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1 Symmetric polynomials

Let R be a ring. Then we have a (right) action of S, on R[Xj, ..., X;], given by

fo= f(XUH) """ Xo(n))

Definition 1.1 (symmetric polynomial)

feRrX,...

, Xu] is symmetric if Orb(f) = f. Equivalently,
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forall c € S,,.

Definition 1.2 (elementary symmetric polynomials)

The elementary symmetric polynomials are

Sor= Y Xy X,

1<ig<+<ir<n

We write S, for S, , if n is clear from context.

Theorem 1.3. Define a homomorphism 6 : R[Y, .. ., Y] — RXi, ..., Xy by 6(Y;) =S, and 8 =1id on R.
Then

1. ker(8) =0,

2. and im(0) = {symmetric polynomials}.

Proof. First we consider (ii). Necessarily f € im(6) is symmetric, so suffices to show that any symmetric
polynomial is in im(6).

Let d = deg(f), and x* = Im(f) be the leading monomial of f, with coeffictent ¢ = lc(f) € R. As f is
symmetric, we must have that a = (o, .. ., ap), with o > ... a,, otherwise we can permute the variables and
get a larger ternﬂ So we can write

a mfaz(

x% =X @mh L

A

XWXZ) -(X1 "'Xn)

Consider g = Sy'72S?™0 ... Sir. Then Im(g) = x% g is symmetric, so f — cg is symmetric, with leading
monomial strictly smaller than x“. As the lexicographic order is a well-ordering on monomials, this terminates.

For (i), we want to show that the representation is unique. Suppose there exists G € R[Y;, ..., Y,] such
that G(S,1, ..., Spn) = 0. We want to show that G = 0. The base case n =1 is trivial.

Now suppose we have G = Y"H, where y, |/H. Then S5 H(S,1, ..., Spn) =0, but S,, is not a zero
divisor, so H(Su1, ..., Snn) = 0. So we can assume wlog that Y, |/G. Consider the map ¢ : R[X;, ..., X, —
RX, ..., Xn—1] given by ¢(f) = f(X1,. .., Xn-1,0). Then

Sp—q, Hr<n—1
G(Sn) = { 1

0 ifr=n
So ¢(6(G)) = G(Sp—11, ..., Sn—1n-1,0) = 0. But then we can embed this into R[Xy, ..., X,—1], and by the
inductive hypothesis, we have that G(Y7, ..., Yp—1,0) = 0. But Y, |/G. Contradiction. O

Definition 1.4 (power sum)

The power sum polynomials are

Pox = ixf
i=1

Theorem 1.5 (Newton's formula). Let n > 1, then for all kK > 1,

Pe—S1Peq + -+ (*1)k715k71p1 + (*1)ksl< =0

TWith respect to the lexicographic ordering on monomials.



where we define S =1 and S, =0 for r > n.

Proof. Since the coefficients in the above are 1 and —1, suffices to prove this in the case R = Z. In fact, we
can consider the case R = R, so we can use calculus. Consider the function

n n

FN=[]a-x1) =5 (-1ysT"

i=1 r=0
Taking the derivative of log(F), we get that

—X; -1 & R
= — . E X'T = — § P.T"
T_x71 T M= " T &= o0

n

F() _
A7)

i=1

Evaluating separately, we get that

_TF’(T) = 51T—252T2 4t (_/I)n71n5n7—n

F(T)ZPrTr = (So=SiT+ -+ (=N)'S,T)PT +PT + ..)
r=1

Comparing the coefficients of T* gives the required result.

1.1 Discriminant
Notation 1.6. In this course, we have Disc = A%, whereas in Number Fields, we have Disc = A. The actual definitions

are the same.

Definition 1.7 (discriminant polynomial)

The discriminant polynomial is D(X, .. .,

D is a symmetric polynomial, so D(Xj, ...,

Definition 1.8 (discriminant of a polynomial)
Let f=T" 43 ") a,T" be a monic polynomial. Then define

Disc(f) = d(—a1, az, . . .,

Proposition 1.9. If f = []_{(T — x), then a, = (—=1)"S;(x1, ..., xp), and

Disc(f) =[x —x =/ = Dx, ..., Xn)
i#)

Proposition 1.10. If R = k is a field, f is a product of linear factors, then Disc(f) = 0 if and only if f has

a repeated root.



2 Field theory

2.1 Field extensions

Definition 2.1 (prime subfield)

Given a field K, we call the smallest subfield of K the prime subfield of K, which is isomorphic to Q if
char(K) = 0 and I, if char(K) = p prime.

Definition 2.2 (field extension)

Let K C L be fields, or equivalently K — L. We say that K is a subfield of L, or L is an extension of K.
We write L/K for the field extension.

Proposition 2.3. If L/K is a field extension, then L is a K-vector space.

Definition 2.4 (finite extension, degree)
An extension L/K is finite if dimg(L) < oco. We write [L : K] = dimg(L) for the degree of the extension.

Theorem 2.5. If L/K is an extension, V' is an L-vector space, then V is a K-vector space, and

dimg (V) = [L : K]dim (V)

Proof Suppose d = dim;(V) < oo. Then as V =~ [9 as [-vector spaces, they must be isomorphic as K-vector
spaces as well. Suppose [L : K] =n < co. Then L =~ K¢ as K-vector spaces, so

d
V:EBK”=KW
i=1

If dimg (V) < 00, as K is a subfield of L, necessarily dim; (V) < oco. Taking the contrapositive, if dim; (V) = oo
then dimg (V) = oo. Likewise, if [L : K] = 00 and V # 0, then V has an infinite linearly independent subset
over K, so dimg(V) = oco. O

Corollary 2.6 (tower law). If M/L/K are field extensions, then M/K is finite if and only if [M : L] and
[L: K] are finite. In this case, we have that

M:K]=[M:L]L: K]

2.2 Characteristic p and the Frobenius endomorphism

Proposition 2.7. Suppose K is a finite field. Than char(K) = p is prime, and |K| = p” for some n.

Proposition 2.8.
(i) Let K be a field, G a finite subgroup of K*. Then G is cyclic.



(it) If K is finite, then K* is cyclic.

Proof. From Lagrange's theorem, we have that for some nﬂ x™ =1 for all x € G. So G is contained in the
subgroup of m-th roots of unity, which is cyclic. O

Definition 2.9 (primitive root modulo p)
a € F) such that F, = {0} U {a,a?,. .., aP~} is called a primitive root modulo p.

Corollary 2.10. Primitive roots modulo p always exist.

Definition 2.11 (Frobenius endomorphism)

Let R be aring, p-1gr = 0. Then ¢,(x) = x” is a ring homomorphism R — R, called the Frobenius
endomorphism of R.

2.3 Algebraic elements and extensions

Definition 2.12 (algebraic, transcendental)

Let L/K be a field extension, x € L is algebraic over K if there exists f € K[T] nonzero such that f(x) = 0.
If no such f exists, we say that x is transcendental over K.

Definition 2.13 (minimum polynomial)

Suppose x € L, then ¢ : f — f(x) defines a ring homomorphism K[T] — L. Then ker(¢) = (g) for some
monic g. We call g the minimal polynomial of x over K, and we write m, x = g.

Proposition 2.14. m, « is well defined, that is, g exists and is unique. Furthermore, m, ¢ is irreducible.

Proof. Since K[T] is a PID, ker(¢p) is principal, and there is a unique monic generator of a principal ideal.

Furthermore, as im(¢) is a subring of a field, it is an integral domain, so ker(¢) is prime. Thus, g is irreducible.
O

Definition 2.15 (degree)
The degree of an algebraic element x over K is

degy(x) = deg(x/K) = deg(my k)

Proposition 2.16. Let L/K be a field extension, x € L, then the following are equivalent.
(i) x is algebraic over K,

(i) [K(x): K] < oo,

(ii) dimg(Kx)) < oo,

2m is a multiple of the exponent of G, for example m = |G]|! works.



(v) K[x] = K(x),
(v) Kx]is a field.

If any of these hold, then degy(x) = [K(x) : K].

Proof. Since K[x] < K(x) is a subring, (i) = (iii) and (iv) <= (v) are clear.

(iii) = (ii) and (iv). Let y € K[x] be nonzero. Then consider the map K[x] — K]x] given by z + yz.
This is K-linear, and as y = 0 it is injective. So it is an isomorphism. Therefore, there exists z € K]x| such
that yz =1, so K[x] is a field, L.e. K[x] = K(x), and so

[K(x) : K] = dimg(K(x)) = dimg(K[x]) < o0
(v = (i) Let x £ 0. Then x " =ag + a;x + - + a,x", with a; € K, a, # 0. Multiplying through by
x, we get that

a7t apx—1=0

So x is algebraic over K.
() = [(ii) and the degree formula. im(eval, : K[T] — L) = K[x] < L If x is algebraic, then
ker(evaly) = (myk) is maximal, as (my k) is trreducible. So by the isomorphism theorem, we have that

K
K[x] =~ Ul
(mX,K)
Say deg(my k) = d. Then K[T]/(myk) has basis 1, T, ..., 7971 This means that dimg(K[x]) = d < oo,
which proves (iii) and the degree formula. O
Corollary 2.17.
0 x, ..., x, are all algebraic over K if and only if L = K(x, ..., xp) is a finite extension. If so, every

element of L is algebraic over K.
(it) If x, y are algebraic over K, then so are x &+ y, xy, 1/x,
(iit) Let L/K be any extension, then the set
{x € L| x algebraic over K}

is a subfield of L.

Proof. (i) If x, is algebraic over K, then it must also be algebraic over K(x1, ..., Xp—1),so[L: K(x1,..., Xp—1)] <
oo. By induction and the tower law, we get that [L : K] < co. Conversely, if [L : K] < oo, then [K(x) : K] < o0,
so x; is algebraic over K. (it) and (iii) follows immediately from (i). O

Definition 2.18 (algebraic extension)

An extension L/K is algebraic if any x € L is algebraic over K.

Proposition 2.19.
(i) Finite extensions are algebraic,
(i) K(x)/K is algebraic if and only if x is algebraic over K,
(iit) If M/LIK are extensions, M/K is algebraic if and only if M/L and L/K are algebraic.



Proof. (i) and (ii) follows from the tower law and the previous proposition. For (iit), suppose M/K is algebraic,
then M/L is algebraic and L/K is algebraic as K < L < M. For the coverese, choose f = T" +a,_1 1"~ +
<~ +ag € L[T] such that f # 0, f(x) = 0. Let Ly — K(aq, ..., ap—1). As each a; € L is algebraic over K,
[Lo : K] < oo. Furthermore, f € Lo[T] and f(x) = 0, so x is algebraic over Ly. So [lo(x) : L] < oo, and
[Lo(x) : K] < oo by the tower law. So [K(x) : K] < o0, so x is algebraic over K.

2.4 Splitting fields

Theorem 2.20. Let f € K[T] be monic irreducible, Ly = K[TJ/(f), t = T + (f). Then L;/K is a finite
extension of fields, [Ly : K] = deg(f) and f is the minimal polynomial of ¢ over K.

Definition 2.21 (K-homomorphism)

Suppose K is a field, L/K, M[K are extensions of K. A K-homomorphism L — M is a field homomorphism
o : L — M such that g|¢ = idgk.

Theorem 2.22. Given f € K[T] irreducible, L/K an arbitary extension, then

(i) If x € L is a root of f, then there exists a unique K-homomorphism o : Ly — L, with d(t) = x.

(it) Every K-homomorphism Ly — L is of the above form.

That is, we have a bijection

{K-homomorphisms L; — L} < {roots of f in L}

In particular, there is at most deg(f) such o.

Proof. (i) Consider the homomorphism ¢ : K[T]| — L, given by ¢(g) = g(x). Then as x is a root of f, we have
that (f) C ker(¢). As f is irreducible, (f) is maximal, and ker(¢p) # K[T], so ker(¢) = (f). Hence we have an
induced map
K[T]

which is a K-homomorphism as ¢ is one, and ¢(t) = x. Uniqueness is immediate since ¢ is a ring
homomorphism and we have specified the image of K and ¢.

(it) Given a K-homomorphism o : Ly — L, let x = o(t). We want to show that f(x) = 0. But f(x) = f(o(¢)) =
o(f(t)) as o is a K-homomorphism, and f(t) = 0 € L. So f(x) = 0. The fact that o is of the form in (i) follows
immediately from uniqueness in (i). O

Corollary 2.23. If L = K(x) with x algebraic over K, then there exists a unique isomorphism o : Ly — K(x)
such that o(t) = x, where f = m, k.

Proof. Take L = K(x) in the above theorem. O

Definition 2.24 (K-conjugate)

If x, y are algebraic over K (but x, y need not be in the same field), we say that x and y are K-conjugate
if they have the same minimal polynomial.



Corollary 2.25. x, y are K-conjugate if and only if there exists a K-isomorphism o : K(x) — K(y), with
o(x) =y.

Proof. For ( =), we have that K(x) = Ly = K(y). For the converse, notice that for all g € K[T], a(g(x))
g(a(x)), so they have the same minimal polynomial.

(I

Definition 2.26 (o-homomorphism, extension and restrictions of homomorphisms)

Let L/K, I’/K" be field extensions, 0 : K — K’ be a field homomorphism, 7 : L — [’ is a homomorphism
such that 7(x) = o(x) for all x € K. We say that 7 is a o-homomorphism, or T extends o, or o is the
restriction of 7.

Theorem 2.27. If f € K[T] is irreducible, 0 : K — L is any field homomorphism, let af € L[T] be given
by of = a,(f), where o, : K[T] — L[T] is the induced map on coefficients. Then

(i) if x is a root of f, then there is a unique o-homomorphism 7 : [; — L such that 7(t) = x.
(it) every o-homomorphism t: Ly — L is of the above form.

That is, we have a bijection

{o-homomorphisms Ly — L} <> {roots of f in L}

Proof Same as the above. O

Definition 2.28 (splitting field)
Let f € K[T] be a nonzero polynomial. We say that an extension L/K is a splitting field for f over K if
(i) fis a product of linear factors in L[ T],

(i) L is minimal, that is, L = K(x1, ..., xy), where the x; are the roots of f in L.

Theorem 2.29. Every nonzero f € K[T] has a splitting field.

Proof. We prove this by induction on deg(f), but note that we will need to allow the field to varlel That is, we
will prove:

Vn € N,V fields K,Vf € K[T] with deg(f) = n, f has a splitting field.

Base case: n < 1. In this case, K itself is a splitting field for f.

Inductive case:  Now let g be an irreducible factor of f. Consider K" = [, = K[T]/(g). Let xy = T
mod (g). Then g(x7) = 0, so f(x1) = 0. Hence f = (T — x1)f, where f; € K’'[T] has deg(fi) < deg(f). By the
inductive hypothesis, f; has a splitting field L/K". Let x,, ..., x, be the roots of f; in L, then f splits into linear
factors in L, with roots xq, ..., X, L=K'(x2, ..., xp) = K(xq, ..., xp). So L is a splitting field for f over K. O

3|et us ignore any potential set theoretic nonsense here. This proof goes through just fine without quantifying over all fields, it's just
that the proof is a bit longer. What we need is that each time we add a root the degree decreases, so this process terminates, and we end
up with a finite tower L = K,/K,—1/.../K1/Kg = K, where each Ki11 = Ki(xi1), x1, ..., X, roots of f.

Another way out of set theory hell is to notice that all of these extensions are algebraic, so we are only quantifying over subfields
K < K’ < K of the algebraic closure.



Theorem 2.30 (uniqueness of splitting fields). Suppose f € K[T] is nonzero, L/K is a splitting field for f.
Let 0 : K < M be an extension such that of € M[T] splits into linear factors. Then

(i) o can be extended to a homomorphism 7: L — M,

(it) if M is a splitting field for of over oK, then any 7 in (i) is an isomorphism. In particular, any two
splitting fields for f over K are K-isomorphic.

Proof. (i) By induction on n =[L: K] If n =1, then L = K and f is a product of linear factors in K[T] so we
are done.

Now let x € L\ K be a root of an irreducible factor g € K[T] of f, with deg(g) > 1. Let y be a root of
og € M[T]. Since af splits in M, such a root exists. Thus, there exists o1 : K(x) — M such that gy(x) = y
and oy extends ¢. Now note that [L : K(x)] < [L : K] by tower law, and L is a splitting field for f over K(x).
Furthermore, o1f = of splits in M. Thus, by induction we can extend oy to a homomorphism 7: L — M.

(i) Assume M is a splitting field for of over oK, and 7 be as in (i). Let {x;} be the roots of f in L,
then the roots of of in M are just {t(x;)}. Since M is a splitting field, M = oK(t(x1), ..., T(x,)) = Tl as
L=K(x,..., Xp). So T is an isomorphism. If K C M, o is the inclusion, then 7 is a K-isomorphism L ~ M. O

2.5 Normal extensions

Definition 2.31 (normal extension)

An extension L/K is normal if it is algebraic and for every x € L, my x splits into distinct linear factors
over L.

Proposition 2.32. The following are equivalent:
(i) L/K is normal,
(it) for every x € L, L contains a splitting field for m, k.

(ii) for every f € K[T] irreducible, if f has a root in L, then f splits over L.

Theorem 2.33 (splitting fields are normal). Let L/K be a finite extension. Then L is normal over K if and
only if L is the splitting firld for some not necessarily irreducible f € K[T].

Proof. Suppose L/K is normal. Write L = K(x, ..., Xp), then my, « splits in L, so L is generated by the roots
of f =my k---my k. So Lis a splitting field for f over K.
Conversely, suppose L is the splitting field for some f € K[T]. Let x € L, g = m, k. We want to show that
g splits in L. Let M be the splitting field for g over L. y € M a root for g. We want to show that y € L.
Since L is a splitting field for f over K, L is a splitting field for f over K(x), and L(y) is a splitting field for
f over K(y). But x, y are K-conjugate, so there exists an isomorphism K(x) = K(y). By uniqueness of splitting
flelds, we have that

(L K(x)] = [Ly) - K(y)]
As [K(x) : K] =[K(y) : K], computing [L(y) : K] along the different paths in



/

/

Ki) =———

—

M
L(y)
K{y)

N —>

We find that [L(y) : L]=1,s0 L(y) =L, ie. y € L. O

Corollary 2.34 (existence of normal closure). Let L/K be a finite extension. Then there exists a finite
extension M/L such that

(i) M/K is a normal extension,
(i) if L <M < M with M'/K normal, then M = M.
Moreover, any two such extensions are L-isomorphic. We call M the normal closure of L/K.
Proof Write [ = K(xq, ..., x¢) and let f = my, k- - - my k. Let M be a splitting field for f over L. Then as the
x;s are roots of f, M is also a splitting field for M/K. So M/K is normal. Now let M’ be such that L < M <M
with M'/K normal. Since x; € M’, m,, « splits in M’ for all i. So M’ = M by the minimality of splitting fields.

For uniqueness, any such M satisfying (i) must contain a splitting field for f, and by the above, (ii) implies
that M is a splitting field for f. The result follows by uniqueness of splitting fields. O

2.6 Separability

Definition 2.35 (separable polynomial)

f € K[T] is separable if it splits into distinct linear factors in a splitting field L. That is, it has deg(f)
distinct roots in L.

Proposition 2.36. Suppose f € K[T], L/K is an extension, x € L is a root of f. Then x is a simple root,
te. (T —x)? |/f if and only if f/(x) # 0.

Proof. By the division algorithm, we can write f = (T — x)g, then ' = g + (T — x)g’, so f'(x) = g(x). O

Corollary 2.37. f is separable if and only if gcd(f, /) = 1.

Proof. Replacing K by a splitting field for f, we may assume f has all of its roots in K. Then it is separable
if f,f" have no common zeroes, which is true if and only if ged(f, ') = 1. O

Theorem 2.38.
(i) Let f € K[T] be irreducible. Then f is separable if and only if " # 0.

(it) If char(K) = 0, then every irreducible polynomial in K[T] is separable.

10



(it) If char(K) = p > 0, then an irreducible f € K[T] is inseparable if and only if f = g(T") for some
g € K[T].

Proof. (i) wlog f is monic. Then as f is irreducible, ged(f, ') | f implies that ged(f, f') = 1 or f. If gcd(f, ') = T,
then f | f'. But deg(f’) < deq(f), so " = 0 is the only possibility.

For (ii) and (iii), write f = Y % a, 7', then f' = Y% ia,T"" So f' = 0 if and only if ia; = 0 for all
i=1,..., d.

In (ii), char(K) = 0, so this means that a; = 0 for all i > 1, so f is constant, which is not irreducible.

In (iit), a; = 0 for all p |/, so f = g(T") for some g € K[t] O

Definition 2.39 (separable element, separable extension)

Let L/K be an extension. We say that x € L is separable over K if x is algebraic over K and m, k is
separable. We say that L/K is separable if every element of L is separable over K.

Theorem 2.40. Let x be algebraic over K, L/K any extension in which m, « splits. Then x is separable
over K if and only if there are exactly degg(x) K-homomorphisms K(x) — L.

Proof. Recall that the number of such homomorphisms is the number of roots of m, ¢ in L, which is equal to
degy(x) if and only if x is separable. O

Notation 2.41. Write Homg (L, M) for the set of K-homomorphisms L — M.

Theorem 2.42 (counting embeddings). Let L = K(xq, ..., X ) be a finite extension of K, M/K any extension.
Then |Homg (L, M)| < [L: K], with equality if and only if

(i) for all i, my, k splits into linear factors over M,
(ii) all x; are separable over K.

if and only if all my, k¢ splits into distinct linear factors over M.

Remark 2.43. We will in fact prove the stronger statement that if 0 : K — M is a homomorphism, then the number
of ¢ homomorphisms L — M is less than [L : K], with equality if and only if om,, « splits in M.

Proof. We induct on k. k =0 is trivial, and for k > 1, set Ky = K(x1), degy(x1) = d = [Kj : K] Then set

e = [Homg (K, M)| = [{y € M| my, k(y) = 0}

Necessarily, we have that e < d. Let 0 : K — M be a K-homomorphism. Applying the induction hypothesis
to L/Ky, we find that there are at most [L : Kj] o-homomorphisms L — M. So the number of K-homomorphisms
L — M is at most

ell: K <dlL:Ky]=][L:K]

If equality holds, then d = e, so m,, « splits into d distinct linear factors over M, so (i) and (it) holds for
x1. But we can just permute the x;, so (i) and (ii) holds for all x;. Conversely, if (i) and (ii) holds, then by the
previous theorem |Homg(Ky, M)| = d. So (i) and (it) holds over Kj, so by induction each ¢ : Kj — M has
[L: Ki] extensions ot a homomorphism L — M. Hence |[Homg(L, M)| =[L : K] as required. O

Theorem 2.44 (separably generated is separable). Let L = K(xq, ..., xp) be a finite extension of K, then

i



L/K is separable if and only if each x; is separable.

Proof. If LIK is separable, then by definition the x; are separable. Conversely, suppose the x; are separable.
Let M be a normal closure of L/K, L.e. M is the splitting field of f = m,, x --- my, k. Equality holds when
counting embeddings, so |[Homg (L, M)| =[L: K] Butif x € L, then L = K(x,xy, ..., Xk), so x is separable,
again by counting embeddings. O

Corollary 2.45. If L/K is a field extension, x, y € L are separable over K, then
{x € L | x is separable over K}

is a subfield of L.
Proof. The intermediate field extension K(x, y/K) is separable. O

2.7 Primitive element theorem

Theorem 2.46 (primitive element theorem for separable extensions). Let K be an infinite field, L =
K, ..., xi) a finite separable extension. Then there exists x € L such that L = K(x).

Proof. By induction, we only need to consider the case k = 2. Say L = K{(x, y), where x, y are separable
over K. Let n =[L: K] and M be a normal closure for L/K. Then there exists n distinct K-homomorphisms
0i:L— M. Let a € K, and consider z = x + ay. We will choose a € K such that L = K(z).

Since L = K(x,y), g;(x) = 0;(x), g;(y) = o;(y) if and only if i = j. So consider gj(z) = gi(x) + aci(y). If
0i(z) = 0j(2), then

(0i(x) = 0j(x)) +a (aily) — gj(y)) = O
(1) (i1)
If i # j, then at least one of (i) and (ii) is nonzero, so there is at most one value of @ € K such that

equality holds. Since K is infinite, there exists @ € K such that gj(z) are distinct. But then deg,(z) = n, so
L=K(z). O

Theorem 2.47. Suppose L/K is an extension of finite fields, then L = K(x) for some x € L.

Proof. L* is cyclic, so letting x be a generator of L, L = K(x). O

3 Galois theory
3.1 Automorphisms of fields

Definition 3.1 (automorphism of a field)

Let L be a field, 0 : L — L is an automorphism of L if ¢ is a bijective homomorphism. Wrire Aut(L) for the
group of automorphisms of L.

Definition 3.2 (fixed field)
If S C Aut(L) write

[°={xel|ox)=xforall ¢ €S}
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for the subfield of L fixed by S. We call this the fixed field of S.

Definition 3.3 (automorphism of a field extension)

Let L/K be an extension, define

Aut(L/K) = {K-automorphisms of L} = {o € Aut(L) | g|¢ = id}

Theorem 3.4. Let L/K be finite. Then |Aut(L/K)| < [L: K].

Proof. Taking M = L in the counting embeddings theorem, and noticing that Homg(L, L) = Aut(L/K), since
0 € Homg(L, L) is an injective K-linear map L — L and L is a finite dimensional K-vector space. O

Proposition 3.5. K = Q and K = F, have no nontrivial automorphisms, so for any L, Aut(L) = Aut(L/K)
where K is the prime subfield of L.

Definition 3.6 (Galois extension)

An extension L/K is Galois if L/K is algebraic, and [ALK) — K If /K is Galois, write Gal(L/K) =
Aut(L/K) for the Galois group of the extension L/K.

Theorem 3.7 (classification of finite Galois extensions). Let L/K be a finite extension, and let G = Aut(L/K).
Then the following are equivalent.

(i) L/K is Galois,

(i) L/K is normal and separable,
(iit) L is the splitting field of a separable polynomial over K,
(v) |G| =]L: K]

If any of these hold, then the minimal polynomial of x € L is

r

myk = |_|(T*Xi) = |_| (=2

i=1 z€0rbg(x)

r

Proof (i) = (ii) and the minimal polynomial. Let x € L, Orb(x) = {x1, ..., xe b =T1i1(T —x) € L[T]
Clearly, f(x) = 0. As Aut(L/K) permutes the x;, f € LY[T] = K[T] so myx | f. Also, since m,k(0(x))
o(myk(x)) = 0 for all o, each x; is a root of m, k. So f = m,x and x is separable over K, m, k splits in
That is, L/K is normal and separable.

(i) = (). Since L/K is normal, L is a splitting field for some f € K[T] Write f =[], g", where the g;
are distinct irreducible factors of f. Then as L/K is separable, the g; are separable. So g =[], g; is separable,
and L is also a splitting field for g.

(it) = (iv). Say L = K(x1, ..., xp) is the splitting field of some separable polynomial f € K[T] with
roots x;. As my x | f, each my k splits into distinct linear factors over L. So by counting embeddings,

L.

|Aut(L/K)| = |Homk (L, L)| =L : K]
(iv) = (i). Suppose |G| =[L: K] Then

G < Aut(L/LY) < Aut(L/K)
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So G = Aut(L/LY), hence by counting embeddings, we have

[L:K]=|G| <[L:LY
But [L: K] =][L:LY[L% : K] by tower law, so L& = K. O

Corollary 3.8. If L/K is a finite Galois extension, then L = K(x) for some x € L, x is separable over K
with degg(x) =[L : K].

Proof. By (ii) in the theorem and the primitive element theorem for finite separable extensions. O

3.2 Galois correspondence

Theorem 3.9 (Galois correspondence). Suppose L/K is a finite Galois extension, G = Gal(L/K). If we
have an intermediate extension K < F < [, then L/F is Galois, Gal(L/F) < Gal(L/K) is a subgroup.
The map 6 : {intermediate fields K < F < L} — {subgroups H < G} defined by

6(F) = Gal(L/F)

is an order reversing bijection, with inverse 8~'(H) = L. Furthermore, we have that

[F:K]=[G:06(F)

Proof. Let x € L, then myr | myx in F[T]. As myx splits into distinct linear factors in K, so does m, r. So
L/F is normal and separable, so L/F is Galois. By definition Gal(L/F) < G.

Since L/F is Galois, [CUF) = F S 67106 = id. Conversely, since H < Gal(L/LH) and |Gal(L/LH)| <
[L: M), suffices to show [L : L"] < |H|. Choosing a primitive element, we can assume [ = L"(x) and

f=[ (T —olx) e L"T]

oeH

has x as a root. So deg,(x) < deg(f) = |H|, so [L: L"] < |H|. Hence 80 07" =id.
Order reversing is clear since if K < F < F/ < L, then Gal(L/F’) < Gal(L/F). Finally, if F = LM, then

o LK e
[F.K]_m_m_[c./ﬂ

as L/F and L/K are Galois. O

il

Proposition 3.10. Let 0 € G, H < G be a subgroup. Then o(L") = (717"

Proof.

Lo = Ix e L |oto'(x) = x for all T € H}
={xellto'x)=0""(x}

={a(y) |y € L (y) =y} = o(L")

Proposition 3.11 (normal subgroups and extensions). Fix H < G, then the following are equivalent.
() ["/K is Galois,
(i) ["/K is normal,

(iii) for all o0 € G, o(LH) = L,
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(iv) H < G is normal.

If any of the above hold, then Gal(LH/K) = G/H.

Proof. Since L/K is separable, so is L"/K. So (i) and (ii) are equivalent. Let F = L and x € F. Then the
roots of my k in L is precisely (with multiplicity) Orbg(x), since L/K is Galois.

Thus, my k splits in F if and only if for all 0 € G, g(x) € F. Therefore, we have that F/K is normal if and
only if F C F. But[of : K] =[F : K], so F is normal if and only if ¢F = F. By the previous proposition, F
is normal if and only if H = oHo ™" for all o, so (ii), (iii) and (iv) are equivalent.

If any of (i)-(iv) holds, then for all 0 € G, oF = F. So we have a homomorphism G — Gal(F/K) given by
o+ d|r. This has kernel {0 € G| o fixes F} = H, so by the isomorphism theorem,

G/H ~ im(G — Gal(G/K)) < Gal(F/K)
But we know the index, so Gal(F/K) = G/H. O

3.3 Galois group of polynomials

Let f € K[T] be separable, xi, ..., xp the roots of f in a splitting field L, then G acts on {xq,..., xp} by a
permutation, since a(f(x)) = f(o(x)). Furthermore, if o(x;) = x; for all i, as L = K(x, ..., xp), 0 = id. So we
have an injective homomorphism ¢ : G — S,

Definition 3.12 (Galois group of a polynomial)
Gal(f/K) = im(1) < S, is called the Galois group of f over K.

Proposition 3.13. Suppose f is separable. The following are equivalent.

(i) f is monic and irreducible,
(it) Gal(f/K) is a transitive subgroup,
(i) forall i,j € {1,..., n}, there exists o € Gal(f/K) such that o(i) = j,

(v) Gal(f/K) acting on {1, ..., n} has only one orbit.

Proof. We only need to show (i) and (ii) are equivalent, the rest are clear. Let x be a root of f in a splitting
field L. my k divides f and is irreducible, so f is irreducible if and only if m, x = f. But the roots of m, ¢ is
Orb(x) as L/K is Galois, since f is separable. So f is irreducible if and only if every root of f is in the orbit of
x, if and only if G acts transitively on the roots of f. O

Proposition 3.14. f is separable if and only if Disc(f) + 0.

Proof. Say f is monic, then in a splitting field L for f,

n

f=[ 17 —x)

i=1

so Disc(f) = 0 if and only if f has repeated roots (in L). O

Proposition 3.15. Suppose char(K) # 2, and L is a splitting field for f € K[T] separable, G = Gal(f/K).
Then the the fixed field of G N A, = K(A(x1, ..., Xp)), where xq, ..., X, are the roots of f in L. So
Gal(f/K) < A, if and only if Disc(f) is a square in K.
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Proof Given m € S,,, we have that

|_|(T7T(i) — T(y)) = sign(or) I_l(Tl -T)

i< i<j
so if 0 € G, oA = sign(o)A. Since char(K) # 2, 1 #+ —1. As A = 0, this impliex that A € K if and only if
G C A, and A lies in the fixed field of GNA,. As[F: K]=[G:GNA)]=1o0r2 F=K(A). O

4 Finite fields

Theorem 4.1 (existence and uniqueness of finite fields). For all n, there exists a field F with order g = p”.
Any such field is a splitting field for the polynomial f = 79 — T over IF,. In particular, any two finite
fields of the same order are isomorphic.

Proof Suppose F is a field with ¢ = p" elements. Then if x € F*, x9~! = 1 by Lagrange's theorem. So for
every x € F, x7 = x. Thus, f = [],c(T — x) splits into linear factors in £, and not in any proper subfield (as
there are not enough elements). So F is a splitting field for f over IF,. By uniqueness of splitting fields, any
two such F are isomorphic.

On the other hand, let L/, be a splitting field for f = 79 — T, and let F C L be the fixed field of
¢p x> x9. Then F = {x | x? = x} is the roots of f in L. So [F| =g and F = L O

Notation 4.2. We write I, for any finite field of order g = p".

Theorem 4.3. F. [F, is Galois, with Galois group = G, generated by ¢,.

Proof. T9—T = |_|X€]Fq(7'—x) is separable, so Fy/F, is Galois. Let G < Gal(F,/IF,) be the subgroup generated
by ¢,. Then Fg = {x| x? = x} =F,. Thus by the Galois correspondence, G = Gal(F,/F,). O

Corollary 4.4. F, has a unique subfield of order p” for each m | n, and no others. If m | n, then
Fpn <Fpo is the fixed field of ¢

Proof. By Galois correspondence. O
Theorem 4.5. Suppose f &€ IF,[T] separable, deg(f) = n, whose irreducible factors have degree ny, ..., e
Then Gal(f/F,) < S, is cyclic, and generated by ana element of cycle type (n4, ..., n.). In particular,

‘Gal(f/]Fp){ = lem(nq, ..., )k

Proof. Let L be a splitting field for f over IF,, where the roots of f are xq, ..., xn- Then Gal(L/FF,) is cyclic and
generated by ¢,. As the irreducible factors of f are the minimal polynomials of the x;s, and the set of roots of
my k is the orbit of ¢, on x;, the cycle type of ¢, is (n1, ..., ne). O

Theorem 4.6 (reduction mod p). Let f € Z[T] be a monic separable polynomial, p prime, n = deg(f).
Suppose the reduction f € IF,[T] is also separable, then Gal(f/F,) < Gal(f/Q) as subgroups of S,,.

Proof. Non examinable, so omitted. O
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Corollary 4.7. With the same assumptions as in the theorem, suppose f = g1 - - - g, product of irreducibles,
with deg(g;) = n;. Then Gal(f/Q) has an element with cycle type (n1, ..., ne).

5 Cyclotomic and Kummer extensions

5.1 Primitive roots of unity

Lemma 5.1. Letn > 1, a € Z, (a, n) = 1, then the map [a] : C, — C, given by g — g is an automorphism
of C,. Furthermore, the map (Z/nZ)* — Aut(C,) given by a — [a] is an isomorphism.

Proof. [a] is obviously a homomorphism, and it is an automorphism by Bezout's theorem. So we have an injection
(ZInZ)* — Aut(C) given by a +— [a], which is a homomorphism. To show that this is surjective, notice that if
¢ € Aut(C), then for a generator g of C, ¢(g) = g? for some a. So ¢ = [a] O

Definition 5.2 (roots of unity)

Let K be a field, n > 1, define the group of n-th roots of unity. This is a finite subgroup of K*, so it is
cyclic, of order dividing n.

W(K)={xeK|x"=1}

Definition 5.3 (primitive root of unity)
We say that { € ,(K) is a primitive n-th root of unity if ord(¢) = n in ,(K).

Proposition 5.4. The following are equivalent:
(i) A primitive n-th root of unity C exists,
(@) | oK) =n,
(iit) £ = T" —1 splits into distinct linear factors in K,
In any of the above cases, we must have that char(K) |/n.

Proof. (i) and (ii) are equivalent by definition, and (i) and (iii) are equivalent by definition. If 77 — 1 is
separable, we must have " = 0, Le. n # 0, so char(K) |/n. O

Until the end of this subsection, assume either char(K) = 0 or char(K) = p > 0, p |/n. So n-th roots of
unity always exist (in some splitting field).

Definition 5.5 (cyclotomic extension)
Let L/K be a splitting field for f = T" — 1. We call L/K a cyclotomic extension.

Proposition 5.6. Let [/K be a cyclotomic extension. Then
(i) L/K is Galois, say G = Gal(L/K),
(it) | n(L)] = n, and so a primitive root of unity {, exists.

(i) L= K(C),
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(iv) there exists an injective homomorphism y, : G — (Z/nZ)*, such that if x(a) = a mod n then
0(¢) = ¢°. In particular, G is abelian.

(V) xn is an isomorphism if and only if G acts transitively on the set of primitive roots of unity in L.

We call x, the cyclotomic character of L/K.

Proof. For (i) and (ii) suffices to note that 7" — 1 is separable. The splitting field of a separable polynomial is
Calots, and there are n distinct roots of 7" — 1, s0 | ,(L)] = n.

For (iii), note that (L) =({), so L =K(1,¢,..., "N = K(Q).

(iv) Consider the action of G on L. In permutes (L), and if {," are roots of unity, ¢ € G, then
o(¢') = a(Q)a({'), so 0 € Aut( ,(L)). As L = K({,), 0(¢,) = ¢, if and only if 0 = id. So we have an injective
homomorphism G — Aut( (L)) = (Z/nZ)*.

(v) €2 is primitive if and only if (a, n) = 1, so by considering the G-orbit of {,,, we get the required result. [

Definition 5.7 (cyclotomic polynomial)

The n-th cyclotomic polynomial is

eo(T)= [ ] (T=¢)

a€(ZInZ)*

Proposition 5.8.
1) &, € K[T]
(i) We have the recurrence formula
T —1

o =
! |_|d\n,d<n ®qg

so in fact &, does not depend on K.

Proof For (i), as G permutes the primitive n-th roots of unity in L, ®, has coefficients in L% = K.
For (ii), note that if x” = 1, then x is a primitive d-th root of unity for some d | n, so we have that

7" =1 =] ]®a(T)

dln

Theorem 5.9 (irreducibility of cyclotomic polynomials over Q). Let K = Q, then x, is an isomorphism for
every n. In particular, [Q(¢,) : Q] = ¢(n), and ®, is irreducible over Q.

Proof. The three statements are equivalent, so suffices to show any one of them. Note that y,, is an isomorphism
if and only if for all primes p |/n, p mod n € (Z/nZ)* is in the image of x,, by factoring a as a product of
primes if a is coprime to n.

Fix a prime p with p |[/n. Let f = m¢g and g = mee . If f = g, then (P € Orbg({), so p mod n € im(x,)
and we are done as p is arbitrary.

Suppose not. Then (f,g) =1and f,g | T"—=1,s0 fg | T" —1. As { is a root of g(TP), f | g(TP). Reducing
mod p, we get that

Flg(lP)=qg(T)

Now f,g divides T" — 1 in F,[T], which is separable as p |/n, so 7 | () implies that / | g. But
7| 7g | T" — 1. Contradiction as 7" — 1 separable. O
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Proposition 5.10 (irreducibility of cyclotomic polynomials over IF,). Let K =F,, (n, p) = 1. Then
(i) o : G — (p mod n) < (Z/nZ)* is an isomorphism, with x,(¢,) = p mod n.
(i) r=[L:K]=|(p mod n)| =ord(p mod n),
(i) ¢p has cycle type (r, ..., r) acting as a permutation of the roots of ®,,.
Proof. ¢,(¢) = ¢, so x,(¢p) = p mod n, which implies that x,(G) = (p mod n) as G = Gal(L/K), L/K is an

extension of finite fields, with G generated by ¢,. Then [L: K] = |G| = |(p)].
If (@, n) =1, then

$p(C7) = (" = Q) =C = r|k
so the orbits of ¢, acting on the primitive roots of unity all have size r. O
5.2 Artin's theorem

Theorem 5.11 (Artin's theorem on invariants). Let L be a field, G < Aut(L) be a finite subgroup. Then
L& ={x €& L]ax)=xforall 0 € G} isasubfield of L, and [L : L®] = |G|. In particular, L/L® is a Galois
extension with Galois group G.

Proof Let K = L% and x € L. Then if Orbg(x) = {0o1(x), ..., o:(x)} , x is aroot of f =[]_(T — ai(x)) €
LY[T] = K[T]. So x is separable over K, and deg,(x) < |G|. Furthermore, f is irreducible. Suppose there
exists fy, f, € K[T] such that f = f1f,. Then

fi=[ (T —=a(x) and £=[](T - ailx))

ieh ieh
where hU L ={1,..., r}, h, b disjoint. Now for any 0 € G, ofy = f1, so o fixes {0;(x) | i € h}. Hence
we must have that | = @ or ) = {1,..., r}, e one of fi, £, is constant. So f is irreducible, and f is the

minimal polynomial of x over K.

Now choose y € L with deg,(y) maximal. We claim that L = K(y). Suppose note, then choose x € L/K(y).
By above, x,y are separable over K, so by the primitive element theorem, there exists z € L such that
K(z) = K(x,y) 2 K(y). So degy(z) > degg(y). Contradiction.

Finally, we want to show that the minimal polynomial of y over [© has degree |G|. Equivalently,
|Stabg(y)] = 1. But this is immediate since Stabg(y) acts tirvially on L. O

Theorem 5.12. Let K be a field, L = K(Xj,..., Xp) field of rational functions, G = S, acts on L by
permuting the variables. Then G < Aut(L), with

where S are the elementary symmetric polynomials.

Proof 2 is clear, so we will show the reverse inclusion. Given f/g € LY, f, g € k[X;, ..., Xy] = R so for every
o€ G, flg = (0g)/(og). Gauss' lemma implies that R is a UDF,a nd the units in R are the constants. So
of = ¢,f and 0g = ¢,g for some ¢, € K*. As G is finite, of order N = nl, f = aNf = c)Nf, so Y = 1. But
then fgN=', gN € RC = k[Sy, ..., S, so flg € Frac(R%) = k(Sy, ..., Sh). O

Corollary 5.13. f M = k(Xy, ..., Xn)and L = M>n = K(S, ..., S,), then L/K is a finite Galois extension
with Galois group S,. In particular, if

F=T"—S T 4. 4 (=1)'S, € L[T]
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Then M is a splitting field for f over L and Gal(f/L) = S,.

Corollary 5.14. Given any finite group G, there exists a Galois extension L/K with Galois group G.

Remark 5.15. This is in general false if we fix K.

5.3 Constructible numbers

We will consider the following three plane geometry constructions.

(A): Intersection of lines

Given Py, P>, Q1, 0> € R? with P; #+ Q;, we can construct the intersection of the lines P;Q; and P> 0,
assuming the lines are not parallel.

(B): Intersection of circles

Given Py, P>, 01, 0> € R?, we can construct the intersection of circles with centre P; through Q.

(C): Intersection of line and circle

Given Py, Py, Oy, O, € R2, we can construct the intersection of the line P; Oy and the circle with centre P,
through Q,.

Definition 5.16 (constructible number)

We say that (x,y) € R? is constructible from {(x1, y1), ..., (xn, yn)} Uf it can be obtained from a finite
sequence of constructions (A), (B) and (C), involving the points (x;, y;) and any constructed in a previous
step.

We say that x € R is constructible if (x,0) is constructible from {(0, 0), (1,0)}.

Definition 5.17 (constructible subfield)
Suppose K < R is a subfield. We say that K is constructible if there exists fields

Q=F<H - <F LR

and a; € F; such that
() K< F
(i) Fi=Fica(a),

(i) a? € Fi4

Proposition 5.18. Suppose K is constructible. Then [K : Q] = 2" for some m.

Proof We have that [F, : Q] is a power of 2 by the tower law, and that (ii) and (iii) imply that [F;, Fi—1] < 2.
Result follows by (i) and tower law. O

Theorem 5.19. If x € R is constructible, then K = Q(x) is constructible.

Proof. Elementary geometry shows that (A) involves solving a linear equation, and (B) and (C) involves solving
a quadratic equation. In both cases, the results can be obtained by adjoining (at most) one square root. O
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Lemma 5.20. If m is a positive integer such that 2™ + 1 is prime, then m is a power of 2.

Proof If g is odd, then we have a nontrivial factorisation

2qr+/| :(2r+/|)(2qr—r_2qr—2r+AH+1)

Theorem 5.21 (CGauss). A reqular n-gon is constructible, i.e. we can construct cos(2s/n) if and only if
n=2"p1 - pr. p1,. .., pi distinct Fermat primes, i.e. primes of the form 2% +1.

Proof Let x = cos(2m/n), {, = exp(2mi/n). Then C,% —2x{, + 1 = 0, so we have that [Q({,) : Q(x)] = 2.
Therefore, if x is constructible, [Q({,) : Q] is a power of 2. But [Q({,) : Q] = ¢(n).
Let n = p{" - pgr, then [Q(¢,) : Q] = [p"(p —1). This is a power of two if and only if for all p; odd,
we haev e; =1 and p — 1 is a power of 2 so ¢(n) is a power of two if and only if n is of the required form.
Now suppose n has the required form, so ¢(n) = 2", and Q({,)/Q is Galois, with Galois group G = (Z/nZ)*,
with 27 elements. Then there exists subgroups

G=Hy>H > - >Hp=1

such that [H; : Hi41] = 2. This follows from GRM, where we showed a p-group has subgroups of all possible
orders. Applying the Galois correspondence, we get K; = Q(¢,)" and that Q((,) is constructible. O

5.4 Kummer extensions

Theorem 5.22 (linear independence of characters). Let G be a group, L a field, x1, ..., Xn . G — L* be

distinct group homomorphisms. Then oy, ..., o, are linearly independent.
Proof. By induction on n. n =1 is trivial. Now suppose we have yq, ..., yn € L such that for all g € G,
Yix1(g) + -+ ynxalg) = 0 ()

As the homomorphisms are distinct, choose h € G such that y1(h) = xa(h). As the x; are homomorphisms,
putting hg into (*), we get

yixi(hxa(g) + -+ ynxa(h)xa(g) = 0
Now subtracting y,(h) - (x), we get

yixalg) + -+ yn 1 xa1(g) =0

where y! = y;(xi(h) — xn(h)). By induction, all y} =0, as x1(h) # xn(h), so y; = 0. Hence by the induction
hypothesis, yo = --- =y, = 0. O

Corollary 5.23 (linear independence of field embeddings). Suppose K, L are fields, o1, ..., o, K =L
are distinct field homomorphisms. If yy, ..., yn € L are such that yi0y(x) + -+ - + y,0,(x) = 0 for all
x€e K, theny; ==y, =0.

Proof Set G = K* in the theorem. O

Theorem 5.24. Suppose K contains a primitive n-th root of unity ¢ = {,, and we have an extension
L = K(x), with x” = a € K*, then

(i) L/K is a splitting field for f = T" — @, L/K is Galois with Gal(L/K) cyclic.

21



(i) [L: K]=min{m >1|x" € K}.

Proof. () As K has n distinct roots of unity {', f has n distinct roots in L, te. f(T) = [],(T —x{"). So LIK is
a splitting field for the separable polynomial 77 — a, so L/K is Galois.

Now given 0 € Gal(L/K) = G, f(a(x)) = 0, so a(x) = x{' for some i € {0, ..., n—1}. This gives us a map
6:G— ,(K)=Z/nZ, given by

oo = Y — ¢
X
To see that this is a homomorphism, suppose 0,7 € G, as { € K, t(8(0)) = 6(0), so we have that
0(ta) = T(UX(X)) _ ("(XX) @ — 7(6(0))6(7) = 6(0)6(7)

Furthermore, 6 is injective, since 8(g) = 1 if and only if o(x) = x, which is true if and only if o0 = id. So G
is isomorphic to a subgroup of a cyclic group, so it is cyclic.
For (ii), if m > 1, since L/K is Galois,

X"eK & Voe G ox")=x" < Voe (G,00)"=1 < |G|=[L:K]|m

Corollary 5.25. Suppose K contains a primitive n-th root of unity {y, then for a € K*, f = T" —a is
irreducible in K[T] if and only if a is not a d-th power in K for any d | n, d + 1.

Proof. Let L = K(x), where x" — a. Then m, ¢ divides f, so f is irreducible if and only if m, x = f, which is
true if and only if |G| =[L: K] = n. Now suppose n = md, d > 1. Then a is a d-th power in K if and only if
x™ € K, which is true if and only if |G| | m. O

Definition 5.26 (Kummer extension)

Extensions of the form L = K{(x), where x" = a € K*, and (, € K are called Kummer extensions.

Theorem 5.27. Suppose K contains a primitive n-th root of unity , let L/K be a Galois extension, with
Gal(L/K) cyclic of order n. Then L = K(x) for some x such that x” = a € K*.

That is, if K contains a primitive n-th root of unity, then L/K is a Kummer extension if and only if L/K
is Galois, with Gal(L/K) cyclic.

Proof. Let G = Gal(L/K) = {1,0 ..... foxnl } Define the Langrange resolvent

n—1
Rly)=> oy el
=0

Then if x = R(y), we have that

n—1 n—1

o) =) (o y) =) oy = ¢x

j=0 j=0

So o(x") = ("x" = x", and x” € K. By linear independence of field emebeddings, there exists y & L such
that R(y) # 0. As a'(x) = '(x), the ¢'(x) are distinct. Hence degy(x) = n and L = K(x). O

6 Trace and norm
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Definition 6.1 (multiplication map)

Let L/K be a field extension, x € L, then the map U, : L — L given by U,(y) = xy is called the
multiplication map. In particular, U, is a K-linear map.

Definition 6.2 (trace, norm, characteristic polynomial)

Let L/K be a field extension. Then the trace and norm of x € L are

Trik(x) = tr(Uy) and  Npk(x) = det(Uy)

and the characteristic polynomial of x is

fx,L/K = det(T = UX)

Lemma 6.3. For x,y € L, a € K, n =[L: K] we have that

(©) Trux(x + y) = Trux(x) + Tric(y) and Nk (xy) = afje(x)Nuk(y),
(it) Npyk(x) =0 if and only if x =0,
() Tryk(1) =n and Nyk(1) =1,

(iv) Tryk(ax) = a Tryk(x) and Nyk(ax) = a” Ny (x)

So Tryk is a K-linear map, and Ny : L* — K* is a group homomorphism.

Theorem 6.4 (tower law). Let M/L/K be finite extensions. Then for all x € M, we have that

Trok (Trapc(x) = Travgee (x) - and - N (Nwe (x) = Nk (%)

Proof. We will only prove the statement for the trace, as it is the only one we will need. Given x € M, choose a
basis uq, ..., u, for M/L, and vq, . . ., v, for L/K. Then let (a;;) be the matrix of Uy ayp. Then Tryy(x) = ), ayi.
Now for each i, j, let the matrix of Uy, 1k be A, so that we get

TI’L/K TI’M/L ZTrL/K a; l ZTF(A,'[)
i

Now in terms of the basis (u;v;) for M/K, in the order uqvy, uqvy, ..., the matrix of Uy pyk is

So TI’/\/]//( Z tr u O

Proposition 6.5. Let [ = K(x), and f = T" + ¢,_1T"~" 4+ --- + co be the minimal polynomial of x over
K. Then f, x = f. Furthermore, Tryx(x) = —ch—1 and Nk (x) = (=1)"co.

Proof. By standard linear algebra we only need to prove the first statement. Now consider the basis 1, x, . . ., X"

for L/K. The matrix of U, is
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0 0 0 —oo
170 0 —C
01 0 —q
00 ... 1T —cpg
which is just the companion matrix of f, so has characteristic polynomial f. O

Corollary 6.6. Suppose char(K) = p > 0, L = K(x), where x ¢ K, x € K. Then for every y € L,
Trk(y) = 0 and Ny (y) = yP.

Proof. Note that [L : K] = p, so suffices to prove that the minimal polynomial of x over K is TP —xP. If y € K,
then tr(y) = py = 0, and Njk(y) = yP. Otherwise, sicne [L : K] is prime, L = K(y). So if y = Y, a;x', then
b=yP =) ,a’x" € K, so the minimal polynomial of y is TP — b and we are done. O

Proposition 6.7. Let L/K be a finite separable extension of degree n, oy, ..., 0, . L — M be the distinct
K-homomorphisms into a normal closure M for L/K. Then we have that

Tru(x) =) _aild),  Nux()=[ Jab) and foux =] |(T = ailx)

i i i

Proof. Suffices to prove the statement for the minimal polynomial. Let (e;) be a basis for L/K, and P = (gi(e})): -
Since the g; are linearly independent, there can't be y; € M such that for all j, >, y0i(e;) = 0. So P is
nonsingular.

Let A= (ay;) be the matrix of U,, Le. xe; =}  a,e,, so we get that for all i, j,

O'i(X)U,'(Q/‘) = Z Ui(er)arj

r

Now if S is a diagonal matrix with S;; = g;(x), then the above becomes SP = PA, so A = PSP, and A
and S have the same characteristic polynomial. O

Corollary 6.8. If L/K is a finite Galois extension, then
Trk(¥) = > ()
oeGal(L/K)

and so on.

Theorem 6.9. Let L/K be a finite extension. Then L/K is separable if and only if Trik is surjective, ie.
if and only if Try/k is nonzero.

Proof If L/K is separable, let gy, .. ., 0, € Homg(L, M) be the distinct field embeddings into a normal closure
M for LIK, then Trk(x) =Y 0;(x). As the o; are linearly independent, this can't be identically zero.

Conversely, if L/K is inseparable, then let x € L be such thatK(x”) € K(x), which esttsﬂ Then we have
that TrK(X)/K(xP) =0, so

Trik = Trykpg © Trcpik ey = 0

4By examples sheet 2 question 7
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7/ Algebraic closure

Definition 7.1 (algebraically closed field)

A field K is algebraically closed if every polynomial with coefficients in K has a root in K. Equivalently,
the only irreducibles in K[T] are linear.

Proposition 7.2. The following are equivalent.
(i) K is algebraically closed.
(it) if L/K is any extension, x € L algebraic over K, then x € K,

(iit) if L/K is algebraic, then L = K.

Proof (i) = (ii). Let f = myk, then f € K[T] is irreducible, so it is linear, so x € K.

(i) = (iii) is true by definition.

(iii) = (i). Let f € K[T] be irreducible, L = Ly = K[T]/(f). Then L is algebraic over K, so L = K and f
is linear. O

Proposition 7.3. Let L/K be an algebraic extension such that every irreducible polynomial in K[T] splits
into linear factors over L. Then L is algebraically closed.
We call L an algebraic closure for K.

Proof Let M/L be an extension, x € M algebraic over L. Then x is algebraic over K, so m, ¢ is an irreducible
polynomial, so it splits into linear factors over L. Hence x € L, and as x is arbitrary, L is algebraically
closed. O

Theorem 7.4. If K is a countable field, then K has an algebraic closure.

Proof. K[T] is also countable, so enumerate the monic irreducible polynomials f1,f,, ... in K[T] Let Ly = K,
and for each i > 1, let L; be a splitting field for f; over L;—4. We can assume without loss of generality that
Liy < L. Let L=Jy L. Then L is a field, any by construction each f; splits over L. So L is an algebraic
closure of K. O

Proposition 7.5. Let L/K be an algebraic extension of K, M algebraically closed, 0 : K — M a field
homomorphism. Then there exists @ : L — M such that | = 0.

Proof If L = K(x) is algebraic over K, let f = m, k. Then af € M[T] splits into linear factos, so there exists
0 K(x) = M extending 0. In fact, we have one for each root of of in M.
For general L, assume K < L is a subfield. Then let
S={(F.1)|K<F <L t:F — M field homomorphism with 7|x = o}
We write (F, 1) < (F/,7) if F < F" and 7’| = 7. Then (S, <) is a nonempty poset. If T = (F;, 1) is a
poset, define

F/:UFI and T/(X):T[(X) ifxeF;

Since T is a chain, this is well defined and it is an upper bound for 7. Hence by Zorn's lemma, S has a
maximal element (F, 7). Suppose F # L, then choose x € L\ F. Then L/F(x)/F is algebraic, so we can extend
to F(x) > F. Contradiction. O
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Theorem 7.6 (maximal ideal). Let R be a nonzero ring. Then R has a maximal ideal.

Proof. By Zorn's lemma. O

Theorem 7.7. Let K be a field, then K has an algebraic closure K fo:K —K' is an isomorphism, and
K, K’ algebraic closures of K, K’ respectively, then there exists an isomorphism @ : K — K’ extending o.
So the algebraic closure is unique up to isomorphism.

Proof. Existence of algebraic closure: Let P = {f € K[T]| f monic irreducible}. Then we construct Kj such
that every f € P has a root in Kj.

Define R = K[{Ts};.p} where we adjoin an element T; for each f € P. Let | AR, | = ({(Ty) | f € F).
In R/I, T mod / is a root of f. We will now show R// is nonzero. Suppose R = [. Then there exists a finite
subset @ C P, r;r € R such that

S rf(T) =1
feQ
We can assume without loss of generality that rf is a polynomial in {Tg | g € Q} Let L/K be a splitting
field for rlfeQ f e K[T) ar € L aroot for each f € Q.
Now consider ¢ : R — L given by ¢|¢ = id, and

mm={§§§§

Then 1= (1) = 3_scq Q)P (T7)) = Y_scq ¢(ri)f(ar) = 0. Contradiction.
Therefore, by the maximal ideal theorem, R// has a maximal ideal. Equivalently, by the correspondence

theorem there exists a maximal ideal J of R with / < J. Let Ky = R/J. Then this is a field, and let x; = T;
mod J € Kj. Then Ki/K is generated by {x/}, so K;i/K is an algebraic extension of K such that every f € P
has a root.

Now let P1 be the set of irreducibles in Kj, repeating the above process we get K, and so on, we obtain

K=K CKiCK,C...

such that if f = K,[T] is non-constant, then it has a root in K,4[T] so it splits in Kyjqgeq[ 7] Letting
K =, K, this is an algebraic closure of K.

Uniqueness of algebraic closure: Assume without loss of generality K < K and K/ < K/, 0: K — K’ is
an isomorphism. As KIK is algebraic, o extends to 7 : K — K. Now K’ < oK) < K’ so F/U(F) is algebraic,
K is algebraically closed, so o(K) is also algebraically closed. Hence K’ = ¢(K), so @ is an isomorphism. [

8 Cubics, quartics and solubility by radicals

8.1 Cubics

Let f € K[T] be a monic separable cubic, G = Gal(f/K) < S5 acts on the roots xq, x2, x3 in a splitting field L
of K.
If £ is reducible, then either

1. f is a product of distinct linear factors in K, so G = 1.
2. f is a product of a linear factor and an irreducible quadratic in K, so G = 5.

Now suppose f is irreducible, and char(K) # 2,3. Then G = S3 or A3, with G = As if and only if Disc(f)
is a square in K.

Let Ky = K(A), then L/K; is Galois, with Galois group Gs.

If w € Kj is a primitive root of unity, then by L/K; is a Kummer extension, that is, L = Ki(y) with > € Kj.
Otherwise, let L(w) be a splitting field of - (T2 — 1) over K. Then L(w)/Kj(w) is Galois, with Galois group
G, 5o L(w) = Ki(w, y) with 4> € Ki(w). Hence the x; lies in the field obtained by adjoining square roots and
cube roots to K.
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8.2 Quartics

Let f € K[T] be a monic separable quartic, char(K) # 2,3. Then G = Gal(f/K) < S;. Let V = Vj be
the Klein-4 group, the transitive subgroup of S; of order 4. Let f have splitting field L with distinct roots
X1, ..., x4, and suppose without loss of generality x; + - +x4 =0. So f = T> +aT?+ bT + c. Since V is a
normal subgroup of S4, GN 'V is a normal subgroup of G containing V. In particular, we have a homomorphism
GI(GN V) — 541V = S5 But G/(GN V) = Gal(M/K), where M = 5" is a cubic extension.

Write y12 = x1 +x2 etc. Then VNG maps yi — £y So y7,, Y75, yi4 are fixed under VN G. Furthermore,
yf/- are the roots of a separable cubic g € K[T], called the resolvent cubic. Then M = L%V is the splitting
field of g, and

1
X = i(yu + Y13 + Y1)
and so on, so L = M(y12, y13, yuﬂ This means that we can solve a quartic by solving a cubic and taking

square roots.

8.3 Solubility by radicals

Suppose throughout char(K) = 0, so an extension is Galois if and only if it is normal.

Definition 8.1 (soluble by radicals)
An irreducible polynomial f € K[T] is soluble by radicals over K if there exists a sequence of fields
K=/<0£"'£Km
with x € K, a root of f, and each K; = Ki_1(y;) with gl-d‘ eKiq,d >2

Proposition 8.2. Suppose there exists d > 1, and a sequence of fields K = Ky < --- < K}, with

(i) f has aroot x € K,
(i) for i > 1, Ky = Kisa)(ye) with (y))? = a; € Kiy,
(ii) K4 = Kp(€), ¢ is a primitive d-th root of unity.

Then f is soluble by radicals over K. The converse is also true.

Proof. The statement is immediate from definitions. The converse follows by letting d = lecm(d;) and adding
the first field if necessary. O

Thus, we will assume throughout the above conditions. In particular, K1/Kp is a cyclotomic extension, so it
is Galois with abelian Galois group, and by Kummer theory K;/Ki_1 is Galois with Gal(K;/Ki—1) < Cy.

Let M be a normal closure of Kj,/K. Then M will contain a splitting field for f over K, since x € M and f
is irreducible. Let K! < M be a normal closure of Ki/K.

Proposition 8.3.

K = Ky ({ /6100 | o € Galk LK) })

Proof. As the extensions are all normal, we have that Gal(K/_,/K) is a normal subgroup of Gal(K{/K), so
Gal(K!_1/K) is a quotient of Gal(K//K). In particular, given o € Gal(K!_;/K), there exists @ € Gal(K//K) such
that 7|k, = 0. Then

—= d

a(y)? =a(y!) = oy

°In fact, L = M(y12, y13) as y1oy13y14 = b € K.
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So we have D. Suffices to show that the RHS is normal over K, as the LHS is a normal closure. But it is
the splitting field over K/, of

gi=[ (77 = ala)) € K[T]

a

So if K7, is the splitting field for g;_1 over K, the RHS is a splitting foeld for g;g;—1 over K, so it is normal
over K. O

Proposition 8.4. Gal(K//K! ;) is abelian.

Proof Let A= Gal(K//K! ;). Then for all T € A ¢ € Gal(K/_,/K), we have that

v (Vola)) = ¢j*¥/ola)

for some m, € Z|dZ. So we have a map 1 +— (m,) € (Z|dZ)", where r = |Gal(Ki—1//K)|, which defines an
injective homomorphism. This holds for i > 1. For i = 1, note that K| = Kj and so K{/Kj is just K;/Kp, which
has abelian Galois group. O

Definition 8.5 (soluble group)

A finite group G is solutble if there exists a chain of normal subgroups

T=NdN <IN, =G
such that N;/N,_4 is abelian for all i.

Proposition 8.6. G = Gal(M/K) is soluble.

Proof. Notice that M = K, so we have a chain of normal extensions over K,
K=K <K< <K, 1<K, =M
which by the Galois correspondence gives us a chain of normal subgroups of Gal(M/K),
1 = Gal(K/K) € Gal(K{/K) € -+ < Gal(K],_,/K) < Gal(K],/K) = G
with

Gal(K//K)
Gal(K_4/K)

abelian, so G is soluble. O

— Gal(K/IK/ 1)

Lemma 8.7. Any subgroup and any quotient of a solble group is soluble.

Proof. Take H N N; and N;/(H N N;) respectively. O

Theorem 8.8 (Abel-Ruffini). If f € K[T] is soluble by radicals over K, then Gal(f/K) is soluble.

Proof.
Gal(M/K)

Gal(L/K)
is soluble. O

Gal(fIK) = Gal(L/K) =~

28



Proposition 8.9. If n > 5 then S, and A, are not soluble.

Proof. Both contain the non-abelian simple group As.

Corollary 8.10. If deg(f) = n > 5, with A, < Gal(f/K), then f is not soluble by radicals.
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