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1 Algebraic geometry
1.1 Sheet 1
Question 7The decomposition of an algebraic variety into irreducible components is unique, that is, if

V = V1 ∪ · · · ∪ Vn = V ′1 ∪ · · · ∪ V ′
mthen m = n, and up to reordering, Vi = V ′

i for all i. To see this, we note that Vi ∩ V ′
j is a subvariety of Vi,so if it is nonempty, then we must have that Vi ∩ V ′

j = Vi, i.e. Vi ⊆ V ′
j . But we must also have V ′

j ⊆ Vi, so
Vi = V ′

j .
Question 10The product of affine varieties is an affine variety, and the projection maps are morphisms. One way of seeingthis is that if we have

V = V(I) ⊆ An

where I ⊴ C[x1, . . . , xn], then if we consider the embedding C[x1, . . . , xn] ≤ C[x1, . . . , xn, y1, . . . , ym], we geta corresponding ideal Ic ⊴ C[x1, . . . , xn, y1, . . . , ym]. Then we have that
V c = V(Ic) = V(I) × Am ⊆ An × Am = An+m

Which is a cylinder for V . Taking the intersection with the other cylinder gives the product.
Question 12If V is the union of three lines in A2 through the origin, and W is the union of three lines through the originin A3, where there is no plane containing all three lines, then V and W are not isomorphic. To see this, wecan just compute the dimension of the tangent space of V and W at the origin. V has dimension 2 and W hasdimension 3. In particular, there cannot be any point on V where the tangent space is 3-dimensional, so therecannot be any isomorphism between V and W .
1.2 Sheet 2
Question 5Consider the nodal cubic, which is the projective closure of y2 = x3. The curve is smooth at every point except
x = y = 0. Therefore, by considering this curve in a different affine, we can see that the projective closure ofa smooth affine variety does not have to be smooth.
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Question 11Any (irreducible) quadric hypersurface Q = V(f ) ⊆ Pn+1 is birational to Pn. To see this, note that by aPGLn+2(C) change of coordinates (i.e. diagonalisation of quadratic forms), we may assume that
f (X0, . . . , Xn+1) = −X0X1 + X 22 + · · · + X 2

n+1. Define π : Q → Pn to be the projection from (1 : 0 : · · · : 0) ∈ Q, i.e.
π(x0 : x1 : · · · : xn+1) = (x1 : · · · : xn)and define ψ : Pn → Q by

ψ(y1 : · · · : yn+1) = (y22 + · · · + yn + 12 : y21 : y1y2 : · · · : y1yn+1)These two define birational maps between Q and Pn.
1.3 Sheet 3
Question 3If we consider a degree d curve V , P ∈ Pn a point, and we consider the projection map π from P onto ahyperplane H .If P /∈ V , then deg(π) = d, since for any Q ∈ V , the line L containing Q and π(Q) intersects V at d points,so π(Q) has d preimages for generic Q.However, if P ∈ V , then deg(π) = d − 1, since we can’t have the preimage P . Therefore in this case,
P = (1 : 0 : · · · : 0) ∈ Q and d = 2 means that deg(π) = 1.
Questions 6-8Recall the Segre embedding is the map

σmn : Pm × Pn → Pmn+m+n
Given by the (m+ 1)(n+ 1) XiYj . Then for any varieties V ⊆ Pm, W ⊆ Pn, we can define

V ×W = σmn(V ,W )These questions are in the special case m = n = 1, where we show that a product variety is the same asa closed subset of Σ = σ11(P1 × P1). Moreover, if V ⊆ Σ closed, then σ−111 (V ) ⊆ P1 × P1 is the vanishing locusof bihomogeneous polynomials in C[X0, X1, Y0, Y1].
1.4 Sheet 4
Question 2This question follows immediately from Riemann Roch. Essentially, what we want is n ≥ 0 such that

ℓ(nP) ≥ 2since we know ℓ(nP) ≥ 1, where we have the constant functions. So if we have something which is linearlyindependent from the constant functions, it must be non-constant.In this case, if n > 2g− 2, then
ℓ(nP) = 1 − g+ deg(D) = 1 − g+ nHence a sufficient condition is n ≥ max{1 + g, 2g− 2}.
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Question 3Recall that given a divisor D, we can define an associated morphism φD : V → Pn, where n = ℓ(D) − 1. Wedo this by choosing a basis {f0, . . . , fn} for L(D), and defining
φD = (f0 : · · · : fn)In particular, if deg(D) > 2g, then φD is an embedding. Therefore, consider the divisor D = nP , where

n > 2g. Then we have a morphism
φD : V → PmSuppose wlog that f0 = 1. Any rational function which is regular on all of V is constant, so we must havethat f1, . . . , fm have a pole at P . Hence we have that

φD(P) = (0 : a1 : · · · : am)and for Q ̸= P , we have that
φD(Q) = (1 : b1 : · · · : bm)Let W = φD(V ) and P ′ = φD(P). Then we have that V and W are isomorphic, and W \ {P ′} ⊆ {X0 ̸= 0},so it is affine.

Question 4If φ : V → P1 has degree 2, then we get a corresponding effective divisor D on V of degree 2, by consideringthe zeroes of φ. Conversely, if we have an effective divisor D with degree 2, ℓ(D) ≥ 2, choosing a nonconstantelement of L(D) gives us a degree 2 morphism V → P1.
Question 5For a smooth plane quartic V , we have a basis for L(D), given by{

xrys
∂f
∂Y

∣∣∣∣ 0 ≤ r + s ≤ d − 3 = 1}
which means that up to clearing denominators, and permuting the coordinates, the morphism associated tothe canonical divisor K is φK = id. Hence it is an embedding, so we have that for any P,Q ∈ V ,

ℓ(K − P − Q) = ℓ(K ) − 2 = g− 2 = 0Hence by Riemann Roch, for any degree 2 divisor, we have that
ℓ(D) = 1 − g+ deg(D) = 1 − 2 + 2 = 1So V is not hyperelliptic.

Question 8This follows from the fact that for curves, being birational is the same as being isomorphic, and that two curvesare birational if and only if their function fields are isomorphic.
2 Algebraic topology
2.1 Sheet 1
Question 4A retract of a contractible space is contractible.
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Question 10

π1(X × Y , (x0, y0)) ≃ π1(X, x0) × π1(Y , y0)
Question 11From the covering map R2 → T 2, we get that any homomorphism φ : π1(T 2, x0) → π1(T 2, x0) gives us a matrix
A ∈ M2(Z), which then gives us a continuous map fA : T 2 → T 2, with fA∗ = φ.
Question 13We have a double cover of the Klein bottle by the torus, by cutting the torus in half. However, by the Galoiscorrespondence, we can see that the torus does not have a covering space homeomorphic to the Klein bottle,since π1(K ) is non-abelian.
2.2 Sheet 2
Question 6We can construct a covering map p : X̂ → X of X = S1 ∨ S1 which is the wedge of n-circles, which has
π1(X̂ ) = Fn. So p∗π1(X̂ ) ≤ F2 is a subgroup of F2 which is isomorphic to Fn.To show there is no surjective homomorphism Fm → Fn for m < n, one way is by considering the abelian-isation of Fn, i.e. we get a map Fm → Zn, which can’t be surjective by GRM.
Question 7If X is a Hausdorff space, G a group acting on X by homeomorphisms, freely and properly discontinuously,then(i) The quotient map X → G\X is a covering map, G\X is Hausdorff(ii) and if X is simply connected, then π1(G\X ) ≃ G .The proof is in the Riemann surfaces course.
2.3 Sheet 3
Question 3 (ii)By the simplicial approximation theorem, we get that there is an isomorphism of fundamental groups between

π1(|K |) ≃ π1(|K2|)where K2 is the 2-skeleton of K . Intuitively, the higher simplices do not contribute to the fundamentalgroup, since any homotopy can be approximated by a simplicial map in the 2-skeleton. Furthermore, we canthink of this as (in terms of cell complexes, not simplicial complexes...)1. adding 1-cells adds a generator,2. adding 2-cells adds a relation.
Question 7If K is a triangulation of a compact n-manifold, i.e.1. every n− 1 simplex is a face of exactly two n-simplices,2. every pair of n simplices can be joined by a sequence of n-simplices, with adjacent terms sharing a face.Then we have that

Hn(K ) = {
Z if K is orientable0 if K is non-orientableFurthermore, from examples such as RP2, we can see that the n − 1 homology has torsion in the non-orientable case.
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2.4 Sheet 4
Question 1One useful thing to know is that if we have a SES

0 A B Zn 0then B ≃ A ⊕ Zn.
Question 2This question is the five lemma, that is, if we have

A1 A2 A3 A4 A5
B1 B2 B3 B4 B5
h1 h2 h3 h4 h5

where each row is exact, h1, h2, h4, h5 are isomorphisms, then h3 is an isomorphism.
Question 4A covering space of a triangulable space is triangulable. To see this, by the Lebesgue covering lemma andbarycentric subdivision, we can assume that each simplex is contained in an evenly covered neighbourhood.Taking preimages gives us a triangulation of the covering space.
Question 5To compute the Lefschetz number of the antipodal map, we can just note that if L(a) ̸= 0, then by the Lefschetzfixed point theorem a has a fixed point, which it can’t. Hence we must have L(a) = 0.Alternatively, notice that since most of the homology groups are zero, we have that L(a) = 1 + (−1)nd,where a∗ : Hn(Sn) → Hn(Sn) is given by x 7→ dx . In particular, d = ±1. By considering a as n+ 1 reflectionsand using functoriality, we must have that d = (−1)n+1. So L(a) = 0.
Question 8We have that H1(X ) is the abelianisation of π1(X ).
3 Analysis of functions
3.1 Sheet 1
Question 1Here we have a generalisation of Hölder’s inequality, which is∥∥fg∥∥

Lr ≤
∥∥f∥∥Lp∥∥g∥∥

Lqwhere p−1 + q−1 = r−1. This follows from the r = 1 case.
Question 7Suppose f ∈ Lr for some r < ∞. Then ∥∥f∥∥L∞ = lim

p→∞

∥∥f∥∥Lp
3.2 Sheet 2
Question 2Any non-constant element of X ′ is an open map, even if X is not complete.
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Question 4Riesz’s lemma says that if X is a normed vector space, V ≤ X a closed proper subspace, 0 < α < 1, then thereexists x ∈ X , with ∥x∥ = 1 and ∥∥x − y
∥∥ ≥ α for all y ∈ V .To see this, as V is a proper subspace, choose x ∈ X \ V . As X \ V open, we have that
d = inf

y∈V

∥∥x − y
∥∥ ≥ ε > 0

Fix ε > 0, then choose y ∈ V such that d ≤ ∥x − v∥ ≤ d+ ε. Let z = x−y∥∥x−y∥∥ , then ∥z∥ = 1, and
inf
v∈V

∥v − z∥ = 1∥∥x − y
∥∥ inf
v∈V

∥∥(∥∥x − y
∥∥v + y

)
− x

∥∥ = infv∈V ∥v − x∥∥∥x − y
∥∥ ≥ d

d+ εTaking ε sufficiently small gives the result.
Question 5If P is a separating family of seminorms on X , then xn → 0 if and only if p(xn) → 0 for all p ∈ P .
Question 6If X is a Banach space, (Λk ) ⊆ X ′ a sequence, then

Λk → Λ =⇒ Λk ⇁ Λ =⇒ Λk ∗⇁ ΛWhere for the second implication, we use the canonical embedding Φ : X → X ′′. In fact, we have that
τw∗ ⊆ τw ⊆ τs

Question 8 (i)Suppose H is a Hilbert space, then xi ⇁ x if and only if for all y ∈ H , ⟨y, xi⟩ → ⟨y, x⟩. This follows fromRiesz’s representation theorem.
Question 8 (iii)Suppose X is a Banach space, and xi ⇁ x . Then the xi are norm bounded. To see this, notice that for allΛ ∈ X ′,

Φ(xn)(Λ) = Λ(xn) → Λ(x)so {Φ(xn)} is pointwise bounded. Hence by the uniform boundedness principle, it is norm bounded. But Φis an isometry by Hahn-Banach, so we are done.Next, let f ∈ X ′ be a support functional for x , then∥x∥ = |f (x)| = lim inf
n

|f (xn)| ≤ lim inf
n

∥∥f∥∥∥∥xn∥∥ = lim inf
n

∥∥xn∥∥
as ∥∥f∥∥ = 1.Finally, suppose that X is a Hilbert space, xn ⇁ x and ∥∥xi∥∥ → ∥x∥. Then∥∥xn − x

∥∥2 = ∥∥xn∥∥2 + ∥x∥2 − 2 Re ⟨xn, x⟩ → 0as n → ∞.
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Question 13Let X be a reflexive Banach space, Y a closed subspace. Then Y is reflexive.Given φ ∈ Y ′′, define φ̃ ∈ X ′′ by φ̃(Λ) = φ(Λ|Y ). As X is reflexive, we have that φ̃(Λ) = Λ(x) for some
x0 ∈ X . Suppose x /∈ Y . Then by Geometric Hahn-Banach, we have Λ ∈ X ′ such that Λ(x) = 1 and Λ|Y = 0.Contradiction. So we must have that x0 ∈ Y .Now for Λ ∈ Y ′, let Λ̃ ∈ X ′ be a Hahn-Banach extension of Λ. Then

φ(Λ) = φ(Λ̃|Y ) = φ̃(Λ̃) = Λ̃(x0)So we must have that φ = ΦY (x0), where ΦY : Y → T ′′ is the canonical embedding.
3.3 Sheet 3
Question 1We have that

convergence in D =⇒ convergence in S =⇒ convergence in Eand the reverse implications do not hold.
Questions 2 and 4For each of X = D ,S ,E ,D ′,S ′,E ′, we have that

τhφ → φ in X as h → 0and
∆h
i φ → ∇iφ in X as h → 0

Question 6A linear map u : S → C is continuous if and only if there exists N, k ∈ N and C > 0 such that
|u(φ)| ≤ C sup

x∈Rn,|α|≤k

∣∣(1 + |x|)N∇αφ(x)∣∣
for all φ ∈ S . One direction is clear since it shows that if φj → 0 in S , then u(φj ) → 0. Conversely,suppose that u is continuous. Then u−1(|z| < 1) is an open neighbourhood of 0. By considering the generatingseminorms and the neighbourhood basis of 0, we get the required result.

Question 8Suppose f ∈ L1(Rn), with supp(f ) ⊆ BR (0). Then f̂ ∈ C∞, and
sup
ξ

∣∣∣∇α f̂ (ξ)∣∣∣ ≤ R |α|∥∥f∥∥L1
The proof follows easily from the fact that

∇j f̂ (ξ) = −ix̂j f (ξ)In general, we have correspondences
decay in f ↔ regularity of f̂decay in f̂ ↔ regularity of fIn particular, this means often we want to consider small ξ (i.e. decay) and large ξ (i.e. regularity)separately.
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Question 10In this case, we have an uncertainty principle, which says that a function and its Fourier transform can’t bothbe sharply located.
3.4 Sheet 4
Question 4 (a), (c), (d)We have that S ⊆ Hs is dense, H t continuously embeds into Hs for s < t (i.e. we can embed into a spacewith lower regularity requirements), and ∇α : Hs+|α| → Hs is bounded (i.e. derivative decreases regularity).
Question 4 (b), (e)We have that Hs(Rn)′ = H−s(Rn), with the pairing

⟨f , g⟩ = 1(2π)n
∫
Rn
f̂ (ξ)ĝ(ξ)dξ

Furthermore, we have that δx ∈ Hs if s < −n/2, i.e. δx ∈ (Hs)′ if s > n/2, i.e. when we can choose acontinuous representative.
Question 7This is the definition of the trace. That is, we define T : S (Rn) → S (Rn−1) by

Tu(x ′) = u(x ′, 0)Then we show that it can be extended to a continuous bounded linear operator T : Hs(Rn) → Hs−1/2(Rn−1).
4 Differential geometry
4.1 Sheet 1
Questions 6 and 7An immersion is a smooth map f : X → Y such that dfp is injective for all p, and a submersion is a smoothmap f : X → Y such that dfp is surjective for all p. Then we can choose local coordinates such that f is theinclusion onto the first coordinates, or projection onto the first coordinates respectively.
Question 8We have that if y is a regular value of f : X → Y , then Tpf−1(y) = ker(dfp). To see this, notice that if αis a curve on f−1(y) with α(0) = 0, then f (α(t)) = y for all t . So we must have that dfp(α ′(0)) = 0. So
Tpf−1(y) ⊆ ker(dfp). By counting dimensions, equality must hold.
4.2 Sheet 2
Question 3For a plane curve contained in a disc of radius r , we must have a point on the curve for which the curvature isat least 1/r .
Question 7

H(p) = 1
π

∫ π

0 kn(θ)dθ
where kn(θ) is the normal curvature of p along a line with angle θ with a given direction. To show this, wejust note that we can choose an orthonormal basis for TpS such that dNp is diagonal.
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Question 8Let S be the surface of revolution given by
φ(u, v ) = (f (v ) cos(u), f (v ) sin(u), g(v ))Then S has
K = − f ′′

f and H = 12
(
f ′′

g′ − g′

f

)
Question 9For a compact orientable surface S , the Gauss map S → S2 is surjective. To see this, for w ∈ S2, let p besuch that ⟨p, w⟩ is maximal. Then for an appropriate choice of normal, N(p) = w .
Question 10Suppose every point on S is umbilic, i.e. κ1 = κ2 = −λ. Then by symmetry of mixed partial derivatives, we getthat λu = λv = 0. So λ is constant. By considering the cases λ = 0 where we get a plane, and λ ̸= 0 wherewe get a sphere, we get the required result.
4.3 Sheet 3
Question 3The covariant derivative only depends on the Christoffel symbols, which themselves only depend on the firstfundamental form. Therefore, if V is a parallel vector field along α , then W = df ◦ V is a parallel vector fieldalong f ◦ α . In particular, we have that

DWdt = dfα (t) (DVdt
)

A corollary is that isometries send geodesics to geodesics.
Question 4We have the equivalent form for the geodesic equations, which is

ddt (Eu̇+ Fv̇ ) = 12 (Euu̇2 + 2Fuu̇v̇ + Guv̇2)ddt (Fu̇+ Gv̇ ) = 12 (Ev u̇2 + 2Fv u̇v̇ + Gv v̇2)
Question 5Any minimal surface, i.e. if H = 0 identically, must have K ≤ 0. Hence there are no compact minimal surfacesin R3.
Question 11The most important thing from this question is that if we are in a geodesic normal neighbourhood, then

(√G)rr = −K
√
GTherefore, knowing K determines G and vice versa. Intuitively, if we consider geodesics eminating from apoint p, G(r, θ) determines how far apart the two geodesics are at (r, θ). In particular, this says that if K > 0,then (√G)rr < 0, so the geodesics are getting closer together. On the other hand, if K < 0, then the geodesicsare getting further apart.
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4.4 Sheet 4
Question 1For a matrix Lie group, we have a concrete description of the exponential map, that is,

exp(tA) = ∞∑
n=0

(tA)n
n!

Question 4Isometries are rigid, that is, if we know f (p) and dfp, then we know all of f .
Question 5Geodesics are local minimisers of length.
Question 10If φ is an orthogonal parametrisation about p, α : [0, ℓ ] → φ(U) a smooth simple closed curve parametrised byarc length, enclosing a domain R . Let w0 ∈ Tα(0)S , and W the parallel transport of w0 along α . Let ψ(t) be asmooth determination of angle between φu and W . Then

ψ(ℓ) − ψ(0) = ∫
R
KdA

Question 11A curve with constant curvature and torsion is a circle (if τ = 0) or a helix (if τ ̸= 0).
5 Galois theory
5.1 Sheet 1
Question 3It’s the Vandermonde determinant.
Question 4If L/K is a quadratic extension, then if char(K ) ̸= 2, L = K (√a) for some a ∈ K . If char(K ) = 2, then either
L = K (√a), or L = K (x) where x2 + x ∈ K .
5.2 Sheet 2
Question 4If f ∈ K [X ] is a degree of polynomial n, and L/K is a splitting field for f . Then [L : K ] ≤ n!.
Question 6First, suppose K is a field of characteristic p, where every element is a p-th power. Let f ∈ K [t] be irreducible.Then f is inseparable if and only if f = g(tp) for some polynomial g, i.e.

f (t) = antnp + an−1t(n−1)p + · · · + a0But each element is a p-th power, say ai = bpi . Define
h(t) = bntn + · · · + b0Then h(t)p = f (t), so f can’t be irreducible. Hence any irreducible polynomial must be separable.
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A field K is perfect if for all L/K finite, L is separable over K . We have that every characteristic 0 field isperfect. From the above, if every element in K is a p-th power (e.g. in finite fields, by Lagrange’s theorem),then K is perfect.Furthermore, the converse is also true. Suppose x ∈ K is not a p-th power. Consider f = tp − x ∈ K [t],and let L/K be a splitting field for f . Then in L[t], f = (t − α)p, so f is inseparable. Remains to show f isirreducible, since this shows L = K (α) is inseparable over K . Any proper factor of f must be g = (t−α)m with1 ≤ m < p. But the tm−1 coefficient of g is −mα , m coprime to p, so it is invertible. Hence if g ∈ K [t] then
α ∈ K , i.e. x is a p-th power. But we assumed this is not the case. Hence f must be irreducible.
Question 7Suppose K is a field with char(K ) = p > 0. Then x is inseparable over K if and only if K (x) ̸= K (xp). Let fbe the minimal polynomial of x over K .Suppose K (x) = K (xp). Then x = P(xp)

Q(xp) for some p, q ∈ K [t] coprime. Rearranging, we find that g(x) = 0,where g(t) = Q(tp)t − P(tp). So f | g. But g′ = Q(tp), so (g, g′) = (P(tp), Q(tp)). But P,Q coprime, so(g, g′) = 1. Hence g is separable, and so is f .Now suppose if K (x) ̸= K (xp). Then as in question 6, tp − xp is irreducible, so it is the minimal polynomialof x over K (xp). Hence (tp − xp) = (t − x)p | f . So f is inseparable.
Question 8If M/L/K are finite extensions, then M/K is separable if and only if M/L is separable and L/K is separable.One direction is clear. For the other direction, we are done by counting embeddings.
Question 17If x is algebraic over K , then we have finitely many intermediate fields K ≤ F ≤ K (x), since the minimalpolynomial of x/F is a factor of the minimal polynomial of x/K . The converse is also true if K is infinite (andthe K finite case is trivial).
5.3 Sheet 3
Question 1The transitive subgroups of S4 are S4, A4, D8, V4, C4 and their conjugates.
Question 2If p is prime, then any transitive subgroup of Sp contains a p-cycle.
Question 7We can compute the discriminant using the derivative, where

f = n∏
i=1(t − xi) =⇒ Disc(f ) = (−1)n(n−1)/2 n∏

i=1 f
′(xi)

Question 13Let K be a field of characteristic p > 0, a ∈ K , and
f (t) = tp − t + aThen noticing that f (t + 1) = f (t) for all t , we can see that if L/K is a splitting field for f , then L = K (x)where f (x) = 0. Furthermore, f is separable, so L/K is Galois, with Gal(L/K ) ≃ Z/pZ. L/K is called anArtin-Schreier extension.

Question 14If f is irreducible, then f ∈ Fq[t] divides tqn − t if and only if deg(f ) | n. Therefore, tqn − t is the product of allirreducible monic polynomials with degree dividing n.
12



5.4 Sheet 4
Question 2If Gal(L/K ) cyclic of prime order p, generated by σ , and suppose y ∈ L has Tr(y) = 0. By linear independenceof field embeddings, choose z ∈ L with Tr(z) ̸= 0. Then set

x = 1Tr(y) (yσ (θ) + · · · + (y+ · · · + σn−2(y))σn−1(θ))
Then x − σ (x) = y.

Question 11If L = K (x1, . . . , xn), where the xi are algebraically independent, let G = Sn act on L by permuting the xi.Then we have that LG = K (s1, . . . , sn), where the si are the elementary symmetric polynomials in the xj . Thenconsider
f = (t − x1) · · · (t − xn) = tn − s1tn−1 + · · · + (−1)nsn ∈ LG [t]The Galois group of f /LG is precisely Sn.

6 Linear analysis
6.1 Sheet 1
Question 2There exists a discontinuous linear map X → X if and only if X is infinite dimensional. It is easy to see anylinear map from a finite dimensional NVS is continuous. Conversely, let (ei)i∈I be an algebraic basis for X ,and choose a countable subset J = {j1, j2, . . . } ⊆ I . Then define

T (ei) = {
k if i = jk0 otherwiseThen T is an unbounded linear map from X to itself.

Question 3The intersection of dense subspaces doesn’t have to be dense. For example, take V = C ([0, 1]). Then piecewiselinear functions and polynomials are both dense, but the intersection is the linear functions, which are notdense.
Question 9If p ≤ q, then ℓp ≤ ℓq, and the inclusion is continuous.
Question 10(ℓp)′ = ℓq when p, q conjugate, 1 < p < ∞.
6.2 Sheet 2
Question 7Fix ε > 0, and define

En = {x ≥ 1 | |f (mx)| ≤ ε for all m ≥ n}Then each En is closed, as it is an intersection of the preimages of closed sets, and
{x ≥ 1} = ⋃

n
En

13



So by Baire, there exists n ∈ N and an open interval I ⊆ En. Finally, we can see that⋃
k
kI ⊇ [ℓ,∞)

for some ℓ > 1.
Question 8The key idea in this question is to consider the oscillation, i.e.

Dε = {x | ∀δ > 0,∃y, z ∈ Bδ (x) s.t. |f (y) − f (z)| ≥ δ}Each Dε is nowhere dense, i.e. for any open interval I , we can find a sub-open-interval J such that
Dε ∩ J = ∅.
Question 10In fact, any Banach space must have uncountable algebraic dimension, by Baire.
6.3 Sheet 3
Question 4

K metrisable implies C (K ) separable follows by considering an ε-net for K , for countably many ε → 0, andthe fact that continuous functions on a compact space is uniformly continuous. For the converse, if (fk ) is acountable dense subset of C (K ), then we can check that T : K → ℓ1 defined by
T (x)n = fn(x)2n∥∥fn∥∥is injective, as C (K ) separates points by Urysohn’s lemma. The pullback then defines a metric on K .

6.4 Sheet 4
Question 2If f is a rational function, with no poles in σ (T ), then

σ (f (T )) = f (σ (T ))
Question 3If F is a closed subspace of H , then F⊥⊥ = F , since we have that

H = F ⊕ F⊥

F ⊆ F⊥⊥ is clear, and if x ∈ F⊥⊥, then x = y + z for some y ∈ F and z ∈ F⊥. But ⟨x, z⟩ = 0 implies
z = 0. So F⊥⊥ ⊆ F .Therefore, we have that X = X⊥⊥ for any subspace X of H .
Question 6Any unitary operator has norm 1, so by applying question 2 and σ (T ) ⊆ B∥∥T∥∥(0) to U and U−1, we get therequired result.
Question 7The set of invertible operators need not be dense. Let L and R be the left and right shift on ℓ2. Suppose Thas ∥∥R − T

∥∥ = 1 and T is invertible. Then∥∥I − LT
∥∥ = ∥∥L(R − T )∥∥ ≤

∥∥L∥∥∥∥R − T
∥∥ < 1Hence LT is invertible, so L is invertible. Contradiction.
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Question 10

A is compact if and only if it is the limit of finite rank operators, and the adjoint of a finite rank operator hasfinite rank.
Question 11For a compact operator A, we have σ (A) ⊆ σp(A)∪{0}. Hence it is clear that if λ /∈ σ (A), then A−λ is boundedbelow.
Question 13In this case, notice that as U is unitary, T = U − I is normal, so ker(T ) = im(T )⊥. Hence we have that

U = ker(T ) ⊕ ker(T )⊥ = ker(T ) ⊕ im(T )
7 Number fields
7.1 Sheet 1
Question 9If K = Q(α) is a number field, α ∈ OK , and f ∈ Z[x ] minimal polynomial of f . If Disc(f ) is squarefree, then sois ∆(1, α, α2, . . . , αn−1), so OK = Z[α ].
Question 11The sign of the discriminant of a number field K is (−1)s, where s is the number of pairs of complex conjugateembeddings.
Question 12Suppose f ∈ Q[t] is an irreducible polynomial of degree n, then

Disc(f ) = (−1)n(n−1)/2NK/Q(f ′(θ))where θ ∈ C is any root of f , K = Q(θ).
7.2 Sheet 2
Question 1If a, b are ideals, then a+ b is the gcd of a and b, and a∩ b is the lcm of a and b. Furthermore, if a+ b = OK ,i.e. they are coprime, then ab = a ∩ b. In addition, we have the CRT

OK
ab

= OK
a

× OK
b

Question 5If p is an odd prime, K = Q(ζp) is a cyclotomic extension, then [K : Q] = p− 1, and we have that OK = Z[ζp].To show this, by standard norm and trace computations,
Z[ζp] ⊆ OK ⊆ 1

pZ[ζp]Now if we define π = 1−ζp, then πp−1 = up, where u is a unit. Furthermore, the natural map Z → OK /(π)is surjective, i.e. OK = Z + πOK . Repeating this, we get
OK = Z + πZ + · · · + πmZ + πm+1OKfor all m ∈ N. Setting m+ 1 = p− 1, we get

OK = Z + πZ + · · · + πp−2Z + pOK ⊆ Z[π] = Z[ζp]
15



Question 10By question 1, we want to show that every ideal in OK /pn is principal. By the correspondence theorem, thenonzero ideals are precisely pr /pn = (p/pn)r for 1 ≤ r ≤ n. Therefore, suffices to show p/pn is principal.If p/pn = p2/pn, then p/pn = 0. Otherwise, let α ∈ p/pn \ p2/pn. Then (α) is a nonzero ideal which is notcontained in pk /pn for k ≥ 2, so we must have p/pn = (α).Finally, if a is an ideal in OK , which is nonzero and not a unit. Choose a ∈ a such that a is nonzero andnot a unit. Then a/aOK is principal. Let b ∈ OK be such that a/aOK = (b). Then a = (a, b).
7.3 Sheet 3
Question 5In Q(√10), ε0 = 3+√10 is the fundamental unit. Therefore, the units are all of the form u = ±εn0 . In particular,
N(±εn0 ) = N(ε0)n = (−1)n, so the solutions to x2 − 10y2 = −1 are precisely x + y

√10 = ±ε2n+10 .For the equation x2 − 10y2 = 6, we know that (x + y
√10) is a principal ideal of norm 6. Using Dedekindwe can find all such ideals, and then using the fundamental unit, we can find all solutions.

Question 6Rewriting the equation as x3 = y2 + 13, let ω = √
−13. Then let K = Q(ω), OK = Z[ω]. Then the idealequation

(x)3 = (y2 + 13) = (y− ω)(y+ ω)factorises uniquely. First we show the ideals (y − ω) and (y + ω) are coprime. Suppose p divides both.Then 2ω ∈ p, so p | (2ω), hence N(p) divides N(2ω) = 4 × 13.Using Dedekind’s criterion to factorise 2 and 13, we get (2) = (2, ω+1)2 and (13) = (13, ω)2. If p = (13, ω),then we get that y2 + 13 ∈ (13, ω), so 13 | y. But this can’t happen, for example by considering the equationmod 132.Similarly, if p = (2, ω + 1), we would have y + ω ∈ (2, ω + 1), i.e. y − 1 ∈ (2, ω + 1). This then implies
y is odd, which means x is even. But then x2 is 0 mod 4, whereas y2 + 13 is 2 mod 4. Contradiction. Hence(y− ω) and (y+ ω) are coprime.This means that (y+ ω) = a3 for some ideal a. In this case, DK = −52, so the Minkowski bound is

cL = 2√52
π < 16

π < 7
So we need to check the primes 2, 3 and 5. We’ve already checked 2, so we only need to check 3 and 5. Asit turns out, 3 and 5 are inert. Therefore, the class group is either trivial or C2. In either case, as a3 is principal,we must have that a is itself principal. Say a = (a+ bω). Note the units in Z[ω] are just ±1. Furthermore,

(a+ bω)3 = a3 + 3a2bω − 39ab2 − 13b3ω = (a3 − 39ab2) + (3a2b− 13b3)ωSolving the equation
3a2b− 13b3 = ±1over Z, we must have b = ±1, and 3a2 −13 = ±1 has only solution a = ±2. So we have (a, b) = (±2,±1),i.e. y = ±70, x = 17.

8 Probability and measure
8.1 Sheet 1
Question 1.4A d-system which is also a π-system is a σ-algebra.
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Question 1.8Let B ⊆ R be a Borel set with finite measure. Then for all ε > 0, there exists a finite union of disjoint intervals
I = I1 ∪ · · · ∪ In such that |B△I| < ε. This follows by regularity of the Lebesgue measure, defined as an outermeasure.
Question 2.1The sum, product, inf , sup, lim inf , lim sup of measureable functions is measurable. Furthermore, the set

{x | fn(x) converges as n → ∞}is measurable.
Question 2.2The image measure is

ν(A) = µ(f−1(A))
Question 2.3Ranom variables X, Y are independent if and only if for all x, y ∈ R,

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y)
Question 2.7Let Cn be the n-th approximation to the Cantor set C , Fn the distribution function of a random variable uniformlydistributed on Cn. Then C has measure zero. Moreover, define

F (x) = lim
n→∞

Fn(x)the limit exists for all x ∈ [0, 1]. Then F is continuous, F (0) = 0, F (1) = 1, and for a.e. x ∈ [0, 1] (i.e.[0, 1] \ C ), F is differentiable with derivative 0.
8.2 Sheet 2
Question 3.2If µ, ν are finite measures on R, with µ(f ) = ν(f ) for all continuous bounded f . Then µ = ν . By uniquenessof measures, suffices to show that this holds for an interval, since the Borel σ-algebra is generated by the
π-system of clopen intervals (a, b]. But we can approximate the indicator function of an interval by piecewiselinear functions, then taking a limit gives the required result.
Question 3.5For f (x) = x−α is integrable on (0, 1] if and only if α < 1, and it is integrable on [1,∞) if and only if α > 1.
Question 3.6If u, v ∈ C1(R), with uv → 0 as |x| → ∞. Then∫

R
uv ′dx = −

∫
R
u′vdx

Question 3.9If ν = µ ◦ f−1 is the image measure, then for all g, ν(g) = µ(g ◦ f ) for all nonnegative measurable function g.
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Question 3.11Suppose X1, . . . , Xn are random variables, with densities f1, . . . , fn. Furthermore, if X = (X1, . . . , Xn) hasdensity f . Then X1, . . . , Xn are independent if and only if
f (x1, . . . , xn) = f1(x1) · · · fn(xn) a.e.

8.3 Sheet 3
Question 4.1Suppose fn → f a.e. and ∥∥fn∥∥L1 →

∥∥f∥∥L1 . Then ∥∥fn − f
∥∥
L1 → 0. To see this, notice by Minkowski,

gn = |fn| + |f | − |fn − f | ≥ 0, and gn → 2|f | a.e. Therefore, by Fatou’s lemma,
2∥∥f∥∥L1 = 2 ∫

|f | = 2 ∫ lim inf
n

gn ≤ 2 lim inf
n

∫
gn = 2∥∥f∥∥L1 − lim sup

n

∥∥fn − f
∥∥
L1

As ∥∥f∥∥L1 < ∞, this means that
lim sup

n

∥∥fn − f
∥∥
L1 ≤ 0 =⇒

∥∥fn − f
∥∥
L1 → 0

Question 4.5Simple functions are dense in Lp(Rn) for p < ∞. Similarly, so is Cc(Rn).
Question 5.1The question is true in any Hilbert space. If H is a Hilbert space, Vn increasing sequence of closed subspaces,
x ∈ H and Pn : H → Vn is the orthogonal projection.Now notice that

Pn+1(x) − Pn(x) ∈ V⊥
n and Pm+1(x) − Pm(x) ∈ Vn for m < nWe have that the sequence P1(x), P2(x) − P1(x), . . . is orthogonal. Moreover,

Pn(x) = (Pn(x) − Pn−1(x)) + · · · + (P2(x) − P1(x)) + P1(x)Therefore, by Pythagoras, we have that∥x∥2 ≥
∥∥Pn(x)∥∥2 = ∥∥Pn(x) − Pn−1(x)∥∥2 + · · · + ∥∥P2(x) − P1(x)∥∥2 + ∥∥P1(x)∥∥2

In particular, this means that ∑∞
n=1 ∥∥Pn(x) − Pn−1(x)∥∥2 < ∞. But for m > n, we have that∥∥Pm(x) − Pn(x)∥∥2 = ∥∥Pm(x) − Pm−1(x)∥∥2 + · · · + ∥∥Pn+1(x) − Pn(x)∥∥2

which converges to zero as n → ∞. Hence (Pn(x)) is a Cauchy sequence, so converges by completeness.
8.4 Sheet 4
Question 7.8In R, weak convergence of random variables and convergence in distribution are equivalent, since we canapproximate 1(−∞,x ] by continuous functions.
Question 7.9To prove weak convergence (which is in fact weak-∗ convergence on Cb(R)′), we can just show that pointwiseconvergence on a dense subspace, e.g. to show weak convergence of Borel probability measures, suffices toshow weak-∗ convergence on C∞

c (Rn).

18



Question 9.1If (E, E , µ) is a measure space, τ : E → E is measure preserving, then
Eτ = {A ∈ E | τ−1(A) = A}is a σ-algebra, and f : E → R is Eτ measurable if and only if it is invariant, i.e. f ◦ τ = f .

Question 9.2As f is θ-invariant, Ax = f−1((−∞, x)) ∈ Eθ . Hence for all x , µ(Ax ) = 0 or µ(A∁
x ) = 0. Using this we can show

f is a.e. constant.
Question 9.3The baker map τ(x) = 2x mod 1 is measure preserving on [0, 1), and it is ergodic, since by looking at thebinary expansion, this corresponds exactly to the shift map.
Question 9.4Now let τ(x) = x + a mod 1 be the rotation map on S1, and suppose A is τ invariant. Let f (x) = 1A(x).Then f (x) = f ◦ τ(x). Now computing the Fourier coefficients (i.e. Fourier series) for f , we find by a change ofvariables,

f̂ (k ) = ∫ 1
0 f (x)e2πikxdx = ∫ 1

0 f (x)e2πikxe−2πikadx = e−2πika f̂ (k )
Therefore,

(1 − e−2πika)f̂ (k ) = 0for all k ∈ Z. Therefore, if a is irrational, then all of the Fourier coefficients vanish for k ̸= 0, which meansthat f itself must be constant a.e.. As f is the indicator of the set A, this means that we must have |A| = 0 or
|A| = 1.
9 Riemann surfaces
9.1 Sheet 1
Question 3If π : X̃ → X is a covering map, f : X̃ → X̃ a map such that πcircf = π , i.e. a covering transformation. Then
f has a fixed point if and only if it is the identity.
Question 5When it comes to finding the natural boundary for a power series, often it makes sense to consider the derivative.For example, if

f (z) = ∑
n

z2n2nthen
zf ′(z) = ∑

n
z2n

and it is much easier to find the natural boundary of zf ′(z) than f (z) in this case.
Question 7Any injective analytic map C → C is of the form z 7→ az + b, and any injective analytic map C∞ → C∞ is aMöbius transformation.
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Question 10The identity principle for Riemann surfaces follows from the identity principle for holomorphic functions, bydoing local computations and using connectedness.
Question 11Suppose D ⊆ C is an open disc, u : D → R harmonic. Define g = ux − iuy. Then g is analytic. Moreover, if
z0 is the centre of the disc, defining

f (z) = u(z0) + ∫ z

z0 g(t)dt
where we take the integral over the straight line segment, f is analytic with f ′ = g, and u = Re(f ).

Question 12The identity principle for harmonic functions is similar, except we have that the set of points where u and vagree have empty interior. That is, if u and v agree on an open set, then they agree everywhere.
Question 15Let f (z) = ∑

n anzn be a power series with radius of convergence 1. Let ρ(z be the radius of convergence ofthe power series for f centred at z . Then ζ ∈ T is a regular point if and only if ρ(ζ/2) > 1/2.
9.2 Sheet 2
Question 2A regular covering map is surjective.
Question 3That is, simply connected lifting. If f : C/Λ1 → C/Λ2 is an analytic map, then we can define F : C → C suchthat π2 ◦ F = f ◦ π1, by noticing that if we fix µ ∈ π−12 (f (π1(0))), then for any w ∈ C, let γ be a path from 0 to
w in C. Then f ◦ π1 ◦ γ is a path in C/Λ2, so there exists a lift γ̃ on C. Moreover, this lift is unique, so we candefine F (w) = γ̃(1). Notice that F (w) is independent of the choice of γ by the monodromy theorem.
Question 7Let f (z) = √1 −

√
z . Then we can take homotopic paths in C∗ from 1/2 to 3/2, but give different analyticcontinuations. One way to see this is as follows

Question 9Suppose f : R → S is a non-constant analytic map between compact Riemann surfaces, B ⊆ S the set ofbranch points. Then f : R \ f−1(B) → S \ B is a regular covering map.Let q ∈ S \ B. Fix a chart (ψ,W ) at q, with ψ(q) = 0. Say f−1(q) = {p1, . . . , pn}. For each i, let (φi, Vi)be a chart at pi, such that
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ψ ◦ f ◦ φi(z) = zThis means that f : Vi∩f−1(W ) → f (Vi)∩W is a homeomorphism. By shrinking the Vi, we can assume wlogthat they are disjoint. Let V = ⋃
i Vi. Then V is open, so R \V is closed, which means R \V is compact. Hence

K = f (R \V ) is compact, so closed. Therefore, S \K open, so we can choose a connected open neighbourhood
W̃ of q contained in W ∩ S \ K . Then

f−1(W ) ⊆ R \ f−1(K ) ⊆ R \ (R \ V ) = VSetting Ṽi = Vi ∩ f−1(Wi), we get that
f : Ṽi → f (Ṽi)is a homeomorphism (as f (Ṽi) ⊆ W̃ ⊆ W ).

9.3 Sheet 3
Questions 3 and 4In both of these cases, we can assume wlog that f has no zeroes or poles on ∂P . Therefore, we can apply theargument principle or the residue theorem to a specific function. Furthermore, since f is periodic, the integralover ∂P has a nice form, which we can use to get the required result.In particular, ∮

∂P

f ′(z)
f (z) dz

gives that the number of zeroes and poles, with multiplicity, are the same. Similarly,∮
∂P
z f

′(z)
f (z) dz

gives that if a1, . . . , an are the zeroes, and b1, . . . , bn are the poles, then
n∑
j=1 aj −

n∑
j=1 bj ∈ Λ

Question 9Suppose we have a conformal equivalence f : C∗ → C \ {p1, . . . , pn}, where n ≥ 2. A standard argumentby Casaroti-Weierstrass and the open mapping theorem shows that f can’t have an essential singularity at 0.Hence it must be removable, or a pole. The case where it is a pole can be considered by looking at 1/f instead.Now if 0 is a removable singularity, then we must have f (0) = pj for some j . If not, then f (0) = f (w)for some w ∈ C∗ by surjectivity of f . Using the open mapping theorem, we find that this contradicts f beinginjective. Hence we must have that f (0) = pj . By renumbering, wlog f (0) = pn. Then we have a bijectiveholomorphic map, hence a conformal equivalence f : C → C \ {p1, . . . , pn−1}. As n ≥ 2, the right hand side isnot simply connected. Contradiction.Therefore, no such conformal equivalence can exist. Hence by the uniformisation theorem, C \ {p1, . . . , pn}must be uniformised by D for n ≥ 2.
Question 11Linear algebra shows that we can construct P ∈ C[Z,W ] such that P(f , g) has no poles. Hence it must beconstant.To see that such a P exists, suppose T : Cn → Cm is a linear map. Then by rank-nullity,

dim(ker(T )) = n− dim(im(T )) ≥ n−m > 0if n > m. Hence if we can represent the constraint that P(f , g) has no poles as m-linear constraints, ifwe take a space of polynomials such that it has dimension > m, then there must be a nonzero polynomialsatisfying the constraints.Once we have that it is constant, we can make the constant zero by subtracting off a constant.
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Question 12Algebraic geometry is useful for constructing the charts to glue along. That is, we have
V = V(xd + yd − 1)Then the projective closure is V(xd + yd − zd), so computing the points at infinity and transforming into adifferent affine gives the required charts.
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