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1 Integrality
1.1 Number fields and rings of integers

Definition 1.1 (number field)A number field L is a finite extension of Q.
Definition 1.2 (algebraic integer)If L is a number field, we say that α ∈ L is an algebraic integer if there exists f ∈ Z[x ] monic such that
f (α) = 0. The set of ring of integers in L is written as OL .
Definition 1.3 (integral)Suppose R ≤ S rings. Then α ∈ S is integral over R if there exists f ∈ R [x ] monic such that f (α) = 0.We say that S is integral over R if all α ∈ S are integral over R .
Definition 1.4 (finitely generated over)Suppose R ≤ S rings, then S is finitely generated over R if there exists α1, . . . , αn ∈ S such that everyelement ofS is an R-linear combination of the α1, . . . , αn. That is, S is a finitely generated R-module.
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Proposition 1.5.1. if S = R [s], with s integral over R , then S is finitely generated over R ,2. if S = R [s1, . . . , xn] with each si integral over R , then S is finitely generated over R .
Proof. (i) As an R-module, S is spanned by 1, s, s2, . . .. But as s is integral over R , we have that

sn + an−1sn−1 + · · · + a0 = 0for some a0, . . . , an−1 ∈ R . So 1, s, . . . , sn−1 generate S .(ii) Let Si = R [s1, . . . , si−1], so Si+1 = Si[si]. si is integral over R , so it is integral over Si. Hence Si+1 isfinitely generated over Si. Hence by induction, Si+1 is finitely generated over R . Hence S = Sn+1 is finitelygenerated over R .
Theorem 1.6. Suppose S is finitely generated over R . Then S is integral over R .

Proof. Let α1, . . . , αn generate S as an R-module. Without loss of generality, α1 = 1. Let s ∈ S , and consider
ms : S → S , given by x 7→ sx . Then

sαi =∑
j
bijαj

for some bij ∈ R . Let B be the matrix (bij ). By definition, we have that
(sI − B)α1

·s
αn

 = 0
Multiplying this by adj(sI − B), we get that

det(sI − B)α1
·s
αn

 = 0
But α1 = 1, so det(sI − B) = 0. Define f (t) = det(tI − B) ∈ R [t]. This is a monic polynomial withcoefficients in R , and with f (s) = 0. So s is integral over R .

Corollary 1.7. If L is a number field, the OL is a ring.
Proof. If α, β ∈ OL , then Z[α, β ] is finitely generated over Z, so it is integral over Z. Hence α±β, αβ ∈ Z[α, β ],so α ± β, αβ ∈ OL .

Corollary 1.8. If A ≤ B ≤ C rings, B integral over A, C integral over B, then C is integral over A.
Proof. If c ∈ C , let f (x) = xn + bn−1xn−1 + · · · + b0 be a monic polynomial over B[x ] such that f (c) = 0. Set
B0 = A[b0, . . . , bn−1], and C0 = B0[c]. Then B0 is finitely generated over A, C0 is finitely generated over B0 as
c is integral over B0. Hence C0 is finitely generated over A, qso C0 is integral over A.

Proposition 1.9. Let L be a number field. Then α ∈ OL if and only if the minimal polynomial pα (x) ∈ Q[x ]for α is in Z[x ].
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Proof. ( ⇐= ) is true by definition. For the converse, let α ∈ OL , with minimal polynomial pα . Let M/L be asplitting field for pα , so pα (x) = (x − α1) · · · (x − αn) in M [x ]. Let h(x) ∈ Z[x ] be a monic polynomial such that
h(α) = 0. Then pα | h< so each αi ∈ M is an algebraic integer. But OL is a ring, so the coefficients of pα arein OL . Finally, the result follows by Q ∩ OL = Z.

Lemma 1.10. If α ∈ L, then there exists n ∈ Z \ 0 such that nα ∈ OL .
Proof. Let g ∈ Q[x ] be the minimal polynomial for α . Then by clearing denominators, we have n ∈ Z \ 0 suchthat h(x) = ndeg(g)g(x/n) ∈ Z[x ] is monic. Now notice that h(nα) = ndeg(g)g(α) = 0, so nα ∈ OL .
1.2 Trace and normRecall from Galois theory that if L/K is a field extension, α ∈ L, let mα (x) = αx . Then we have the norm andthe trace of α ,

NL/K (α) = det(mα ) and TrL/K (α) = tr(mα )If pα (x) is the minimal polynomial of α over K , then the characteristic polynomial of mα is det(xI −mα ) =
p[L:K (α)]
α . Furthermore, if M is a splitting field for pα , with pα )(x) = (x − α1) · · · (x − αn), then

NK (α)/K =∏
i
αi and trK (α)/K =∑

i
αi

By the tower law of norm and trace, we then have that
NL/K (α) = (∏

i
αi

)[L:K (α)] and TrL/K (α) = [L : Kα ]∑
i
αi

Proposition 1.11. Let L be a number field, α ∈ L. Then the following are equivalent.
(i) α ∈ OL ,(ii) pα ∈ Z[x ],(iii) the characteristcic polynomial of mα is in Z[x ].

Therefore, NL/Q(α),TrL/Q(α) ∈ Z.
1.3 Integral basis, discriminant

Definition 1.12 (integral basis)Let L be a number field. A basis α1, . . . , αn of L/Q is called an integral basis if
OL = { n∑

i=1 miαi
∣∣∣∣ mi ∈ Z

} = n⊕
i=1 Zαi

Recall from Galois:(i) L/Q is a finite separable extension, as char(Q) = 0, so by the primitive element theorem, L = Q(α) forsome α ∈ L.
Q(α) ≃ Q[x ](pα )

L is a field, so (pα ) is a maximal ideal in a PID, so pα is irreducible.Let deg(pα ) = n. Then L/Q has basis 1, α, . . . , αn−1.
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(ii) The number of field embeddings L → C is n. Let σ1, . . . , σn : L → C be the distinct embeddings. Then for
β ∈ L,

TrL/Q(β) =∑
i
σi(β) and NL/Q(β) =∏

i
σi(β)

Definition 1.13 (r, s)Let L be as above. Define r to be the number of real roots of pα (x), or equivalently the number of fieldembeddings L → R, s to be the number of complex conjugate pairs of roots of pα (x). So r + 2s = n.
Proposition 1.14. r, s are independent of α .

Proof. Since r is the number of field embeddings L → R.
Proposition 1.15. Let L/K be a finite separable extension. Then the K -bilinear form

(x, y) 7→ TrL/K (xy)is nondegenerate. We call it the trace form. Equivalently, if α1, . . . , αn is a basis for L/K , the matrix(TrL/K (αiαj ))i,jhas nonzero determinant. We write
∆(α1, . . . , αN ) = det (TrL/K (αiαj ))

Proof. Let σ1, . . . , σn : L → K be the n distinct K -linear field emebeddings, let
S =

σ1(α1) . . . σ1(αn)... . . . ...
σn(α1) . . . σn(αn)


Then we have that

(STS)ij =∑
k
σk (αi)σk (αj ) =∑

k
σk (αiαj ) = TrL/K (αiαj )

which means that ∆(α1, . . . , αn) = det(STS) = (det(S))2. Now by the primitive element theorem, thereexists θ ∈ L such that L = K (θ), so 1, θ, . . . , θn−1 are a basis for L/K . In this case, we have that
S =

1 σ1(θ) . . . σ1(θ)n−1... ... . . . ...1 σn(θ) . . . σn(θ)n−1


which is a Vandermonde matrix, so we find that
det(S)2 =∏

i<j
(σi(θ) − σj (θ))2 = ∆(1, θ, . . . , θn−1)

which is nonzero since L = K (θ) and the σi are distinct. Finally, if α1, . . . , αn is any basis for L/K ,
α ′1, . . . , α ′

n is any other basis, then
∆(α ′1, . . . , α ′

n) = (det(A))2 ∆(α1, . . . , αn)where αi =∑j aijαj , so it is nonzero for any basis.
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Proposition 1.16. Let L = K (θ), where the minimal polynomial of θ is
pθ (t) =∏

i
(t − σi(θ))

Then we have that
Disc(pθ ) =∏

i<j
(σi(θ) − σj (θ))2 = ∆(1, θ, . . . , θn−1)

Unfortunately in Galois, we have that Disc = ∆2, but not much we can do about that...
Proposition 1.17. If α1, . . . , αn ∈ L is a basis of L/Q, with αi ∈ OL , then ∆(α1, . . . , αn) ∈ Z.

Proof. TrL/Q(αβ) ∈ Z for all α, β ∈ OL .
Theorem 1.18. Let L/Q be a number field. Then there exists an integral basis for L.

Proof. Let α1, . . . , αn be any basis of L/Q. Since we have mi ∈ Z nonzero such that miαi ∈ OL , wlog we mayassume α1, . . . , αn ∈ OL . So ∆(α1, . . . , αn) ∈ Z \ 0. Choose α1, . . . , αn such that |∆(α1, . . . , αn)| is minimal.Now let x ∈ OL , x = ∑
i λiαi, with λi ∈ Q. Suppose for contradiction λ1 /∈ Z. Write λ1 = n1 + ε1, with0 < ε1 < 1 and n1 ∈ Z. Let α ′1 = x − n1α1 = ε1α1 + λ2α2 + · · · + λnαn ∈ OL .Then α ′1, . . . , α ′

n is still a basis for L/Q, with
∆(α ′1, α2, . . . , αn) = ε21∆(α1, . . . , αn)Contradicting minimality.

Corollary 1.19. If α ′1, . . . , α ′
n is any other integral basis, then

∆(α1, . . . , αn) = ∆(α ′1, . . . , α ′
n)

Proof. We have a change of basis matrix g ∈ GLn(Z) with g(α ′
i ) = αi. Then det(g) = ±1, so det(g)2 = 1.

Definition 1.20 (discriminant)The discriminant of a number field L is
DL = ∆(α1, . . . , αn)for any integral basis α1, . . . , αn.

2 Ideals in number fields

Lemma 2.1. Let x ∈ OL . Then x is a unit if and only if NL/Q(x) = ±1.
Proof. ( =⇒ ) follows by the fact that NL/Q(ab) = NL/Q(a)NL/Q(b) for all a, b ∈ L, and NL/Q(α) ∈ Z for all
α ∈ OL .For the converse, let σ1, . . . , σn : L → C be the distinct field embeddings. Since C is algebraically closed,we can assume wlog that L ≤ C,and σ1 is the inclusion map. If x ∈ OL , then

NL/Q(x) = xσ2(x) · · · σn(x)
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so if NL/Q(x) = ±1, we get that
1
x = ±

n∏
i=2 σi(x) ∈ OL

as the right hand side is a product of algebraic integers.
2.1 Ideal operations

Definition 2.2 (product)Let a, b ⊴ R be ideals, then we define their product to be
ab = {∑aibi | ai ∈ a, bi ∈ b

}

Proposition 2.3.(i) ab is an ideal in R ,(ii) ⟨a1, . . . , an⟩ ⟨b1, . . . , bm⟩ = 〈aibj | 1 ≤ i ≤ n, 1 ≤ j ≤ m
〉,(iii) (ab)c = a(bc)

Proof. Easy checks.
Definition 2.4 (divides)We say that b divides a, written b | a, if there exists c such that a = bc.
Lemma 2.5. If a ⊴ OL is a nonzero ideal, then a ∩ Z ̸= {0}, and OL/a is a finite abelian group.

Proof. Let α ∈ a be nonzero, and let pα (x) = xm + am−1xm−1 + · · · + a0 ∈ Z[x ] be its minimal polynomial. As
pα is irreducible, a0 ̸= 0. Then we have that

a0 = −α(αm−1 + am−1αm−2 + · · · + a2α + a1) ∈ aso a0 ∈ a ∩ Z. Hence a0OL ≤ a, so we have a map OL/ ⟨a0⟩ → OL/a, which is a surjection. But for any
d ∈ Z, we have that OL/ ⟨d⟩ = Zn/dZn = (Z/dZ)n which is a finite abelian group, so OL/a is also a finiteabelian group.

Proposition 2.6. Let L be a number field. Then
(i) OL is an integral domain,(ii) OL is a Noetherian ring,(iii) OL is integrally closed in L, i.e. if α ∈ L is integral over OL , then α ∈ OL ,(iv) every nonzero prime ideal in OL is maximal.

That is, L is a Dedekind domain.
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Proof. (i) is immediate since OL is a subring of a field.For (ii), we have shown that OL ≃ Zn as abelian groups, so if a is an ideal in OL , then a is isomorphic toa subgroup of Zn, so it is finitely generated as an abelian group, hence it is finitely generated as an ideal.For (iii), if α ∈ L is integral over OL , as OL is integral over Z, α is integral over Z. But this means that
α ∈ OL .For (iv), if p ⊴ OL is a nonzero prime ideal, then by the previous lemma, OL/p is a finite integral domain,so it is a field. Hence p is maximal.

Corollary 2.7. If a is a nonzero ideal, then a ≃ Zn as abelian groups.
Lemma 2.8. Let p be a prime ideal in R , a, b ⊴ R . Then ab ≤ p implies that a ≤ p or b ≤ p.

Proof. Easy proof by contradiction.
Lemma 2.9. If a ⊴ OL is a nonzero ideal, then a contains a product of prime ideals.

Proof. Suppose not. Then as OL is Noetherian, there exists an ideal a such that if b is any ideal with a < b,then b contains a product of prime ideals. In particular, a cannot be prime. Choose x, y ∈ OL such that
x, y /∈ a, xy ∈ a. Since a < a + ⟨x⟩ and a < a + ⟨y⟩, there exists prime ideals p1, . . . , pr , q1, . . . , qs such that
p1 · · · pr ⊆ a + ⟨x⟩, and q1 · · · qs ⊆ a + ⟨y⟩. Then we have that

p1 · · · prq1 · · · qs ≤ (a + ⟨x⟩)(a + ⟨y⟩) ≤ aContradiction.
Lemma 2.10. Let a ⊴ OL be a nonzero ideal, x ∈ L such that xa ⊆ a. Then x ∈ OL .

Proof. Since a is a finitely generated abelian group, choose a Z-basis α1, . . . , αn for a. Then consider the map
mx : a → a, α 7→ xα . Writing xαi =∑j aijαj , with aij ∈ Z, and letting A = (aij ), we find that

(xI − A)
α1,...
αn

 = 0
which means that det(xI − A) = 0, so x is integral over Z, hence x ∈ OL .

2.2 Fractional ideals and unique factorisation of ideals

Lemma 2.11. Let a ⊴ OL , with a ̸= 0,OL . Then
OL ⊊ {y ∈ L | ya ⊆ OL}

Proof. First of all, note that if this is true for an ideal a, then it is true for all b ≤ a. So wlog we can assumethat a i.e. a = p prime.Let α ∈ p be nonzero. Then we have prime ideals q1, . . . , qr such that q1 · · · qr ≤ αOL . Suppose r isminimal. Then as p is prime, there exists i such that qi ≤ p. wlog i = 1. As q1 is prime, it is maximal.So q1 = p. By minimality of r , we must have that q2 · · · qr ̸⊆ αOL . Choose β ∈ q2 · · · qr \ αOL . Then
βp ≤ p(q2 · · · qr ) ≤ αOL , but β /∈ αOL . Dividing by α , we get that

β
α p ⊆ OL and β

α /∈ OL
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Definition 2.12 (fractional ideal)A fractional ideal in L is a finitely generated OL submodule of L.
Lemma 2.13. q ⊆ L is a fractional ideal if and only if there exists c ∈ L such that cq ⊆ OL is an ideal.

Proof. For ( ⇐= ) notice that cq ≃ q as OL modules. Conversely, let x1, . . . , xr generate q as an OL module.Then xi = yi/ni, where yi ∈ OL and ni ∈ Z. Let c = lcm(n1, . . . , nr ). Then cq ⊆ OL and is an OL submodule.So it is an ideal.
Corollary 2.14. If q is a fractional ideal, then q ≃ Zn as abelian groups, where n = [L : Q].
We define multiplication of fractional ideals in the same way we defined multiplication of ideals.

Definition 2.15 (invertible)A fractional ideal q is invertible if there exists a fractional ideal r such that qr = OL .
Proposition 2.16. Every nonzero fractional q is invertible with

q−1 = {x ∈ L | xq ⊆ OL}Equivalently, for every a ⊴ OL , there exists an ideal b ⊴ OL such that ab is principal.
Proof. First we show the equivalence. If q, r are fractional ideals, then we have a, b ⊴ OL , m, n ∈ L×, suchthat q = 1

ma and r = 1
nb. Then

qr = OL ⇐⇒ ab = mnOLNow notice that q is invertible if and only if a is, so wlog we can assume q ⊴ OL . Hence if the result isfalse, it is false for some ideal a in OL . As OL is Noetherian, we can assume that if a < a′, then a′ is invertible.Let b = {x ∈ L | xa ⊆ OL}. Then b is a fractional ideal, with OL ⊊ b. Hence we have that a ⊆ ab. Againthis inclusion is strict, since if ab = a, then for all x ∈ b, xa ⊆ a, so x ∈ OL . But b ̸⊆ OL . Hence a ⊊ ab, so
ab is invertible. Let c be the inverse of ab. Then bc is the inverse to a. But we assumed a was not invertible.Contradiction.Hence we must have that all fractional ideals are invertible. Finally, let c = {x ∈ L | xq ⊆ OL}. Then bydefinition, we have that q−1 ⊆ c, and

OL = qq−1 ⊆ qc ⊆ OLso we must have that qc = OL , so c = q−1.
Corollary 2.17. Let a, b, c ⊴ OL , with c ̸= 0. Then

(i) b ⊆ a ⇐⇒ bc ⊆ ac,(ii) a | b ⇐⇒ ac | bc,(iii) a | b ⇐⇒ b ⊆ a.
Proof. For (i) and (ii), ( =⇒ ) follows by multiplying by c, and ( ⇐= ) follows by multiplying by c−1.For (iii), ( =⇒ ) is clear by definition of | and ideal multiplication. For the converse, there exists c such that
ac = αOL principal. Then by (i) and (ii), we see that b ⊆ a ⇐⇒ bc ⊆ αOL , and a | b ⇐⇒ αOL | bc. But if
bc = ⟨β1, . . . , βr⟩, then bc ⊆ αOL implies that we can write βi = γiα , where γi ∈ OL . So we have that

8



bc = ⟨β1, . . . , βr⟩ = ⟨β1, . . . , βr⟩ · αOL

Theorem 2.18. Let a be a nonzero ideal. Then a can be written uniquely as a product of prime ideals.
Proof. Existence: If a is not prime, then it is not maximal. So there exists a proper ideal b ⊴ OL such that
a < b. So b | a, and we have that a = bc for some c. So a ⊆ c, and as ascending chains of ideals are finite,this must terminate.

Uniqueness: The same proof as in the integers works.
2.3 Class group

Corollary 2.19. The nonzero fractional ideals form a group under multiplication, which we will denote IL .It is the free abelian group generated by the prime ideals p ⊴ OL .That is, any q ∈ IL can be written uniquely as pe11 · · · perr , and q is an ideal if and only if all ei ≥ 0.
Proposition 2.20. The map L× → IL , given by α 7→ αOL defines a group homomorphism, with kernel O×

L ,and image the principal ideals. We denote the set of principal ideals in IL by PL .
Definition 2.21 (class group)The class group of a number field L is

Cl(L) = IL
PLfor a ∈ IL , we write [a] for its class in Cl(L). So [a] = [b] if and only if γ ∈ L× such that γa = b.

Theorem 2.22. The following are equivalent.
(i) OL is a PID,(ii) OL is a UFD,(iii) Cl(L) = 1

Proof. (i) ⇐⇒ (iii) is true by definition, and (i) =⇒ (ii) follow from GRM. Now suppose (ii) holds. Let p bea prime ideal, x ∈ p \ 0. Then x = α1 · · · αr , where each αi ∈ OL is irreducible. As p is prime, some αi ∈ p, so
⟨αi⟩ ⊆ p. As OL is a UFD, αi irreducible, ⟨αi⟩ is prime. So ⟨αi⟩ is maximal, and p = ⟨αi⟩ is principal.

Proposition 2.23. We have an exact sequence
1 O×

L L× IL Cl(L) 1x 7→xOL

Proof. The class group is precisely the cokernel.
2.4 Ideal norm
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Definition 2.24 (ideal norm)Let L be a number field, a ⊴ OL nonzero, then define
N(a) = ∣∣∣∣OL

a

∣∣∣∣which is finite.
Proposition 2.25. N(a) ∈ a ∩ Z.

Proof. By Lagrange’s theorem N(a) · 1 = 0 in OL/a.
Proposition 2.26. Let a, b ⊴ OL , then N(ab) = N(a)N(b).

Proof. Step 1: Reduction and definition of φ By prime factorisation of ideals, it suffices to show the result for
b = p prime. By unique factoriation, a ̸= ap, so choose α ∈ a\ap. Then we can define a map φ : OL/p → a/apby φ(x mod p) = αx mod ap.

Step 2: φ is well defined. First of all, as x ∈ OL , and a is an ideal, αx ∈ a. Next, if x mod p = ymod p, then there exists p ∈ p such that x = y+ p. Then αx mod p = (αy+ αp) mod p = αy mod p, since
α ∈ a, p ∈ p. So φ is well defined.

Step 3: φ is injective. As ⟨α⟩ ≤ a, ⟨α⟩ = ac for some ideal c. Now suppose x is such that αx ∈ ap, i.e. xmod p ∈ ker(φ). Then we have that ⟨xα⟩ = x ⟨α⟩ = xac ≤ ap, so xc ≤ p. But p is prime, so either c ≤ p, or
x ∈ p. But c ≤ p implies that α ∈ ap. Contradiction. So x ∈ p, so x mod p = 0 mod p. Hence ker(φ) = 0,so φ is injective.

Step 4: φ is surjective. We have that ap ⊊ ⟨α⟩+ap ⊆ a. Multiplying by a−1, we get that p ⊊ a−1 ⟨α⟩+p ≤
OL . But p is prime, so it is maximal. Hence we must have that ⟨α⟩ + ap = a. So φ is surjective.

Step 5: Conclusion. By the third isomorphism theorem, we have that
N(a) = ∣∣∣∣OL

a

∣∣∣∣ = ∣∣∣∣OL/ap
a/ap

∣∣∣∣ = N(ap)
N(p)since φ is an isomorphism, so |a/ap| = |OL/p|.

Lemma 2.27. Let M ≤ Zn be a subgroup. Then M ≃ Zr for some 0 ≤ r ≤ n. Moreover, if r = n, thenthere exists a basis v1, . . . , vn of M , such that if vj = ∑
i aijei, with e1, . . . , en the standard basis of Zn,then A = (aij is upper triangular. In particular, |Zn/M| = |a11 · · ·ann| = |det(A)|.

Proof. See GRM for most of it. To see that we can choose A upper triangular, notice that if we use an algorithmlike Smith normal form, but only use row operations, then we can write A = LU , where U is upper triangular,
L is invertible. So L corresponds to a change of basis for M .

Lemma 2.28. Let a ⊴ OL be a nonzero ideal, n = [L : Q], then
(i) there exists α1, . . . , αn ∈ a such that

a = {∑ riαi | ri ∈ Z
} =⊕

i
Zαi

and α1, . . . , αn is a basis of L/Q.(ii) for any such α1, . . . , αn ∈ a, ∆(α1, . . . , αn) = N(a)2DL
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Proof. (i) We’ve shown OL has an integral basis. Choose d ∈ a∩Z, for example d = N(a). Thne dOL ≤ a ≤ OL ,so as abelian groups, we have
(dZ)n ≤ a ≤ Znso a ≃ Zn as a submodule of a free module is free, and so (i) follows.(ii) Now let α ′1, . . . , α ′

n be an integral basis for OL , and A be the matrix expressing the basis α1, . . . , αN for
a in terms of the α ′

i . Then we have that
∆(α1, . . . , αn) = (det(A))2∆(α ′1, . . . , α ′

n)But the previous lemma gives us that |det(A)| = |OL/a|1, and DL = ∆(α ′1, . . . , α ′
n) by definition.

Corollary 2.29. If α1, . . . , αn is a basis for a such that ∆(α1, . . . , αn) is squarefree, then a = OL and DLis squarefree.
Corollary 2.30. Let L = Q(α), α ∈ OL with minimal polynomial pα over Q. Let d be the largest integersuch that d2 | Disc(pα ) = ∆(1, α, . . . , αn−1). Then

|OL/Z[α ]| | d and Z[α ] ≤ OL ≤ 1
dZ[α ]

Proof. Omitted.
Lemma 2.31. If α ∈ OL is nonzero, then N(⟨α⟩) = |NL/Q(α)|.

Proof. Let α1, . . . , αn be an integral basis for OL , so αα1, . . . , ααn is an integral basis for ⟨α⟩. Then
∆(αα1, . . . , ααn) = det(σi(ααj ))2 = det(σi(α)σi(αj ))2 = (∏

i
σi(α))2 ∆(α1, . . . , αn) = NL/Q(α)2DL

2.5 Dedekind’s Criterion

Lemma 2.32. Given p ⊴ OL a nonzero prime ideal, then there exists a unique prine p ∈ Z such that
p | pOL . Moreover, N(p) = pf for some 1 ≤ f ≤ n = [L : Q].

Proof. p ∩ Z is an ideal in Z, so it is principal. Say p ∩ Z = pZ. We will show p is prime. If p = ab, then as
p ∈ p, either a ∈ p or b ∈ p. So a ∈ pZ or b ∈ pZ. So p is prime. Now write ⟨p⟩ = pa by ideal factorisation,and we find that

pn = N(⟨p⟩) = N(p)Na =⇒ N(p) = pf

Definition 2.33 (ramification indices)For a prime p ∈ Z, write ⟨p⟩ = pe11 · · · perr , with the pi distinct prime ideals. We call the e1, . . . , er theramification indices of p.
1In the previous lemma, we have that A = LU so we could assume A was upper triangular. But L ∈ GLn(Z), so |det(L)| = 1, and theresult holds for any basis for M and the corresponding change of basis matrix A.
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Definition 2.34 (ramifies, inert, splits (completely))Let p ∈ Z be prime, with
⟨p⟩ = pe11 · · · perrThen we say that

(i) p ramifies in L if there exists i with ei > 1,(ii) p is inert in L if ⟨p⟩ is prime,(iii) p splits (completely)in L if r = n, e1 = · · · = en = 1.
Theorem 2.35 (Dedekind’s criterion). Let α ∈ OL , with minimal polynomial g(x) ∈ Z[x ]. Suppose
Z[α ] ≤ OL has finite index coprime to p. Then let g(x) = g(x) mod p ∈ Fp[x ]. Say

g(x) = φ1e1 · · ·φr
er

be the factorisation of g into irreducibles in Fp[x ]. Then
⟨p⟩ = pOL = pe11 · · · perrwhere pi = ⟨p, φi(α)⟩, where φi(x) ∈ Z[x ] is such that φi mod p = φi. Moreover, the pi are distinct.

Proof. Part 1: Each φi defines a prime ideal in Z[α ] containing p. Consider the following diagram
Z[x ] Z[α ] = Z[x ]/gZ[x ]

Fp[x ] Fp[x ]/φiFp[x ]
m m′

e

e′where e, e′ are the quotient maps, m is the map given by reduction mod p, and m′(f mod g) = f mod φi.Note that m′ is well defined since φi | g.
Step 1: ker(e′ ◦ m) = pZ[x ] + φiZ[x ]. ⊇ is clear. Now suppose f ∈ Z[x ], with e′(m(f )) = 0. That is, fmod φi = 0. So f = hφi for some h ∈ Fp[x ]. But then this means that f = hφi + p · (stuff). So ⊆ holds.
Step 2: ker(m′) = pZ[α ] + φi(α)Z[α ]. As e is a surjection, we have that

ker(m′) = e(e−1(ker(m′))) = e(ker(m′ ◦ e)) = e(ker(e′ ◦m)) = e(pZ[x ] + φiZ[x ]) = pZ[α ] + φi(α)Z[α ]
Step 3: Defining the prime ideal. Let qi = pZ[α ] + φi(α)Z[α ] = ker(m′). Then by the isomorphismtheorem, we have that

Z[α ]
qi

≃ Fp[x ]
φiFp[x ]But φi is irreducible, so Fp[x ]/φiFp[x ] is a field. Hence qi is a prime ideal. Furthermore, Fp[x ]/φiFp[x ] is acharacteristic p finite field, so |Z[α ]/qi| = pfi , where f i = deg(φi).

Part 2: Using the correspondence theorem to define a ideals in OL.
Step 1: The inclusion map induces an isomorphism Z[α ]/pZ[α ] → OL/pOL. Since p ̸| |OL/Z[α ]|, the map

mp : OL/Z[α ] → OL/Z[α ], given by mp(x) = px is an injective homomorphism (of additive groups), so it is anisomorphism. But
ker( Z[α ]

pZ[α ] → OL
pOL

) = Z[α ] ∩ pOL
pZ[α ] = ker(mp)
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and
Z[α ]
pZ[α ] → OL

pOL
surjective ⇐⇒ OL = Z[α ] + pOL ⇐⇒ mp is surjective.

Step 2: Correspondence theorem. Now consider the diagram{ideals in Z[α ]
pZ[α ]

} {ideals in OL
pOL

}

{ideals in Z[α ] containing p} {ideals in OL containing p}Ψ
where the vertical bijections are induced by the correspondence theorem, and the top bijection is inducedby the isomorphism from step 1. In particular, note that the composite bijection gives Ψ(q) = qOL , and

ψ−1(p) = p ∩ Z[α ]. Furthemore, this bijection takes prime ideals to prime ideals. Finally,
OL
p

≃ Z[α ]
p ∩ Z[α ]which means that if we define pi = qiOL , then N(pi) = pfi as required.

Part 3: pOL = pe11 · · · perr , and the pi are distinct.First notice that peii = ⟨p, φi(α)⟩ei ≤ ⟨p, φi(α)ei⟩, so we have that
pe11 · · · perr ≤ ⟨p, φ1(α)e1 · · ·φr (α)er ⟩ = ⟨p, g(α)⟩since φe11 · · ·φerr ≡ g (mod p). But g(α) = 0, so pe11 · · · perr ≤ ⟨p⟩. Taking norms, and using the fact that∑

eifi = n, we get that equality holds.Finally, if i, j distinct, then φi, φj are coprime in Fp[x ], so pi + pj = 〈
p, φi(α), φj (α)〉 ̸= pi, so the pi aredistinct.

Corollary 2.36. If p is prime, p < n = [L : Q], |OL/Z[α ]| coprime to p, then p does not split completely.
Proof. Let g be the minimal polynomial of α . But deg(g) = n > p, so g can’t have distinct roots.Finally, two theorems which we do not prove.

Theorem 2.37. With the notation as in (the proof for) Dedekind’s criterion, we find that
OL
pi

≃ Fp[x ]
φi

≃ Ffip

and
OL
pOL

= r⊕
i=1

Fp[x ]
φi

ei ≃
r⊕
i=1

Fpfi [t](tei )

Theorem 2.38. p ramifies in OL if and only if p | DL .
3 Geometry of numbers
3.1 Minkowski’s lemma
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Proposition 3.1. Let Λ ≤ Rn be a subgroup. Then the following are equivalent.
(i) Λ is a discrete subgroup of Rn,(ii) for any K ⊆ Rn compact, K ∩ Λ is finite,(iii) there exists ε > 0 such that Bε(0) ∩ Λ = {0},(iv) Λ = m⊕

i=1 Zxi

where the xi are R-linearly independent.
Proof. (i) =⇒ (iii) follows from the definition of discrete, and (iii) =⇒ (i) follows from the fact that for every
x ∈ Λ,

Bε(x) ∩ Λ = Bε(0) ∩ Λ + x = {x} (*)as Λ is a subgroup.For (iii) =⇒ (ii), notice that by compactness,
K ⊆

⋃
x∈K

Bε/2(x) =⇒ K ⊆
r⋃
i=1Bε/2(xi)and each Bε/2(xi) contains at most one element of Λ, by (*). Therefore K ∩ Λ is finite. Now suppose (iii)doesn’t hold. Then we can choose (xn) ⊆ Λ such that |x1| < 1, and |xn+1| < |xn|. So B1(0) ∩ Λ is finite.Contradiction.Now suppose (iv) holds. Notice that properties (i)-(v) are all preserved under the action of g ∈ GLn(R). Sowe can assume without loss of generality that Λ = Zm × 0 ≤ Rm × Rn−m, which is clearly discrete.Finally, suppose (ii) holds. Choose a maximal R-linearly independent subset y1, . . . , ym of Λ. Clearly

m ≤ n, and
V = span {y1, . . . , ym} = span{Λ}Now let X = {

∑
i λiyi | λi ∈ [0, 1]}, which is a closed bounded subset of Rn, so it is compact. Hence Λ ∩Xis finite. But we have that Λ ⊆

⊕
Zyi + X ∩ Λ, which means that |Λ/⊕i Zyi| ≤ |X ∩ Λ| < ∞.Therefore, if d = |Λ/⊕i Zyi|, then dΛ ≤

⊕
Zyi by Lagrange’s theorem, so Λ ⊆ 1

d
⊕

i Zyi. But then thismeans that ⊕
i

Zyi ≤ Λ ≤ 1
d
⊕
i

Zyi

So by the structure theorem for abelian groups, there exists x1, . . . , xm ∈ Λ with Λ =⊕i Zxi.
Definition 3.2 (lattice)A subgroup Λ ≤ Rn is called a lattice of m = n in (iv) above.
Definition 3.3 (fundamental domain, covoloume)Let Λ ≤ Rn be a lattice with basis x1, . . . , xn. Define

(i) the fundamental fomain
P = { n∑

i=1 λixi | λi ∈ [0, 1]}
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(ii) the covolume of Λ is covol(Λ) = vol(P) = |det(A)|where xi =∑j aijej , A = (aij ).
Proposition 3.4. covol(Λ) is independent of the choice of basis.

Proof. For any g ∈ GLn(Z), |det(g)| = 1.
Theorem 3.5 (Minkowski’s lemma). Let Λ ≤ Rn be a lattice, P a fundamental domain, S ⊆ Rn bemeasurable. Then

(i) suppose vol(S) > covol(Λ). Then there exists distinct x, y ∈ S such that x − y ∈ Λ,(ii) suppose S is symmetric about zero, convex, and either(a) vol(S) > 2n covol(Λ),(b) or vol(S) ≥ 2n covol(Λ) and S is closed,Then there exists an element γ ∈ S ∩ Λ with γ ̸= 0.
Proof. (i) We have that vol(S) =∑γ∈Λ vol(S∩ (P+γ)) as P is a fundamental domain and volume (i.e. Lebesguemeasure) is countably additive, and in the intersections, vol(∂P) = 0. Sinve the Lebesgue measure is translationinvariant, vol(S ∩ (P + γ)) = vol((S − γ) ∩ P).Suppose for contradiction that the sets (S − γ) ∩ P are pairwise disjoint. Then

vol(P) ≥
∑
γ∈Λ vol((S − γ) ∩ P) =∑

γ∈Λ vol(S ∩ (P + γ)) = vol(S)
Contradiction. Therefore, there exists λ, µ ∈ Λ distinct such that (S − γ) ∩ (S − µ) ∩ P ̸= ∅. That is, thereexists x, y ∈ S such that x − γ = y− µ, so x − y = γ − µ ∈ Λ.(ii) (a) Suppose vol(S) > 2n covol(Λ). Let S ′ = 12S , so vol(S ′) > covol(Λ). Hence by (i), there exists y, z ∈ S ′with y − z ∈ Λ \ 0. But 2y, 2z ∈ S , so −2z ∈ S as S is symmetric about 0. Now convexity implies that

y− z = 12 (2y− 2z) ∈ S .(b) Now suppose vol(S) ≥ 2n covol(Λ), and S is closed. Define Sm = (1 + 1
m )S for m ∈ N. Now we havethat γm ∈ Sm ∩ Λ with γm ̸= 0 by (a). Convexity implies that Sm ⊆ S1, so γ1, γ2, · · · ∈ S1 ∩ Λ, which is a finiteset since S1 is bounded2. Hence there exists γ such that γm = γ for infinitely many m. Then

γ ∈
⋂
m
Sm = S

as S is closed and bounded.
3.2 Finiteness of the class groupLet L be a number field, [L : Q] = n. Then we have real embeddings σ1, . . . , σr : L → R, and complexembeddings σr+1, . . . , σr+s, σr+1, . . . , σr+s : L → C. Define

σ = (σ1, . . . , σr , σr+1, . . . , σr+s) : L → Rr × Cs ≃ Rr+2s = Rn

where we use the isomorphism C ≃ R2 as R-vector spaces, given by z 7→ (Re(z), Im(z)).
Lemma 3.6. If a ⊴ OL is an ideal, then σ (a) is a lattice with
2Which we can assume, since 0 < vol(S) < ∞ implies that S is bounded.
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covol(σ (a)) = 2−s|DL|1/2N(a)
Proof. Recall that a has an integral basis, say γ1, . . . , γn, and that ∆(γ1, . . . , γn) = det(σi(γj ))2 = N(a)DL , so∣∣det(σi(γj ))∣∣ = N(a)|DL|1/2. The covolume is given by

covol(σ (a)) = det


... ...
σ (γ1) σ (γn)... ...


which has the same rows 1 to r as (σi(γj )), but for the r + 1, . . . , r + 2s rows, we have(Re(σr+i(γj ))Im(σr+i(γj ))

) = 12
( 1 1

−i i

)(
σr+i(γj )
σr+i(γj )

)
Hence the change of basis matrix has absolute value of the determinant being 2−s.

Corollary 3.7. σ (OL) is a lattice in Rn with covol(σ (OL)) = 2−s|DL|1/2.
Proposition 3.8 (Minkowski bound). Suppose a ⊴ OL is a nonzero ideal. Then there exists α ∈ a nonzero,with |N(α)| < CLN(a), where

CL = ( 4
π

)s n!
nn |DL|1/2

is called the Minkowski bound.
Proof. Let

Br,s(t) = {(y1, . . . , yr , z1, . . . , zs) ∈ Rr × Cs
∣∣∣∣ ∑ |yi| + 2∑∣∣zj ∣∣ < t

}
Then Br,s(t) is closed, bounded, measurable, with

vol(Br,s(t)) = 2r (π2 )s tnn!Choose t such that vol(Br,s(t)) = 2n covol(σ (a)). Then by Minkowski’s lemma, we have α ∈ a nonzero, suchthat σ (α) ∈ Br,s(t). Write σ (α) = (y1, . . . , yr , z1, . . . , zs). Then by the AM-GM inequality, we have that
|N(α)|1/n = |y1 · · ·yrz1z1 · · · zszs| ≤ 1

n

(∑
|yi| + 2∑∣∣zj ∣∣) ≤ t

nWhich means that
|N(α)| ≤ tn

n = CLN(a)

Corollary 3.9. Every [a] ∈ Cl(L) has a representative a ⊴ OL , with N(a) ≤ CL .
Proof. Let α ∈ a−1 be such that |N(α)| ≤ CLN(a−1). Then a−1 | (α), so we must have a−1b = (α), for someideal b. Taking norms, we find

N(a−1)N(b) = |N(α)| ≤ CLN(a−1)so N(b) ≤ CL . Furthermore, in the class group, we have that [b] = [a].
16



Theorem 3.10. Cl(L) is a finite group, and it is generated by [p], where the p are prime ideals with
N(p) ≤ CL .

Proof. By the previous corollary, let [a] ∈ Cl(L), with N(a) ≤ CL . Then if we factor a = pe11 · · · perr , then each
N(pi) ≤ CL .

Corollary 3.11. Cl(L) is generated by the prime factors of pOL , for primes p ≤ CL .
Theorem 3.12 (Hermite, Minkowski). If n ≥ 2, then

|DL| ≥ π3
(3π4

)n−1
> 1

So there are primes which ramify in L.
Proof. Consider the class [OL] ∈ Cl(L). Then we have an ideal a ⊴ OL such that 1 ≤ N(a) ≤ CL . This implies
CL ≥ 1, so

|DL|1/2 ≥
(π4 )s nnn! ≥

(π4 )n/2 nnn! =: a1/2
nThe result follows by induction as

a2 = π24 and an+1
an

= π4
(1 + 1

n

)2n
> π4 (1 + 2) = 3π4by the binomial theorem.

3.3 Dirichlet’s unit theoremThe final result in the course is Dirichlet’s unit theorem.
Theorem 3.13 (Dirichlet’s unit theorem).

O×
L ≃ µL × Zr+s−1

as abelian groups, where
µL = {α ∈ L | αm = 1 for some m > 0}is the group of roots of unity in L, which is a finite cyclic group.

Let σ1, . . . , σr : L → R be the real embeddings, and σr+1, . . . , σr+s, σr+1, . . . , σr+s : L → C be the complexembeddings, as before. Define ℓ : O×
L → Rr+s by

ℓ(α) = (log |σ1(α)|, . . . , log |σr (α), 2 log |σr+1(α)||, . . . , 2 log |σr+s(α)|)
Lemma 3.14.

(i) im(ℓ) ≤ Rr+s is a discrete subgroup,(ii) ker(ℓ) = µL is a finite group.
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Proof. (i) As log |ab| = log |a| + log |b|, ℓ is a group homomorphism, and so its image is a subgroup of Rr+s.We want to show that it is discrete. Equivalently, it suffices to show that for every R > 0, im(ℓ) ∩ [−R, R ]r+sis finite. But we have that ℓ = j ◦ σ ,
O×
L OL Rr × Cs Rr+sσ j

where j(y1, . . . , yr , z1, . . . , zs) = (log |y1|, . . . , log |yr |, 2 log |z1|, . . . , 2 log |zs|). We have that
j−1([−R, R ]r+s) = {(yi, zj ) | e−R ≤ yi ≤ eR , e−R ≤ 2∣∣zj ∣∣ ≤ eR

}
which is compact. But σ (OL) is a lattice, so σ (OL) ∩ j−1([−R, R ]r+s) is finite.(ii) Note that if α ∈ ker(ℓ), then σ (α) ∈ σ (OL)∩ j−1([−R, R ]r+s) for all R > 0. In particular, as σ is injective,ker(ℓ) is a finite group. So each element has finite order, hence it is a root of unity. Thus, ker(ℓ) = µL .

Lemma 3.15. im(ℓ) ≤
{(y1, . . . , yr+s) ∣∣∣∣ ∑yi = 0}

Proof. If α ∈ O×
L , then

0 = log |N(α)| = r∑
i=1 log |σi(α)| + 2 r+s∑

i=r+1 |σi(α)|

Corollary 3.16. im(ℓ) is isomorphic to a discrete subgroup of Rr+s−1, so it must be Za for some 0 ≤ a ≤
r + s− 1.
Lemma 3.17. Fix k with 1 ≤ k ≤ r + x , α ∈ OL nonzero. Write ℓ(α) = (a1, . . . , ar+s). Then there exists
β ∈ OL nonzero with

(i) |N(β)| ≤
( 2
π
)s |DL|1/2,(ii) if we write ℓ(β) = (b1, . . . , br+s), then bi < ai for every ̸= k .

Proof. Let
S = {(y1, . . . , yr , z1, . . . , zs) ∈ Rr × Cs | |yi| ≤ ci,

∣∣zj ∣∣2 ≤ cr+j}for soem constants c1, . . . , cr+s. Then S is closed, convex and symmetric around zero, with vol(S) =2rπsc1 · · · cr+s. If we choose ci such that 0 < ci < eai for all i ̸= k , and ck such that
vol(S) = 2n covol(σ (OL))by Minkowski’s lemma, there exists β ∈ σ (OL) ∩ S .

Lemma 3.18. If α = β +mγ , with α, β, γ ∈ OL , and N(α) = N(β) = m, then α/β ∈ O×
L .

Proof. Notice that N(β)/β ∈ L is a product of algebraic elements, since
N(β) =∏

i
σi(β)

so N(β)/β ∈ OL .
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Lemma 3.19. Let A ∈ Mm(R) be such that aii > 0 for all i, aij < 0 for i ̸= j , ∑j aij ≥ 0 for all i. Thenrank(A) ≥ m− 1.
Proof. Some basic linear algebra. Any m− 1 columns of A are linearly independent.

Lemma 3.20. The short exact sequence
0 A B Zm 0of abelian groups splits. That is, B ≃ A ⊕ Zm, with the map B → Zm being the projection map.

Proof. Easy homological algebra.
Proof of Dirichlet’s unit theorem. Fix 1 ≤ k ≤ r + s. Then we have a sequence α1, α2, . . . such that N(αt )bounded, and for i ̸= k , the i-th coordinate of ℓ(α1), ℓ(α2), . . . is a strictly decreasing sequence. Now by thePigeonhole principle, there exists t < t′ such that

1. N(αt ) = N(αt′ ) = m,2. αt ≡ αt′ mod mOLThen uk = αt /αt′ ∈ O×
L . Furthermore, we have that

ℓ(uk ) = ℓ(αt ) − ℓ(αt )′ = (y1, . . . , yr+s)and we have that yi < 0 if i ̸= k , y1 + · · · +yr+s = 0, and yk > 0. But then this means that u1, . . . , ur+s−1are linearly independent, so the rank of ℓ(O×
L ) is r + s− 1.

4 Quadratic number fields
In this section, we collect the implications of the theorems in this course for quadratic number fields. That is,[L : Q] = 2. By some basic field theory, we can see that all such L must be of the form L = Q(√d), where wecan assume wlog that d is squarefree, d ̸= 0, 1. Throughout, assume L = Q(√d).
Integral basis and discriminant

Lemma 4.1.

OL = {Z[(1 + √
d)/2] if d ≡ 1 (mod 4)

Z[√d] if d ≡ 2, 3 (mod 4)
Proof. L/Q has basis 1,√d. So if α = x + y

√
d, then the matrix of mα in this basis is(

x dy
y x

)
which has minimal polynomial t2 − 2x + (x2 −dy2). Hence α ∈ OL if and only if 2x, x2 −dy2 ∈ Z. Noticethat this implies that 4dy2 ∈ Z. If y = r/s ∈ Q, with r, s coprime, then s2 | 4d. But d is squarefree, so s2 | 4,so s = ±1 or ±2. Hence we have that

x = u2 , y = v2 , u, v ∈ Z with u2 ≡ dv2 (mod 4)
Now the quadratic residues mod 4 are 0, 1, so if d ̸≡ 1 (mod 4), then the equation has a solution if andonly if u2, B2 ≡ 0 (mod 4). That is, u, v are even. So x, y ∈ Z. That is, OL = Z[√d].On the other hand, if d ≡ 1 (mod 4), then the equation implies that u, v have the same parity, so we canwrite α as a Z linear combination of 1, (1 + √

d)/2.Note that the minimal polynomials are
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• t2 − t + (1 − d)/4 for (1 + √
d)/2• t2 − d for √

d

Corollary 4.2. L has integral basis{1, (1 + √
d)/2 if d ≡ 1 (mod 4)1,√d if d ≡ 2, 3 (mod 4)

Corollary 4.3. L has discriminant {
d if d ≡ 1 (mod 4)4d if d ≡ 2, 3 (mod 4)

Ideals

Lemma 4.4. Let a ⊴ OL be an ideal, then there exists α ∈ OL , b ∈ Z such that a = ⟨α, b⟩.
Proof. Since a ≃ Z2 as abelian groups, we can choose α, β ∈ OL such that a = ⟨α, β⟩. We will handle the
d ≡ 1 (mod 4) and d ≡ 2, 3 (mod 4) cases together. We can write

α = u+ v
√
d2 , β = x + y

√
d2where u, v, x, y ∈ Z, with u ≡ v (mod 2) and x ≡ y (mod 2). Let ℓ = gcd(y, v ) = mv + ny, and we thehave that

β ′ = β − y(mα + nβ)
ℓ = m

ℓ

( vx − uy2 )
But vx − uy ≡ 0 (mod 2), so β ′ ∈ Z. It is easy to see that ⟨α, β⟩ = ⟨α, β ′⟩, so we are done.

Proposition 4.5. Let a = ⟨α, b⟩ with α ∈ OL, b ∈ Z. Then
aa = ⟨b, α⟩ ⟨b, α⟩is principal.

Proof.
aa = 〈b2, bα, bα, αα〉 = 〈b2, bα, bTr(α), N(α)〉Let c = gcd(b2, bTr(α), N(α)). Then aa = ⟨bα, c⟩. Let x = bα/c. Then T r(x), N(x) ∈ Z, so x ∈ OL , and so

c | bα in OL . Thus aa = ⟨c⟩ is principal.
Dedekind and primesFirst of all, we consider the behaviour of odd primes. Let p be an odd prime, then Z[√d] ≤ OL has index 1or 2, which is coprime to p. Hence by Dedekind’s criterion, we must factor x2 − d mod p. We have threepossibilities.(i) if (dp ) = 1, then there are two distinct roots modulo p, so p splits completely.
(ii) if (dp ) = 0, i.e. p | d, then p ramifies.
(iii) if (dp ) = −1, then x2 − d is irreducible, so p is inert.
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Lemma 4.6.

2


splits completely ⇐⇒ d ≡ 1 (mod 8)is inert ⇐⇒ d ≡ 5 (mod 8)ramifies ⇐⇒ d ≡ 2, 3 (mod 4)
Proof. First we handle the case d ≡ 1 (mod 4). In this case, OL = Z[α ], where α = (1 + √

d)/2 has minimalpolynomial g = x2 − x + (1 − d)/4. So if d ≡ 1 (mod 8), then g = x2 + x = x(x + 1), so 2 splits by Dedekind.If d ≡ 5 (mod 8), then g = x2 + x + 1, which is irreducible.Finally, if d ≡ 2, 3 (mod 4), then OL = Z[√d], and g(x) = x2 −d is the minimal polynomial. Modulo 2 thisis x2 or x2 − 1 = (x − 1)2, so 2 ramifies.
Minkowski boundFor imaginary quadratic fields, that is, Q(√d) with d < 0 squarefree, we have that n = 2, r = 0, s = 1, so theMinkowski bound is

CL = 2
π |DL|1/2and for real quadratic fields, we have n = 2, r = 2, s = 0, so the Minkowski bound is

CL = 12 |DL|1/2
Dirichlet’s unit theoremFor a real quadratic number field, µL = {±1}, n = 2, r = 2, s = 0, so we have that

O×
L ≃ {±1} × ZMore concretely, we have

Corollary 4.7 (Dirichlet’s unit theorem for real quadratic number fields).
O×
L = {±εn0 | n ∈ Z}

for some ε0 ∈ O×
L , called a fundamental unit.

Proof. Choose ε0 ∈ O×
L , with 1 < |σ1(ε0)| minimal. Then ε0 is a fundamental unit.For an imaginary quadratic number field, n = 2, r = 0, s = 1, so r + s− 1 = 0. Hence by Dirichlet’s unittheorem, O×

L = µL is a finite group. In particular,
Lemma 4.8.

1. if d = −1, then Z[i]× = {±1,±i},2. if d = −3, ω = (1 + √
−3)/2, Z[ω]× = {1, ω, . . . , ω5},3. for all other d < 0, O×

L = {±1}.
Proof. Just solve N(x + y

√
d) = x2 − dy2 = ±1.
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