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Measure theory and integration

1.1 [P spaces

Definition 1.1 (convolution)
For f,g : R" - R, the convolution of f,g is f * g : R” - R, defined by

(F+9)(x) = [ 1x-9)g(y)dy

whenever the integral exists.
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Proposition 1.2.
) Frg=g=f,

(i) (fxg)*h="Fx*(g=*h),

(itt) and if f(x—y)g(y) is dydx measurable, then

L= ( [ 1w ( [ atwray)

Definition 1.3 (L] (R"))
For f:R" >R, e Lfoc_(R”) if f1x € LP(R") for all compact K ¢ R".

Proposition 1.4. Let f e L] (R"), g € CX(R"), then f * g € CX(R"), with

loc.

VO(F % g) =f * (v79)

for all |a| < k.

Proof. Case k =0. Define the translation
T,f(x)=f(x-2)
then we have the following properties.
e I,(f*g)="fx*T,g, which follows by the definition of convolution.
e [,g — g pointwise as z — 0, as g is continuous,

o [T.g()| < [1g]l;1Ba0y (%), for [z <1, x| +71 < R and supp(g) € Br(0), which follows from g being
compactly supported.

With all of this, we get that

() T29(x = I < Mgl F (YT B0y (X = 1)

1
loc.

L)) = Lo)() = [ F)Tgt=)dy > [ 1()g(x=y)dy=( +g)(x)

So f+geCO
Case k =1. Define the difference quotient

which is an integrable function of y as f € ;.. Thus, by the dominated convergence therem, we have that

_gx+he)-g(x)
Alg(x) = p

Then by the definition of the partial derivatives, we have that for all x e R”,

Alg(x) > Vig(x)

as h = 0. Fix x, h. Then by the mean value theorem, there exists t with |t| < |h| such that

Alg(x) = Vig(x + te;)

which means that

A" g ()] < 1.9 (3) | V(0 (%)



as before. Applying the dominated convergence theorem, we get that

AN+ g) =1+ (A7) > [+ Vig

which means that f » g € C', with derivative given by the above.
Case k> 1. |In this case, suffices to notice that by the k =1 case, we have for |a| < k-1,

VOV(fxg) = V(I +V;9)
But f ¢ [

loc.

and Vg € Ck' so by the k — 1 case, we have that

Vi(f*v;g)=1f*(V'Vig)

Theorem 1.5 (Minkowski's inequality). Let p < oo, f: R” - R"” — R be Borel. Then

(Lo a) "< [L(freor)"a

Proposition 1.6. Let p < o0, g € LP(R"), then

Hng_gHLu -0

as z — 0.

Proof. If g =1g, where R is a rectanle, then the result is clearly true. Similarly, the result is clearly true for a
finite union of (disjoint) rectangles. Now let B be a Borel set with |B| < oco. Then for all € > 0, there exists a
finite union of rectangles R = Ry U---U Ry, such that

115~ 1rl,, = [RAB| < £
Which means that

HTZ13—15||p§ ‘|TZ1B_T21R‘|p +HT21R—1RHP+H1R—1BHP<3sforzsma[l

=|[1g—=1g| <€ by translation invariance <e for z small <e

Thus the result holds for g = 15, and hence the result holds for simple functions. Finally, for g € L”, then
there exists g simple such that [g - g, <e. Thus

1729 -9l, <1T.9-T.gl,+17.9-gl,+lg-3l, <3¢

for z small enough. O

Definition 1.7 (smooth molifier)
@€ C.(R") is called a smooth molifier if ¢ >0, and [ @dx =1.

Theorem 1.8. Smooth molifiers exist. Furthermore, if ¢ is a smooth mollifier, set ¢.(x) = e ¢p(x/e).
Then for g € LP(R"), p < o0, we have that

pexgeC®(R") and @.*g—>ginlPase—0



Proof First, notice that we have

0% 90 =gl = | [ 0:0) (9= 9) = (1))
[ @) (g(x-e2)- g(2))dz
< [ o@NTg(0) - g(x)ldz

Using the above, and Minkowski's integral inequality, we get that

1/p
loe*g-ql = (fR = *g—glde)

1/p
< [ ([ e@ 190 - g0rar) - dz
- [ @) Tecq gl 02 ~0ase—0

by the dominated convergence theorem. O

Corollary 1.9. C=(R") is dense in LP(R") for p < oo.

Proof. The theorem implies that C= n [P(R") is dense in LP(R"). But since Hf ~ ), > 0as R— oo
by the dominated convergence theorem. Furthermore, f, g are compactly supported, then so is f * g. Hence we

have that C°(R") is dense in LP(R"). O

1.2 Lebesque differentiation theorem

Notation 1.10 (average). Define the average of a function f on a measurable set A with finite measure by

1
fd:—ffd
J£ E S

Definition 1.11 (Hardy-Littlewood maximal function)
For f e L'(R"), the Hardy-Littlewood maximal function Mf : R" — [0, o] is defined by

1
MF(x) = sup —— f d:su][ F(y)|d
(x) P ) B,<X)| (y)ldy Up 5,<X)| (y)ldy

Proposition 1.12. For f € L'(R"), then Mf is a Borel function which is finite a.e. and

3!7
{MF > A} < =1l

Proof. Define Ay = {Mf > A}. For x € A, there exists r, > 0 such that

f dy > A
][gx(x)l (y)ldy

To show that Mf is measurable, suffices to show A, = (Mf)~'((A, 0]) is open. Equivalently, A is closed.
Let (x¢) be a sequence in AY, and say xi — x. Now suppose if x € A,. Then by the dominated convergence
theorem, we have that

fd—>][fd
ﬁdm|w»y 1y



Since xx ¢ A, for all k, the left hand side is < A for all k. Hence in the limit, the right hand side is < A
Contradiction as x € A,. Thus x € Af, so AC is closed.

For the inequality, by the inner reqularity of the Lebesque measure, suffices to prove it for K ¢ A, compact.
Now {B, (x)|x € K} is an open cover of K, so by compactness we have a finite subcover. Write B; = B;.(x;),
and we have K ¢ Byu---u By.

By Wiener's covering lemma, there exists a finite subcollection B;, which are pairwise disjoint, and with

B cJ3B,
i k

where 3B;, = Bg,{k (x;,)- This means that we have that

3/7 3” 3/1
Kl<l)Bl<3"SB 1< = ff dg—ff dy = =[],
Kis|Us| <@ Sieds 3T [ s [l =1,

Theorem 1.13 (Lebesque differentiation theorem). Let f € L'(R"), then

lim £ V() =1()ldy =0

-0

for almost every x. The x such that the limit exists are called Lebesgue points of f.
Proof. Let

A, = {x ¢R" | umsup][ IF(y) - F(x)|dy > ZA}
r—0 B (x)

Suffices to show that |[A,| = 0 for all A >0, since the set of non-Lebesque points are U, A/, which would
then have measure zero by countable subadditivity.
Given € >0, take g € C°(R") with |[f —g|,: <& Then

]g,m 7(y) = 1(0ldy < ]g,(x) 1(y) = g(y)ldy +[f(x) = g(x)[ + ][ lg(x) = g(y)ldy

B (x)

<M(f-g)(x) —0 as r—0 since geC

So we have that

msup £ o @) = 1y <M = 9)() +11() = g ()

If x € Aj, then we must have that M(f —g)(x) > A or |[f(x) — g(x)| > A. But we have that

3/’!
{M(F = g) > Aj[ < =T =gl
and by Markov's inequality, we have that

f-gl,
11— gl> my< =900

Hence we have that

3" +1 3" +1
A< =gl < e

But € > 0 was arbitrary, so we are done. O



1.3 Egorov, Lusin

Theorem 1.14 (Egorov). Let E ¢ R” measurable, |E| < oo, fy : E > R measurable such that fy — f a.e.
Then for any € > 0, there exists a closed subset A. € E such that |E N\ A¢| < € and fy - f uniformly on A..

Proof. Without loss of generality, we may assume fi(x) — f(x) on all of £. Then define

Ein = {X eL||f(x)-f(x)|< 1 for all j> k}
n

Then Eg, € Egq, for all k, and as the fi converges pointwise, Uy Ex,n = E. So |Ex.n| 7 |E| as k — oo. Let
k, be such that |E N\ £y | <27 Then set

A/\/ = m Ek”,n
n>N

We have that

IENAN S ST IENEal <27V 5 0as N = o0
n=N

Therefore suffices to show that f; — f uniformly on Ay. For x € Ay, and any n > N, x € Ey ,, so we have
that

1
|f,(x) = f(x)] < - for all j > k,
So we must have that

lim sup sup |f,(x) = f(x)| < !

j—oo  xeAy n

But n > N was arbitrary, so we are done. O

Theorem 1.15 (Lusin). Let f: E — R be Borel, where £ ¢ R", with |E| < co. Then for every € > 0, there
exists F. € E closed, such that |E \ F.| <&, and f|r. is continuous.

Remark 1.16. This does not imply f itself is continuous at all x € F, since F has the subspace topology.
Proof. Step 1: The statement is true if f is simpl Let f = Zf\nAﬂ amla,, where the A, are disjoint sets of
finite measure. Without loss of generality, we can assume U,, Ay = E.

Fix € > 0. By the inner regularity of the Lebesqgure measure, there exists compact sets K, ¢ A, with
|An N K| < €/M. Then define

m!

Fs:UKm

which means that |E \ F| < . Since f is constant on each K,, K, compact and d(K,, Kz) > 0 for all
m+ ¢. So f is continuous on Fg.

Step 2: The result for measurable f. First take simple functions f, — f a.e.. By step 1, we have C, c £ be
such that |C,| < 27", fy|e<c, continuous. Fix € > 0. By Egorov, there exists a set Ac such that f, - f uniformly
on Ac and |E N A < e Set

Fe,/\/:Ag\ U Crn

m>N
Then |E N Fen| < 2e if N is sufficiently large. Since for n > N, f,|f_, are all continuous, and f, —
uniformly on Fgn, f: Fen is continuous. Finally, Fen is not necessarily closed, but by the reqularity of the
Lebesgue measure we can choose F. ¢ . n closed, with |[Fon N Fe| <€ So

|E N Fe|<3e

with f|r. continuous, and F. closed. O

"In this course, simple does not necessarily mean nonnegative. We allow negative scalars.



2 Banach and Hilbert spaces

Notation 2.1 (Inner product). In this course, for the inner product (of two functions in L), we use the convention that
it is conjugate linear in the first argument, and linear in the second argument. That is,

(f.9), = fE7gdu

2.1 Radon-Nikodym

Definition 2.2 (absolutely continuous)

Let (E,&) be a measurable space, p, v measures on (£,E). Then v is absolutely continuous with respect
to p, written v << 1 if for all A€ & with p(A) =0, v(A) =0.

Definition 2.3 (mutually singular)

Let (E£,€&) be a measurable space, i, v measures on (E,&). Then p and v are mutually singular, written
p L v if there exists B € £ such that y(B) = v(B®) = 0.

Theorem 2.4 (Radon-Nikodym). Let p, v be finite measures on (£,€&), with v < p. Then there exists
w € LW(E,c‘),u) such that for all Aeé&,

A) = [ wd
v(A) , wd
or equivalently, for all h: E — [0, oo] Borel,

fEhdv:fEhwdp

Proof. Step 1: Riesz representation. Set o =+ 2v, B =2p+v. Then a and B are finite measures. Define
the functional

A(f) = fE fdg
Then

DI < [ 171dg <2 [ Iflda < 2/a(E)Ifl o)

So A : [*(a) - R is a bounded linear map. Hence by the Riesz representation theorem, there exists
g € L?(a) such that A(f) = (g, )12y for all f [%(@). This means that

/\(f):/de:/gfda — [Ef(Z—g)dv=fEf(zg—1)dp )
Step 2: g >1/2 p-a.e. and v-a.e. Set

f=14 where A/I{XEE ‘ g(x)<;—1}
J
This gives us that
[1@g-Ndve=va) and [ 12-g)duz Zp(A)
J

Which means that v(A;) = u(A;) =0 for all j, so g > % p-a.e. and v-ae.
Step 3: u({g=1/2})=0. Set =1, where Z={g=1/2}, to get that

S(2)=0 = w(Z)=0



Step 4: g <2 p-a.e. and v-a.e. Set

Aj:{er‘g(x)>2+1,}
J

and proceed as in step 2.

Step 5: Defining w. By the monotone convergence theorem, we can extend (*) to all f > 0. Now given h
as in the statement, set

__hx)
1092 390 -1

where f(x) < oo p-a.e. by step 3. Then we have that

fEhdv:fEf(zg_ndV:fEf(z_g)du:fEhwdu

In particular, setting h =1 and using the fact that p(E) < oo, w e L'(p). O

2.2 Dual of L*

Notation 2.5. Let g € [1, 0o], then for every g € LY(R"), define the function Ay € LP(R") - F by

Ng(F) = f fgdx

Notation 2.6. We denote X’ = B(X,F) for the dual of X.

Proposition 2.7. Ay € (LP(R"))" and H/\gH(Lp), =g|,q-

Proof By Holder's inequality, we have that |/\g(f)| < |01l a. s0 Ag € (LP(R™))". Furthermore, equality
holds since we have that

[

Hg”Lq:[|g(X)|h(X)dX where h(x):||§]q1
La

and he [P, with |h],, =1. O

Corollary 2.8. The map /: LI9(R") - LP(R")" given by g = A4 is a linear isometry.

Definition 2.9 (positive opertor)
AelP(R")" is positive if A(f) >0 for all f e LP(R") with f >0 a.e.

Lemma 2.10. Let A€ [P(R")" be positive. Then there exists g € L9(R") > 0 such that A = Ay. That is,
A(F) = f fgdx

for all f e LP(R").

Proof. Let dy = e~ dx be the Gaussian measure, then p(R") =1 < co. Define

V(A) = A(e M7P1,)



To check that v is a finite measure, clerly v(@) =0 and v(R") < oo. Let (A¢) € B(R") be disjoint, and set
Bn = U1 Ac. Then

[V(Boo) = v(Ba)| < [N

Lp < ”/\HH(BW - Bm)vp -0

as m — oo, s0 v is countably additive. Furthermore, if t(A) = 0, then [v(A)| < [AJu(A)'/P =0, so v < p.
Therefore, by Radon-Nikodym, we have w € L'(1/) nonnegative such that

v(A):waduzwae_lx‘zdx

for all A€ B(R"). Now let f be simple, and f = eM/PF. Then by linearity of A, we have that
A(f) = f fdv = f Fwe M dx = f faodx where @ = we /9

Thus, A(f) = [ fadx for all f of the above form, which are dense in L?, so we are done. Remains to show

that @ e L9. But
ol =sup{ f Vo

In fact, equality holds by Holder. O

1], < 1} <Al < oo

Theorem 2.11. If p < oo then J is surjective. That is, J: L9(R") ~ [P(R")".

Proof of real valued case. Given A € [P(R")' real valued, there exists A, bounded positive such that A = Ay =A_.
The result then follows by the lemma. O

Proof of the complex valued case. If A € [P(R™)" is complex valued, then A, (f) = R(A(f)) and A;(f) = T(A(F))
are R-linear, such that

A+ 1) = A(F) = N(F) + iIN(F) + iN(f)
and the result then follows from the real valued case. O
2.3 Riesz-Markov

Theorem 2.12 (Riesz-Markov). Given A : C.(R") — R positive bounded linear, there exists a unique finite
Borel measure p on R” such that

A(f =/ fd
()= ), fdu
for all f e C.(R™).

Definition 2.13 (signed measure)

A signed measure is the difference of two mutually singular positive finite measures.

Corollary 2.14. The dual space of C.(R") with the L' norm is the space of signed measures on R”.

2.4 Hahn-Banach

Definition 2.15 (sublinear)

Let X be a real vector space, then p: X - R is sublinear if



) p(x+y) <p(x) +p(y)
(i) p(tx) =tp(x) for all x e X, t>0.

Lemma 2.16 (codimension 1 case of Hahn-Banach). Let X be a real vector space, p : X - R sublinear,
M c X is a subspace. Suppose ¢: M — R is linear, with £(y) < p(y) for all y € M. Then for x € X \ M,
let M = M @ span{x}. Then there is an extension 0: M - R linear, such that &|y, = ¢, and ¢(z) < p(2)
for all 7z e M.

Proof. If z € /\~/~I then there exists unique y € M and A € R such that z =y + Ax. Therefore, by linearity, suffices
to define a = 2(x). Let

a=sup{f(y)-p(y-x)|yeM}

As 0 e M, we only need to check that it is bounded above. For y,z € M, we have that

Uy)+(2) =y =2) <ply+2) <ply—x) +p(z+x)

Hence (y) - p(y—x) < p(z+x)—£0(z), so the sup is well defined, with ¢(y) —a < p(y — x) for all y e M.
In addition, we have that

U(2)+a<p(z+x)+ply—x)-0(y)+a
for all y,z € M. Taking the infimum over all y, we find that
0(z) +a < p(z+x)=sup{e(y) —ply - x)} +a = p(z+x)
y
Therefore, we find that

1y)+a) <Ap(Fy+x)=p(y+Aix) ifA>0

Ade(
(2(y) - ) <Wlp(fu-x)=ply+) i 1<0

Hence 2(7) < p(z) for all z € M. O

((
A

O(y +Ax) = 0( y)+)\a—{

Corollary 2.17. If dim(X/M) < oo, then any ¢ : M — R with £(y) < p(y) for all y € M can be extended
to £: X - R with 2(x) < p(x) for all x € X.

Theorem 2.18 (Hahn-Banach). Let X be a real vector space, p : X - R be sublinear, M ¢ X. Then for
any ¢: M — R linear with ¢(y) < p(y) for all y € M, there exists £ : X — R linear such that |y, = ¢, and
Z(x) < p(x) for all x € X.

Proof. Define
S:{(/\/,@)|/\//§/\/§X,@:/\/—>Rllnear,@(X)Sp(X) for aL[xe/\/,@W:@}

Define the ordering (/\/1,@1) < (/\/z,@z) if Ny < Ny, with ?2|N1 =0, For every chain T ¢ S, we have an
upper bound

Nr= U N and 27r=20(x)
(N, 0)eT

where x € N, (N, ?) e T. Then @5 is well defined as T is a chain. Hence by Zorn's lemma, S has a maximal
element (N, #). By maximality and the codimension 1 case, N = X. O

10



Corollary 2.19. Let X be a normed vector space over F =R or C, M < X subspace. For every bounded
linear functional A : M — F, there is a bounded linear A : X — FF such that

IA] =Nl and Ay =A
Proof If F =R, p(x) = |A||x| is sublinear, and the result follows from Hahn-Banach.

If F =C, then A(x) = £(x) — i0(ix), with £(x) = R(A(x)) real linear. Since |A(x)| = ¢(ex) for some 6,
we have that

sup A= sup £(x)
xeN, |x||<1 xeN, ||x[|<1

for any subspace N of X. Apply Hahn-Banach to ¢ and define A as above. O

Corollary 2.20. If X is a normed vector space, x € X, then there exists A, € X’ such that |A] = 1,
Av(x) = | x]|. A is called a support functional for X.

Proof. Define €(tx) = t|x|, and extend by Hahn-Banach. O

Corollary 2.21. Let X be a normed vector space, x € X, then x =0 if and only if A(x) =0 for all A e X".

Corollary 2.22. Let X be a normed vector space, x,y € X distinct, then there exists A € X’ such that
A(x) #A(y).

Corollary 2.23. The map & : X — X", with ®(x) =&, %(A\) = A(x) is an isometry.

Definition 2.24 (reflexive)
X is reflexive if ¢ is surjective, Le. X" = X.

Theorem 2.25 (Geometric Hahn-Banach). Let A, B ¢ X be disjoint nonempty convex subsets of a Banach
space X over R or C. Then

(1) if Ais open, then there exists A € X" and y € R such that
R(A(y)) <y <R(A(y))
for all x € A, y € B. Furthermore, if B is also open, we can make y < R(A(y)) strict.

(i) if A is compact and B is closed, then there exists A € X" and yy, y» € R such that
RA(X)) < v1 <v2 <R(A(y))

forall xe A, yeB.

Proof. We can assume without loss of generality that X is a real vector space, since we can apply the argument
to the real part of a linear functional.
(i) Choose ag € A, bg € B, and set xg = bg — ag and

i



C=A-B+xo={a-b+xy|aecAbeB}

Then 0 e C, C is convex, xo ¢ C as AnB=a. Let p(x) = 'Lnf{t >0|txe C} Then p is sublinear, with
p(x) < k|x]| for all x € X, and p(x) <1 if and only if x € C. Let M = span{xg}, and define ¢ : M - R by
¢(txo) = t. Then we have that

2(tx0) t<tp(xo) =p(txg) t=0
X =
: t<0<p(txo) if t<0

Hence by Hahn-Banach, we can extend ¢ to A: X = R, with A(x) < p(x) for all x € X. Moreoever,
—k[x] < =p(=x) <A(x) < p(x) < klx]| = [ACO[ < kx|
so A e X" with |A| < k. Furthermore, for any a € A, b € B,

ANa-b+xp)<pla-b+xp) <1

So A(a) =A(b) + A(xo) < 1. But A(xo) = €(x0) = 1. So A(a) <A(b). Now as A € X" is nonzero, A\ is an
open map. So A(A) is open, and A(A), A(B) are connected, so A(A), A(B) are disjoint intervals in R. The
result then follows.

(it) Since A is compact and B is closed,

d=inf{|a-b||aeAbeb}>0

Let V' = By;>(0). Then A+ V os open, convex and disjoint from B. Apply (i) with A+ V/, B, we have A e X’
such that A(A+ V),A(B) are disjoint intervals in R. Finally, note that A(A) ¢ A(A+ V) is compact, which
gives the required result. O

Corollary 2.26. Let X be a Banach space, M < X a subspace, xo ¢ M. Then there exists A € X such that
Axp =1 and A(x) =0 for all x e M.

Proof Use (ii) of the above with A= {xy} and B =M. O

3 Weak topology and compactness

Definition 3.1 (seminorm)

A seminorm p on a vector space X is a map p: X = R such that
® p(x+y) <p(x) +p(y).

(i) p(Ax) = [Alp(x),

(ii) p(x)>0.

Definition 3.2 (separating family)
A family £ of seminorms is separating if for every x # 0, there exists p € & such that p(x) #0.

Definition 3.3 (induced topology)
The topology T4 induced by a family & of separating seminorms has neighbourhood basis of 0 given by

B = {finite intersections of V/(p,n) = {x | p(x) <1/n} with p e 2, n e N}
That is, the topology has neighbourhood basis

12



B={x+B|xeX Bep}

Proposition 3.4.
(1) (X, 1) is a locally convex topological vector space,
(it) every open set is a union of elements of B,
(iit) each p e & is continuous.
(iv) for a sequence (x,) in X, xx = x if and only if p(xx —x) = 0 for all p e 2,

(v) if & = (px)ren is countable, then the topology is metrisable, with metric given by

_y ok Prx=y)
do(x.y) = Zk:z T+ pr(x-vy)

Proof. (ii), (iit) and (iv) follow from definitions, (i) and (v) are omitted.

Definition 3.5 (Fréchet space)
if (X,d) is complete, we call X a Fréchet space.

3.1 Strong, weak and weak-* topologies

Let X be a Banach space.

Definition 3.6 (strong topology)
The strong topology 7 is generated by the seminorms 22 = {|-|}. That is, it is the norm topology.

Definition 3.7 (weak topology)

The weak topology is generated by &2, = {pa |\ € X'} where pa(x) =|A(x)|. By Hahn-Banach, 2, is
separating and the induced topology 1, is called the weak topology.

Definition 3.8 (weak-* topology)

The weak-# topology on X’ is generated by the family of seminorms

Pus={pc|xeX} where p,(A)=|A(x)]

. . . . * 9
Notation 3.9. We write xx — x for convergence in 7, xx — x for convergence in 7, and Ay — A for convergence in

Twx-
Proposition 3.10 (convergence).

(i) a sequence (xg) converges to x in 7, if and only if |[xx — x| = 0,

(il) a sequence (x¢) converges to x in T, if and only if A(xx —x) — 0 for all Ae X',

13



(iit) a sequence (Ay) converges to A in T, if and only if Ag(x) = A(x) for all x € X.
(V) Ak > A = Ay = A = Ac > A,

(v) if X is reflexive, X" = X, then 1, = Tyyx.

3.2 Banach-Alaoglu

Theorem 3.11 (Banach-Alaoglu). Let X be a separable Banach space, (A\;) € X’ be a bounded sequence,
wlog ||A;[| <1 for all j. Then there is a subsequence (j;) and A e X such that |A] <1 and

Proof. Step 1: Construction Let D = {x;};-, € X be a dense subset. Since (A;(x1)) is bounded, by Bolzano-
Weierstrass there exists a subsequence /1 € N and A(xq) € F such that A;(x;) = A(xq) along Ji. Iterating this,
we get

h2h2o. ..

and (A(xx))k such that Aj(xk) = A(xx) along Jp for all £ > k. Taking the diagonal subsequence J of the
(k) te. J={ji <jp<...}, jk is the k-th element of /i, we find that for all k, A;(xx) = A(xx) along /.

Step 2: A: D — R is uniformly continuous, so it extends to A: X — I continuous.

Fix x,y € D with ||x — y| < €. Then there exists j € J such that |/\/(x) —/\(X)| < ¢ and |/\j(g) —/\(g)| <e
Hence

NG =AW < AC) = A O]+ A () = A ()] + A () = A(y)] < 3e
Step 3: A: X > F is linear. Let x,y € X, a € F. Set z=x+ay. Then for x',y’,z' € D, and j € N, we have
that

IN(2) = A(x) = aN(y)] < IM2) =A@+ IN) = AKX+ [al - [N (y) = Ay
+IANE) =N+ A = G Lal- A = Ay
N =" = ay))|
Fix € > 0. By continuity, if [x=x'|, |y -y'|l, |z -Z2"| sufficiently small, then we can make the first line
< e Similarly as |2 =x" —ay’| < |x = x| + |y = y'| + |z = Z|, we can make the last line < € as well, since

H/\/'” < 1. For the middle term, we can take j - oo along J, to get that for j € / large enough, we can make the
middle line < € as well. So we get that

NZ) = A(X) = a(y)] < 3¢
But € > 0 was arbitrary so we are done.

Step 4: |A] <1 and A; = A.
For the first one, notice that by density,

IAl=sup IAN()[= sup <1
xeX, x| <1 xeD, x| <1
and for the second one, given € >0, x € X, choose x" € D such that ||x" = x|| < . Then
|/\/'(X) - /\(x)| < |/\j(x - x')| + |/\j(X’) - /\(X')| +|A(x = x")| < 3e
for j € J large enough. O
4 Distributions

4.1 Test functions Z(U) and distributions 2'(U)

14



Definition 4.1 (C=(U))
For U c R" open, define

CZ(U) ={¢: U— C smooth, with supp(¢) ¢ U compact}

Theorem 4.2. There exists a topology 7 on C°(U) such that
(1) (C=(U), 1) is a topological vector space,
(i) a sequence (phi;) € C°(U) converges to O if and only if there exists K ¢ U comapct, such that

(a) supp(¢;) € K for all j,
(b) for evert multi-index a,
sup|VO’¢:/| -0
k

(ii) if Y is a locally convex topological vector space, A : C=(U) — Y linear, then A is continuous if and
only if A is sequentially continuous.

Definition 4.3 (test functions)
We call (C2°(U), T) the space of test function Z(U).

Definition 4.4 (distributions)
The space of distributions 2’(U) is the dual space of Z2(U) with the weak-* topology.

Proposition 4.5 (sequential continuity).

(i) a linear functional u: Z2(U) — Cis in 2'(U) if and only if for all sequences ¢; € Z(U) with ¢; - ¢
in Z2(U), we have that u(¢;) - u(¢) in C,

(i) a sequence (u;) in 2'(U) converges to u if and only if u;(¢) = u(¢p) for all ¢ € 2(U),

Definition 4.6 (Dirac delta)
For x € U, the Dirac delta distribution 0, € 2’'(U) is defined by 0,(¢) = ¢(x).

Definition 4.7 (embedding of L )

loc.
For f el (U), define T; e 2'(U) by

T (9) = /;fqﬁdx

Proposition 4.8. The map T : L} (U) - 2'(U) is injective.

Proof.
Tf=Tg < f(f—g)qbdx=0for al peC=(U) — (=g ae.
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Definition 4.9 (multiplication by a function)
If ue 2'(U) and a e C*(U), define au e 2'(U) by

au(¢) = u(ag)

Definition 4.10 (derivative)
If ue 2'(U), define V¥u e 2'(U) by

veu(¢) = (-1)u(v9)

Proposition 4.11.
(L) an = Taf:
(i) VOTr = Tger.

Proof. Easy to check from the definitions, and by integration by parts for (ii). O

4.2 Compactly supported distributions &’ (U)

Consider the space C*(U) = {¢: U — C smooth}. Then we can find a sequence (K;) of compact subsets of
U such that

(1) KicInt(Kitr) for all
(i) U=U;K.
Then for phie C=(U), define

pn() = sup sup [V (x)|

xeKy asN

Then & = {pn}ney IS a separating family of seminorms.
Definition 4.12 (£(U))
The space C*°(U) with the locally convex topology induced by & is denoted by &(U).

Proposition 4.13. &(U) is a Frchet space.

Proposition 4.14 (convergence). (¢;) ¢ &(U) converges to 0 if and only if for all K ¢ U compact,
multi-index @,

sup |Va¢j(x)| -0
xeK

Proposition 4.15. The embedding Z(U) = &(U) is continuous, and so we have an induced embedding
&'(U) = 2'(V).
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Lemma 4.16. Let v : &(U) — C be linear. Then u is continuous if and only if there is a compact set
KcR", NeN, C >0 such that

lu(@)[<C sup |ve(x)] ()

xeK |a|l<N

for all ¢ € &(U).

Proof. Since &(U) is a metric space, u € &'(U) if and only if u(¢;) — 0 for all sequences (¢;) ¢ &(U) with
¢; = 01in &U).
Suppose () holds, and let (¢;) € &(U) be a sequence with ¢; - 0, which is equivalent to saying for all

K ¢ U compact, N € N,

sup [V e(x)| >0
xeK Ja|gN

Taking K = K and N'= N, () implies that u(¢;) — 0. Conversely, suppose (*) does not hold. Let (K;) be a
sequence of compact subsets of U such that

(1) KicInt(Kiyr) for all
(i) U=U.K.
Since () does not hold, for each j there exists ¢; € &(U) such that
u(g) 2 sup |[vg;(x)|
xeK; |al<j
Then ;= qﬁj/‘u(qﬁj)‘ —0in &(U) since for all K ¢ U compact, N €N, there esists / > N such that K ¢ K;
for all j>J. Then

1
sup |V“¢j(x)| < -
xeK |al<N J

But |u(¢//)| =1, s0 u(yy;) # 0. Hence u cannot be continuous. O

Definition 4.17 (support)
For ue 2'(U) we say that u has support in a set S if u(¢) =0 forall pe C(U~S). If we can choose
S to be compact, we say that v is compactly supported.

Theorem 4.18.
&' (U) ={u e P'(U) compactly supported}

Proof. If u e & (U), then the lemma implies that v has support in a compact set K. Conversely, if u e 2'(U)
has support in a compact set K, define &(¢) = u(x¢) for all ¢ € &£(U), where x € CZ(U) is such that y =1
on K. In fact, the definition of & is independent of the choice of y since for any such x, ¥, x -y € C= (U~ K),

so u(x¢) = u(xe). 0
4.3 Tempered distributions ./(R")

Definition 4.19 (rapidly decreasing)
¢ e C(R") is rapidly decreasing if

17



SL]JRR |(1 + |x|)NV“¢(X)| < 00

for all N, a.

Definition 4.20 (Schwartz space)

The Schwartz space .#(R") is the space of rapidly decreasing functions with the topology generated by
the separating family of seminorms

pn(¢) = sup sup |(1+xDN v é(x)|
X€R" |a|<N

Proposition 4.21. . (R") is a Fréchet space, with

2(R") ¢ #(R") ¢ &(R")

continuously, which induces the inclusions of the dual spaces

&'(R") ¢ #'(R") € 2'(R")

Definition 4.22 ({tempered/Schwartz} distribution)

Z'(R") is the space of tempered distributions, or Schwartz distributions.

4.4 Convolution

Notation 4.23 (translation). The translation of a function is given by 7,g(y) = g(y — x).

Notation 4.24 (spatial inversion). The spatial inversion of a function is given by g(y) = g(-y).

Definition 4.25 (convolution of distribution with function)

For ue 2'(R"), f € 2(R"), define u * ¢(x) = u(7,).

Proposition 4.26.

1. (u+au)*p=ur*xdp+auy* ¢,

2. ux(pr+agy)=ux*dr+aux o,
3. ux ¢(0) = u(9),
4.1 fell , pe2(R"), then

fx¢(x) = Tr(1:9)

Proof. Easy to check.
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Proposition 4.27. Let u € 2'(R"), ¢ € Z(R"), then

1. u*¢peC®(R"), with
Vi(ux @)= (Viu) = p=ux(V')¢

where the first and third V¢ are of C* functions, and the second one is of a distribution,

2. fued (R"), then ux e 2(R").

Proof. (i) It is easy to check that

% (uxp(x+he)—ux*p(x))=u (%(Tﬁhe‘c}b— TX(%)) > u (TX%)

by the convergence in Z(R") of the argument, and the continuity of u. Hence V;(u * ¢)(x) = u(TXV\l/¢).
By induction, u * ¢ € C=(R"), with V¥(u * ¢) = u » (V¥¢) for all a. Finally, notce that

V(0 d)(y) = Vid(x - y) = (D) G(x—y) = ()5 v7G(y)

and hence u * (V%) = V7 * ¢.
(it) By assumption, u(¢) =0 for all ¢ € CZ(R" \ K), where K € R” compact. Hence for all ¢ € Z(R"),

supp(tx¢) N K = & for all x sufficiently large, so u * ¢ has compact support. O

Definition 4.28 (convolution of distributions)
For uy e 2'(R"), uy € &'(R"), define uyq * uy to be the unique distribution such that

(U1 uz) * ¢ =uq * (uz x ¢)
for all ¢ € 2(R").

Proposition 4.29. u * 0y = u.

Proposition 4.30. Let uy € 2'(R"), u, € &'(R"), then

Vi (ur *up) =ur * VU =V * Uy

Proof. Let ¢ € Z(R"), then

V(ur*uz) x @ =(ur *uz) * Vg =uy * (uz* V99) = uy * (Vauz * §)

and the other case is similar. O

Definition 4.31 (fundamental solution)

Let L = ¥|qj<k a2V be a constant coefficient partial differential operator of order k. A fundamental solution
of L is a distribution G such that LG = 9.

Theorem 4.32. If G e 2'(R") is a fundamental solution of L and f € & (R"), then u = G * f solves Lu = f.
Moreover, if f € Z(R"), then u =G *fe C*(R"), and u solves Lu = f in the classical sense.
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Proof
L(Gx*f)= Z ag V(G *f)

lal<k

= Z a VeG*f

la|<k

:(Z aaVaG)*f

|al<k
= (LG) * f
=0p*f
=f

5 Fourier transforms

Note that the convention for the Fourier transform in this course is different to the convention in Probability
and Measure.

5.1 Fourier transforms of functions

Definition 5.1 (Fourier transform of L' functions)
If f e L'(R"), the Fourier transform of f is f = .Z(f) : R - C, defined by

P& = fR f(x)e ¥ dx

Lemma 5.2 (Riemann-Lebesque). If f € L'(R"), then 7 e C(R"), with

sup [F(E)] < £, and 7(&) — 0 as |& > oo

CeRn

Proof Given & — & for x € R” fixed, f(x)e™%™ > f(x)e™, and |f(x)e™™| = |f(x)|, f € L', so by the
dominated convergence theorem,

F(&) = (D)

Hence f is continuous. The bound is immediate since

ol=| [ e [ reor=1e1,

To show the decay property, fix € > 0, and let f, € C°(R") be such that |f - f.| < &. Then by integration
by parts, we find

f.(&) = /Rn fo(x)e ™ dx

ﬁ%L./;ncﬁﬂJ(X)e““dx
-1
< WHA{SHU

which means that limsup;¢_, |?5(5)| =0. Therefore, we have that

79| <

(O] + [F(xi) - F(O)] <

?5(5)| +||f - fEHU - £
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as |&] —» oo, where we used the inequalty from above to bound the modulus of the Fourier transform by the

L' norm. As & >0 was arbitrary, we have that f(&) - 0 as |&] - oo.

Notation 5.3 (exponential function). We write e, (x) = ™.

Proposition 5.4.
(i) if fel'(R"), xeR", A>0, and set f,(x) = A~"f(x/}), then

(&) =118, e (D=1 and T,F(&) = e, ()

(it) if f,gel’ then fxgel' and o X
frg(e)=1(5)g(s)

Proof. By change of variables and Fubint.

Proposition 5.5.
(i) If fe C'(R"), with f,v;f € L'(R") for all j, then
Vif(8) = i (3)
(i) Suppose (1+x|)f € L'(R"). Then f € C'(R"), and

DT (8) = ~ix7(3)

Proof Fix € >0. Let f. € C=(R") be such that

[f =1l <e and |Vife = Vi| <€ forall k

Then we have that

T7.(8) = fR e () dx = i /R e () dx = 1§ (8)
Hence we must have that
VT (&) = i&H (O] < |V, = vfe s +lellf = el < (1 +1EDe~ 0

as e—0.
(ii) Since x;f € L', —ix;f € Gy. So we need to show that V;f exists and is equal to —ix;f. But

F(&+he)) - F(& e [ €7 1 .
(&+ @/;) ( ):fﬂf(x)e 5 (eh)dxejl;n—[xjf(f)

by the dominated convergence theorem.

Corollary 5.6. The Fourier transform defines .% : #(R") - .(R") continuous.

Proof. Given f:R" - C,

1

f < 1 ”Mf [ — |
Il ilﬁ%p(( + x| (X))) = (1+]z])" z

<oo

Therefore, if f € Z(R")< then V¥(xPf(x)) e L" for any a, B. Hence by the previous proposition,
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VI OEN (6| = [¢ v T

In particular, we have that

SUD\E”VBf(5)|<C sup (14 )PV (0)]) — 0

xeR" y<a

if f—>0in . (R"). Therefore, I - 0 .(R"). Thus, .Z : .Z(R") - .%(R") is continuous. O

Theorem 5.7 (Fourier inversion). Let f € L'(R"), and assume f € L'(R") as well. Then

1 7 i&ex
(0= Gy o (@0

for a.e. x e R". That is, F2(f) = (Zﬂ)nv.
Proof Let
21712
o (x) = f P(&)e 1T aivige
(2 )"
Since f € A by the dominated convergence theorem,
L0) > —— [ H(&)eide
—
‘ (27)" Jwre

as € —» 0. On the other hand, we have that

He- (277)” / (/ f(é/)E"'“z'ydU)e-%ezlsfeix-sdf
zcgy [ 1) ([, ot e om0ag) ay

:(Zn)n/ZE—ne—w—x\Z/ZsZ

=1 e(x)

where . (x) = e7"Y(x/e), Y(x) = (ZJT)‘”/ze‘V‘Z/Z Since ¢ is a smooth molifier, f * (. — f in L, so we
have that

1 7 ix-&

for a.e. x e R". ]

Lemma 5.8. Suppose (f;) is a sequence in LP(R"), such that f; - f uniformly on R", and f; - g in L.
Then f =g ae.

Proof. The uniform limit is also the pointwise limit, so f is measurable. Now for R > 0, we have that
p
I Ty = o - 105 B0 s Ji00) =100 -0
as j — oo. Hence by uniqueness of limits, f = g in [?(Bg(0)), which means that f = g a.e. on Bg(0). But

= J B:(0)

neN
sof=gae onR" O
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Theorem 5.9 (Parseval-Plancherel). Let f, g e L' n [2(R"). Then f,§ € L2(R"), with

1 2
<f'g>L2 = (ZJT)” <f'Q)Lz

Proof First of all, we show that this is true for f, g € .Z(R"). In this case, 7, § € .#(R"), and we have that

(f.9)= [ T0)g(x)dx
f(x) 1 A i&ex
=/ f(x)((zﬂ)n fR”g(E)e d{)dx

) (2;>"~/7v(1@nf(X>@g“dx)@(5)ds
:@%nﬂéﬂﬂéwmg

1 n
:W(f@)

Now given f,g € L' n L?(R"). Fix £ > 0. By density of C*(R"), let (f;), (g,) be sequences in C°(R") c
Z(R") such that
1
=000 1 = 6l N9 = gilo g =gl 2 <

By the Riemann-Lebesgue lemma,
A A 1
sup [1(&) = F(O < [[f = fil,, < 5
GeR? J

So IA(j -1 uniformly. Similarly, §; — § uniformly. Furthermore, we have that

"

f/—?k iz = (Zﬂ)n”fj_fk”iz -0

as j, k — oo, (7‘/) is a Cauchy sequence in L%, so ?j ~finl? by the Lemm Similarly, §; - g € 2. Thus,
by continuity, we have that

. 1

‘ T 5 A
(f.g)= jljpo(fpgf) = W}E‘; (1.9;) = 2y (7,9)

Corollary 5.10. f ~ (271)‘”/27‘ defines an isometry L' n [? - [?, so by density extends uniquely to a
linear map (2)™"/2.Z : [>(R") - L*(R").

Definition 5.11 (Fourier-Plancherel transform)
For f € L(R"), write f = .Z(f) for the Fourier-Plancherel transform of f.

Proposition 5.12. X
F= dm Aae)

“The limit exists by completeness, the lemma shows that the uniform limit and L? limits agree in this case.
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5.2 Fourier transforms of tempered distributions

Notation 5.13 (translation of a distribution). For u € ., we define

nu(¢) = u(1-¢)

Notation 5.14 (spatial inversion of a distribution). For v € ., we define

u(¢) = u(9)
Definition 5.15 (Fourier transform of a tempered distribution)
Let v e .'(R"). Define 0 € ' (R") by

(¢) = u($)

Proposition 5.16. If f € L'(R") then Ty = T,.

Lemma 5.17. Let u e #'(R"), then

Proof. Let ¢ € (R"), then

BT0(9) = ecu(d) = ulecd) = u(T26) = 1(7-¢9) = :0(9)

So &:0 = t&u. The other results follow from the corresponding results for the Fourier transform on . in a
similar way. O

Proposition 5.18. .% : ¥’ - .’ is a linear homeomorphism.

Proof. Suppose u; — u in 7', That is, uj(¢) - u(¢) for all ¢ € .#. Then for any ¢ € .77, we have that

0;(¢) = uj(¢) = u(d) = ()

so 0; = 0 in /' Therefore, & : 7" - .#" is continuous. As FY = (27)?"id, .Z is invertible and has a
continuous inverse. O

5.3 Periodic distributions and Fourier series

Definition 5.19 (periodic distribution)
ueP'(R") is periodic if for any g € Z", t4u = u.
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Definition 5.20 (fundamental cell)

The fundamental cell of the lattice Z" is

q:{xeR”

We will also need the set Q={xeR" | -1<x <1}.

Lemma 5.21. There exists s € CZ°(R") such that

(i) ¥>0,
(it) supp(y) € O,
(ii}) Xgezn T =1

Such a ¢ is called a periodic partition of unity. Furthermore, suppose s, ' are both p.p.us, then if
ue2'(R") is periodic, then we have that

u(y) = u(y’)

Proof. Let iy € CZ°(R™), with supp(¢n) < Int(Q), ¢ =1 on g, with ¢ > 0. Then set
S() =2 do(x-9g)
gez"
Then S is C* as the sum is always finite, and S(x) > 1 for all x e R”. Then
_%o(x)
S(x)
works. Now suppose v € 2'(R") periodic, ¢, ¢ are p.p.us, then

p(x)

u(w):u(w 2 )

geZ Ty’

= Z u(y- Tg¢’,)

gez”

=, Tqu(Tg- )

gGZ”

(5

= u(y")

Corollary 5.22. If ¢ is a ppu, f € LDOC_(R”) periodic, then

Ti() = [qf(x)dx

Proof. Choose a sequence , of p.p.u. such that ¢, — 14 pointwise, with (s, bounded.
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Definition 5.23 (average)

if ue 2'(R") is periodic, the average of u over the fundamental cell g is

M(u) = u(y)
for any p.p.u. ¢.

Lemma 5.24. Let v e &'(R"), then
u= > Tgv ()
geZH

converges in (the weak-* topology for) #’(R"). Conversely, if u € 2'(R") is periodic, then there
exists v such that (*) holds. Hence every periodic distribution is tempered.

Proof. Let K =supp(v), then we have seen that there exists N € N, C > 0 such that
V()< C sup [Vo(x)|
xeK |a|gN
for all ¢ € &(R"). Now let ¢ € Z(R"), then
|7gv ()| = [V(t49)[ < C sup [V o (x+g)]
xeK |a|lgN
Since K is compact, K ¢ Bg(0) for some R. Then for all x € K,

T+lgl <1+ x|+ v+ gl < (1+R)(1+|x+g) = 15(1+R)(”|9+X|)

1+]g|
Hence for any M > 1, we have that

IN

1T+R M
c( ) swp ((1+[x+g)Mv7d(x + )
1 +|g‘ xeK,a<N

|T9V(¢)|

IA

M
c( 1+ R) sup ((1+x)MI976(x)))

1+ |9\ xeR" a<N

In particular, this means that

C/
% ()< G

for all g. Hence ¥ ez 74v(¢) converges for all ¢ € #(R"), so ¥ ez T4v converges in 7' (R").
Conversely, let u e 2'(R") be periodic, ¢ be a p.p.u., then for any ¢ € Z2(R"),

u(e) = ( > Tgtlf) u(@) =3 u((tg)9) = X u((r—99)) = 3 Yu(r—49) = 3 19(ypu)(4)

gez" gezL" gez" gezL" gezL"

Set v = ¢yu. Then v has compact support as ¢ does. So u extends uniquely to v € &' (R"). (*) holds by
the above. 0

Lemma 5.25. Suppose u €.’ satisfies

(e—.g—=Nu=0
for all g € Z", then
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u = z Cg(szﬁg
gEZ/T

converging in ., with ¢, € C satisfying the bound

o] <K(1 + g™
for some K >0, N € Z.

Proof Let A\ =2aZ" be the dual lattice to Z", that is,

N={2ng:qgeZ"}

Step 1: supp(u) € A. Let \; = {x eR" | x; € 21Z}. Suppose ¢ € Z(R") is such that supp(¢) nA; = @.
Then let g = (0,.. ., 1,..., 0) € Z" be the i-th standard basis vector, and we get that (e_; — 1)~ ¢ € S (R"),
since ¢(x) =0 near x; € 2717Z, and (e_4 —1)(x) =0 if and only if x; € 27Z. Hence we have that

u(¢) = (e-g=Nu((eg=1)""¢) =0

Hence we must have that supp(u) € A;. But this holds for all i, so we have that
supp(u) (A=A
Step 2: Multiplying by a p.p.u. Let ¢y be a p.p.u, and define ¢/(x) = ¢y(x/2). Then we have that

> T(x)=1, >0 and supp(¢) < {|x|< 2}

geN

Let vy = (T2rgt)u, then supp(vy) € {27g}, with
Yvg=u and (e_t=1)vy=0
gez"

Taking g € Z" to be the j-th standard basis vector of R”, we find that

0=(e™™ - vy = (9_{(X/_2]Tg’) = Dvg = (x; = 27mg9;)K (%)) vg

where K(x;) is holomorphic, with K(27g;) # 0, which follows immediately from Taylor's theorem in Complex
Analysis. In this case, we have that (x; — 27g;)vy = 0. But as v, has compact support, it can be extended to
é{)l(Rl?).

Step 3: Series expansion Let ¢ € .#(R"), then by Taylor's theorem, there exists ¢; € C**(R") such that

n

$(x) = p(2mg) + ) _(x; = 279;) 5 (x)

j=1
Hence we have that

n

Vg(¢) = Vg(¢(2ﬂg)) + Z(X/' _2]79/')Vg(¢/‘) = ¢(27T9)Vg(1) = 52ﬂg(¢)U(T2ﬂgLZ’) = C9527Tg(¢)

j=1

where ¢; = u(Tangh) = vg(1).
Step 4: Bounds on the coefficients
Now note that for v € .#’, we have N, K € N, C > 0 such that

(@)l <C sup ((1+IXDNVeo()])
xeR" |a|<K

for all ¢ € #'(R"). Hence we have that
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|Cg| <C sup ((1 + |X|)N|V0LZJ(X— 27Tg)|)

x,|al<K

< C sup ((1 +|X+2ng|)N‘va[p(x)|)

x,|al<K

< C sup ((1 + XN +2ﬂ|g\)N|VaLZJ(X)|)

x,|al<K

<C'(1+|gh™
for some C’ > 0. O

Theorem 5.26. Let u e 2'(R") be periodic, then

u= Z Ug Tez,,g
gEZ”

converges in .#'(R™), where ug = M(e_y,4u) € C satisfies
|ug| < C(1+ g™
for some C>0,NeN.

Proof. Since u is periodic, u € #'(R"), and its Fourier transform @ is define. As v = u for all k € Z", we get
that

(e —1)0=0

for all k € Z". Hence by the lemma, we gave that

0 =2m)" Z UgO2ng
geZn

te. ¢g = (2)"ugy. Applying Fourier invresion, we find that

u= Z Ug TE,M
QEZ/Y

Remark 5.27. By abuse of notation, we write

_ 27igex
u= E uge
gezZn

and

Uy = fu(x)e_zmg'xdx
q

even though distributions are not functions on R".

Definition 5.28 (Fourier coefficients)

The uy are called the Fourier coefficients of u.

Corollary 5.29 (Poisson summation formula).

Z 5)(*9 = Z Te?ﬂg

gEZ” gGZ”
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in ' (R").
Proof. Let u =3 ez, 0. Then u is periodic, so by the theorem, we have that

g =M(e_omcu) = u(Pern) = Y p(g)e™ 9= 3" Y(g) =1

gEZ” gEZ”

where ¢ is a p.p.u, and this means that

Z 69 = Z TE‘ZW

gez" gez

Theorem 5.30. Let u e 2'(R") be periodic, with Fourier coefficients {ug}. Then
(1) V¥ e 2'(R") is also periodic, with

Viu= ) (279) ugTe,,
gez"

(i) if feLl is periodic, u =Ty, then |ug| < |[[fl11¢gy. @and ug = 0 as |g| > oo,
(iii) if f e C"™"(R") periodic, u = T;, then

f(x) = uge?™*

geZﬂ
converges uniformly,

(iv) if f,hel?  are periodic, with Fourier coefficients {f,}, {hy}, then

fth(x)dx = S Tohy

gez"

moreover,

f(x)= Y, fye”o™

gEZ”

where the series converges in L?(q).

6 Sobolev spaces

6.1 Sobolev spaces

Definition 6.1 (W spaces)
Let U R” be open, k €N, p € [1,00], then the Sobolev space WX?(U) is defined by

WEP(U) = {f e LP(U) | V]a| < k,3f% € [P(U) st. VT; = Tre in 2'(U)}

Definition 6.2 (weak, distributional derivative)

Ve =1 is called the a-th weak, or distributional derivative of f.
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Definition 6.3 (Sobolev norm)
For p < oo, the Sobolev norm on W*? is

1/p
Il o = ( > Ivef ‘Zp)
lal<k

and for p = oo, the Sobolev norm on Wk is

Il wree = max|al < k|VF]

Theorem 6.4. W*P(U) with the Sobolev norm is a Banch space for p € [1, c0]. Moreover, when p = 2,
Wk2(U) is a Hilbert space.

Proposition 6.5.
"fd:—1“"ff“d
[ vergax= (=0 [ 1o gax
for all ¢ € C(U).

Proof. Follows by the definition of the derivative of a distribution.

Notation 6.6. For f € L}, (U), we say that Vf e [”(U) if and only if there exists f* € [P(U) such that V*T; = Ta
in 2'(U).

Definition 6.7 (H* spaces)
For s € R, we say that f € .%/(R") belongs to the Sobolev space H*(R") if f € L (R™) and

n 2
fR”m IO dE < oo
Proposition 6.8. If k € N, then HK(R") = Wk2(R").

Proposition 6.9. H*(R") is a Hilbert space with inner product given by

(.9 = [ TG +18)°d

6.2 Sobolev embedding and trace

Theorem 6.10 (Sobolev embedding). Let s> 3 +k, f € H*(R"). Then there exists f* € CK(R") such that
f=1F*"ae We'll write f = f*El and view H° < Ck.

9Which makes sense since in LP spaces we only care about functions up to equality a.e.

Proof. First suppose f € Z(R"). Then we have that by the Fourier inversion theorem,

ilal

Vef(x) = m

\/R;” etx-ggaf(g)dg
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for all @. Which means that

2

a ! o117 ! 2ys
V0l G fo NNl < o (L 1)

But if |a| < k, then

?(E)IZdE)W ([ 1 |5|2)‘5d5)1/

P 1) < 8P < (1 [ED < (T |8
and G, = (21)™" [, (1+ |-§|2)‘”/2dqr < 00, s0 we have that
sup  |[Vif(x)| < G|f
xeR", |a|<k

Now for general f € H*(R"), let (f;) € . (R") be such that f; - f in H* and f; - f a.e. In particular, (1))
is a Cauchy sequence in H*, so it is a Cauchy sequence in C¥, and so f; - f* in C for some f* in C*. But
as f; — f ae, we must have that f =" ae. O

Hs

Theorem 6.11 (trace). Let s> 1/2, then there exists a bounded operator T : H*(R") - H*~'/?(R"~") such
that

Tf S f|R”’1X{0}
for all f € #(R"). Tf is called the trace of f on £ =R"~" x {0} ¢ R".

6.3 The space H] (V)
Let U < R" be open, f € C*=(U). Extending f by 0 outside of U, we can view f € H'(R"). So C=(U) < Hy(R").

Definition 6.12 (H, space)

Define the Sobolev space Hj(U) to be the closure of C°(U) < H'(R"), with the H' norm.

Proposition 6.13. H]}(U) is a Hilbert space, with inner product

(u,v)HS:/U(W-VV+UV)dX

Proposition 6.14. If u € H}(U), then u =0 for ae. x ¢ U.

Proof. Suffices to show that for all ¢ € C(Int(U°)), g, pudx =0. Let Ag(v) = [, pvdx. Then Ag(v) =0 for
all ve CZ(U), and we have that

Ns] <12Vl < I8l V]

which means that Ay : Hy(U) — C is continuous, and zero on a dense subspace, so it must be identically
zero. O

Proposition 6.15. For dU sufficiently lince, any v € /—lg(U) vanishes on dU in the trace sense.

Proof T :H'(U) - H'/?(aU) is bounded, and T is zero on C=(R"). O
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Definition 6.16 (). )

For s > 0, define the Sobolev space

Hi (U) = {u e L, (U) | xu e H*(R") for all x € C=°(U)}

Proposition 6.17. Let U’ be open, U’ c U, then u € H,_(U) is in C*(U') if s> 5 + k.

loc.

Proof. We can find x € C°(U) such that y = 1 on U’. Hence by the Sobolev embedding theorem, yu €
H*(R") < CX(R"). But y =1 on U’ implies that u = yu e CX(U'). O

6.4 Reillich-Kondrachov
Theorem 6.18. Let U c R” be open and bounded, suppose (u;) ¢ Hy(U) satisfies ”LJ,-HH1 <1 for all 4,
and u; = u in [2(U), with u € H}(U). Then u; — u € [2(U).

Proof. By Parseval, we have that

A N

U/—U

b0 - o(D)ds ()

2
Juj =l =

2 1 /‘
B2 Jigr

Fix €>0. Then we can bound the second term in (*) by

1 . . 2 1
e D00 s [

2
2)" (1 + R%) Jiesr

4

(2]7—)/7 R2 <&

(1+1&°)(

2
0O+l < -

2
e el + uli) <

for R large enough. Note that we used
2 ‘ .
lullk = (. v} =jli”;(uj,U>H1 < lim luil o lulin < luly = luly <1
For the first term, since &;(<) = (eq, U/)LZ(U)' and eg € L?(U) since U has finite measure, by u; % 0, we
get that &;(&) - (&) for all < e R". Furthermore, we have that
A A 2 A 2 A 2
0,8 - 0] < 2(|a; (DI +1a(HI)
2 2
<2(flfly + i)

<2001 (lul. + 10l
<4UIK?

where we used the Hélder inequality, and the fact that |],> < |f||,. Thus, by the dominated convergence
theorem, the first term in (*) - 0 as j - co. Hence the () is < 2¢ for j large enough. O

Corollary 6.19. Let U < R” be open and bounded, (u;) € Hj(U) bounded. Then there is a subsequence
(jk) such that uj, % uin Hg(U), and uj, — u in L?(U).

Corollary 6.20. If A: [?(U) - Hj(U) is a bounded linear map, then A: L?(U) - L?(U) is compact.
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6.5 Application: Elliptic boundary value problems

Elliptic equation on R”
Proposition 6.21. Suppose f € H*, then the equation

-Au+u=f )

on R” has a unique solution u € H*?. Furthermore, if s > n/2+k, then f € CK(R") and u e C**2(R"),
and the equation holds in the classical sense.

*

Proof. Taking the Fourier transform of (*), we get

(1€ + 1)a(&) = T(&) ae.

(&)
1+

So the solution is given by (&) = a.e. Fourier inversion shows that (*) has a unique solution.

Finally, we have that

2
s < 00

N de=|f

b= [l @ e = [ (14 fe)”

lu

Dirichlet problem on a bounded domain

In this section, let U < R"” be open, and f € LZ(U). Then consider the Dirichlet problem

-Au+u =finU
u =0 on oU

with u € H}(U), and we wish to find a solution in the distributional sense. That is,

f(—UAv+Uv)dx=fU(W-Vv+Uv)dx=fu7vdx
for all v e CZ(U).

Definition 6.22 (weak solution)
u e HI(U) is a weak solution to (*) if for all v e H}(U),

(u, V)HW =(f, V)LZ

Proposition 6.23. There exists a unique weak solution u of (*), with |u].: < [[f],.. Furthermore, the
solution operator S : [?(U) — Hy(U) is a bounded linear operator. If we consider H}(U) < L?(U), then
S:L2(U) = L*(U) is self adjoint.

Proof Define A : H}(U) - C by A(v) = (f,v),.. Then A is a bounded linear functional. Thus by the Riesz
representation theorem, there exists a unique u € Hy(U) such that A(v) = (u,v),; . Then {u, v}, = {f, v} for
all ve H}(U), so u is the weak solution to (*). The norm bound follows by

2
lullby = (u ) = A(u) = {F a) e < Il 2ol < I Hul

Linearity of S follows from the equations being linear, and uniqueness of the solutions. Furthermore, given
f,g e [>(U), we have that

(f.59)2 = (51,59) 17 = (59, 51} = (9. 5F) 2 = (SF. g) -
so S: [2(U) - L?(U) is self adjoint. O
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Proposition 6.24. Let u € HJ(U) be the unique solution to (). If f € L2n HE_(U), then u e H n HEH (V).
Furthermore, if k is large enough, then (*) holds in the classical sense.

Proof. Fix K ¢ U compact, x € C(U) real valued such that y =1 on K. Given ¢ € Z(R"), let v(x) =
x(x)#(x), and using the fact that u is a weak solution, we find that

[JW-V(X¢)+Ux¢dX:fU7x¢dX

Rearranging, we find that

fUV(Xu)-V¢+W~(Vx)¢—UV¢-V)(+U)(¢>dx:L?X¢dx

Integrating some of the terms by parts, we find

[J—XTA¢+2W-(V)()¢+U¢(A>()+Ux¢dx:fu?xgbdx

Hence v satisfies

/RNV(—AqS+1)dx: fRngqbdx

where

g=-2Vu-Vy-uly+fyel’(R")

So v is a solution to —~Av +v = g. Hence v e H*(R"). For any ¢y € C*°(U), we can take K = supp(¢), then
Yu =g e HX(R"), so u e Hl n HE_ (V).
In general, we have that if f € [?nHE_(U), then g € H*(R"), so v e H**?(R") and hence u € H}nH 2 (U).

C.

Finally, note that by the Sobolev embedding theorem, if k+2 > 5 + ¢, then v e C’(R"). But being C? is a local
property, and every point in U has a compact neighbourhood contained in U, so u e C*(R"). O

Dirichlet problem with potential

Let U € R” be open and bounded, V : U — R smooth and bounded, f € L?(U). Then consider the Dirichlet
problem

-Au+Vu =finU ()
u =0onoU

Definition 6.25 (weak solution)

u e HJ(U) is a weak solution to (*) if

fU(W-vH Vav) dx:/u?vdx )
for all v e HJ (V).

Proposition 6.26. Either
(1) there exists w e Hy n C*(U) nonzero such that

-Aw+Vw=0

(i) or for all f € L?(U), there exists a unique u € H}(U) such that (*) holds.
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Proof. Notice that (1) is equivalent to
fu(ﬁ-wwv)dx: fu(m (- V) uvdx
Let S: L?(U) — HJ(U) be the solution operator for V =1 from above. Then

() <= u=S{f+(1-v)u) = (I-K)u=5f

where Ku = S((/ - V)u). Since K : L?(U) — Hj(U) is bounded, K : L?(U) - L?>(U) is compact. Then
either

(a) ker(/=K) #0, so there exists w € L>(U) nonzero such that (/- K)w =0,
(b) im(/ = K) = L?(U), so there exists a unique u such that (/= K)u = Sf.

Moreover, in (a), ker(/ - K) is finite dimensional, and w = S((1 - v)w), so w € HJ(U). By repeating the
above argument, w e H}(U) n C*(U) by the Sobolev embedding theorem.
In (b), u=S(f+(1-v)u)eHj(U), so uis a weak solution to (). O

Theorem 6.27. There exists an orthonormal basis {¢x} of L?(U) such that
(i) ¢ € Hy(U) n C=(U),
(i) =Ady = Ay in U,

where 0 < A1 <A < .., with Ay — oo,

Proof. By the spectral theorem for compact self adjoint operators, we have that

o(S)={0,m,p,... }

with g € R, and the only accumulation point is at 0. We also have a corresponding orthonormal basis of

eigenvectors {¢i} for S.
Now as St = e, Wy € H&(U) as Yy € im(S). Moreover,

(W, v) o = (St V) = i (e, v)

for all v e H}(U). Setting v = ¢y, we get that 1 = Uk||¢k|ﬁ41- So px > 0. Moreover, as 1= |2 < [l 11,
we have that p < 1. Then notice that ¢ is a weak solution to

Ay = Athe in U
Y =0o0n dU

where Ay =1/ =1 > 0. Since g has only 0 as an accumulation point, A, — oo. Elliptic regularity implies
that ¢ e C=(U). O
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