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1 Inequalities

Proposition 1.1 (Young’s inequality). Let p, q ∈ (1,∞) be conjugate indices. Then for all a, b ≥ 0,
ab ≤ ap

p + bq
q

Proposition 1.2 (Hölder). Let p, q ∈ [1,∞] be conjugate, then∑
k

|xkyk | ≤ ∥x∥p∥∥y∥∥q

Proposition 1.3 (Minkowski). Let p ∈ [1,∞]. Then
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∥∥x + y
∥∥
p ≤ ∥x∥p + ∥∥y∥∥p

2 Normed vector spaces
2.1 Topological and normed vector spacesIn this case, F = R or C.

Definition 2.1 (normed vector space)A norm ∥·∥ on a vector space V is a map V → R≥0 such that
(i) ∥v∥ = 0 if and only if v = 0,(ii) ∥∥λv∥∥ = |λ|∥v∥,(iii) ∥v + w∥ ≤ ∥v∥ + ∥w∥.

A pair (V , ∥·∥) is called a normed vector space.
Proposition 2.2. d(x, y) = ∥∥x − y

∥∥ defines a metric on V . With respect to this metric,
1. (+) : V × V → V and (·) : F × V → V are continuous,2. translation x 7→ x + v is a homeomorphism V → V ,3. dilataion x 7→ λx is continuous, and it is a homeomorphism if λ ̸= 0.

Definition 2.3 (topological vector space)A topological vector space V over a field F is a vector space with a topology which makes addition andscalar multiplication continuous, and V is T1a.
aThat is, {x} is closed for all x ∈ V .

Definition 2.4 (locally convex)A topological vector space V is locally convex if every neighbourhood of 0 contains a convex neighbourhoodof 0.
Definition 2.5 (bounded)A subset B ⊆ V is bounded if for any open set U containing 0, there exists t0 > 0 such that for any t > t0,
B ⊆ tU .
Definition 2.6 (locally bounded)A topological vector space V is locally bounded if there exists U ⊆ V open bounded neighbourhood of 0.
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Theorem 2.7. Let (V , T ) be a topological vector space, such that there is a bounded convex neighbourhood
C of 0. Then V is normable. That is, there exists a norm on V which induces the same topology.

Proof. Step 1: There exists a bounded balanced convex neighbourodd C̃ ⊆ C of 0. We say C̃ is boundedif λC̃ ⊆ C̃ for all |λ| ≤ 1. Since (·) : F × V → V is continuous, (·)−1(C ) is a neighbourhood of (0, 0). So thereexists an open ball Bε(0) ⊆ F, and an open neighbourhood U ⊆ V of 0 such that
(·)(Bε(0) × V ) ⊆ CDefine C̃ to be the convex hull of (·)(Bε(0) × V ). Then C̃ ⊆ C as C is convex, and so it is bounded. C̃ isbalanced since λBε(0) = B|λ|ε(0) ⊆ Bε(0) for all |λ| ≤ 1. Therefore λC̃ ⊆ C̃ .

Step 2: Minkowski gauge Define the Minkowski gauge for C̃ as µC̃ : V → R≥0, by
µC̃ (v ) = inf {t ≥ 0 | v ∈ tC̃

}
To show that µC̃ is well defined, it is clear that the set is bounded below, and that all elements arenonnegative, so all we need to show is that the set is nonempty. But by continuity of (·), t−1v → 0 as t → ∞,so t−1v ∈ C̃ for t large enough.
Step 3: µC̃ is a norm(i) µC̃ ≥ 0 is true by construction, and it is clear that µC̃ (0) = 0. Now suppose if µC̃ (v ) = 0, v ̸= 0. Thenthere exists U open, 0 ∈ U with v /∈ U1. Since C̃ is bounded, there exists t0 ≥ 0 such that C̃ ⊆ t0U . Since

µC̃ (v ) = 0, there exists t1 < t−10 such that v ∈ t2C̃ . Then
v ∈ t1C̃ ⊆ t−10 C̃ ⊆ UContradiction. Notice we needed C̃ balanced for the above.(ii) For λ = 0 this is trivial. Now suppose λ ̸= 0. Let t be such that λv ∈ tC̃ . Then

λ
|λ| v ∈ t

|λ| C̃But C̃ is balanced, so we have that v ∈ t
|λ| C̃ . Which means that
µC̃ (v ) ≤ 1

λµC̃ (λv )
But λ ̸= 0, so running the same argument with λ−1 instead we get equality.(iii) Given t1, t2 > 0 such that v1 ∈ t1C̃ and v2 ∈ t2C̃ , we have that

v1 + v2 ∈ t1C̃ + t2C̃ = (t1 + t2) ( t1
t1 + t2 C̃ + t2

t1 + t2 C̃
)

⊆ (t1 + t2)C̃
by convexity. So µC̃ (v1 +v2) ≤ t1 + t2. Taking the infimum over the right hand side, we get that µC̃ (v1 +v2) ≤

µC̃ (v1) + µC̃ (v2).
Step 4: µC̃ induces the same topology. Consider an open ball Bε(v0) with the µC̃ norm. We will showthis is open in T . Let v ∈ Bε(v0), then Bε′ (v ) ⊆ Bε′ (v0), where ε′ = ε − µC̃ (v ). But by definition of µC̃ ,

Bε′ (v ) ⊇ v + ε′2 C̃ , which is a T -neighbourhood of v as translation and dilation are continuous. Hence Bε(v0)contain an T -open neighbourhood of every point in Bε(v0), so it is T -open.Conversely if U is T open, wlog 0 ∈ U . Then as C̃ is bounded, there exists ε > 0 such that C̃ ⊆ ε−1U .So εC̃ ⊆ U , and δC̃ ⊆ U for all δ < ε. So Bε(0) ⊆ U .
Definition 2.8 (Banach space)A normed vector space V is a Banach space if it is complete with respect to the metric induced by thenorm.

1As V is T1 , V \ {v} works
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Proposition 2.9. V is a Banach space if and only if every series ∑n xn with ∑n
∥∥xn∥∥ < ∞ is convergent.

Proof. Suppose V is a Banach space, and let xn be such that ∑n
∥∥xn∥∥ converges. Consider the partial sums

SN = ∑
n≤N

xn

Then for M ≤ N , as M,N → ∞, we have that
∥∥SN − SM

∥∥ = ∥∥∥∥∥ ∑
M<n≤N

xn

∥∥∥∥∥ ≤
∑

M<n≤N

∥∥xn∥∥ → 0
as the series for the norm converges. Hence (SN ) is a Cauchy sequence, so converges.Conversely, suppose (vn) is a Cauchy sequence, then by passing to a subsequence, we can assume withoutloss of generality that for all n ≥ m, ∥∥vn − vm

∥∥ ≤ 2−m

Now define x1 = v1, and xi = vi − vi−1 for all i > 1. So x1 + · · · + xn = vn. Then ∑n
∥∥xi∥∥ < ∞ as thegeometric series converges, and so ∑n xn, and thus vn converges.

2.2 Examples

Definition 2.10 (ℓp)Define the ℓp sequence spaces
ℓp = {(xn) | ∥x∥p < ∞

}

Proposition 2.11. ℓp are all Banach spaces.
Proposition 2.12. Let X be a topological space, CF,b(X ) be the space of continuous bounded functionswith pointwise operations, then CF,b(X ) is a Banach space with the supremum norm.
Definition 2.13 (Lp norm)Let (E, E , µ) be a measure space, then the Lp norm on measurable functions is defined by

∥∥f∥∥p = (∫
E

|f |pdµ)1/p

Proposition 2.14. The space of continuous functions is incomplete with respect to the Lp norm if p < ∞.The completion is the space Lp.
2.3 Bounded linear maps

Definition 2.15 (bounded linear map)Let V ,W be topological vector spaces. T : V → W is bounded if the image of a bounded set is bounded.We write B (V ,W ) for the space of bounded linear maps V → W , and B (V ) = B (V , V ) for the space of
4



bounded linear maps on V .
Proposition 2.16. If V is a locally bounded topological vector space (such as a normed vector space), thenbounded and continuous are equivalent.

Proof. Bounded implies continuous. Let U be an open neighbourhood of 0 ∈ W , Ũ be an open boundedneighbourhood of 0 ∈ V . Then as T (Ũ) is bounded, T (Ũ) ⊆ tU for some t > 0. So T−1(U) ⊇ t−1Ũ . Hence itis a neighbourhood of 0. As translation is a homeomorphism, T is continuous everywhere, so T is continuous.
Continuous implies bounded. Let B ⊆ V be bounded, U an open neighbourhood of 0 ∈ W . Then T−1(U)is an open neighbourhood of 0 ∈ U , so there exists t > 0 such that B ⊆ tT−1(U), so T (B) ⊆ tU . Hence T (B)is bounded, so T is bounded as B was arbitrary.

Definition 2.17 (operator norm)Let V ,W be normed vector spaces, The operator norm of T ∈ B (V ,W ) is∥∥T∥∥ = sup∥v∥≤1
∥∥T v∥∥∥v∥ = sup∥v∥=1

∥∥T v∥∥

Proposition 2.18. B (V ,W ) is a normed vector space, with the operator norm.
Proof. Clearly the pointwise sum and scalar multiple of bounded operators are bounded, so B (V ,W ) is a vectorspace.By definition ∥∥T∥∥ ≥ 0, and ∥∥0∥∥ = 0. Suppose ∥∥T∥∥ = 0. Then T = 0 on B1(0). But then by homogeneity,
T = 0. Homogeneity and triangle inequality for the operator norm are obvious.

Proposition 2.19. For all v ∈ V and T ∈ B (V ,W ), ∥∥T v∥∥ ≤
∥∥T∥∥∥v∥.

Proposition 2.20. Suppose V ,W are normed vector spaces, W is complete. Then B (V ,W ) is alsocomplete.
Proof. Given a Cauchy sequence (Tk ) in B (V ,W ), for any v ∈ V , (Tk (v )) is a Cauchy sequence, so Tkv → Tvfor some T v ∈ W as W is a Banach space. T : V → W is linear as pointwise limits are linear. Furthermore,∥∥Tm(v ) − Tv

∥∥ = lim
n→∞

∥∥Tmv − Tnv
∥∥ ≤ lim

n→∞
∥v∥∥∥Tm − Tn

∥∥ → 0
as m → ∞. Furthermore, fix N , and for ∥v∥ ≤ 1, we have that∥∥T v∥∥ ≤

∥∥TN (v )∥∥ + lim
m→∞

∥∥TN (v ) − Tm(v )∥∥ ≤
∥∥TN∥∥ + lim

m→∞

∥∥TN − Tm
∥∥

so T is bounded. Finally, we have that
sup
k≥N

∥∥Tk − T
∥∥ ≤ sup

m,n≥N

∥∥Tm − Tn
∥∥ → 0

as N → ∞, so Tk → T .
Definition 2.21 (dual space)
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The dual of a normed vector space V is V ∗ = B (V ,F).
Corollary 2.22. V ∗ is a Banach space.
Definition 2.23 (adjoint)Let V ,W be normed vector spaces, T ∈ B (V ,W ). Then the adjoint of T is T ∗ ∈ B (W ∗, V ∗) given by

T ∗(ψ)(v ) = ψ(T v )
Proposition 2.24.

∥∥T ∗∥∥ ≤
∥∥T∥∥.

Proof. ∥∥T ∗∥∥ = sup∥∥ψ∥∥≤1
∥∥Tψ∥∥

= sup∥∥ψ∥∥≤1 sup∥v∥≤1
∥∥Tψ(v )∥∥

= sup∥v∥≤1 sup∥∥ψ∥∥≤1
∥∥ψ(T v )∥∥

≤ sup∥v∥≤1
∥∥T v∥∥

= ∥∥T∥∥

Definition 2.25 (bidual)The bidual of a normed vector space V is V ∗∗ = (V ∗)∗.
Definition 2.26 (canonical embedding)The canonical embedding Φ : V → V ∗∗ is given by Φ(v ) = v̂ , where v̂ (ψ) = ψ(v ).
Proposition 2.27. Φ ∈ B (V , V ∗∗) with ∥∥Φ∥∥ ≤ 1.

2.4 Finite dimensional normed vector spaces

Definition 2.28 (equivalence of norms)Let V be a vector space, norms ∥·∥ and ∥·∥′ are equivalent if there are constants c, C such that for all
v ∈ V ,

c∥v∥′ ≤ ∥v∥ ≤ C∥v∥′
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Proposition 2.29. Equivalence of norms is an equivalence relation, and equivalent norms induce the sametopology.
Proposition 2.30. All norms on a finite dimensional vector space V are equivalent.

Proof. Fix a basis e1, . . . , en for V . Let ∥·∥ be any norm on V . we will show that it is equivalent to the ∥·∥∞norm. Now
∥v∥ = ∥∥∥∥∥ n∑

i=1 viei
∥∥∥∥∥ ≤

n∑
i=1 |vi|

∥∥ei∥∥ ≤ ∥v∥∞

n∑
i=1
∥∥ei∥∥︸ ︷︷ ︸=CDefine S = {v ∈ V | ∥v∥∞ = 1}. This is a compact connected space, and ∥·∥ : S → R≥0 is continuous, so∥∥S∥∥ is a closed bounded interval. That is, there exists v0 ∈ S such that ∥∥v0∥∥ minimal. As v0 ̸= 0, set c = ∥∥v0∥∥.Then for any v ̸= 0, ∥v∥∥v∥∞

≥ c

by homogeneity. So ∥v∥ ≥ ∥v∥∞.
Proposition 2.31. Let V be a normed vector space. Then V is finite dimensional if and only if B = B1(0)is compact.

Proof. ( =⇒ ) is just the Heine-Borel theorem and equivalence of norms. For the converse, notice that
B ⊆

⋃
v∈B

B1/2(v )
so by compactness, we have a finite subcover v1, . . . , vn. Let W = span{v1, . . . , vn}, then

B ⊆
n⋃
i=1(vi + 12B) ⊆ W + 12B

Iterating this, we get that B ⊆ W + 2−kB for all k , hence
B ⊆

⋂
k

(W + 2−kB) ⊆ W = W

So V = W .
2.5 *Hahn-Banach*
Strictly speaking Hahn-Banach is not in the schedules for Linear analysis, but it is in the schedules for Analysis
of functions. We include the statements but not the proofs here for completeness.

Definition 2.32 (seminorm)Let V be a vector space. A function p : V → R≥0 is called a seminorm if
(i) p(v1 + v2) ≤ p(v1) + p(v2),(ii) p(λv ) = |λ|p(v ).
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Theorem 2.33 (Hahn-Banach (seminorm)). Let V be a vector space, p : V → R≥0 a seminorm, W ≤ V asubspace, f : W → F linear such that |f (w)| ≤ p(w) for all w ∈ W . Then there exists a f̃ : V → F suchthat f̃ is linear, f̃ |W = f and ∣∣∣f̃ (v )∣∣∣ ≤ p(v ) for all v ∈ V .

Definition 2.34 (sublinear)Let V be a real vector space, a function p : V → R≥0 is called sublinear if
(i) p(v1 + v2) ≤ p(v1) + p(v2),(ii) p(λv ) ≤ λp(v ) for all λ > 0.

Theorem 2.35 (Hahn-Banach (sublinear)). Let V be a real vector space, p : V → R≥0 sublinear, W ≤ Vsubspace, f : W → R with f ≤ p on W . Then there exists f̃ : V → R such that f̃ is linear, f̃ |W = f and
f̃ ≤ p on V .
Theorem 2.36 (Geometric Hahn-Banach). Let V be a real vector space, A, B disjoint nonempty convexsets. Then

(i) If A is open, then there exists f ∈ V ∗ \ 0 and α ∈ R such that
sup
A
f ≤ α ≤ inf

B
f

(ii) If A is closed and B is compact, then there exists f ∈ V ∗ \ 0 and α, β ∈ R such that
sup
A
f < α < β < inf

B
f

Proposition 2.37.(i) Given a normed vector space V , W ≤ V a subspace, f ∈ W ∗, then there exists f̃ ∈ V ∗ such that
f̃ |W = f , ∥∥∥f̃∥∥∥ = ∥∥f∥∥.

(ii) if V ̸= 0, then V ∗ ̸= 0,(iii) if V ̸= 0, v ̸= w then there exists f ∈ V ∗ such that f (v ) ̸= f (w).
Proof. (i) Apply Hahn-Banach with p(v ) = ∥∥f∥∥∥v∥. Then |f | ≤ p on W , so there exists f̃ ∈ V ∗ with∣∣∣f̃ (v )∣∣∣ ≤ p(v ) = ∥∥f∥∥∥v∥, so ∥∥∥f̃∥∥∥ ≤

∥∥f∥∥. But trivially we have ∥∥f∥∥ ≤
∥∥∥f̃∥∥∥.(ii) Fix v0 ∈ V nonzero, then define the support functional for v0 by f : ⟨v0⟩ → F, f (v0) = ∥∥v0∥∥. By (i), wehave an extension f̃ ∈ V ∗ such that f̃ (v0) = ∥∥v0∥∥. Note ∥∥∥f̃∥∥∥ = ∥∥f∥∥ = 1, since |f (v0)| = ∥∥v0∥∥. In particular f̃ isnonzero.(iii) Let v0 = v − w , and let f̃ be as in (ii). Then f̃ (v ) − f̃ (w) = ∥∥v0∥∥ ̸= 0.

Proposition 2.38. Let V be a normed vector space. Then the bidual embedding Φ : V → V ∗∗ is anisometry. In particular, ∥∥Φ∥∥ = 1.
Proof. Given v ∈ V nonzero, let fv be a support functional for v . That is, fv (v ) = ∥v∥ and ∥∥fv∥∥ = 1. Then
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∥∥Φ(v )(fv )∥∥ = ∥∥fv (v )∥∥ = ∥v∥therefore we have that ∥∥Φ(v )∥∥ ≥ ∥v∥. But we have already shown the converse.
Proposition 2.39. Given normed vector spaces V ,W , T : V → W bounded linear map. Then ∥∥T ∗∥∥ = ∥∥T∥∥.

Proof. Suffices to show ∥∥T ∗∥∥ ≥
∥∥T∥∥. Let v ∈ V with ∥v∥ = 1, w = T v ̸= 0. Let gw ∈ W ∗ be a supportfunctional for w . Then
T ∗(gw )(v ) = gw (T v ) = gw (w) = ∥w∥so ∥∥T ∗(gw )∥∥ ≥ ∥w∥. Thus, we have that∥∥T ∗∥∥ = sup∥∥g∥∥=1
∥∥T ∗(g)∥∥ ≥

∥∥T ∗(gw )∥∥ ≥ ∥w∥ = ∥∥T v∥∥ ≥
∥∥T∥∥∥v∥

Taking the supremum over all v with ∥v∥ = 1, we have ∥∥T ∗∥∥ ≥
∥∥T∥∥.

3 Baire category theorem

Definition 3.1 (rare, meagre)Let X be a topological space, then
(i) B ⊆ X is rare (or nowhere dense) if Int(B) = ∅. That is, for any U ⊆ X open, B ∩U is not dense in

U .(ii) B ⊆ X is meagre if it can be written as a countable union of rare sets.(iii) X is meagre if it is meagre as a subset of itself.
Remark 3.2. Alternative terminology is1. first category := meagre,2. second category := non-meagre.
Proposition 3.3. Given a topological space X , the following are equivalent.

(i) X is non-meagre,(ii) for every countable collection {Cn}n∈N of closed sets, with ⋃n Cn = X , at least one Cn has nonemptyinterior,(iii) for every countable collection {Un}n∈N of open sets, Un dense in X , then ⋂n Un ̸= ∅.
Proof. Not (i) =⇒ not (ii). Suppose X is meagre. Then

X =⋃
n
Bn =⋃

n
Bn

where Bn are rare, so Int(Bn) = ∅.
(i) =⇒ (ii). If X = ⋃n Cn with Int(Cn) = ∅ for all n, then X is meagre as the Cn are rare.
(ii) =⇒ (iii). Notice that U∁

n is closed with empty interior, and ⋂n Un = ∅ if and only if ⋃n U∁
n = X .

(iii) =⇒ (ii). If all Cn have empty interiors, then taking Un = C∁
n we get a contradiction with (iii). So atleast one has nonempty interior.
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Definition 3.4 (Baire space)A topological space X is a Baire space if every countable intersection of dense open sets is dense.
Theorem 3.5 (Baire). A complete metric space is Baire. In particular, it is non-meagre.

Proof. Let (Un) be open dense sets, V ⊆ X open. We want to show that V ∩ (⋂n Un) ̸= ∅. Since U1 is dense,
U1 ∩ V is nonempty open. Choose x1 ∈ U1 ∩ V , with Br1 (x1) ⊆ U1 ∩ V .Now notice that U2 ∩Br1/2(x1) is nonempty open, so we can choose x2, r2 such that Br2 (x2) ⊆ U2 ∩Br1/2(x1).In general, we have that (xn), (rn) such that Brn+1 (xn+1) ⊆ Un+1 ∩ Brn/2(xn). The (xn) are Cauchy, since for all
n ≥ N , xn ∈ BrN /2(xN ), and rn+1 < rn/2, so rn → 0 and (xn) is a Cauchy sequence. Hence by completeness,
xk → x , with

x ∈ BrN /2(xN )for all N , hence x ∈ Un+1 ∩ Brk (x) for all k . Thus, x ∈ U ∩
(⋂

n Un
).

Theorem 3.6. A compact Hausdorff space is normal. That is, for all C1, C2 ⊆ X disjoint closed sets, thereexists disjoint open sets U1, U2 ⊆ X such that C1 ⊆ U1, C2 ⊆ U2.
Proof. By Hausdorff, for each x ∈ C1, y ∈ C2, there exists disjoint open neighbourhoods Vx,y, V ′

x,y of x, yrespectively. Now fix y ∈ C2, then
C1 ⊆

⋃
x∈C1

Vx,y

C1 is a closed subspace of a compact space, so it is compact. Hence we have a finite subcover x1, . . . , xm ∈ C1such that
C1 ⊆

m⋃
i=1Vxi,yDefine

Wy = m⋃
i=1Uxi,y and W ′

y = m⋂
i=1U

′
xi,y

Then Wy,W ′
y are disjoint open sets. Repeating the same argument with C2 compact Hausdorff space,

A ⊆ CR(K ) be a subalgebra which separates points. Then either, we have y1, . . . , yn ∈ C2 such that
C2 ⊆

n⋃
j=1W

′
yj

Now define
U1 = n⋂

j=1Wyj and U2 = n⋃
j=1W

′
yj

Then U1, U2 are open, disjoint with C1 ⊆ U1 and C2 ⊆ U2.
Theorem 3.7. A compact Hausdorff space X is a Baire space.
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Proof. Let (Un) be a collection of open dense subsets, V ⊆ X nonempty open. We want to show that V ∩(⋂
n Un

)
̸= ∅. Since U1 is dense, there exists x1 ∈ U1 ∩ V . As {x} is disjoint from (U1 ∩ V )∁, by normalitythere exists W1,W ′1 disjoint open such that x1 ∈ W1 and (U1 ∩ V )∁ ⊆ W ′1. Then we have that

W1 ⊆ (W ′1)∁ ⊆ U1 ∩ VRepeat this to get xn ∈ Wn ⊆ Wn ⊆ Un ∩ Wn−1. As ⋂nWn is nonempty, as X is compact, choose
z ∈

⋂
k Wk . Then

z ∈
⋂
k
Wk ⊆ V ∩

(⋂
n
Un

)

3.1 Uniform boundedness principle

Theorem 3.8 (Uniform boundedness principle). Let V ,W be Banach spaces, (Ti)i∈I be a collection ofbounded linear maps V → W , which is locally bounded. That is, for any v ∈ V ,
sup
i∈I

∥∥Ti(v )∥∥ < ∞

Then
sup
i∈I

∥∥Ti∥∥ < ∞

Proof. Let Cn = {v ∈ V | supi∈I ∥∥Ti(v )∥∥ ≤ n
}. Then Cn is a closed subspace, as we have that
Cn =⋂

i∈I
T−1
i ([−n, n])

By local boundedness, V = ⋃
n Cn. As V is a Baire space, there exists n such that Int(Cn) ̸= ∅. That is,there exists v0, ε > 0 such that Bε(v0) ⊆ Cn. That is, for all i ∈ I , v ∈ Bε(v0), ∥∥T v∥∥ ≤ n.Then for all v ∈ V , with ∥v∥ < ε,∥∥Ti(v )∥∥ ≤

∥∥Ti(v + v0)∥∥ + ∥∥Ti(v0)∥∥ ≤ n+ sup
i

∥∥Ti(v0)∥∥
Therefore, we must have that

sup
i

∥∥Ti∥∥ ≤ 1
ε

(
n+ sup

i

∥∥Ti(v0)∥∥) < ∞

Corollary 3.9. Let (Tn) be bounded linear maps V → W , Tn → T pointwise, T linear. Then T is boundedwith ∥∥T∥∥ ≤ lim inf
n

∥∥Tn∥∥
Proof. By the uniform boundedness principle, supn ∥∥Tn∥∥ = c < ∞. Then∥∥T v∥∥ = lim

n

∥∥Tnv∥∥ ≤ lim
n

∥∥Tn∥∥∥v∥ ≤ c∥v∥
. So ∥∥T v∥∥ ≤ c∥v∥, which means that ∥∥T∥∥ ≤ c. Given ε > 0, there exists v ∈ V such that ∥v∥ = 1, and∥∥T∥∥ ≤

∥∥T v∥∥+ε by definition of ∥∥T∥∥ as a sup. Then as Tnv → Tv , there exists N such that ∥∥Tnv − T v
∥∥ < εfor n ≥ N . So ∥∥T∥∥ ≤

∥∥T v∥∥ + ε ≤
∥∥Tn∥∥v + 2ε ≤

∥∥Tn∥∥ + 2ε
11



for all n ≥ N . Hence we must have that∥∥T∥∥ ≤ lim inf
n

∥∥Tn∥∥ + 2ε
for all ε > 0, so ∥∥T∥∥ ≤ lim infn ∥∥Tn∥∥.

Corollary 3.10. Let V be a Banach space. Then B ⊆ V is bounded if and only if for all f ∈ V ∗, f (V ) ⊆ Ris bounded.
Proof. Suppose B is bounded. Then for any f ∈ V ∗, f (B) is bounded since f is bounded. Now suppose B ⊆ Vhas f (B) bounded for every f ∈ V ∗.f (B) bounded implies that

sup
v∈B

|Φ(v )(f )| = sup
v∈B

|f (v )| < ∞

for all f ∈ V ∗, so by the uniform boundedness principle with {Φ(v )}v∈B , we have that supv∈B ∥∥φ(v )∥∥ =supv∈B ∥v∥ < ∞, so B is bounded.
Corollary 3.11. B ⊆ V ∗ is bounded if and only if for all v ∈ V , Φ(v )(B) ⊆ R is bounded.

Proof. Suppose B is bounded, then Φ(v )(B) is bounded as Φ(v ) is bounded. Conversely, applying the uniformboundedness principle to B we get that supf∈B ∥∥f∥∥ < ∞.
3.2 Open mapping, inverse mapping and closed graph

Theorem 3.12 (Open mapping theorem). Let V ,W be Banach spaces, T ∈ B (V ,W ) be surjective. Then
T is open.

Proof. Suffices to show there exists ε > 0 such that Bε(0) ⊆ T (B1(0)). Since T is surjective,
W = ⋃

n∈N
T (Bn(0)) = ⋃

n
T (Bn(0))

Hence by Baire, there exists n such that Int(T (Bn(0))) ̸= ∅. Since dilation is a homeomorphism, withoutloss of generality n = 1. So there exists w0 and ε > 0 such that
w0 + B4ε(0) ⊆ T (B1(0))But then as T (B1(0)) is balanced and convex, we have that

B4ε(0) ⊆ 12 (w0 + B4ε(0)) + 12(−w0 + B4ε(0)) ⊆ T (B1(0))
So without loss of generality w0 = 0. We will now show that Bε(0) ⊆ T (B1(0)). Let

w1 ∈ Bε(0) = 14B4ε(0) ⊆ 14T (B1(0)) = T (B1/4(0))
So there exists v1 ∈ B1/4(0) such that ∥∥T v1 − w1∥∥ < ε/2. Now define

w2 = w1 − Tv1 ∈ Bε/2(0) ⊆ T (B1/8(0))and so we have v2 ∈ B1/8(0) such that ∥∥w2 − Tv2∥∥ < ε/4. Repeating this, we have sequences (wk ), (vk )with
wk = wk−1 − Tvk−1 ∈ Bε/2k (0) ⊆ T (B1/2k+1 (0)) and vk ∈ B1/2k+1 (0) with ∥∥wk − Tvk

∥∥ < ε2kIn particular, wk → 0, and v = ∑k vk converges, since V is complete and the series converges in norm. Inparticular, ∥v∥ ≤ 12 < 1, and
12



wk = w1 − T
(k−1∑

i=1 vi
)

→ 0
So w1 ∈ T (B1(0)).

Theorem 3.13 (inverse mapping). Suppose T ∈ B (V ,W ) is bijective. Then T−1 : W → V is also bounded.
Proof. By the open mapping theorem T is open, so T−1 is continuous, and hence bounded.

Theorem 3.14 (closed graph). Suppose T : V → W is linear, then T is bounded if and only if the graphof T
ΓT = {(v, T v ) | v ∈ V} ⊆ V ×Wis closed.

Proof. First suppose T is bounded, and (vn, T vn) → (v, w). Then vn → v and T vn → w . But T is continuous,so T vn → Tv . Hence w = T v , so (v, w) = (v, T v ) ∈ ΓT .Conversely, suppose ΓT is a closed subspace of the Banach space V × W 2. Then it is also a Banachspace. Then the projection πV : V × W → V is continuous, and restricts to a bijective bounded linear map
πV : ΓT → V . So π−1

V is bounded by the inverse mapping theorem, so there exists C > 0 such that∥v∥ + ∥∥T v∥∥ ≤ C∥v∥for all v ∈ V .
Corollary 3.15. Suppose for all sequences (vn) such that vn → v and T vn → w , we have that T v = w ,then T is bounded.

4 Topology of C (K )
4.1 Tietze extension theorem

Definition 4.1 (normal)A topological space X is normal if for all C1, C2 disjoint closed subsets of X , there exists disjoint opensubsets U1, U2 such that C1 ⊆ U1 and C2 ⊆ U2.
Lemma 4.2 (Urysohn). Let X be a topological space. Then X is normal if and only if for all closed subsets
C1, C2 of X , there exists f : X → [0, 1] continuous with f |C1 = 0 and f |C2 = 1.

Proof. Suppose such an f exists. Then U1 = f−1([0, 1/2)) and U2 = f−1((1/2, 1]) are disjoint open sets suchthat C1 ⊆ U1 and C2 ⊆ U2.For the converse, first we note that by normality, there exists U0, U1 open such that C1 ⊆ U0 and C2 ⊆ U1.Without loss of generality, we may assume C2 is nonempty. Then suffices to define f such that f = 0 on U0and f = 1 on C2.
Step 1: Given U0 ⊆ U1 ⊊ X nonempty open sets, with U0 ⊆ U1, there exists U1/2 open such that

U0 ⊆ U0 ⊆ U1/2 ⊆ U1/2 ⊆ U1
2With the ℓ1 norm on the product structure.
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To see this, let C1 = U0 and C2 = U∁1 . Then C2 is nonempty. As X is normal, thete exists U1/2, V1/2disjoint open such that C1 ⊆ U1/2, C2 ⊆ V1/2. Then U0 = C1 ⊆ U1/2, (V ∁1/2 ⊆ C∁2 = U1. Since V ∁1/2 is closed,
U1/2 ⊆ U1/2 ⊆ V ∁1/2 ⊆ U1.

Step 2: Dyadic induction. By induction on k , we can define Ur for all r = m/2k ∈ [0, 1], such that if
r < s, then we have that

Ur ⊆ Ur ⊆ Us
Step 3: Defining f . Let D denote the set of dyadic rationals in [0, 1]. Then define

f (x) = {inf {r ∈ D | x ∈ Ur} if x ∈ U11 if x ∈ C2 = U∁1Notice that f |U0 = 0 and f |C2 = 1.
Step 4: f is continuous. This is equivalent to showing that for all a ∈ [0, 1), f−1((a, 1]) is open. Fix suchan a, then x ∈ f−1((a, 1]) if and only if f (x) > a, which is true if and only if there exists r, s ∈ D such that

f (x) > r > s > a by density of dyadic rationals. So x ∈ U∁
r . As Us ⊆ Ur , x ∈ (Us)∁ open. But by definition of

f as an infimum, we have that
x ∈ (Us)∁ ⊆ f−1((a, 1])

Corollary 4.3. If K is a normal and T1 topological space, then C (K ) separates points.
Proof. As K is T1, {x} and {y} are closed, so we can apply Urysohn’s lemma.

Theorem 4.4 (Tietze extension). Let X be a normal topological space, C ⊆ X nonempty closed, f : C → Rcontinuous bounded. Then there exists f̃ : X → R continuous such that f̃ |C = f , supX ∣∣∣f̃ ∣∣∣ = supC |f |.
Proof. If f is constant the result is trivial. Otherwise, by replacing f with

f − inf fsup f − inf fWe can assume f : C → [0, 1] with inf f = 0 and sup f = 1. Define
C1 = f−1([0, 1/3]) and C2 = f−1([2/3, 1])Then by Urysohn’s lemma, there exists g1 : X → [0, 1/3] continuous such that g1|C1 = 0 and g1|C2 = 1/3.Then if we set f1 = f , f2 = f1 − g1|C : C → [0, 2/3]. Repeating this, we get fk : C → [0, (2/3)k−1] and

gk : X → [0, 1/3 · (2/3)k−1] so that fk+1 = fk − gk |C : C → [0, (2/3)k ]. Furthermore, we can choose the gk and
fk so that the sup and inf are attained. Therefore, as∑

k

∥∥gk∥∥∞ < ∞

CR,b(X ) is a Banach space, so the limit f̃ = ∑k gk ∈ CR,b(X ) exists. Furthermore,
sup
C

∣∣∣∣∣ n∑
k=1 gk − f

∣∣∣∣∣ = sup
C

|fn+1| ≤
(23
)n

→ 0
so f̃ |C = f .

4.2 Arzelà-Ascoli
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Definition 4.5 (totally bounded)Let (X, d) be a metric space, Y ⊆ X is totally bounded if for all ε > 0, there exists a finite ε-net
N = {x1, . . . , xn} ⊆ X such that

Y ⊆
n⋃
i=1Bε(xi)

Definition 4.6 (relatively compact)Let X be a topological space, Y ⊆ X is relatively compact if Y is compact.
Proposition 4.7. Let X be a complete metric space, Y ⊆ X . Then Y is relatively compact if and only if Yis totally bounded.

Proof. From IB Analysis and Topology, we have that a metric space Z is compact if and only if it is completeand totally bounded. As Y is a closed subspace of a complete space, it is complete. So Y is compact if andonly if it is totally bounded.
Definition 4.8 (equi{bounded, continuous} {on K , at x ∈ K})Let K be a compact Hausdorff space, F ⊆ C (K ). Then

(i) F is equibounded at x ∈ K if supf∈F |f (x)| < ∞,(ii) F is equibounded on K if it is equibounded at all x ∈ K ,(iii) F is equicontinuous at x ∈ K if for all ε > 0, there exists an open neighbourhood U of x such that
sup
y∈U

sup
f∈F

|f (x) − f (y)| < ε

(iv) F is equicontinuous on K if it is equicontinuous at all x ∈ K .
Theorem 4.9 (Arzelà-Ascoli). Let K be a compact Hausdorff space, F ⊆ C (K ) is relatively compact if andonly if it is equibounded and equicontinuous on K .

Proof. Note that C (K ) is complete. Suppose F is relatively compact, then F is totally bounded, so it is boundedwith respect to the supremum norm, so it is equibounded. For equicontinuity, given x ∈ K , ε > 0, consider an
ε-net for F . So there exists f1, . . . , fm ∈ C (K ) such that

F ⊆
m⋃
i=1Bε(fi)Since each fi is continuous at x , there exists Ui open neighbourhood of x such that fi(Ui) ⊆ Bε(fi(x)). Then

U = U1 ∩· · ·∩Um is an open neighbourhood of x , and for any y ∈ U , f ∈ F , let fj be such that ∥∥fj − f
∥∥

∞ < ε,then we have that
|f (y) − f (x)| ≤

∣∣f (y) − fj (y)∣∣ + ∣∣fj (y) − fj (x)∣∣ + ∣∣fj (x) − f (x)∣∣ ≤ 3εConversely, fix ε > 0. Then for each x ∈ K , we have Ux open, x ∈ Ux such that f (Ux ) ⊆ Bε(f (x)) for all
f ∈ F by equicontinuity. As K is compact, we can choose a finite subcover x1, . . . , xn ∈ K such that
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K = n⋃
i=1UxiDefine A = {(f (x1), . . . , f (xn)) | f ∈ F} ⊆ Fn. As F is equibounded, A is bounded, so A is closed andbounded, hence compact by Heine-Borel. This means that A is totally bounded, so A is totally bounded. Hencewe have an ε-net for A. That is, N = {f1, . . . , fm} ⊆ F such that

A ⊆
n⋃
i=1Bε((fj (x1), . . . , fj (xn)))In fact, N is a 3ε-net for F . Given f ∈ F, x ∈ K , then there exists xi such that x ∈ Uxi and fj such that

f (x1), . . . , f (xn) ∈ Bε((fj (x)1), . . . , fj (xn)). Then∣∣f (x) − fj (x)∣∣ ≤ |f (x) − f (xi)| + ∣∣f (xi) − fj (xi)∣∣ + ∣∣fj (xi) − fj (x)∣∣ < 3ε
4.3 Stone-Weierstrass

Definition 4.10 (algebra)A vector space V over F is an alebra if V has a multiplication such that
(i) (λv )(w) = λ(vw) = v (λw)(ii) u(v + w) = uv + uw , (v + w)u = vu+ wu.

Definition 4.11 (normed algebra, Banach algebra)An algebra V is a normed algebra if V is also a normed vector space with ∥vw∥ ≤ ∥v∥∥w∥ for all
v, w ∈ V . If V is a Banach space, we call V a Banach algebra.
Definition 4.12 (commutative algebra)
V is a commutative algebra if V is an algebra and vu = uv for all u, v ∈ V .
Definition 4.13 (unital algebra)
V is a unital algebra if V is an algebra and there exists 1 ∈ V such that 1v = v1 = v for all v ∈ V .
Theorem 4.14 (Stone-Weierstrass). Let K be a compact Hausdorff space, A ⊆ CR(K ) be a subalgebrawhich separates points. Then either

(i) A = CR(K ),(ii) or there exist x0 ∈ K such that
A = {f ∈ CR(K ) | f (x0) = 0}

Proof. Step 1: A is a subalgebra. This is immediate since if fk → f and gk → g, then fkgk → fg. Therefore,from now on, we can assume without loss of generality that A is closed.
Step 2: A is closed under finite min and max. Suffices to show if f ∈ A then |f | ∈ A since we can writemin and max in terms of absolute values. By scaling, wlog ∥∥f∥∥ ≤ 1. Then for ε > 0, define φε(r) = √

ε2 + rfor r ∈ [0, 1]. Then we have that
16



∣∣φε(r) −
√
r
∣∣ = ∣∣∣∣ ε2 + r − r√

ε2 + r + √
r

∣∣∣∣ ≤ ε

and φε is real analytic on [0, 1], so if we expand in Taylor series about r = 1/2, we have that
φε(r) = N∑

k=0 ak,ε
(
r − 12

)k + RN,ε(r)
such that sup |RN,ε(t)| → 0 as N → ∞. Define

GN,ε(r) = N∑
k=0 ak,ε

(
r − 12

)k
Then GN,ε(0) → φε(0) = ε as N → ∞. Hence given f ∈ A, in the limit N → ∞,

|f | = (|f | − φε(f 2)) + φε(f 2)= (|f | − φε(f 2)) + GN,ε(f 2) + RN,ε(f 2)= (|f | − φε(f 2))︸ ︷︷ ︸
|·|≤ε

+GN,ε(0)︸ ︷︷ ︸
|·|≤2ε

+RN,ε(f 2)︸ ︷︷ ︸
|·|≤ε

+(GN,ε(f 2) −GN,ε(0))
= (GN,ε(f 2) −GN,ε(0))︸ ︷︷ ︸

∈A

+O(4ε)
∈ A = A

Step 3: Suppose g satisfies that for any x, y ∈ K , ε > 0, there exists f ∈ A such that |f (x) − g(x)| < ε
and |f (y) − g(y)| < ε, then g ∈ A. For x, y ∈ K , choose fx,y ∈ A such that ∣∣fx,y(x) − g(x)∣∣ < ε and∣∣fx,y(y) − g(y)∣∣ < ε. Then by continuity, there exists open neighbourhoods Ux,y, Vx,y of x, y respectively suchthat ∣∣fx,y − g

∣∣ ≤ 2ε on Ux,y and Vx,y. Since K is compact, K ⊆
⋃
y Vx,y, so we have y1, . . . , yn such that

K = n⋃
i=1Vx,yiNow define

Ũx = n⋂
i=1Ux,yi and fx = min{fx,y1 , . . . , fx,yn} ∈ A

Ux is an open neighbourhood of x , and fx satisfies fx (z) < g(z) + ε for z ∈ K and fx (z) > g(z) − ε for
z ∈ Ũx . Again by compactness we have x1, . . . , xm such that

K = m⋃
i=1 ŨxiThen define f = max{fx1 , . . . , fxn} ∈ L. Then

g(z) − ε < f (z) < g(z) + εfor all z ∈ K . Taking ε → 0, g ∈ A = A.
Step 4 case 1: Suppose for all x ∈ K , there exists f ∈ A such that f (x) ̸= 0. For x, y ∈ K distinct, wehave fx , fy, fx,y ∈ A such that fx (x) ̸= 0, fy(y) ̸= 0, fx,y(x) ̸= fx,y(y). Then there exists α, β ∈ R such that

f̃ = fx + αfy + βfx,ysatisfies f̃ (x) ̸= 0, f̃ (y) ̸= 0 and f̃ (x) ̸= f̃ (y). Then f̃ , f̃ 2 ∈ A, and
span{(f̃ (x), f̃ (y)), (f̃ (x)2, f̃ (y)2)} = R2
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Now given any g ∈ CR(K ), there exists a linear combination of f̃ and f̃ 2 which agrees with g at x, y, so bystep 3, g ∈ A. Hence A = CR(K ).
Step 4 case 2: There exists x0 ∈ K such that for all f ∈ A, f (x0) = 0. In this case, let 1 denote theconstant 1 function, then A ⊕ R · 1 is a closed subalgebra which satisfies case 1. So A ⊕ R · 1 = CR(K ). Fix

g ∈ CR(K ) with g(x0) = 0. Then for any ε > 0, there exists f ∈ A, λ ∈ R such that∥∥g − (f + λ)∥∥∞ < εThen g(x0) = 0, (f + λ)(x0) = λ, and so |λ| < ε, and |g − f | < 2ε and g ∈ A = A.
Theorem 4.15 (Stone-Weierstrass for complex algebras). Let K be compact Hausdorff, A ⊆ CR(K ) asubalgebra which separates points and is closed under complex conjugation. Then either

(i) A = CR(K )(ii) or there exists x0 ∈ K such that
A = {f ∈ CC(K ) | f (x0) = 0}

Proof. Note that Re(f ) and Im(f ) are in A if and only if f ∈ A, so if we define AR = {Re(f ), Im(f ) | f ∈ A},and apply the real version of the theorem, we get the required result.
Theorem 4.16 (Weierstrass approximation). The set of real polynomials is dense in CR[0, 1] and the setof complex polynomials is dense in CC[0, 1].

5 Inner product spaces
Note in this course we take the inner products to be linear in the first argument, and conjugate linear in thesecond argument.

Proposition 5.1 (Cauchy-Schwarz). Let V be an inner product space on F, then for any v1, v2 ∈ V ,
|⟨v1, v2⟩| ≤

√
⟨v1, v1⟩ ⟨v2, v2⟩

Definition 5.2 (Euclidean space)An inner product space V with norm defined by∥v∥ = √⟨v, v⟩is called a Euclidean space.
Proposition 5.3 (polarisation). If V is a Euclidean space, then we have the polarisation identities:

• F = R,
⟨v, w⟩ = 14 (∥v + w∥2 − ∥v − w∥2)

• F = C,
⟨v, w⟩ = 14 (∥v + w∥2 − ∥v − w∥2 + i

∥∥v + iw
∥∥2 − i

∥∥v − iw
∥∥2)
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Proof. Expand.
Theorem 5.4 (Jordan-von Neumann). Let V be a normed vector space. Then V is Euclidean if and onlyif it satisfies the parallelogram identity∥v + w∥2 + ∥v − w∥2 = 2∥v∥2 + 2∥w∥2

Proof. Suppose V is Euclidean. Then expanding the norm in terms of the inner product gives the parallelogramlaw. For the converse, we can define the inner product using the polarisation identities, and notice that we canreduce the complex case to the real case as ⟨iv, w⟩ = i ⟨v, w⟩ by polarisation identities.To show the result is an inner product, use the parallelogram law to show that ⟨v1 + v2, w⟩ = ⟨v1, w⟩+⟨v2, w⟩,and use this to show that ⟨nv, w⟩ = n ⟨v, w⟩ for all n ∈ Z. This then gives us the case for rational scalars,then by continuity we get the result for real scalars.
Definition 5.5 (orthogonal)Let V be an inner product space, v, w are orthogonal, written v ⊥ w if ⟨v, w⟩ = 0. If S ⊆ V , its orthogonalspace is

S⊥ = {v ∈ V | ∀w ∈ S, v ⊥ w}

Proposition 5.6. Given a Euclidean space V , S ⊆ V , then S⊥ is a subspace, and
S⊥ = (span(S))⊥

Proposition 5.7. Subspace is clear by linearity of the inner product, and by the order reversing property,clearly we have that (span(S))⊥ ⊆ S⊥. Now let v ∈ S⊥ be arbitrary. For any w ∈ span(S), there existsa sequence (wn) in span(S) with wn → w . Then ⟨v, wn⟩ = 0 for all n, so ⟨v, w⟩ = 0 by continuity.
Theorem 5.8 (Bessel). Let V be a Euclidean space, (en) be an orthonormal sequence, then for v ∈ V ,

∥v∥2 = ∥∥∥∥∥v −
N∑
n=1 ⟨v, ek⟩ ek

∥∥∥∥∥
2 + N∑

n=1 |⟨v, ek⟩|2
and we have Bessel’s inequality,

∥v∥2 ≥
∞∑
n=1 |⟨v, ek⟩|2

with equality if and only if ∑N
n=1 ⟨v, en⟩ en → v as N → ∞.

Proof. The first formula follows by Pythagoras, and Bessel’s inequality follows by taking N → ∞, which alsogives us the equality condition.
5.1 Hilbert spaces

Theorem 5.9 (completion of normed vector spaces). Let V be a normed vector space. Then there exists aBanach space V , with Φ : V → V a linear isometry, V = Φ(V ). V is unique up to isometric isomorphism.
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Proof. Let V ∗∗ be the bidual of V , Φ : V → V ∗∗ the bidual embedding, then Φ is an isometry, and V = Φ(V )is a closed subspace of a Banach space, so it is a Banach space.For uniqueness, let V 1, V 2 be Banach spaces, Φi : V → V i isometries with V i = Φi(V ). Define Ψ =Φ2 ◦ Φ−11 : Φ1(V ) → Φ2(V ). Then Ψ is a linear isometry, so it is bounded. Therefore there exists a uniquecontinuous linear extension Ψ̃ : V 1 → V 2.Now let (yn) be a sequence in Ψ̃(V 1), yn → y in V 2. Then let xn be the sequence such that yn = Φ(xn).Then (yn) is Cauchy, so (xn) is also Cauchy. By completeness, xn → x , so Ψ̃(x) = y. Hence Ψ̃(V 1) = V 2.
Definition 5.10 (Hilbert space)A complete Euclidean space is called a Hilbert space.
Theorem 5.11 (Hilbert basis). Let H be an infinite dimensional separable Hilbert space, then there exists(en) orthonormal, such that

span{en | n ∈ N} = HWe call (en) a Hilbert basis.
Proof. Let (yn) be a countable dense subset of H . By passing to a subsequence, we may assume the (yn) arelinearly independent, not necessarily dense but with

span{yn | n ∈ N} = HApplying Gram-Schmidt we get the required result.
Corollary 5.12 (Parseval). If vn = ⟨v, en⟩ and wn = ⟨w, en⟩, then

⟨v, w⟩ =∑
n
vnwn

Proof. By Bessel’s inequality.
Corollary 5.13. The map Ψ : H → ℓ2 given by Ψ(v )n = vn = ⟨v, en⟩ is an isometric isomorphism.

5.2 Projections

Proposition 5.14. Let V be a Euclidean space, C ⊆ V be convex, nonempty and complete. Then
(i) For all v ∈ V , there exists a unique PC (v ) ∈ C such that

d(v, C ) = inf
z∈C
∥v − z∥ = ∥∥v − PC (v )∥∥

(ii) for all z ∈ C , Re ⟨z − PC (v ), v − PC (v )⟩ ≤ 0That is, the angle between them is at least π/2.(iii) PC : V → C is 1-Lipschitz.

20



Proof. (i) For existence, if v ∈ C , then PC (v ) = v . Otherwise, let (wn) be a sequence such that ∥∥v − wn
∥∥2 ≤

d(v, C )2 + 1
n . Then by the parallelogram law,∥∥wn − wm

∥∥2 + ∥∥wm + wn − 2v∥∥2 = 2∥∥wm − v
∥∥2 + 2∥∥wn − v

∥∥2
So we get that

∥∥wn − wm
∥∥22 = ∥∥wm − v

∥∥2 + ∥∥wn − v
∥∥2 − 2∥∥∥v − wn + wm2 ∥∥∥2

≤ 2d(v, C )2 + 1
m + 1

n − 2d(v, C )2
= 1
m + 1

nSo (wn) is Cauchy. Hence by completeness, wn → w . Define PC (v ) = w . For uniqueness, we have that
∥∥w1 − w2∥∥22 = ∥∥w1 − v

∥∥2 + ∥∥w2 − v
∥∥2 − 2∥∥∥v − w1 + w22 ∥∥∥2

≤ d(v, C )2 + d(v, C )2 − 2d(v, C )2 = 0
So w1 = w2.(ii) Define φ(λ) = ∥∥λz + (1 − λ)PC (v ) − v

∥∥2 −
∥∥PC (v ) − v

∥∥2. Then φ(0) = 0 and φ(λ ≥ 0), so φ′(0) ≥ 0.Hence we have that
φ′(0) = 2Re ⟨z − Pc(v ), Pc(v ) − v⟩ ≥ 0Note in fact the converse is also true in this case.(iii) Follows by (ii) and Cauchy-Schwarz.

Theorem 5.15. Let V be Euclidean, W ≤ V complete. Then V = W ⊕W⊥, given by
v = PW (v ) + (v − PW (v ))That is, we have

(i) PW linear,(ii) PW |W = id,(iii) PW |W⊥ = 0,(iv) P2
W = PW

Proof. All the properties except for (iii) are easy to check. For (iii), notice that for v ∈ V , z′ ∈ W , we have that
Re 〈z′ − PW (v ), v − PW (v )〉 ≤ 0Letting z′ = ±z + PW (v ) and z′ = ±iz + PW (v ), we get that

± Re ⟨z, v − PW (v )⟩ ≤ 0 and ∓ Im ⟨z, v − Pw (v )⟩ ≤ 0So ⟨z, v − Pw (v )⟩ = 0 for all z . Hence v − PW (v ) ∈ W⊥.
5.3 Riesz-Fréchet representation theorem

Theorem 5.16 (Riesz-Fréchet representation). Given a Hilbert space H , the map φ : H → H∗ given by
φ(v )(w) = ⟨w, v⟩
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is a bijective isometric sesquilinear map. So H ≃ H∗ isometrically, and H∗ is a Hilbert space.
Proof. Sesquilinearity is obvious. Now notice that |φ(v )(w)| = |⟨w, v⟩| ≤ ∥v∥∥w∥, so ∥∥φ(v )∥∥ ≤ ∥v∥. But
|φ(v )(v )| = ∥v∥2, so equality holds, and φ is an isometry.Next, we need to show that φ is surjective. Let ψ ∈ H∗ \ 0, W = ker(ψ) ≤ H closed. Thus by the previoustheorem, we have that

H = W ⊕W⊥

and W⊥ ̸= 0. Let w0 ∈ W⊥ \ 0, then there exists α ∈ F such that ψ(αw0) = ∥∥αw0∥∥23.For any w ∈ W , ψ(w) = 0. On W⊥ = F · w0, for any λ ∈ F, we have that
⟨λw0, αw0⟩ = αλ

∥∥w20∥∥ = ∥∥α2∥∥
α λ

∥∥w0∥∥2 = λ
α ψ(αw0) = ψ(λw0)Hence we must have that ψ = φ(αw0).

6 Spectral theory
6.1 Spectrum and resolvent

Definition 6.1 (resolvent set, spectrum)Given a Hilbert space H , T ∈ B (H), the resolvent set of T is
ρ(T ) = {λ ∈ C | T − λI invertible, i.e. bijective with bounded inverse}and the spectrum of T is

σ (T ) = C \ ρ(T )
Definition 6.2 (resolvent map)The resolvent map is RT : ρ(T ) → B (H) given by

RT (λ) = (T − λI)−1

Proposition 6.3. Let H be a Hilbert space, T ∈ B (H), then
(i) ρ(T ) ⊆ C open. In particular, for every λ0 ∈ ρ(T ),

B∥∥RT (λ0)∥∥−1 (λ0) ⊆ ρ(T )
(ii) RT : ρ(T ) → B (H) is holomorphic, and locally given by an entire series,(iii) σ (T ) ̸= ∅, and σ (T ) ⊆ B∥∥T∥∥(0).

Proof. (i) If U ∈ B (H) with ∥∥U∥∥ < 1, then I − U is invertible, with inverse given by the series
(I − U)−1 =∑

n≥0 U
n

3To see this, write α = reiθ , then we have that
r−1eiθ = ψ(w0)∥∥w0∥∥2
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Now if λ0 ∈ ρ(T ), λ ∈ B∥∥RT (λ0)∥∥−1 (λ0), then
T − λ = (T − λ0) − (λ − λ0) = (T − λ0)(I − (λ − λ0)RT (λ0))Now notice that U = (λ − λ0)RT (λ0) has ∥∥U∥∥ < 1, so I − U is invertible. Hence T − λ is invertible, and

λ ∈ ρ(T ). Furthermore, we have that
RT (λ) = (I − U)−1RT (λ0) = RT (λ0)∑

n≥0 U
n =∑

n≥0 RT (λ0)n+1(λ − λ0)n
Hence (ii) follows, and R ′

T (λ0) = RT (λ0)2.For (iii), if |λ| >
∥∥T∥∥, then T −λ = −λ(1 −λ−1T ), ∥∥λ−1T∥∥ < 1, so T −λ is invertible, with ∥∥(T − λ)−1∥∥ ≤(|λ| −

∥∥T∥∥)−1 Finally, to show that σ (T ) is nonempty, we will use Liouville’s theorem. Suppose σ (T ) = ∅.Then for v ∈ H, φ ∈ H∗, define Fv,φ : C → C by
Fv,φ(λ) = φ(RT (λ)v )Then Fv,φ is holomorphic, and for |λ| >
∥∥T∥∥, we have that∣∣Fv,φ∣∣(λ) ≤

∥∥φ∥∥∥∥RT (λ)∥∥∥v∥ ≤
∥∥φ∥∥∥v∥(|λ| −

∥∥T∥∥)−1 → 0as |λ| → ∞. Hence by Liouville, Fv,φ is constant, so by Hahn-Banach, λ 7→ RT (λ) is constant. Contradiction.
Definition 6.4 ({point, continuous, residual, approximate point} spectrum)Let T ∈ B (H), then we have

1. The point spectrum is the set of eigenvalues, that is,
σp(T ) = {λ ∈ C | T − λ not injective}

2. The continuous spectrum is
σc(T ) = {λ ∈ C | T − λ injective, but not surjective, and with (T − λ)(H) dense in H}

3. The residual spectrum is the complement of the above two, that is,
σr (T ) = {λ ∈ C | T − λ injective, but (T − λ)(H) is not dense in H}

4. The approximate point spectrum is
σap(T ) = {λ ∈ C | there exists (vn) in H such that ∥∥vn∥∥ = 1 for all n and (T − λ)vn → 0}

Definition 6.5 (bounded below)
T ∈ B (H) is bounded below if there exists C > 0 such that ∥∥T v∥∥ ≥ C∥v∥ for all v ∈ H .
Proposition 6.6.

σap(T ) = {λ ∈ C | T − λ is not bounded below}Furthermore, we have that σp(T ) ∪ σc(T ) ⊆ σap(T ). However the reverse inclusion is, in general, false.
Proof. Immediate from definitions.
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Proposition 6.7. If T ∈ B (H) is bounded below, then T (H) is closed in H .
Proof. If (T (vn)) is Cauchy, then as T is bounded below, so is (vn).
6.2 Spectral theorem

Proposition 6.8. For T ∈ B (H), there exists a unique T ∗ ∈ B (H) such that ⟨T v, w⟩ = ⟨v, T ∗w⟩ for all
v, w ∈ H .

Proof. Uniqueness follows from the fact that if D ∈ B (H) is such that ⟨v, Dw⟩ = 0 for all v, w ∈ H , then
D = 0.Existence follows form the Riesz-Fréchet representation theorem.

Definition 6.9 (normal, self-adjoint, unitary)Let T ∈ B (H), then
(i) T is normal if TT ∗ = T ∗T(ii) T is self-adjoint if T = T ∗

(iii) T is unitary if T ∗ = T−1

Proposition 6.10. Let H be a Hilbert space, T ∈ B (H), then
(i) T unitary implies T normal,(ii) T self adjoint implies T normal,(iii) (T ∗)∗ = T ,(iv) ker(T ) = im(T ∗)⊥,(v) if T is normal, then ∥∥T v∥∥ = ∥∥T ∗v

∥∥ for all v ∈ H(vi) if T is normal, then ker(T ) = ker(T ∗) = im(T )⊥ = im(T ∗)⊥,(vii) if T is normal, then σr (T ) = ∅, and the (approximate) eigenvalues of T ∗ are the complex conjugatesof the (approximate) eigenvaleus of T ,(viii) if T is normal, eigenvectors with different eigenvalues are orthogonal,(ix) if T is self-adjoing, then ⟨T v, v⟩ ∈ R for all v ∈ H , and σ (T ) ⊆ R.
Proof. As in the finite dimensional case from IB Linear algebra.

Definition 6.11 (compact operator)
T ∈ B (H) is compact if T (B1(0)) is relatively compact in H .
Proposition 6.12.(i) T is compact if and only if it is the limit of finite rank operators,(ii) T os compact if and only if T ∗ is compact,
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(iii) If T is compact and λ ∈ σ (T ) \ 0, then λ ∈ σp(T ), and
0 < dim(ker(T − λ)), dim(im(T − λ)) < ∞

Proof. Omitted.
Theorem 6.13 (spectral theorem). Let T ∈ B (H) be a compact self adjoint operator, then(i) σ (T ) \ 0 ⊆ σp(T ) ⊆ R,(ii) σp(T ) is countable,(iii) the only possible accumulation point of σp(T ) is 0,(iv) Eλ = ker(T − λ) has finite dimension for all λ ∈ σp(T ) \ 0,(v) if σp(T ) \ 0 = {λn minn ≥ 1}, then

H = ker T ⊥
⊕
( ⊥⊕

n≥1 Eλn
) and T =∑

n≥1 λnPEλn
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