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Integrality

.1 Number fields and rings of integers

Definition 1.1 (number field)

A number field L is a finite extension of Q.

Definition 1.2 (algebraic integer)

If L is a number field, we say that a € L is an algebraic integer if there exists f € Z[x] monic such that
f(a) = 0. The set of ring of integers in L is written as O;.

Definition 1.3 (integral)

Suppose R < S rings. Then a € S is integral over R if there exists f € R[x] monic such that f(a) = 0.
We say that S is integral over R if all @ € S are integral over R.

Definition 1.4 (finitely generated over)

Suppose R < S rings, then S is finitely generated over R if there exists o, .. ., a, € S such that every
element ofS is an R-linear combination of the o, ..., a,. Thatis, S is a finitely generated R-module.
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Proposition 1.5.
1. if S = R[s], with s integral over R, then S is finitely generated over R,

2.4S=R[s1,..., xp] with each s; integral over R, then S is finitely generated over R.

Proof (i) As an R-module, S is spanned by 1,s,s% .. .. But as s is integral over R, we have that

"+ a, 48"+ 4+ ap=0

for some aq, ..., ap-1 €R. So1,s, ..., ST generate S.

(ii) Let S; = R[s1, ..., Si—1), S0 Sit1 = Si[s;]. s; is integral over R, so it is integral over S;. Hence S;i1 is
finitely generated over S;. Hence by induction, S;41 is finitely generated over R. Hence S = S, is finitely
generated over R. O

Theorem 1.6. Suppose S is finitely generated over R. Then S is integral over R.

Proof Let o, ..., a, generate S as an R-module. Without loss of generality, oy = 1. Let s € S, and consider
ms:S — S, given by x — sx. Then

sa; = E b[ja/-
j

for some b;; € R. Let B be the matrix (b;;). By definition, we have that

g
(si—B)| s | =0
ap
Multiplying this by adj(s/ — B), we get that
fod
det(sIl—B) [ s | =0
n
But a4 = 1, so det(s/ —B) = 0. Define f(t) = det(t/ — B) € R[t]. This is a monic polynomial with
coefficients in R, and with f(s) = 0. So s is integral over R. O

Corollary 1.7. If L is a number field, the O, is a ring.

Proof If a, B € Oy, then Z|a, B] is finitely generated over Z, so it is integral over Z. Hence a £ B, ap € Z]a, B,
soaxpB,aB € 0. O

Corollary 1.8. If A< B < C rings, B integral over A, C integral over B, then C is integral over A.

Proof If ¢ € C, let f(x) = x" + b,_1x"~" + -~ + by be a monic polynomial over B[x] such that f(c) = 0. Set
By = Albo, . . ., by—1] and Gy = By|c]. Then By is finitely generated over A, (y is finitely generated over By as
c is integral over By. Hence (y is finitely generated over A, gso (y is integral over A. O

Proposition 1.9. Let L be a number field. Then a € Oy if and only if the minimal polynomial py(x) € Q[x]
for a is in Z|x].



Proof. ( <= ) is true by definition. For the converse, let a € Oy, with minimal polynomial p,. Let M/L be a
splitting field for pg, S0 pe(x) = (x — 1) - - (x — @,) in M[x]. Let h(x) € Z|x] be a monic polynomial such that
h(a) = 0. Then p, | h< so each a; € M is an algebraic integer. But Oy is a ring, so the coefficients of p, are
in O;. Finally, the result follows by Q N O, = Z. O

Lemma 1.10. If o € L, then there exists n € Z\ 0 such that na € O,.

Proof. Let g € Q[x| be the minimal polynomial for a. Then by clearing denominators, we have n € Z\ 0 such
that h(x) = n%99)g(x/n) € Z[x] is monic. Now notice that h(na) = n%99)g(a) = 0, so na € O,. O

1.2 Trace and norm

Recall from Galois theory that if L/K is a field extension, a € L, let mq(x) = ax. Then we have the norm and
the trace of q,

Nik(a) = det(my) and  Tryx(a) = tr(mg)
If pe(x) is the minimal polynomial of a over K, then the characteristic polynomial of m is det(x/ — m,) =
p%:K(a”. Furthermore, if M is a splitting field for pg, with pg)(x) = (x — aq) - - - (x — @), then

NK(a)/K = |_| a; and tr(o)k = Z Q;
i i

By the tower law of norm and trace, we then have that

(LK (a)]
NL/K (I_l al) and TFL//( L K ]Z Q;

Proposition 1.11. Let L be a number field, € L. Then the following are equivalent.
i) €0y,

(i) pe € Z|x],

(it) the characteristcic polynomial of m, is in Zx]

Therefore, /\/L/Q(C(),TI'L/Q(O() e Z.

1.3 Integral basis, discriminant

Definition 1.12 (integral basis)
Let L be a number field. A basis o, ..., a, of L/Q is called an integral basis if

{Zma, mi ez} @Zm

Recall from Galois:

(i) L/Q is a finite separable extension, as char(Q) = 0, so by the primitive element theorem, L = Q(a) for
some o € L.

Qlx]

(Pa)

L is a field, so (py) is @ maximal ideal in a PID, so p, is irreducible.
Let deg(py) = n. Then L/Q has basis 1,a, ..., a1

Qa) =



(ii) The number of field embeddings L — C is n. Let o1, ..., 0, : L — C be the distinct embeddings. Then for
Bel

Trg(B) =) ai(f) and Nig(B) = |ai(B)

( (

Definition 1.13 (r, s)

Let L be as above. Define r to be the number of real roots of p,(x), or equivalently the number of field
embeddings L — R, s to be the number of complex conjugate pairs of roots of p,(x). So r +2s = n.

Proposition 1.14. r, s are independent of a.

Proof. Since r is the number of field embeddings L — R. O

Proposition 1.15. Let L/K be a finite separable extension. Then the K-bilinear form

(X, y) = Trik(xy)

is nondegenerate. We call it the trace form. Equivalently, if o, ..., a, is a basis for L/K, the matrix

(TI’L/K(O([O(I'))W

has nonzero determinant. We write

A, ..., an) = det (TrL/K(al-aj))

Proof. Let oy, ..., g, L — K be the n distinct K-linear field emebeddings, let

ola) ... ola)
S = . .
on(on) ... onap)

Then we have that

(STS)y = ala)oilay) = ) ailaiay) = Tri(aiay)
k

k
which means that Aay, ..., a,) = det(STS) = (det(S))%. Now by the primitive element theorem, there
exists 6 € [ such that L = K(0),s01,0,..., 6" are a basis for L/K. In this case, we have that
T () 01(6)""
S =
1 0,(0) a,(0)"""

which is a Vandermonde matrix, so we find that

det(S)” = [ |(@i(6) — 0j(0)* = A(1,6,.... ")
i<j

which is nonzero since L = K(60) and the o; are distinct. Finally, if oq,..., a, is any basis for L/K,

. ), is any other basis, then

where o; = Z/. ajjaj, so it is nonzero for any basis. L]



Proposition 1.16. Let L = K(6), where the minimal polynomial of 8 is

polt) = |(t = ai(6)
Then we have that
Disc(po) = [ ](01(6) — 0j(6)° = A(1,6,..., ")
i<j

Unfortunately in Galois, we have that Disc = A?, but not much we can do about that..

Proposition 1.17. If oy, .. ., a, € L is a basis of L/Q, with o; € Oy, then Alay, ..., a,) € 7.

Proof. Tryg(af) € Z for all a, B € O;. O
Theorem 1.18. Let L/Q be a number field. Then there exists an integral basis for L.

Proof Let oy, ..., a, be any basis of L/Q. Since we have m; € Z nonzero such that m;a; € Oy, wlog we may

assume a, ..., a, € 0. So A, ..., a,) € Z\ 0. Choose a1, .. ., a, such that [A(ay, ..., a,)| ts minimal.

Now let x € O, x = ) . i, with A; € Q. Suppose for contradiction Ay & Z. Write Ay = nq1 + &4, with

O<eg <landm eZ Lleta) =x—mo =aq + o+ +Aa, € 0.
Then af, ..., al is still a basis for L/Q, with

Contradicting minimality.

Corollary 1.19. If o, ..., a) is any other integral basis, then

Proof We have a change of basis matrix g € GL,(Z) with g(a/) = a;. Then det(g) = £1, so det(g)2 =1

Definition 1.20 (discriminant)

The discriminant of a number field L is

for any integral basis o, . . ., @

2 ldeals in number fields

Lemma 2.1. Let x € O;. Then x is a unit if and only if Nyjg(x) = £1.

O

Proof ( = ) follows by the fact that Njg(ab) = Nyg(a)Nyg(b) for all a,b € L, and Nyg(a) € Z for all

ae 0.

For the converse, let oy, ..., 0, : L — C be the distinct field embeddings. Since C is algebraically closed,

we can assume wlog that L < C,and o7 is the inclusion map. If x € Oy, then

Nijg(x) = x02(x) - 0a(x)



so if Nyjg(x) = 1, we get that

>

1
— ==+ U[(X) S OL
X
i=2
as the right hand side is a product of algebraic integers. O

2.1 ldeal operations

Definition 2.2 (product)
Let a,b < R be ideals, then we define their product to be

ab:{zaima[emb[eb}

Proposition 2.3.
(i) ab is an ideal in R,
(WD) (ay,..., a,){by,..., bw) = (aibj |1<i<n1<j<m),

(iit) (ab)c = a(bc)

Proof. Easy checks. O

Definition 2.4 (divides)
We say that b divides a, written b | a, if there exists ¢ such that a = bc.

Lemma 2.5. If a < O is a nonzero ideal, then aNZ # {0}, and O, /a is a finite abelian group.

Proof Let a € a be nonzero, and let py(x) = x™ 4+ @p,_1x™" " + -+ + ag € Z|x] be its minimal polynomial. As
P« is trreducible, ag # 0. Then we have that

ap=—a(@" "+ ap_1d" ? 4+ +ama+a) Ea

so ag € aNZ. Hence apO; < a, so we have a map O,/ {ag) — O, /a, which is a surjection. But for any
d € Z, we have that O,/ (d) = Z"|dZ" = (Z|dZ)" which is a finite abelian group, so O,/a is also a finite
abelian group. O

Proposition 2.6. Let [ be a number field. Then
(i) Oy is an integral domain,
(it) Oy is a Noetherian ring,
(iit) Oy is integrally closed in L, i.e. if @ € L is integral over Oy, then a € Oy,

(iv) every nonzero prime ideal in O; is maximal.

That is, L is a Dedekind domain.



Proof. (i) is immediate since O, is a subring of a field.

For (ii), we have shown that O; =~ Z" as abelian groups, so if a is an ideal in Oy, then a is isomorphic to
a subgroup of Z", so it is finitely generated as an abelian group, hence it is finitely generated as an ideal.

For (iii), if a € L is integral over Oy, as O, is integral over Z, « is integral over Z. But this means that
ae 0.

For (i), if p < O, is a nonzero prime ideal, then by the previous lemma, O, /p is a finite integral domain,
so it is a field. Hence p is maximal. O

Corollary 2.7. If a is a nonzero ideal, then a = Z" as abelian groups.

Lemma 2.8. Let p be a prime ideal in R, a,b < R. Then ab < p implies that a < p or b < p.

Proof. Easy proof by contradiction. O

Lemma 2.9. If a O, is a nonzero ideal, then a contains a product of prime ideals.

Proof. Suppose not. Then as O, is Noetherian, there exists an ideal a such that if b is any ideal with a < b,
then b contains a product of prime ideals. In particular, a cannot be prime. Choose x,y € O, such that
X,y & a, xy € a Since a < a+ (x) and a < a+ (y), there exists prime ideals p1, ..., P dr, qs such that
pr--pr Ca+(x),and q1---qs C a+ (y). Then we have that

procpedr s < (a+ (0)(a+(y)) <a
Contradiction. O

Lemma 2.10. Let a < O, be a nonzero ideal, x € L such that xa C a. Then x € O,.

Proof. Since a is a finitely generated abelian group, choose a Z-basis a1, .. ., a, for a. Then consider the map
my:a—a, a— xa. Writing xa; = Z/. a;jaj, with a;; € Z, and letting A = (ay;), we find that

ar,
(xI=A)] + | =0
an
which means that det(x/ — A) = 0, so x is integral over Z, hence x € O;. O

2.2 Fractional ideals and unique factorisation of ideals
Lemma 2.11. Let a < Oy, with a # 0, O;. Then

O, C{yel]yaCO;}

Proof. First of all, note that if this is true for an ideal a, then it is true for all b < a. So wlog we can assume
that a ie. a = p prime.

Let @ € p be nonzero. Then we have prime ideals g1, ..., qr such that qq---q- < aO;. Suppose r is
minimal. Then as p is prime, there exists i such that q; < p. wlog i = 1. As gy is prime, it is maximal.
So ¢q1 = p. By minimality of r, we must have that q2---q, € @O;. Choose B € q2---q, \ aO;. Then
Bp <plq2---q,) < a0y, but B & aO,. Dividing by a, we get that

EPQOL and ﬁ@OL
(04 a



Definition 2.12 (fractional ideal)
A fractional ideal in L is a finitely generated O; submodule of L.

Lemma 2.13. q C L is a fractional ideal if and only if there exists ¢ € L such that cq C Oy is an ideal.

—

Proof. For ( <) notice that cq ~ q as O, modules. Conversely, let x1, ..., Xy generate q as an O, modu
Then x; = y;/n;, where y; € O and n; € Z. Let ¢ = lem(nq, .. ., n;). Then cq C O and is an O; submodu
So it is an ideal.

e.

®

O

Corollary 2.14. If q is a fractional ideal, then q = Z" as abelian groups, where n =[L: Q].
We define multiplication of fractional ideals in the same way we defined multiplication of ideals.

Definition 2.15 (invertible)
A fractional ideal q is invertible if there exists a fractional ideal ¢ such that qv = O,.

Proposition 2.16. Every nonzero fractional q is invertible with

g '={xel]xqC O}

Equivalently, for every a < O, there exists an ideal b < O, such that ab is principal.

Proof. First we show the equivalence. If q,t are fractional ideals, then we have a,b < O;, m,n € L*, such
that q = %a and v = %b. Then

qgqe=0; < ab=mnO;

Now notice that q is invertible if and only if a is, so wlog we can assume q < O;. Hence if the result is
false, it is false for some ideal a in O;. As O, is Noetherian, we can assume that if a < @', then a’ is invertible.

Letb={x € L|xaC O} Then b is a fractional ideal, with O; C b. Hence we have that a C ab. Again
this inclusion is strict, since if ab = a, then for all x € b, xa C a,s0o x € O;. But b € O;. Hence a C ab, so
ab is invertible. Let ¢ be the inverse of ab. Then bc is the inverse to a. But we assumed a was not invertible.
Contradiction.

Hence we must have that all fractional ideals are invertible. Finally, let ¢ = {x € L | xq C O,}. Then by
definition, we have that g~' C ¢, and

Or=qq ' CqeCO

so we must have that q¢ = O, so ¢ = q~. O

Corollary 2.17. Let a,b, ¢ < Oy, with ¢ # 0. Then
() bCa < bcCac
(i) a|b < ac]be,
(i) a|b < bCa
Proof For (i) and (ii), (= ) follows by multiplying by ¢, and ( <= ) follows by multiplying by ¢~".
For (iit), (=) is clear by definition of | and ideal multiplication. For the converse, there exists ¢ such that

ac = aO; principal. Then by (i) and (it), we see that b Ca <= bc C aO;, anda|b < a0, | bc But if
be=(B1,..., B;), then bc C aO; implies that we can write B; = y;a, where y; € O;. So we have that



Theorem 2.18. Let a be a nonzero ideal. Then a can be written uniquely as a product of prime ideals.

Proof. Existence: If a is not prime, then it is not maximal. So there exists a proper ideal b < O; such that
a < b. So b | a, and we have that a = be for some ¢. So a C ¢, and as ascending chains of ideals are finite,
this must terminate.

Uniqueness: The same proof as in the integers works. O

2.3 Class group

Corollary 2.19. The nonzero fractional ideals form a group under multiplication, which we will denote /;.
It is the free abelian group generated by the prime ideals p < O;.
That is, any q € /; can be written uniquely as p{" -+ p¢r, and q is an ideal if and only if all e; > 0.

Proposition 2.20. The map L* — /;, given by a +— aO; defines a group homomorphism, with kernel O,
and image the principal ideals. We denote the set of principal ideals in /; by P;.

Definition 2.21 (class group)
The class group of a number field L is

_
-5

for a € I, we write [a] for its class in Cl(L). So [a] = [b] if and only if y € L* such that ya = b.

ClL)

Theorem 2.22. The following are equivalent.
(i) Oris a PID,
(it) O is a UFD,
(i) CYL) =1
Proof (i) <= (ill) is true by definition, and (i) = (ii) follow from GRM. Now suppose (ii) holds. Let p be

a prime ideal, x € p\ 0. Then x = o4 - - - @;, where each ¢; € O is irreducible. As p is prime, some ¢; € p, so
(ai) Cp. As Oy is a UFD, «; irreducible, {(a;) is prime. So {e;) is maximal, and p = () is principal. O

Proposition 2.23. We have an exact sequence

1 o5 L i ClUL) ———— 1

Proof. The class group is precisely the cokernel. O

2.4 ldeal norm



Definition 2.24 (ideal norm)
Let L be a number field, a < O, nonzero, then define

N(a) = O
a
which is finite.
Proposition 2.25. N(a) € aNZ.
Proof. By Lagrange’s theorem N(a)-1=0in O,/a. O

Proposition 2.26. Let a, b < Oy, then N(ab) = N(a)N(b).

Proof. Step 1: Reduction and definition of ¢ By prime factorisation of ideals, it suffices to show the result for
b = p prime. By unique factoriation, a = ap, so choose a € a\ ap. Then we can define a map ¢ : O /p — alap
by ¢(x mod p) = ax mod ap.

Step 2: ¢ is well defined. First of all, as x € Oy, and a is an ideal, ax € a. Next, if x mod p =y
mod p, then there exists p € p such that x = y + p. Then ax mod p = (ey + ap) mod p = ay mod p, since
acapep So ¢ is well defined.

Step 3: ¢ is injective. As (a) < a, (@) = ac for some ideal ¢. Now suppose x is such that ax € ap, Le. x
mod p € ker(¢). Then we have that (xa) = x(a) = xac < ap, so xc < p. But p is prime, so either ¢ < p, or
x € p. But ¢ < p implies that @ € ap. Contradiction. So x € p, so x mod p =0 mod p. Hence ker(¢p) = 0,
so ¢ is injective.

Step 4: ¢ is surjective. We have that ap C (a)+ap C a. Multiplying by a=!, we get that p C a™" (a)+p <
O,. But p is prime, so it is maximal. Hence we must have that (a) + ap = a. So ¢ is surjective.

Step 5: Conclusion. By the third isomorphism theorem, we have that

O, Orlap|  N(ap)
Na) = | —| = | — | = —27
(@) a alap N(p)
since ¢ is an isomorphism, so |a/ap| = |O/p|. O

Lemma 2.27. Let M < Z" be a subgroup. Then M =~ Z' for some 0 < r < n. Moreover, if r = n, then
there exists a basis v, ..., vo of M, such that if v = ) a;e;, with e, ..., e, the standard basis of Z",
then A = (ay; is upper triangular. In particular, |Z" /M| = |a11 - - - apy| = |det(A)].

Proof. See GRM for most of it. To see that we can choose A upper trianqular, notice that if we use an algorithm
like Smith normal form, but only use row operations, then we can write A = LU, where U is upper triangular,
L is invertible. So L corresponds to a change of basis for M.

Lemma 2.28. Let a < O, be a nonzero ideal, n = [L : Q], then

(i) there exists a1, ..., a, € a such that
a= {Zr,va,v | ri € Z} = @Zcq
i
and o4, . . ., a, is a basis of L/Q.
(it) for any such o, ..., a, € q,

10



Proof. (i) We've shown O, has an integral basis. Choose d € anZ, for example d = N(a). Thne dO; < a < Oy,
so as abelian groups, we have

(dZ)" < a < Z"

so a ~ Z" as a submodule of a free module is free, and so (i) follows.
(it) Now let of, ..., a) be an integral basis for O, and A be the matrix expressing the basis ¢, . . ., ay for
a in terms of the a/. Then we have that

Corollary 2.29. If o, ..., a, is a basis for a such that A(aq, ..., a,) is squarefree, then a = O; and Dy
is squarefree.

Corollary 2.30. Let L = Q(a), a € O; with minimal polynomial p, over Q. Let d be the largest integer
such that d? | Disc(ps) = A(1, @, . . ., a""). Then

1
|0 /Z]a]| | d and Zla] < O; < EZ[O[]
Proof. Omitted. O

Lemma 2.31. If @ € O, is nonzero, then N({a)) = [Ny g(a)]-

Proof Let oy, ..., a, be an integral basis for Oy, so am, .. ., aa, is an integral basis for {(a). Then

2.5 Dedekind’'s Criterion

Lemma 2.32. Given p < O; a nonzero prime ideal, then there exists a unique prine p € Z such that
p | pO,. Moreover, N(p) = p for some 1 < f < n=][L:Q]

Proof pNZis an ideal in Z, so it is principal. Say p N Z = pZ. We will show p is prime. If p = ab, then as
p Ep, eithera&porbeyp Soa e pZorbe pZ Sopisprime. Now write (p) = pa by ideal factorisation,
and we find that

p" = N((p)) = N(p)Na = N(p) = p'

Definition 2.33 (ramification indices)

For a prime p € Z, write (p) = p{" - p%r, with the p; distinct prime ideals. We call the e, ..., e, the
ramification indices of p.

"In the previous lemma, we have that A = LU so we could assume A was upper triangular. But L € GL,(Z), so |det(L)| = 1, and the
result holds for any basis for M and the corresponding change of basis matrix A.

i



Definition 2.34 (ramifies, inert, splits (completely))
Let p € Z be prime, with

€1

(p) = 5"+ 5
Then we say that

(i) p ramifies in L if there exists i with e; > 1,
(it) p is tnert in L if {p) is prime,

(iit) p splits (completely)in Lif r=n, e1 = =e, =1.

Theorem 2.35 (Dedekind's criterion). Let a € Oy, with minimal polynomial g(x) € Z[x] Suppose
Zla] < Oy has finite index coprime to p. Then let G(x) = g(x) mod p € Fy[x] Say

er

gix) ="

be the factorisation of g into irreducibles in [F,[x]. Then

(p) = pOL=p7" - p]
where p; = (p, ¢i(a)), where ¢;(x) € Z|x] is such that ¢; mod p = ¢;. Moreover, the p; are distinct.

Proof Part 1: Each ¢; defines a prime ideal in Z[a] containing p. Consider the following diagram

Z{x] ——— Za] = ZIx]|gZ|x]
FP[X} f» ]Fp[x}/aﬂ?ﬁ[x]

where e, e’ are the quotient maps, m is the map given by reduction mod p, and m’(f mod g) = f mod ¢,
Note that m’ is well defined since ¢; | 7.

Step 1: ker(e’ o m) = pZ[x] + ¢ Z|x]. D is clear. Now suppose f € Z[x], with e'(m(f)) = 0. That is, f
mod ¢; = 0. So f = h¢; for some h € F,[x]. But then this means that f = h¢; + p - (stuff). So C holds.

Step 2: ker(m’) = pZla]+ ¢:i(a)Z]a]. As e is a surjection, we have that

ker(m') = e(eq(ker(m’))) = e(ker(m’ o e)) = e(ker(e’ o m)) = e(pZ|x] + $:Z|x]) = pZ|a| + ¢i(a)Z|a]

Step 3: Defining the prime ideal. Let q; = pZ[a] + ¢i(a)Z[a] = ker(m’). Then by the isomorphism
theorem, we have that

@ - Fp[x]

qi ;IFp[x]
But @, is irreducible, so F,[x]/¢F,[x] is a field. Hence g; is a prime ideal. Furthermore, F,[x]/¢;F,[x] is a
characteristic p finite field, so |Z[a]/q;| = p", where ' = deg(¢;).
Part 2: Using the correspondence theorem to define a ideals in O;.
Step 1: The inclusion map induces an isomorphism Z[al|/pZ[a] — O, [pO,. Since p |/|O,/Z[a]|, the map
my : O1lZ]a] — O[Z[a], given by m,(x) = px is an injective homomorphism (of additive groups), so it is an
isomorphism. But

” ( Ze] O ) _ ZJa]n pO,

pZla]  p0r| = pZa) <)
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and

Z]a| O, . I
— tive < O, =17 0 & tive.
7] - 20, surjective L =Z[a]+ pOy my is surjective

Step 2: Correspondence theorem. Now consider the diagram

{ldeals in pZZ[[Cg]} {ldeals in %}
{ideals in Z[a] containing p} ———— {ideals in O, containing p}

where the vertical bijections are induced by the correspondence theorem, and the top bijection is induced
by the isomorphism from step 1. In particular, note that the composite bijection gives W(q) = qO;, and
Y~ (p) = p N Z[a) Furthemore, this bijection takes prime ideals to prime ideals. Finally,

O. _ _Zd
p - pNZd
which means that if we define p; = q;0y, then N(p;) = p'i as required.

Part 3: pO, = p{"---p, and the p; are distinct.
First notice that p{" = (p, ¢:(a))” < (p, ¢i(a)®), so we have that

pit o < (p (@) - gr(@)) = (p. g(a))

since ¢{' - ¢ = g (mod p). But g(a) =0, so pj'---p% < (p). Taking norms, and using the fact that
Y eifi=n, we get that equality holds.

Finally, if i, distinct, then ¢;, ¢; are coprime in F,[x] so p; + p; = (p, ¢i(a), ¢;(@)) # pi so the p; are
distinct. O

Corollary 2.36. If p is prime, p < n =[L:Q)], |O;/Z]a]| coprime to p, then p does not split completely.

Proof. Let g be the minimal polynomial of a. But deg(g) = n > p, so g can't have distinct roots. O

Finally, two theorems which we do not prove.

Theorem 2.37. With the notation as in (the proof for) Dedekind's criterion, we find that

O Fplx]

~ Pt
pi lof :

and

@) Fyl
TOLL—EB EB

i=1 (b‘ i=1
Theorem 2.38. p ramifies in O, if and only if p | D;.

3 Geometry of numbers

3.1 Minkowski's lemma

13



Proposition 3.1. Let A < R”" be a subgroup. Then the following are equivalent.

(i) A'is a discrete subgroup of R”,

(it) for any K € R” compact, K N A is finite,
(i) there exists € > 0 such that B.(0) N A = {0},
(iv)

N = é ZX[
i=1

where the x; are R-linearly independent.

Proof. (i) = (iii) follows from the definition of discrete, and (iit) = (i) follows from the fact that for every
x €N,

Be(x) N A = Be(0) N A+ x = {x} ()

as A is a subgroup.
For (iit) = (i), notice that by compactness,

K< [JBepl) = K< JBeanlx)

xek i=1

and each Bgj(x;) contains at most one element of A, by (*). Therefore K NA is finite. Now suppose (iii)
doesn't hold. Then we can choose (x,) C A such that x| < 1, and |x,41| < |x,]. So B1(0) N'A is finite.
Contradiction.

Now suppose (iv) holds. Notice that properties (i)-(v) are all preserved under the action of g € GL,(R). So
we can assume without loss of generality that A =7Z" x 0 < R"” x R"™", which is clearly discrete.

Finally, suppose (ii) holds. Choose a maximal R-linearly independent subset y1, ..., ym of A. Clearly
m < n, and

V =span{ys, ..., Ym} = span{A}

Now let X = {} _, Aiy; | A € [0, 1]}, which is a closed bounded subset of R”, so it is compact. Hence AN X
is finite. But we have that A C @ Zy; + X N A, which means that |A/ED; Zy;| < [ X NA] < oo.

Therefore, if d = [A/@D, Zy;|, then dA < @5 Zy; by Lagrange’s theorem, so A C 1 @D, Zy,. But then this
means that

@Z% <AL %@Zb’i
i i

So by the structure theorem for abelian groups, there exists xy, .. ., xm € N with A = B, Zx;. O

Definition 3.2 (lattice)

A subgroup A < R" is called a lattice of m = n in (iv) above.

Definition 3.3 (fundamental domain, covoloume)
Let A < R" be a lattice with basis xq, ..., X,. Define

(i) the fundamental fomain

P = «[i/\,‘X,‘ | Ai € [0,1]]’

i=1

14



(it) the covolume of A is
covol(A) = vol(P) = |det(A)]

where x; =} . a;e;, A= (ay).

Proposition 3.4. covol(A) is independent of the choice of basis.

Proof. For any g € GL,(Z), |det(g)| = 1. -

Theorem 3.5 (Minkowski's lemma). Let A < R” be a lattice, P a fundamental domain, S C R" be
measurable. Then

(i) suppose vol(S) > covol(A). Then there exists distinct x, y € S such that x —y € A,
(it) suppose S is symmetric about zero, convex, and either

(@) vol(S) > 2" covol(/),
(b) or vol(S) > 2" covol(A) and S is closed,

Then there exists an element y € S NA with y #+ 0.

Proof. (i) We have that vol(S) = ) ., vol(SN(P+y)) as P is a fundamental domain and volume (i.e. Lebesgue
measure) is countably additive, and in the intersections, vol(dP) = 0. Sinve the Lebesgue measure is translation
tnvariant, vol(S N (P + y)) = vol((S — y) N P).

Suppose for contradiction that the sets (S — y) N P are pairwise disjoint. Then

vol(P) > > vol((S—=y) N P) =) vol(S N (P+y)) = vol(S)
YEA yeA

Contradiction. Therefore, there exists A, y € A distinct such that (S —y)N (S — up) N P s @. That is, there
exists x,y € Ssuchthatx —y=y—psox—y=y—pyech

(i) (@) Suppose vol(S) > 2" covol(A). Let " = %S, so vol(S’) > covol(A). Hence by (i), there exists y,z € S
with y —z € A\O. But 2y,2z € S, so =2z € S as S is symmetric about 0. Now convexity implies that
y—z= %(Zy—Zz) es.

(b) Now suppose vol(S) > 2" covol(A), and S is closed. Define S, = (1 + %)S for m € N. Now we have
that y, € S, NA with y,, # 0 by (a). Convexity implies that S,, € Sy, 50 y1,¥2,--- € St NA, which is a finite
set since Sy is boundecﬂ Hence there exists y such that y, = y for infinitely many m. Then

ve()Sn=5
m
as S is closed and bounded. O
3.2 Finiteness of the class group
Let L be a number field, [L : Q] = n. Then we have real embeddings oy, ..., o L — R, and complex
embeddings 0,41, .. ., Oris, Orit, - -, Ts : L — C. Define
o=(o,..., O, Opits ..o O4s) L >R xC°~R > =R"

where we use the isomorphism C ~ R? as R-vector spaces, given by z + (Re(z), Im(z)).

Lemma 3.6. If a < O, is an ideal, then o(a) is a lattice with

2Which we can assume, since 0 < vol(S) < oo implies that S is bounded.
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covol(a(a)) = 27°|Dy|"*N(a)

Proof. Recall that a has an integral basis, say y1, ..., Yo, and that Ay, .. ., Vo) = det(a[(yj))2 = N(a)Dy, so
|det(ai(y;))| = N(a)|Dy|". The covolume is given by

covol(a(a)) = det | a(y1) o(vn)
which has the same rows 1 to r as (gi(y;)), but for the r+1,.. ., r + 2s rows, we have
(Re(0r+i(yj))) _1 ( 1 1) (Ur+i(V/))
Im(ar+i(v))) 2\ =0 i 0r+i(V;)
Hence the change of basis matrix has absolute value of the determinant being 27°. O

Corollary 3.7. 0(O}) is a lattice in R” with covol(a(O})) = 275Dy |

Proposition 3.8 (Minkowski bound). Suppose a < O, is a nonzero ideal. Then there exists @ € a nonzero,
with [N(a)| < G N(a), where

is called the Minkowski bound.
Proof Let

B s(t) = <|(g1 ,,,,, Yr, 21, - -, z) eR' x C°

S lyil +25 7| < t]»

Then B, s(t) is closed, bounded, measurable, with

At
wol(B..(1) = 2" (5
Choose t such that vol(B, s(t)) = 2" covol(a(a)). Then by Minkowski's lemma, we have a € a nonzero, such

that o(a) € B, s(t). Write a(a) = (y1, ..., Yr 210, zs). Then by the AM-CM inequality, we have that

nl

_ _, 1 t
|/\/(O()|1//7 = |y1 oYrazy ~ZSZS| < o (Z \y,-| + 2Z !Zj|) < -

Which means that

n

IN(@)] < - = GING)

Corollary 3.9. Every [a] € Cl(L) has a representative a < Oy, with N(a) < ;.

Proof Let a € a~' be such that |[N(a)| < C;N(a~"). Then a™' | (@), so we must have a~'b = (a), for some
ideal b. Taking norms, we find

N(a )N(b) = [N(a)] < GN(a™)
so N(b) < C;. Furthermore, in the class group, we have that [b] = [a]. O
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Theorem 3.10. Cl(L) is a finite group, and it is generated by [p] where the p are prime ideals with
N(p) < G

Proof. By the previous corollary, let [a] € CL(L), with N(a) < C;. Then if we factor a = p{"---p¢, then each
Nipi) < G O

Corollary 3.11. Cl(L) is generated by the prime factors of pQ,, for primes p < (.

Theorem 3.12 (Hermite, Minkowski). If n > 2, then

D >Z 3—”MM
H=3 174

So there are primes which ramify in L.

Proof. Consider the class [O] € Cl(L). Then we have an ideal a < O, such that 1 < N(a) < C;. This implies
C; >1,so

N

112 my\sn” T\t g
o= (3) 5= (F) G-
The result follows by induction as

o= mj““—f1+1b>fm+m—ﬁ
‘T a, 4 n 4 T
by the binomial theorem. O
3.3 Dirichlet’s unit theorem
The final result in the course is Dirichlet's unit theorem.
Theorem 3.13 (Dirichlet's unit theorem).
OZ ~ 1 X Zr+571
as abelian groups, where
u={ael]|a” =1 for some m > 0}
is the group of roots of unity in L, which is a finite cyclic group.
Let g9, ..., o, : L — R be the real embeddings, and g1, ..., Oris, Orgl, . s Or1s . L — C be the complex
embeddings, as before. Define ¢: O — R™** by
f(a) = (log|oy(a)|, ..., log |o:(a), 2log | 41 (a)l], - . -, 2log|o.4s(a)])
Lemma 3.14.

(1) im(¢) < R is a discrete subgroup,

(it) ker(¢) = py is a finite group.
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Proof. (i) As log|ab| = log|a| + log|b|, € is a group homomorphism, and so its image is a subgroup of R™**.
We want to show that it is discrete. Equivalently, it suffices to show that for every R > 0, im(¢) N[—R, R|'™*
is finite. But we have that ¢ = jo g,

o O, — % SR xC — L Rt

where j(yq, ..., Yr 21, .., zs) = (logly1], ..., logly,|, 2log |z, . ..., 2log|zs]). We have that

SRR = {ynz) | e X <y <ef e ™ <20z] < eF}

which is compact. But a(O)) is a lattice, so a(O;) N j~'([—R, R**) is finite.
(ii) Note that if a € ker(#), then a(a) € a(O)Nj~'(—R, R'**) for all R > 0. In particular, as o is injective,
ker(¢) is a finite group. So each element has finite order, hence it is a root of unity. Thus, ker(¢) = p;. O

Lemma 3.15.

Proof. If o € O, then

r r+s
0=log|N(a)| = ) _loglaa)] +2 ) |ai(a)
i=1 i=r+1
O
Corollary 3.16. im(¥) is isomorphic to a discrete subgroup of R"**1, so it must be Z° for some 0 < a <
r+s—1
Lemma 3.17. Fix k with 1 < k < r+x, a € O; nonzero. Write ¢(a) = (a1, ..., dris). Then there exists
B € O, nonzero with
() INB) < (2)° 10",
(it) if we write ¢(B) = (b1, ..., bris), then b; < a; for every # k.
Proof. Let
2
5:{@1 ..... Y21, z) ER X C ||yl < i, |7 gcrﬂ}
for soem constants cq,..., Cr+s. Then S is closed, convex and symmetric around zero, with vol(S) =
2'%cy - - ¢rps. If we choose ¢; such that 0 < ¢; < e for all i # k, and ¢, such that
vol(S) = 2" covol(a(O)))
by Minkowski's lemma, there exists 8 € a(O;) N S. O
Lemma 3.18. If a = B+ my, with a, B,y € O, and N(a) = N(B) = m, then a/p € O}.
Proof. Notice that N(B)/B &€ L is a product of algebraic elements, since
NB) = TaB)
i
so N(B)IB € O,. O
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Lemma 3.19. Let A € M, (R) be such that a; > 0 for all i, a;; < 0 for i # j, ) ;a; > 0 for all i. Then
rank(A) > m — 1.

Proof. Some basic linear algebra. Any m — 1 columns of A are linearly independent. O

Lemma 3.20. The short exact sequence

0 A B z" 0

of abelian groups splits. That is, B~ A@® Z", with the map B — Z" being the projection map.

Proof. Easy homological algebra. O
Proof of Dirichlet's unit theorem. Fix 1 < k < r 4+ s. Then we have a sequence oy, ay, ... such that N()
bounded, and for i # k, the i-th coordinate of ¢(ay), #(a), ... is a strictly decreasing sequence. Now by the

Pigeonhole principle, there exists t < t’ such that
1. N(ey) = N(ay) = m,
2. o = ap mod mO;

Then uy = at/ay € OF. Furthermore, we have that

Ou) = €(ar) = ) = (Y1, Yres)

and we have that y; < 0 if i £ k, y1+ -+ yr+s = 0, and y, > 0. But then this means that uq, ..., Upis 1
are linearly independent, so the rank of £(O[) is r4+s —1. O

4 Quadratic number fields

In this section, we collect the implications of the theorems in this course for quadratic number fields. That is,
[L: Q] =2 By some basic field theory, we can see that all such L must be of the form L = Q(v/d), where we
can assume wlog that d is squarefree, d # 0, 1. Throughout, assume L = Q(/d).

Integral basis and discriminant

Lemma 4.1.
T — Zj(1+Vd)2) ifd=1 (mod 4)
"7 z1vd] ifd=23 (mod4)

Proof L|Q has basis 1.vd. Soifa=x+ g\@, then the matrix of m, in this basis is

x dy
y X
which has minimal polynomial t* — 2x + (x> — dy?). Hence a € O, if and only if 2x, x* — dy? € Z. Notice

that this implies that 4dy? € Z. If y = r/s € Q, with r, s coprime, then s° | 4d. But d is squarefree, so s* | 4,
so s = +1 or £2. Hence we have that

x:%,g:éu,vez with 2 = dv? (mod 4)

Now the quadratic residues mod 4 are 0,1, so if d # 1 (mod 4), then the equation has a solution if and
only if u?, B> =0 (mod 4). That is, u, v are even. So x,y € Z. That is, O, = Z[\/d|

On the other hand, if d = 1 (mod 4), then the equation implies that u, v have the same parity, so we can
write @ as a Z linear combination of 1, (1 +/d)/2. O

Note that the minimal polynomials are
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o t2—t+(1—d)4for (1+d)2
o t2—d for Vd

Corollary 4.2. [ has integral basis

1,0+Vd)2 ifd=1 (mod 4)
1,Vd ifd=23 (mod4)

Corollary 4.3. L has discriminant

d fd=1 (mod4)
4d ¥d=2,3 (mod 4)

Ideals

Lemma 4.4. Let a < O, be an ideal, then there exists a € O, b € Z such that a = (a, b).

Proof Since a ~ Z* as abelian groups, we can choose a, 8 € O such that a = (a, B). We will handle the
d =1 (mod 4) and d = 2,3 (mod 4) cases together. We can write

u+vvd X+ y\ﬁ
2 B= 2
where u, v, x,y € Z, with u = v (mod 2) and x = y (mod 2). Let ¢ = gcd(y, v) = mv + ny, and we the
have that

, g(maJrnB)iE VX — uy
F=F- ¢ _e( 2 )

But vx —uy =0 (mod 2), so B € Z. It is easy to see that (@, B) = (@, B’), so we are done. O

Proposition 4.5. Let a = (@, b) with @ € O;, b € Z. Then

aa = (b, a) (b, @)
is principal.
Proof.
ad = (b’ ba, ba, aa@) = (b’ ba, b Tr(a), N(a))
Let ¢ = gcd(b?, b Tr(a), N(a)). Then aa = (ba, c). Let x = ba/c. Then Tr(x), N(x) € Z, so x € Oy, and so
¢ | bain Oy. Thus aa = (c) is principal. O
Dedekind and primes

First of all, we consider the behaviour of odd primes. Let p be an odd prime, then Z[v/d] < O, has index 1
or 2, which is coprime to p. Hence by Dedekind's criterion, we must factor x> —d mod p. We have three
possibilities.

(i) if (%) =1, then there are two distinct roots modulo p, so p splits completely.
(i) if (%) =0, te. p|d, then p ramifies.

(iiy) if (%) = —1, then x> — d is irreducible, so p is inert.
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Lemma 4.6.
splits completely <= d=1 (mod 8)

24 is inert < d=5 (mod8)
ramifies < d=2,3 (mod 4)

Proof. First we handle the case d = 1 (mod 4). In this case, ©O; = Z|a], where a = (1 + V/d)/2 has minimal
polynomial g = x* — x + (1 — d)/4. So if d =1 (mod 8), then § = x* + x = x(x + 1), so 2 splits by Dedekind.
If d =5 (mod 8), then § = x* + x + 1, which is irreducible.

Finally, if d = 2,3 (mod 4), then O; = Z[\/d], and g(x) = x* — d is the minimal polynomial. Modulo 2 this
is x2 or x> —1 = (x — 1)%, so 2 ramifies. O

Minkowski bound

For imaginary quadratic fields, that is, Q(v/d) with d < 0 squarefree, we have that n = 2,r = 0,5 = 1, so the
Minkowski bound is

2
C = 7|DL|1/2
J

and for real quadratic fields, we have n = 2,r = 2,5 = 0, so the Minkowski bound is
1
CL _ §|DL‘1/2

Dirichlet's unit theorem

For a real quadratic number field, yy = {£1}, n =2,r = 2,5 =0, so we have that

Of = {1} xZ

More concretely, we have

Corollary 4.7 (Dirichlet's unit theorem for real quadratic number fields).
Of ={£e& | n €2}

for some g9 € OF, called a fundamental unit.
Proof. Choose 9 € O, with 1 < |o7(gg)| minimal. Then & is a fundamental unit. O

For an imaginary quadratic number field, n =2,r=0,s =1, so r + s —1 = 0. Hence by Dirichlet’s unit
theorem, O} = i is a finite group. In particular,

Lemma 4.8.

1. if d = —1, then Z[i]* = {+1, £i},

3. for all other d < 0, Of = {£1}.

Proof Just solve N(x 4+ y/d) = x> — dy?> = 1. O
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