0.

Definition 3.2 (separating family)A family P of seminorms is separating if for every x ≠ 0, there exists p ∈P such that p(x) ≠ 0.
Definition 3.3 (induced topology)The topology τP induced by a family P of separating seminorms has neighbourhood basis of 0 given by

β̇ = {finite intersections of V (p,n) = {x ∣ p(x) < 1/n} with p ∈P, n ∈ N}That is, the topology has neighbourhood basis
12



β = {x +B ∣ x ∈ X,B ∈ β̇}

Proposition 3.4.(i) (X, τP) is a locally convex topological vector space,(ii) every open set is a union of elements of β ,(iii) each p ∈P is continuous.(iv) for a sequence (xn) in X , xk → x if and only if p(xk − x)→ 0 for all p ∈P ,(v) if P = (pk)k∈N is countable, then the topology is metrisable, with metric given by
dP(x, y) =∑

k
2−k pk(x − y)1 + pk(x − y)

Proof. (ii), (iii) and (iv) follow from definitions, (i) and (v) are omitted.
Definition 3.5 (Fréchet space)if (X,dP) is complete, we call X a Fréchet space.

3.1 Strong, weak and weak-∗ topologiesLet X be a Banach space.
Definition 3.6 (strong topology)The strong topology τs is generated by the seminorms Ps = {∥⋅∥}. That is, it is the norm topology.
Definition 3.7 (weak topology)The weak topology is generated by Pw = {pΛ ∣ Λ ∈ X ′} where pΛ(x) = ∣Λ(x)∣. By Hahn-Banach, Pw isseparating and the induced topology τw is called the weak topology.
Definition 3.8 (weak-∗ topology)The weak-∗ topology on X ′ is generated by the family of seminorms

Pw∗ = {px ∣ x ∈ X} where px(Λ) = ∣Λ(x)∣
Notation 3.9. We write xk → x for convergence in τs , xk ⇁ x for convergence in τw and Λk ∗⇁ Λ for convergence in
τw∗ .
Proposition 3.10 (convergence).(i) a sequence (xk) converges to x in τs if and only if ∥xk − x∥→ 0,(ii) a sequence (xk) converges to x in τw if and only if Λ(xk − x)→ 0 for all Λ ∈ X ′,
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(iii) a sequence (Λk) converges to Λ in τw∗ if and only if Λk(x)→ Λ(x) for all x ∈ X .
(iv) Λk → Λ Ô⇒ Λk ⇁ Λ Ô⇒ Λk ∗⇁ Λ,(v) if X is reflexive, X ′′ = X , then τw = τw∗.

3.2 Banach-Alaoglu

Theorem 3.11 (Banach-Alaoglu). Let X be a separable Banach space, (Λj) ⊆ X ′ be a bounded sequence,wlog ∥Λj∥ ≤ 1 for all j . Then there is a subsequence (ji) and Λ ∈ X ′ such that ∥Λ∥ ≤ 1 and
Λji ∗⇁ Λ

Proof. Step 1: Construction Let D = {xk}∞k=1 ⊆ X be a dense subset. Since (Λj(x1)) is bounded, by Bolzano-Weierstrass there exists a subsequence J1 ⊆ N and Λ(x1) ∈ F such that Λj(x1)→ Λ(x1) along J1. Iterating this,we get
J1 ⊇ J2 ⊇ . . .and (Λ(xk))k such that Λj(xk) → Λ(xk) along Jℓ for all ℓ ≥ k . Taking the diagonal subsequence J of the

(Jk), i.e. J = {j1 < j2 < . . .}, jk is the k-th element of Jk , we find that for all k , Λj(xk)→ Λ(xk) along J .
Step 2: Λ ∶ D → R is uniformly continuous, so it extends to Λ ∶ X → F continuous.Fix x, y ∈ D with ∥x − y∥ < ε. Then there exists j ∈ J such that ∣Λj(x) − Λ(x)∣ < ε and ∣Λj(y) − Λ(y)∣ < ε.Hence

∣Λ(x) − Λ(y)∣ ≤ ∣Λ(x) − Λj(x)∣ + ∣Λj(x) − Λj(y)∣ + ∣Λj(y) − Λ(y)∣ < 3ε
Step 3: Λ ∶ X → F is linear. Let x, y ∈ X , a ∈ F. Set z = x + ay. Then for x′, y′, z′ ∈ D, and j ∈ N, we havethat

∣Λ(z) − Λ(x) − aΛ(y)∣ ≤ ∣Λ(z) − Λ(z′)∣ + ∣Λ(x) − Λ(x′)∣ + ∣a∣ ⋅ ∣Λ(y) − Λ(y′)∣
+ ∣Λ(z′) − Λj(z′)∣ + ∣Λ(x ′) − Λj(x′)∣ + ∣a∣ ⋅ ∣Λ(y′) − Λj(y′)∣
+ ∣Λj(z′ − x ′ − ay′)∣Fix ε > 0. By continuity, if ∥x − x′∥, ∥y − y′∥, ∥z − z′∥ sufficiently small, then we can make the first line

< ε. Similarly as ∥z′ − x′ − ay′∥ ≤ ∥x − x′∥ + ∥y − y′∥ + ∥z − z′∥, we can make the last line < ε as well, since
∥Λj∥ ≤ 1. For the middle term, we can take j →∞ along J , to get that for j ∈ J large enough, we can make themiddle line < ε as well. So we get that

∣Λ(z) − Λ(x) − aΛ(y)∣ < 3εBut ε > 0 was arbitrary so we are done.
Step 4: ∥Λ∥ ≤ 1 and Λj ∗⇁ Λ.For the first one, notice that by density,

∥Λ∥ = sup
x∈X,∥x∥≤1 ∣Λ(x)∣ = sup

x∈D,∥x∥≤1 ≤ 1
and for the second one, given ε > 0, x ∈ X , choose x′ ∈ D such that ∥x′ − x∥ < ε. Then

∣Λj(x) − Λ(x)∣ ≤ ∣Λj(x − x ′)∣ + ∣Λj(x′) − Λ(x′)∣ + ∣Λ(x − x ′)∣ < 3εfor j ∈ J large enough.
4 Distributions
4.1 Test functions D(U) and distributions D ′(U)
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Definition 4.1 (C∞c (U))For U ⊆ Rn open, define
C∞c (U) = {φ ∶ U → C smooth, with supp(φ) ⊆ U compact}

Theorem 4.2. There exists a topology τ on C∞c (U) such that
(i) (C∞c (U), τ) is a topological vector space,(ii) a sequence (phij) ⊆ C∞c (U) converges to 0 if and only if there exists K ⊆ U comapct, such that(a) supp(φj) ⊆ K for all j ,(b) for evert multi-index α , sup

k
∣∇αφj ∣→ 0

(iii) if Y is a locally convex topological vector space, Λ ∶ C∞c (U) → Y linear, then Λ is continuous if andonly if Λ is sequentially continuous.
Definition 4.3 (test functions)We call (C∞c (U), τ) the space of test function D(U).
Definition 4.4 (distributions)The space of distributions D ′(U) is the dual space of D(U) with the weak-∗ topology.
Proposition 4.5 (sequential continuity).

(i) a linear functional u ∶ D(U)→ C is in D ′(U) if and only if for all sequences φj ∈ D(U) with φj → φin D(U), we have that u(φj)→ u(φ) in C,(ii) a sequence (uj) in D ′(U) converges to u if and only if uj(φ)→ u(φ) for all φ ∈ D(U),
Definition 4.6 (Dirac delta)For x ∈ U , the Dirac delta distribution δx ∈ D ′(U) is defined by δx(φ) = φ(x).
Definition 4.7 (embedding of L1loc.)For f ∈ L1loc.(U), define Tf ∈ D ′(U) by

Tf (φ) = ∫
U
fφdx

Proposition 4.8. The map T ∶ L1loc.(U)→ D ′(U) is injective.
Proof.

T f = Tg ⇐⇒ ∫ (f − g)φdx = 0 for all φ ∈ C∞c (U) ⇐⇒ f = g a.e.
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Definition 4.9 (multiplication by a function)If u ∈ D ′(U) and α ∈ C∞(U), define αu ∈ D ′(U) by
αu(φ) = u(αφ)

Definition 4.10 (derivative)If u ∈ D ′(U), define ∇αu ∈ D ′(U) by
∇
αu(φ) = (−1)∣α ∣u(∇αφ)

Proposition 4.11.(i) αTf = Tαf ,(ii) ∇αTf = T∇α f .
Proof. Easy to check from the definitions, and by integration by parts for (ii).
4.2 Compactly supported distributions E ′(U)Consider the space C∞(U) = {φ ∶ U → C smooth}. Then we can find a sequence (Kj) of compact subsets of
U such that

(i) Ki ⊆ Int(Ki+1) for all i,(ii) U = ⋃iKi.Then for phi ∈ C∞(U), define
pN(φ) = sup

x∈KN
sup
α≤N
∣∇αφ(x)∣

Then P = {pN}N∈N is a separating family of seminorms.
Definition 4.12 (E (U))The space C∞(U) with the locally convex topology induced by P is denoted by E (U).
Proposition 4.13. E (U) is a Frćhet space.
Proposition 4.14 (convergence). (φj) ⊆ E (U) converges to 0 if and only if for all K ⊆ U compact,multi-index α ,

sup
x∈K
∣∇αφj(x)∣→ 0

Proposition 4.15. The embedding D(U) ↪ E (U) is continuous, and so we have an induced embedding
E ′(U)↪ D ′(U).

16



Lemma 4.16. Let u ∶ E (U) → C be linear. Then u is continuous if and only if there is a compact set
K ⊆ Rn, N ∈ N, C > 0 such that

∣u(φ)∣ ≤ C sup
x∈K,∣α ∣≤N

∣∇αφ(x)∣ (*)
for all φ ∈ E (U).

Proof. Since E (U) is a metric space, u ∈ E ′(U) if and only if u(φj) → 0 for all sequences (φj) ⊆ E (U) with
φj → 0 in E (U).Suppose (*) holds, and let (φj) ⊆ E (U) be a sequence with φj → 0, which is equivalent to saying for all
K̃ ⊆ U compact, Ñ ∈ N,

sup
x∈K̃ ,∣α ∣≤Ñ

∣∇αφj(x)∣→ 0
Taking K̃ = K and Ñ = N , (*) implies that u(φj)→ 0. Conversely, suppose (*) does not hold. Let (Kj) be asequence of compact subsets of U such that

(i) Ki ⊆ Int(Ki+1) for all i,(ii) U = ⋃iKi.Since (*) does not hold, for each j there exists φj ∈ E (U) such that
RRRRRRRRRRR
u(φj) ≥ j sup

x∈Kj ,∣α ∣≤j
∣∇αφj(x)∣

RRRRRRRRRRRThen ψj = φj/∣u(φj)∣→ 0 in E (U) since for all K̃ ⊆ U compact, N ∈ N, there esists J > Ñ such that K̃ ⊆ Kjfor all j ≥ J . Then
sup

x∈K̃ ,∣α ∣≤Ñ
∣∇αψj(x)∣ ≤

1
j

But ∣u(ψj)∣ = 1, so u(ψj) /→ 0. Hence u cannot be continuous.
Definition 4.17 (support)For u ∈ D ′(U) we say that u has support in a set S if u(φ) = 0 for all φ ∈ C∞c (U ∖S). If we can choose
S to be compact, we say that u is compactly supported.
Theorem 4.18.

E ′(U) = {u ∈ D ′(U) compactly supported}
Proof. If u ∈ E ′(U), then the lemma implies that u has support in a compact set K . Conversely, if u ∈ D ′(U)has support in a compact set K , define ũ(φ) = u(χφ) for all φ ∈ E (U), where χ ∈ C∞c (U) is such that χ = 1on K . In fact, the definition of ũ is independent of the choice of χ since for any such χ, χ̃ , χ − χ̃ ∈ C∞c (U ∖K ),so u(χφ) = u(χ̃φ).
4.3 Tempered distributions S ′(Rn)

Definition 4.19 (rapidly decreasing)
φ ∈ C∞(Rn) is rapidly decreasing if
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sup
x∈Rn
∣(1 + ∣x ∣)N∇αφ(x)∣ <∞

for all N,α .
Definition 4.20 (Schwartz space)The Schwartz space S (Rn) is the space of rapidly decreasing functions with the topology generated bythe separating family of seminorms

pN(φ) = sup
x∈Rn

sup
∣α ∣≤N
∣(1 + ∣x ∣)N∇αφ(x)∣

Proposition 4.21. S (Rn) is a Fréchet space, with
D(Rn) ⊆S (Rn) ⊆ E (Rn)continuously, which induces the inclusions of the dual spaces

E ′(Rn) ⊆S ′(Rn) ⊆ D ′(Rn)

Definition 4.22 ({tempered/Schwartz} distribution)
S ′(Rn) is the space of tempered distributions, or Schwartz distributions.

4.4 Convolution
Notation 4.23 (translation). The translation of a function is given by τxg(y) = g(y − x).
Notation 4.24 (spatial inversion). The spatial inversion of a function is given by ǧ(y) = g(−y).
Definition 4.25 (convolution of distribution with function)For u ∈ D ′(Rn), f ∈ D(Rn), define u ∗ φ(x) = u(τx φ̌).
Proposition 4.26.1. (u1 + au2) ∗ φ = u1 ∗ φ + au2 ∗ φ,2. u ∗ (φ1 + aφ2) = u ∗ φ1 + au ∗ φ2,3. u ∗ φ̌(0) = u(φ),4. If f ∈ L1loc., φ ∈ D(Rn), then

f ∗ φ(x) = Tf (τx φ̌)

Proof. Easy to check.
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Proposition 4.27. Let u ∈ D ′(Rn), φ ∈ D(Rn), then
1. u ∗ φ ∈ C∞(Rn), with

∇
α(u ∗ φ) = (∇αu) ∗ φ = u ∗ (∇α)φwhere the first and third ∇α are of C∞ functions, and the second one is of a distribution,2. if u ∈ E ′(Rn), then u ∗ φ ∈ D(Rn).

Proof. (i) It is easy to check that1
h
(u ∗ φ(x + hei) − u ∗ φ(x)) = u(

1
h
(τx+hei φ̌ − τx φ̌))→ u (τx }∇iφ)

by the convergence in D(Rn) of the argument, and the continuity of u. Hence ∇i(u ∗ φ)(x) = u(τx }∇iφ).By induction, u ∗ φ ∈ C∞(Rn), with ∇α(u ∗ φ) = u ∗ (∇αφ) for all α . Finally, notce that
∇
α(τx φ̌)(y) = ∇αyφ(x − y) = (−1)∣α ∣∇αφ(x − y) = (−1)∣α ∣τx∇̂αφ(y)and hence u ∗ (∇αφ) = ∇αu ∗ φ.(ii) By assumption, u(φ) = 0 for all φ ∈ C∞c (Rn ∖ K ), where K ⊆ Rn compact. Hence for all φ ∈ D(Rn),supp(τx φ̌) ∩K = ∅ for all x sufficiently large, so u ∗ φ has compact support.

Definition 4.28 (convolution of distributions)For u1 ∈ D ′(Rn), u2 ∈ E ′(Rn), define u1 ∗ u2 to be the unique distribution such that
(u1 ∗ u2) ∗ φ = u1 ∗ (u2 ∗ φ)for all φ ∈ D(Rn).

Proposition 4.29. u ∗ δ0 = u.
Proposition 4.30. Let u1 ∈ D ′(Rn), u2 ∈ E ′(Rn), then

∇
α(u1 ∗ u2) = u1 ∗∇αu2 = ∇αu1 ∗ u2

Proof. Let φ ∈ D(Rn), then
∇
α(u1 ∗ u2) ∗ φ = (u1 ∗ u2) ∗∇αφ = u1 ∗ (u2 ∗∇αφ) = u1 ∗ (∇αu2 ∗ φ)and the other case is similar.

Definition 4.31 (fundamental solution)Let L = ∑∣α ∣≤k aα∇α be a constant coefficient partial differential operator of order k . A fundamental solutionof L is a distribution G such that LG = δ0.
Theorem 4.32. If G ∈ D ′(Rn) is a fundamental solution of L and f ∈ E ′(Rn), then u = G ∗ f solves Lu = f .Moreover, if f ∈ D(Rn), then u = G ∗ f ∈ C∞(Rn), and u solves Lu = f in the classical sense.

19



Proof.

L(G ∗ f) = ∑
∣α ∣≤k

aα∇α(G ∗ f)

= ∑
∣α ∣≤k

aα∇αG ∗ f

=
⎛
⎝∑∣α ∣≤k

aα∇αG
⎞
⎠
∗ f

= (LG) ∗ f
= δ0 ∗ f
= f

5 Fourier transforms
Note that the convention for the Fourier transform in this course is different to the convention in Probabilityand Measure.
5.1 Fourier transforms of functions

Definition 5.1 (Fourier transform of L1 functions)If f ∈ L1(Rn), the Fourier transform of f is f̂ =F (f) ∶ R→ C, defined by
f̂(ξ) = ∫

Rn
f(x)e−ix⋅ξdx

Lemma 5.2 (Riemann-Lebesgue). If f ∈ L1(Rn), then f̂ ∈ C(Rn), with
sup
ξ∈Rn
∣f̂(ξ)∣ ≤ ∥f∥L1 and f̂(ξ)→ 0 as ∣ξ ∣→∞

Proof. Given ξk → ξ , for x ∈ Rn fixed, f(x)e−iξn⋅x → f(x)e−iξ ⋅x , and ∣f(x)e−iξn⋅x ∣ = ∣f(x)∣, f ∈ L1, so by thedominated convergence theorem,
f̂(ξn)→ f̂(ξ)Hence f̂ is continuous. The bound is immediate since

∣f̂(ξ)∣ = ∣∫
Rn
f(x)e−iξ ⋅x ∣ ≤ ∫

Rn
∣f(x)∣ = ∥f∥L1

To show the decay property, fix ε > 0, and let fε ∈ C∞c (Rn) be such that ∥f − fε∥ < ε. Then by integrationby parts, we find
f̂ε(ξ) = ∫

Rn
fε(x)e−iξ ⋅xdx

= −1
∣ξ ∣2 ∫Rn

(∆fε)(x)e−iξ ⋅xdx
≤ −1
∣ξ ∣2 ∥∆fε∥L1

which means that lim sup∣ξ ∣→∞ ∣f̂ε(ξ)∣ = 0. Therefore, we have that
∣f̂(ξ)∣ ≤ ∣f̂ε(ξ)∣ + ∣f̂(xi) − f̂ε(ξ)∣ ≤ ∣f̂ε(ξ)∣ + ∥f − fε∥L1 → ε
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as ∣ξ ∣→∞, where we used the inequalty from above to bound the modulus of the Fourier transform by the
L1 norm. As ε > 0 was arbitrary, we have that f̂(ξ)→ 0 as ∣ξ ∣→∞.

Notation 5.3 (exponential function). We write ey(x) = eix⋅y .
Proposition 5.4.(i) if f ∈ L1(Rn), x ∈ Rn, λ > 0, and set fλ(x) = λ−nf(x/λ), then

f̂λ(ξ) = f̂(λξ), êyf(ξ) = τy f̂(ξ) and τ̂yf(ξ) = e−y(ξ)f̂(ξ)

(ii) if f , g ∈ L1, then f ∗ g ∈ L1 and
f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ)

Proof. By change of variables and Fubini.
Proposition 5.5.(i) If f ∈ C 1(Rn), with f ,∇j f ∈ L1(Rn) for all j , then

∇̂j f(ξ) = iξj f̂(ξ)

(ii) Suppose (1 + ∣x ∣)f ∈ L1(Rn). Then f̂ ∈ C 1(Rn), and
Dj f̂(ξ) = −ix̂j f(ξ)

Proof. Fix ε > 0. Let fε ∈ C∞c (Rn) be such that
∥f − fε∥L1 < ε and ∥∇k fε −∇k∥ < ε for all kThen we have that

∇̂j fε(ξ) = ∫
Rn
e−ix⋅ξ∇j fε(x)dx = iξj ∫

Rn
e−ix⋅ξe−ix⋅ξ fε(x)dx = iξj f̂ε(ξ)Hence we must have that

∣∇̂j f(ξ) − iξj f̂(ξ)∣ ≤ ∥∇j f −∇j fε∥L1 + ∣ε∣∥f − fε∥L1 ≤ (1 + ∣ξ ∣)ε → 0as ε → 0.(ii) Since xj f ∈ L1, −ix̂j f ∈ C0. So we need to show that ∇i f̂ exists and is equal to −ix̂j f . But
f̂(ξ + hej) − f̂(ξ)

h
= ∫

Rn
f(x)e−iξ ⋅x (e

−ihxj − 1
h

)dx → ∫
Rn
−ix̂j f(ξ)

by the dominated convergence theorem.
Corollary 5.6. The Fourier transform defines F ∶S (Rn)→S (Rn) continuous.

Proof. Given f ∶ Rn → C,
∥f∥L1 ≤ sup

x∈Rn
((1 + ∣x ∣n+1f(x)))∫

Rn

1
(1 + ∣z∣)n+1 dz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<∞Therefore, if f ∈S (Rn)< then ∇α(xβf(x)) ∈ L1 for any α, β . Hence by the previous proposition,
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∣∇̂α(xβf)(ξ)∣ = ∣ξα∇β f̂(ξ)∣In particular, we have that
sup
ξ
∣ξα∇β f̂(ξ)∣ ≤ C sup

x∈Rn,γ≤α
((1 + ∣x ∣)∣β∣+n+1∣∇γf(x)∣)→ 0

if f → 0 in S (Rn). Therefore, f̂ → 0 ∈S (Rn). Thus, F ∶S (Rn)→S (Rn) is continuous.
Theorem 5.7 (Fourier inversion). Let f ∈ L1(Rn), and assume f̂ ∈ L1(Rn) as well. Then

f(x) = 1
(2π)n ∫Rn

f̂(ξ)eiξ ⋅xdξ
for a.e. x ∈ Rn. That is, F 2(f) = 1

(2π)n f̌ .
Proof. Let

Iε(x) =
1

(2π)n ∫Rn
f̂(ξ)e− 12 ε2

∣ξ ∣2eix⋅ξdξ
Since f̂ ∈ L1, by the dominated convergence theorem,

Iε(x)→
1

(2π)n ∫Rn
f̂(ξ)eix⋅ξdξ

as ε → 0. On the other hand, we have that
Iε(x) =

1
(2π)n ∫Rn

(∫
Rn
f(y)e−iξ ⋅ydy)e− 12 ε2

∣ξ ∣2eix⋅ξdξ
= 1
(2π)n ∫Rn

f(y) (∫
Rn
e 12 ε2

∣ξ ∣2e−i(y−x)⋅ξdξ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=(2π)n/2ε−ne−∣y−x∣2/2ε2
dy

= f ∗ ψε(x)

where ψε(x) = ε−nψ(x/ε), ψ(x) = (2π)−n/2e−∣x∣2/2. Since ψ is a smooth molifier, f ∗ ψε → f in L1, so wehave that
f = 1
(2π)n ∫Rn

f̂(ξ)eix⋅ξdξ
for a.e. x ∈ Rn.

Lemma 5.8. Suppose (fj) is a sequence in Lp(Rn), such that fj → f uniformly on Rn, and fj → g in Lp.Then f = g a.e.
Proof. The uniform limit is also the pointwise limit, so f is measurable. Now for R > 0, we have that

∥fj − f∥
p
Lp(BR(0)) = ∫BR(0) ∣fj − f ∣

pdx ≤ ∣BR(0)∣ sup
x∈BR(0) ∣fj(x) − f(x)∣→ 0

as j →∞. Hence by uniqueness of limits, f = g in L2(BR(0)), which means that f = g a.e. on BR(0). But
Rn = ⋃

n∈N
Bn(0)

so f = g a.e. on Rn.
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Theorem 5.9 (Parseval-Plancherel). Let f , g ∈ L1 ∩ L2(Rn). Then f̂ , ĝ ∈ L2(Rn), with
⟨f , g⟩L2 = 1

(2π)n ⟨f̂ , ĝ⟩L2

Proof. First of all, we show that this is true for f , g ∈S (Rn). In this case, f̂ , ĝ ∈S (Rn), and we have that
⟨f , g⟩ = ∫

Rn
f(x)g(x)dx

= ∫
Rn
f(x)( 1

(2π)n ∫Rn
ĝ(ξ)eiξ ⋅xdξ)dx

= 1
(2π)n ∫Rn

(∫
Rn
f(x)eiξ ⋅xdx) ĝ(ξ)dξ

= 1
(2π)n ∫Rn

f̂(ξ)ĝ(ξ)dξ
= 1
(2π)n ⟨f̂ , ĝ⟩

Now given f , g ∈ L1 ∩ L2(Rn). Fix ε > 0. By density of C∞c (Rn), let (fj), (gj) be sequences in C∞c (Rn) ⊆
S (Rn) such that

∥f − fj∥L1 , ∥f − fj∥L2 , ∥g − gj∥L1 , ∥g − gj∥L2 < 1
jBy the Riemann-Lebesgue lemma,

sup
ξ∈Rn
∣f̂(ξ) − f̂j(ξ)∣ ≤ ∥f − fj∥L1 < 1

j

So f̂j → f̂ uniformly. Similarly, ĝj → ĝ uniformly. Furthermore, we have that
∥f̂j − f̂k∥

2
L2 = (2π)n∥fj − fk∥2L2 → 0

as j , k →∞, (f̂j) is a Cauchy sequence in L2, so f̂j → f̂ in L2 by the lemma2. Similarly, ĝj → ĝ ∈ L2. Thus,by continuity, we have that
⟨f , g⟩ = lim

j→∞
⟨fj , gj⟩ =

1
(2π)n lim

j→∞
⟨f̂j , ĝj⟩ =

1
(2π)n (f̂ , ĝ)

Corollary 5.10. f ↦ (2π)−n/2 f̂ defines an isometry L1 ∩ L2 → L2, so by density extends uniquely to alinear map (2π)−n/2F ∶ L2(Rn)→ L2(Rn).
Definition 5.11 (Fourier-Plancherel transform)For f ∈ L2(Rn), write f̂ =F (f) for the Fourier-Plancherel transform of f .
Proposition 5.12.

f̂ = lim
R→∞

f̂1BR(0)
2The limit exists by completeness, the lemma shows that the uniform limit and L2 limits agree in this case.
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5.2 Fourier transforms of tempered distributions
Notation 5.13 (translation of a distribution). For u ∈S , we define

τxu(φ) = u(τ−xφ)

Notation 5.14 (spatial inversion of a distribution). For u ∈S , we define
ǔ(φ) = u(φ̌)

Definition 5.15 (Fourier transform of a tempered distribution)Let u ∈S ′(Rn). Define û ∈S ′(Rn) by
û(φ) = u(φ̂)

Proposition 5.16. If f ∈ L1(Rn) then T̂f = Tf̂ .
Lemma 5.17. Let u ∈S ′(Rn), then

(i) êξu = τξ û,(ii) τ̂xu = e−x û,(iii) ∇̂αu = i∣α ∣ξα û,(iv) ∇α û = (−1)∣α ∣x̂αu,(v) ˆ̂u = (2π)nǔ.
Proof. Let φ ∈S (Rn), then

êξu(φ) = eξu(φ̂) = u(eξ φ̂) = u(τ̂−ξφ) = û(τ−ξφ) = τξ û(φ)So êξu = τξu. The other results follow from the corresponding results for the Fourier transform on S in asimilar way.
Proposition 5.18. F ∶S ′ →S ′ is a linear homeomorphism.

Proof. Suppose uj → u in S ′. That is, uj(φ)→ u(φ) for all φ ∈S . Then for any φ ∈S , we have that
ûj(φ) = uj(φ̂)→ u(φ̂) = û(φ)so ûj → û in S ′. Therefore, F ∶ S ′ → S ′ is continuous. As F 4 = (2π)2n id, F is invertible and has acontinuous inverse.

5.3 Periodic distributions and Fourier series

Definition 5.19 (periodic distribution)
u ∈ D ′(Rn) is periodic if for any g ∈ Zn, τgu = u.
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Definition 5.20 (fundamental cell)The fundamental cell of the lattice Zn is
q = {x ∈ Rn ∣ − 12 ≤ xi < 12}

We will also need the set Q = {x ∈ Rn ∣ −1 ≤ xi < 1}.
Lemma 5.21. There exists ψ ∈ C∞c (Rn) such that

(i) ψ ≥ 0,(ii) supp(ψ) ⊆ Q,(iii) ∑g∈Zn τgψ = 1
Such a ψ is called a periodic partition of unity. Furthermore, suppose ψ,ψ′ are both p.p.u.s, then if

u ∈ D ′(Rn) is periodic, then we have that
u(ψ) = u(ψ′)

Proof. Let ψ0 ∈ C∞c (Rn), with supp(ψ0) ⊆ Int(Q), ψ0 = 1 on q, with ψ0 ≥ 0. Then set
S(x) = ∑

g∈Zn
ψ0(x − g)

Then S is C∞ as the sum is always finite, and S(x) ≥ 1 for all x ∈ Rn. Then
ψ(x) = ψ0(x)

S(x)works. Now suppose u ∈ D ′(Rn) periodic, ψ,ψ′ are p.p.u.s, then
u(ψ) = u

⎛
⎝
ψ ∑
g∈Znτgψ′

⎞
⎠

= ∑
g∈Zn

u(ψ ⋅ τgψ′)

= ∑
g∈Zn

τ−gu(τ−gψ ⋅ ψ′)

= u
⎛
⎝
⎛
⎝∑g∈Zn

τ−gψ
⎞
⎠
⋅ ψ′
⎞
⎠

= u(ψ′)

Corollary 5.22. If ψ is a p.p.u, f ∈ L1loc.(Rn) periodic, then
Tf (ψ) = ∫

q
f(x)dx

Proof. Choose a sequence ψn of p.p.u. such that ψn → 1q pointwise, with ψn bounded.
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Definition 5.23 (average)if u ∈ D ′(Rn) is periodic, the average of u over the fundamental cell q is
M(u) = u(ψ)for any p.p.u. ψ .

Lemma 5.24. Let v ∈ E ′(Rn), then
u = ∑

g∈Zn
τgv (*)

converges in (the weak-∗ topology for) S ′(Rn). Conversely, if u ∈ D ′(Rn) is periodic, then thereexists v such that (*) holds. Hence every periodic distribution is tempered.
Proof. Let K = supp(v), then we have seen that there exists N ∈ N, C > 0 such that

∣v(φ)∣ ≤ C sup
x∈K,∣α ∣≤N

∣∇αφ(x)∣

for all φ ∈ E (Rn). Now let φ ∈S (Rn), then
∣τgv(φ)∣ = ∣v(τ−gφ)∣ ≤ C sup

x∈K,∣α ∣≤N
∣∇αφ(x + g)∣

Since K is compact, K ⊆ BR(0) for some R . Then for all x ∈ K ,
1 + ∣g∣ ≤ 1 + ∣x ∣ + ∣x + g∣ ≤ (1 + R)(1 + ∣x + g∣) Ô⇒ 1 ≤ (1 + R)(1 + ∣g + x ∣1 + ∣g∣ )Hence for any M ≥ 1, we have that

∣τgv(φ)∣ ≤ C (
1 + R1 + ∣g∣ )M sup

x∈K,α≤N
((1 + ∣x + g∣)M ∣∇αφ(x + g)∣)

≤ C ( 1 + R1 + ∣g∣ )M sup
x∈Rn,α≤N

((1 + ∣x ∣)M ∣∇αφ(x)∣)
In particular, this means that

∣τgv(φ)∣ ≤
C ′

(1 + ∣g∣)n+1for all g. Hence ∑g∈Zn τgv(φ) converges for all φ ∈S (Rn), so ∑g∈Zn τgv converges in S ′(Rn).Conversely, let u ∈ D ′(Rn) be periodic, ψ be a p.p.u., then for any φ ∈ D(Rn),
u(φ) =

⎛
⎝∑g∈Zn

τgψ
⎞
⎠
u(φ) = ∑

g∈Zn
u((τgψ)φ) = ∑

g∈Zn
u(ψ(τ−gφ)) = ∑

g∈Zn
ψu(τ−gφ) = ∑

g∈Zn
τg(ψu)(φ)

Set v = ψu. Then v has compact support as ψ does. So ψu extends uniquely to v ∈ E ′(Rn). (*) holds bythe above.
Lemma 5.25. Suppose u ∈S ′ satisfies

(e−g − 1)u = 0for all g ∈ Zn, then
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u = ∑
g∈Zn

cgδ2πg
converging in S ′, with cg ∈ C satisfying the bound

∣cg∣ ≤ K (1 + ∣g∣)Nfor some K > 0,N ∈ Z.
Proof. Let Λ = 2πZn be the dual lattice to Zn, that is,

Λ = {2πg ∶ g ∈ Zn}
Step 1: supp(u) ⊆ Λ. Let Λi = {x ∈ Rn ∣ xi ∈ 2πZ}. Suppose φ ∈ D(Rn) is such that supp(φ) ∩ Λi = ∅.Then let g = (0, . . . ,1, . . . ,0) ∈ Zn be the i-th standard basis vector, and we get that (e−g − 1)−1φ ∈ S (Rn),since φ(x) = 0 near x1 ∈ 2πZ, and (e−g − 1)(x) = 0 if and only if x1 ∈ 2πZ. Hence we have that

u(φ) = (e−g − 1)u ((e−g − 1)−1φ) = 0Hence we must have that supp(u) ⊆ Λi. But this holds for all i, so we have that
supp(u) ⊆⋂

i
Λi = Λ

Step 2: Multiplying by a p.p.u. Let ψ be a p.p.u., and define ψ̃(x) = ψ(x/2π). Then we have that
∑
g∈Λ τgψ̃(x) = 1, ψ̃ ≥ 0 and supp(ψ) ⊆ {∣xi∣ < 2π}

Let vg = (τ2πgψ̃)u, then supp(vg) ⊆ {2πg}, with
∑
g∈Zn

vg = u and (e−k − 1)vg = 0
Taking g ∈ Zn to be the j-th standard basis vector of Rn, we find that

0 = (e−ixj − 1)vg = (e−i(xj−2πgj) − 1)vg = (xj − 2πgj)K (xj)vgwhere K (xj) is holomorphic, with K (2πgj) ≠ 0, which follows immediately from Taylor’s theorem in ComplexAnalysis. In this case, we have that (xj − 2πgj)vg = 0. But as vg has compact support, it can be extended to
E ′(Rn).

Step 3: Series expansion Let φ ∈S (Rn), then by Taylor’s theorem, there exists φj ∈ C∞(Rn) such that
φ(x) = φ(2πg) + n

∑
j=1(xj − 2πgj)φj(x)

Hence we have that
vg(φ) = vg(φ(2πg)) + n

∑
j=1(xj − 2πgj)vg(φj) = φ(2πg)vg(1) = δ2πg(φ)u(τ2πgψ̃) = cgδ2πg(φ)

where cg = u(τ2πgψ̃) = vg(1).
Step 4: Bounds on the coefficientsNow note that for u ∈S ′, we have N,K ∈ N, C > 0 such that

∣u(φ)∣ ≤ C sup
x∈Rn,∣α ∣≤K

((1 + ∣x ∣)N ∣∇αφ(x)∣)
for all φ ∈S ′(Rn). Hence we have that
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∣cg∣ ≤ C sup
x,∣α ∣≤K

((1 + ∣x ∣)N ∣∇α ψ̃(x − 2πg)∣)
≤ C sup

x,∣α ∣≤K
((1 + ∣x + 2πg∣)N ∣∇α ψ̃(x)∣)

≤ C sup
x,∣α ∣≤K

((1 + ∣x ∣)N(1 + 2π∣g∣)N ∣∇α ψ̃(x)∣)
≤ C ′(1 + ∣g∣)N

for some C ′ > 0.
Theorem 5.26. Let u ∈ D ′(Rn) be periodic, then

u = ∑
g∈Zn

ugTe2πg
converges in S ′(Rn), where ug =M(e−2πgu) ∈ C satisfies

∣ug∣ ≤ C(1 + ∣g∣)Nfor some C > 0,N ∈ N.
Proof. Since u is periodic, u ∈S ′(Rn), and its Fourier transform û is define. As τku = u for all k ∈ Zn, we getthat

(e−k − 1)û = 0for all k ∈ Zn. Hence by the lemma, we gave that
û = (2π)n ∑

g∈Zn
ugδ2πg

i.e. cg = (2π)nug. Applying Fourier invresion, we find that
u = ∑

g∈Zn
ugTe2πg

Remark 5.27. By abuse of notation, we write
u = ∑

g∈Zn
uge2πig⋅x

and
ug = ∫

q
u(x)e−2πig⋅xdx

even though distributions are not functions on Rn .
Definition 5.28 (Fourier coefficients)The ug are called the Fourier coefficients of u.
Corollary 5.29 (Poisson summation formula).

∑
g∈Zn

δx−g = ∑
g∈Zn

Te2πg
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in S ′(Rn).
Proof. Let u = ∑g∈Zn δg. Then u is periodic, so by the theorem, we have that

uk =M(e−2πku) = u(ψe2πk) = ∑
g∈Zn

ψ(g)e−2πik ⋅g = ∑
g∈Zn

ψ(g) = 1
where ψ is a p.p.u., and this means that

∑
g∈Zn

δg = ∑
g∈Zn

Te2πg

Theorem 5.30. Let u ∈ D ′(Rn) be periodic, with Fourier coefficients {ug}. Then
(i) ∇αu ∈ D ′(Rn) is also periodic, with

∇
αu = ∑

g∈Zn
(2πg)αugTe2πg

(ii) if f ∈ L1loc. is periodic, u = Tf , then ∣ug∣ ≤ ∥f∥L1(q), and ug → 0 as ∣g∣→∞,
(iii) if f ∈ Cn+1(Rn) periodic, u = Tf , then

f(x) = ∑
g∈Zn

uge2πig⋅x
converges uniformly,(iv) if f , h ∈ L2loc. are periodic, with Fourier coefficients {fg},{hg}, then

∫
q
f(x)h(x)dx = ∑

g∈Zn
fghg

moreover,
f(x) = ∑

g∈Zn
fge2πig⋅x

where the series converges in L2(q).
6 Sobolev spaces
6.1 Sobolev spaces

Definition 6.1 (W k,p spaces)Let U ⊆ Rn be open, k ∈ N, p ∈ [1,∞], then the Sobolev space W k,p(U) is defined by
W k,p(U) = {f ∈ Lp(U) ∣ ∀∣α ∣ ≤ k,∃f α ∈ Lp(U) s.t. ∇αTf = Tf α in D ′(U)}

Definition 6.2 (weak, distributional derivative)
∇
α f = f α is called the α-th weak, or distributional derivative of f .
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Definition 6.3 (Sobolev norm)For p <∞, the Sobolev norm on W k,p is
∥f∥W k,p =

⎛
⎝∑∣α ∣≤k

∥∇α f∥pLp
⎞
⎠

1/p

and for p =∞, the Sobolev norm on W k,∞ is
∥f∥W k,∞ = max ∣α ∣ ≤ k∥∇α f∥L∞

Theorem 6.4. W k,p(U) with the Sobolev norm is a Banch space for p ∈ [1,∞]. Moreover, when p = 2,
W k,2(U) is a Hilbert space.
Proposition 6.5.

∫
U
∇
α fφdx = (−1)∣α ∣ ∫

U
f∇αφdx

for all φ ∈ C∞c (U).
Proof. Follows by the definition of the derivative of a distribution.

Notation 6.6. For f ∈ L1loc.(U), we say that ∇α f ∈ Lp(U) if and only if there exists f α ∈ Lp(U) such that ∇αTf = Tfαin D ′(U).
Definition 6.7 (Hs spaces)For s ∈ R, we say that f ∈S ′(Rn) belongs to the Sobolev space Hs(Rn) if f̂ ∈ L2loc.(Rn) and

∫
Rn
(1 + ∣ξ ∣2)2∣f̂(ξ)∣2dξ <∞

Proposition 6.8. If k ∈ N, then Hk(Rn) =W k,2(Rn).
Proposition 6.9. H2(Rn) is a Hilbert space with inner product given by

⟨f , g⟩Hs = ∫
Rn
f̂(ξ)ĝ(ξ)(1 + ∣ξ ∣2)sdξ

6.2 Sobolev embedding and trace

Theorem 6.10 (Sobolev embedding). Let s > n2 + k , f ∈ Hs(Rn). Then there exists f∗ ∈ C k(Rn) such that
f = f∗ a.e. We’ll write f = f∗a and view Hs ≤ C k .

aWhich makes sense since in Lp spaces we only care about functions up to equality a.e.
Proof. First suppose f ∈S (Rn). Then we have that by the Fourier inversion theorem,

∇
α f(x) = i∣α ∣

(2π)n ∫Rn
eix⋅ξξα f̂(ξ)dξ
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for all α . Which means that
∣∇α f(x)∣ ≤ 1

(2π)n ∫Rn
∣ξ ∣∣α ∣∣f̂(ξ)∣dξ ≤ 1

(2π)n (∫Rn
(1 + ∣ξ ∣2)s∣f̂(ξ)∣2dξ)1/2 (∫

Rn
∣ξ ∣2∣α ∣(1 + ∣ξ ∣2)−sdξ)1/2

But if ∣α ∣ ≤ k , then
∣ξ ∣2∣α ∣(1 + ∣ξ ∣2)−s ≤ (1 + ∣ξ ∣2)∣α ∣−s ≤ (1 + ∣ξ ∣2)k−s < (1 + ∣ξ ∣2)−n/2and Cn = (2π)−n ∫Rn(1 + ∣ξ ∣2)−n/2dξ <∞, so we have that

sup
x∈Rn,∣α ∣≤k

∣∇α f(x)∣ ≤ Cn∥f∥Hs

Now for general f ∈ Hs(Rn), let (fj) ⊆S (Rn) be such that fj → f in Hs and fj → f a.e. In particular, (fj)is a Cauchy sequence in Hs, so it is a Cauchy sequence in C k , and so fi → f∗ in C k for some f∗ in C k . Butas fj → f a.e., we must have that f = f∗ a.e.
Theorem 6.11 (trace). Let s > 1/2, then there exists a bounded operator T ∶ Hs(Rn)→ Hs−1/2(Rn−1) suchthat

T f = f ∣Rn−1×{0}for all f ∈S (Rn). T f is called the trace of f on Σ = Rn−1 × {0} ⊆ Rn.
6.3 The space H10(U)Let U ⊆ Rn be open, f ∈ C∞c (U). Extending f by 0 outside of U , we can view f ∈ H1(Rn). So C∞c (U) ≤ H1(Rn).

Definition 6.12 (H10 space)Define the Sobolev space H10(U) to be the closure of C∞c (U) ≤ H1(Rn), with the H1 norm.
Proposition 6.13. H10(U) is a Hilbert space, with inner product

⟨u, v⟩H10 = ∫U (∇u ⋅ ∇v + uv)dx

Proposition 6.14. If u ∈ H10(U), then u = 0 for a.e. x ∉ U .
Proof. Suffices to show that for all φ ∈ C∞c (Int(Uc)), ∫Rn φudx = 0. Let Λφ(v) = ∫Rn φvdx . Then Λφ(v) = 0 forall v ∈ C∞c (U), and we have that

∣Λφ(v)∣ ≤ ∥φ∥L2∥v∥L2 ≤ ∥φ∥L2∥v∥H1which means that Λφ ∶ H10(U) → C is continuous, and zero on a dense subspace, so it must be identicallyzero.
Proposition 6.15. For ∂U sufficiently lince, any u ∈ H10(U) vanishes on ∂U in the trace sense.

Proof. T ∶ H1(U)→ H1/2(∂U) is bounded, and T is zero on C∞c (Rn).
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Definition 6.16 (Hsloc.)For s > 0, define the Sobolev space
Hsloc.(U) = {u ∈ L2loc.(U) ∣ χu ∈ Hs(Rn) for all χ ∈ C∞c (U)}

Proposition 6.17. Let U ′ be open, U ′ ⊆ U , then u ∈ Hsloc.(U) is in C k(U ′) if s > n2 + k .
Proof. We can find χ ∈ C∞c (U) such that χ = 1 on U ′. Hence by the Sobolev embedding theorem, χu ∈
Hs(Rn) ≤ C k(Rn). But χ = 1 on U ′ implies that u = χu ∈ C k(U ′).
6.4 Reillich-Kondrachov

Theorem 6.18. Let U ⊆ Rn be open and bounded, suppose (uj) ⊆ H10(U) satisfies ∥uj∥H1 ≤ 1 for all j ,and uj ∗⇁ u in L2(U), with u ∈ H10(U). Then uj → u ∈ L2(U).
Proof. By Parseval, we have that

∥uj − u∥
2
L2 = 1
(2π)n ∥ûj − û∥2L2 = 1

(2π)n ∫∣ξ ∣<R ∣ûj(ξ) − û(ξ)∣2dξ + 1
(2π)n ∫∣ξ ∣>R ∣ûj(ξ) − û(ξ)∣2dξ (*)

Fix ε > 0. Then we can bound the second term in (*) by
2

(2π)n(1 + R2) ∫∣ξ ∣>R(1 + ∣ξ ∣2)(∣ûj(ξ)∣2 + ∣û(ξ)∣2)dξ ≤ 2
(2π)n(1 + R2)(∥uj∥2H1 + ∥u∥

2
H1) ≤

4
(2π)nR2 < ε

for R large enough. Note that we used
∥u∥2H1 = ⟨u,u⟩H1 = lim

j→∞
⟨uj , u⟩H1 ≤ lim

j→∞
∥uj∥H1∥u∥H1 ≤ ∥u∥H1 Ô⇒ ∥u∥H1 ≤ 1

For the first term, since ûj(ξ) = ⟨eξ , uj⟩L2(U), and eξ ∈ L2(U) since U has finite measure, by uj
∗⇁ u, weget that ûj(ξ)→ û(ξ) for all ξ ∈ Rn. Furthermore, we have that

∣ûj(ξ) − û(ξ)∣
2 ≤ 2 (∣ûj(ξ)∣2 + ∣û(ξ)∣2)
≤ 2 (∥uj∥2L1 + ∥u∥2L1)
≤ 2∣U ∣ (∥uj∥2L2 + ∥u∥2L2)
≤ 4∣U ∣K 2

where we used the Hölder inequality, and the fact that ∥f∥L2 ≤ ∥f∥H1 . Thus, by the dominated convergencetheorem, the first term in (*) → 0 as j →∞. Hence the (*) is ≤ 2ε for j large enough.
Corollary 6.19. Let U ⊆ Rn be open and bounded, (uj) ⊆ H10(U) bounded. Then there is a subsequence
(jk) such that ujk ∗⇁ u in H10(U), and ujk → u in L2(U).
Corollary 6.20. If A ∶ L2(U)→ H10(U) is a bounded linear map, then A ∶ L2(U)→ L2(U) is compact.
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6.5 Application: Elliptic boundary value problems
Elliptic equation on Rn

Proposition 6.21. Suppose f ∈ Hs, then the equation
−∆u + u = f (*)on Rn has a unique solution u ∈ Hs+2. Furthermore, if s > n/2+k , then f ∈ C k(Rn) and u ∈ C k+2(Rn),and the equation holds in the classical sense.

Proof. Taking the Fourier transform of (*), we get
(∣ξ ∣2 + 1)û(ξ) = f̂(ξ) a.e.

So the solution is given by û(ξ) = f̂(ξ)1 + ∣ξ ∣2 a.e. Fourier inversion shows that (*) has a unique solution.Finally, we have that
∥u∥2Hs+2 = ∫

Rn
(1 + ∣ξ ∣2)s+2∣û(ξ)∣2dξ = ∫

Rn
(1 + ∣ξ ∣2)s∣f̂(ξ)∣2dξ = ∥f∥2Hs <∞

Dirichlet problem on a bounded domainIn this section, let U ⊆ Rn be open, and f ∈ L2(U). Then consider the Dirichlet problem
⎧⎪⎪⎨⎪⎪⎩

−∆u + u = f in U
u = 0 on ∂U (*)

with u ∈ H10(U), and we wish to find a solution in the distributional sense. That is,
∫ (−u∆v + uv)dx = ∫

U
(∇u ⋅ ∇v + uv)dx = ∫

U
f vdx

for all v ∈ C∞c (U).
Definition 6.22 (weak solution)
u ∈ H10(U) is a weak solution to (*) if for all v ∈ H10(U),

⟨u, v⟩H1 = ⟨f , v⟩L2

Proposition 6.23. There exists a unique weak solution u of (*), with ∥u∥H1 ≤ ∥f∥L2 . Furthermore, thesolution operator S ∶ L2(U) → H10(U) is a bounded linear operator. If we consider H10(U) ≤ L2(U), then
S ∶ L2(U)→ L2(U) is self adjoint.

Proof. Define Λ ∶ H10(U) → C by Λ(v) = ⟨f , v⟩L2 . Then Λ is a bounded linear functional. Thus by the Rieszrepresentation theorem, there exists a unique u ∈ H10(U) such that Λ(v) = ⟨u, v⟩H1 . Then ⟨u, v⟩H1 = ⟨f , v⟩L2 forall v ∈ H10(U), so u is the weak solution to (*). The norm bound follows by
∥u∥2H1 = ⟨u,u⟩H1 = Λ(u) = ⟨f , u⟩L2 ≤ ∥f∥L2∥u∥L2 ≤ ∥f∥L2∥u∥H1Linearity of S follows from the equations being linear, and uniqueness of the solutions. Furthermore, given

f , g ∈ L2(U), we have that
⟨f , Sg⟩L2 = ⟨Sf ,Sg⟩H1 = ⟨Sg,Sf ⟩H1 = ⟨g,Sf ⟩L2 = ⟨Sf , g⟩L2so S ∶ L2(U)→ L2(U) is self adjoint.
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Proposition 6.24. Let u ∈ H10(U) be the unique solution to (*). If f ∈ L2∩Hkloc.(U), then u ∈ H10 ∩Hk+2loc. (U).Furthermore, if k is large enough, then (*) holds in the classical sense.
Proof. Fix K ⊆ U compact, χ ∈ C∞c (U) real valued such that χ = 1 on K . Given φ ∈ S (Rn), let v(x) =
χ(x)φ(x), and using the fact that u is a weak solution, we find that

∫
U
∇u ⋅ ∇(χφ) + uχφdx = ∫

U
fχφdx

Rearranging, we find that
∫
U
∇(χu) ⋅ ∇φ +∇u ⋅ (∇χ)φ − u∇φ ⋅ ∇χ + uχφdx = ∫

U
fχφdx

Integrating some of the terms by parts, we find
∫
U
−χu∆φ + 2∇u ⋅ (∇χ)φ + uφ(∆χ) + uχφdx = ∫

U
fχφdx

Hence v satisfies
∫
Rn
v(−∆φ + 1)dx = ∫

Rn
gφdx

where
g = −2∇u ⋅ ∇χ − u∆χ + fχ ∈ L2(Rn)So v is a solution to −∆v + v = g. Hence v ∈ H2(Rn). For any ψ ∈ C∞c (U), we can take K = supp(ψ), then

ψu = ψv ∈ H2(Rn), so u ∈ H10 ∩H2loc.(U).In general, we have that if f ∈ L2∩Hkloc.(U), then g ∈ Hk(Rn), so v ∈ Hk+2(Rn) and hence u ∈ H10 ∩Hk+2loc. (U).Finally, note that by the Sobolev embedding theorem, if k +2 ≥ n2 + ℓ , then v ∈ C ℓ(Rn). But being C ℓ is a localproperty, and every point in U has a compact neighbourhood contained in U , so u ∈ C ℓ(Rn).
Dirichlet problem with potentialLet U ⊆ Rn be open and bounded, V ∶ U → R smooth and bounded, f ∈ L2(U). Then consider the Dirichletproblem

⎧⎪⎪⎨⎪⎪⎩

−∆u + Vu = f in U
u = 0 on ∂U (*)

Definition 6.25 (weak solution)
u ∈ H10(U) is a weak solution to (*) if

∫
U
(∇u ⋅ ∇v + Vuv)dx = ∫

U
f vdx (†)

for all v ∈ H10(U).
Proposition 6.26. Either

(i) there exists ω ∈ H10 ∩ C∞(U) nonzero such that
−∆ω + Vω = 0

(ii) or for all f ∈ L2(U), there exists a unique u ∈ H10(U) such that (*) holds.
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Proof. Notice that (†) is equivalent to
∫
U
(∇u ⋅ ∇v + uv)dx = ∫

U
(f + (1 − V ))uvdx

Let S ∶ L2(U)→ H10(U) be the solution operator for V = 1 from above. Then
(†) ⇐⇒ u = S(f + (1 − v)u) ⇐⇒ (I −K )u = Sfwhere Ku = S((I − V )u). Since K ∶ L2(U) → H10(U) is bounded, K ∶ L2(U) → L2(U) is compact. Theneither

(a) ker(I −K ) ≠ 0, so there exists ω ∈ L2(U) nonzero such that (I −K )ω = 0,(b) im(I −K ) = L2(U), so there exists a unique u such that (I −K )u = Sf .
Moreover, in (a), ker(I − K ) is finite dimensional, and ω = S((1 − v)ω), so ω ∈ H10(U). By repeating theabove argument, ω ∈ H10(U) ∩ C∞(U) by the Sobolev embedding theorem.In (b), u = S(f + (1 − v)u) ∈ H10(U), so u is a weak solution to (*).

Theorem 6.27. There exists an orthonormal basis {ψk} of L2(U) such that
(i) ψk ∈ H10(U) ∩ C∞(U),(ii) −∆ψk = λkψk in U ,

where 0 ≤ λ1 ≤ λ2 ≤ . . ., with λk →∞.
Proof. By the spectral theorem for compact self adjoint operators, we have that

σ(S) = {0, µ1, µ2, . . .}with µk ∈ R, and the only accumulation point is at 0. We also have a corresponding orthonormal basis ofeigenvectors {ψk} for S .Now as Sψk = µkψk , ψk ∈ H10(U) as ψk ∈ im(S). Moreover,
⟨ψk , v⟩L2 = ⟨Sψk , v⟩H1 = µk ⟨ψk , v⟩H1for all v ∈ H10(U). Setting v = ψk , we get that 1 = µk∥ψk∥2H1 . So µk > 0. Moreover, as 1 = ∥ψk∥L2 ≤ ∥ψk∥H1 ,we have that µk ≤ 1. Then notice that ψk is a weak solution to

⎧⎪⎪⎨⎪⎪⎩

−∆ψk = λkψk in U
ψk = 0 on ∂Uwhere λk = 1/µk − 1 ≥ 0. Since µk has only 0 as an accumulation point, λk →∞. Elliptic regularity impliesthat ψ ∈ C∞(U).

35


	Measure theory and integration
	Lp spaces
	Lebesgue differentiation theorem
	Egorov, Lusin

	Banach and Hilbert spaces
	Radon-Nikodym
	Dual of Lp
	Riesz-Markov
	Hahn-Banach

	Weak topology and compactness
	Strong, weak and weak-* topologies
	Banach-Alaoglu

	Distributions
	Test functions D(U) and distributions D'(U)
	Compactly supported distributions E'(U)
	Tempered distributions S'(Rn)
	Convolution

	Fourier transforms
	Fourier transforms of functions
	Fourier transforms of tempered distributions
	Periodic distributions and Fourier series

	Sobolev spaces
	Sobolev spaces
	Sobolev embedding and trace
	The space H01(U)
	Reillich-Kondrachov
	Application: Elliptic boundary value problems


