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1 Inequalities

Proposition 1.1 (Young's inequality). Let p, g € (1, co) be conjugate indices.

aP b
ab < — + —
p q

Proposition 1.2 (Holder). Let p, g € [1, c0] be conjugate, then

> Iyl < Ixtip [yl
k

Proposition 1.3 (Minkowski). Let p € [1, 0] Then

Then for all a, b > 0,



[|x + y||p < lixll, + Hng

2 Normed vector spaces

2.1 Topological and normed vector spaces

In this case, F =R or C.
Definition 2.1 (normed vector space)
A norm -1l on a vector space V is a map V — Ry such that
©) lvil=0 ifand only if v =0,
(i) ||Av|| = 1Al
(i) v+ wil < vt + 1wl

A pair (V, II-11) is called a normed vector space.

Proposition 2.2. d(x, y) = ||x — g|| defines a metric on V. With respect to this metric,
1. (+):VxV—=Vand():Fx V — V are continuous,
2. translation x — x + v is a homeomorphism V — V,

3. dilataion x — Ax is continuous, and it is a homeomorphism if A # O.

Definition 2.3 (topological vector space)

A topological vector space V over a field F is a vector space with a topology which makes addition and
scalar multiplication continuous, and V' is {7

9That is, {x} is closed for all x € V.

Definition 2.4 (locally convex)

A topological vector space V is locally convex if every neighbourhood of O contains a convex neighbourhood
of 0.

Definition 2.5 (bounded)

A subset B C V' is bounded if for any open set U containing 0, there exists ty > 0 such that for any t > t,
B C tU.

Definition 2.6 (locally bounded)
A topological vector space V' is locally bounded if there exists U C V' open bounded neighbourhood of 0.



Theorem 2.7. Let (V,T) be a topological vector space, such that there is a bounded convex neighbourhood
C of 0. Then V is normable. That is, there exists a norm on V which induces the same topology.

Proof. Step 1: There exists a bounded balanced convex neighbourodd C C Cof 0. Wesay C is bounded
if A\C C C forall |[A] < 1. Since () : F x V — V is continuous, (-)~'(C) is a neighbourhood of (0, 0). So there
exists an open ball B¢(0) C F, and an open neighbourhood U C V of 0 such that

()Be(0) x V) € C

Define C to be the convex hull of (-)(B¢(0) x V). Then C C C as C is convex, and so it is bounded. Cis
balanced since AB,(0) = Bj<(0) € B.(0) for all |A| < 1. Therefore AC C C.

Step 2: Minkowski gauge Define the Minkowski gauge for C as te oV — Ry, by

pé(v):inf{t20|v€té}

To show that px is well defined, it is clear that the set is bounded below, and that all elements are
nonnegative, so all we need to show is that the set is nonempty. But by continuity of (-), t~'v — 0 as t — oo,
so t~'v e C for t large enough.

Step 3: yp is a norm

(i) vz > 0 is true by construction, and it is clear that 1~(0) = 0. Now suppose if pz(v) = 0, v # 0. Then
there exists U open, 0 € U with v & Since C is bounded, there exists ty > 0 such that C C tU. Since
te(v) = 0, there exists t < to’T such that v € ,C. Then

veuCcC'Ccu

Contradiction. Notice we needed C balanced for the above. )
(it) For A = 0 this is trivial. Now suppose A = 0. Let ¢ be such that Av € tC. Then

But C is balanced, so we have that v € ﬁc Which means that

.
pev) < Spelav)

But A # 0, so running the same argument with A7 instead we get equality.

(iit) Given t1, t; > 0 such that vj € t1C and v, € t,C, we have that

. . tHo - H - .
vtvenC+6l=(t+0h) t1+1tzc+t1jtzc C(t+6)C

by convexity. So pg(vi+v2) <t +t;. Taking the infimum over the right hand side, we get that pz(vi +v2) <
pe(v) + g va).

Step 4: iy induces the same topology. Consider an open ball B¢(vg) with the pz norm. We will show
this is open in 7. Let v € Be(w), then Be(v) C Be(v), where & = € — pe(v). But by definition of pg,
Be(v) D v+ %C, which is a 7 -neighbourhood of v as translation and dilation are continuous. Hence Be(w)
contain an 7 -open neighbourhood of every point in Be(v), so it is 7 -open.

Conversely if U is T open, wlog 0 € U. Then as C is bounded, there exists € > 0 such that C Cc e U
SoeC C U, and 6C C Uforall & < €. So B,(0) C U. O

Definition 2.8 (Banach space)

A normed vector space V is a Banach space if it is complete with respect to the metric induced by the
norm.

TAs Vis Ty, V\ {v} works



Proposition 2.9. V is a Banach space if and only if every series ) x, with > Han < oo is convergent.

Proof. Suppose V is a Banach space, and let x, be such that ) Han converges. Consider the partial sums

S/\/ = ZXH

n<N
Then for M < N, as M, N — oo, we have that

§ XI7

M<n<N

158 = S| =

< ) lwll—o

M<n<N

as the series for the norm converges. Hence (Sy) is a Cauchy sequence, so converges.
Conversely, suppose (v,) is a Cauchy sequence, then by passing to a subsequence, we can assume without
loss of generality that for all n > m,

HVH - Vm” g me

Now define x; = vy, and x; = vi —vi_q forall i > 1. So x3 + -+ x, = v,. Then )_, ||x,|| < 00 as the
geometric series converges, and so ) _, x,, and thus v, converges. O

2.2 Examples

Definition 2.10 (¢7)
Define the ¢P sequence spaces

o = {(xn) | Ixll, < o0}
Proposition 2.11. ¢P are all Banach spaces.

Proposition 2.12. Let X be a topological space, Cg(X) be the space of continuous bounded functions
with pointwise operations, then Cg(X) is a Banach space with the supremum norm.

Definition 2.13 (L” norm)
Let (E, &, 1) be a measure space, then the L” norm on measurable functions is defined by

1ip
fll = f1Pd
711, (/EI | N)

Proposition 2.14. The space of continuous functions is incomplete with respect to the [P norm if p < co.
The completion is the space L”.

2.3 Bounded linear maps

Definition 2.15 (bounded linear map)

Let V, W be topological vector spaces. T : V — W is bounded if the image of a bounded set is bounded.
We write B(V, W) for the space of bounded linear maps V' — W, and B(V) = B(V, V) for the space of



bounded linear maps on V.

Proposition 2.16. If V' is a locally bounded topological vector space (such as a normed vector space), then
bounded and continuous are equivalent.

Proof Bounded implies continuous. Let U be an open neighbourhood of 0 € W, U be an open bounded
neighbourhood of 0 € V. Then as T(U) is bounded, T(U) C tU for some t > 0. So T~'(U) D t~'U. Hence it
is a neighbourhood of 0. As translation is a homeomorphism, T is continuous everywhere, so T is continuous.

Continuous implies bounded. Let B C V be bounded, U an open neighbourhood of 0 € W. Then T~'(U)
is an open neighbourhood of 0 € U, so there exists t > 0 such that B C tT~'(U), so T(B) C tU. Hence T(B)
is bounded, so T is bounded as B was arbitrary. O

Definition 2.17 (operator norm)

Let V, W be normed vector spaces, The operator norm of T & B(V, W) is

71 = swp L aup g

i<t vl

Proposition 2.18. B(V, W) is a normed vector space, with the operator norm.

Proof. Clearly the pointwise sum and scalar multiple of bounded operators are bounded, so B(V, W) is a vector
space.

By definition HTH >0, and ||0|| = 0. Suppose ||T|| = 0. Then T =0 on B4(0). But then by homogeneity,
T = 0. Homogeneity and triangle inequality for the operator norm are obvious. O

Proposition 2.19. For all v.e V and T € B(V, W), ||Tv|| < ||T]Juvl.

Proposition 2.20. Suppose V, W are normed vector spaces, W is complete. Then B(V, W) is also
complete.

Proof. Given a Cauchy sequence (T¢) in B(V, W), for any v € V, (T¢(v)) is a Cauchy sequence, so Tyv — Tv
for some Tv € W as W is a Banach space. T :V — W is linear as pointwise limits are linear. Furthermore,
[ Tolv) = Tv|| = lim || Ty = Tov|| < lm ivil]| T — To|| = 0

n—00 n—o00

as m — oo. Furthermore, fix N, and for |lvll < 1, we have that

m—0Q

TV < ITall + tim [[7a(v) = Tu(] < [[Tnf] + tim [[7n = T

so [ is bounded. Finally, we have that
sup HTk — T|| < sup ||Tm — 7',7H -0
k>N m,n>N

as N —o00,s0 Ty — T. O]

Definition 2.21 (dual space)



The dual of a normed vector space V is V* = B(V, F).

Corollary 2.22. V* is a Banach space.

Definition 2.23 (adjoint)
Let V, W be normed vector spaces, T € B(V, W). Then the adjoint of T is T* &€ B(W*, V*) given by

T)(v) = ¢(Tv)

Proposition 2.24. HT* < HTH
Proof.
17| = sup || Ty
lef<?
= sup sup || Tg(v)|
[lo]| <1 1vi<
= sup sup [[¢(Tv)||
i<t WHQ
< sup HTVH
i<t
=I7l

Definition 2.25 (bidual)
The bidual of a normed vector space V' is V** = (V*)*.

Definition 2.26 (canonical embedding)
The canonical embedding ¢ : V — V** is given by ®(v) = ¥, where ¥(¢)) = ¢(v).

Proposition 2.27. & € B(V, V**) with ||®[| < 1.

2.4 Finite dimensional normed vector spaces

Definition 2.28 (equivalence of norms)

Let V' be a vector space, norms [I-]| and |I-1I" are equivalent if there are constants ¢, C such that for all
veV,

clivil” < vl < Ciivi



Proposition 2.29. Equivalence of norms is an equivalence relation, and equivalent norms induce the same
topology.

Proposition 2.30. All norms on a finite dimensional vector space V are equivalent.

Proof Fix a basis eq, ..., e, for V. Let 1I-1l be any norm on V. we will show that it is equivalent to the [I-llo
norm. Now

n
E viéi
i=1

n n
<3 llled) < vl Y [led
i=1 =1

il =
=C
Define S = {v € V | llvllc = 1}. This is a compact connected space, and -1l : S — Ry is continuous, so
HSH is a closed bounded interval. That is, there exists vy € S such that HVQH minimal. As vp # 0, set ¢ = HVOH.
Then for any v = 0,
vl
MVileo —
by homogeneity. So VIl > 1IV]ls. O

Proposition 2.31. Let V be a normed vector space. Then V is finite dimensional if and only if B = B1(0)
s compact.

Proof. ( =) is just the Heine-Borel theorem and equivalence of norms. For the converse, notice that

BC U Bip(v)
veB

so by compactness, we have a finite subcover vy, ..., Vp. Let W =span{w, ..., vy}, then

Iterating this, we get that B C W 4 27%B for all k, hence

BC(YW+2* BycW=W

~

SoV=W. O

2.5 *Hahn-Banach®

Strictly speaking Hahn-Banach is not in the schedules for Linear analysis, but it is in the schedules for Analysis
of functions. We include the statements but not the proofs here for completeness.

Definition 2.32 (seminorm)
Let V be a vector space. A function p: V' — Ry is called a seminorm if

() p(vi +v2) < p(vi) + p(va),
(i) p(Av) = [Alp(v).



Theorem 2.33 (Hahn-Banach (seminorm)). Let V' be a vector space, p : V' — Ry a seminorm, W < V' a
subspace, f : W — F linear such that |f(w)| < p(w) for all w € W. Then there exists a f : V — F such

that F is linear, Fy = f and (?(v)’ < p() forallv e V.

Definition 2.34 (sublinear)

Let V' be a real vector space, a function p: V — Ryq is called sublinear if

() pvi +v2) < p(vi) + p(v2),
(i) p(Av) < Ap(v) for all A > 0.

Theorem 2.35 (Hahn-Banach (sublinear)). Let V' be a real vector space, p : V' — Ry sublinear, W <V
subspace, f : W — R with f < p on W. Then there exists f : V — R such that f is linear, f|y = f and
f <ponV.

Theorem 2.36 (Geometric Hahn-Banach). Let V be a real vector space, A, B disjoint nonempty convex
sets. Then

(1) If Ais open, then there exists f € V*\ 0 and a € R such that

supf < a<inff
A B

(i) If Ais closed and B is compact, then there exists f € V*\ 0 and a, B € R such that

supf < a< B <inff
A B

Proposition 2.37.

(i) Given a normed vector space V, W < V a subspace, f € W*, then there exists f € V* such that
Flw =T, HfH — Il

(i) if V 0, then V* £ 0,
(iit) if V # 0, v # w then there exists f € V* such that f(v) # f(w).

Proof. (i) Apply Hahn-Banach with p(v) = ||f||\|v|l. Then |f| < p on W, so there exists f & V* with

’7(\/)‘ < p(v) = [[f||1viL, so Hf” < ||f]]- But trivially we have ||f|| < HI?H

(i) Fix v € V nonzero, then define the support functional for vy by f: {(w) = T, f(v) = HV()H By (i)

, we

have an extension f € V* such that f(vp) = ||v0||. Note H?H = HfH =1, since |[f(w)| = ||\/0H. In particular f is

nonzero.

(iil) Let vo = v — w, and let / be as in (ii). Then 7(v) — F(w) = ||w]| # 0.

Proposition 2.38. Let V' be a normed vector space. Then the bidual embedding ¢ : V — V** is an

isometry. In particular, ||®[| = 1.

Proof. Given v € V nonzero, let f, be a support functional for v. That is, f,(v) = llvIl and HfVH = 1. Then

O



H(D(V)(fv)H = ||fv(V)H = vl

therefore we have that ||<D(v)|| > llvil. But we have already shown the converse. O

Proposition 2.39. Given normed vector spaces V, W, T : V' — W bounded linear map. Then || T

= |I71}

Proof Suffices to show || T
functional for w. Then

| > ||T|- Let v e V with vl =1, w = Tv # 0. Let g, € W* be a support

T (gw)(V) = gu(Tv) = gu(w) = llwll
so HT*(QW)H > llwll. Thus, we have that

I7[ = s 1T (@) = 17 gl = wir = [[Tv[ > || T{uv
ol

Taking the supremum over all v with [lv]l =1, we have HT* > ||TH O

3 Baire category theorem

Definition 3.1 (rare, meagre)

Let X be a topological space, then

(i) B C X is rare (or nowhere dense) if Int(B) = @. That is, for any U C X open, BN U is not dense in
.

(ity B C X is meagre if it can be written as a countable union of rare sets.

(iit) X is meagre if it is meagre as a subset of itself.

Remark 3.2. Alternative terminology is
1. first category := meagre,

2. second category := non-meagre.

Proposition 3.3. Given a topological space X, the following are equivalent.
(i) X is non-meagre,

(it) for every countable collection {C,}, o of closed sets, with |, G, = X, at least one C, has nonempty
interior,

(iit) for every countable collection {U,}, oy of open sets, U, dense in X, then (), U, + @.

Proof. Not (i) = not (ii). Suppose X is meagre. Then

where B, are rare, so Int(B,) = @.

i) = (i). X =U,C, with Int(C,) = & for all n, then X is meagre as the C, are rare.

(it) = (iii). Notice that UE is closed with empty interior, and (), U, = @ if and only if |, UE =X

(ii) = (ii). If all G, have empty interiors, then taking U, = CE we get a contradiction with (iii). So at
least one has nonempty interior. O



Definition 3.4 (Baire space)

A topological space X is a Baire space if every countable intersection of dense open sets is dense.

Theorem 3.5 (Baire). A complete metric space is Baire. In particular, it is non-meagre.

Proof. Let (U,) be open dense sets, V C X open. We want to show that V' N (), U,) # @. Since U is dense,
Ur NV is nonempty open. Choose x1 € Uy NV, with B,,(xq) C Uy NV.

Now notice that U N B, j2(x1) is nonempty open, so we can choose xz, 1z such that B, (x2) € U, N By, p(x1).
In general, we have that (x,), (r,) such that B, (xp41) € Usp1 N By, 2(Xs). The (x,) are Cauchy, since for all

n >N, x, € Byp(xn), and rppq < rpf2, so r, = 0 and (x,) is a Cauchy sequence. Hence by completeness,
Xe — X, with

X € Bryplxw)
for all N, hence x € U,11 N B, (x) for all k. Thus, x € UN (ﬂn Un)4 O]

Theorem 3.6. A compact Hausdorff space is normal. That is, for all G, G; C X disjoint closed sets, there
exists disjoint open sets Uy, U, C X such that G C Uy, G, C Uy,

Proof. By Hausdorff, for each x € Gy, y € (,, there exists disjoint open neighbourhoods V. ,, Vi, of x,y
respectively. Now fix y € G, then

C'l g U \/x,g
xe(y
G is a closed subspace of a compact space, so it is compact. Hence we have a finite subcover x1, . . ., xm € G
such that
m
C1 g U \/xl,g
i=1
Define

m

%=u%ymdw=ﬁ%y

Then W, W are disjoint open sets. Repeating the same argument with C; compact Hausdorff space,
A C Cg(K) be a subalgebra which separates points. Then either, we have y1, ..., yn € G such that

n

/

Cz g U WU/
J=1

Now define
Ur=(W,, and U =)W,
j=1 j=1
Then Uy, Uy are open, disjoint with G C Uy and G, C Us. O

Theorem 3.7. A compact Hausdorff space X is a Baire space.

10



Proof. Let (U,) be a collection of open dense subsets, V' C X nonempty open. We want to show that V' N

(N, Un) # @. Since Uy is dense, there exists x; € Uy N'V. As {x} is disjoint from (U; N V)€, by normality

there exists Wy, W] disjoint open such that x; € Wy and (Ui N V)B C W,. Then we have that
Wcw)tcunv

Repeitthis to get x, € W, C W, C U, nW,_q1. As ﬂan is nonempty, as X is compact, choose
z € Wk. Then

zeﬂWkg VN
k

o

3.1 Uniform boundedness principle

Theorem 3.8 (Uniform boundedness principle). Let V, W be Banach spaces, (7;)ic; be a collection of
bounded linear maps V' — W, which is locally bounded. That is, for any v € V,

sup || Ti(v)| < o0
el
Then

sup H Tl” < 00
iel

Proof Let C, = {v € V |sup,e || Ti(v)|| < n}. Then G, is a closed subspace, as we have that
Co= (T (=n.n)
icl
By local boundedness, V' = {J, C,. As V is a Baire space, there exists n such that Int(C,) # @. That is,

there exists vy, € > 0 such that B(w) C C,. That is, for all i € I, v € Bc(w), HTVH < n.
Then for all v € V, with lIvil < ¢,

[T < || Tiv + wo)|| + || Telwo)|| < 1+ sup || Ti(w) |

Therefore, we must have that

1

sup |7 < £ (n-+ s | )] < o0

Corollary 3.9. Let (7,) be bounded linear maps V- — W, T, — T pointwise, T linear. Then T is bounded
with

ITII < tim inf |7, ]

Proof. By the uniform boundedness principle, sup, HT”H = ¢ < o0. Then

[T = tim || Tov]] < tim [ T, [[1rvin < citvy

. So HTVH < cllvll, which means that ||T|| < ¢. Given € > 0, there exists v € V such that Ilvll = 1, and

| T]| < ||Tv|| + € by definition of || T|| as a sup. Then as T,v — Tv, there exists N such that || T,v — Tv|| < &
forn > N. So

T < [Tvlf + e < [[Tallv + 26 < [|Ta]| + 26

i



for all n > N. Hence we must have that
[T < timinf || T, || + 2¢

forall € >0, so HTH < l'Lm'Lnf,,HT,,H. &

Corollary 3.10. Let V be a Banach space. Then B C V' is bounded if and only if for all f € V*, f(V) C R
is bounded.

Proof. Suppose B is bounded. Then for any f € V*, {(B) is bounded since f is bounded. Now suppose B C V
has f(B) bounded for every f € V*.f(B) bounded implies that

sup [®(v)(f)| = sup[f(v)] < oo
veB veB

for all f € V*, so by the uniform boundedness principle with {®(v)},ep, we have that sup,g [|¢(v)|| =
sup,cg lIvIl < oo, so B is bounded. 0

Corollary 3.11. B C V* is bounded if and only if for all v &€ V, ®(v)(B) C R is bounded.

Proof. Suppose B is bounded, then ®(v)(B) is bounded as ®(v) is bounded. Conversely, applying the uniform
boundedness principle to B we get that sup;.z Hf” < 00. O

3.2 Open mapping, inverse mapping and closed graph

Theorem 3.12 (Open mapping theorem). Let V, W be Banach spaces, T & B(V, W) be surjective. Then
T is open.

Proof. Suffices to show there exists € > 0 such that B.(0) C T(B4(0)). Since T is surjective,

w = T(8,(0)) = | T(B,(0))

neN

Hence by Baire, there exists n such that Int(7(B8,(0))) #+ @. Since dilation is a homeomorphism, without
loss of generality n = 1. So there exists wy and € > 0 such that
wp + Bse(0) C T(B4(0))

But then as T(B1(0)) is balanced and convex, we have that

30+ Buel0) + 3(—wo + Byo(0) € T(B(0]

So without loss of generality wy = 0. We will now show that B.(0) C T(51(0)). Let

B4£(O) c

wi € Be(0) = 2345(0) c %T(E% (0)) = T(B114(0)

So there exists v1 € By4(0) such that || Tvi —wy H < €/2. Now define

wo =wy — Tvi € Bep(0) € T(Byjg(0))

and so we have v, € Byg(0) such that ||w, — Tv,|| < €/4. Repeating this, we have sequences (w), (v)
with

Wi = Wi—q — Tv1 € Beppr(0) € T(Byjr+1(0))  and v € Byppre1(0) with ||Wk — TVkH < 2—€k

In particular, we — 0, and v = ), v converges, since V' is complete and the series converges in norm. In
particular, vl < 3 <1, and

12



So wi € T(B4(0)). O

Theorem 3.13 (inverse mapping). Suppose T € B(V, W) is bijective. Then T~": W — V is also bounded.

Proof By the open mapping theorem T is open, so 7~ is continuous, and hence bounded. O

Theorem 3.14 (closed graph). Suppose T : V — W is linear, then T is bounded if and only if the graph
of T

Fr={(v,Tv)|veV}CVxW

is closed.

Proof First suppose T is bounded, and (v,, Tv,) — (v, w). Then v, — v and Tv, — w. But T is continuous,
so Tv, — Tv. Hence w =Tv,so (v,w) = (v, Tv) el

Conversely, suppose [ is a closed subspace of the Banach space V' x VVE| Then it is also a Banach
space. Then the projection 7y : V x W — V' is continuous, and restricts to a bijective bounded linear map
my:Tr — V. So ' is bounded by the inverse mapping theorem, so there exists C > 0 such that

Vil + || Tv|| < Civil
forall ve V. O

Corollary 3.15. Suppose for all sequences (v,) such that v, — v and Tv, — w, we have that Tv = w,
then T is bounded.

4 Topology of C(K)
4.1 Tietze extension theorem

Definition 4.1 (normal)

A topological space X is normal if for all Gy, G, disjoint closed subsets of X, there exists disjoint open
subsets Uy, U such that CG; C Uy and G C Us.

Lemma 4.2 (Urysohn). Let X be a topological space. Then X is normal if and only if for all closed subsets
i, G of X, there exists f: X — [0, 1] continuous with f|¢, =0 and f|g, = 1.

Proof Suppose such an f exists. Then U; = f~1([0,1/2)) and U, = f~'((1/2,1)) are disjoint open sets such
that G4 C U; and G C Us.
For the converse, first we note that by normality, there exists Uy, Uy open such that Gy C Uy and G, C Uy,

Without loss of generality, we may assume G is nonempty. Then suffices to define f such that f = 0 on Uy
and f =1on G.

Step 1: Given Uy C U; € X nonempty open sets, with Uy C U, there exists U;;> open such that

Uy C Uy C Ui CUip C U

2With the ¢! norm on the product structure.

13



To see this, let G = Uy and G
disjoint open such that G C Ujp, G
Uip C Ui C VHZ C U

Step 2: Dyadic induction. By induction on k, we can define U, for all r = m/2K € [0, 1] such that if
r < s, then we have that

U1C. Then G is nonempty. As X is normal, thete exists Uip, Vip
Vip. Then Up = G C Uy, (VE, € €8 = Uy Since V, is closed,

N

U U C U
Step 3: Defining f. Let D denote the set of dyadic rationals in [0, 1]. Then define
inf{reD|xe U} ifxel
f(x) = . C
1 ifxe G=U;

Notice that f|gz = 0 and f[c, = 1.

Step 4: f is continuous. This is equivalent to showing that for all @ € [0, 1), f~'((a, 1)) is open. Fix such
an a, then x € f~'((a, 1)) if and only if f(x) > a, which is true if and only if there exists r, s € D such that
f(x) > r > s > a by density of dyadic rationals. So x € US. As U, C U, x € (U,) open. But by definition of
f as an infimum, we have that

x e (U8 Cr'((a,1)

Corollary 4.3. If K is a normal and T; topological space, then C(K) separates points.

Proof. As K is Ty, {x} and {y} are closed, so we can apply Urysohn's lemma. O

Theorem 4.4 (Tietze extension). Let X be a normal topological space, C C X nonempty closed, f : C - R
continuous bounded. Then there exists f : X — R continuous such that f|c = f, supy ’7‘ = sup¢|fl.

Proof. If f is constant the result is trivial. Otherwise, by replacing f with

f—inff
supf —inff
We can assume f: C — [0, 1] with inf f = 0 and sup f = 1. Define

Ci=170,1/3) and G =f"(2/3.1)

Then by Urysohn's lemma, there exists gq : X — [0, 1/3] continuous such that g1|¢, = 0 and g1|c, = 1/3.
Then if we set fi = f, £, = f{ — g1|c : C — [0,2/3] Repeating this, we get f : C — [0, (2/3)*""] and
g X —1[0,1/3 - (2/3)"] so that f 1 = fx — g|c : C — [0, (2/3)K] Furthermore, we can choose the g, and
f¢ so that the sup and inf are attained. Therefore, as

> gl < o0
k

Crp(X) is a Banach space, so the limit f = Y ¢ gk € Crp(X) exists. Furthermore,

> gk —1

k=1

n

2
sup = sup |fhi| < () — 0
c 3

so fle =T. O

4.2 Arzela-Ascoli
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Definition 4.5 (totally bounded)

Let (X, d) be a metric space, Y C X is totally bounded if for all € > 0O, there exists a finite e-net
N={x,. .., xp} C X such that

Y C OBS(X,-)
i=1

Definition 4.6 (relatively compact)
Let X be a topological space, ¥ C X is relatively compact if Y is compact.

Proposition 4.7. Let X be a complete metric space, Y C X. Then Y is relatively compact if and only if Y
is totally bounded.

Proof. From IB Analysis and Topology, we have that a metric space Z is compact if and only if it is complete
and totally bounded. As Y is a closed subspace of a complete space, it is complete. So Y is compact if and
only if it is totally bounded. O

Definition 4.8 (equi{bounded, continuous} {on K, at x € K'})
Let K be a compact Hausdorff space, F C C(K). Then

(i) F is equibounded at x € K if supcz |f(X)] < o0,
(ity F is equibounded on K if it is equibounded at all x € K,

(iit) F is equicontinuous at x € K if for all € > 0, there exists an open neighbourhood U of x such that

sup sup |(x) — f(y)| < €
yelUfeF

(iv) F is equicontinuous on K if it is equicontinuous at all x € K.

Theorem 4.9 (Arzela-Ascoli). Let K be a compact Hausdorff space, 7 C C(K) is relatively compact if and
only if it is equibounded and equicontinuous on K.

Proof. Note that C(K) is complete. Suppose F is relatively compact, then F is totally bounded, so it is bounded
with respect to the supremum norm, so it is equibounded. For equicontinuity, given x € K, € > 0, consider an
e-net for F. So there exists f1, ..., fm € C(K) such that

Since each f; is continuous at x, there exists U; open neighbourhood of x such that f;(U;) C B(fi(x)). Then
U= UN---NU, is an open neighbourhood of x, and forany y € U, f € F, let {; be such that Hf/ — fHoo < g,
then we have that

1(y) = L] < [T (y) = )] + [i(y) = G|+ [100 = Fx)] < 3e

Conversely, fix € > 0. Then for each x € K, we have U, open, x € U, such that f(Uy) C Bg(f(x)) for all
f € F by equicontinuity. As K is compact, we can choose a finite subcover x1, ..., xp € K such that

15



«_Uu.
i=1

Define A = {(f(x1), ..., f(x.)) | f € F} C F". As F is equibounded, A is bounded, so A is closed and
bounded, hence compact by Heine-Borel. This means that A is totally bounded, so A is totally bounded. Hence
we have an e-net for A. Thatis, N = {f;,..., fn} C F such that

i=1
In fact, N is a 3e-net for F. Given f € F,x € K, then there exists x; such that x € U, and f; such that
f(x), ..., f(xn) € Be((f;,(x)1), - - -, fi(xn))- Then

[F(x) = (0] <0 = £l + [F0x) = fixa)| + [£(x) = fi(x)| < 3e

4.3 Stone-Weierstrass

Definition 4.10 (algebra)
A vector space V over I is an alebra if V has a multiplication such that

(0 (A)(w) = Alvw) = v(Aw)

(i) ulv+w)=uv+uw, (v+w)u=vu+ wu.

Definition 4.11 (normed algebra, Banach algebra)

An algebra V is a normed algebra if V is also a normed vector space with [lvwil < [ivilllwll for all
v,w € V. If V is a Banach space, we call V a Banach algebra.

Definition 4.12 (commutative algebra)

V' is a commutative algebra if V is an algebra and vu = uv for all u,v € V.

Definition 4.13 (unital algebra)
V' is a unital algebra if V' is an algebra and there exists 1 € V such that Tv =v1 =v forall v € V.

Theorem 4.14 (Stone-Weierstrass). Let K be a compact Hausdorff space, A C Cx(K) be a subalgebra
which separates points. Then either

i) A= G(K),
(it) or there exist xp € K such that

A= {f € G(K) | flxo) = 0}

Proof Step 1: A is a subalgebra. This is immediate since if f, — f and gx — g, then fygx — fg. Therefore,
from now on, we can assume without loss of generality that A is closed.

Step 2: A is closed under finite min and max. Suffices to show if f € A then |f| € A since we can write
min and max in terms of absolute values. By scaling, wlog HfH < 1. Then for € > 0, define ¢.(r) = Ve2 +r
for r €10, 1]. Then we have that
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e4+r—r
Vel +r+/r

and ¢ is real analytic on [0, 1], so if we expand in Taylor series about r = 1/2, we have that

|¢6(r)_ ﬁ! =

<e

N 1 k
bl =Y o ( - 2) + Ruel)
k=0

such that sup |Rn.e(t)] = 0 as N — oo. Define

N 1 k
Gnelr) =) are r—2)
k=0

Then Gn.e(0) = ¢:(0) = € as N — oo. Hence given f € A, in the limit N — oo,

1= (If] = 9e(1*) + ¢e(f?)

(1] = 9e(f) + Gne(F?) + Re(F)

(I7] = 9e(r) + Gne(0) + Rue?) + (G %) — G e(0))
————— N —

N——
ll<e |-|<2e [-|<e

= (Gne(?) = Gn,c(0)) +O(4e)
cA
cA=A

Step 3: Suppose g satisfies that for any x, y € K, € > 0, there exists f € A such that |f(x) — g(x)| < €
and |f(y) —g(y)| < ¢, then g € A.  For x,y € K, choose f,, € A such that |fX,y(x)—g(X)| < € and
|fX,y(y) — g(g)| < &. Then by continuity, there exists open neighbourhoods Uy ,, Vi, of x, y respectively such
that |fX,y — g} < 2e on Uyy and V. Since K is compact, K C Ug Viy, 50 we have yq, ..., y, such that

Now define

n

U, = ﬂ Ucy, and fo=min{fy, ..., fog,} €A
i=1

Uy is an open neighbourhood of x, and f; satisfies f,(z) < g(z) + € for z € K and f(z) > g(z) — € for
z € U,. Again by compactness we have xq, ..., X such that

Then define f = max{f,, ..., f,} € L. Then

glz) —e <f(z2) < gl7) + ¢

forall z € K. Takinge - 0, g € A = A.
Step 4 case 1: Suppose for all x € K, there exists f € A such that f(x) #+ 0. For x, y € K distinct, we
have f,, fy, fyy € A such that f,(x) # 0, f,(y) # 0, £, y(x) # fiy(y). Then there exists a, f € R such that

f =t +afy,+ Bty
satisfies f(x) % 0, f(y) # 0 and f(x) # f(y). Then 7, f> € A, and

span { (7). F(y). (Fx)?. Ty | = B2
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Now given any g € Cg(K), there exists a linear combination of f and 72 which agrees with g at x, y, so by
step 3, g € A. Hence A = Cg(K).

Step 4 case 2: There exists xo € K such that for all f € A, f(xg) = 0. In this case, let 1 denote the
constant 1 function, then A@ R -1 is a closed subalgebra which satisfies case 1. So A@®R - 1 = (g(K). Fix
g € Cg(K) with g(xo) = 0. Then for any € > 0, there exists f € A, A € R such that

lg—(F+A], <e
Then g(xo) = 0, (f + A)(xo) = A and so [A| < &, and |g — f| < 2e and g € A = A. O

Theorem 4.15 (Stone-Weierstrass for complex algebras). Let K be compact Hausdorff, A C Cg(K) a
subalgebra which separates points and is closed under complex conjugation. Then either

) A= G(K)
(it) or there exists xg € K such that
A={f € Cc(K) | f(x0) = 0}

Proof. Note that Re(f) and Im(f) are in A if and only if f € A, so if we define Ag = {Re(f), Im(f) | f € A},
and apply the real version of the theorem, we get the required result. O

Theorem 4.16 (Weierstrass approximation). The set of real polynomials is dense in Cg[0, 1] and the set
of complex polynomials is dense in C¢[0, 1].

5 Inner product spaces

Note in this course we take the inner products to be linear in the first argument, and conjugate linear in the
second argument.

Proposition 5.1 (Cauchy-Schwarz). Let V' be an inner product space on F, then for any v, v, € V,

[(vi,v2)] < Vv, ) (va, v2)

Definition 5.2 (Euclidean space)

An inner product space V with norm defined by

vl =~/{v,v)

is called a Euclidean space.

Proposition 5.3 (polarisation). If V' is a Euclidean space, then we have the polarisation identities:

o =R, ’
(vow) =7 (v + wii? = llv — wii?)

(vow) = 7 (v wi = v = wii? + |y + iw* = i]|v — iw )

A=
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Proof. Expand. O

Theorem 5.4 (Jordan-von Neumann). Let V be a normed vector space. Then V' is Euclidean if and only
if it satisfies the parallelogram identity

v 4+ wii + llv — wii? = 21ivii? + 21wlil?

Proof. Suppose V is Euclidean. Then expanding the norm in terms of the inner product gives the parallelogram
law. For the converse, we can define the inner product using the polarisation identities, and notice that we can
reduce the complex case to the real case as (iv, w) = i (v, w) by polarisation identities.

To show the result is an inner product, use the parallelogram law to show that (v + v, w) = (v, w)+{(v2, w),
and use this to show that (nv, w) = n (v, w) for all n € Z. This then gives us the case for rational scalars,

then by continuity we get the result for real scalars. O

Definition 5.5 (orthogonal)
Let V be an inner product space, v, w are orthogonal, written v L w if (v, w) = 0. If S C V, its orthogonal
space s

St={veV|vyweSvlw}

Proposition 5.6. Given a Euclidean space V, S C V, then S* is a subspace, and

St = (Span(S))L

Proposition 5.7. Subspace is clear by linearity of the inner product, and by the order reversing property,

clearly we have that (span(S))L C St Now let v € S* be arbitrary. For any w € span(S), there exists
a sequence (w,) in span(S) with w,, — w. Then (v, w,) = 0 for all n, so {v, w) = 0 by continuity.

Theorem 5.8 (Bessel). Let V' be a Euclidean space, (e,) be an orthonormal sequence, then for v € V,

N
v — Z (v, ex) ex
n=1

2N

£ v ed)l

n=1

lvi? =

and we have Bessel's inequality,

(e e]
iz > v, e
n=1

with equality if and only if YN, (v, e,) e, = v as N — oo.

Proof. The first formula follows by Pythagoras, and Bessel's inequality follows by taking N — oo, which also
gives us the equality condition. O

5.1 Hilbert spaces

Theorem 5.9 (completion of normed vector spaces). Let V' be a normed vector space. Then there exists a
Banach space V, with & : V' — V a linear isometry, V = ®(V). V is unique up to isometric isomorphism.
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Proof. Let V*x be the bidual of V, ®: V — V** the bidual embedding, then ® is an isometry, and V = ®(V)

is a closed subspace of a Banach space, so it is a Banach space. B
For uniqueness, let V1, V, be Banach spaces, ®; : V — V,; isometries with V; = ®;(V). Define ¥ =
Py 0 d! by (V) — dy(V). Then W is a linear isometry, so it is bounded. Therefore there exists a unique

continuous linear extension ¥ :V1 7?2. B
Now let (y,) be a sequence in W(V4), y, — y in V5. Then let x, be the sequence such that y, = ®(x,).

Then (y,) is Cauchy, so (x,) is also Cauchy. By completeness, x, — x, so P(x) = y. Hence ¥(V4) =V, O

Definition 5.10 (Hilbert space)

A complete Euclidean space is called a Hilbert space.

Theorem 5.11 (Hilbert basis). Let H be an infinite dimensional separable Hilbert space, then there exists
(e,) orthonormal, such that

span{e, | n € N} = H
We call (e,) a Hilbert basis.

Proof. Let (y,) be a countable dense subset of H. By passing to a subsequence, we may assume the (y,) are
linearly independent, not necessarily dense but with

span{y, | n € N} = H
Applying Gram-Schmidt we get the required result. O

Corollary 5.12 (Parseval). If v, = (v, e,) and w, = (w, e,,), then

(v,w) = Z VW,

Proof. By Bessel's inequality.

Corollary 5.13. The map W : H — ¢? given by W(v), = v, = (v, e,) is an isometric isomorphism.

5.2 Projections
Proposition 5.14. Let V' be a Euclidean space, C C V be convex, nonempty and complete. Then

(i) For all v € V, there exists a unique P¢(v) € C such that

dlv,€) = inf v — 21l = [|v — Pc(v)]

(it) forall z € C,
Re (z — Pe(v),v — Pe(v)) <0
That is, the angle between them is at least /2.

(iit) Pc:V — C is 1-Lipschitz.
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Proof. (i) For existence, if v € C, then P¢(v) = v. Otherwise, let (w,) be a sequence such that ||v — Wn||2 <
d(v, C)* + ,17 Then by the parallelogram law,

HWn - WmH2 + ||Wm + W, — 2\/“2 = 2HW’” — VHZ + 2HWN _ V||2
So we get that

H\/\/n*WmH2 2 2 W,y + Wy 2
f = HWm - V|| + HWn — VH —ZHV— T

<2d(v, OF + ~ + L 24y, cp

m n
_1 ]
m o n

So (w,) is Cauchy. Hence by completeness, w, — w. Define Pc(v) = w. For uniqueness, we have that

Jwi = wal® _
-

wq + wo
2

lwr = v||” + [Jwa = v||* = 2||v— HZ < d(v, O + d{v, )’ — 2d(v, CY = 0

So wy = wy.

(it) Define ¢(A) = ||Az + (1 —=A)Pc(v) — v||2 — Hpc(\/) — VHZ. Then ¢(0) = 0 and ¢(A > 0), so ¢’(0) > O.
Hence we have that

¢'(0) =2Re (z — Pc(v), Pe(v) —v) > 0

Note in fact the converse is also true in this case.
(iit) Follows by (it) and Cauchy-Schwarz. O

Theorem 5.15. Let V be Euclidean, W < V complete. Then V = W @ W+, given by

v=Pw()+ (v—Pw(v))

That is, we have
(i) Pw linear,
(i) Pwlw = id,
(it) Pw|we =0,
(v) P§ = Pw

Proof. All the properties except for (iil) are easy to check. For (iii), notice that for v € V, 7/ € W, we have that

Re <z’ — Pw(v),v— PW(V)> <0

Letting 2/ = £z + Pw(v) and 2/ = £iz + Pw(v), we get that

+Re{(z,v—Pw() <0 and Fim{z,v—~P,v)) <0
So (z,v—P,(v)) =0 for all z. Hence v — Py(v) € W= O

5.3 Riesz-Fréchet representation theorem

Theorem 5.16 (Riesz-Fréchet representation). Given a Hilbert space H, the map ¢ : H — H* given by

P(v)(w) = (w,v)
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is a bijective isometric sesquilinear map. So H =~ H* isometrically, and H* is a Hilbert space.

Proof Sesquilinearity is obvious. Now notice that |¢(v)(w)| = [(w, v)| < livilliwll, so [[@(v)|| < lIvil. But
|p(v)(v)| = 1IvII?, so equality holds, and ¢ is an isometry.

Next, we need to show that ¢ is surjective. Let y € H*\ 0, W = ker(¢)) < H closed. Thus by the previous
theorem, we have that

H=Wea W

and Wt #£ 0. Let wop € WE\ 0, then there exists @ € F such that ((awp) = ||0(W0H
Forany w € W, y(w) =0. On Wt =T - wy, for any A € F, we have that

2l = Ly e A _
(Awg, awp) = a)\HWOH = TAHWOH = EL/J(O(WO) = Y(Awp)

Hence we must have that ¢y = ¢(awy). O
6 Spectral theory
6.1 Spectrum and resolvent

Definition 6.1 (resolvent set, spectrum)
Given a Hilbert space H, T € B(H), the resolvent set of T is

p(T)={A € C| T — Al invertible, i.e. bijective with bounded inverse}

and the spectrum of T is

a(T) = C\ p(T)

Definition 6.2 (resolvent map)

The resolvent map is Rr : p(T) — B(H) given by

Rr(A) = (T = A1)

Proposition 6.3. Let H be a Hilbert space, T € B(H), then
(i) p(T) C C open. In particular, for every Ag € p(T),
BHRTMO)”’1 ()‘0) C p(T)

(it) Ry :p(T)— B(H) is holomorphic, and locally given by an entire series,
(iit) o(T) #+ @, and a(T) C Byj7(0).

Proof. (i) If U € B(H) with HUH < 1, then I — U is invertible, with inverse given by the series

(I=ut=> U

n>0

370 see this, write a = reie, then we have that

0 _ Ywo)

e 5
[[wol
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Now if Ay € p(T), A € BHR/ vall[” (Ao), then

I'=A= (T —X)—(A—=10) = (T = Ao)(/ — (A = Ao)Rr(4))

Now notice that U = (A — Ag)Rr(Ag) has HUH < 1,s0 | — U is invertible. Hence T — A is invertible, and
A€ p(T). Furthermore, we have that

Rr(A) = (I = U)"Rr(do) = Rr(do) Y U™ =5 Rr(A0)"" (A= Ao)"

n>0 n>0

Hence (i) follows, and R/ (o) = Rr(4o)*.

For (iit), if [A| > || T|| then T — A= —A(1—A""T), ||)\’1 TH < 1,s0 T —Ais invertible, with H(T — ) H <
(|A] — ||TH)’1 Finally, to show that o(T) is nonempty, we will use Liouville’s theorem. Suppose o(T) = @.
Then for v e H, ¢ € H*, define F, 4 : C — C by

Fus(A) = ¢(Rr(A)v)
Then F, 4 is holomorphic, and for [A| > || T||, we have that

[Fol) < [lol[1RrA Juvi < fl@ffivilal = [T~ — 0

as |A| — oo. Hence by Liouville, F, 4 is constant, so by Hahn-Banach, A+ Ry () is constant. Contradiction.
O

Definition 6.4 ({point, continuous, residual, approximate point} spectrum)
Let T € B(H), then we have

1. The point spectrum is the set of eigenvalues, that is,

a,(T) = {A € C| T — Anot injective}

2. The continuous spectrum is

o(T)={A € C| T — X injective, but not surjective, and with (T — A)(H) dense in H}

3. The residual spectrum is the complement of the above two, that is,

a(T)={A € C| T — Alnjective, but (T — A)(H) is not dense in H}

4. The approximate point spectrum is

Oap(T) = {)\ € C | there exists (v,) in H such that Hv,,H =1forall n and (T —A)v, — 0}

Definition 6.5 (bounded below)
T € B(H) is bounded below if there exists C > 0 such that || Tv|| > Ciivi for all v € H.

Proposition 6.6.
0ap(T) ={A € C| T — Alis not bounded below}

Furthermore, we have that g,,(T) U a.(T) C d,p(T). However the reverse inclusion is, in general, false.

Proof Immediate from definitions. O
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Proposition 6.7. If T € B(H) is bounded below, then T(H) is closed in H.

Proof. If (T(v,)) is Cauchy, then as T is bounded below, so is (v;). O

6.2 Spectral theorem

Proposition 6.8. For T € B(H), there exists a unique T* € B(H) such that (Tv, w) = (v, T*w) for all
v,w € H.

Proof. Uniqueness follows from the fact that if D € B(H) is such that (v, Dw) = 0 for all v,w € H, then
D=0.

Existence follows form the Riesz-Fréchet representation theorem. O

Definition 6.9 (normal, self-adjoint, unitary)
Let T € B(H), then

() T isnormal if TT*=T*T
(it) T is self-adjoint if T =T
(iit) 7 is unitary if T* = 771

Proposition 6.10. Let H be a Hilbert space, T & B(H), then
(i) T unitary implies T normal,
(it) T self adjoint implies T normal,
() (ry =T,
(iv) ker(T) = im(T*)*,
(v) if T is normal, then ||TVH = ||T*v|| forallve H
(Vi) if T is normal, then ker(T) = ker(T*) = im(T)* = im(T*)*,

(vii) if T is normal, then o,(T) = @, and the (approximate) eigenvalues of T* are the complex conjugates
of the (approximate) eigenvaleus of T,

(viit) if T is normal, eigenvectors with different eigenvalues are orthogonal,

(ix) if T is self-adjoing, then (Tv,v) € Rfor all v € H, and o(T) C R.

Proof. As in the finite dimensional case from IB Linear algebra. O

Definition 6.11 (compact operator)
I € B(H) is compact if T(B4(0)) is relatively compact in H.

Proposition 6.12.

(i) T is compact if and only if it is the limit of finite rank operators,

(it) T os compact if and only if T* is compact,
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(iit) If T is compact and A € o(T)\ 0, then A € g,(T), and

0 < dim(ker(T — A)), dim(im(T — A)) < o0

Proof Omitted.

Theorem 6.13 (spectral theorem). Let T & B(H) be a compact self adjoint operator, then
(® o(T)\OC gy(T) C R,

(it) 0p(T) is countable,

(iii) the only possible accumulation point of g,(7) is 0,

(iv) Ex = ker(T — A) has finite dimension for all A € a,(T)\ 0,

(v) if 0,(T)\ O = {A; minn > 1}, then

—
DEx

n>1

€
H=kerT & and T =3 APe,

n>1
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