Galois theory

Shing Tak Lam

April 28, 2023

Contents

1 Symmetric polynomials

Let *R* be a ring. Then we have a (right) action of S_n on $R[X_1, \ldots, X_n]$, given by

$$
f \cdot \sigma = f(X_{\sigma(1)},\ldots,X_{\sigma(n)})
$$

Definition 1.1 (symmetric polynomial)

 $f \in R[X_1, \ldots, X_n]$ is symmetric if $Orb(f) = f$. Equivalently,

$$
f = f \cdot \sigma = f(X_{\sigma(1)}, \ldots, f_{\sigma(n)})
$$

for all $\sigma \in S_n$.

Definition 1.2 (elementary symmetric polynomials)

The elementary symmetric polynomials are

$$
S_{n,r} = \sum_{1 \leq i_1 < \dots < i_r \leq n} X_{i_1} \cdots X_{i_r}
$$

We write S_r for $S_{n,r}$ if *n* is clear from context.

Theorem 1.3. Define a homomorphism $\theta:R[Y_1,\ldots,Y_n]\to R[X_1,\ldots,X_n]$ by $\theta(Y_r)=S_r$ and $\theta=$ id on R .
Then Then

1. ker $(\theta) = 0$,

2. and $\text{im}(\theta) = \{\text{symmetric polynomials}\}.$

Proof. First we consider (ii). Necessarily $f \in \text{im}(\theta)$ is symmetric, so suffices to show that any symmetric polynomial is in im(*θ*).

Let $d = \deg(f)$, and $x^{\alpha} = \operatorname{Im}(f)$ be the leading monomial of *f*, with coefficient $c = \operatorname{lc}(f) \in R$. As *f* is symmetric, we m[us](#page-1-0)t have that $α = (α₁, …, α_n)$, with $α₁ ≥ … α_n$, otherwise we can permute the variables and get a larger term". So we can write

$$
x^{\alpha}=x_1^{\alpha_1-\alpha_2}(x_1x_2)^{\alpha_2-\alpha_3}\cdots(x_1\cdots x_n)^{\alpha_n}
$$

Consider $g = S_1^{i_1-i_2} S_2^{i_2-i_3} \cdots S_n^{i_n}$. Then $\text{Im}(g) = x^{\alpha}$, g is symmetric, so $f - cg$ is symmetric, with leading monomial strictly smaller than *x^α*
Eor (i) we want to show that For (i), we want to show that the representation is unique. Suppose there exists $G \in R[Y_1, \ldots, Y_n]$ such
 $G(S_1, \ldots, S_n) = 0$. We want to show that $G = 0$. The base case $n = 1$ is trivial

that $G(S_{n,1}, \ldots, S_{n,n}) = 0$. We want to show that $G = 0$. The base case $n = 1$ is trivial.

Now suppose we have $G = Y_n^m H$, where y_n / H . Then $S_{n,n}^k H(S_{n,1}, \ldots, S_{n,n}) = 0$, but $S_{n,n}$ is not a zero
ser so $H(S_{n,n}, S_{n}) = 0$, So we see assume when that Y_n / G Consider the map $\phi : P(Y_n, Y) \to Y$ divisor, so $H(S_{n,1},\ldots,S_{n,n})=0$. So we can assume wlog that Y_n $|/G$. Consider the map $\phi: R[X_1,\ldots,X_n]\to$ *R*[X_1, \ldots, X_{n-1}], given by $\phi(f) = f(X_1, \ldots, X_{n-1}, 0)$. Then

$$
\phi(S_{n,r}) = \begin{cases} S_{n-1,r} & \text{if } r \le n-1 \\ 0 & \text{if } r = n \end{cases}
$$

So $\phi(\theta(G)) = G(S_{n-1,1}, \ldots, S_{n-1,n-1}, 0) = 0$. But then we can embed this into $R[X_1, \ldots, X_{n-1}]$, and by the uctive hunothesis we have that $G(Y_1, \ldots, Y_{n-1}, 0) = 0$. But $Y_n \cup G$ Contradiction inductive hypothesis, we have that $G(Y_1, \ldots, Y_{n-1}, 0) = 0$. But $Y_n \mid G$. Contradiction.

Definition 1.4 (power sum)

The power sum polynomials are

$$
P_{n,k} = \sum_{i=1}^{n} X_i^k
$$

Theorem 1.5 (Newton's formula). Let $n \geq 1$, then for all $k \geq 1$,

$$
P_k - S_1 P_{k-1} + \dots + (-1)^{k-1} S_{k-1} P_1 + (-1)^k S_k = 0
$$

¹With respect to the lexicographic ordering on monomials

where we define $S_0 = 1$ and $S_r = 0$ for $r > n$.

Proof. Since the coefficients in the above are 1 and −1, suffices to prove this in the case $R = \mathbb{Z}$. In fact, we can consider the case $R = \mathbb{R}$, so we can use calculus. Consider the function

$$
F(T) = \prod_{i=1}^{n} (1 - X_i T) = \sum_{r=0}^{n} (-1)^r S_r T^r
$$

Taking the derivative of $log(F)$, we get that

$$
\frac{F'(T)}{F(T)} = \sum_{i=1}^{n} \frac{-X_i}{1 - X_i T} = \frac{-1}{T} sum_{i=1}^{n} \sum_{r=1}^{\infty} X_i^r T^r = \frac{-1}{T} \sum_{r=1}^{\infty} \infty P_r T^r
$$

Evaluating separately, we get that

$$
-TF'(T) = S_1T - 2S_2T^2 + \dots + (-1)^{n-1}nS_nT^n
$$

$$
F(T)\sum_{r=1}^{\infty}P_rT^r = (S_0 - S_1T + \dots + (-1)^nS_nT^n)(P_1T + P_2T^2 + \dots)
$$

Comparing the coefficients of T^k gives the required result.

1.1 Discriminant

Notation 1.6. In this course, we have Disc = ∆², whereas in Number Fields, we have Disc = ∆. The actual definitions
are the same are the same.

Definition 1.7 (discriminant polynomial) The discriminant polynomial is $D(X_1, \ldots, X_n) = \Delta(X_1, \ldots, X_n)^2$, where

$$
\Delta = \prod_{i < j} (X_i - X_j)
$$

D is a symmetric polynomial, so $D(X_1, \ldots, X_n) = d(S_1, \ldots, S_n)$ for some poly $d \in \mathbb{Z}[Y_1, \ldots, Y_n]$.

Definition 1.8 (discriminant of a polynomial) Let $f = T^n$ + $\sum_{i=0}^{n-1} a_i T^i$ be a monic polynomial. Then define

$$
Disc(f) = d(-a_1, a_2, \ldots, (-1)^n a_n)
$$

Proposition 1.9. If $f = \prod_{i=1}^{n} (T - x_i)$, then $a_r = (-1)^r S_r(x_1, \ldots, x_n)$, and

$$
Disc(f) = \prod_{i \neq j} (x_i - x - J)^2 = D(x_1, ..., x_n)
$$

Proposition 1.10. If $R = k$ is a field, f is a product of linear factors, then $Disc(f) = 0$ if and only if f has a repeated root.

2 Field theory

2.1 Field extensions

Definition 2.1 (prime subfield)

Given a field *K*, we call the smallest subfield of *K* the prime subfield of *K*, which is isomorphic to \mathbb{Q} if char(K) = 0 and \mathbb{F}_p if char(K) = p prime.

Definition 2.2 (field extension)

Let *^K [⊆] ^L* be fields, or equivalently *K ,→ ^L*. We say that *^K* is a subfield of *^L*, or *^L* is an extension of *^K*. We write *L/K* for the field extension.

Proposition 2.3. If *L/K* is a field extension, then *^L* is a *^K*-vector space.

Definition 2.4 (finite extension, degree) An extension L/K is finite if $\dim_K(L) < \infty$. We write $[L: K] = \dim_K(L)$ for the degree of the extension.

Theorem 2.5. If *L/K* is an extension, *^V* is an *^L*-vector space, then *^V* is a *^K*-vector space, and

$$
\dim_K(V)=[L:K]\dim_L(V)
$$

Proof. Suppose $d = \dim_L(V) < \infty$. Then as $V \simeq L^d$ as *L*-vector spaces, they must be isomorphic as *K*-vector spaces as well. Suppose $[1:K] = n < \infty$. Then $I \simeq K^d$ as *K* vector spaces, so spaces as well. Suppose $[L:K] = n < \infty$. Then $L \simeq K^d$ as *K*-vector spaces, so

$$
V \simeq \bigoplus_{i=1}^d K^n = K^{nd}
$$

If $\dim_K(V) < \infty$, as K is a subfield of L, necessarily $\dim_L(V) < \infty$. Taking the contrapositive, if $\dim_L(V) = \infty$ then dim_{*K*}(*V*) = ∞ . Likewise, if [*L* : *K*] = ∞ and *V* \neq 0, then *V* has an infinite linearly independent subset over *K*, so dim_{*K*}(*V*) = ∞ . over *K*, so dim_{*K*}(*V*) = ∞ .

Corollary 2.6 (tower law). If *M/L/K* are field extensions, then *M/K* is finite if and only if [*^M* : *^L*] and $[L: K]$ are finite. In this case, we have that

$$
[M:K] = [M:L][L:K]
$$

2.2 Characteristic *p* and the Frobenius endomorphism

Proposition 2.7. Suppose K is a finite field. Than char(K) = p is prime, and $|K| = p^n$ for some *n*.

Proposition 2.8.

(i) Let *^K* be a field, *^G* a finite subgroup of *^K ×*. Then *^G* is cyclic.

(ii) If K is finite, then K^{\times} is cyclic.

Proof. From Lagrange's theorem, we have that for some m^2 m^2 , $x^m = 1$ for all $x \in G$. So *G* is contained in the subgroup of *m* th roots of unity which is suclic subgroup of *^m*-th roots of unity, which is cyclic.

Definition 2.9 (primitive root modulo *^p*) *a* ∈ \mathbb{F}_p^{\times} such that $\mathbb{F}_p = \{0\} \cup \{a, a^2, \ldots, a^{p-1}\}$ is called a primitive root modulo *p*.

Corollary 2.10. Primitive roots modulo *^p* always exist.

Definition 2.11 (Frobenius endomorphism) Let *R* be a ring, $p \cdot 1_R = 0$. Then $\phi_p(x) = x^p$ is a ring homomorphism $R \to R$, called the Frobenius ordomorphism of *R* endomorphism of *^R*.

2.3 Algebraic elements and extensions

Definition 2.12 (algebraic, transcendental)

Let L/K be a field extension, $x \in L$ is algebraic over K if there exists $f \in K[T]$ nonzero such that $f(x) = 0$. If no such *^f* exists, we say that *^x* is transcendental over *^K*.

Definition 2.13 (minimum polynomial)

Suppose $x \in L$, then $\phi : f \mapsto f(x)$ defines a ring homomorphism $K[T] \rightarrow L$. Then ker(ϕ) = (q) for some monic *q*. We call *q* the minimal polynomial of *x* over *K*, and we write $m_{x,K} = q$.

Proposition 2.14. $m_{x,K}$ is well defined, that is, *q* exists and is unique. Furthermore, $m_{x,K}$ is irreducible.

Proof. Since *K*[*T*] is a PID, ker(*φ*) is principal, and there is a unique monic generator of a principal ideal. Furthermore, as im(*φ*) is a subring of a field, it is an integral domain, so ker(*φ*) is prime. Thus, *^g* is irreducible.

Definition 2.15 (degree)

The degree of an algebraic element *^x* over *^K* is

 $deg_K(x) = deg(x/K) = deg(m_{x,K})$

Proposition 2.16. Let L/K be a field extension, $x \in L$, then the following are equivalent.

(i) *^x* is algebraic over *^K*,

- (ii) $[K(x) : K] < \infty$,
- (iii) dim*^K* (*K*[*x*]) *< [∞]*,

 $2m$ is a multiple of the exponent of *G*, for example $m = |G|!$ works.

(iv) $K[x] = K(x)$,

(v) $K[x]$ is a field.

If any of these hold, then $deg_K(x) = [K(x) : K]$.

Proof. Since $K[x] \le K(x)$ is a subring, (ii) \implies (iii) and (iv) \iff (v) are clear.

(iii) \Rightarrow (ii) and (iv). Let *y* ∈ *K*[*x*] be nonzero. Then consider the map *K*[*x*] \rightarrow *K*[*x*] given by *z* \rightarrow *yz*. This is *K*-linear, and as $y \neq 0$ it is injective. So it is an isomorphism. Therefore, there exists $z \in K[x]$ such that $yz = 1$, so $K[x]$ is a field, i.e. $K[x] = K(x)$, and so

$$
[K(x):K] = \dim_K(K(x)) = \dim_K(K[x]) < \infty
$$

(v) \implies (i). Let $x \neq 0$. Then $x^{-1} = a_0 + a_1x + \cdots + a_nx^n$, with $a_i \in K$, $a_n \neq 0$. Multiplying through by *^x*, we get that

$$
a_nx^{n+1}+\cdots+a_0x-1=0
$$

So *^x* is algebraic over *^K*.

(i) \implies (iii) and the degree formula. im(eval_x : $K[T] \rightarrow L$) = $K[x] \leq L$. If *x* is algebraic, then $ker(eval_x) = (m_{x,K})$ is maximal, as $(m_{x,K})$ is irreducible. So by the isomorphism theorem, we have that

$$
K[x] \simeq \frac{K[T]}{(m_{x,K})}
$$

Say deg($m_{x,K}$) = *d*. Then $K[T]/(m_{x,K})$ has basis 1, T, \ldots, T^{d-1} . This means that $\dim_K(K[x]) = d < \infty$, \Box which proves (iii) and the degree formula.

Corollary 2.17.

- (i) x_1, \ldots, x_n are all algebraic over K if and only if $L = K(x_1, \ldots, x_n)$ is a finite extension. If so, every element of *^L* is algebraic over *^K*.
- (ii) If *x*, *y* are algebraic over *K*, then so are $x \pm y$, *xy*, $1/x$,
- (iii) Let L/K be any extension, then the set

$$
\{x \in L \mid x \text{ algebraic over } K\}
$$

is a subfield of *^L*.

Proof. (i) If x_n is algebraic over *K*, then it must also be algebraic over $K(x_1, \ldots, x_{n-1})$, so $[L: K(x_1, \ldots, x_{n-1})]$ < *[∞]*. By induction and the tower law, we get that [*^L* : *^K*] *< [∞]*. Conversely, if [*^L* : *^K*] *< [∞]*, then [*K*(*xⁱ*) : *^K*] *< [∞]*, so x_i is algebraic over K . (ii) and (iii) follows immediately from (i).

Definition 2.18 (algebraic extension) An extension *L/K* is algebraic if any *^x [∈] ^L* is algebraic over *^K*.

Proposition 2.19.

- (i) Finite extensions are algebraic,
- (ii) $K(x)/K$ is algebraic if and only if x is algebraic over K,
- (iii) If *M/L/K* are extensions, *M/K* is algebraic if and only if *M/L* and *L/K* are algebraic.

Proof. (i) and (ii) follows from the tower law and the previous proposition. For (iii), suppose *M/K* is algebraic, then *M/L* is algebraic and *L/K* is algebraic as $K \le L \le M$. For the coverese, choose $f = T^n + a_{n-1}T^{n-1} +$
 $\cdots + a_2 \in L[T]$ such that $f + 0$, $f(x) = 0$, Let $f(x - K(a_2, ..., a_{n-1})$. As each $a_n \in L$ is algebraic over K $\cdots + a_0 \in L[T]$ such that $f \neq 0$, $f(x) = 0$. Let $L_0 - K(a_0, \ldots, a_{n-1})$. As each $a_i \in L$ is algebraic over K, $[L_0 : K] < \infty$. Furthermore, $f \in L_0[T]$ and $f(x) = 0$, so *x* is algebraic over L_0 . So $[l_0(x) : L_0] < \infty$, and $[L_0(x) : K] < \infty$ bu the tower law. So $[K(x) : K] < \infty$. so *x* is algebraic over *K*. $[L_0(x): K]$ < ∞ by the tower law. So $[K(x): K]$ < ∞, so *x* is algebraic over *K*.

2.4 Splitting fields

Theorem 2.20. Let *f* ∈ *K*[*T*] be monic irreducible, *L_f* = *K*[*T*]/(*f*), *t* = *T* + (*f*). Then *L_f*/*K* is a finite extension of fields *U* + *K*] = dog(*f*) and *f* is the minimal polynomial of *t* over *K* extension of fields, $[L_f : K] = \deg(f)$ and f is the minimal polynomial of t over K .

Definition 2.21 (*K*-homomorphism)

Suppose *K* is a field, *L*/*K*, *M*/*K* are extensions of *K*. A *K*-homomorphism *L* \rightarrow *M* is a field homomorphism $\sigma: L \to M$ such that $\sigma|_K = id_K$.

Theorem 2.22. Given $f \in K[T]$ irreducible, L/K an arbitaru extension, then

(i) If $x \in L$ is a root of *f*, then there exists a unique *K*-homomorphism $\sigma : L_f \to L$, with $\sigma(t) = x$.

(ii) Every *K*-homomorphism $L_f \rightarrow L$ is of the above form.

That is, we have a bijection

 ${K$ -homomorphisms $L_f \rightarrow L$ } \leftrightarrow {roots of *f* in *L*}

In particular, there is at most deg(*f*) such *^σ*.

Proof. (i) Consider the homomorphism $\phi : K[T] \to L$, given by $\phi(q) = g(x)$. Then as *x* is a root of *f*, we have that $(f) \subseteq \text{ker}(\phi)$. As f is irreducible, (f) is maximal, and $\text{ker}(\phi) \neq K[T]$, so $\text{ker}(\phi) = (f)$. Hence we have an induced map

$$
\varphi : \frac{\mathcal{K}[T]}{(f)} = L_f \to L
$$

which is a *^K*-homomorphism as *^φ* is one, and *^φ*(*t*) = *^x*. Uniqueness is immediate since *^φ* is a ring homomorphism and we have specified the image of *^K* and *^t*.

(ii) Given a *K*-homomorphism σ : $L_f \to L$, let $x = \sigma(t)$. We want to show that $f(x) = 0$. But $f(x) = f(\sigma(t)) =$ *σ*(*f*(*t*)) as *σ* is a *K*-homomorphism, and *f*(*t*) = 0 ∈ *L_f*. So *f*(*x*) = 0. The fact that *σ* is of the form in (i) follows immodiately from uniqueness in (i) immediately from uniqueness in (i).

Corollary 2.23. If $L = K(x)$ with *x* algebraic over *K*, then there exists a unique isomorphism $\sigma : L_f \to K(x)$ such that $\sigma(t) = x$, where $f = m_{x,K}$.

Proof. Take $L = K(x)$ in the above theorem.

Definition 2.24 (*K*-conjugate)

If *x, y* are algebraic over *^K* (but *x, y* need not be in the same field), we say that *^x* and *^y* are *^K*-conjugate if they have the same minimal polynomial.

Corollary 2.25. *x, y* are *^K*-conjugate if and only if there exists a *^K*-isomorphism *^σ* : *^K*(*x*) *[→] ^K*(*y*), with $\sigma(x) = y$.

Proof. For (\implies) , we have that $K(x) \simeq L_f \simeq K(y)$. For the converse, notice that for all $g \in K[T]$, $\sigma(g(x)) =$
 $g(\sigma(x))$ so they have the same minimal polynomial $q(\sigma(x))$, so they have the same minimal polynomial.

Definition 2.26 (*σ*-homomorphism, extension and restrictions of homomorphisms)

Let L/K , L'/K' be field extensions, $\sigma : K \to K'$ be a field homomorphism, $\tau : L \to L'$
such that $\tau(x) = \sigma(x)$ for all $x \in K$. We say that τ is a σ homomorphism, or τ or ist *z_i*, *z_i*, *z*_{*i*}, *z*_{*i*}, *z*_{*i*} *s c* is a *πi x c z*_{*i*} *z*_{*i*} *c z*_{*i*} *z*_{*i*} *c z*_{*i*} *z*_{*i*} *c z*_{*i*} *z*_{*i*} *c z*_{*i*} *c z*_{*i*} *c z*_{*i*} *c z*_{*i*} *c z* restriction of *^τ*.

Theorem 2.27. If $f \in K[T]$ is irreducible, $\sigma : K \to L$ is any field homomorphism, let $\sigma f \in L[T]$ be given by $\sigma f = \sigma_*(f)$, where $\sigma_* : K[T] \to L[T]$ is the induced map on coefficients. Then

- (i) if *x* is a root of *f*, then there is a unique σ -homomorphism τ : $L_f \rightarrow L$ such that $\tau(t) = x$.
- (ii) every σ -homomorphism $\tau : L_f \to L$ is of the above form.

That is, we have a bijection

{σ-homomorphisms *^L^f [→] L} ↔ {*roots of *^f* in *L}*

Proof. Same as the above.

Definition 2.28 (splitting field)

Let *^f [∈] ^K*[*^T*] be a nonzero polynomial. We say that an extension *L/K* is a splitting field for *^f* over *^K* if

- (i) *f* is a product of linear factors in $L[T]$,
- (ii) *L* is minimal, that is, $L = K(x_1, \ldots, x_n)$, where the x_i are the roots of *f* in *L*.

Theorem 2.29. Every nonzero $f \in K[T]$ has a splitting field.

Proof. We prove this by induction on deg(*f*), but note that we will need to allow the field to vary^{[3](#page-7-0)}. That is, we
will provo: will prove:

∀n \in *N*, \forall fields K , \forall f \in K [*T*] with deg(*f*) = *n*, *f* has a splitting field.

Base case: $n < 1$. In this case, K itself is a splitting field for *f*.

Inductive case: Now let *g* be an irreducible factor of *f*. Consider $K' = L_g = K[T]/(g)$. Let $x_1 = T$
 $d_g(x) = 0$, so $f(x_1) = 0$. Honce $f = (T - x_1)f$, where $f \in K'[T]$ has $dog(f) \leq dog(f)$. By the mod (g). Then $g(x_1) = 0$, so $f(x_1) = 0$. Hence $f = (T - x_1)f_1$ where $f_1 \in K'[T]$ has $deg(f_1) < deg(f)$. By the inductive bunothesis f_1 has a solitting field $I'K'$. Let x_2 be the rects of f_2 in L then f_1 solits into l inductive hypothesis, f_1 has a splitting field L/K' . Let x_2, \ldots, x_n be the roots of f_1 in *L*, then *f* splits into linear
factors in *L*, with roots $x_i = x_i - L'$ $K'(x_i - x_i) = K'(x_i - x_i)$. So *L* is a splitting field fo factors in L, with roots x_1, \ldots, x_n , $L = K'(x_2, \ldots, x_n) = K(x_1, \ldots, x_n)$. So L is a splitting field for f over K.

 3 Let us ignore any potential set theoretic nonsense here. This proof goes through just fine without quantifying over all fields, it's just that the proof is a bit longer. What we need is that each time we add a root the up with a finite tower $L = K_n / K_{n-1} / \ldots / K_1 / K_0 = K$, where each $K_{i+1} = K_i (x_{i+1})$, x_1, x_2, x_3 roots of f.
Applying the tower $L = K_n / K_{n-1} / \ldots / K_1 / K_0 = K$, where each $K_{i+1} = K_i (x_{i+1})$, x_1, x_2, x_3 roots of f.

Another way out of set theory hell is to notice that all of these extensions are algebraic, so we are only quantifying over subfields *K ≤ K ′ [≤] ^K* of the algebraic closure.

Theorem 2.30 (uniqueness of splitting fields). Suppose *^f [∈] ^K*[*^T*] is nonzero, *L/K* is a splitting field for *^f*. Let $\sigma : K \hookrightarrow M$ be an extension such that $\sigma f \in M[T]$ splits into linear factors. Then

- (i) *^σ* can be extended to a homomorphism *^τ* : *^L [→] ^M*,
- (ii) if *M* is a splitting field for *σf* over σK , then any τ in (i) is an isomorphism. In particular, any two splitting fields for *^f* over *^K* are *^K*-isomorphic.

Proof. (i) By induction on $n = [L : K]$. If $n = 1$, then $L = K$ and f is a product of linear factors in $K[T]$ so we are done.

Now let *x* ∈ *L* \setminus *K* be a root of an irreducible factor *g* ∈ *K*[*T*] of *f*, with deg(*g*) > 1. Let *y* be a root of σ ∈ *M*[*T*]. Since σ *f* splits in *M* such a root oxists. Thus there oxists σ *i* $\sigma q \in M[T]$. Since *σf* splits in *M*, such a root exists. Thus, there exists $\sigma_1 : K(x) \to M$ such that $\sigma_1(x) = y$ and σ_1 extends σ . Now note that $[L: K(x)] < [L: K]$ by tower law, and L is a splitting field for f over $K(x)$. Furthermore, *^σ*1*^f* ⁼ *σ f* splits in *^M*. Thus, by induction we can extend *^σ*¹ to a homomorphism *^τ* : *^L [→] ^M*.

(ii) Assume *M* is a splitting field for σf over σK , and τ be as in (i). Let $\{x_i\}$ be the roots of *f* in *L*, then the roots of *σf* in *M* are just $\{ \tau(x_i) \}$. Since *M* is a splitting field, $M = \sigma K(\tau(x_1), \ldots, \tau(x_n)) = \tau L$ as
 $L = K(x_i, \ldots, x_n)$ So τ is an isomorphism If $K \subset M$ *a* is the inclusion than τ is a K isomorphism $L \sim M$ $L = K(x_1, \ldots, x_n)$. So *τ* is an isomorphism. If $K \subseteq M$, *σ* is the inclusion, then *τ* is a *K*-isomorphism $L \simeq M$. \square

2.5 Normal extensions

Definition 2.31 (normal extension)

An extension *L/K* is normal if it is algebraic and for every *^x [∈] ^L*, *^mx,K* splits into distinct linear factors over *^L*.

Proposition 2.32. The following are equivalent:

- (i) *L/K* is normal,
- (ii) for every $x \in L$, *L* contains a splitting field for $m_{x,K}$.
- (iii) for every $f \in K[T]$ irreducible, if *f* has a root in *L*, then *f* splits over *L*.

Theorem 2.33 (splitting fields are normal). Let *L/K* be a finite extension. Then *^L* is normal over *^K* if and only if *L* is the splitting firld for some not necessarily irreducible $f \in K[T]$.

Proof. Suppose *L/K* is normal. Write $L = K(x_1, \ldots, x_n)$, then $m_{x_i,K}$ splits in *L*, so *L* is generated by the roots of $f = m$, $x_i \sim S_0 L$ is a splitting field for f over K of $f = m_{x_1,K} \cdots m_{x_n,K}$. So *L* is a splitting field for *f* over *K*.

Conversely, suppose *L* is the splitting field for some $f \in K[T]$. Let $x \in L$, $q = m_{x,K}$. We want to show that *g* splits in *L*. Let *M* be the splitting field for *g* over *L*. $y \in M$ a root for *g*. We want to show that $y \in L$.

Since *L* is a splitting field for *f* over *K*, *L* is a splitting field for *f* over *K*(*x*), and *L*(*y*) is a splitting field for *f* over *K*(*y*). But *x*, *y* are *K*-conjugate, so there exists an isomorphism *K*(*x*) \simeq *K*(*y*). By uniqueness of splitting fields, we have that

$$
[L:K(x)]=[L(y):K(y)]
$$

As $[K(x): K] = [K(y): K]$, computing $[L(y): K]$ along the different paths in

We find that $[L(y) : L] = 1$, so $L(y) = L$, i.e. $y \in L$.

 \Box

Corollary 2.34 (existence of normal closure). Let *L/K* be a finite extension. Then there exists a finite extension *M/L* such that

- (i) *M/K* is a normal extension,
- (ii) if $L \leq M' \leq M$ with M'/K normal, then $M' = M$.

Moreover, any two such extensions are *^L*-isomorphic. We call *^M* the normal closure of *L/K*.

Proof. Write $L = K(x_1, ..., x_k)$ and let $f = m_{x_1, K} \cdots m_{x_k, K}$. Let M be a splitting field for f over L. Then as the *^xⁱ*s are roots of *^f*, *^M* is also a splitting field for *M/K*. So *M/K* is normal. Now let *^M′* be such that *^L [≤] ^M′ [≤] ^M* with M'/K normal. Since $x_i \in M'$, $m_{x_i,K}$ splits in M' for all *i*. So $M' = M$ by the minimality of splitting fields.
For uniqueness, any such M satisfying (i) must contain a splitting field for f, and by the above (ii)

For uniqueness, any such *^M* satisfying (i) must contain a splitting field for *^f*, and by the above, (ii) implies that *^M* is a splitting field for *^f*. The result follows by uniqueness of splitting fields.

2.6 Separability

Definition 2.35 (separable polynomial)

^f [∈] ^K[*^T*] is separable if it splits into distinct linear factors in a splitting field *^L*. That is, it has deg(*f*) distinct roots in *^L*.

Proposition 2.36. Suppose $f \in K[T]$, L/K is an extension, $x \in L$ is a root of *f*. Then *x* is a simple root, i.e. $(T - x)^2$ |/*f* if and only if *f'*(*x*) ≠ 0.

Proof. By the division algorithm, we can write $f = (T - x)g$, then $f' = g + (T - x)g'$, so $f'(x) = g(x)$. \Box

Corollary 2.37. *f* is separable if and only if $gcd(f, f') = 1$.

Proof. Replacing *K* by a splitting field for *f*, we may assume *f* has all of its roots in *K*. Then it is separable if *f f* have no common zeroes which is true if and only if α d(*f f*) = 1 if *f*, *f*^{*'*} have no common zeroes, which is true if and only if $gcd(f, f') = 1$.

Theorem 2.38.

- (i) Let $f \in K[T]$ be irreducible. Then f is separable if and only if $f' \neq 0$.
- (ii) If char(K) = 0, then every irreducible polynomial in $K[T]$ is separable.

(iii) If $char(K) = p > 0$, then an irreducible $f \in K[T]$ is inseparable if and only if $f = g(T^p)$ \overline{a} for some *g* ∈ $K[T]$.

Proof. (i) wlog *f* is monic. Then as *f* is irreducible, $gcd(f, f') | f$ implies that $gcd(f, f') = 1$ or *f*. If $gcd(f, f') = f$, then $f | f'$ But $deg(f') < deg(f)$ so $f' = 0$ is the oply possibility then $f \mid f'$. But deg(f') \lt deg(f), so f'
 \leq $\int_{a}^{f} f(x) dx$ and (iii) units $f \in \sum_{a}^{f} f'$

For (ii) and (iii), write $f = \sum_{i=0}^{d} a_i T^i$, then $f' = \sum_{i=1}^{d} i a_i T^i$ $=\sum_{i=1}^d i a_i T^{i-1}$. So $f' = 0$ if and only if $i a_i = 0$ for all $i = 1, \ldots, d$.

 \Box

In (ii), char(*K*) = 0, so this means that $a_i = 0$ for all $i \ge 1$, so *f* is constant, which is not irreducible. In (iii), $a_i = 0$ for all $p \mid i$, so $f = g(T^p)$ for some $g \in K[t]$.

Definition 2.39 (separable element, separable extension)

Let L/K be an extension. We say that $x \in L$ is separable over K if x is algebraic over K and $m_{x,K}$ is separable. We say that *L/K* is separable if every element of *^L* is separable over *^K*.

Theorem 2.40. Let *x* be algebraic over *K*, L/K any extension in which $m_{x,K}$ splits. Then *x* is separable over K if and only if there are exactly $\deg_K(x)$ K -homomorphisms $K(x) \to L$.

Proof. Recall that the number of such homomorphisms is the number of roots of $m_{x,K}$ in *L*, which is equal to $\text{dea}(\mathbf{x})$ if and only if x is separable. $deg_K(x)$ if and only if *x* is separable.

Notation 2.41. Write $\text{Hom}_K(L, M)$ for the set of *K*-homomorphisms $L \to M$.

Theorem 2.42 (counting embeddings). Let $L = K(x_1, \ldots, x_k)$ be a finite extension of K, M/K any extension. Then $|Hom_K(L,M)| \leq [L:K]$, with equality if and only if

(i) for all *i*, $m_{x_i,K}$ splits into linear factors over M ,

(ii) all *^xⁱ* are separable over *^K*.

if and only if all $m_{x_i,K}$ splits into distinct linear factors over M .

Remark 2.43. We will in fact prove the stronger statement that if *^σ* : *^K [→] ^M* is a homomorphism, then the number of σ homomorphisms $L \to M$ is less than $[L:K]$, with equality if and only if $\sigma m_{x_i,K}$ splits in M .

Proof. We induct on *k*. $k = 0$ is trivial, and for $k \ge 1$, set $K_1 = K(x_1)$, $\deg_X(x_1) = d = [K_1 : K]$. Then set

$$
e = |\text{Hom}_K(K_1, M)| = |\{y \in M \mid m_{x_1,K}(y) = 0\}|
$$

Necessarily, we have that *^e [≤] ^d*. Let *^σ* : *^K [→] ^M* be a *^K*-homomorphism. Applying the induction hypothesis to L/K_1 , we find that there are at most $[L: K_1]$ *σ*-homomorphisms $L \rightarrow M$. So the number of *K*-homomorphisms *^L [→] ^M* is at most

$$
e[L:K_1]\leq d[L:K_1]=[L:K]
$$

If equality holds, then $d = e$, so $m_{x_i,K}$ splits into *d* distinct linear factors over *M*, so (i) and (ii) holds for \mathbb{R}
But we can just permute the x, so (i) and (ii) holds for all x. Conversely if (i) and (ii) ho *x*₁. But we can just permute the *xi*, so (i) and (ii) holds for all *x_i* provious theorem $|Hom_{\mathcal{L}}(K, M)| = d$. So (i) and (ii) holds over previous theorem $\left|\text{Hom}_K(K_1, M)\right| = d$. So (i) and (ii) holds over K_1 , so by induction each $\sigma : K_1 \to M$ has $[L : K_1]$ extensions ot a homomorphism $L \rightarrow M$. Hence $|Hom_K(L, M)| = [L : K]$ as required.

Theorem 2.44 (separably generated is separable). Let $L = K(x_1, \ldots, x_n)$ be a finite extension of *K*, then

 L/K is separable if and only if each x_i is separable.

Proof. If L/K is separable, then by definition the x_i are separable. Conversely, suppose the x_i are separable. Let *M* be a normal closure of L/K , i.e. *M* is the splitting field of $f = m_{x_1,K} \cdots m_{x_n,K}$. Equality holds when counting embeddings, so $|Hom_K(L, M)| = [L : K]$. But if *x* ∈ *L*, then $L = K(x, x_1, ..., x_k)$, so *x* is separable, again by counting embeddings again by counting embeddings.

Corollary 2.45. If L/K is a field extension, $x, y \in L$ are separable over K, then

{x [∈] ^L [|] ^x is separable over *K}*

is a subfield of *^L*.

Proof. The intermediate field extension *^K*(*x, y/K*) is separable.

2.7 Primitive element theorem

Theorem 2.46 (primitive element theorem for separable extensions). Let *K* be an infinite field, $L =$ $K(x_1, \ldots, x_k)$ a finite separable extension. Then there exists $x \in L$ such that $L = K(x)$.

Proof. By induction, we only need to consider the case $k = 2$. Say $L = K(x, y)$, where *x*, *y* are separable over *K*. Let $n = [L : K]$ and *M* be a normal closure for L/K . Then there exists *n* distinct *K*-homomorphisms $\sigma_i: L \to M$. Let $a \in K$, and consider $z = x + ay$. We will choose $a \in K$ such that $L = K(z)$.
Since $L = K(x, u)$, $\sigma(x) = \sigma(x)$, $\sigma(u) = \sigma(u)$ if and only if $i = i$. So consider $\sigma(z) =$

Since $L = K(x, y)$, $\sigma_i(x) = \sigma_j(x)$, $\sigma_i(y) = \sigma_j(y)$ if and only if $i = j$. So consider $\sigma_i(z) = \sigma_i(x) + a\sigma_i(y)$. If $\sigma_i(z) = \sigma_j(z)$, then

$$
\underbrace{(\sigma_i(x) - \sigma_j(x))}_{(i)} + a \underbrace{(\sigma_i(y) - \sigma_j(y))}_{(ii)} = 0
$$

If $i \neq j$, then at least one of (i) and (ii) is nonzero, so there is at most one value of $a \in K$ such that equality holds. Since *K* is infinite, there exists *a* ∈ *K* such that *σ*_{*i*}(*z*) are distinct. But then deg_{*K*}(*z*) = *n*, so □ $L = K(z)$.

Theorem 2.47. Suppose L/K is an extension of finite fields, then $L = K(x)$ for some $x \in L$.

Proof. L^{\times} is cyclic, so letting *x* be a generator of L^{\times} , $L = K(x)$.

 \Box

3 Galois theory

3.1 Automorphisms of fields

Definition 3.1 (automorphism of a field)

Let *^L* be a field, *^σ* : *^L [→] ^L* is an automorphism of *^L* if *^σ* is a bijective homomorphism. Wrire Aut(*L*) for the group of automorphisms of *^L*.

Definition 3.2 (fixed field) If *^S [⊆]* Aut(*L*) write

$$
L^{S} = \{x \in L \mid \sigma(x) = x \text{ for all } \sigma \in S\}
$$

for the subfield of *^L* fixed by *^S*. We call this the fixed field of *^S*.

Definition 3.3 (automorphism of a field extension) Let *L/K* be an extension, define

$$
Aut(L/K) = \{K\text{-automorphisms of } L\} = \{\sigma \in Aut(L) \mid \sigma|_K = id\}
$$

Theorem 3.4. Let L/K be finite. Then $|Aut(L/K)| \leq [L:K]$.

Proof. Taking $M = L$ in the counting embeddings theorem, and noticing that $\text{Hom}_K(L, L) = \text{Aut}(L/K)$, since $\sigma \in \text{Hom}_K(L, L)$ is an injective K-linear man $L \to L$ and L is a finite dimensional K-vector space *^σ [∈]* Hom*^K* (*L, L*) is an injective *^K*-linear map *^L [→] ^L* and *^L* is a finite dimensional *^K*-vector space.

Proposition 3.5. $K = \mathbb{Q}$ and $K = \mathbb{F}_p$ have no nontrivial automorphisms, so for any *L*, Aut(*L*) = Aut(*L*/*K*) where *^K* is the prime subfield of *^L*.

Definition 3.6 (Galois extension)

An extension *L*/*K* is Galois if *L*/*K* is algebraic, and *L*^{Aut(*L/K*) = *K*. If *L/K* is Galois, write Gal(*L/K*) = Λ} Aut(*L/K*) for the Galois group of the extension *L/K*.

Theorem 3.7 (classification of finite Galois extensions). Let *L/K* be a finite extension, and let *^G* = Aut(*L/K*). Then the following are equivalent.

- (i) *L/K* is Galois,
- (ii) *L/K* is normal and separable,
- (iii) *^L* is the splitting field of a separable polynomial over *^K*,
- (iv) *|G|* = [*^L* : *^K*].

If any of these hold, then the minimal polynomial of *^x [∈] ^L* is

$$
m_{x,K} = \prod_{i=1}^{r} (T - x_i) = \prod_{z \in \text{Orb}_G(x)} (T - z)
$$

Proof. (i) \implies (ii) and the minimal polynomial. Let $x \in L$, $Orb(x) = \{x_1, ..., x_r\}$, $f = \prod_{i=1}^r (T - x_i) \in L[T]$
Cloarly $f(x) = 0$, $\Delta \varepsilon$, $\Delta u(t)/K$) permutes the x_i , $f \in L^{G}[T] = K[T]$ so m , $x \in L$, Also since m , $u(\sigma(x)) =$ Clearly, $f(x) = 0$. As Aut(L/K) permutes the x_i , $f \in L^G[T] = K[T]$, so $m_{x,K}$ | f. Also, since $m_{x,K}(\sigma(x)) = \sigma(m_{x,K}(\sigma(x))) = 0$ for all σ oach x is a root of $m_{x,K}$ So $f = m_{x,K}$ and x is soperable over K , $m_{x,K}$ soli $\sigma(m_{x,K}(x)) = 0$ for all σ , each x_i is a root of $m_{x,K}$. So $f = m_{x,K}$ and x is separable over K, $m_{x,K}$ splits in L.
That is L/K is normal and separable. That is, *L/K* is normal and separable.

(ii) \Rightarrow (iii). Since *L/K* is normal, *L* is a splitting field for some $f \in K[T]$. Write $f = \prod_i q_i^{e_i}$, where the *q*_{*i*} distinct irreducible factors of *f*. Then as *L/K* is somarable, the *q*_{*i*} are somarable. So are distinct irreducible factors of *f*. Then as L/K is separable, the q_i are separable. So $g = \prod_i q_i$ is separable, and *L* is also a splitting field for *g*. and *^L* is also a splitting field for *^g*.

(iii) \implies (iv). Say *L* = *K*(*x*₁, . . . , *x*_n) is the splitting field of some separable polynomial *f* ∈ *K*[*T*] with roots x_i . As $m_{x_i,K}$ | f, each $m_{x_i,K}$ splits into distinct linear factors over *L*. So by counting embeddings,

$$
|\text{Aut}(L/K)| = |\text{Hom}_K(L,L)| = [L:K]
$$

 $(iv) \implies (i)$. Suppose $|G| = [L : K]$. Then

$$
G \le \text{Aut}(L/L^G) \le \text{Aut}(L/K)
$$

So $G = \text{Aut}(L/L^G)$, hence by counting embeddings, we have

$$
[L:K] = |G| \le [L:L^G]
$$

But $[L:K] = [L:L^G][L^G:K]$ by tower law, so $L^G = K$.

Corollary 3.8. If L/K is a finite Galois extension, then $L = K(x)$ for some $x \in L$, *x* is separable over *K* with $deg_K(x) = [L:K]$.

Proof. By (ii) in the theorem and the primitive element theorem for finite separable extensions.

3.2 Galois correspondence

Theorem 3.9 (Galois correspondence). Suppose L/K is a finite Galois extension, $G = \text{Gal}(L/K)$. If we have an intermediate extension $K \le F \le L$, then L/F is Galois, $Gal(L/F) \le Gal(L/K)$ is a subgroup. The map θ : {intermediate fields $K \leq F \leq L$ } \rightarrow {subgroups $H \leq G$ } defined by

 $\theta(F) = \text{Gal}(L/F)$

is an order reversing bijection, with inverse $\theta^{-1}(H) = L^H$. Furthermore, we have that

 $[F : K] = [G : \theta(F)]$

Proof. Let $x \in L$, then $m_{x,F}$ | $m_{x,K}$ in *F*[*T*]. As $m_{x,K}$ splits into distinct linear factors in *K*, so does $m_{x,F}$. So *L*/*F* is normal and separable, so *L*/*F* is Galois. By definition Gal(*L*/*F*) \le *G*. Since *LIF* is Galois, $I^{Gal(L/F)} = F$, So $A^{-1} \circ A = id$, Conversely, since *LIF*

Since L/F is Galois, $L^{Gal(L/F)} = F$. So $\theta^{-1} \circ \theta = id$. Conversely, since $H \leq Gal(L/L^H)$ and $|Gal(L/L^H)| \leq L^H$ $[L: L^H]$, suffices to show $[L: L^H] \leq |H|$. Choosing a primitive element, we can assume $L = L^H(x)$ and

$$
f = \prod_{\sigma \in H} (T - \sigma(x)) \in L^H[T]
$$

has *x* as a root. So deg_{*LH*}(*x*) \leq deg(*f*) = |*H*|, so [*L* : *L^H*] \leq |*H*|. Hence $\theta \circ \theta^{-1} =$ id. Order reversing is clear since if $K \leq E \leq E' \leq 1$ then Gal(*LIE*) \leq Gal(*LIE*). Final Order reversing is clear since if $K \le F \le F' \le L$, then $Gal(L/F') \le Gal(L/F)$. Finally, if $F = L^H$ $, \ldots$

$$
[F:K] = \frac{[L:K]}{[L:F]} = \frac{|G|}{|H|} = [G:H]
$$

as *L/F* and *L/K* are Galois.

Proposition 3.10. Let $\sigma \in G$, $H \leq G$ be a subgroup. Then $\sigma(L^H) = L^{\sigma H \sigma^{-1}}$

Proof.

$$
L^{\sigma H \sigma^{-1}} = \{ x \in L \mid \sigma \tau \sigma^{-1}(x) = x \text{ for all } \tau \in H \}
$$

=
$$
\{ x \in L \mid \tau \sigma^{-1}(x) = \sigma^{-1}(x) \}
$$

=
$$
\{ \sigma(y) \mid y \in L, \tau(y) = y \}
$$

=
$$
\sigma(L^H)
$$

Proposition 3.11 (normal subgroups and extensions). Fix *^H [≤] ^G*, then the following are equivalent.

- (i) L^H/K is Galois,
- (ii) L^H/K is normal,
- (iii) for all $\sigma \in G$, $\sigma(L^H) = L^H$,

 \Box

 \Box

(iv) $H < G$ is normal.

If any of the above hold, then $Gal(L^H/K) \cong G/H$.

Proof. Since *L*/*K* is separable, so is *L*^{*H*}/*K*. So (i) and (ii) are equivalent. Let $F = L^H$ and $x \in F$. Then the roots of $m_{x,K}$ in *L* is precisely (with multiplicity) $Orb_G(x)$, since L/K is Galois.

Thus, $m_{x,K}$ splits in *F* if and only if for all $\sigma \in G$, $\sigma(x) \in F$. Therefore, we have that F/K is normal if and only if $\sigma F \subseteq F$. But $[\sigma F : K] = [F : K]$, so F is normal if and only if $\sigma F = F$. By the previous proposition, F is normal if and only if $H = \sigma H \sigma^{-1}$ for all σ , so (ii), (iii) and (iv) are equivalent.
If any of (i), (iv) halds than for all $\sigma \subset C$, $\sigma F = F$. So we have a homomorp

If any of (i)-(iv) holds, then for all $\sigma \in G$, $\sigma F = F$. So we have a homomorphism $G \to \text{Gal}(F/K)$ given by $\sigma \mapsto \sigma|_F$. This has kernel $\{\sigma \in G \mid \sigma \text{ fixes } F\} = H$, so by the isomorphism theorem,

$$
G/H \sim \text{im}(G \to \text{Gal}(G/K)) \leq \text{Gal}(F/K)
$$

But we know the index, so $Gal(F/K) \cong G/H$.

3.3 Galois group of polynomials

Let $f \in K[T]$ be separable, x_1, \ldots, x_n the roots of f in a splitting field L, then G acts on $\{x_1, \ldots, x_n\}$ by a permutation, since $\sigma(f(x)) = f(\sigma(x))$. Furthermore, if $\sigma(x_i) = x_i$ for all *i*, as $L = K(x_1, \ldots, x_n)$, $\sigma = id$. So we
have an injective homomorphism *L*: $G \leftrightarrow S$ have an injective homomorphism $\iota : G \hookrightarrow S_n$.

Definition 3.12 (Galois group of a polynomial) $Gal(f/K) = im(i) \leq S_n$ is called the Galois group of *f* over *K*.

Proposition 3.13. Suppose *^f* is separable. The following are equivalent.

- (i) *^f* is monic and irreducible,
- (ii) $Gal(f/K)$ is a transitive subgroup,
- (iii) for all $i, j \in \{1, \ldots, n\}$, there exists $\sigma \in \text{Gal}(f/K)$ such that $\sigma(i) = j$,
- (iv) Gal(f/K) acting on $\{1, \ldots, n\}$ has only one orbit.

Proof. We only need to show (i) and (ii) are equivalent, the rest are clear. Let *^x* be a root of *^f* in a splitting field *L*. $m_{x,K}$ divides *f* and is irreducible, so *f* is irreducible if and only if $m_{x,K} = f$. But the roots of $m_{x,K}$ is Orb(x) as L/K is Galois, since *f* is separable. So *f* is irreducible if and only if every root of *f* is in the orbit of x if and only if G acts transitively on the roots of *f ^x*, if and only if *^G* acts transitively on the roots of *^f*.

Proposition 3.14. *f* is separable if and only if $Disc(f) \neq 0$.

Proof. Say *f* is monic, then in a splitting field *L* for *f*,

$$
f = \prod_{i=1}^n (T - x_i)
$$

so $Disc(f) = 0$ if and only if *f* has repeated roots (in *L*).

Proposition 3.15. Suppose char(*K*) \neq 2, and *L* is a splitting field for $f \in K[T]$ separable, $G = \text{Gal}(f/K)$. Then the the fixed field of $G \cap A_n = K(\Delta(x_1, \ldots, x_n))$, where x_1, \ldots, x_n are the roots of *f* in *L*. So $Gal(f/K) \leq A_n$ if and only if Disc(*f*) is a square in *K*.

 \Box

Proof. Given $\pi \in S_n$, we have that

$$
\prod_{i < j} (T_{\pi(i)} - T_{\pi(j)}) = \text{sign}(\pi) \prod_{i < j} (T_i - T_j)
$$

so if *σ ∈ G*, *σ*Δ = sign(*σ*)Δ. Since char(*K*) \neq 2, 1 \neq −1. As Δ \neq 0, this impliex that $Δ ∈ K$ if and only if $Z = A_n$ and $Δ$ lies in the fixed field of $G ∩ A_n$. As $[F : K] = [G �cdot G ∩ A_n] = 1$ or $2F = K(Δ)$ *G* ⊆ *A_n* and ∆ lies in the fixed field of *G* ∩ *A_n*. As $[F : K] = [G : G \cap A_n] = 1$ or 2, $F = K(\Delta)$.

4 Finite fields

Theorem 4.1 (existence and uniqueness of finite fields). For all *n*, there exists a field *F* with order $q = p^n$
Any such field is a splitting field for the polynomial $f = T^q$, T aver \mathbb{F} , in particular, any two .
. Any such field is a splitting field for the polynomial $f = T^q - T$ over \mathbb{F}_p . In particular, any two finite fields of the same order are isomorphic. fields of the same order are isomorphic.

Proof. Suppose *F* is a field with $q = p^n$ elements. Then if $x \in F^{\times}$, $x^{q-1} = 1$ by Lagrange's theorem. So for every $x \in F$, $x^q = x$. Thus, $f = \prod_{x \in F} (T - x)$ splits into linear factors in *F*, and not in any proper subfield (as
there are not enough elements). So *F* is a splitting field for *f* over **F**. By uniqueness of splitting there are not enough elements). So F is a splitting field for f over \mathbb{F}_p . By uniqueness of splitting fields, any two such *^F* are isomorphic.

On the other hand, let L/\mathbb{F}_p be a splitting field for $f = T^q - T$, and let $F \subseteq L$ be the fixed field of $\cdot \times \mapsto x^q$. Then $F = \{x \mid x^q = x\}$ is the reats of f in L , So $|F| = q$ and $F = L$ $\varphi_p^n : x \mapsto x^q$. Then $F = \{x \mid x^q = x\}$ is the roots of *f* in *L*. So $|F| = q$ and $F = L$.

Notation 4.2. We write \mathbb{F}_q for any finite field of order $q = p^n$.

Theorem 4.3. $\mathbb{F}_{p^n}/\mathbb{F}_p$ is Galois, with Galois group $\cong C_n$, generated by ϕ_p .

Proof. $T^q - T = \prod_{x \in \mathbb{F}_q} (T - x)$ is separable, so $\mathbb{F}_q / \mathbb{F}_p$ is Galois. Let *G* ≤ Gal($\mathbb{F}_q / \mathbb{F}_p$) be the subgroup generated by ϕ_p . Then $\mathbb{F}_q^G = \{x \mid x^p = x\} = \mathbb{F}_p$. Thus by the Galois correspondence, $G = \text{Gal}(\mathbb{F}_q/\mathbb{F}_p)$.

Corollary 4.4. \mathbb{F}_{p^n} has a unique subfield of order p^m for each $m \mid n$, and no others. If $m \mid n$, then \mathbb{F}_{p^n} is the fixed field of A^m $\mathbb{F}_{p^m} \leq \mathbb{F}_{p^n}$ is the fixed field of ϕ_p^m .

Proof. By Galois correspondence.

Theorem 4.5. Suppose $f \in \mathbb{F}_p[T]$ separable, $deg(f) = n$, whose irreducible factors have degree n_1, \ldots, n_r . Then Gal(f/\mathbb{F}_p) $\leq S_n$ is cyclic, and generated by ana element of cycle type (n_1, \ldots, n_r) . In particular, $\left| \mathrm{Gal}(f/\mathbb{F}_p) \right| = \mathrm{lcm}(n_1, \ldots, n_r).$

Proof. Let *L* be a splitting field for *f* over \mathbb{F}_p , where the roots of *f* are x_1, \ldots, x_N . Then Gal(L/\mathbb{F}_p) is cyclic and generated by ϕ_p . As the irreducible factors of *f* are the minimal polynomials of the *x*_is, and the set of roots of $m_k \times$ is the orbit of ϕ_p on *x_i*. the cucle tupe of ϕ_p is (n_1, \ldots, n_r) . *m*_{*x*_{*i*},*K* is the orbit of ϕ_p on *x*_{*i*}, the cycle type of ϕ_p is (n_1, \ldots, n_r) .}

Theorem 4.6 (reduction mod *p*). Let $f \in \mathbb{Z}[T]$ be a monic separable polynomial, *p* prime, $n = \text{deg}(f)$. Suppose the reduction $\overline{f} \in \mathbb{F}_p[T]$ is also separable, then $Gal(\overline{f}/\mathbb{F}_p) \leq Gal(f/\mathbb{Q})$ as subgroups of S_n .

Proof. Non examinable, so omitted.

 \Box

Corollary 4.7. With the same assumptions as in the theorem, suppose $\bar{f} = q_1 \cdots q_r$ product of irreducibles, with $\deg(g_i) = n_i$. Then $Gal(f/\mathbb{Q})$ has an element with cycle type (n_1, \ldots, n_r) .

5 Cyclotomic and Kummer extensions

5.1 Primitive roots of unity

Lemma 5.1. Let $n > 1$, $a \in \mathbb{Z}$, $(a, n) = 1$, then the map $[a]$: $C_n \to C_n$ given by $g \mapsto g^g$
of C_n Eurthermore, the map $(\mathbb{Z}/n\mathbb{Z})^{\times} \to Aut(C_n)$ given by $g \mapsto [a]$ is an isomorphism is an automorphism of *C_n*. Furthermore, the map $(\mathbb{Z}/n\mathbb{Z})^{\times} \to \text{Aut}(C_n)$ given by $a \mapsto [a]$ is an isomorphism.

Proof. [*a*] is obviously a homomorphism, and it is an automorphism by Bezout's theorem. So we have an injection $(\mathbb{Z}/n\mathbb{Z})^{\times}$ → Aut(*C*) given by $a \mapsto [a]$, which is a homomorphism. To show that this is surjective, notice that if $\phi \in Aut(C)$, then for a generator a of C , $\phi(a) = a^a$ for some a , So $\phi = [a]$ $\phi \in$ Aut(*C*), then for a generator *g* of *C*, $\phi(g) = g^a$ for some *a*. So $\phi = [a]$.

Definition 5.2 (roots of unitu) Let *K* be a field, $n > 1$, define the group of *n*-th roots of unity. This is a finite subgroup of K^{\times} cyclic, of order dividing *ⁿ*.

$$
\mu_n(K) = \{x \in K \mid x^n = 1\}
$$

, so it is

Definition 5.3 (primitive root of unity)

We say that $\zeta \in \mathfrak{p}_n(K)$ is a primitive *n*-th root of unity if ord(ζ) = *n* in $\mathfrak{p}_n(K)$.

Proposition 5.4. The following are equivalent:

- (i) A primitive *ⁿ*-th root of unity *^ζ* exists,
- $| \mu_n(K) | = n$,
- (iii) $f = T^n 1$ splits into distinct linear factors in K ,

In any of the above cases, we must have that char(K) |/n.

Proof. (i) and (ii) are equivalent by definition, and (ii) and (iii) are equivalent by definition. If $T^n - 1$ is separable, we must have $f' \neq 0$, i.e. $n \neq 0$, so char(*K*) |/n.

Until the end of this subsection, assume either char(K) = 0 or char(K) = $p > 0$, p |/n. So n-th roots of unity always exist (in some splitting field).

Definition 5.5 (cyclotomic extension) Let *L/K* be a splitting field for $f = Tⁿ - 1$. We call *L/K* a cyclotomic extension.

Proposition 5.6. Let *L/K* be a cyclotomic extension. Then

(i) L/K is Galois, say $G = \text{Gal}(L/K)$,

(ii) $|\mu_n(L)| = n$, and so a primitive root of unity ζ_n exists.

(iii) $L = K(\zeta_n)$,

- (iv) there exists an injective homomorphism χ_n : $G \to (\mathbb{Z}/n\mathbb{Z})^{\times}$, such that if $\chi(a) = a \mod n$ then $\sigma(\overline{\chi}) = \overline{\chi}^a$ is particular. G is abelian $\sigma(\zeta) = \zeta^a$. In particular, *G* is abelian.
- (v) *^χⁿ* is an isomorphism if and only if *^G* acts transitively on the set of primitive roots of unity in *^L*.

We call *^χⁿ* the cyclotomic character of *L/K*.

Proof. For (i) and (ii) suffices to note that *Tⁿ* − 1 is separable. The splitting field of a separable polynomial is
Calois, and there are *n* distinct reets of *Tⁿ* − 1 so lay (()| − n Galois, and there are *n* distinct roots of $T^n - 1$, so $|\psi_n(L)| = n$.
For (iii), note that $\psi_l(L) = \langle \zeta \rangle$, so $l = \mathcal{K}(1, \overline{\zeta})$, $\overline{\zeta^{n-1}} = \overline{\zeta^{n-1}}$

For (iii), note that $\mu_n(L) = \langle \zeta \rangle$, so $L = K(1, \zeta, \dots, \zeta^{n-1}) = K(\zeta)$.
(iv) Consider the action of G on L In permutes $\mu_n(L)$ and

(iv) Consider the action of *^G* on *^L*. In permutes **^µ***ⁿ*(*L*), and if *ζ, ζ′* are roots of unity, *^σ [∈] ^G*, then $\sigma(\zeta\zeta') = \sigma(\zeta)\sigma(\zeta')$, so $\sigma \in \text{Aut}(\mathfrak{p}_n(L))$. As $L = K(\zeta_n)$, $\sigma(\zeta_n) = \zeta_n$ if and only if $\sigma = id$. So we have an injective homomorphism $C \to \text{Aut}(\mathfrak{p}_n(L)) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$ $\lim_{h \to 0} \frac{f(h+h) - f(h)}{h} \cong \lim_{h \to 0} \frac{f(h+h) - f(h)}{h}$

(v) ζ^q is primitive if and only if (a, n)

. (v) ζ_n^a is primitive if and only if $(a, n) = 1$, so by considering the *G*-orbit of ζ_n , we get the required result.

Definition 5.7 (cyclotomic polynomial) The *n*-th cuclotomic polynomial is

$$
\Phi_n(T) = \prod_{a \in (\mathbb{Z}/n\mathbb{Z})^\times} (T - \zeta_n^a)
$$

Proposition 5.8.

- (i) ^Φ*ⁿ [∈] ^K*[*^T*].
- (ii) We have the recurrence formula

$$
\Phi_n = \frac{T^n - 1}{\prod_{d|n, d < n} \Phi_d}
$$

so in fact ^Φ*ⁿ* does not depend on *^K*.

Proof. For (i), as *G* permutes the primitive *n*-th roots of unity in *L*, Φ_n has coefficients in $L^G = K$.
For (ii), note that if $x^n - 1$, then x is a primitive *d* th root of unity for some *d* | *n*, so we have For (ii), note that if $x^n = 1$, then *x* is a primitive *d*-th root of unity for some *d* | *n*, so we have that

$$
T^n - 1 = \prod_{d|n} \Phi_d(T)
$$

Theorem 5.9 (irreducibility of cyclotomic polynomials over Q). Let $K = \mathbb{Q}$, then χ_n is an isomorphism for every *n*. In particular, $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \varphi(n)$, and Φ_n is irreducible over \mathbb{Q} .

Proof. The three statements are equivalent, so suffices to show any one of them. Note that *^χⁿ* is an isomorphism if and only if for all primes $p \mid /n$, $p \mod n \in (\mathbb{Z}/n\mathbb{Z})^\times$ is in the image of χ_n , by factoring a as a product of primes if a is continue to p . primes if *^a* is coprime to *ⁿ*.

Fix a prime p with p $|/n$. Let $f = m_{\zeta, \mathbb{Q}}$ and $g = m_{\zeta^p, \mathbb{Q}}$. If $f = g$, then $\zeta^p \in \text{Orb}_G(\zeta)$, so p mod $n \in \text{im}(\chi_n)$ and we are done as *^p* is arbitrary.

Suppose not. Then $(f, g) = 1$ and $f, g \mid T^n - 1$, so $fg \mid T^n - 1$. As ζ is a root of $g(T^p)$, $f \mid g(T^p)$). Reducing mod *^p*, we get that

$$
\overline{f} \mid \overline{g(T^p)} = \overline{g(T)^p}
$$

Now \overline{f} , \overline{g} divides $T^n - 1$ in $\mathbb{F}_p[T]$, which is separable as $p \mid n$, so $\overline{f} \mid (\overline{g})^p$ implies that $\overline{f} \mid \overline{g}$. But \overline{f}^2 | \overline{fg} | $T^n - 1$. Contradiction as $T^n - 1$ separable.

Proposition 5.10 (irreducibility of cyclotomic polynomials over \mathbb{F}_p). Let $K = \mathbb{F}_p$, $(n, p) = 1$. Then

- (i) χ_n : $G \to \langle p \mod n \rangle \leq (\mathbb{Z}/n\mathbb{Z})^{\times}$ is an isomorphism, with $\chi_n(\phi_p) = p \mod n$.
- (ii) $r = [L : K] = |\langle p \mod n \rangle| = \text{ord}(p \mod n)$,
- (iii) *^φ^p* has cycle type (*r, . . . , r*) acting as a permutation of the roots of ^Φ*ⁿ*.

Proof. $\phi_p(\zeta) = \zeta^p$, so $\chi_n(\phi_p) = p \mod n$, which implies that $\chi_n(G) = \langle p \mod n \rangle$ as $G = \text{Gal}(L/K)$, L/K is an extension of finite fields, with G generated by ϕ . Then $[L:K] = |C| = |I(\alpha)|$ extension of finite fields, with *G* generated by ϕ_p . Then $[L : K] = |G| = |\langle p \rangle|$.

If $(a, n) = 1$, then

$$
\phi_p^k(\zeta^a) = \zeta^{ak} \iff \phi_p^k(\zeta) = \zeta \iff r \mid k
$$

so the orbits of ϕ_p acting on the primitive roots of unity all have size *r*.

5.2 Artin's theorem

Theorem 5.11 (Artin's theorem on invariants). Let *L* be a field, $G \leq$ Aut(*L*) be a finite subgroup. Then $L^G = \{x \in L \mid \sigma(x) = x \text{ for all } \sigma \in G\}$ is a subfield of L, and $[L : L^G] = |G|$. In particular, L/L^G is a Galois extension with Galois group G extension with Galois group *^G*.

Proof. Let $K = L^G$ and $x \in L$. Then if $Orb_G(x) = \{\sigma_1(x), ..., \sigma_r(x)\}$, x is a root of $f = \prod_{i=1}^r (T - \sigma_i(x)) \in L^G[T] = K[T]$. So x is separable over K, and $deg_K(x) \le |G|$. Furthermore, f is irreducible. Suppose there over the $f = f, f$. T exists $f_1, f_2 \in K[T]$ such that $f = f_1 f_2$. Then

$$
f_1 = \prod_{i \in I_1} (T - \sigma_i(x)) \quad \text{and} \quad f_2 = \prod_{i \in I_2} (T - \sigma_i(x))
$$

where $l_1 \cup l_2 = \{1, \ldots, r\}$, l_1, l_2 disjoint. Now for any $\sigma \in G$, $\sigma f_1 = f_1$, so σ fixes $\{\sigma_i(x) \mid i \in l_1\}$. Hence we must have that $I_1 = \emptyset$ or $I_1 = \{1, \ldots, r\}$, i.e. one of f_1, f_2 is constant. So *f* is irreducible, and *f* is the minimal polynomial of *^x* over *^K*.

Now choose *y* ∈ *L* with deg_K(*y*) maximal. We claim that *L* = *K*(*y*). Suppose note, then choose *x* ∈ *L*/*K*(*y*). Suppose note, then choose *x* ∈ *L*/*K*(*y*). By above, *x*, *y* are separable over *K*, so by the primitive element theorem, there exists $z \in L$ such that *K*(*z*) = *K*(*x, y*) ⊇ *K*(*y*). So deg_{*K*}(*z*) > deg_{*K*}(*y*). Contradiction.

Finally, we want to show that the minimal polynomial of *y* over *L^G* has degree *|G|*. Equivalently, \Box $|Stab_G(y)| = 1$. But this is immediate since $Stab_G(y)$ acts tirvially on *L*.

Theorem 5.12. Let *K* be a field, $L = K(X_1, \ldots, X_n)$ field of rational functions, $G = S_n$ acts on *L* by permuting the variables. Then $G \leq \text{Aut}(L)$, with

$$
L^G = k(S_1, \ldots, S_n)
$$

where S_k are the elementary symmetric polynomials.

Proof. ⊇ is clear, so we will show the reverse inclusion. Given $f/g \in L^G$, $f, g \in k[X_1, \ldots, X_n] = R$ so for every $g \in G$, $f/g = \int g g g g$ and the units in B are the constants. So $\sigma \in G$, $f/g = (\sigma g)/(\sigma g)$. Gauss' lemma implies that *R* is a UDF,a nd the units in *R* are the constants. So $\sigma f = \sigma f$ and $\sigma g = \sigma g$ for some $\sigma g \in K^\times$. As *C* is finite of order $N = \mu f = \sigma Nf = \sigma Nf$ so $\sigma N = 1$. But $\sigma f = c_{\sigma} f$ and $\sigma g = c_{\sigma} g$ for some $c_{\sigma} \in K^{\times}$. As *G* is finite, of order $N = n!$, $f = \sigma^{N} f = c_{\sigma}^{N} f$, so $c_{\sigma}^{N} = 1$. But then fg^{N-1} , $g^{N} \in R^{G} = k[S_1, \ldots, S_n]$, so $f/g \in \text{Frac}(R^{G}) = k(S_1, \ldots, S_n)$.

Corollary 5.13. If $M = k(X_1, \ldots, X_n)$ and $L = M^{S_n} = K(S_1, \ldots, S_n)$, then L/K is a finite Galois extension with Galois group *^Sⁿ*. In particular, if

$$
f = T^{n} - S_1 T^{n-1} + \dots + (-1)^{n} S_n \in L[T]
$$

Then *M* is a splitting field for *f* over *L* and $Gal(f/L) = S_n$.

Corollary 5.14. Given any finite group *^G*, there exists a Galois extension *L/K* with Galois group *^G*.

Remark 5.15. This is in general false if we fix *^K*.

5.3 Constructible numbers

We will consider the following three plane geometry constructions. (A): Intersection of lines

Given P_1 , P_2 , Q_1 , $Q_2 \in \mathbb{R}^2$ with $P_i \neq Q_i$, we can construct the intersection of the lines P_1Q_1 and P_2Q_2 ,

assuming the lines are not parallel. (B): Intersection of circles

Given P_1 , P_2 , Q_1 , $Q_2 \in \mathbb{R}^2$, we can construct the intersection of circles with centre P_i through Q_i
(C): Intersection of line and circle .

(C): Intersection of line and circle

Given P_1 , P_2 , Q_1 , $Q_2 \in \mathbb{R}^2$, we can construct the intersection of the line P_1Q_1 and the circle with centre P_2 through Q_2 .

Definition 5.16 (constructible number)

We say that $(x, y) \in \mathbb{R}^2$ is constructible from $\{(x_1, y_1), \ldots, (x_n, y_n)\}$ if it can be obtained from a finite
sequence of constructions (A) (B) and (C) involving the points (x, u_1) and any constructed in a province sequence of constructions (A), (B) and (C), involving the points (*x_i, y_i*) and any constructed in a previous
stop

We say that $x \in \mathbb{R}$ is constructible if $(x, 0)$ is constructible from $\{(0, 0), (1, 0)\}.$

Definition 5.17 (constructible subfield)

Suppose $K \leq R$ is a subfield. We say that K is constructible if there exists fields

$$
\mathbb{Q} = F_0 \le F_1 \le \cdots \le F_n \le \mathbb{R}
$$

and $a_i \in F_i$ such that

$$
(i) K \leq F_n,
$$

- (ii) $F_i = F_{i-1}(a_i)$,
- (iii) a_i^2 ∈ F_{i-1}

Proposition 5.18. Suppose *K* is constructible. Then $[K : \mathbb{Q}] = 2^m$ for some *m*.

Proof. We have that $[F_n : \mathbb{Q}]$ is a power of 2 by the tower law, and that (ii) and (iii) imply that $[F_i, F_{i-1}] \leq 2$.
Posult follows by (i) and tower law Result follows by (i) and tower law.

Theorem 5.19. If $x \in \mathbb{R}$ is constructible, then $K = \mathbb{Q}(x)$ is constructible.

Proof. Elementary geometry shows that (A) involves solving a linear equation, and (B) and (C) involves solving a quadratic equation. In both cases, the results can be obtained by adjoining (at most) one square root a quadratic equation. In both cases, the results can be obtained by adjoining (at most) one square root.

Lemma 5.20. If *m* is a positive integer such that $2^m + 1$ is prime, then *m* is a power of 2.

Proof. If *^q* is odd, then we have a nontrivial factorisation

$$
2^{qr} + 1 = (2^r + 1)(2^{qr-r} - 2^{qr-2r} + \dots + 1)
$$

Theorem 5.21 (Gauss). A regular *ⁿ*-gon is constructible, i.e. we can construct cos(2*π/n*) if and only if $n = 2^m p_1 \cdots p_k$, p_1, \ldots, p_k distinct Fermat primes, i.e. primes of the form 2^{2^k} + 1.

Proof. Let $x = \cos(2\pi/n)$, $\zeta_n = \exp(2\pi i/n)$. Then $\zeta_n^2 - 2x\zeta_n + 1 = 0$, so we have that $[\mathbb{Q}(\zeta_n) : \mathbb{Q}(x)] = 2$.
Therefore if x is constructible $[\mathbb{Q}(Z) : \mathbb{Q}]$ is a newer of 2. But $[\mathbb{Q}(Z) : \mathbb{Q}] = \varphi(n)$. Therefore, if *x* is constructible, $[\mathbb{Q}(\zeta_n) : \mathbb{Q}]$ is a power of 2. But $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \varphi(n)$.

Let $n = p_1^{e_1} \cdots p_r^{e_r}$, then $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \prod p_i^{e_i-1}(p-1)$. This is a power of two if and only if for all p_i odd, we haev $e_i = 1$ and $p - 1$ is a power of 2 so $\varphi(n)$ is a power of two if and only if *n* is of the required form.
Now suppose a bas the required form so $\varphi(n) = 2^m$ and $\mathbb{O}(\zeta) / \mathbb{O}$ is Calgis with Calgis group

Now suppose *n* has the required form, so $\varphi(n) = 2^m$, and $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ is Galois, with Galois group $G \simeq (\mathbb{Z}/n\mathbb{Z})^\times$
x 2^m elements. Then there exists subgroups , *m* elements. Then there exists subgroups

$$
G = H_0 \ge H_1 \ge \cdots \ge H_m = 1
$$

such that $[H_i: H_{i+1}] = 2$. This follows from GRM, where we showed a *p*-group has subgroups of all possible
org. Applying the Galeis correspondence, we get $K = \mathbb{C}(Z)^{H_i}$ and that $\mathbb{C}(Z)$ is constructible. orders. Applying the Galois correspondence, we get $K_i = \mathbb{Q}(\zeta_n)^{H_i}$ and that $\mathbb{Q}(\zeta_n)$ is constructible.

5.4 Kummer extensions

Theorem 5.22 (linear independence of characters). Let *G* be a group, *L* a field, $\chi_1, \ldots, \chi_n : G \to L^\times$ distinct group homomorphisms. Then $\sigma_1, \ldots, \sigma_n$ are linearly independent.

Proof. By induction on *n*. *n* = 1 is trivial. Now suppose we have $y_1, \ldots, y_n \in L$ such that for all $q \in G$,

$$
y_1\chi_1(g) + \cdots + y_n\chi_n(g) = 0 \qquad \qquad (\text{(*)})
$$

As the homomorphisms are distinct, choose $h \in G$ such that $\chi_1(h) = \chi_n(h)$. As the χ_i are homomorphisms, putting *hg* into (*), we get

$$
y_1\chi_1(h)\chi_1(g)+\cdots+y_n\chi_n(h)\chi_n(g)=0
$$

Now subtracting *^χⁿ*(*h*) *·* (*∗*), we get

$$
y'_{1}\chi_{1}(g)+\cdots+y'_{n-1}\chi_{n-1}(g)=0
$$

where $y_i' = y_i(\chi_i(h) - \chi_n(h))$. By induction, all $y_i' = 0$, as $\chi_1(h) \neq \chi_n(h)$, so $y_1 = 0$. Hence by the induction othosis, $y_2 = y_1 - 0$ hypothesis, $y_2 = \cdots = y_n = 0$.

Corollary 5.23 (linear independence of field embeddings). Suppose *K, L* are fields, $\sigma_1, \ldots, \sigma_n : K \to L$ are distinct field homomorphisms. If $y_1, \ldots, y_n \in L$ are such that $y_1 \sigma_1(x) + \cdots + y_n \sigma_n(x) = 0$ for all $x \in K$, then $y_1 = \cdots = y_n = 0$.

Proof. Set $G = K^{\times}$ in the theorem.

Theorem 5.24. Suppose *K* contains a primitive *n*-th root of unity $\zeta = \zeta_n$, and we have an extension $L = K(x)$, with $x^n = a \in K^\times$ $, \ldots$

(i) L/K is a splitting field for $f = T^n - a$, L/K is Galois with Gal(L/K) cyclic.

(ii) $[L: K] = \min \{ m \ge 1 \mid x^m \in K \}.$

Proof. (i) As K has n distinct roots of unity ζ^i , f has n distinct roots in L, i.e. $f(T) = \prod_i (T - x\zeta^i)$. So L/K is a solitting field for the separable polynomial $T^n - a$ so L/K is Galois. a splitting field for the separable polynomial $T^n - a$, so *L*/*K* is Galois.
Now given $a \in \text{Gal}(L/K) - C$, $f(a(x)) = 0$, so $a(x) - x^2$ for some i

Now given *σ* ∈ Gal(*L*/*K*) = *G*, *f*(*σ*(*x*)) = 0, so *σ*(*x*) = *x*ζ^{*i*} for some *i* ∈ {0, . . . , *n* − 1}. This gives us a map θ : $G \rightarrow \mu_n(K) \simeq \mathbb{Z}/n\mathbb{Z}$, given by

$$
\theta(\sigma) = \frac{\sigma(x)}{x} = \zeta^i
$$

To see that this is a homomorphism, suppose *σ, τ [∈] ^G*, as *^ζ [∈] ^K*, *^τ*(*θ*(*σ*)) = *^θ*(*σ*), so we have that

$$
\theta(\tau\sigma) = \frac{\tau(\sigma(x))}{x} = \tau \left(\frac{\sigma(x)}{x}\right) \frac{\tau(x)}{x} = \tau(\theta(\sigma))\theta(\tau) = \theta(\sigma)\theta(\tau)
$$

Furthermore, *θ* is injective, since $θ(σ) = 1$ if and only if $σ(x) = x$, which is true if and only if $σ = id$. So *G* is isomorphic to a subgroup of a cyclic group, so it is cyclic.

For (ii), if $m > 1$, since L/K is Galois,

$$
x^m \in K \iff \forall \sigma \in G, \sigma(x^m) = x^m \iff \forall \sigma \in G, \theta(\sigma)^m = 1 \iff |G| = [L:K] | m
$$

Corollary 5.25. Suppose *K* contains a primitive *n*-th root of unity ζ_N , then for $a \in K^\times$, $f = T^n - a$ is irreducible in $K[T]$ if and only if a is not a *d* th nower in *K* for any *d* | *n d* + 1 irreducible in $K[T]$ if and only if *a* is not a *d*-th power in *K* for any *d* | *n*, *d* \neq 1.

Proof. Let $L = K(x)$, where $x^n - a$. Then $m_{x,K}$ divides *f*, so *f* is irreducible if and only if $m_{x,K} = f$, which is true if and only if $|C| - |I + K| = n$. Now suppose $n = md, d > 1$. Then *g* is a *d* th power in K if and only true if and only if $|G| = [L : K] = n$. Now suppose $n = md$, $d > 1$. Then *a* is a *d*-th power in *K* if and only if $x^m \in K$ which is true if and only if $|G| \mid m$ *x ^m [∈] ^K*, which is true if and only if *|G| | ^m*.

Definition 5.26 (Kummer extension) Extensions of the form $L = K(x)$, where $x^n = a \in K^\times$, and $\zeta_n \in K$ are called Kummer extensions.

Theorem 5.27. Suppose *^K* contains a primitive *ⁿ*-th root of unity *^ζ*, let *L/K* be a Galois extension, with Gal(*L*/*K*) cyclic of order *n*. Then $L = K(x)$ for some *x* such that $x^n = a \in K^\times$
That is if *K* sontains a primitive *n* th root of unity than *LIK* is a Kymmor.

. That is, if *^K* contains a primitive *ⁿ*-th root of unity, then *L/K* is a Kummer extension if and only if *L/K* is Galois, with Gal(*L/K*) cyclic.

Proof. Let $G = \text{Gal}(L/K) = \{1, \sigma, \ldots, \sigma^{n-1}\}\$. Define the Langrange resolvent

$$
R(y) = \sum_{j=0}^{n-1} \zeta^{-j} \sigma^j(y) \in L
$$

Then if $x = R(y)$, we have that

$$
\sigma(x) = \sum_{j=0}^{n-1} \zeta^{-j} \sigma^{j+1}(y) = \sum_{j=0}^{n-1} \zeta^{1-j} \sigma^j(y) = \zeta x
$$

So $\sigma(x^n) = \zeta^n x^n = x^n$, and $x^n \in K$. By linear independence of field emebeddings, there exists $y \in L$ such $\sigma(y) = \sigma(x) + \sigma(x)$ that $R(y) \neq 0$. As $\sigma^i(x) = \zeta^i(x)$, the $\sigma^i(x)$ are distinct. Hence $\deg_K(x) = n$ and $L = K(x)$.

6 Trace and norm

Definition 6.1 (multiplication map)

Let L/K be a field extension, $x \in L$, then the map $U_x : L \to L$ given by $U_x(q) = xy$ is called the multiplication map. In particular, U_x is a K-linear map.

Definition 6.2 (trace, norm, characteristic polynomial) Let *L/K* be a field extension. Then the trace and norm of *^x [∈] ^L* are

$$
Tr_{L/K}(x) = tr(U_x) \text{ and } N_{L/K}(x) = det(U_x)
$$

and the characteristic polynomial of *^x* is

$$
f_{x,L/K} = \det(T \cdot I - U_x)
$$

Lemma 6.3. For *x*, *y* ∈ *L*, *a* ∈ *K*, *n* = [*L* : *K*], we have that

- (i) $Tr_{L/K}(x + y) = Tr_{L/K}(x) + Tr_{L/K}(y)$ and $N_{L/K}(xy) = a_{L/K}^N(x)N_{L/K}(y)$,
- (ii) $N_{I/K}(x) = 0$ if and only if $x = 0$,
- (iii) $Tr_{L/K}(1) = n$ and $N_{L/K}(1) = 1$,
- (iv) $\text{Tr}_{L/K}(ax) = a \text{Tr}_{L/K}(x)$ and $N_{L/K}(ax) = a^n N_{L/K}(x)$

So Tr_{L/K} is a K-linear map, and $N_{L/K}: L^{\times} \to K^{\times}$ is a group homomorphism.

Theorem 6.4 (tower law). Let $M/L/K$ be finite extensions. Then for all $x \in M$, we have that

$$
\text{Tr}_{L/K}(\text{Tr}_{M/L}(x)) = \text{Tr}_{M/K}(x) \quad \text{and} \quad N_{L/K}(N_{M/L}(x)) = N_{M/K}(x)
$$

Proof. We will only prove the statement for the trace, as it is the only one we will need. Given *^x [∈] ^M*, choose a basis u_1, \ldots, u_n for M/L , and v_1, \ldots, v_n for L/K . Then let (a_{ij}) be the matrix of $U_{x,M/L}$. Then $Tr_{M/L}(x) = \sum_i a_i i$.
Now for each i, i, lot the matrix of $U_{x,M/L}$ so that we get

Now for each *i*, *j*, let the matrix of $U_{a_{ij},L/K}$ be A_{ij} , so that we get

$$
\text{Tr}_{L/K}(\text{Tr}_{M/L}(x)) = \sum_{i} \text{Tr}_{L/K}(a_i i) = \sum_{i} \text{Tr}(A_i i)
$$

Now in terms of the basis $(u_i v_j)$ for M/K , in the order $u_1 v_1, u_1 v_2, \ldots$, the matrix of $U_{x,M/K}$ is

$$
\begin{pmatrix}\nA_{11} & * & * \\
& \ddots & * \\
& & * & A_{mm}\n\end{pmatrix}
$$

So $Tr_{M/K}(x) = \sum_i tr(A_{ii}).$

Proposition 6.5. Let $L = K(x)$, and $f = T^n + c_{n-1}T^{n-1} + \cdots + c_0$ be the minimal polynomial of *x* over K . Then f *i* $m = f$. Eurthermore, $Tr(u(x) = -c_0 + \text{ and } N(u)(x) = (-1)^n c_0$. *K*. Then $f_{x,L/K} = f$. Furthermore, $Tr_{L/K}(x) = -c_{n-1}$ and $N_{L/K}(x) = (-1)^n c_0$.

Proof. By standard linear algebra we only need to prove the first statement. Now consider the basis ¹*, x, . . . , xn−*¹ for L/K . The matrix of U_x is

$$
\begin{pmatrix}\n0 & 0 & \dots & 0 & -c_0 \\
1 & 0 & \dots & 0 & -c_1 \\
0 & 1 & \dots & 0 & -c_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \dots & 1 & -c_{n-1}\n\end{pmatrix}
$$

which is just the companion matrix of *^f*, so has characteristic polynomial *^f*.

Corollary 6.6. Suppose char(K) = $p > 0$, $L = K(x)$, where $x \notin K$, $x^p \in K$. Then for every $y \in L$, $\text{Tr}\left(\frac{u}{x}\right) = 0$ and $N(x, y) = u^p$ $Tr_{L/K}(y) = 0$ and $N_{L/K}(y) = y^p$

Proof. Note that $[L:K] = p$, so suffices to prove that the minimal polynomial of *x* over *K* is $T^p - x^p$. If $y \in K$, then $f(u) = 0$ and $N(u)(u) = u^p$. Otherwise signa $[L:K]$ is prime $I = K(u)$. So if $u = \sum a x^i$ then then $tr(y) = py = 0$, and $N_{L/K}(y) = y^p$. Otherwise, sicne $[L:K]$ is prime, $L = K(y)$. So if $y = \sum_i a_i x^i$
 $h = u^p - \sum_i a_i^p x^{ip} \in K$ so the minimal polynomial of u.js $T^p - h$ and we are done. $b = y^p = \sum_i a_i^p x^{ip} \in K$, so the minimal polynomial of *y* is $T^p - b$ and we are done. $\sum_{i} a_i^p x^{ip} \in K$, so the minimal polynomial of *y* is $T^p - b$ and we are done.

Proposition 6.7. Let L/K be a finite separable extension of degree *n*, $\sigma_1, \ldots, \sigma_n : L \to M$ be the distinct *^K*-homomorphisms into a normal closure *^M* for *L/K*. Then we have that

$$
\text{Tr}_{L/K}(x) = \sum_i \sigma_i(x), \qquad N_{L/K}(x) = \prod_i \sigma_i(x) \quad \text{and} \quad f_{x,L/K} = \prod_i (T - \sigma_i(x))
$$

Proof. Suffices to prove the statement for the minimal polynomial. Let (e_i) be a basis for *L/K*, and $P = (\sigma_i(e_j), \sigma_j(e_j))$.))*i,j* . Since the σ_i are linearly independent, there can't be $y_i \in M$ such that for all j , $\sum_i y_i \sigma_i(e_j) = 0$. So P is popsingular.

Let $A = (a_{ij})$ be the matrix of U_x , i.e. $xe_j = \sum_r a_{rj}e_r$, so we get that for all *i*, *j*,

$$
\sigma_i(x)\sigma_i(e_j)=\sum_r \sigma_i(e_r)a_{rj}
$$

Now if *S* is a diagonal matrix with $S_{ii} = \sigma_i(x)$, then the above becomes $SP = PA$, so $A = P^{-1}SP$, and *A*
S have the same characteristic polynomial and *^S* have the same characteristic polynomial.

Corollary 6.8. If *L/K* is a finite Galois extension, then

$$
\text{Tr}_{L/K}(x) = \sum_{\sigma \in \text{Gal}(L/K)} (x)
$$

and so on.

Theorem 6.9. Let L/K be a finite extension. Then L/K is separable if and only if Tr_{L/K} is surjective, i.e. if and only if Tr*L/K* is nonzero.

Proof. If *L*/*K* is separable, let $\sigma_1, \ldots, \sigma_n \in \text{Hom}_K(L, M)$ be the distinct field embeddings into a normal closure *M* for *L/K*, then $Tr_{L/K}(x) = \sum \sigma_i(x)$. As the σ_i are linearly independent, this can't be identica[lly](#page-23-0) zero.
Conversely if L/K is inconscribed than let $x \in L$ be such that $K(w) \subset K(w)$ which oviete⁴. Then

Conversely, if L/K is inseparable, then let $x \in L$ be such that $K(x^p) \subsetneq K(x)$, which exists⁴. Then we have that Γ *K*(*x*)/*K*(*x^p*) = 0, so

$$
\text{Tr}_{L/K} = \text{Tr}_{L/K(x)} \circ \text{Tr}_{K(x)/K(x^p)} = 0
$$

 \Box

⁴By examples sheet 2 question 7

7 Algebraic closure

Definition 7.1 (algebraically closed field)

A field *^K* is algebraically closed if every polynomial with coefficients in *^K* has a root in *^K*. Equivalently, the only irreducibles in $K[T]$ are linear.

Proposition 7.2. The following are equivalent.

- (i) K is algebraically closed.
- (ii) if L/K is any extension, $x \in L$ algebraic over K, then $x \in K$,
- (iii) if L/K is algebraic, then $L = K$.

Proof. (i) \implies (ii). Let $f = m_{x,K}$, then $f \in K[T]$ is irreducible, so it is linear, so $x \in K$.

 $(iii) \implies (iii)$ is true by definition.

(iii) \implies (i). Let $f \in K[T]$ be irreducible, $L = L_f = K[T]/(f)$. Then L is algebraic over K, so $L = K$ and f
inear is linear.

Proposition 7.3. Let L/K be an algebraic extension such that every irreducible polynomial in $K[T]$ splits into linear factors over *^L*. Then *^L* is algebraically closed. We call *^L* an algebraic closure for *^K*.

Proof. Let *M/L* be an extension, $x \in M$ algebraic over *L*. Then *x* is algebraic over *K*, so m_x _K is an irreducible polynomial, so it splits into linear factors over *L*. Hence $x \in L$, and as x is arbitrary, *L* is algebraically closed. closed.

Theorem 7.4. If *^K* is a countable field, then *^K* has an algebraic closure.

Proof. $K[T]$ is also countable, so enumerate the monic irreducible polynomials f_1, f_2, \ldots in $K[T]$. Let $L_0 = K$, and for each *ⁱ [≥]* 1, let *^Lⁱ* be a splitting field for *^fⁱ* over *^Li−*1. We can assume without loss of generality that *L*_{*i*−1} \leq *L*_{*i*}. Let *L* = $\bigcup_{i=0}^{\infty}$ *L*_{*i*}. Then *L* is a field, any by construction each *f*_{*i*} splits over *L*. So *L* is an algebraic closure of *^K*.

Proposition 7.5. Let *L/K* be an algebraic extension of *^K*, *^M* algebraically closed, *^σ* : *^K [→] ^M* a field homomorphism. Then there exists $\overline{\sigma}: L \rightarrow M$ such that $\overline{\sigma}|_K = \sigma$.

Proof. If $L = K(x)$ is algebraic over K, let $f = m_{x,K}$. Then $\sigma f \in M[T]$ splits into linear factos, so there exists $\overline{\sigma}$: $K(x) \rightarrow M$ extending σ . In fact, we have one for each root of σf in M.

For general *^L*, assume *^K [≤] ^L* is a subfield. Then let

 $\mathcal{S} = \{ (F, \tau) \mid K \leq F \leq L, \tau : F \rightarrow M \text{ field homomorphism with } \tau|_{K} = \sigma \}$

We write $(F, \tau) \le (F', \tau')$ if $F \le F'$ and $\tau'|_F = \tau$. Then (\mathcal{S}, \le) is a nonempty poset. If $T = (F_i, \tau_i)$ is a
of dofine poset, define

$$
F' = \bigcup_i F_i \quad \text{and} \quad \tau'(x) = \tau_i(x) \text{ if } x \in F_i
$$

Since *T* is a chain, this is well defined and it is an upper bound for *T*. Hence bu Zorn's lemma, *S* has a maximal element (*F*, *τ*). Suppose $F \neq L$, then choose $x \in L \setminus F$. Then $L/F(x)/F$ is algebraic, so we can extend to $F(x) > F$. Contradiction to $F(x) > F$. Contradiction.

Theorem 7.6 (maximal ideal). Let *^R* be a nonzero ring. Then *^R* has a maximal ideal.

Proof. By Zorn's lemma.

Theorem 7.7. Let *K* be a field, then *K* has an algebraic closure \overline{K} . If $\sigma: K \to K'$
 \overline{K} *K*^{*/*} algebraic closures of *K· K*^{*/*} respectively, then there exists an isomorphism $\overline{\sigma}$ *K*, *K^γ* algebraic closures of *K, K^γ* respectively, then there exists an isomorphism $\overline{\sigma}$: \overline{K} → \overline{K} ^{*/*} extending *σ*.
So the algebraic closure is unique up to isomorphism So the algebraic closure is unique up to isomorphism.

Proof. Existence of algebraic closure: Let $P = \{f \in K|T| \mid f \text{ monic irreducible}\}$. Then we construct K_1 such that every $f \in \mathcal{P}$ has a root in K_1 .

Define $R = K[\{T_f\}_{f \in \mathcal{P}}]$, where we adjoin an element T_f for each $f \in \mathcal{P}$. Let $1 \leq R$, $I = (f(T_f) \mid f \in \mathcal{F})$.
2/1 T_f mod Lis a root of f. We will now show R/I is popzero. Suppose $R - I$. Then there exists a fin In R/I , T_f mod *I* is a root of *f*. We will now show R/I is nonzero. Suppose $R = I$. Then there exists a finite subset $Q \subseteq P$, $r_f \in R$ such that

$$
\sum_{f\in\mathcal{Q}}r_{f}f(T_{f})=1
$$

We can assume without loss of generality that r_f is a polynomial in $\{T_g \mid g \in \mathcal{Q}\}$. Let *L/K* be a splitting
I for \Box *f* \subset *K*[T] $g \subset \Box$ a rest for each $f \subset \Omega$ field for $\bigcap_{f \in \mathcal{Q}} f \in K[T]$, $a_f \in L$ a root for each $f \in \mathcal{Q}$.
Now consider $\phi : R \to L$ given by $\phi|_{L} = id$ and

Now consider $\phi: R \to L$ given by $\phi|_K = id$, and

$$
\phi(T_f) = \begin{cases} a_f & f \in \mathcal{Q} \\ 0 & f \notin \mathcal{Q} \end{cases}
$$

Then $1 = \phi(1) = \sum_{f \in \mathcal{Q}} \phi(r_f) \phi(f(T_f)) = \sum_{f \in \mathcal{Q}} \phi(r_f) f(a_f) = 0$. Contradiction.
Therefore, by the maximal ideal theorem, *R/I* has a maximal ideal. Equivalently, by the correspondence theorem there exists a maximal ideal *J* of *R* with $I \leq J$. Let $K_1 = R/J$. Then this is a field, and let $x_f = T_f$ mod *J* ∈ *K*₁. Then *K*₁/*K* is generated by {*x*_{*f*}}, so *K*₁/*K* is an algebraic extension of *K* such that every *f* ∈ *P* has a root.

Now let P_1 be the set of irreducibles in K_1 , repeating the above process we get K_2 and so on, we obtain

$$
K=K_0\subseteq K_1\subseteq K_2\subseteq\ldots
$$

such that if $f = K_n[T]$ is non-constant, then it has a root in $K_{n+1}[T]$, so it splits in $K_{n+\deg(f)}[T]$. Letting $K = \bigcup_{n} K_n$, this is an algebraic closure of *K*.
Iniquences of algebraic closure: Assume

Uniqueness of algebraic closure: Assume without loss of generality $K \leq K$ and $K' \leq K'$, $\sigma : K \to K'$ is
an isomorphism. As \overline{K}/K is algebraic, σ extends to $\overline{\sigma} : \overline{K} \to \overline{K'}$. Now $K' \leq \sigma(\overline{K}) \leq \overline{K'}$, so $\mathscr{C}' \leq \overline{\mathcal{K}'}$, $\sigma: \mathcal{K} \to \mathcal{K}'$ *^K* is algebraically closed, so *^σ*(*K*) is also algebraically closed. Hence *^K′* ⁼ *^σ*(*K*), so *^σ* is an isomorphism.

8 Cubics, quartics and solubility by radicals

8.1 Cubics

Let *f* ∈ *K*[*T*] be a monic separable cubic, *G* = Gal(*f*/*K*) ≤ *S*₃ acts on the roots *x*₁, *x*₂, *x*₃ in a splitting field *L* of *^K*.

If *^f* is reducible, then either

1. *f* is a product of distinct linear factors in K , so $G = 1$.

2. *f* is a product of a linear factor and an irreducible quadratic in K , so $G = S$ ₂.

Now suppose *f* is irreducible, and char(K) \neq 2, 3. Then $G = S_3$ or A_3 , with $G = A_3$ if and only if Disc(*f*) is a square in *^K*.

Let $K_1 = K(\Delta)$, then L/K_1 is Galois, with Galois group C_3 .

If $\omega \in K_1$ is a primitive root of unity, then by L/K_1 is a Kummer extension, that is, $L = K_1(y)$ with $y^3 \in K_1$.
2 orwise, let $L(\omega)$ be a splitting field of $f : (T^3 - 1)$ ever K . Then $L(\omega)K_L(\omega)$ is Galeis, with Gal Otherwise, let *^L*(*ω*) be a splitting field of *^f ·* (*^T* ³ *[−]* 1) over *^K*. Then *^L*(*ω*)*/K*1(*ω*) is Galois, with Galois group *C*₃, so *L*(*ω*) = *K*₁(*ω*, *y*) with *y*³ ∈ *K*₁(*ω*). Hence the *x_i* lies in the field obtained by adjoining square roots and cube reate to *K* cube roots to *^K*.

8.2 Quartics

Let *f* ∈ *K*[*T*] be a monic separable quartic, char(*K*) \neq 2, 3. Then *G* = Gal(*f*/*K*) \leq *S*₄. Let *V* = *V*₄ be the Klein-4 group, the transitive subgroup of *^S*⁴ of order 4. Let *^f* have splitting field *^L* with distinct roots *x*₁, . . . , *x*₄, and suppose without loss of generality $x_1 + \cdots + x_4 = 0$. So $f = T^3 + aT^2 + bT + c$. Since *V* is a particular we have a homomorphism normal subgroup of *^S*4, *^G ∩V* is a normal subgroup of *^G* containing *^V* . In particular, we have a homomorphism $G/(G \cap V) \rightarrow S_4/V \simeq S_3$. But $G/(G \cap V) = \text{Gal}(M/K)$, where $M = L^{G \cap V}$
Write $U(1) = V + Y_2$ atc. Then $V \cap G$ mans $U(1) \rightarrow V + U(1)$, $S \cap U^2 = U^2$

Write $y_{12} = x_1 + x_2$ etc. Then $V \cap G$ maps $y_{ij} \to \pm y_{ij}$. So y_{12}^2 , y_{13}^2 , y_{14}^2 are fixed under $V \cap G$. Furthermore, y_{ij}^2 are the roots of a separable cubic $g \in K[T]$, called the resolvent cubic. Then M is the splitting field of *^g*, and

$$
x_1 = \frac{1}{2}(y_{12} + y_{13} + y_{14})
$$

 \overline{a} and so on, so *L* = M(y₁₂, y₁₃, y₁₄)^{[5](#page-26-2)}. This means that we can solve a quartic by solving a cubic and taking
are roots square roots.

8.3 Solubility by radicals

Suppose throughout char(K) = 0, so an extension is Galois if and only if it is normal.

Definition 8.1 (soluble by radicals)

An irreducible polynomial *^f [∈] ^K*[*^T*] is soluble by radicals over *^K* if there exists a sequence of fields

$$
K=K_0\leq\cdots\leq K_m
$$

with $x \in K_m$ a root of *f*, and each $K_i = K_{i-1}(y_i)$ with $y_i^{d_i} \in K_{i-1}$, $d_i \geq 2$.

Proposition 8.2. Suppose there exists $d \ge 1$, and a sequence of fields $K = K_0 \le \cdots \le K_m$ with

- (i) *f* has a root $x \in K_m$,
- (ii) for $i > 1$, $K_i = K_{i-1}$)(y_i) with (y_i) *d* = a_i ∈ K_{i-1} ,
- (iii) $K_1 = K_0(\zeta)$, ζ is a primitive d-th root of unity.

Then *^f* is soluble by radicals over *^K*. The converse is also true.

Proof. The statement is immediate from definitions. The converse follows by letting $d = \text{lcm}(d_i)$ and adding
the first field if pecessary the first field if necessary.

Thus, we will assume throughout the above conditions. In particular, K_1/K_0 is a cyclotomic extension, so it is Galois with abelian Galois group, and by Kummer theory *K_i*/*K_{i−1}* is Galois with Gal(*K_i*/*K_{i−1}*) ≤ *C_d*.
Let M be a normal closure of K /K. Then M will contain a splitting field for f over K, since x ∈ A

Let *M* be a normal closure of K_m/K . Then *M* will contain a splitting field for *f* over *K*, since $x \in M$ and *f* is irreducible. Let $K'_{i} \leq M$ be a normal closure of K_{i}/K .

Proposition 8.3.

$$
K'_{i} = K'_{i-1} \left(\left\{ \sqrt[d]{\sigma(\sigma_{i})} \mid \sigma \in \text{Gal}(K'_{i-1}/K) \right\} \right)
$$

Proof. As the extensions are all normal, we have that $Gal(K'_{i-1}/K)$ is a normal subgroup of $Gal(K'_{i}/K)$, so $Gal(K'_{i}/K)$ and $Gal(K'_{i}/K)$ and $Gal(K'_{i}/K)$ and $Gal(K'_{i}/K)$ and $Gal(K'_{i}/K)$ Cal(K'_{i-1}/K) is a quotient of Gal(K'_{i}/K). In particular, given $\sigma \in \text{Gal}(K'_{i-1}/K)$, there exists $\overline{\sigma} \in \text{Gal}(K'_{i}/K)$ such that $\overline{\sigma}|_{\infty} = \sigma$. Then \int that $\overline{\sigma}|_{K_l'} = \sigma$. Then

$$
\overline{\sigma}(y_i)^d = \overline{\sigma}(y_i^d) = \sigma(y_i^d) = \sigma(a_i)
$$

⁵ In fact, *^L* ⁼ *^M*(*y*12*, y*13) as *^y*12*y*13*y*¹⁴ ⁼ *^b [∈] ^K*.

So we have *[⊇]*. Suffices to show that the RHS is normal over *^K*, as the LHS is a normal closure. But it is the splitting field over K'_{i-1} of

$$
g_i = \bigcap_{\sigma} (T^d - \sigma(a_i)) \in K[T]
$$

So if *^K ′ i−*1 is the splitting field for *^gi−*¹ over *^K*, the RHS is a splitting foeld for *^gigi−*¹ over *^K*, so it is normal over *^K*.

Proposition 8.4. Gal(K'_{i}/K'_{i-1}) is abelian.

Proof. Let $A = \text{Gal}(K'_i/K'_{i-1})$. Then for all $\tau \in A$, $\sigma \in \text{Gal}(K'_{i-1}/K)$, we have that

$$
\tau\left(\sqrt[d]{\sigma(a_i)}\right) = \zeta_d^{m_\sigma} \sqrt[d]{\sigma(a_i)}
$$

for some $m_{\sigma} \in \mathbb{Z}/d\mathbb{Z}$. So we have a map $\tau \mapsto (m_{\sigma}) \in (\mathbb{Z}/d\mathbb{Z})^r$, where $r = |\text{Gal}(K_{i-1'}/K)|$, which defines an
ctive homomorphism. This holds for $i > 1$. For $i = 1$, note that $K' = K$, and so K'/K' is just injective homomorphism. This holds for *i* > 1. For *i* = 1, note that $K_1' = K_1$ and so K_1'/K_0' is just K_1/K_0 , which \Box 1 0 has abelian Galois group.

Definition 8.5 (soluble group)

A finite group *^G* is solutble if there exists a chain of normal subgroups

$$
1 = N_0 \trianglelefteq N_1 \trianglelefteq \cdots \trianglelefteq N_m = G
$$

such that N_i/N_{i-1} is abelian for all *i*.

Proposition 8.6. $G = \text{Gal}(M/K)$ is soluble.

Proof. Notice that $M = K'_m$, so we have a chain of normal extensions over K,

$$
K = K'_0 \leq K'_1 \leq \cdots \leq K'_{m-1} \leq K'_m = M
$$

which by the Galois correspondence gives us a chain of normal subgroups of Gal(*M/K*),

$$
1 = \text{Gal}(K/K) \trianglelefteq \text{Gal}(K'_1/K) \trianglelefteq \cdots \trianglelefteq \text{Gal}(K'_{m-1}/K) \trianglelefteq \text{Gal}(K'_m/K) = G
$$

with

$$
\frac{\text{Gal}(K_i'/K)}{\text{Gal}(K_{i-1}'/K)} = \text{Gal}(K_i'/K_{i-1}')
$$

abelian, so *^G* is soluble.

Lemma 8.7. Any subgroup and any quotient of a solble group is soluble.

Proof. Take $H \cap N_i$ and N_i /($H \cap N_i$) respectively.

Theorem 8.8 (Abel-Ruffini). If $f \in K[T]$ is soluble by radicals over *K*, then Gal(f/K) is soluble.

Proof.

$$
Gal(f/K) \simeq Gal(L/K) \simeq \frac{Gal(M/K)}{Gal(L/K)}
$$

is soluble.

 \Box

 \Box

Proposition 8.9. If $n \geq 5$ then S_n and A_n are not soluble.

Proof. Both contain the non-abelian simple group *^A*5.

Corollary 8.10. If $deg(f) = n \ge 5$, with $A_n \le Gal(f/K)$, then *f* is not soluble by radicals.