Differential geometry

Shing Tak Lam

May 3, 2023
Contents
[1" Smooth manifolds and smooth maps|
LT _Definitions] . . . . . . o
1.2 Reqular values, Sards theorem| . . . . . . ... .
1.3 Transversalityl. . . . . . .
1.4 Manifolds with boundary| . . . . . . . ...
15 Degree modulo 2. . . . . . .
Lo Intersection numbers modulo 2. . . . . . . ...
[2 Geometry of curves and surfaces|
RA__Curvesl . ..
22 lsoperimetric inequality in R?| . . . ..
23 First fundamental form and areal .. ... ... ... 12
2.4 Gauss map| . . ... 13
25 Local coordinate computations|. . . . . ... 15
2.6 Theorema Eqgregium|. . . . . . . . 16
[3 Riemannian geometry| 17
Bl Geodesicsl . . . . o o 17
3.2 Covariant derivative, parallel transport| . . . . . . . . ... .. 18
13.21  Local coordinate expressions| . . . . . .. .. .. 18
3.3 Exponential map and geodesic polar coordinates|. . . . . ... ... ... L 19
34 Ceodesic curvature] . . . ... 21
B5  Qauss-Bonnetl . . ... . 24
4_Minimal surfaces| 28

1 Smooth manifolds and smooth maps

1.1 Definitions

Definition 1.1 (smooth map)

Let X CRN. Then f: X — R™ is smooth if for all x € X, there exists an open neighbourhood U C R" of
x, and F : U — R"™ smooth, such that Flynx = flunx.

Definition 1.2 ((embedded) manifold, parametrisation, charts, coordinate functions)
X C RN is a k-dimensional manifold if each x € X has a neighbourhood V which is diffeomorphic to an
open set in R¥.

If ¢ : U — V is the diffeomorphism, we say that ¢ is a parametrisation of V. The inverse map
¢ 'V = Uiscalledachart on V. If =" = (x1,..., x), the x; : V — R are called coordinate functions.



Definition 1.3 (submanifold)

If X,Z are manifolds in RN, with Z C X, then Z is a submanifold of X. The codimension of Z in X is
codimy(Z) = dim(X) — dim(Z).

Definition 1.4 (tangent space)
Let X C RN be a manifold, ¢ : U — X a parametrisation around x € X, with ¢(0) = x. Then define

T.X = deo(R¥)

where d¢yg : R — RN is the derivative of ¢ at 0.

Lemma 1.5. The tangent space is well defined, that is, 7,.X is independent of the choice of ¢. Furthermore,
dim(T,X) = dim(X).

Proof. Suppose we had another parametrisation ¢y : V. — X, with ¢)(0) = x. By shrinking U, V, wlog
d(U) = (V). Then h= ¢ o¢: U— V is a diffeomorphism. Then, by the chain rule,

dgo = dyp o dhg

and dhg is an invertible linear map, so im(d¢g) = im(dip). Now since ¢~' = ¢p(U) — U is smooth, we
can choose W C RN open neighbourhood of x, and a smooth map @ : W — R¥ with ®[40) = ¢~'. Then
® o ¢ = idy, so by the chain rule, we have

deo do,

R T.X RK

is the identity map on R¥, so d¢p : R — T,X is an isomorphism. O

Definition 1.6 (derivative)
Let f: X — Y be smooth. Then the derivative of f at x is df, : T, X — Ty, Y, given by

e Choose parametrisations ¢ near x, ¢ near f(x), with

(X, x) ——L—— (Y, f(x)

e Then define df, : T,X — TyyY by

dho

Le. df, == dyp o dhg o dgys .



Lemma 1.7. The definition of the derivative is independent of the choice of ¢ and ¢.

Lemma 1.8 (chain rule). If we have smooth maps

(Xx) ——— (Y.y) —— (Z.2)
then
d(g (¢] f)x = dgf(x) o} de
Proof. By the chain rule for functions between Euclidean spaces. O

Theorem 1.9 (inverse function). Suppose f : X — Y is a smooth map, with df, being an isomorphism.
Then f is a diffeomorphism in a neighbourhood of x.

Proof. Follows from the inverse function theorem for smooth functions between Euclidean spaces. O

1.2 Reqular values, Sard’s theorem

Definition 1.10 (critical point, critical value, regular value)
Let f : X — Y be smooth. Then

() x € X is a critical point if df, : T,X — Ty Y is not surjective. We write Crit(f) for the set of all
critical points.

(it) y € f(Crit(f)) is called a critical value,

(it) y € Y\ f(Crit(f)) is called a reqular value of f.

Proposition 1.11. If dim(X) < dim(Y), then Crit(f) = X, and the preimage of a reqular value is the empty
set.

Proof. Since rank(df,) < dim(X) < dim(Y) = dim(7¢(,)Y), the derivative is not surjective at any point. O

Theorem 1.12 (preimage). Let y be a reqular value of f : X — Y, with dim(X) > dim(Y). Then f~'(y) is
a submanifold of y, with

dim(f " (y)) = dim(X) — dim(Y)

Proof. Let x € f~'(y). Since y is a reqular value, df, : T X — T,Y is surjective. Let K = ker(df,) < T,.X, with
d = dim(K) = dim(X) — dim(Y).

Consider an embedding X C RN, and let T : RN — RY be any linear map such that ker(T)NK = qzl Then
consider the map F : X — Y x RY, given by F(z) = (f(2), T(z)). Then we have that

dFi(v) = (dfi(v). T(v))

which is an injective linear map between two vector spaces of the same dimension, so it must be an
isomorphism. Thus, by the inverse function theorem, F is a local diffeomorphism at x. That is, there exists
neighbourhoods U of x, V' of (y, T(x)) such that £ : U — V is a diffeomorphism. So we have that

"Which exists, by basic linear algebra arguments if N is sufficiently large. For example, projection onto the last d coordinates, where
we embed X into RN=9 x 0.



F:f Y y)nU—({y} xR)nV
is a diffeomorphism. Hence f~'(y) is a manifold, with dim(f~'(y)) = d. O

Corollary 1.13. If f: X — Y is a smooth map, dim(X) = dim(Y), X compact and y is a regular value of
f, then f~'(y) is a finite set of points.

Proof. f~'(y) is a O-dimensional manifold, that is, a discrete set of points. But f is continuous and Y Hausdorff,
so f~'(y) is closed. But a closed discrete subset of a compact space is finite. O

In fact, near regular values, smooth maps are covering maps.

Theorem 1.14 (stack of records). Let f: X — Y be a smooth map, dim(X) = dim(Y) and X compact. Let
y be a regular value of f. Say f~'(y) = {x1, ..., xk}. Then there exists an open neighbourhood U of v,
and open neigbourhoods V; of x;, such that

K
(V) = u Vi and f]y, : V; = U is a diffeomorphism
i=1

Proof. By the inverse function theorem, we can choose disjoint neighbourhoods W; of x; such that f maps W;
diffeomorphically to a neighbourhood of y. Now notice that f (X\Ui W) is a compact set which does not
contain y, so we can take

U= JrwiNs X\Uw,-)

O

With this, we have a result which is akin to the valency theorem from Riemann surfaces, or the degree of a
(branched) covering.

Corollary 1.15. The function y — |f’1(y)| is locally constant as y ranges over the regular values of f.

Theorem 1.16 (Sard). Let f : X — Y be a smooth map. Then Crit(f) has measure zerd

%Formally, we haven't defined a measure, or even g-algebra on manifolds. However, in this case, we say that a set A C X has
measure zero if for all parametrisations ¢, ¢ '(A) has measure zero in R¥. Since a measure would be countably subadditive, and
manifolds are second countable, this notion of "measure zero” makes sense.

Corollary 1.17. The set of regular values of f : X — Y is dense.

Proof. A set of measure zero can't contain any nonempty open set. O

1.3 Transversality

Definition 1.18 (transversal)
A smooth map f : X — Y is transversal to a submanifold Z < Y if for every x € f~'(Z), we have that

im(dfy) + TrgZ = Tr Y



In this case, we write f M Z.

Proposition 1.19. f i {y} if and only if y is a regular value for f.

Theorem 1.20. Suppose f : X — Y is transversal to a submanifold Z < Y. Then f~'(Z) is a submanifold
of X. Moreover,

codimy(f~"(Z)) = codimy(2)

Proof Nonexaminable, so omitted.

Definition 1.21 (transversality of submanifolds)
Suppose X, Z are submanifolds of Y. Then we say that X, Z are transversal, written X th Z if

X+ T, Z=1TY

for all x € X N Z. Equivalently, the inclusion map ¢: X — Y is transversal to Z.

Proposition 1.22. Suppose X, Z are transversal submanifolds of Y. Then X N Z is a submanifold of Y,
with

codimy(X N Z) = codimy(X) + codimy(Z)

1.4 Manifolds with boundary

Definition 1.23 (closed half space)
The closed half space HF is defined by

with boundary

Definition 1.24 ((embedded) manifold with boundary)

A subset X C RN is called a k-manifold with boundary if each x € X has a neighbourhood diffeomorphic
to an open set in HX. The boundary of X, denoted dX, is the set of points in the image of dH under
some parametrisation. We write Int(X) = X\ 0X for the interior.

Proposition 1.25. The tangent space T,X, as defined for manifolds, is well defined for manifolds with
boundary.

Proposition 1.26. Int(X) is a k-manifold without boundary, and 0X is a (k—1)-manifold without boundary.



Lemma 1.27. Let X be a manifold, f : X — R a smooth function with 0 as a reqular value. Then
{x | f(x) > 0} is a smooth manifold with boundary f~"(0).

Proof The set {x | f(x) > 0} is open, so it is a submanifold of the same dimension as X. For a point x € f~1(0),
the same proof as in the preimage theorem shows that x has a neighbourhood diffeomorphic to a neighbourhood
of a point in H*. O

Theorem 1.28 (preimage). Let f : X — Y be a smooth map from an m-manifold with boundary to an
n-manifold, with m > n. Suppose y € Y is a regular value for f, and f|gx. Then f~'(y) is a smooth
(m — n)-manifold with boundary f~'(y) N 9X.

Proof. Since being a submanifold is a local property, we may assume wlog that X = H", ¥ = R". Now
consider z € f~'(y). If z € Int(H™), then the preimage theorem shows that f~'(y) is a smooth (m — n)-manifold
near z.

Now suppose z € dH". Since f is smooth, we have a neighbourhood U of R”, F : U — R" smooth such
that F|ynm» = f. Since y is a regular value for f, and

of oF )
67)([:67)([{0”71 ,,,,, k—1

Thus, y is a regular value for F. Hence F~'(y) is a (m — n)-manifold. Now let 77 : F~'(y) — R be the
projection s(x1, .. ., Xn) = Xp. But then we have that for x € 771(0),

T.F'(y) = ker(dF,) = ker(df,)
So 0 is a regular value for 7, as y is a reqular value for f|ggn. Finally, notice that
Fly)nH" =fy)nU={xeF 'y ]|k >0}

so it is a smooth manifold with boundary 7~—(0). O

Theorem 1.29. Suppose X is a manifold with boundary, ¥ a manifold and Z a submanifold of Y. Given
f:Y — X and flgx : X — Y are both transversal to Z, then f~'(Z) is a manifold with boundary
f~1(Z) N 0X and codimy(f~"(Z)) = codimy(2).

1.5 Degree modulo 2

Definition 1.30 (smooth homotopy)

Given smooth maps f, g : X — Y, a smooth homotopy between f and g is a smooth map H: X x [/ — Y,
with H(-,0) = f and H(-, 1) = g. If such a map exists, we say f and g are smoothly homotopic.

Proposition 1.31. Smooth homotopy is an equivalence relation.

Notation 1.32. We write f; = H(-, t) for the one-parameter family of maps given by a smooth homotopy.

Definition 1.33 (smooth isotopy)

A smooth isotopy between diffeomorphisms f,g : X — Y is a homotopy H : X x [0,1] — Y between f
and g, such that f; = H(-, t) is a diffeomorphism for all ¢t € [0, 1]. If such a map exists, we say f and g are



smoothly isotopic.

Theorem 1.34 (classification of 1-manifolds). Every compact connected 1-manifold with boundary is
diffeomorphic to [0, 1] or S™.

Corollary 1.35. The boundary of any compact 1-manifold with boundary consists of an even number of
points.

Proof. Every compact manifold is the disjoint union of finitely many compact connected manifolds. O

Lemma 1.36 (homotopy lemma). Suppose f,g : X — Y are smoothly homotopic, X compact without
boundary, dim(X) = dim(Y). If y is a reqular value for f and g, then

)] =[g7"(y)] (mod 2)

Proof Let F: X x | — Y be a smooth homotopy between f and g. First suppose y is a reqular value for F.
Then F~'(y) is a compact 1-manifold with boundary

FoHy) 0 X {0} U X x {1]) = () < {0} U g™ (y) x {1}
Therefore, we have that |0F’1(g)} = |f’w(g)|+|g’7(g)|. But F~'(y) is a compact 1-manifold with boundary,
so the number of points in the boundary is even, which gives us the required result.
On the other hand, if y is not a regular value for F, by the stacks of records theorem, we know that
|f‘1(w)], ‘g‘%w)’ are locally constant as w ranges over regular values. Therefore, there are neighbourhoods
V, W of y, consisting of reqular values of f, g respectively, then

[ (w)| = |F ()] for all w € V

and

lg~'w)| =g "(y)] for all w € W

Now by Sard's theorem, we can choose a reqular value z € VN W of £, then

=@ =]g7"@|=lg7"(W)] (mod 2)

Lemma 1.37 (homogeneity). Let X be a smooth connected manifold, possibly with boundary. Let y,z &
Int(X). Then there exists a diffeomorphism h : X — X smoothly isotopic to idx such that h(y) = z.

Proof. Since X is connected, suffices to check that the result holds locally. Choose a small neighbourhood of
y which is diffeomorphic to R*. So we only need to construct F : R¥ — R smoothly isotopic to the identity,
such that the isotopy restricts to the identity on R” \ B4(0).

Let ¢ : R* — R be a smooth bump function, with

L) @(x) >0 for |x] <1,
(i) @(x) =0 for x| >1.
Then given a unit vector u € R¥, consider the ODE in R* given by

de_
dt - U(p(X)
By standard ODE theory, if F; : R* — R is the flow of this differential equation, that is, t — F(x) is the

solution to the ODE with F(0) = x. Then we have that



(i) F; is defined for all x € R¥, for all t > 0 and smooth.
(i) Fo=1id,
(L[L) Ft+5:FtOIE5,

Furthermore, F; leaves all points outside B1(0) fixed. Finally, for appropriate choices of u,t, F; will map
the origin to any point in the open unit ball. O

Theorem 1.38 (degree mod 2). Suppose X compact manifold without boundary, Y connected, dim(X) =
dim(Y), f : X — Y smooth. Then if y, z reqular values of f, we have that

)| =]"@] (mod 2)

Furthermore, this value only depends on the homotopy class of f.

Proof. Given y, z, by the homogeneity lemma, we have a diffeomorphism h smoothly isotopic to the identity
such that h(y) = z. Now notice that z is also a reqular value for h o f. Since h o f is homotopic to f, the
homotopy lemma tells us that

[Ny =[tho @] =] "(2)] (mod 2)

Now suppose g is smoothly isotopic to f. Then by Sard's theorem, there exists a point y € Y which is a
reqular value for f and g, since the (finite) union of measure zero sets has measure zero. Thus, by the homotopy
lemma, we have that

W)l =97 (mod 2)

Definition 1.39 (degree mod 2)
The degree modulo 2 for a smooth map f : X — Y is defined by
deg,(f) = | '(y)| mod 2

for any reqgular value y of f.

Theorem 1.40 (Brouwer). Any smooth map f : D — D¥ has a fixed point.

Proof Suppose not. Then (as in the proof for kK = 2 from algebraic topology), we have a retraction g : D* —
Sk=1 Then H(x, t) = f(tx) is a homotopy between a constant map S*~" — S*~1 and ids« 1. But the first has
deg, = 0 and the second has deg, = 1. O

Remark 1.41. Morally this is the same as the homology proof of Brouwer. The degree modulo 2 is just induced map
on the top homology group with coefficients in IF,.

1.5.1 Intersection numbers modulo 2
Now suppose

(i) X is a compact manifold without boundary,
(i) Y is a connected manifold,

(i) ZCYisa closecﬂ submanifold without boundary,

2As in a closed subset, not a closed manifold.



(iv) f: X — Y smooth, with f h Z,
(v) dim(X) 4+ dim(Z) = dim(Y).

In this case, f~'(Z) is a closed O-dimensional submanifold of a compact manifold X, so it is a finite set.

Definition 1.42 (mod 2 intersection number)

The mod 2 intersection number of f with Z is

b(f,Z) = |~"(2)] mod 2
Proposition 1.43. If fy, f; are transversal to Z and homotopic, then h(fy, Z2) = h(fy, Z).

Proposition 1.44. For any map f : X — Y, we can find g : X — Y homotopic to f, such that g is
transversal to Z. Therefore we can define hL(f,Z) = h(g. Z).

Definition 1.45 (mod 2 intersection number of submnifolds)
If fis the inclusion map X — Z, define L(X, Z) = h(f, 2).

Proposition 1.46. If X i Z, then L(X,Z) =|X NZ| mod 2.

2 Geometry of curves and surfaces

2.1 Curves

Definition 2.1 ((regular) curve)

Let / C R be an interval, X be manifold. A curve in X is a smooth map a : /| — X. We say that «a is
regular if & € TonX is never zero.

Definition 2.2 (arc length)
Given t € /, the arc length of @ : | — R? from ty € / is given by

(1) :/r la(7)/dT

Proposition 2.3. Suppose «a is a regular curve. Then s is a strictly increasing function, and so has a

smooth inverse. Then the curve B(s) = a(t(s)) is parametrised by arc length, that is, ‘B’ = 1.

From now on, all curves will be parametrised by arc length unless otherwise specified.

Definition 2.4 (tangent)



Let o : | — R3 be a curve, the tangent vector of a at s is t(s) = &(s).

Definition 2.5 (curvature, normal, osculating plane)

Let a : | — R3 be a curve, the curvature of a at s € / is defined by

The plane spanned by t(s) and n(s) is called the osculating plane at s.

Definition 2.6 (binormal, torsion)

The binormal vector of a is

then we have that

where 7(s) is the torsion of a at s.

Theorem 2.7 (Frenet formulae).

t=«n
n=—xt—rtb
b=1tn
Proof. Easy differentiation. O

Theorem 2.8 (fundamental theorem of curves). Given smooth functions «(s) > 0 and t(s), there exists a
reqular curve a such that s is the arc length, «(s) is the curvature, 7(s) is the torsion of a. Moreover, a is
unique up to a rotation and/or a translation.

Proof. The result follows from the existence and uniqueness of solutions to ODEs, and the Frenet formulae.
Then we can see that the solution is unique given initial conditions. O

2.2 lsoperimetric inequality in R?

Lemma 2.9 (Wirtinger's inequality). Let f : R — R be C', f periodic with period L. Suppose

L
/ f(t)dt =0
0

L 4 2 L
/\f’(t)]zdtziz/ \F(t)7dt
0 L 0

with equality if and only if there exists constants a_4, a4 such that

then

10



f(t) =a_ e—ZJTit/L + aq eZJTit/L

Proof. Consider the Fourier expansions of f and f/, that is

f(t) = Z are?™ L and () = Z by e2mikilL
k=—00

k=—00 —

The Fourier coefficients are given by

1

L L
. 1 )
ax =+ / f(te~"tdt and by = — / f(t)e= 2t d¢
0 0

L L
The hypotheses imply ag = bp = 0, and by integration by parts, we find that
2mik
by = Ok

Then, by Parseval's identity, we have that

L
/ ) de =LY |bef?
0 k
2
= 4% Zkz‘ak‘z
k
4 2
St
k

471'2/’L ,
= — f|°dt
el

and equality holds if and only if ax = 0 for all |k| > 1. O

\V3

Theorem 2.10 (isoperimetric inequality). Let Q C R’ be a connected, bounded open set, with dQ a
connected 1-manifold of class C'. Then

0(0Q)% > 47|Q|
with equality if and only if Q is a disk.

Proof. Define the vector field X(x, y) = (x, y), and let n be the outward pointing normal vector field along 9Q.
The divergence theorem gives us that

/thv(X)dA:/m (X,n)ds

But div(X) = 2. Combining this with the Cauchy-Schwarz inequality, we have that

2|Q\=/@O<X,n>ds§/ao |X|ds "

Now by the Cauchy-Schwarz inequality again, we have that

112 12 12
2 _ 112 2 -
21Q| < (/aoX| ds) (/@st) = 0(0Q) (/00|X| ds) ™)

Since we parametrise dQ by arc length, X(s) = (x(s), y(s)) along 0Q are C', and periodic with period
L = 2(0Q). Hence by Wirtinger's inequality, we have that

12 2 1/2 312
£(0Q) £(0Q2
a0 4 a0 2
Combining (™) and (™) gives the required result. Equality holds if and only if we have equality in (%), (*)
and (**). But equality in () implies that s+ |X(s)| is constant, so Q is a disc. O

i



2.3 First fundamental form and area

Definition 2.11 (first fundamental form)

Let S C R’ eba surface. The first fundamental form of S at p is thq quadratic form /, : 7,S — R defined
by

bw) = (w, w) = |w|?

Definition 2.12 (isometric)

Surfaces 51, S, are isometric if there exists a diffeomorphism f : Sy — S, such that for all p € Sy,
dfy : 1,51 — Trp) Sz is an isometry.

Let ¢ : U — S be a parametrisation of a neighbourhood of p € S. Let (u, v) be coordinates in u, and define

Jd¢ Jd¢
ou(u,v) = 5 € lpwnS and ¢ (u,v)= 3 € TounS

Define

E(u,v) = (@ulu,v), ¢ulu,v)),  Flu,v)={u(u,v), d(u,v)) and Glu,v) = (¢u(u,Vv), dy(u,V))

Proposition 2.13. Suppose a(t) = ¢(u(t), v(t)). Then we have that

I,(&(0)) = E4? + 2Fav + Gv?
Proof. Chain rule. O

Proposition 2.14. The length of a curve a(t) = ¢(u(t), v(t)) is given by

0a) = /\/Eu2+2Fuv+ Gi2dt

Proposition 2.15. |¢, A ¢ | = VEG — F~.

Lemma 2.16. Suppose Q C S is open, connected, bounded?] Furthermore, suppose Q is contained in the
image of a parametrisation ¢ : U — S. Then

/ |y A by |dudv
$1(Q)

is independent of the choice of ¢.

90) C R3 is bounded.

Proof. Suppose ¢y : W — S is another parametrisation, with w C (W), then let J(x, y) be the Jacobian of
h = ¢ "o . Then we have that

| A py| = [detU)]|du A pu] 0 h

the result follows from the change of variables formula for multiple integrals. O

12



Definition 2.17 (area)

AQ) = /4;1(0) |y A py|dudv

is called the area of Q.

Definition 2.18 (Riemannian measure)

For f: S — R continuous, ¢ : U — S a parametrisation which covers SEI we can define

/ fdA=/f(u,v)\/EG—F2dudv
o U

Up to some null sets.

2.4 Gauss map

Definition 2.19 (Gauss map)

Let S C R? be a surface. Then a smooth map N : S — S?, with N(p) L T,Sforall p € S is called a
Gauss map of S.

Proposition 2.20. Suppose ¢ : U — S is a parametrisation, then N : ¢(U) — S? defined by

_ PNy

Me) = 15, 7 6]

is a Gauss map.

The derivative of the Gauss map N is given by dN,, : 7,5 — TN(p)SZ. But by definition, N(p) L TN(p)(SZ),
so in fact (as subspaces of the ambient R?), Ty, S? = 7,5. So we will write dN, : 7,5 — T,S.

Furthermore, when working with a parametrisation ¢ : U — S, we will abuse notation and write N : U — S?
where N(u, v) = N(¢(u, v)), and accordingly,

d(No ¢) d(N o ¢)

du v
Finally, notice that by chain rule, N, = dN(¢,) and N, = dN(¢,) are in T,5.

Ny(u,v) = and N, (u,v)=

Proposition 2.21. The linear map dN, : 7,5 — 7,5 is self adjoint.

Proof. Let ¢ : U — S be a parametrisation around p. If a(t) = ¢(u(t), v(t)), with a(0) = p, then we have that

AN, ((0)) = dN, (0(0)¢y + V(0),) = % )

In particular, this means that dN,(¢,) = N, and dN,(¢,) = N,. Since ¢,, ¢, is a basis for 7,5, we only
need to show that

N(u(t), v(t)) = a(0)N, + (O)N,

<Nu, ¢V> = (/\/V, ¢U>
But notice that (N, ¢,) = (N, ¢,) = 0. Taking derivatives with respect to v and u respectively, we get

(Ny, du) + (N, ¢dy,) =0 and (N, o) + (N, ¢,,) =0

which gives the result by the symmetry of mixed partial derivatives. O

13



Definition 2.22 (second fundamental form)
The quadratic form /1, : 7,5 — R defined by

Hy(w) = — (dN,(w), w)

is called the second fundamental form of S at p.

Definition 2.23 (normal curvature)

Let o : (—&,€) = S be a curve, a(0) = p. Then the normal curvature of a at p is defined by

Ka(p) = (N, kn)

where N is the Gauss map, « the curvature of @ and n the unit normal to @ at p (ie. kn = Q).

Proposition 2.24. «,(p) = /l,((0)). In particular, it only depends on &(0).

Proof. Write N(s) = N(a(s)). Then we have that {N(s), a(s)) = 0 for all s. Differentiating this, we get
(N(s). (s)) = = ( Ki(s). as))
But we have that by chain rule, //,(a(0)) = — <N(0), 0'((0)>, which means that

I1,(&(0)) = (N(0), &(0)) = (N, kn)

Definition 2.25 (principal curvatures, principal directions)

As dN, : 1,5 — T,5 is self adjoint, it can be diagonalised. Let ey, e; € 7,5 be such that, with respect
to this basis, we have

—K1 0
de - ( 0 Kz)

where k1 > k2. We call «1, k2 the princial curvatures, and eq, e, the principal directions.

Proposition 2.26. «q (resp. k2) is the maximum (resp. minimum) value of //, on the set of unit vectors in
7,5, That is, they are the extreme values of the normal curvature at p.

Proof. Linear algebra.

Definition 2.27 (Gaussian curvature)

The Gaussian curvature of S at p is

K(p) = det(d/\/p) = K1K2

Definition 2.28 (mean curvature)

The mean curvature of S at p is
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Definition 2.29 (elliptic, hyperbolic, parabolic, planar)
A point p € S'is

(i) elliptic if K(p) >0,

(it) hyperbolic if K(p) < 0,
(iil) parabolic if K(p) = 0 and dN, # 0,
(iv) planar if dN, =0,

Definition 2.30 (umbilical)
A point p € S is umbilical if k1 = K.

Proposition 2.31. If all points on a connected surface S are umbilical, then S is contained in a sphere or
a plane.

2.5 Local coordinate computations

Let ¢ : U — S be a parametrisation about a point p € S. Define

e = <N: ¢uu>' f= </\/, ¢uv> = <N: ¢vu> and g = <N' ¢V‘/>

Proposition 2.32.

e:_<Nu'¢U>: f:_<Nv'¢tl>:_<Nu'¢V> and 9:_<Nv:¢u>

Proof. Differentiate (N, ¢,) = (N, ¢,) = 0.

Proposition 2.33. If a(t) = ¢(u(t), v(t)) is a curve, with a(0) = O, then

I,(a(0)) = e + 2fuv + gv?
With respect to the basis ¢,, ¢,, we can express dN, as a matrix, name[tﬂ

de(¢u) = Nu = a11¢u + ax ¢v
de(¢v) = Nv = G12¢u + 022¢v

Taking inner products of the above equations with ¢,, ¢, we get

E F ay any . e f
F G anq an; - f g
11 412

But with respect to the basis ¢,, ¢,, dN, has matrix a
a4

). Therefore, we have

3This numbering of the aj; corresponds to matrix notation.
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Corollary 2.34.

G — 2F + gE
- Sl H="—cr T
Ec—p M 2(EC — F2)

2.6 Theorema Egregium

Theorem 2.35 (Theorema Egregium). The Gaussian curvature K is invariant under isometries. Equiva-
lently, it can be expressed in local coordinates in terms of £, F, G and their derivatives.

Proof Let ¢ : U — S be a parametrisation. Then at each p € ¢(U), we have a basis ¢,, ¢,, N of R®. Hence
we can express the derivatives of ¢,, ¢, in this basis, in terms of the Christoffel symbols.

buu = r]1¢u+r%1¢v+e/\/ (
buy =My + e, + N |
by = Mby +T5¢, + N (Il
bv = r;1¢u+r%1¢v+gN (v

)
)
)
)

By symmetry of mixed partial derivatives, [}, = '}, and ['{, = ['%,. Take inner products of (I) with ¢, and
¢, respectively, we get that

1
F%E + r%/__ = <¢uw ¢u> = iEu

1
I—%F + I’%G = <¢uu' ¢V> =Fy,—

55

Since EG— F? # 0, we can solve for I—% and I—% interms of £, F, G, E,, E,, F,. Similarly, we can express
all of the Christoffel symbols in terms of E, F, G and their first derivatives.
Now if we differentiate (I) with respect to v, and (Il) with respect to u, we get that

r]1¢uv + r% dw +eN, + (r%)vqbu + (r$1)V¢v +eN = duuy

= d)uvu
= r]z(puu + r%z(ﬁuv + Ny + (rlz)%ﬁu + (F%Z)M’v + N

Using (1), (Il) and (IV), and the (a;;) from the previous section, and equating coefficients, we get

THI + T3 + eary + (M), = T + Tl + fa + (Th)u (1)
THIT + 5 + ean + (Th)v =TT + TH0 + fax + (M) (2)
Chf+T5g+e =he+ L +1, (3)
Fortunately, we only need (2), since if A = (ay), then
K (g Z) - (E g) Aadj(A) = — (f ;) adj(A) = — (? ;) (_002; aﬁz)
So EK = —eay + fay, which we can express in terms of Christoffel symbols. O

Definition 2.36 (isothermal)
A parametrisation is isothermal if £ = G = A(u, v)?, F = 0.
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Proposition 2.37. In isothermal coordinates,

K = _%A(log(ﬁ(u, v)))

3 Riemannian geometry

3.1 Geodesics

Let S C R? be a surface, p, g € S. Let Q(p, q) be the set of all curves a :[0,1] — S, which do not have to be
parametrised by arc length, with a(0) = p and a(1) = g.

Definition 3.1 (length functional)
The length functional is

1
o(c) =/0 la|dt

Definition 3.2 (energy functional)

The energy of a curve is

1 (" 5
E(a)=§/0 lof2dt

Proposition 3.3. ¢(a) < +/2E(a), with equality if and only if a is parametrised proportional to arc length.

Proof. Cauchy-Schwarz. O

Let as € Q(p, q) be a smooth one parameter family of curves, with s € (—¢, €). Let £(s) = E(as). Then we

have that
clE_[1 0 da; das\
ds  Jy \ds ot ot

Integrating by partsﬂ we get

vvhereEl

_80(5(t)|
T gs 0

J(t)
Since as € Q(p, q), J(0) = J(1) = 0. So we get that

dE 1
9 o - 7/0 U(e), a(t)) dt

Now notice that for each t € [0, 1], J(t) € TS, since s — as(t) is a curve in s. So if a is such that
& L TonS for all ¢, then a extremises E.

b /of s ("], 99
[ (So)er-tnam— [ (5 )
which follows from %(f,g} = <%,g> + <f, %5[7>,

5In Paternain’s notes it's W, | renamed it to J since it is a Jacobi field.

4That is,
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Definition 3.4 (geodesic)
A curve a:/ — S is a geodesic if for all t € /, &(t) is orthogonal to T4y S.

3.2 Covariant derivative, parallel transport

Definition 3.5 (vector field)

let @ : /| — S be a curve. A vector field along @ is a smooth map V : / — R? such that for all ¢,
V() € TainS.

Definition 3.6 (covariant derivative)

The covariant derivative of a vector field V' along o is

DV i dv
E(t) = Prolrys | 4

where projr,,s is the orthogonal projection onto T S.

Proposition 3.7. A curve a is a geodesic if and only if % =0 for all .

Definition 3.8 (parallel)
A vector field V' along a is parallel if % =0.

Proposition 3.9. Let V/, W be parallel vector fields along a. Then (V/(t), W(t)) is constant.

Proof. y "y W
— (V(t), W(t)) = { —(t), W[t V(t), —(t
vt wio) = (S wio) + (vie, )

But as V, W are parallel, % % are orthogonal to To(yS, so % (V(t), W(t)) = 0. O

Corollary 3.10. If o is a geodesic, then |a| is constant. So geodesics are parametrised proportional to
arc length.

3.2.1 Local coordinate expressions

Let ¢ : U — S be a parametrisation, a : [ — S a curve, with a(/) C ¢(U). Write a(t) = ¢(u(t), v(t)). Let V be
a vector field along a. Then there are functions a(t), b(t) such that

V(t) = a(t)p, + b(t)¢,
Differentiating this, we get that
dv
T
The covariant derivative is just the ¢, and ¢, components of this, since N is orthogonal to T,;S. Therefore,
in terms of Christoffel symbols, we have that

(Puull + Puu¥) + b(Dyutt + P V) + ady + b,
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oV
dt

From this expression, we see that the covariant derivative only depends on the first fundamental fornﬂ

= (a+ aul )y + avl}, + bal ), + bul )b, + (b + ail %, 4+ avl %, + bul™%, + bul%,)¢, ()

Proposition 3.11 (geodesic equations). a(t) = ¢(u(t), v(t)) is a geodesic if and only if

i+ Mhi? +2MLov +Thi2 =0
V4 [30% 4 2M%,0v + 5,2 =0

Proof Set a = u,b =vin (%). O

Proposition 3.12 (parallel transport). Given vo € TS, there exists a unique parallel vector field V/(t)
along a(t), with V(tg) = vo. We call V/(t) the parallel transport of v along a at f;.

Proof. (*) is a linear ODE in terms of (a, b), therefore we can apply standard ODE theory in terms of existence
and uniqueness. O

Corollary 3.13. Given p € S, v € 7,5, there exists € > 0, and a unique geodesic y : (—&, &) = S such
that y(0) = p and y(0) = v.

Proof. Standard ODE theory. O

Definition 3.14 (parallel transport)

Let a € Q(p, q). Define P: 7,5 — T,S the map sending v € 7,5 to the parallel transport of v along «
at g.

Proposition 3.15. P: 7,5 — T,S is a linear isometry.

Proof. The fact that P is linear follows from (*) being a linear ODE for (a, b), and uniqueness of solutions. P
being an isometry follows from the fact that if V/(t) is the parallel vector field, then (V/(t), V(t)) is constant, so

|PW)[J* = (V(t), Vit = (Vito), Vito)) = tivii> 0

3.3 Exponential map and geodesic polar coordinates

Proposition 3.16. Given p € S,v € 7,5, let y, : (—€, &) — S by the unique geodesic with y(0) = p and
y(0) = v. Then y,, is defined on (—€/A, €/A). Furthermore, yy,(t) = vy (A?).

Proof. By uniqueness of such a geodesic, and the chain rule. O

Definition 3.17 (exponential map)
Suppose v € T,S nonzero is such that y,(1) is defined, we define

50r in the language of Part Il Differential Geometry, this definition of the covariant derivative agrees with the one coming from the
Levi-Civita connection for a Riemannian manifold.
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expp(v) = w(1)

Proposition 3.18. There exists € > 0 such that exp, : B¢(0) — S is well defined and smooth.

Proof. By existence of solutions to ODEs, and smooth dependence on the initial conditions. O

Proposition 3.19. If S is closed, then exp, is defined on all of 7),5.

Proposition 3.20. exp,, : B¢(0) — S is a diffeomorphism onto its image in a neighbourhood U C B,(0) of
0eT,S.

Proof. By the inverse function theorem, suffices to show d (expp)o is nonsingular. Let a(t) = tv for some fixed

ve 1,5 Then exp,(tv) = yy(t) at t = 0 has tangent vector v. So d(expp)o (v) = O

Definition 3.21 (normal neighbourhood)
Let U be as in the previous proposition. Then V' = exp,(U) is called a normal neighbourhood of p.

Corollary 3.22. exp, : U — V' is a parametrisation.

Proposition 3.23. If we choose cartesian coordinates on 7,5, then with the exp, parametrisation, we have
the first fundamental form

E(p)=Glp)=1 and F(p)=0

Definition 3.24 (geodesic polar coordinates)
If we choose polar coordinates (r, 8) for 7,5, then we have the geodesic polar coordinates. That is,

81, 6) = exp, (r(cos(B)ey + sin(6)ez)) = exp, (rv(0) = wiia)(1)

where v(0) = cos(0)e1 + sin(O)e,.

Remark 3.25. Recall that to define polar coordinates, we need to take a branch cut. But the above map makes sense,
even though it is not a parametrisation without taking a branch cut.

Definition 3.26 (geodesic circles, radial geodesics)

The images of circles centred in the origin under the map ¢ are called geodesic circles (i.e. r = const).
Similarly, the images of lines through the origin (i.e. 8 = const) are called radial geodesics.
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Proposition 3.27. The coefficients E(r, 0), F(r, 8), G(r, 6) satisfy

E=1 F=0 G(0,0 =0 and (\/E),(O, 0) =1
Moreover, the Gaussian curvature can be written as

(\/E)fl'

K=—"T7c

Proof. By definition of ¢, we have that ¢, = y,g(r), so E =1 as v(0) is a unit vector and geodesics travel at
constant speed. Now let w = g—g. Then by chain rule, we have that

bo = d(expp)rv(rw) = rd(expp)rv (w)
So we have that
F=r <)’/V(r),d(expp)rv(w)>
G= rz‘d(expp)rv(w) ’

Clearly F(0,8) =0, and from the last equality, we find that

(V) (0.6) = |d(exp, ) (w)] = w| =1

Finally, we can compute

> <¢r ¢9r>
~ (6. 60)
<<Z>r r)

00
Eg

where we used the fact that ¢(-, 0) = y, is a geodesic, so ¢, = ¥, is normal to 7,5. So F = 0 identically.
We omit the computation for K, and note that it can be computed using Christoffel symbols. O

3.4 Geodesic curvature

Definition 3.28 (algebraic value of the covariant derivative)

Let W be a differentiable field fo unit vectors along a curve o : [ — S along an oriented surface S. Then
DW dw
— — NAW
[ dt ] < dt >

Note that this definition depends on the orientation of S, but only up to a sign.

Proposition 3.29. Let W be a field of unit vectors along a. Then 2 T is parallel to N A W, and we have
that

DW DwW
dt_[dt](/\//\w)

Proof (W, W) =1, so <% W) = 0. By definition, T‘;V is orthogonal to N, hence by the above, it must be

parallel to N A W. O
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Definition 3.30 (geodesic curvature)

Let @ : | — S be a regular curve parametrised by arc length. The algebraic value of the covariant derivative

Kq(s) = [3?] =(a, NAa)

is called the geodesic curvature of a at a(s).
Proposition 3.31. « is a geodesic if and only if its geodesic curvature is identically zero.

Proposition 3.32. Let « and n be the curvature and unit normal for a. Then we have that

& = ko N + K4 (N A Q)

where «,, k; are the normal and geodesic curvatures respectively.

Proof Since W has norm 1, we have that (W, W) =0, so (4¥, W) = 0. Hence 4¥ is perpendicular to W.
el to

Thus, % must be perpendicular to both W and N, so it is parall NAW. O

Definition 3.33 (perpendicular vector field)

Let V' be a unit vector field along o : | — S. Let iV/(t) be the unique vector field along o such that for
every t € 1, V(t), iV/(t), N(t) forms a positively oriented orthonormal basis of R3. That is,

V() A V() = N(1)

Proposition 3.34. Let V, W be unit vector fields along o : / — S. Then there exists smooth functions
a, b, such that

W(t) = a(t)V(1) + b(8)iV(2)
with @ + b? = 1. Furthermore, if we fix ty € /, and let ¢y be such that

a(te) = cos(go) and  b(ty) = sin(¢o)

then there exists a smooth function ¢ : / — S such that

a(t) = cos(g(t)),  b(t) = sinfe(t)) and  ¢(to) = @0

Proof. V/(t),iV(t) is an orthonormal basis of T44S. The construction of ¢ is as in the construction of the
winding number in Complex Analysis. O

Definition 3.35 (smooth determination of angle)

¢ from the previous proposition is called a smooth determination of the angle from V to W.

Proposition 3.36. Let V, W be unit vector fields along o : / — S and ¢ by a smooth determination of
angle from V to W. Then
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DW]_[DV] _dg
dt dt | dt

Proof. By definitions, we have that

[DthV] (W NAW)

5

Write W = cos(¢)V + sin(¢g)iV, and differentiate, to get

(VNAV) = (V,iV)

W' = ¢'(—sin(¢)V + cos(¢p)iV) + cos(¢) V' + sin(g)(i V)
But NA W = cos(¢)iV — sin(¢p)V, so we get that

[Ddtv] = ¢/ + (—sin(g)V + cos(g)iV, cos(g) V' + sin(g)(iV))
= ¢!+ cosll’ (iV, V) = sinlg)’ (V. (iV)
_ . [pv
N

where we used the fact that (V,iV) = 0, so (V/,iV) 4+ (V,(iV)) =0, and (V, V) = (iV,iV) =1, so
(V', V) =iV, (iV)) =0. O

Proposition 3.37. Let o : | — S be a curve parametrised by arc length, V(s) a parallel unit vector field
along a, ¢ a smooth determination of angle from V to &. Then

de
Kg(s) = ds

Proof [%] =0 as V is parallel. O

Proposition 3.38. Let ¢(u,v) be an orthogonal parametrisation (i.e. F = 0) of an oriented surface S,
which is compatible with the orientation. Let W be a smooth vector field along the curve ¢(u(t), v(t)).
Then

DW 1 . . de
[dr] = Ve GV T B+ g

where ¢ is the angle from ¢, to W in the given orientation.
Proof Let eq = ¢>U/\E and e; = ¢V/\FG. Then eq, ey is a positively oriented orthonormal basis of the tangent
plane. By the previous proposition,
DW1 | Dex Y
dt |~ ar |77

[[L?] =(e1, NNei)=(é1,e2) =((e1)s e2) U +((e1), €2) V

But then we have that

Computing this,
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<(e1)ur92> = <(¢u/\/E)u¢v/\/6> \/7<¢uu ¢V> <ddu (\)E)¢U¢V> = \/1E—G<¢uu,¢V>

as F = {¢,, ¢,) = 0. Differentiating F = 0, we get that {(¢yy, ¢v) = — (Py, duv) = —E, /2. Therefore, we
have that

(fenh. e2) = =~
He T T oVEG
similarly,
Gy
ey, e
<( 1) 2> 2\/@
O
Corollary 3.39. If a :— ¢(U) is a curve parametrised by arc length, then
1 4
Kg(S) = ——=—=(G,v — E i) +
where ¢ is the angle from ¢, to ¢.
Proof Set W = & in the previous proposition. O

3.5 Gauss-Bonnet

Theorem 3.40 (Gauss's theorem for geodesic triangles). Let T be a geodesic triangle on a surface S.
Suppose T is small enough so that it is contained in a normal neighbourhood of one of its vertices, then

/KdA=O(1+O(2+O(3—7T
.
where K is the Gaussian curvature of S, and 0 < a; < 7 are the internal angles of T.
Proof. We can assume without loss of generality that we have geodesic polar coordinates centred at one of the

vertices of T, one of the edges corresponds to 68 = 0 and another corresponds to 8 = 6. The remaining edge

is a geodesic segment y.
First notice that y can be written in the form r = h(8). Suppose not, then there exists s such that y(s) is
parallel to ¢,. But radial segments are geodesics, so this means that y is radial. Contradiction. Hence we can

write y as r = h(6). Then
6 h(6)
/KdA:/K\/GdrdQ:/ [er(l)/ Kv Gdr
T T 0 &=V Je

But in geodesic polar coordinates, we have Kv/G = —(v/G),,, and lin?)(\@), =1, s0

E—

h(6)
um/ KVGdr =1 — (VG),(h(6), 6)

Now suppose y(s) = gb( (s), B(s)) makes an angle ¢(s) with ¢,, that is, the curves 8 = const. Then the
previous corollary (u = r, v = 0) gives tha

WG, %8 9

"ds = ds
Using
Gy
(\/E)r = 2\/6
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as y is a geodesic. Therefore, we have that

6o
[KdA:/ (1—(\/6),(15(9),9))(19
T 0

90 50
=/ dQ—/ (E),@ds
0 0 dS

S0
=6y +/ dﬁds
0 ds

Finally, by the orientations, we have

Which gives the result. O

Definition 3.41 (triangulation)

Let S be a compact surface. A triangulation of S is a finite number of closed subsets Ty, ..., T, which
cover S, each T; is homeomorphic to a Euclidean triagngle in the plane. Moreover, any two distinct
triangles are either disjoint, share a vertex, or share an edge.

Theorem 3.42. Triangulations always exist. Furthermore, we can choose it so that each 7; is diffeomorphic
to a Euclidean triangle, and each edge is a geodesic segment.

Sketch Proof, requires Part Il Algebraic topology. We omit the proof of existence. By barycentric subdivision,
we can make the triangles in S arbitrarily small. Then by the Lebesgue covering lemma, if the mesh of the
trianqulation is sufficiently small, then each triangle is contained within a normal neighbourhood at one of its

vertices. O
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Definition 3.43 (Euler characteristic)

Given a triangulation of S, let F be the number of faces, £ the number of edges, V' the number of vertices.
Then

X(S)=V—E+F

is the Euler characteristic of S.

Proposition 3.44. The Euler characteristic does not depend on the choice of trianqulation.

Proof. Part Il Algebraic Topology. This is just the homotopy invariance of homology. O

Proposition 3.45 (Classification of compact orientable surfaces). All compact orientable surfaces are
diffeomorphic to some L, where g is a g-holed torus. g is called the genus of ;. Furthermore,

X(&g) =2—2g

Proof. Part Il Algebraic topology. O

Theorem 3.46 (Global Gauss-Bonnet). Let S be a compact surface without boundary. Then

/ KdA = 27x(S)
S

Proof. Consider a trianqulation by geodesic triangles T, . .., Tr. We can assume wlog that each T; is contained
in a normal neighbourhood of one of its vertices.
Let a;, Bi, vi be the interior angles of T;. Then by Gauss's theorem for triangles, we have that

/KdAzai-i-Bi-i-V,'—JT
Ti

Summing over all i, we have that

F
/KdA: > (ai+Bi+vi)—aF
S =1

Now notice that the sum of the angles at every vertex is 2, so

F

Z(Oq +Bi+vy) =21V

i=1

Finally, for a trianqulation, every edge belongs to two triangles, so 2E = 3F. Putting this all together we
get that

/ KdA = 72V — F) = 27x(S)
S

Theorem 3.47 (local Gauss-Bonnet). Let ¢ : U — S be an orthogonal parametrisation of an oriented
surface S, U is a disc in R?, and ¢ is compatible with the orientation of S. Let a : /| — ¢(U) be a smooth
simple closed curve enclosing a domain R. Suppose «a is positively oriented and parametrised by arc
length. Then

26



/Kg(s)ds + / KdA = 27
/ R

where Ky is the geodesic curvature of a.

Proof. By our local coordinate computation, we have that
1 dv du de
Kg(s)f 27 E ( Uds_Evds) +E

where ¢ is the angle from ¢, to @. Without loss of generality, we may assume [ = [0, ¢]. Integrating this,
we get

1 dv du
Kg(s)ds = | ——=—= [ G,— — E,— | ds + ¢(¢) — ¢(0
[wtsrts = [ = (GG~ £.5 | o 0t - 910
By Green’s theorerrﬂ

Gy E,
]lxg(s)ds=/m)((2m)u+ (Zﬁ)v)dudew)—w(m

But for an orthogonal parametrisation, we have that

<~ ovee [ore). () )
2VEG EG/, EG]/,
So
/Kg(s)ds = f/ KdA 4+ ¢(¢) — ¢(0)
/ R
But ¢(¢) — ¢(0) = 27, which gives us the result. O

Theorem 3.48 (Gauss-Bonnet with boundary). Let R C S be a connected open relatively compac{? subset.
Suppose dR contains of n piecewise smooth simple closed curves ¢; : [; = S, where the images do not
intersetc. Suppose the «; are parametrised by arc length, and are positively oriented. Let 6; be the
external angles of the vertices of these curves. Then

Z//Kg(s)ds + /R KdA+> 6= 27(R)
i=1 u i

“That is, the closure is compact

Proof. As for the global Gauss-Bonnet, but we need to treat the boundary vertices differently. O

Theorem 3.49. Suppose S is a compact orientable surface with K > 0. Then S is diffeomorphic to S°.
Moreover, if @, B are simple closed geodesics on S, then they must intersect.

Proof Gauss-Bonnet gives us that x(S) > 0, so S is diffeomorphic to S?. Now suppose a, 8 do not intersect.
Then they bound a domain R with x(R) = 0. But then Gauss-Bonnet means that R must in fact have measure
zero. Contradiction. O

8From IA Vector Calculus, which says that if D C R? with D sufficiently regular, then

oM dL
Ldx + Mdy :/(—7—)dxd
/[m( y) o\ ax " ay y
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Theorem 3.50. Let S be a surface hoemomorphic to a cylinder, with negative Gaussian curvature every-
where. Then S has at most one simple closed geodesic.

4 Minimal surfaces
Note that the sections in the notes about the Weierstrass representation are non-examinable, and hence omitted.

Definition 4.1 (minimal surface)

A surface S is minimal if its mean curvature vanishes everywhere.

Definition 4.2 (normal variation)

Let ¢ : U — S be a parametrisation, D C U bounded open connected, wltﬁﬁ C U leth:D — R be
smooth. Then the normal variation of ¢(D) determined by h is the map p: D x (—¢, €) — R? given by

plu, v, t) = ¢(u,v)+ th(u, v)N(u, v)
For fixed t € (—¢, &), consider the map p' : D — R?, given by p'(u,v) = p(u, v, t). Since p° = ¢, for €

small enough p!(D) is a smooth surface in R?, since p!, p! are linearly independent for & small enough. Now
by chain rule,

P = ¢, +thN, + th,N
— ¢, + thN, + th,N

and if we let EY, F', G' be the coefficients for the first fundamental form of p'(D), we get

E' = F + 2th (¢, Ny) + t2h* (Ny, Ny) + t*h,h,
F'=F +2th{¢y, N,) + t*h* (N, N,) + t*h,h,
G'= G+ 2th{¢,, N,) + t2h* (N,, N,) + t*h,h,

Computing the area functional to first order, we find
E'G'— (F')Y = EG — F? = 2th(Eq — 2Ff + Ge) + r(t)
= (EG — F?)(1 — 4thH) + r(t)

where r(t) is (’)(tz), and we used the formula

eG —2fF + Ge

= 2(EG — F?)

If A(t) is the area of p!(D), then we have

:/w/Efo—(Ff)Zdudv:/\/T —4thH + VEG — F2dudv
D D

where 7 = r/(EG — F?). Clearly t — A(t) is smooth and

A(0) = —/ 2hHVEG — F2dudy
D
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Proposition 4.3. ¢(U) is minimal if and only if A’(0) = 0 for all bounded domains D C U and all normal
variations of ¢(D).

Proof If H = 0, then clearly A'(0) = 0. Conversely, suppose H(g) # O for some ¢ € D. Let h = H. Then
A’(0) < 0. Contradiction. O

Definition 4.4 (mean curvature vector)

The mean curvature vector is H = HN.

Proposition 4.5. A normal variation in the direction of HN always has A'(0) < 0, provided H does not
vanish.
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