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1 Symmetric polynomials
Let R be a ring. Then we have a (right) action of Sn on R [X1, . . . , Xn], given by

f · σ = f (Xσ (1), . . . , Xσ (n))
Definition 1.1 (symmetric polynomial)
f ∈ R [X1, . . . , Xn] is symmetric if Orb(f ) = f . Equivalently,
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f = f · σ = f (Xσ (1), . . . , fσ (n))for all σ ∈ Sn.
Definition 1.2 (elementary symmetric polynomials)The elementary symmetric polynomials are

Sn,r = ∑
1≤i1<···<ir≤n

Xi1 · · · Xir

We write Sr for Sn,r if n is clear from context.
Theorem 1.3. Define a homomorphism θ : R [Y1, . . . , Yn] → R [X1, . . . , Xn] by θ(Yr ) = Sr and θ = id on R .Then

1. ker(θ) = 0,2. and im(θ) = {symmetric polynomials}.
Proof. First we consider (ii). Necessarily f ∈ im(θ) is symmetric, so suffices to show that any symmetricpolynomial is in im(θ).Let d = deg(f ), and xα = lm(f ) be the leading monomial of f , with coefficient c = lc(f ) ∈ R . As f issymmetric, we must have that α = (α1, . . . , αn), with α1 ≥ . . . αn, otherwise we can permute the variables andget a larger term1. So we can write

xα = xα1−α21 (x1x2)α2−α3 · · · (x1 · · · xn)αn

Consider g = S i1−i21 S i2−i32 · · · S in
n . Then lm(g) = xα , g is symmetric, so f − cg is symmetric, with leadingmonomial strictly smaller than xα . As the lexicographic order is a well-ordering on monomials, this terminates.For (i), we want to show that the representation is unique. Suppose there exists G ∈ R [Y1, . . . , Yn] suchthat G(Sn,1, . . . , Sn,n) = 0. We want to show that G = 0. The base case n = 1 is trivial.Now suppose we have G = Y m

n H , where yn ̸| H . Then Sk
n,nH(Sn,1, . . . , Sn,n) = 0, but Sn,n is not a zerodivisor, so H(Sn,1, . . . , Sn,n) = 0. So we can assume wlog that Yn ̸| G . Consider the map φ : R [X1, . . . , Xn] →

R [X1, . . . , Xn−1], given by φ(f ) = f (X1, . . . , Xn−1, 0). Then
φ(Sn,r ) = {

Sn−1,r if r ≤ n − 10 if r = nSo φ(θ(G)) = G(Sn−1,1, . . . , Sn−1,n−1, 0) = 0. But then we can embed this into R [X1, . . . , Xn−1], and by theinductive hypothesis, we have that G(Y1, . . . , Yn−1, 0) = 0. But Yn ̸| G . Contradiction.
Definition 1.4 (power sum)The power sum polynomials are

Pn,k = n∑
i=1 X k

i

Theorem 1.5 (Newton’s formula). Let n ≥ 1, then for all k ≥ 1,
Pk − S1Pk−1 + · · · + (−1)k−1Sk−1P1 + (−1)kSk = 0

1With respect to the lexicographic ordering on monomials.
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where we define S0 = 1 and Sr = 0 for r > n.
Proof. Since the coefficients in the above are 1 and −1, suffices to prove this in the case R = Z. In fact, wecan consider the case R = R, so we can use calculus. Consider the function

F (T ) = n∏
i=1(1 − XiT ) = n∑

r=0 (−1)rSrT r

Taking the derivative of log(F ), we get that
F ′(T )
F (T ) = n∑

i=1
−Xi1 − XiT

= −1
T sumn

i=1
∞∑

r=1 X r
i T r = −1

T
∑
r=1 ∞PrT r

Evaluating separately, we get that
−T F ′(T ) = S1T − 2S2T 2 + · · · + (−1)n−1nSnT n

F (T ) ∞∑
r=1 PrT r = (S0 − S1T + · · · + (−1)nSnT n)(P1T + P2T 2 + . . . )

Comparing the coefficients of T k gives the required result.
1.1 Discriminant

Notation 1.6. In this course, we have Disc = ∆2 , whereas in Number Fields, we have Disc = ∆. The actual definitionsare the same.
Definition 1.7 (discriminant polynomial)The discriminant polynomial is D(X1, . . . , Xn) = ∆(X1, . . . , Xn)2, where

∆ = ∏
i<j

(Xi − Xj )
D is a symmetric polynomial, so D(X1, . . . , Xn) = d(S1, . . . , Sn) for some poly d ∈ Z[Y1, . . . , Yn].

Definition 1.8 (discriminant of a polynomial)Let f = T n + ∑n−1
i=0 aiT i be a monic polynomial. Then define

Disc(f ) = d(−a1, a2, . . . , (−1)nan)
Proposition 1.9. If f = ∏n

i=1(T − xi), then ar = (−1)rSr (x1, . . . , xn), and
Disc(f ) = ∏

i̸=j
(xi − x − J)2 = D(x1, . . . , xn)

Proposition 1.10. If R = k is a field, f is a product of linear factors, then Disc(f ) = 0 if and only if f hasa repeated root.
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2 Field theory
2.1 Field extensions

Definition 2.1 (prime subfield)Given a field K , we call the smallest subfield of K the prime subfield of K , which is isomorphic to Q ifchar(K ) = 0 and Fp if char(K ) = p prime.
Definition 2.2 (field extension)Let K ⊆ L be fields, or equivalently K ↪→ L. We say that K is a subfield of L, or L is an extension of K .We write L/K for the field extension.
Proposition 2.3. If L/K is a field extension, then L is a K -vector space.
Definition 2.4 (finite extension, degree)An extension L/K is finite if dimK (L) < ∞. We write [L : K ] = dimK (L) for the degree of the extension.
Theorem 2.5. If L/K is an extension, V is an L-vector space, then V is a K -vector space, and

dimK (V ) = [L : K ] dimL(V )
Proof. Suppose d = dimL(V ) < ∞. Then as V ≃ Ld as L-vector spaces, they must be isomorphic as K -vectorspaces as well. Suppose [L : K ] = n < ∞. Then L ≃ K d as K -vector spaces, so

V ≃
d⊕

i=1 K n = K nd

If dimK (V ) < ∞, as K is a subfield of L, necessarily dimL(V ) < ∞. Taking the contrapositive, if dimL(V ) = ∞then dimK (V ) = ∞. Likewise, if [L : K ] = ∞ and V ̸= 0, then V has an infinite linearly independent subsetover K , so dimK (V ) = ∞.
Corollary 2.6 (tower law). If M/L/K are field extensions, then M/K is finite if and only if [M : L] and[L : K ] are finite. In this case, we have that

[M : K ] = [M : L][L : K ]
2.2 Characteristic p and the Frobenius endomorphism

Proposition 2.7. Suppose K is a finite field. Than char(K ) = p is prime, and |K | = pn for some n.
Proposition 2.8.(i) Let K be a field, G a finite subgroup of K ×. Then G is cyclic.
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(ii) If K is finite, then K × is cyclic.
Proof. From Lagrange’s theorem, we have that for some m2, xm = 1 for all x ∈ G . So G is contained in thesubgroup of m-th roots of unity, which is cyclic.

Definition 2.9 (primitive root modulo p)
a ∈ F×

p such that Fp = {0} ∪ {a, a2, . . . , ap−1} is called a primitive root modulo p.
Corollary 2.10. Primitive roots modulo p always exist.
Definition 2.11 (Frobenius endomorphism)Let R be a ring, p · 1R = 0. Then φp(x) = xp is a ring homomorphism R → R , called the Frobeniusendomorphism of R .

2.3 Algebraic elements and extensions

Definition 2.12 (algebraic, transcendental)Let L/K be a field extension, x ∈ L is algebraic over K if there exists f ∈ K [T ] nonzero such that f (x) = 0.If no such f exists, we say that x is transcendental over K .
Definition 2.13 (minimum polynomial)Suppose x ∈ L, then φ : f 7→ f (x) defines a ring homomorphism K [T ] → L. Then ker(φ) = (g) for somemonic g. We call g the minimal polynomial of x over K , and we write mx,K = g.
Proposition 2.14. mx,K is well defined, that is, g exists and is unique. Furthermore, mx,K is irreducible.

Proof. Since K [T ] is a PID, ker(φ) is principal, and there is a unique monic generator of a principal ideal.Furthermore, as im(φ) is a subring of a field, it is an integral domain, so ker(φ) is prime. Thus, g is irreducible.
Definition 2.15 (degree)The degree of an algebraic element x over K is

degK (x) = deg(x/K ) = deg(mx,K )
Proposition 2.16. Let L/K be a field extension, x ∈ L, then the following are equivalent.

(i) x is algebraic over K ,(ii) [K (x) : K ] < ∞,(iii) dimK (K [x ]) < ∞,
2m is a multiple of the exponent of G , for example m = |G|! works.
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(iv) K [x ] = K (x),(v) K [x ] is a field.
If any of these hold, then degK (x) = [K (x) : K ].

Proof. Since K [x ] ≤ K (x) is a subring, (ii) =⇒ (iii) and (iv) ⇐⇒ (v) are clear.
(iii) =⇒ (ii) and (iv). Let y ∈ K [x ] be nonzero. Then consider the map K [x ] → K [x ] given by z 7→ yz .This is K -linear, and as y ̸= 0 it is injective. So it is an isomorphism. Therefore, there exists z ∈ K [x ] suchthat yz = 1, so K [x ] is a field, i.e. K [x ] = K (x), and so

[K (x) : K ] = dimK (K (x)) = dimK (K [x ]) < ∞

(v) =⇒ (i). Let x ̸= 0. Then x−1 = a0 + a1x + · · · + anxn, with ai ∈ K , an ̸= 0. Multiplying through by
x , we get that

anxn+1 + · · · + a0x − 1 = 0So x is algebraic over K .
(i) =⇒ (iii) and the degree formula. im(evalx : K [T ] → L) = K [x ] ≤ L. If x is algebraic, thenker(evalx ) = (mx,K ) is maximal, as (mx,K ) is irreducible. So by the isomorphism theorem, we have that

K [x ] ≃ K [T ](mx,K )Say deg(mx,K ) = d. Then K [T ]/(mx,K ) has basis 1, T , . . . , T d−1. This means that dimK (K [x ]) = d < ∞,which proves (iii) and the degree formula.
Corollary 2.17.(i) x1, . . . , xn are all algebraic over K if and only if L = K (x1, . . . , xn) is a finite extension. If so, everyelement of L is algebraic over K .(ii) If x, y are algebraic over K , then so are x ± y, xy, 1/x ,(iii) Let L/K be any extension, then the set

{x ∈ L | x algebraic over K }

is a subfield of L.
Proof. (i) If xn is algebraic over K , then it must also be algebraic over K (x1, . . . , xn−1), so [L : K (x1, . . . , xn−1)] <
∞. By induction and the tower law, we get that [L : K ] < ∞. Conversely, if [L : K ] < ∞, then [K (xi) : K ] < ∞,so xi is algebraic over K . (ii) and (iii) follows immediately from (i).

Definition 2.18 (algebraic extension)An extension L/K is algebraic if any x ∈ L is algebraic over K .
Proposition 2.19.(i) Finite extensions are algebraic,(ii) K (x)/K is algebraic if and only if x is algebraic over K ,(iii) If M/L/K are extensions, M/K is algebraic if and only if M/L and L/K are algebraic.
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Proof. (i) and (ii) follows from the tower law and the previous proposition. For (iii), suppose M/K is algebraic,then M/L is algebraic and L/K is algebraic as K ≤ L ≤ M . For the coverese, choose f = T n + an−1T n−1 +
· · · + a0 ∈ L[T ] such that f ̸= 0, f (x) = 0. Let L0 − K (a0, . . . , an−1). As each ai ∈ L is algebraic over K ,[L0 : K ] < ∞. Furthermore, f ∈ L0[T ] and f (x) = 0, so x is algebraic over L0. So [l0(x) : L0] < ∞, and[L0(x) : K ] < ∞ by the tower law. So [K (x) : K ] < ∞, so x is algebraic over K .
2.4 Splitting fields

Theorem 2.20. Let f ∈ K [T ] be monic irreducible, Lf = K [T ]/(f ), t = T + (f ). Then Lf /K is a finiteextension of fields, [Lf : K ] = deg(f ) and f is the minimal polynomial of t over K .
Definition 2.21 (K -homomorphism)Suppose K is a field, L/K , M/K are extensions of K . A K -homomorphism L → M is a field homomorphism
σ : L → M such that σ|K = idK .
Theorem 2.22. Given f ∈ K [T ] irreducible, L/K an arbitary extension, then

(i) If x ∈ L is a root of f , then there exists a unique K -homomorphism σ : Lf → L, with σ (t) = x .(ii) Every K -homomorphism Lf → L is of the above form.
That is, we have a bijection

{K -homomorphisms Lf → L} ↔ {roots of f in L}In particular, there is at most deg(f ) such σ .
Proof. (i) Consider the homomorphism φ : K [T ] → L, given by φ(g) = g(x). Then as x is a root of f , we havethat (f ) ⊆ ker(φ). As f is irreducible, (f ) is maximal, and ker(φ) ̸= K [T ], so ker(φ) = (f ). Hence we have aninduced map

φ : K [T ](f ) = Lf → L

which is a K -homomorphism as φ is one, and φ(t) = x . Uniqueness is immediate since φ is a ringhomomorphism and we have specified the image of K and t .(ii) Given a K -homomorphism σ : Lf → L, let x = σ (t). We want to show that f (x) = 0. But f (x) = f (σ (t)) =
σ (f (t)) as σ is a K -homomorphism, and f (t) = 0 ∈ Lf . So f (x) = 0. The fact that σ is of the form in (i) followsimmediately from uniqueness in (i).

Corollary 2.23. If L = K (x) with x algebraic over K , then there exists a unique isomorphism σ : Lf → K (x)such that σ (t) = x , where f = mx,K .
Proof. Take L = K (x) in the above theorem.

Definition 2.24 (K -conjugate)If x, y are algebraic over K (but x, y need not be in the same field), we say that x and y are K -conjugateif they have the same minimal polynomial.
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Corollary 2.25. x, y are K -conjugate if and only if there exists a K -isomorphism σ : K (x) → K (y), with
σ (x) = y.

Proof. For ( =⇒ ), we have that K (x) ≃ Lf ≃ K (y). For the converse, notice that for all g ∈ K [T ], σ (g(x)) =
g(σ (x)), so they have the same minimal polynomial.

Definition 2.26 (σ-homomorphism, extension and restrictions of homomorphisms)Let L/K , L′/K ′ be field extensions, σ : K → K ′ be a field homomorphism, τ : L → L′ is a homomorphismsuch that τ(x) = σ (x) for all x ∈ K . We say that τ is a σ-homomorphism, or τ extends σ , or σ is therestriction of τ .
Theorem 2.27. If f ∈ K [T ] is irreducible, σ : K → L is any field homomorphism, let σf ∈ L[T ] be givenby σf = σ∗(f ), where σ∗ : K [T ] → L[T ] is the induced map on coefficients. Then

(i) if x is a root of f , then there is a unique σ-homomorphism τ : Lf → L such that τ(t) = x .(ii) every σ-homomorphism τ : Lf → L is of the above form.
That is, we have a bijection

{σ-homomorphisms Lf → L} ↔ {roots of f in L}

Proof. Same as the above.
Definition 2.28 (splitting field)Let f ∈ K [T ] be a nonzero polynomial. We say that an extension L/K is a splitting field for f over K if

(i) f is a product of linear factors in L[T ],(ii) L is minimal, that is, L = K (x1, . . . , xn), where the xi are the roots of f in L.
Theorem 2.29. Every nonzero f ∈ K [T ] has a splitting field.

Proof. We prove this by induction on deg(f ), but note that we will need to allow the field to vary3. That is, wewill prove:
∀n ∈ N, ∀ fields K, ∀f ∈ K [T ] with deg(f ) = n, f has a splitting field.

Base case: n ≤ 1. In this case, K itself is a splitting field for f .
Inductive case: Now let g be an irreducible factor of f . Consider K ′ = Lg = K [T ]/(g). Let x1 = Tmod (g). Then g(x1) = 0, so f (x1) = 0. Hence f = (T − x1)f1 where f1 ∈ K ′[T ] has deg(f1) < deg(f ). By theinductive hypothesis, f1 has a splitting field L/K ′. Let x2, . . . , xn be the roots of f1 in L, then f splits into linearfactors in L, with roots x1, . . . , xn, L = K ′(x2, . . . , xn) = K (x1, . . . , xn). So L is a splitting field for f over K .

3Let us ignore any potential set theoretic nonsense here. This proof goes through just fine without quantifying over all fields, it’s justthat the proof is a bit longer. What we need is that each time we add a root the degree decreases, so this process terminates, and we endup with a finite tower L = Kn/Kn−1/ . . . /K1/K0 = K , where each Ki+1 = Ki(xi+1), x1, . . . , xn roots of f .Another way out of set theory hell is to notice that all of these extensions are algebraic, so we are only quantifying over subfields
K ≤ K ′ ≤ K of the algebraic closure.
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Theorem 2.30 (uniqueness of splitting fields). Suppose f ∈ K [T ] is nonzero, L/K is a splitting field for f .Let σ : K ↪→ M be an extension such that σf ∈ M [T ] splits into linear factors. Then
(i) σ can be extended to a homomorphism τ : L → M ,(ii) if M is a splitting field for σf over σK , then any τ in (i) is an isomorphism. In particular, any twosplitting fields for f over K are K -isomorphic.

Proof. (i) By induction on n = [L : K ]. If n = 1, then L = K and f is a product of linear factors in K [T ] so weare done.Now let x ∈ L \ K be a root of an irreducible factor g ∈ K [T ] of f , with deg(g) > 1. Let y be a root of
σg ∈ M [T ]. Since σf splits in M , such a root exists. Thus, there exists σ1 : K (x) → M such that σ1(x) = yand σ1 extends σ . Now note that [L : K (x)] < [L : K ] by tower law, and L is a splitting field for f over K (x).Furthermore, σ1f = σf splits in M . Thus, by induction we can extend σ1 to a homomorphism τ : L → M .(ii) Assume M is a splitting field for σf over σK , and τ be as in (i). Let {xi} be the roots of f in L,then the roots of σf in M are just {τ(xi)}. Since M is a splitting field, M = σK (τ(x1), . . . , τ(xn)) = τL as
L = K (x1, . . . , xn). So τ is an isomorphism. If K ⊆ M, σ is the inclusion, then τ is a K -isomorphism L ≃ M .
2.5 Normal extensions

Definition 2.31 (normal extension)An extension L/K is normal if it is algebraic and for every x ∈ L, mx,K splits into distinct linear factorsover L.
Proposition 2.32. The following are equivalent:

(i) L/K is normal,(ii) for every x ∈ L, L contains a splitting field for mx,K .(iii) for every f ∈ K [T ] irreducible, if f has a root in L, then f splits over L.
Theorem 2.33 (splitting fields are normal). Let L/K be a finite extension. Then L is normal over K if andonly if L is the splitting firld for some not necessarily irreducible f ∈ K [T ].

Proof. Suppose L/K is normal. Write L = K (x1, . . . , xn), then mxi,K splits in L, so L is generated by the rootsof f = mx1,K · · · mxn,K . So L is a splitting field for f over K .Conversely, suppose L is the splitting field for some f ∈ K [T ]. Let x ∈ L, g = mx,K . We want to show that
g splits in L. Let M be the splitting field for g over L. y ∈ M a root for g. We want to show that y ∈ L.Since L is a splitting field for f over K , L is a splitting field for f over K (x)„ and L(y) is a splitting field for
f over K (y). But x, y are K -conjugate, so there exists an isomorphism K (x) ≃ K (y). By uniqueness of splittingfields, we have that

[L : K (x)] = [L(y) : K (y)]As [K (x) : K ] = [K (y) : K ], computing [L(y) : K ] along the different paths in
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M

L(y)
L

K (x) K (y)
KWe find that [L(y) : L] = 1, so L(y) = L, i.e. y ∈ L.

Corollary 2.34 (existence of normal closure). Let L/K be a finite extension. Then there exists a finiteextension M/L such that
(i) M/K is a normal extension,(ii) if L ≤ M ′ ≤ M with M ′/K normal, then M ′ = M .

Moreover, any two such extensions are L-isomorphic. We call M the normal closure of L/K .
Proof. Write L = K (x1, . . . , xk ) and let f = mx1,K · · · mxk ,K . Let M be a splitting field for f over L. Then as the
xis are roots of f , M is also a splitting field for M/K . So M/K is normal. Now let M ′ be such that L ≤ M ′ ≤ Mwith M ′/K normal. Since xi ∈ M ′, mxi,K splits in M ′ for all i. So M ′ = M by the minimality of splitting fields.For uniqueness, any such M satisfying (i) must contain a splitting field for f , and by the above, (ii) impliesthat M is a splitting field for f . The result follows by uniqueness of splitting fields.
2.6 Separability

Definition 2.35 (separable polynomial)
f ∈ K [T ] is separable if it splits into distinct linear factors in a splitting field L. That is, it has deg(f )distinct roots in L.
Proposition 2.36. Suppose f ∈ K [T ], L/K is an extension, x ∈ L is a root of f . Then x is a simple root,i.e. (T − x)2 ̸| f if and only if f ′(x) ̸= 0.

Proof. By the division algorithm, we can write f = (T − x)g, then f ′ = g + (T − x)g′, so f ′(x) = g(x).
Corollary 2.37. f is separable if and only if gcd(f , f ′) = 1.

Proof. Replacing K by a splitting field for f , we may assume f has all of its roots in K . Then it is separableif f , f ′ have no common zeroes, which is true if and only if gcd(f , f ′) = 1.
Theorem 2.38.(i) Let f ∈ K [T ] be irreducible. Then f is separable if and only if f ′ ̸= 0.(ii) If char(K ) = 0, then every irreducible polynomial in K [T ] is separable.
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(iii) If char(K ) = p > 0, then an irreducible f ∈ K [T ] is inseparable if and only if f = g(T p) for some
g ∈ K [T ].

Proof. (i) wlog f is monic. Then as f is irreducible, gcd(f , f ′) | f implies that gcd(f , f ′) = 1 or f . If gcd(f , f ′) = f ,then f | f ′. But deg(f ′) < deg(f ), so f ′ = 0 is the only possibility.For (ii) and (iii), write f = ∑d
i=0 aiT i, then f ′ = ∑d

i=1 iaiT i−1. So f ′ = 0 if and only if iai = 0 for all
i = 1, . . . , d.In (ii), char(K ) = 0, so this means that ai = 0 for all i ≥ 1, so f is constant, which is not irreducible.In (iii), ai = 0 for all p ̸| i, so f = g(T p) for some g ∈ K [t].

Definition 2.39 (separable element, separable extension)Let L/K be an extension. We say that x ∈ L is separable over K if x is algebraic over K and mx,K isseparable. We say that L/K is separable if every element of L is separable over K .
Theorem 2.40. Let x be algebraic over K , L/K any extension in which mx,K splits. Then x is separableover K if and only if there are exactly degK (x) K -homomorphisms K (x) → L.

Proof. Recall that the number of such homomorphisms is the number of roots of mx,K in L, which is equal todegK (x) if and only if x is separable.
Notation 2.41. Write HomK (L, M) for the set of K -homomorphisms L → M .
Theorem 2.42 (counting embeddings). Let L = K (x1, . . . , xk ) be a finite extension of K , M/K any extension.Then |HomK (L, M)| ≤ [L : K ], with equality if and only if

(i) for all i, mxi,K splits into linear factors over M ,(ii) all xi are separable over K .
if and only if all mxi,K splits into distinct linear factors over M .

Remark 2.43. We will in fact prove the stronger statement that if σ : K → M is a homomorphism, then the numberof σ homomorphisms L → M is less than [L : K ], with equality if and only if σmxi,K splits in M .
Proof. We induct on k . k = 0 is trivial, and for k ≥ 1, set K1 = K (x1), degX (x1) = d = [K1 : K ]. Then set

e = |HomK (K1, M)| = |{y ∈ M | mx1,K (y) = 0}|Necessarily, we have that e ≤ d. Let σ : K → M be a K -homomorphism. Applying the induction hypothesisto L/K1, we find that there are at most [L : K1] σ-homomorphisms L → M . So the number of K -homomorphisms
L → M is at most

e[L : K1] ≤ d[L : K1] = [L : K ]If equality holds, then d = e, so mxi,K splits into d distinct linear factors over M , so (i) and (ii) holds for
x1. But we can just permute the xi, so (i) and (ii) holds for all xi. Conversely, if (i) and (ii) holds, then by theprevious theorem |HomK (K1, M)| = d. So (i) and (ii) holds over K1, so by induction each σ : K1 → M has[L : K1] extensions ot a homomorphism L → M . Hence |HomK (L, M)| = [L : K ] as required.

Theorem 2.44 (separably generated is separable). Let L = K (x1, . . . , xn) be a finite extension of K , then
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L/K is separable if and only if each xi is separable.
Proof. If L/K is separable, then by definition the xi are separable. Conversely, suppose the xi are separable.Let M be a normal closure of L/K , i.e. M is the splitting field of f = mx1,K · · · mxn,K . Equality holds whencounting embeddings, so |HomK (L, M)| = [L : K ]. But if x ∈ L, then L = K (x, x1, . . . , xk ), so x is separable,again by counting embeddings.

Corollary 2.45. If L/K is a field extension, x, y ∈ L are separable over K , then
{x ∈ L | x is separable over K }

is a subfield of L.
Proof. The intermediate field extension K (x, y/K ) is separable.
2.7 Primitive element theorem

Theorem 2.46 (primitive element theorem for separable extensions). Let K be an infinite field, L =
K (x1, . . . , xk ) a finite separable extension. Then there exists x ∈ L such that L = K (x).

Proof. By induction, we only need to consider the case k = 2. Say L = K (x, y), where x, y are separableover K . Let n = [L : K ] and M be a normal closure for L/K . Then there exists n distinct K -homomorphisms
σi : L → M . Let a ∈ K , and consider z = x + ay. We will choose a ∈ K such that L = K (z).Since L = K (x, y), σi(x) = σj (x), σi(y) = σj (y) if and only if i = j . So consider σi(z) = σi(x) + aσi(y). If
σi(z) = σj (z), then

(σi(x) − σj (x))︸ ︷︷ ︸(i)
+a (σi(y) − σj (y))︸ ︷︷ ︸(ii)

= 0
If i ̸= j , then at least one of (i) and (ii) is nonzero, so there is at most one value of a ∈ K such thatequality holds. Since K is infinite, there exists a ∈ K such that σi(z) are distinct. But then degK (z) = n, so

L = K (z).
Theorem 2.47. Suppose L/K is an extension of finite fields, then L = K (x) for some x ∈ L.

Proof. L× is cyclic, so letting x be a generator of L×, L = K (x).
3 Galois theory
3.1 Automorphisms of fields

Definition 3.1 (automorphism of a field)Let L be a field, σ : L → L is an automorphism of L if σ is a bijective homomorphism. Wrire Aut(L) for thegroup of automorphisms of L.
Definition 3.2 (fixed field)If S ⊆ Aut(L) write

LS = {x ∈ L | σ (x) = x for all σ ∈ S}
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for the subfield of L fixed by S . We call this the fixed field of S .
Definition 3.3 (automorphism of a field extension)Let L/K be an extension, define

Aut(L/K ) = {K -automorphisms of L} = {σ ∈ Aut(L) | σ |K = id}

Theorem 3.4. Let L/K be finite. Then |Aut(L/K )| ≤ [L : K ].
Proof. Taking M = L in the counting embeddings theorem, and noticing that HomK (L, L) = Aut(L/K ), since
σ ∈ HomK (L, L) is an injective K -linear map L → L and L is a finite dimensional K -vector space.

Proposition 3.5. K = Q and K = Fp have no nontrivial automorphisms, so for any L, Aut(L) = Aut(L/K )where K is the prime subfield of L.
Definition 3.6 (Galois extension)An extension L/K is Galois if L/K is algebraic, and LAut(L/K ) = K . If L/K is Galois, write Gal(L/K ) =Aut(L/K ) for the Galois group of the extension L/K .
Theorem 3.7 (classification of finite Galois extensions). Let L/K be a finite extension, and let G = Aut(L/K ).Then the following are equivalent.

(i) L/K is Galois,(ii) L/K is normal and separable,(iii) L is the splitting field of a separable polynomial over K ,(iv) |G| = [L : K ].
If any of these hold, then the minimal polynomial of x ∈ L is

mx,K = r∏
i=1(T − xi) = ∏

z∈OrbG (x)(T − z)
Proof. (i) =⇒ (ii) and the minimal polynomial. Let x ∈ L, Orb(x) = {x1, . . . , xr}, f = ∏r

i=1(T − xi) ∈ L[T ].Clearly, f (x) = 0. As Aut(L/K ) permutes the xi, f ∈ LG [T ] = K [T ], so mx,K | f . Also, since mx,K (σ (x)) =
σ (mx,K (x)) = 0 for all σ , each xi is a root of mx,K . So f = mx,K and x is separable over K , mx,K splits in L.That is, L/K is normal and separable.

(ii) =⇒ (iii). Since L/K is normal, L is a splitting field for some f ∈ K [T ]. Write f = ∏
i qei

i , where the qiare distinct irreducible factors of f . Then as L/K is separable, the qi are separable. So g = ∏
i qi is separable,and L is also a splitting field for g.

(iii) =⇒ (iv). Say L = K (x1, . . . , xn) is the splitting field of some separable polynomial f ∈ K [T ] withroots xi. As mxi,K | f , each mxi,K splits into distinct linear factors over L. So by counting embeddings,
|Aut(L/K )| = |HomK (L, L)| = [L : K ]

(iv) =⇒ (i). Suppose |G| = [L : K ]. Then
G ≤ Aut(L/LG ) ≤ Aut(L/K )
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So G = Aut(L/LG ), hence by counting embeddings, we have
[L : K ] = |G| ≤ [L : LG ]But [L : K ] = [L : LG ][LG : K ] by tower law, so LG = K .

Corollary 3.8. If L/K is a finite Galois extension, then L = K (x) for some x ∈ L, x is separable over Kwith degK (x) = [L : K ].
Proof. By (ii) in the theorem and the primitive element theorem for finite separable extensions.
3.2 Galois correspondence

Theorem 3.9 (Galois correspondence). Suppose L/K is a finite Galois extension, G = Gal(L/K ). If wehave an intermediate extension K ≤ F ≤ L, then L/F is Galois, Gal(L/F ) ≤ Gal(L/K ) is a subgroup.The map θ : {intermediate fields K ≤ F ≤ L} → {subgroups H ≤ G} defined by
θ(F ) = Gal(L/F )is an order reversing bijection, with inverse θ−1(H) = LH . Furthermore, we have that

[F : K ] = [G : θ(F )]
Proof. Let x ∈ L, then mx,F | mx,K in F [T ]. As mx,K splits into distinct linear factors in K , so does mx,F . So
L/F is normal and separable, so L/F is Galois. By definition Gal(L/F ) ≤ G .Since L/F is Galois, LGal(L/F ) = F . So θ−1 ◦ θ = id. Conversely, since H ≤ Gal(L/LH ) and ∣∣Gal(L/LH )∣∣ ≤[L : LH ], suffices to show [L : LH ] ≤ |H|. Choosing a primitive element, we can assume L = LH (x) and

f = ∏
σ∈H

(T − σ (x)) ∈ LH [T ]
has x as a root. So degLH (x) ≤ deg(f ) = |H|, so [L : LH ] ≤ |H|. Hence θ ◦ θ−1 = id.Order reversing is clear since if K ≤ F ≤ F ′ ≤ L, then Gal(L/F ′) ≤ Gal(L/F ). Finally, if F = LH , then

[F : K ] = [L : K ][L : F ] = |G|
|H| = [G : H ]

as L/F and L/K are Galois.
Proposition 3.10. Let σ ∈ G , H ≤ G be a subgroup. Then σ (LH ) = LσHσ−1 .

Proof.

LσHσ−1 = {
x ∈ L | στσ−1(x) = x for all τ ∈ H

}
= {

x ∈ L | τσ−1(x) = σ−1(x)}= {σ (y) | y ∈ L, τ(y) = y} = σ (LH )

Proposition 3.11 (normal subgroups and extensions). Fix H ≤ G , then the following are equivalent.
(i) LH /K is Galois,(ii) LH /K is normal,(iii) for all σ ∈ G , σ (LH ) = LH ,
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(iv) H ≤ G is normal.
If any of the above hold, then Gal(LH /K ) ∼= G/H .

Proof. Since L/K is separable, so is LH /K . So (i) and (ii) are equivalent. Let F = LH and x ∈ F . Then theroots of mx,K in L is precisely (with multiplicity) OrbG (x), since L/K is Galois.Thus, mx,K splits in F if and only if for all σ ∈ G , σ (x) ∈ F . Therefore, we have that F/K is normal if andonly if σF ⊆ F . But [σF : K ] = [F : K ], so F is normal if and only if σF = F . By the previous proposition, Fis normal if and only if H = σHσ−1 for all σ , so (ii), (iii) and (iv) are equivalent.If any of (i)-(iv) holds, then for all σ ∈ G , σF = F . So we have a homomorphism G → Gal(F/K ) given by
σ 7→ σ|F . This has kernel {σ ∈ G | σ fixes F} = H , so by the isomorphism theorem,

G/H ∼ im(G → Gal(G/K )) ≤ Gal(F/K )But we know the index, so Gal(F/K ) ∼= G/H .
3.3 Galois group of polynomialsLet f ∈ K [T ] be separable, x1, . . . , xn the roots of f in a splitting field L, then G acts on {x1, . . . , xn} by apermutation, since σ (f (x)) = f (σ (x)). Furthermore, if σ (xi) = xi for all i, as L = K (x1, . . . , xn), σ = id. So wehave an injective homomorphism ι : G ↪→ Sn.

Definition 3.12 (Galois group of a polynomial)Gal(f /K ) = im(ι) ≤ Sn is called the Galois group of f over K .
Proposition 3.13. Suppose f is separable. The following are equivalent.

(i) f is monic and irreducible,(ii) Gal(f /K ) is a transitive subgroup,(iii) for all i, j ∈ {1, . . . , n}, there exists σ ∈ Gal(f /K ) such that σ (i) = j ,(iv) Gal(f /K ) acting on {1, . . . , n} has only one orbit.
Proof. We only need to show (i) and (ii) are equivalent, the rest are clear. Let x be a root of f in a splittingfield L. mx,K divides f and is irreducible, so f is irreducible if and only if mx,K = f . But the roots of mx,K isOrb(x) as L/K is Galois, since f is separable. So f is irreducible if and only if every root of f is in the orbit of
x , if and only if G acts transitively on the roots of f .

Proposition 3.14. f is separable if and only if Disc(f ) ̸= 0.
Proof. Say f is monic, then in a splitting field L for f ,

f = n∏
i=1(T − xi)

so Disc(f ) = 0 if and only if f has repeated roots (in L).
Proposition 3.15. Suppose char(K ) ̸= 2, and L is a splitting field for f ∈ K [T ] separable, G = Gal(f /K ).Then the the fixed field of G ∩ An = K (∆(x1, . . . , xn)), where x1, . . . , xn are the roots of f in L. SoGal(f /K ) ≤ An if and only if Disc(f ) is a square in K .
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Proof. Given π ∈ Sn, we have that ∏
i<j

(Tπ(i) − Tπ(j)) = sign(π) ∏
i<j

(Ti − Tj )
so if σ ∈ G , σ∆ = sign(σ )∆. Since char(K ) ̸= 2, 1 ̸= −1. As ∆ ̸= 0, this impliex that ∆ ∈ K if and only if

G ⊆ An and ∆ lies in the fixed field of G ∩ An. As [F : K ] = [G : G ∩ An] = 1 or 2, F = K (∆).
4 Finite fields

Theorem 4.1 (existence and uniqueness of finite fields). For all n, there exists a field F with order q = pn.Any such field is a splitting field for the polynomial f = T q − T over Fp. In particular, any two finitefields of the same order are isomorphic.
Proof. Suppose F is a field with q = pn elements. Then if x ∈ F×, xq−1 = 1 by Lagrange’s theorem. So forevery x ∈ F , xq = x . Thus, f = ∏

x∈F (T − x) splits into linear factors in F , and not in any proper subfield (asthere are not enough elements). So F is a splitting field for f over Fp. By uniqueness of splitting fields, anytwo such F are isomorphic.On the other hand, let L/Fp be a splitting field for f = T q − T , and let F ⊆ L be the fixed field of
φn

p : x 7→ xq. Then F = {x | xq = x} is the roots of f in L. So |F | = q and F = L.
Notation 4.2. We write Fq for any finite field of order q = pn .
Theorem 4.3. Fpn /Fp is Galois, with Galois group ∼= Cn, generated by φp.

Proof. T q −T = ∏
x∈Fq

(T −x) is separable, so Fq/Fp is Galois. Let G ≤ Gal(Fq/Fp) be the subgroup generatedby φp. Then FG
q = {x | xp = x} = Fp. Thus by the Galois correspondence, G = Gal(Fq/Fp).

Corollary 4.4. Fpn has a unique subfield of order pm for each m | n, and no others. If m | n, then
Fpm ≤ Fpn is the fixed field of φm

p .
Proof. By Galois correspondence.

Theorem 4.5. Suppose f ∈ Fp[T ] separable, deg(f ) = n, whose irreducible factors have degree n1, . . . , nr .Then Gal(f /Fp) ≤ Sn is cyclic, and generated by ana element of cycle type (n1, . . . , nr ). In particular,∣∣Gal(f /Fp)∣∣ = lcm(n1, . . . , nr ).
Proof. Let L be a splitting field for f over Fp, where the roots of f are x1, . . . , xN . Then Gal(L/Fp) is cyclic andgenerated by φp. As the irreducible factors of f are the minimal polynomials of the xis, and the set of roots of
mxi,K is the orbit of φp on xi, the cycle type of φp is (n1, . . . , nr ).

Theorem 4.6 (reduction mod p). Let f ∈ Z[T ] be a monic separable polynomial, p prime, n = deg(f ).Suppose the reduction f ∈ Fp[T ] is also separable, then Gal(f /Fp) ≤ Gal(f /Q) as subgroups of Sn.
Proof. Non examinable, so omitted.
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Corollary 4.7. With the same assumptions as in the theorem, suppose f = g1 · · · gr product of irreducibles,with deg(gi) = ni. Then Gal(f /Q) has an element with cycle type (n1, . . . , nr ).
5 Cyclotomic and Kummer extensions
5.1 Primitive roots of unity

Lemma 5.1. Let n > 1, a ∈ Z, (a, n) = 1, then the map [a] : Cn → Cn given by g 7→ ga is an automorphismof Cn. Furthermore, the map (Z/nZ)× → Aut(Cn) given by a 7→ [a] is an isomorphism.
Proof. [a] is obviously a homomorphism, and it is an automorphism by Bezout’s theorem. So we have an injection(Z/nZ)× ↪→ Aut(C ) given by a 7→ [a], which is a homomorphism. To show that this is surjective, notice that if
φ ∈ Aut(C ), then for a generator g of C , φ(g) = ga for some a. So φ = [a].

Definition 5.2 (roots of unity)Let K be a field, n > 1, define the group of n-th roots of unity. This is a finite subgroup of K ×, so it iscyclic, of order dividing n.
µn(K ) = {x ∈ K | xn = 1}

Definition 5.3 (primitive root of unity)We say that ζ ∈ µn(K ) is a primitive n-th root of unity if ord(ζ) = n in µn(K ).
Proposition 5.4. The following are equivalent:

(i) A primitive n-th root of unity ζ exists,(ii) |µn(K )| = n,(iii) f = T n − 1 splits into distinct linear factors in K ,
In any of the above cases, we must have that char(K ) ̸| n.

Proof. (i) and (ii) are equivalent by definition, and (ii) and (iii) are equivalent by definition. If T n − 1 isseparable, we must have f ′ ̸= 0, i.e. n ̸= 0, so char(K ) ̸| n.Until the end of this subsection, assume either char(K ) = 0 or char(K ) = p > 0, p ̸| n. So n-th roots ofunity always exist (in some splitting field).
Definition 5.5 (cyclotomic extension)Let L/K be a splitting field for f = T n − 1. We call L/K a cyclotomic extension.
Proposition 5.6. Let L/K be a cyclotomic extension. Then

(i) L/K is Galois, say G = Gal(L/K ),(ii) |µn(L)| = n, and so a primitive root of unity ζn exists.(iii) L = K (ζn),
17



(iv) there exists an injective homomorphism χn : G → (Z/nZ)×, such that if χ (a) = a mod n then
σ (ζ) = ζa. In particular, G is abelian.(v) χn is an isomorphism if and only if G acts transitively on the set of primitive roots of unity in L.

We call χn the cyclotomic character of L/K .
Proof. For (i) and (ii) suffices to note that T n − 1 is separable. The splitting field of a separable polynomial isGalois, and there are n distinct roots of T n − 1, so |µn(L)| = n.For (iii), note that µn(L) = ⟨ζ⟩, so L = K (1, ζ, . . . , ζn−1) = K (ζ).(iv) Consider the action of G on L. In permutes µn(L), and if ζ, ζ ′ are roots of unity, σ ∈ G , then
σ (ζζ ′) = σ (ζ)σ (ζ ′), so σ ∈ Aut(µn(L)). As L = K (ζn), σ (ζn) = ζn if and only if σ = id. So we have an injectivehomomorphism G → Aut(µn(L)) ∼= (Z/nZ)×.(v) ζa

n is primitive if and only if (a, n) = 1, so by considering the G-orbit of ζn, we get the required result.
Definition 5.7 (cyclotomic polynomial)The n-th cyclotomic polynomial is

Φn(T ) = ∏
a∈(Z/nZ)×(T − ζa

n )

Proposition 5.8.(i) Φn ∈ K [T ].(ii) We have the recurrence formula Φn = T n − 1∏
d|n,d<n Φdso in fact Φn does not depend on K .

Proof. For (i), as G permutes the primitive n-th roots of unity in L, Φn has coefficients in LG = K .For (ii), note that if xn = 1, then x is a primitive d-th root of unity for some d | n, so we have that
T n − 1 = ∏

d|n

Φd(T )

Theorem 5.9 (irreducibility of cyclotomic polynomials over Q). Let K = Q, then χn is an isomorphism forevery n. In particular, [Q(ζn) : Q] = φ(n), and Φn is irreducible over Q.
Proof. The three statements are equivalent, so suffices to show any one of them. Note that χn is an isomorphismif and only if for all primes p ̸| n, p mod n ∈ (Z/nZ)× is in the image of χn, by factoring a as a product ofprimes if a is coprime to n.Fix a prime p with p ̸| n. Let f = mζ,Q and g = mζp,Q. If f = g, then ζp ∈ OrbG (ζ), so p mod n ∈ im(χn)and we are done as p is arbitrary.Suppose not. Then (f , g) = 1 and f , g | T n − 1, so fg | T n − 1. As ζ is a root of g(T p), f | g(T p). Reducingmod p, we get that

f | g(T p) = g(T )pNow f , g divides T n − 1 in Fp[T ], which is separable as p ̸| n, so f | (g)p implies that f̄ | ḡ. But
f 2 | fg | T n − 1. Contradiction as T n − 1 separable.
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Proposition 5.10 (irreducibility of cyclotomic polynomials over Fp). Let K = Fp, (n, p) = 1. Then
(i) χn : G → ⟨p mod n⟩ ≤ (Z/nZ)× is an isomorphism, with χn(φp) = p mod n.(ii) r = [L : K ] = |⟨p mod n⟩| = ord(p mod n),(iii) φp has cycle type (r, . . . , r) acting as a permutation of the roots of Φn.

Proof. φp(ζ) = ζp, so χn(φp) = p mod n, which implies that χn(G) = ⟨p mod n⟩ as G = Gal(L/K ), L/K is anextension of finite fields, with G generated by φp. Then [L : K ] = |G| = |⟨p⟩|.If (a, n) = 1, then
φk

p(ζa) = ζak ⇐⇒ φk
p(ζ) = ζ ⇐⇒ r | kso the orbits of φp acting on the primitive roots of unity all have size r .

5.2 Artin’s theorem

Theorem 5.11 (Artin’s theorem on invariants). Let L be a field, G ≤ Aut(L) be a finite subgroup. Then
LG = {x ∈ L | σ (x) = x for all σ ∈ G} is a subfield of L, and [L : LG ] = |G|. In particular, L/LG is a Galoisextension with Galois group G .

Proof. Let K = LG and x ∈ L. Then if OrbG (x) = {σ1(x), . . . , σr (x)} , x is a root of f = ∏r
i=1(T − σi(x)) ∈

LG [T ] = K [T ]. So x is separable over K , and degK (x) ≤ |G|. Furthermore, f is irreducible. Suppose thereexists f1, f2 ∈ K [T ] such that f = f1f2. Then
f1 = ∏

i∈I1
(T − σi(x)) and f2 = ∏

i∈I2
(T − σi(x))

where I1 ∪ I2 = {1, . . . , r}, I1, I2 disjoint. Now for any σ ∈ G , σf1 = f1, so σ fixes {σi(x) | i ∈ I1}. Hencewe must have that I1 = ∅ or I1 = {1, . . . , r}, i.e. one of f1, f2 is constant. So f is irreducible, and f is theminimal polynomial of x over K .Now choose y ∈ L with degK (y) maximal. We claim that L = K (y). Suppose note, then choose x ∈ L/K (y).By above, x, y are separable over K , so by the primitive element theorem, there exists z ∈ L such that
K (z) = K (x, y) ⊋ K (y). So degK (z) > degK (y). Contradiction.Finally, we want to show that the minimal polynomial of y over LG has degree |G|. Equivalently,
|StabG (y)| = 1. But this is immediate since StabG (y) acts tirvially on L.

Theorem 5.12. Let K be a field, L = K (X1, . . . , Xn) field of rational functions, G = Sn acts on L bypermuting the variables. Then G ≤ Aut(L), with
LG = k (S1, . . . , Sn)where Sk are the elementary symmetric polynomials.

Proof. ⊇ is clear, so we will show the reverse inclusion. Given f /g ∈ LG , f , g ∈ k [X1, . . . , Xn] = R so for every
σ ∈ G , f /g = (σg)/(σg). Gauss’ lemma implies that R is a UDF,a nd the units in R are the constants. So
σf = cσ f and σg = cσ g for some cσ ∈ K ×. As G is finite, of order N = n!, f = σNf = cN

σ f , so cN
σ = 1. Butthen fgN−1, gN ∈ RG = k [S1, . . . , Sn], so f /g ∈ Frac(RG ) = k (S1, . . . , Sn).

Corollary 5.13. If M = k (X1, . . . , Xn) and L = MSn = K (S1, . . . , Sn), then L/K is a finite Galois extensionwith Galois group Sn. In particular, if
f = T n − S1T n−1 + · · · + (−1)nSn ∈ L[T ]
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Then M is a splitting field for f over L and Gal(f /L) = Sn.
Corollary 5.14. Given any finite group G , there exists a Galois extension L/K with Galois group G .
Remark 5.15. This is in general false if we fix K .

5.3 Constructible numbersWe will consider the following three plane geometry constructions.
(A): Intersection of linesGiven P1, P2, Q1, Q2 ∈ R2 with Pi ̸= Qi, we can construct the intersection of the lines P1Q1 and P2Q2,assuming the lines are not parallel.
(B): Intersection of circlesGiven P1, P2, Q1, Q2 ∈ R2, we can construct the intersection of circles with centre Pi through Qi.
(C): Intersection of line and circleGiven P1, P2, Q1, Q2 ∈ R2, we can construct the intersection of the line P1Q1 and the circle with centre P2through Q2.

Definition 5.16 (constructible number)We say that (x, y) ∈ R2 is constructible from {(x1, y1), . . . , (xn, yn)} if it can be obtained from a finitesequence of constructions (A), (B) and (C), involving the points (xi, yi) and any constructed in a previousstep.We say that x ∈ R is constructible if (x, 0) is constructible from {(0, 0), (1, 0)}.
Definition 5.17 (constructible subfield)Suppose K ≤ R is a subfield. We say that K is constructible if there exists fields

Q = F0 ≤ F1 ≤ · · · ≤ Fn ≤ Rand ai ∈ Fi such that
(i) K ≤ Fn,(ii) Fi = Fi−1(ai),(iii) a2

i ∈ Fi−1

Proposition 5.18. Suppose K is constructible. Then [K : Q] = 2m for some m.
Proof. We have that [Fn : Q] is a power of 2 by the tower law, and that (ii) and (iii) imply that [Fi, Fi−1] ≤ 2.Result follows by (i) and tower law.

Theorem 5.19. If x ∈ R is constructible, then K = Q(x) is constructible.
Proof. Elementary geometry shows that (A) involves solving a linear equation, and (B) and (C) involves solvinga quadratic equation. In both cases, the results can be obtained by adjoining (at most) one square root.
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Lemma 5.20. If m is a positive integer such that 2m + 1 is prime, then m is a power of 2.
Proof. If q is odd, then we have a nontrivial factorisation

2qr + 1 = (2r + 1)(2qr−r − 2qr−2r + · · · + 1)

Theorem 5.21 (Gauss). A regular n-gon is constructible, i.e. we can construct cos(2π/n) if and only if
n = 2mp1 · · · pk , p1, . . . , pk distinct Fermat primes, i.e. primes of the form 22k + 1.

Proof. Let x = cos(2π/n), ζn = exp(2πi/n). Then ζ2
n − 2xζn + 1 = 0, so we have that [Q(ζn) : Q(x)] = 2.Therefore, if x is constructible, [Q(ζn) : Q] is a power of 2. But [Q(ζn) : Q] = φ(n).Let n = pe11 · · · per

r , then [Q(ζn) : Q] = ∏
pei−1

i (p − 1). This is a power of two if and only if for all pi odd,we haev ei = 1 and p − 1 is a power of 2 so φ(n) is a power of two if and only if n is of the required form.Now suppose n has the required form, so φ(n) = 2m, and Q(ζn)/Q is Galois, with Galois group G ≃ (Z/nZ)×,with 2m elements. Then there exists subgroups
G = H0 ≥ H1 ≥ · · · ≥ Hm = 1such that [Hi : Hi+1] = 2. This follows from GRM, where we showed a p-group has subgroups of all possibleorders. Applying the Galois correspondence, we get Ki = Q(ζn)Hi and that Q(ζn) is constructible.

5.4 Kummer extensions

Theorem 5.22 (linear independence of characters). Let G be a group, L a field, χ1, . . . , χn : G → L× bedistinct group homomorphisms. Then σ1, . . . , σn are linearly independent.
Proof. By induction on n. n = 1 is trivial. Now suppose we have y1, . . . , yn ∈ L such that for all g ∈ G ,

y1χ1(g) + · · · + ynχn(g) = 0 ((*))As the homomorphisms are distinct, choose h ∈ G such that χ1(h) = χn(h). As the χi are homomorphisms,putting hg into (*), we get
y1χ1(h)χ1(g) + · · · + ynχn(h)χn(g) = 0Now subtracting χn(h) · (∗), we get

y′1χ1(g) + · · · + y′
n−1χn−1(g) = 0where y′

i = yi(χi(h) − χn(h)). By induction, all y′
i = 0, as χ1(h) ̸= χn(h), so y1 = 0. Hence by the inductionhypothesis, y2 = · · · = yn = 0.

Corollary 5.23 (linear independence of field embeddings). Suppose K, L are fields, σ1, . . . , σn : K → Lare distinct field homomorphisms. If y1, . . . , yn ∈ L are such that y1σ1(x) + · · · + ynσn(x) = 0 for all
x ∈ K , then y1 = · · · = yn = 0.

Proof. Set G = K × in the theorem.
Theorem 5.24. Suppose K contains a primitive n-th root of unity ζ = ζn, and we have an extension
L = K (x), with xn = a ∈ K ×, then

(i) L/K is a splitting field for f = T n − a, L/K is Galois with Gal(L/K ) cyclic.
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(ii) [L : K ] = min {m ≥ 1 | xm ∈ K }.
Proof. (i) As K has n distinct roots of unity ζ i, f has n distinct roots in L, i.e. f (T ) = ∏

i(T − xζ i). So L/K isa splitting field for the separable polynomial T n − a, so L/K is Galois.Now given σ ∈ Gal(L/K ) = G , f (σ (x)) = 0, so σ (x) = xζ i for some i ∈ {0, . . . , n − 1}. This gives us a map
θ : G → µn(K ) ≃ Z/nZ, given by

θ(σ ) = σ (x)
x = ζ i

To see that this is a homomorphism, suppose σ, τ ∈ G , as ζ ∈ K , τ(θ(σ )) = θ(σ ), so we have that
θ(τσ ) = τ(σ (x))

x = τ
(

σ (x)
x

)
τ(x)

x = τ(θ(σ ))θ(τ) = θ(σ )θ(τ)
Furthermore, θ is injective, since θ(σ ) = 1 if and only if σ (x) = x , which is true if and only if σ = id. So Gis isomorphic to a subgroup of a cyclic group, so it is cyclic.For (ii), if m > 1, since L/K is Galois,

xm ∈ K ⇐⇒ ∀σ ∈ G, σ (xm) = xm ⇐⇒ ∀σ ∈ G, θ(σ )m = 1 ⇐⇒ |G| = [L : K ] | m

Corollary 5.25. Suppose K contains a primitive n-th root of unity ζN , then for a ∈ K ×, f = T n − a isirreducible in K [T ] if and only if a is not a d-th power in K for any d | n, d ̸= 1.
Proof. Let L = K (x), where xn − a. Then mx,K divides f , so f is irreducible if and only if mx,K = f , which istrue if and only if |G| = [L : K ] = n. Now suppose n = md, d > 1. Then a is a d-th power in K if and only if
xm ∈ K , which is true if and only if |G| | m.

Definition 5.26 (Kummer extension)Extensions of the form L = K (x), where xn = a ∈ K ×, and ζn ∈ K are called Kummer extensions.
Theorem 5.27. Suppose K contains a primitive n-th root of unity ζ , let L/K be a Galois extension, withGal(L/K ) cyclic of order n. Then L = K (x) for some x such that xn = a ∈ K ×.That is, if K contains a primitive n-th root of unity, then L/K is a Kummer extension if and only if L/Kis Galois, with Gal(L/K ) cyclic.

Proof. Let G = Gal(L/K ) = {1, σ , . . . , σn−1}. Define the Langrange resolvent
R (y) = n−1∑

j=0 ζ−jσ j (y) ∈ L

Then if x = R (y), we have that
σ (x) = n−1∑

j=0 ζ−jσ j+1(y) = n−1∑
j=0 ζ1−jσ j (y) = ζx

So σ (xn) = ζnxn = xn, and xn ∈ K . By linear independence of field emebeddings, there exists y ∈ L suchthat R (y) ̸= 0. As σ i(x) = ζ i(x), the σ i(x) are distinct. Hence degK (x) = n and L = K (x).
6 Trace and norm
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Definition 6.1 (multiplication map)Let L/K be a field extension, x ∈ L, then the map Ux : L → L given by Ux (y) = xy is called themultiplication map. In particular, Ux is a K -linear map.
Definition 6.2 (trace, norm, characteristic polynomial)Let L/K be a field extension. Then the trace and norm of x ∈ L are

TrL/K (x) = tr(Ux ) and NL/K (x) = det(Ux )and the characteristic polynomial of x is
fx,L/K = det(T · I − Ux )

Lemma 6.3. For x, y ∈ L, a ∈ K , n = [L : K ], we have that
(i) TrL/K (x + y) = TrL/K (x) + TrL/K (y) and NL/K (xy) = aN

L/K (x)NL/K (y),(ii) NL/K (x) = 0 if and only if x = 0,(iii) TrL/K (1) = n and NL/K (1) = 1,(iv) TrL/K (ax) = a TrL/K (x) and NL/K (ax) = anNL/K (x)
So TrL/K is a K -linear map, and NL/K : L× → K × is a group homomorphism.

Theorem 6.4 (tower law). Let M/L/K be finite extensions. Then for all x ∈ M , we have that
TrL/K (TrM/L(x)) = TrM/K (x) and NL/K (NM/L(x)) = NM/K (x)

Proof. We will only prove the statement for the trace, as it is the only one we will need. Given x ∈ M , choose abasis u1, . . . , un for M/L, and v1, . . . , vn for L/K . Then let (aij ) be the matrix of Ux,M/L . Then TrM/L(x) = ∑
i aii.Now for each i, j , let the matrix of Uaij ,L/K be Aij , so that we get

TrL/K (TrM/L(x)) = ∑
i

TrL/K (aii) = ∑
i

Tr(Aii)
Now in terms of the basis (uivj ) for M/K , in the order u1v1, u1v2, . . ., the matrix of Ux,M/K isA11 ∗ ∗

∗ . . . ∗
∗ ∗ Amm


So TrM/K (x) = ∑

i tr(Aii).
Proposition 6.5. Let L = K (x), and f = T n + cn−1T n−1 + · · · + c0 be the minimal polynomial of x over
K . Then fx,L/K = f . Furthermore, TrL/K (x) = −cn−1 and NL/K (x) = (−1)nc0.

Proof. By standard linear algebra we only need to prove the first statement. Now consider the basis 1, x, . . . , xn−1for L/K . The matrix of Ux is
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
0 0 . . . 0 −c01 0 . . . 0 −c10 1 . . . 0 −c2... ... . . . ... ...0 0 . . . 1 −cn−1


which is just the companion matrix of f , so has characteristic polynomial f .

Corollary 6.6. Suppose char(K ) = p > 0, L = K (x), where x /∈ K , xp ∈ K . Then for every y ∈ L,TrL/K (y) = 0 and NL/K (y) = yp.
Proof. Note that [L : K ] = p, so suffices to prove that the minimal polynomial of x over K is T p − xp. If y ∈ K ,then tr(y) = py = 0, and NL/K (y) = yp. Otherwise, sicne [L : K ] is prime, L = K (y). So if y = ∑

i aix i, then
b = yp = ∑

i ap
i x ip ∈ K , so the minimal polynomial of y is T p − b and we are done.

Proposition 6.7. Let L/K be a finite separable extension of degree n, σ1, . . . , σn : L → M be the distinct
K -homomorphisms into a normal closure M for L/K . Then we have that

TrL/K (x) = ∑
i

σi(x), NL/K (x) = ∏
i

σi(x) and fx,L/K = ∏
i

(T − σi(x))
Proof. Suffices to prove the statement for the minimal polynomial. Let (ei) be a basis for L/K , and P = (σi(ej ))i,j .Since the σi are linearly independent, there can’t be yi ∈ M such that for all j , ∑

i yiσi(ej ) = 0. So P isnonsingular.Let A = (aij ) be the matrix of Ux , i.e. xej = ∑
r arjer , so we get that for all i, j ,

σi(x)σi(ej ) = ∑
r

σi(er )arj

Now if S is a diagonal matrix with Sii = σi(x), then the above becomes SP = PA, so A = P−1SP , and Aand S have the same characteristic polynomial.
Corollary 6.8. If L/K is a finite Galois extension, then

TrL/K (x) = ∑
σ∈Gal(L/K )(x)

and so on.
Theorem 6.9. Let L/K be a finite extension. Then L/K is separable if and only if TrL/K is surjective, i.e.if and only if TrL/K is nonzero.

Proof. If L/K is separable, let σ1, . . . , σn ∈ HomK (L, M) be the distinct field embeddings into a normal closure
M for L/K , then TrL/K (x) = ∑

σi(x). As the σi are linearly independent, this can’t be identically zero.Conversely, if L/K is inseparable, then let x ∈ L be such thatK (xp) ⊊ K (x), which exists4. Then we havethat TrK (x)/K (xp) = 0, so
TrL/K = TrL/K (x) ◦ TrK (x)/K (xp) = 0

4By examples sheet 2 question 7
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7 Algebraic closure

Definition 7.1 (algebraically closed field)A field K is algebraically closed if every polynomial with coefficients in K has a root in K . Equivalently,the only irreducibles in K [T ] are linear.
Proposition 7.2. The following are equivalent.(i) K is algebraically closed.(ii) if L/K is any extension, x ∈ L algebraic over K , then x ∈ K ,(iii) if L/K is algebraic, then L = K .

Proof. (i) =⇒ (ii). Let f = mx,K , then f ∈ K [T ] is irreducible, so it is linear, so x ∈ K .
(ii) =⇒ (iii) is true by definition.
(iii) =⇒ (i). Let f ∈ K [T ] be irreducible, L = Lf = K [T ]/(f ). Then L is algebraic over K , so L = K and fis linear.

Proposition 7.3. Let L/K be an algebraic extension such that every irreducible polynomial in K [T ] splitsinto linear factors over L. Then L is algebraically closed.We call L an algebraic closure for K .
Proof. Let M/L be an extension, x ∈ M algebraic over L. Then x is algebraic over K , so mx,K is an irreduciblepolynomial, so it splits into linear factors over L. Hence x ∈ L, and as x is arbitrary, L is algebraicallyclosed.

Theorem 7.4. If K is a countable field, then K has an algebraic closure.
Proof. K [T ] is also countable, so enumerate the monic irreducible polynomials f1, f2, . . . in K [T ]. Let L0 = K ,and for each i ≥ 1, let Li be a splitting field for fi over Li−1. We can assume without loss of generality that
Li−1 ≤ Li. Let L = ⋃∞

i=0 Li. Then L is a field, any by construction each fi splits over L. So L is an algebraicclosure of K .
Proposition 7.5. Let L/K be an algebraic extension of K , M algebraically closed, σ : K → M a fieldhomomorphism. Then there exists σ : L → M such that σ|K = σ .

Proof. If L = K (x) is algebraic over K , let f = mx,K . Then σf ∈ M [T ] splits into linear factos, so there exists
σ : K (x) → M extending σ . In fact, we have one for each root of σf in M .For general L, assume K ≤ L is a subfield. Then let

S = {(F, τ) | K ≤ F ≤ L, τ : F → M field homomorphism with τ|K = σ}We write (F, τ) ≤ (F ′, τ ′) if F ≤ F ′ and τ ′|F = τ . Then (S, ≤) is a nonempty poset. If T = (Fi, τi) is aposet, define
F ′ = ⋃

i
Fi and τ ′(x) = τi(x) if x ∈ Fi

Since T is a chain, this is well defined and it is an upper bound for T . Hence by Zorn’s lemma, S has amaximal element (F, τ). Suppose F ̸= L, then choose x ∈ L \ F . Then L/F (x)/F is algebraic, so we can extendto F (x) > F . Contradiction.
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Theorem 7.6 (maximal ideal). Let R be a nonzero ring. Then R has a maximal ideal.
Proof. By Zorn’s lemma.

Theorem 7.7. Let K be a field, then K has an algebraic closure K . If σ : K → K ′ is an isomorphism, and
K, K ′ algebraic closures of K, K ′ respectively, then there exists an isomorphism σ : K → K ′ extending σ .So the algebraic closure is unique up to isomorphism.

Proof. Existence of algebraic closure: Let P = {f ∈ K [T ] | f monic irreducible}. Then we construct K1 suchthat every f ∈ P has a root in K1.Define R = K [{Tf }f∈P ], where we adjoin an element Tf for each f ∈ P. Let I ⊴ R , I = (f (Tf ) | f ∈ F ).In R/I , Tf mod I is a root of f . We will now show R/I is nonzero. Suppose R = I . Then there exists a finitesubset Q ⊆ P, rf ∈ R such that ∑
f∈Q

rf f (Tf ) = 1
We can assume without loss of generality that rf is a polynomial in {

Tg | g ∈ Q
}. Let L/K be a splittingfield for ∏

f∈Q f ∈ K [T ], af ∈ L a root for each f ∈ Q.Now consider φ : R → L given by φ|K = id, and
φ(Tf ) = {

af f ∈ Q0 f /∈ QThen 1 = φ(1) = ∑
f∈Q φ(rf )φ(f (Tf )) = ∑

f∈Q φ(rf )f (af ) = 0. Contradiction.Therefore, by the maximal ideal theorem, R/I has a maximal ideal. Equivalently, by the correspondencetheorem there exists a maximal ideal J of R with I ≤ J . Let K1 = R/J . Then this is a field, and let xf = Tfmod J ∈ K1. Then K1/K is generated by {xf }, so K1/K is an algebraic extension of K such that every f ∈ Phas a root.Now let P1 be the set of irreducibles in K1, repeating the above process we get K2 and so on, we obtain
K = K0 ⊆ K1 ⊆ K2 ⊆ . . .such that if f = Kn[T ] is non-constant, then it has a root in Kn+1[T ], so it splits in Kn+deg(f )[T ]. Letting

K = ⋃
n Kn, this is an algebraic closure of K .

Uniqueness of algebraic closure: Assume without loss of generality K ≤ K and K ′ ≤ K ′, σ : K → K ′ isan isomorphism. As K/K is algebraic, σ extends to σ : K → K ′. Now K ′ ≤ σ (K ) ≤ K ′, so K ′/σ (K ) is algebraic,
K is algebraically closed, so σ (K ) is also algebraically closed. Hence K ′ = σ (K ), so σ is an isomorphism.
8 Cubics, quartics and solubility by radicals
8.1 CubicsLet f ∈ K [T ] be a monic separable cubic, G = Gal(f /K ) ≤ S3 acts on the roots x1, x2, x3 in a splitting field Lof K .If f is reducible, then either1. f is a product of distinct linear factors in K , so G = 1.2. f is a product of a linear factor and an irreducible quadratic in K , so G = S2.Now suppose f is irreducible, and char(K ) ̸= 2, 3. Then G = S3 or A3, with G = A3 if and only if Disc(f )is a square in K .Let K1 = K (∆), then L/K1 is Galois, with Galois group C3.If ω ∈ K1 is a primitive root of unity, then by L/K1 is a Kummer extension, that is, L = K1(y) with y3 ∈ K1.Otherwise, let L(ω) be a splitting field of f · (T 3 − 1) over K . Then L(ω)/K1(ω) is Galois, with Galois group
C3, so L(ω) = K1(ω, y) with y3 ∈ K1(ω). Hence the xi lies in the field obtained by adjoining square roots andcube roots to K .
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8.2 QuarticsLet f ∈ K [T ] be a monic separable quartic, char(K ) ̸= 2, 3. Then G = Gal(f /K ) ≤ S4. Let V = V4 bethe Klein-4 group, the transitive subgroup of S4 of order 4. Let f have splitting field L with distinct roots
x1, . . . , x4, and suppose without loss of generality x1 + · · · + x4 = 0. So f = T 3 + aT 2 + bT + c. Since V is anormal subgroup of S4, G ∩ V is a normal subgroup of G containing V . In particular, we have a homomorphism
G/(G ∩ V ) → S4/V ≃ S3. But G/(G ∩ V ) = Gal(M/K ), where M = LG∩V is a cubic extension.Write y12 = x1 + x2 etc. Then V ∩G maps yij → ±yij . So y212, y213, y214 are fixed under V ∩G . Furthermore,
y2

ij are the roots of a separable cubic g ∈ K [T ], called the resolvent cubic. Then M = LG∩V is the splittingfield of g, and
x1 = 12(y12 + y13 + y14)

and so on, so L = M(y12, y13, y14)5. This means that we can solve a quartic by solving a cubic and takingsquare roots.
8.3 Solubility by radicalsSuppose throughout char(K ) = 0, so an extension is Galois if and only if it is normal.

Definition 8.1 (soluble by radicals)An irreducible polynomial f ∈ K [T ] is soluble by radicals over K if there exists a sequence of fields
K = K0 ≤ · · · ≤ Kmwith x ∈ Km a root of f , and each Ki = Ki−1(yi) with ydi

i ∈ Ki−1, di ≥ 2.
Proposition 8.2. Suppose there exists d ≥ 1, and a sequence of fields K = K0 ≤ · · · ≤ Km with

(i) f has a root x ∈ Km,(ii) for i > 1, Ki = Ki−1)(yi) with (yi)d = ai ∈ Ki−1,(iii) K1 = K0(ζ), ζ is a primitive d-th root of unity.
Then f is soluble by radicals over K . The converse is also true.

Proof. The statement is immediate from definitions. The converse follows by letting d = lcm(di) and addingthe first field if necessary.Thus, we will assume throughout the above conditions. In particular, K1/K0 is a cyclotomic extension, so itis Galois with abelian Galois group, and by Kummer theory Ki/Ki−1 is Galois with Gal(Ki/Ki−1) ≤ Cd .Let M be a normal closure of Km/K . Then M will contain a splitting field for f over K , since x ∈ M and fis irreducible. Let K ′
i ≤ M be a normal closure of Ki/K .

Proposition 8.3.
K ′

i = K ′
i−1 ({

d
√

σ (ai) | σ ∈ Gal(K ′
i−1/K )})

Proof. As the extensions are all normal, we have that Gal(K ′
i−1/K ) is a normal subgroup of Gal(K ′

i /K ), soGal(K ′
i−1/K ) is a quotient of Gal(K ′

i /K ). In particular, given σ ∈ Gal(K ′
i−1/K ), there exists σ ∈ Gal(K ′

i /K ) suchthat σ|K ′
i
= σ . Then

σ (yi)d = σ (yd
i ) = σ (yd

i ) = σ (ai)
5In fact, L = M(y12, y13) as y12y13y14 = b ∈ K .
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So we have ⊇. Suffices to show that the RHS is normal over K , as the LHS is a normal closure. But it isthe splitting field over K ′
i−1 of

gi = ∏
σ

(T d − σ (ai)) ∈ K [T ]
So if K ′

i−1 is the splitting field for gi−1 over K , the RHS is a splitting foeld for gigi−1 over K , so it is normalover K .
Proposition 8.4. Gal(K ′

i /K ′
i−1) is abelian.

Proof. Let A = Gal(K ′
i /K ′

i−1). Then for all τ ∈ A, σ ∈ Gal(K ′
i−1/K ), we have that

τ
(

d
√

σ (ai)) = ζmσ
d

d
√

σ (ai)for some mσ ∈ Z/dZ. So we have a map τ 7→ (mσ ) ∈ (Z/dZ)r , where r = |Gal(Ki−1′ /K )|, which defines aninjective homomorphism. This holds for i > 1. For i = 1, note that K ′1 = K1 and so K ′1/K ′0 is just K1/K0, whichhas abelian Galois group.
Definition 8.5 (soluble group)A finite group G is solutble if there exists a chain of normal subgroups

1 = N0 ⊴ N1 ⊴ · · · ⊴ Nm = Gsuch that Ni/Ni−1 is abelian for all i.
Proposition 8.6. G = Gal(M/K ) is soluble.

Proof. Notice that M = K ′
m, so we have a chain of normal extensions over K ,

K = K ′0 ≤ K ′1 ≤ · · · ≤ K ′
m−1 ≤ K ′

m = Mwhich by the Galois correspondence gives us a chain of normal subgroups of Gal(M/K ),
1 = Gal(K/K ) ⊴ Gal(K ′1/K ) ⊴ · · · ⊴ Gal(K ′

m−1/K ) ⊴ Gal(K ′
m/K ) = Gwith

Gal(K ′
i /K )Gal(K ′

i−1/K ) = Gal(K ′
i /K ′

i−1)
abelian, so G is soluble.

Lemma 8.7. Any subgroup and any quotient of a solble group is soluble.
Proof. Take H ∩ Ni and Ni/(H ∩ Ni) respectively.

Theorem 8.8 (Abel-Ruffini). If f ∈ K [T ] is soluble by radicals over K , then Gal(f /K ) is soluble.
Proof. Gal(f /K ) ≃ Gal(L/K ) ≃ Gal(M/K )Gal(L/K )is soluble.
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Proposition 8.9. If n ≥ 5 then Sn and An are not soluble.
Proof. Both contain the non-abelian simple group A5.

Corollary 8.10. If deg(f ) = n ≥ 5, with An ≤ Gal(f /K ), then f is not soluble by radicals.
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