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1 Measures
1.1 Definitions
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Definition 1.1 (σ-algebra, measurable space)Let E be a set. A collection E of subsets of E is called a σ-algebra if
• ∅ ∈ E ,• for all A ∈ E , A∁ = E \ A ∈ E ,• for all (An) ⊆ E , ⋃

n
An ∈ E

The pair (E, E ) is called a measurable space, and A ∈ E is called a measurable set.
Definition 1.2 (measure)A measure µ on (E, E ) is a function µ : E → [0, ∞] such that

• µ(∅) = 0,• for all (An) ⊆ E , with the An pairwise disjoint, we have that
µ
(⋃

n
An

) =∑
n

µ(An)
The triple (E, E , µ) is called a measure space.

Definition 1.3 (generated σ-algebra)Let A be a collection of subsets of E . Then define
σ (A) = {A ⊆ E | A ∈ E for any σ-algebra E containing A}Which is called the σ-algebra generated by A.

1.2 Dynkin’s lemma

Definition 1.4 (π-system)Let A be a set of subsets of E . Then we say that A is a π-system if
• ∅ ∈ A,• for any A, B ∈ A, A ∩ B ∈ A.

Definition 1.5 (d-system)Let A be a set of subsets of E . We say that A is a d-system if
• E ∈ A,• for all A, B ∈ A with A ⊆ B, we have that B \ A ∈ A,• for any increasing sequence (An) ⊆ A, ⋃

n
An ∈ A
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Lemma 1.6 (Dynkin’s lemma). Let A be a π-system. Then any d-system containing A also contains σ (A).
Proof. Let D be the intersection of all d-systems containing A. Then D is a d-system. We will show that Dis also a π-system, so it is a σ-algebra. Consider

D ′ = {B ∈ D | B ∩ A ∈ D for all A ∈ A}As A is a π-system, we must have that A ⊆ D ′. We’ll now show that D ′ is a d-system. Suppose A, B ∈ D ′with A ⊆ B, and C ∈ A. Then
(B \ A) ∩ C = (B ∩ C ) \ (A ∩ C ) ∈ DSo B \ A ∈ D ′. Now suppose (Bn) ⊆ D ′, with Bn ↗ B, then for A ∈ A, we have that Bn ∩ A ↗ B ∩ A, so

B ∩ A ∈ D , and B ∈ D ′. So we must have that D ⊆ D ′ ⊆ D , so D = D ′. Now define
D ′′ = {B ∈ D | B ∩ A ∈ D for all A ∈ D }Then D ′′ is a d-system, with A ⊆ D ′′, so D ′′ = D , and D is a π-system.

1.3 Carathéodory extension and uniqueness of measures

Definition 1.7 (ring)A collection A of subsets of E is called a ring if
• ∅ ∈ A,• for any A, B ∈ A, A ∪ B ∈ A and B \ A ∈ A.

Definition 1.8 (algebra)A collection A of subsets of E is called an algebra if
• ∅ ∈ A,• for any A ∈ A, A∁ ∈ A,• for all A, B ∈ A, A ∪ B ∈ A.

That is, a σ-algebra is an algebra where we allow countable unions.
Definition 1.9 (outer measure)Let A be a ring of subsets of E , µ : A → [0, ∞] be countably additive. Then for any B ⊆ E , define theouter measure of E to be

µ∗(E ) = inf {∑
n

µ(An) ∣∣∣∣ (An) ⊆ A, B ⊆
⋃
n

An

}
where we set inf ∅ = ∞. Let

M = {A ⊆ E
∣∣ µ∗(B) = µ∗(A ∩ B) + µ∗(A∁ ∩ B) for all B ⊆ E

}
denote the set of µ∗-measurable sets.

Theorem 1.10 (Carathéodory extension). Let A be a ring of subsets of E , µ : A → [0, ∞] be a countablyadditive set function. Then µ extends to a measure on σ (A).More precisely, we will show that M is a σ-algebra containing A, and µ∗ restricts to a measure on
3



M extending µ.
Proof. Proof is non-examinable.

Theorem 1.11. Let µ1, µ2 be measures on (E, E ), with µ1(E ) = µ2(E ) < ∞. Suppose µ1 = µ2 on a
π-system A generating E . Then µ1 = µ2.

Proof. Let D = {A ∈ E | µ1(A) = µ2(A)}. Then by hypothesis, E ∈ E and for any A, B ∈ D , with A ⊆ B, wehave that
µi(A) + µi(B \ A) = µi(B) < ∞ for i = 1, 2So we must have thta B \ A ∈ D . Furthermore, if (An) ⊆ D with An ↗ A, then

µ1(A) = lim
n

µ1(An) = lim
n

µ2(An) = µ2(A)
So A ∈ D . Therefore D is a d-system containing A, so by Dynkin’s lemma, E ⊆ D .

1.4 Borel and Lebesgue measure

Definition 1.12 (Borel σ-algebra and Borel, Radon measures)Let E be a Hausdorff topological spacea. Then the σ-algebra generated by the open sets of E is calledthe Borel σ-algebra of E , and is denoted B (E ). We write B = B (R).A measure on (E, B (E )) is called a Borel measure. If µ is a Borel measure with µ(K ) < ∞ for all
K ⊆ E compact, then we call µ a Radon measure.

aStrictly speaking Hausdorff is not necessary, however as we are only looking at the open sets of a topological space, we don’tlose any generality by requiring the space to be Hausdorff.

Definition 1.13 (finite and σ-finite measures)A measure µ on E, E is finite if µ(E ) < ∞. µ is σ-finite if there exists sets (En)n∈N ⊆ E such that⋃
n En = E and µ(En) < ∞ for all n.

Theorem 1.14 (Lebesgue measure). There exists a unique Borel measure µ on R such that for all a < b,
µ((a, b]) = b − a (*)

µ is called the Lebesgue measure on R.
Proof. Existence: Consider the ring

A = {(a1, b1] ∪ · · · ∪ (an, bn] disjoint intervals}which generates B . Then for such A ∈ A, define
µ(A) = n∑

i=1 (bi − ai)
It is easy to check that µ is well defined and additive. By Carathéodory’s extension theorem, suffices toshow that µ is countably additive on A. By additivity, suffices to show if A ∈ A, and An ↗ A is an increasingsequence in A, then µ(An) ↗ µ(A). Set Bn = A \ An, then Bn ∈ A, and Bn ↘ ∅. By additivity, suffices, toshow µ(Bn) ↘ 0. Suppose not. Then there exists ε > 0 such that µ(Bn) ≥ 2ε for all n. For each n, we canfind Cn ∈ A such that Cn ⊆ Bn, and µ(Bn \ Cn) ≤ 2−nε. Then
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µ(Bn \ (C1 ∩ · · · ∩ Cn)) ≤ µ((B1 \ C1) ∩ · · · ∩ (Bn \ Cn) ≤
∑

n
2−nε = ε

Since µ(Bn) ≥ 2ε, we must then have that µ(C1 ∩ · · · ∩ Cn) ≥ ε for all n, which means that Kn =
C1 ∩ · · · ∩ Cn ̸= ∅ for all n. In this case, we then have that (Kn) is a decreasing sequence of compact sets, so
∅ ̸= ⋂n Kn ⊆

⋂
n Bn. Contradiction.

Uniqueness: Let λ be any measure on B satisfying (*). Fix n ∈ Z and define
µn(A) = µ((n, n + 1] ∩ A) and λn(A) = λ((n, n + 1] ∩ A)Then µn, λn are probability measures on B and λn = µn on the π-system of intervals of the form (a, b] whichgenerates B . Therefore, by uniqueness of measures, µn = λn on B . Hence for all A ∈ B , we have that

µ(A) =∑
n

µn(A) =∑
n

λn(A) = λ(A)

Corollary 1.15. The Lebesgue measure is translation invariant, if we define for x ∈ R, B ∈ B ,
µx (B) = µ(B + x)Then µx = µ.

1.5 Measurable functions

Definition 1.16 (measurable function)Let (E, E ), (G, G) be measurable spaces, then f : E → G is E -G-measurable if for any A ∈ G, f −1(A) ∈ E .If (G, G) = (R, B ), we say that f is E -measurable, and if (G, G) = ([0, ∞], B ([0, ∞])), we say that f is anonnegative measurable function. Moreover, if E is a topological space, E = B (E ), then we say that f isBorel measurable.
Lemma 1.17. For any f : E → G , {f −1(A) | A ∈ G

} is a σ-algebra over E , and {A | f −1(A) ∈ E
} is a

σ-algebra over G .
Lemma 1.18. Suppose G = σ (A), f −1(A) ∈ E for all A ∈ A, then f is measurable.

Proof. {A | f −1(A) ∈ E} is a σ-algebra containing A, so it contains G. Hence f is measurable.
Corollary 1.19. f : E → R is measurable if and only if {x | f (x) ≤ y} is measurable for all y.
Corollary 1.20. If E is a topological space, f : E → R continuous, then f is measurable.
Definition 1.21 (σ-algebra generated by functions)Given any family of functions fi : E → G , i ∈ I , we can make them all measurable by taking

E = σ (f −1
i (A) | A ∈ G, i ∈ I)
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Then E is the σ-algebra generated by (fi)i∈I .
Proposition 1.22. The sum, product, composition, lim, lim inf, lim sup, ... of measurable functions aremeasurable.
Theorem 1.23 (Monotone class theorem). Let (E, E ) be a measurable space, A a π-system generating E .Let V be a vector space of bounded functions f : E → R such that

1. 1 ∈ V and 1A ∈ V for all A ∈ A,2. if (fn) ⊆ V, f bounded and 0 ≤ fn ↗ f , then f ∈ V.
Then V contains every bounded measurable function.

Proof. Consider D = {A ∈ E | 1A ∈ V}. Then D is a d-system containing A, so D = E . Since V is a vectorspace, it contains all finite linear combinations of indicator functions of measurable sets. If f is boundednonnegative and measurable, then
fn = 2−n ⌊2nf ⌋ ∈ V with 0 ≤ fn ↗ fSo f ∈ V. Finally, any bounded measurable function f can be written as f = g−h, where g, h are boundednonnegative and measurable.

1.6 Image measures

Definition 1.24 (image measure)Let (E, E ), (G, G) be measurable spaces, f : E → G be a measurable function and µ a measure on E . Thenthe image measure on G is defined by µ ◦ f −1, where
(µ ◦ f −1)(A) = µ(f −1(A))

Lemma 1.25. Let g : R → R be increasing right continuous. Then set g(±∞) = limx→±∞ g(x) and write
I = (g(−∞), g(∞)). Define f : I → R by

f (x) = inf{y ∈ R | x ≤ g(y)}Then f is increasing left continuous, and for all x ∈ I, y ∈ R,
f (x) ≤ y ⇐⇒ x ≤ g(y)We call f the generalised inverse of g.

Proof. Define Jx = {y ∈ R | x ≤ g(y)}. Since x > g(−∞), Jx is nonempty and bounded below. Thus, f (x) =inf Jx exists. Since g is increasing, if y ∈ Jx , y′ ≥ y, then y′ ∈ Jx . As g is right continuous, if yn ∈ Jx , with
yn ↘ y, then y ∈ Jx . So Jx = [f (x), ∞). Furthermore, x ≤ g(y) if and only if f (x) ≤ y.For x ≤ x ′, we have that Jx ⊇ Jx ′ , so f (x) ≤ f (x ′). Finally, if xn ↗ x , then Jxn ↘ Jx , and so f (xn) ↗ f (x).

Theorem 1.26. Let g : R → R be a increasing right continuous function. Then there exists a uniqueRadon measure µg on R such that
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µg((a, b]) = g(b) − g(a)for all a < b. Furthermore, any Radon measure on R can be obtained this way.
Proof. Let f be the generalised inverse of g, then f −1((−∞, z]) = (g(−∞), g(z)] is measurable, so f is Borelmeasurable. Thus, the image measure µg = µ ◦ f −1 satisfies

µg((a, b]) = µ ({x | a < f (x) ≤ b}) = µ ([g(a), g(b)) = g(b) − g(a))This uniquely determines the measure, by the same argument as for the Lebesgue measure. Finally, if ν isany Radon measure on R, then define g : R → R by
g(y) = {ν((0, y]) if y ≥ 0

−ν((0, y]) if y < 0Then ν((a, b]) = g(b) − g(a), so ν = µg by uniqueness.
1.7 Convergence of measurable functions

Definition 1.27 (almost everywhere)Let (E, E , µ) be a measure space, a property P holds almost everywhere if
µ ({x | not P(x)}) = 0

Definition 1.28 (almost everywhere convergence)A sequence of measurable functions fn converges to f almost everywhere if
µ ({x | fn(x) ̸→ f (x)}) = 0

Definition 1.29 (convergence in measure)A sequence of measurable functions fn converges to f in measure if
µ ({x | |fn(x) − f (x)| > ε}) = 0for all ε > 0.

Theorem 1.30. Let (fn) be a sequence of measurable functions, then
(i) If µ(E ) < ∞ and fn → 0 a.e., then fn → 0 in measure.(ii) If fn → 0 in measure, then fnk → 0 a.e. for some subsequence (nk ).

Proof. (i) Fix ε > 0, we have that
µ (|fn| ≤ ε) ≥ µ

(⋂
m≥n

{|fm| ≤ ε}
)

and
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µ
({⋂

m≥n
{|fm| ≤ ε}

})
↗ µ

(⋃
n

⋂
m≥n

{|fm| ≤ ε}
)

= µ (|fm| ≤ ε eventually)
≥ µ(fn → 0 as n → ∞)= µ(E )

Hence lim infn µ(|fn| ≤ ε) ≥ µ(E ), so lim supn µ(|fn| > ε) ≤ 0, and so µ(|fn| > ε) → 0 as n → ∞.(ii)By hypothesis, for fixed k and ε > 0, for n large, we have that µ(|fn| > 1/k ) < ε. Choosing ε = 1/k2,we have that along some subsequence,
µ(|fnk | > 1/k ) < 1/k2

Thus, ∑k µ(|fnk | > 1/k ) < ∞, so by the first Borel-Cantelli lemma, we have that
µ (|fnk | > 1/k i.o.) = 0So fnk → 0 almost everywhere.

2 Probability theory

Definition 2.1 (probability measure)A measure µ on E, E is called a probability measure if µ(E ) = 1, and (E, E , µ) is called a probabilityspace. We often write (Ω, F,P) for a probability space.We can think of Ω as the set of outcomes, F the set of events, and P(A) is the probability of an event.
2.1 Independence

Definition 2.2 (independence of events, σ-algebra)Let I be a countable set. Then (Ai)i∈I ⊆ F is independent if for all J ⊆ I finite,
P

(⋂
i∈J

Ai

) =∏
i∈J

P(Ai)
A family (Ai) of sub-σ-algebras of F is independent if (Ai) is independent whenever Ai ∈ Ai for all i.

Theorem 2.3. Let A1, A2 be π-systems contained in F , and suppose that
P(A1 ∩ A2) = P(A1)P(A2)whenever A1 ∈ A1 and A2 ∈ A2. Then σ (A1) and σ (A2) are independent.

Proof. Fix A1 ∈ A1, and define for A ∈ F ,
µ(A) = P(A1 ∩ A) and ν(A) = P(A1)P(A)Then µ and ν are measures which agree on the π-system A2, with µ(Ω) = ν(Ω) < ∞, hence by uniquenessof measures, µ = ν . Thus, for all A2 ∈ σ (A2), we have that
P(A1 ∩ A2) = µ(A2) = ν(A2) = P(A1)P(A2)Now fix A2 ∈ σ (A2), and repeat the argument with

µ′(A) = P(A ∩ A2) and ν ′(A) = P(A)P(A2)
8



to show that for all A1 ∈ σ (A1), we have that
P(A1 ∩ A2) = P(A1)P(A2)

2.2 Borel-Cantelli lemmas

Definition 2.4 (lim inf and lim sup of events)Given a sequence (An) of events, set
lim inf

n
An =⋃

n

⋂
m≥n

Am and lim sup
n

An =⋂
n

⋃
m≥n

Am

We write {An infinitely often} = lim supn An and {An eventually} = lim infn An.
Lemma 2.5 (First Borel-Cantelli). If ∑n P(An) < ∞, then P(An i.o.) = 0.

Proof. As n → ∞, we have that
P(Ak i.o.) ≤ P

(⋃
m≥n

Am

)
≤
∑
m≥n

P(Am) → 0

Lemma 2.6 (Second Borel-Cantelli). If the events (An) are independent, and ∑n P(An) = ∞, then
P(An i.o.) = 1.

Proof. We will use the inequality 1 − a ≤ e−a. Note the events (A∁
n) are also independent. Set an = P(An).Fix n ∈ N, taking n ≤ N → ∞, we have that

P

( N⋂
m=n

A∁
m

) = N∏
m=n

(1 − an) ≤ exp(−
N∑

m=n
an

)
→ 0

Hence P
(⋂∞

m=n A∁
m

) = 0 for all n. Hence
P(An i.o.) = 1 − P

(⋃
n

⋂
m≥n

A∁
m

) = 1

2.3 Random variables

Definition 2.7 (random variable)If (Ω, F,P) is a probability space, (E, E ) is a measurable space, then a measurable function X : Ω → E iscalled a random variable in E . If (E, E ) = (R, B ) we just call X a random variable.
Definition 2.8 (law, distribution)If X is a random variable with value in E , then the image measure µX = P ◦ X−1 is called the law ordistribution of X .
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Definition 2.9 (distribution function)If X is a random variable, we define the distribution function of X by
FX (x) = µX ((−∞, x ]) = P(X ≤ x)

Proposition 2.10. The distribution function determines the distribution of a real valued random variable.
Proof. The set of intervals (−∞, x ] forms a π-system, so we can use uniqueness of measures.

Proposition 2.11. For a random variable X , the distribution function FX is increasing and right continuous,with
lim

x↘−∞
FX (x) = 0 and lim

x↗∞
FX (x) = 1

Conversely, any F satisfying these properties is the distribution function of a random variable.
Proof. For the converse, let Ω = (0, 1), F = B ((0, 1)) and P be the Lebesgue measure, then

X (ω) = inf {x | ω ≤ F (x)}defines a random variable with distribution function F .
Definition 2.12 (independence)A countable collection (Xi)i∈I of random variables is independent if the σ-algebras

σ (X−1
i (A) | A ∈ E )are independent.

Definition 2.13 (Rademacher functions)Let Ω = (0, 1), then the Rademacher functions are defined by
Rn(ω) = ωnwhere we write
ω = ∞∑

n=1
ωn2n

ωn ∈ {0, 1} and we forbid infinitely many zeroes.
Proposition 2.14. The Rademacher functions are independent Ber(1/2) random variables.
Proposition 2.15. There exists a sequence (Yn) of iid Unif[0, 1] random variables.

Proof. Fix a bijection m : N2 → N, and define new random variables Yn,k = Rm(n,k ), which are still independent.Define random variables
10



Yn =∑
k

Yn,k2k

which is a bounded monotone sequence so converges. Furthermore, then Yn are still independent. Finally,to determine the distribution of Yn, consider the π-system of intervals (i/2n, (i+1)/2n] which generate the Borel
σ-algebra. Then

P (Yn ∈ (i/2n, (i + 1)/2n]) = 1/2n

Corollary 2.16. Let (Fn) be a sequence of distribution functions, then there exists a sequence of independentrandom variables (Xn) with distribution functions (Fn).
2.4 Convergence of random variablesIn the special case of probability spaces, we give different names to some of the concepts.

• almost surely := almost everywhere• converges in probability := converges in measure
Definition 2.17 (Convergence in distribution)A sequence Xn of random variables converges to X in distribution if

FXn (x) → FX (x)for all x ∈ R where FX is continuous.
2.5 Tail events

Definition 2.18 (Tail σ-algebra)Let (Xn) be a sequence of random variables, define
Tn = σ (Xn+1, Xn+2, . . . )and the tail σ-algebra is

T =⋂
n

Tn

Theorem 2.19 (Kolmogorov’s zero-one law). Suppose (Xn) is a sequence of independent random variables,then the tail σ-algebra T contains only events of probability 0 or 1. Moreover, if Y : (Ω, T ) → (R, B ) ismeasurable, then Y is constant almost surely.
Proof. Set Fn = σ (X1, . . . , Xn), then Fn is generated by the π-system of events

A = {X1 ≤ x1, . . . , Xn ≤ xn}whereas Tn is generated by the π-system of events,
B = {Xn+1 ≤ xn+1, . . . , Xn+k ≤ xn+k} for k ∈ N
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By independence, we have that P(A ∩ B) = P(A)P(B) for all such A, B. Thus, Fn and Tn are independent.Now ⋃
n Fn is a π-system which generates the σ-algebra F∞ = σ (Xn | n ∈ N). Thus, F∞ and T areindependent. But T ⊆ F∞, so if A ∈ T ,

P(A) = P(A ∩ A) = P(A)P(A)so P(A) = 0 or P(A) = 1. Finally, if Y is T -measurable, then
P(Y = c) = 1where c = inf {y | FY (y) = 1}.

3 Integration
3.1 Definition of the integral

Definition 3.1 (simple function)A simple function is a function of the form
f = m∑

k=1 ak1Ak

where 0 ≤ ak < ∞ and Ak measurable for all k .
We define the integral of a simple function to be∫

fdµ = µ(f ) = m∑
k=1 akµ(Ak )

where 0 · ∞ = 0. For a nonnegative measurable function f , define∫
f
dµ = sup{∫ gdµ | 0 ≤ g ≤ f, g simple}

Definition 3.2 (positive and negative part)For a function f , define
f+ = max {f , 0} and f − = max {−f , 0}

Proposition 3.3.
f = f+ − f − and |f | = f+ + f −

and if f is measurable, so is f+, f −.
Definition 3.4 (integrable)A function f : E → R is integrable if µ(|f |) < ∞.
For an integrable f , define ∫

fdµ = ∫ f+dµ −
∫

f −dµ

12



3.2 Monotone convergence theorem

Theorem 3.5 (monotone convergence). Let f be a nonnegative measurable function, (fn) a sequence ofnonnegative measurable functions. Suppose fn ↗ f . Then µ(fn) ↗ µ(f ).
Proof. We perform a sequence of approximations.

Step 1: fn = 1An , f = 1A. In this case, the proof is obvious from the axioms of a measure.
Step 2: fn simple, f = 1A. Fix ε > 0, and set An = {fn > 1 − ε}. Then An ↗ A, and

(1 − ε)1An ≤ fn ≤ 1Aso we have that
(1 − ε)µ(An) ≤ µ(fn) ≤ µ(A)But An ↗ A and ε > 0 was arbitrary.

Step 3: fn and f simple. Write
f = m∑

k=1 ak1Ak

with ak > 0 for all k and the Ak disjoint. Then fn ↗ f implies that
a−1

k 1Ak fn ↗ 1Akso by step 2,
µ(fn) =∑

k
µ(1Ak fn) ↗

∑
k

akµ(Ak ) = µ(f )
Step 4: fn simple, f ≥ 0 measurable. Let g be simple with g ≤ f . Then fn ↗ f implies that fn ∧ g ↗ g,so by step 3,

µ(fn) ≥ µ(fn ∧ g) ↗ µ(g)Since g was arbitrary we are done.
Step 5: fn, f ≥ 0 measurable. Set gn = (2−n ⌊2nfn⌋) ∧ n, then gn is simple and gn ≤ fn ≤ f , so

µ(gn) ≤ µ(fn) ≤ µ(f )But fn ↗ f forces gn ↗ f , so µ(gn) ↗ f by step 4. Hence µ(fn) ↗ µ(f ).
Proposition 3.6.

(i) for f , g nonnegative measurable, α, β ≥ 0, we have
µ(αf + βg) = αµ(f ) + βµ(g)

(ii) for f ≤ g nonnegative measurable, µ(f ) ≤ µ(g),(iii) µ(f ) = 0 if and only if f = 0 a.e.
Proof. (i) Define simple functions fn, gn by

fn = (2−n⌊2nf ⌋) ∧ n and gn = (2−n⌊2ng⌋) ∧ nThen fn ↗ f and gn ↗ g, so αfn + βgn ↗ αf + βg. By the monotone convergence theorem, µ(fn) ↗ µ(f ),
µ(gn) ↗ µ(g) and µ(αfn + βgn) ↗ µ(αf + βg). But µ(αfn + βgn) = αµ(fn) + βµ(gn), so we are done.(ii) is immediate from the definition of the integral.(iii) If f = 0 a.e. then fn = 0 a.e., so µ(f ) = 0. Conversely, if µ(f ) = 0 then µ(fn) = 0 for all n, i.e. fn = 0a.e. for all n, so f = 0 a.e.

13



Theorem 3.7. Let f , g : E → R be integrable, then
(i) µ(αf + βg) = αµ(f ) + βµ(g),(ii) g ≤ f implies µ(g) ≤ µ(f ),(iii) f = 0 a.e. implies µ(f ) = 0.

Proof. Follows from the case for nonnegative functions.
3.3 Fatou and dominated convergence

Lemma 3.8 (Fatou). Let fn : E → R be measurable nonnegative functions. Then
µ(lim inf

n
fn) ≤ lim inf

n
µ(fn)

Proof. For k ≥ n, we have that
inf

m≥n
fm ≤ fk

which means that
µ
( inf

m≥n
fm

)
≤ inf

k≥n
µ(fk ) ≤ lim inf

ℓ
µ(fℓ )

But as n → ∞,
inf

m≥n
fm ↗ lim inf

ℓ
fℓ

so by monotone convergence,
µ
( inf

m≥n
fm

)
↗ µ

(lim inf
ℓ

fℓ

)

Theorem 3.9 (dominated convergence). Let f , fn be measurable functions, fn → f pointwise, and thereexists g integrable such that |fn| ≤ g. Then f and fn are integrable, with µ(fn) → µ(f ).
Proof. As |fn| ≤ g, each fn is integrable. Furthermore, |f | ≤ g, so f is integrable as well. Furthermore,0 ≤ g ± fn → g ± f , so lim inf(g ± fn) = g ± f . By Fatou’s lemma, we have that

µ(g) + µ(f ) = µ
(lim inf

n
(g + fn)) ≤ lim inf

n
µ(g + fn) = µ(g) + lim inf

n
µ(fn)

µ(g) − µ(f ) = µ
(lim inf

n
(g − fn)) ≤ lim inf

n
µ(g − fn) = µ(g) − lim sup

n
µ(fn)

Since µ(g) < ∞, we get that
µ(f ) ≤ lim inf

n
µ(fn) ≤ lim sup

n
µ(fn) ≤ µ(f )

So lim µ(fn) = µ(f ).
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Theorem 3.10 (differentiation under the integral). Let U ⊆ R be open, (E, E , µ) measure space, f :
U × E → R such that

(i) f (t, ·) is measurable for all t ,(ii) f (·, x) is differentiable for all x , with a µ-integrable g such that∣∣∣∣∂f (t, x)
∂t

∣∣∣∣ ≤ g(x) for all t ∈ U

Define
F (t) = ∫

E
f (t, x)dx

Then F is differentiable, with derivative
F ′(t) = ∫

E

∂f (t, x)
∂t dx

Proof. Set
gh(x) = f (t + h, x) − f (t, x)

h − ∂f
∂t (t, x)

By the mean value theorem, we have that
gh(x) = ∂f

∂t (̃t, x) − ∂f
∂t (t, x)

for some t̃ ∈ (t, t + h) (or (t + h, t) if h < 0). In particular, this means that |gh| ≤ 2g, so gh is integrablefor all h. Furthermore, gh → 0 as h → 0, so applying the dominated convergence theorem, we have that
µ(gh) → 0. But

∣∣∣∣F (t + h) − F (t)
h − F ′(t)∣∣∣∣ = ∣∣∣∣∫

E

f (t + h, x) − f (t, x)
h − ∂f

∂t (t, x)dx
∣∣∣∣ → 0

3.4 Densities and image measure

Definition 3.11 (density)Suppose f : (E, E , µ) → R measurable and nonnegative, then we can define a new measure
νf (A) = µ(f1A)

Proposition 3.12. For any g : E → R measurable, we have that
νf (g) = µ(fg)Therefore, we call f the density of νf with respect to µ.

Proposition 3.13. For f : E → G measurable, g : G → R nonnegative measurable, we have that
µ ◦ f −1(g) = µ(g ◦ f )

15



Proposition 3.14. If g : G → R measurable, X is a G-valued random variable, then
E(g(X )) = ∫Ω g(X (ω))dP(ω)

3.5 Products

Definition 3.15 (product σ-algebra)Let (E1, E1) and (E2, E2), then define the π-system of rectangles
A = {A1 × A2 | A1 ∈ E1, A2 ∈ E2}and the product σ-algebra

E1 ⊗ E2 = σ (A)
Proposition 3.16. If E1, E2 are second countable Hausdorff spaces, Ei = B (Ei) are the Borel σ-algebras,then

B (E1 × E2) = B (E1) ⊗ B (E2)where we give E1 × E2 the product topology.
Lemma 3.17. For fixed x2 ∈ E2, the canonical injection ι : E1 ↪→ E1 × E2 is measurable, where
ι(x1) = (x1, x2). Furthermore, the canonical projections π : E1 × E2 ↠ E1 are measurable as well.

Proof. For ι, suffices to check on the generating π-system. Let A1 × A2 ∈ A, then ι−1(A1 × A2) = A1 ∈ E1. For
π , note that π−1(A1) = A1 × E2 ∈ A ⊆ E1 ⊗ E2.

Lemma 3.18. Let f be a bounded (resp. nonnegative) measurable function on E1 × E2, where µ2 is a finitemeasure on E2. Define for x1 ∈ E1,
f1(x1) = ∫

E2 f (x1, x2)dµ2(x2)
Then f1 is measurable. If f is bounded (resp. nonnegative), then so is f1.

Proof. In the bounded case, define a vector space
V = {f : E → R | f bounded measurable, ∫

E2 f (·, x2)dµ2(x2) bounded measurable}
Then 1E ∈ V1, and 1A ∈ V for any A ∈ A. Now take 0 ≤ fn ↗ f , where the fn ∈ V. By the monotoneconvergence theorem, ∫

E2 f (x1, x2)dµ2(x2) = lim
n→∞

∫
E2 fn(x1, x2)dµ2(x2)

This is E1-measurable and bounded as it is the limit of bounded measurable functions. So f ∈ V. By themonotone class theorem, V contains all bounded measurable functions.In the nonnegative case, set fn = f ∧ n, use the bounded case and the monotone convergence theorem.
1As µw (E2) < ∞.
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Theorem 3.19 (product measure). Suppose (E1, E1, µ1), (E2, E2, µ2) be finite measure spaces, then thereexists a unique measure µ = µ1 ⊗ µ2 on (E1 × E2, E1 ⊗ E2) such that
µ(A1 × A2) = µ1(A1)µ2(A2)for all A1 ∈ E1, A2 ∈ E2.

Proof. Since we defined µ on a π-system generating the σ-algebra, suffices to show that it is a well definedmeasure. Define
µ(A) = ∫

E1
(∫

E2 1A(x1, x2)dµ2(x2)) dµ1(x1)
Then

µ(A1 × A2) = ∫
E1
(∫

E2 1A1 (x1)1A2 (x2)dµ2(x2)) dµ1(x1) = µ1(A1)µ2(A2)
and µ(∅) = 0, so suffices to show µ is countably additive. Let (An) be a disjoint sequence of elements of

E1 ⊗ E2. Then
1⋃

n An =∑
n

1An = lim
N→∞

N∑
n=1 1An

Thus, we have that
µ
(⋃

n
An

) = ∫
E1

(∫
E2 lim

N→∞

N∑
n=1 1An (x1, x2)dµ2(x2)) dµ1(x1)

= lim
N→∞

N∑
n=1
∫

E1
(∫

E2 1An (x1, x2)dµ2(x2)) dµ1(x1)
=∑

n
µ(An)

where we swap the limit and integrals by the monotone convergence theorem.
Theorem 3.20 (Fubini). Let (E, E , µ) = (E1 × E2, E1 ⊗ E2, µ1 ⊗ µ2), where µi(Ei) < ∞. Then

(i) Let f be nonnegative measurable, then
µ(f ) = ∫

E
fdµ = ∫

E1
(∫

E2 f (x1, x2)dµ2(x2)) dµ1(x1) = ∫
E2
(∫

E1 f (x1, x2)dµ1(x1)) dµ2(x2)
(ii) Suppose f is µ-integrable, then

µ1
({

x1 ∈ E1 |
∫

E2 f (x1, x2)dµ2(x2) = ∞
}) = 0

and ∫
E1
(∫

E2 f (x1, x2)dµ2(x2)) dµ1(x1) = ∫
E

f (x)dµ(x)
Proof. (i) We proceed by a series of approximations. By definition of µ on rectangles, we see that the resultholds in the case f = 1A . By linearity of the integral, the result holds for f simple. Taking an approximatingsequence 0 ≤ f1 ≤ · · · ≤ f , we get the result using the monotone convergence theorem.(ii) Define h(x1) = ∫

E2 |f (x1, x2)|dµ2(x2), then by (i), µ1(h) < µ(f ) < ∞, so h is integrable, hence h is finitea.e. The final part follows from splitting into the positive and negative parts, and using (i).
17



Remark 3.21. The results in this subsection generalises to σ-finite measures by splitting into finite parts.
Proposition 3.22. Let (Ω, F,P) be a probability space, and (E, E ) = (∏n

i=1 Ei,
⊗n

i=1 Ei). Consider X :Ω → E , X (ω) = (X1(ω), . . . , Xn(ω)), then the following are equivalent:
(i) the Xi are independent,(ii) µX =⊗n

i=1 µXi ,(iii) for all fi : Ei → R, bounded measurable,
E

( n∏
i=1 fi(Xi)) = n∏

i=1 E (fi(Xi))
Proof. (i) =⇒ (ii). For rectangles A1 × · · · × An, we have that

µX (A1 × . . . An) = P(X1 ∈ A1, . . . , Xn ∈ An) = n∏
i=1 P(Xi ∈ Ai) = n∏

i=1 µXi (Ai)
Result follows by uniqueness of a measure on the generating π-system.(ii) =⇒ (iii). By Fubini’s theorem, we have that

E

( n∏
i=1 fi(Xi)) = µX

( n∏
i=1 fi(xi))

= ∫
E

n∏
i=1 fi(xi) d(µ1 ⊗ . . . µn) (x1, . . . , xn)

= ∫
E1 f1(x1)dµ1(x1) · · ·

∫
En

fn(xn)dµn(xn)
= n∏

i=1 E (fi(Xi))
(iii) =⇒ (i). Take fi = 1Ai , then

P(X1 ∈ A1) · · ·P(Xn ∈ An) = n∏
i=1 E (1Ai ) = P(X1 ∈ A1, . . . , Xn ∈ An)

So X1, . . . , Xn are independent.
4 Lp spaces

Definition 4.1 (Lp-norm)For a measure space (E, E , µ), and 1 ≤ p < ∞, define the Lp-norm of f by
∥∥f
∥∥

p = (∫
E

|f (x)|pdx
)1/p

Define the L∞ norm by ∥∥f
∥∥

∞ = ess sup
x∈E

|f (x)| = inf {λ | |f | ≤ λ a.e.}

18



Definition 4.2 (Lp and Lp spaces)For 1 ≤ p ≤ ∞, define the Lp space by
Lp(µ) = Lp(E, E , µ) = {f : E → R |

∥∥f
∥∥

p < ∞
}

and the corresponding Lp space by
Lp = Lp

f = g a.e.
4.1 Inequalities

Proposition 4.3 (Chebyshev). Suppose f nonnegative measureable, λ ≥ 0, then
λµ(f ≥ λ) ≤ µ(f )

Proof. λ1f≥λ ≤ f pointwise, integrating gives the required result.
Corollary 4.4 (tail estimate). Suppose f ∈ Lp with p < ∞, then

µ(|g| ≥ λ) = O
(
λ−p)

as p → ∞.
Proof.

µ(|g| ≥ λ) = µ(|g|p ≥ λp) ≤ λ−pµ(|g|p) < ∞

Lemma 4.5. Let I ⊆ R be an interval, c : I → R be convex, m ∈ Int(I). Then there exists a, b ∈ R suchthat c(x) ≥ ax + b, with equality at x = m.
Proof. For m, x, y ∈ I , with x < m < y, we have

c(m) − c(x)
m − x ≤ c(y) − c(m)

y − mSo there exists a ∈ R such that for all x < m and y < m, we have that
c(m) − c(x)

m − x ≤ a ≤ c(y) − c(m)
y − mThen c(x) ≥ a(x − m) + c(m) for all x ∈ I .

Theorem 4.6 (Jensen’s inequality). Let X be an integrable random variable with values in an interval I ,
c : I → R be convex. Then E(c(X )) is well defined, and

E (c(X )) ≥ c (E(X ))
Proof. The case where X is almost everywhere constant is easy. Otherwise, m = E(X ) must be in the interior of
I . Choose a, b as in the lemma. Then c(X ) ≥ aX + b, so E (c(X )±) ≤ |a|E(X ) + |b| < ∞, so c(X ) is integrable.Moreover,

E (c(X )) ≥ aE(x) + b = am + b = cm = c (E (X ))
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Theorem 4.7 (Hölder’s inequality). Let p, q ∈ (1, ∞) be conjugate indices, then for all measurablefunctions f , g, we have
µ(|fg|) ≤

∥∥f
∥∥

p
∥∥g
∥∥

q

Proof. The case when ∥∥f
∥∥

p = 0 or ∥∥f
∥∥

p = ∞ is clear. Then without loss of generality, we can assume∥∥f
∥∥

p = 1. Define a probability measure P on E by
P(A) = ∫

A
|f |pdµ

For measurable functions X ≥ 0,
E (X ) = µ(X|f |p) and E(X ) ≤ E(Xq)1/q

Now q(p − 1) = p, so
µ(|fg|) = µ

(
|g|

|f |p−1 1{|f |>0}|f |p
)

= E

(
|g|

|f |p−1 1{|f |>0}

)
= E

(
|g|q

|f |p 1{|f |>0}

)
≤ µ(|g|q)1/q= ∥∥g

∥∥
q

Theorem 4.8 (Minkowski). ∥∥f + g
∥∥

p ≤
∥∥f
∥∥

p + ∥∥g
∥∥

p

Proof. The cases when p = 1, p = ∞,
∥∥f
∥∥

p = ∞, ∥∥g
∥∥

p = ∞ or ∥∥f + g
∥∥

p = 0 are clear. Otherwise, since
|f + g|p ≤ 2p(|f |p + |g|p), we have

µ(|f + g|p) ≤ 2pµ(|f |p + |g|p) < ∞As ∥∥∥|f + g|p−1∥∥∥
q

= µ
(
|f + g|p

)1/q = µ(|f + g|p)1−1/p

By Hölder’s inequality we have that
µ(|f + g|p) ≤ µ(|f |

∥∥f + g
∥∥p−1) + µ(|g|

∥∥f + g
∥∥p−1) ≤ (∥∥f

∥∥
p + ∥∥g

∥∥
p)∥∥∥|f + g|p−1∥∥∥

qAs ∥∥∥|f + g|p−1∥∥∥
q

> 0, dividing through we are done.
4.2 Banach and Hilbert space structure

Theorem 4.9. Lp is complete.
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Proof. The case p = ∞ is clear. From now on, assume p < ∞, then choose a subsequence (nk ) such that
S = ∞∑

k=1
∥∥fk+1 − fk

∥∥
p < ∞

By Minkowski’s inequality, for any K ∈ N,∥∥∥∥∥ K∑
k=1 |fnk+1 − fnk |

∥∥∥∥∥
p

≤ S < ∞

By monotone convergence, the result also holds for K = ∞. Thus we have that
∞∑

k=1 |fnk+1 − fnk | < ∞ a.e.
So by completeness of R, (fnk ) converges a.e. Define f by

f (x) = {limk fnk (x) if the limit exists0 otherwiseNow given ε > 0, we can find N such that for all n ≥ N ,
µ(|fn − fm|p) ≤ ε for all m ≥ nIn particular, µ(|fn − fnk |

p) ≤ ε for sufficiently large k . Thus by Fatou’s lemma, for n ≥ N ,
µ(|fn − f|p) = µ

(lim inf
k

|fn − fnk |
p
)

≤ lim inf
k

µ(|fn − fnk |
p) ≤ ε

Hence f ∈ Lp by Minkowski, and as ε > 0 was arbitrary, fn → f .
Theorem 4.10. L2 is a Hilbert space.

Proof. Since we have already shown completeness, all we need to do is define the inner product. In this case,we define
⟨f , g⟩ = ∫

E
fgdµ

Note however in the complex valued case we will need to put in an appropriate complex conjugate.
Corollary 4.11 (Pythagoras, parallelogram).∥∥f + g

∥∥22 = ∥∥f
∥∥22 + ∥∥g

∥∥22 + 2⟨f , g⟩

and ∥∥f + g
∥∥22 + ∥∥f − g

∥∥22 = 2(∥∥f
∥∥22 + ∥∥g

∥∥22)
Theorem 4.12 (orthogonal projection). Let V be a closed subspace of L2, then for each f ∈ L2, there exists
v ∈ V , u ∈ V ⊥ such that f = v + u. Moreover,∥∥f − v

∥∥2 ≤
∥∥f − g

∥∥2 for all g ∈ Vwith equality if and only if g = v a.e.
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Proof. Choose a sequence (gn) ⊆ V such that∥∥f − gn
∥∥2 → d(f , V ) = inf {∥∥f − g

∥∥2 | g ∈ V
}

By the parallelogram law,∥∥2(f − (gn + gm)/2)∥∥22 + ∥∥gn − gm
∥∥22 = 2(∥∥f − gn

∥∥22 + ∥∥f − gm
∥∥22)But ∥∥2(f − (gn + gm)/2)∥∥22 ≥ 4d(f , V )2, so we must have ∥∥gn − gm

∥∥22 → 0 as n, m → ∞, i.e. (gn) isCauchy. So gn → g by completeness, where g = v a.e. for some v ∈ V as V is closed. Hence∥∥f − v
∥∥2 = lim

n

∥∥f − gn
∥∥2 = d(f , V )

Now for any h ∈ V and t ∈ R, we have that
d(f , V )2 ≤

∥∥f − (v + th)∥∥22 = d(f , V )2 − 2t⟨f − v, h⟩ + t2∥∥h
∥∥22So we must have ⟨f − v, h⟩ = 0, i.e. f − v ∈ V ⊥.

4.3 Convergence in L1(P) and uniform integrability

Theorem 4.13 (bounded convergence theorem). Let (Xn) be random variables on (Ω, F,P) such that
|Xn| ≤ C < ∞ and Xn → X in probability. Then Xn → X in L1(P).

Proof. We know that Xn converges almost surely along a subsequence, so |X | ≤ C almost surely. For ε > 0,there exists N such that for all n ≥ N ,
P(|Xn − X| > ε/2) ≤ ε/(4C )Then

E|Xn − X| = E
(
|Xn − X|1|Xn−X|>ε/2) + E

(
|Xn − X|1|Xn−X|≤ε/2) ≤ 2C (ε/(4C )) + ε/2 = ε

Lemma 4.14. Let X be an integrable random variable, and set
IX (δ) = sup {E (|X |1A) | A ∈ F,P(A) < δ}

Proof. Suppose not. Then there exists ε > 0, (An) ⊆ F such that P(An) ≤ 2−n and E (||1An ) ≥ ε for all n. Thusby the first Borel-Cantelli lemma, P(An i.o.) = 0. But then by dominated convergence theorem,
ε ≤ E

(
|X |1⋃

m≥n Am

)
→ E (|X |1An i.o.) = 0

Contradiction.
Definition 4.15 (uniformly integrable)A collection X ⊆ L1(P) is uniformly integrable if it is bounded in L1(P) and

IX (δ) = sup {E (|X |1A) | X ∈ X, A ∈ F,P(A) < δ} → 0 as δ → 0
Lemma 4.16. If X is bounded in Lp for some 1 < p < ∞, then X is uniformly integrable.
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Proof. By Hölder’s inequality,
E (|X |1A) ≤

∥∥X
∥∥

pP(A)1/q

Lemma 4.17. Let X be a family of random variables, then X is uniformly integrable if and only if
sup {E (|X |1|X |≥K | X ∈ X

)}
→ 0 as K → ∞

Proof. Suppose X is uniformly integrable. Then given ε > 0, choose δ > 0 such that IX (δ) < ε, and choose
K < ∞ such that IX (1) < Kδ . Then for X ∈ X , A = {|X| ≥ K }, we have that P(A) ≤ δ by Chebyshev’sinequality, so E (|X |1A) < ε. Hence as K → ∞,

sup {E (|X |1|X |≥K
)

| X ∈ X
}

→ 0On the other hand, if this condition holds, then since
E(|X |) ≤ K + E

(
|X |1|X |≥K

)
we have that IX (1) < ∞. Now given ε > 0, choose K < ∞ such that E (|X |1|X |≥K

)
< ε/2 for all X ∈ X .Then choose δ > 0 such that Kδ < ε/2. Now for all X ∈ X and A ∈ F with P(A) < δ , we have that

E (|X |1A) ≤ E
(
|X |1|X |≥K

) + KP(A) < εHence X is uniformly integrable.
Theorem 4.18. Let X be a random variable, (Xn) a sequence of random variables. Then the following areequivalent.

(i) Xn and X are integrable, with Xn → X in L1,(ii) {Xn} is uniformly integrable and Xn → X in probability.
Proof. Suppose (i) holds. By Chebyshev’s inequality, for all ε > 0,

P(|Xn − X| > ε) ≤ ε−1E(|Xn − X|) → 0So Xn → X in probability. Moreover, given ε > 0, there exists N such that E(|Xn − X|) < ε/2 for all
n ≥ N . Furthermore, as any finite set is uniformly integrable (by the dominated convergence theorem), we canfind δ > 0 such that P(A) ≤ δ implies

E (|X |1A) ≤ ε/2 and E (|Xn|1A) ≤ ε for n = 1, . . . , NThen for n ≥ N , and P(A) ≤ δ , we have that
E(|Xn|1A) ≤ E(|Xn − X|1A) + E(|X |1A) ≤ E(|Xn − X|) + E(|X |1A) ≤ εHence {Xn} is uniformly integrable.Now suppose (ii) holds. Then there exists a subsequence (nk ) such that Xnk → X almost surely. So byFatou’s lemma,

E(|X |) ≤ lim inf
k

E(|Xnk |) < ∞

Now given ε > 0, there exists K < ∞ such that for all n,
E(|Xn|1|Xn|≥K ) < ε/3 and E(|X |1|X |≥K ) < ε/3Now consider the uniformly bounded sequence XK

n = −K ∨ Xn ∧ K and set XK = −K ∨ X ∧ K . Then
XK

n → XK in probability, so by bounded convergence, there exists N such that for all n ≥ N ,
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E
∣∣XK

n − XK ∣∣ < ε/3But then for all n ≥ N ,
E|Xn − X| ≤ E(|X |1|Xn|≥K ) + E

∣∣XK
n − XK ∣∣ + E(|X |1|X |≥K ) < ε

5 Fourier transforms
In this section, for p < ∞, we write Lp = Lp(Rd) for some d fixed, for the set of complex values Borel measurablefunctions on Rd with finite p-norm.
5.1 Definitions

Definition 5.1 (Fourier transform of functions)The Fourier transform of f ∈ L1 is defined to be
f̂ (u) = ∫

Rd
f (x)eiu·xdx for u ∈ Rd

Proposition 5.2. For f ∈ L1, f̂ is a countinuous bounded function on Rd .
Proof. Continuity follows from the dominated convergence theorem. For boundedness, notice that

sup
u∈Rn

∣∣∣f̂ (u)∣∣∣ ≤
∥∥f
∥∥1

Definition 5.3 (Fourier transform of measure)Let µ be a finite Borel measure on Rd , then the Fourier transform of µ is
µ̂(u) = ∫

Rd
eiu·xdµ(x)

Proposition 5.4. For µ a finite Borel measure on Rd , µ̂ is a continuous bounded function on Rd . Further-more, if µ has density f with respect to Lebesgue measure, then µ̂ = f̂ .
Proof. Again continuity follows from the dominated convergence theorem. In this case, we have

sup
u∈Rn

|µ̂(u)| ≤ µ(Rd)

Definition 5.5 (Characteristic function)The characteristic function φX of a random variable X in Rd is the Fourier transform of its law µX . Thatis,
φX (u) = µ̂X (u) = E(eiu·X )
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Definition 5.6 (Convolution of functions)For f ∈ Lp and a probability measure ν on Rd , define the convolution f ∗ ν by
f ∗ ν(x) ∫

Rd
f (x − y)dν(y)

if the integral exists, and f ∗ ν(x) = 0 otherwise.
Proposition 5.7. The integral defining the convolution exists a.e., and we have that∥∥f ∗ ν

∥∥
p ≤

∥∥f
∥∥

p

Proof. By Jensen’s inequality and Fubini,
∫
Rd

(∫
Rd

|f (x − y)|dν(y))p dx = ∫
Rd

∫
Rd

|f (x − y)|pdν(y)dx

= ∫
Rd

∫
Rd

|f (x − y)|pdxdν(y)
= ∫

Rd

∫
Rd

|f (x)|pdxdν(y)
= ∥∥f

∥∥p
p

Definition 5.8 (Convolution of probability measures)Suppose X, Y independent random variables with laws µ, ν respectively. Define µ ∗ ν to be the densityof X + Y , namely
µ ∗ ν(A) = ∫

Rd×Rd
1A(x + y)dµ(x)dν(y)

Proposition 5.9. If µ has density f with respect to the Lebesgue measure, then µ ∗ ν has density f ∗ νwith respect to the Lebesgue measure.
Proof. Fubini.

Proposition 5.10.

(i) f̂ ∗ ν = f̂ ν̂(ii) µ̂ ∗ ν = µ̂ν̂

5.2 Gaussian convolutions and Fourier inversion

Definition 5.11 (Centred Gaussian)For t > 0, define the centred Gaussian probability density on Rd with variance t by
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gt (x) = (2πt)−d/2 exp(−∥x∥22t

)

Proposition 5.12.

ĝt (u) = exp(−∥u∥2t2
) = (2π

t

)d/2
g1/t (u)

Proof. Let Z be a standard one-dimensional Gaussian random variable. Then as Z is integrable, φZ is differ-entiable, and we can differentiate under the integral sign to obtain
φ′

Z (u) = E
(
iZeiuZ) = 1√2π

∫
R

eiux ixe−x2/2dx = −uφZ (u)
Solving the differential equation we obtain that φZ (u) = e−u2/2. Now consider d standard normal randomvariables Z1, . . . , Zd , and set Z = (Z1, . . . , Zd). Then √

tZ has density gt . So
ĝt (u) = E

(
eiu·

√
tZ
) = E

 d∏
j=1 eiuj

√
tZj

 = d∏
j=1 φZ (uj

√
t) = e−∥u∥2t/2

Corollary 5.13. The Fourier inversion formula holds for centred Gaussian densities, that is,
gt (x) = 1(2π)d

∫
Rd

ĝt (u)e−iu·xdu

Proposition 5.14. The Fourier inversion formula holds for all Gaussian convolutions, that is,
(f ∗ gt )(x) = 1(2π)d

∫
Rd

f̂ ∗ gt (u)e−iu·xdu

Proof. We use Fourier inversion for gt and Fubini’s theorem
(2π)df ∗ gt (u) = (2π)d ∫

Rd
f (x − y)gt (y)dy

= ∫
Rd×Rd

f (x − y)ĝt (u)e−iu·ydudy

= ∫
Rd×Rd

f (x − y)eiu·(x−y)ĝt (u)e−iu·xdudy

= ∫
Rd

f̂ (u)ĝt (u)e−iu·xdu

= ∫
Rd

f̂ ∗ gt (u)e−iu·xdu

Lemma 5.15. Let f ∈ Lp with p < ∞, then ∥∥f ∗ gt − f
∥∥

p → 0 as t → 0.
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Proof. Given ε > 0, there exists h ∈ Cc(Rd) such that ∥∥f − h
∥∥

p < ε. Then∥∥f ∗ gt − h ∗ gt
∥∥

p = ∥∥(f − h) ∗ gt
∥∥

p ≤
∥∥f − h

∥∥
p ≤ ε

. Thus, by a 3ε argument, suffices to prove the result for h. Set
e(y) = ∫

Rd
|h(x − y) − h(x)|pdx

Then |e(y)| ≤ 2p∥∥h
∥∥p

p and e is continuous at 0 by the dominated convergence theorem. By Jensen’sinequality and bounded convergence theorem,
∥∥h ∗ gt − h

∥∥p
p = ∫

Rd

∣∣∣∣∫
Rd

(h(x − y) − h(x))gt (y)dy
∣∣∣∣pdx

≤
∫
Rd

∫
Rd

|h(x − y) − h(x)|pgt (y)dydx

= ∫
Rd

e(y)gt (y)dy

= ∫
Rd

e(√ty)g1(y)dy → 0
as t → 0.

Theorem 5.16. Let f ∈ L1, define for t > 0,
ft (x) = 1(2π)d

∫
Rd

f̂ (u)e−∥u∥t/2e−iu·xdu

Then ∥∥ft − f
∥∥1 → 0 as t → 0. Moreover, if f̂ ∈ L1, then

f (x) = 1(2π)d
∫
Rd

f̂ (u)e−iu·xdu

Proof. By Fourier inversion of Gaussian convolutions, ft = f ∗ gt , so the convergence result follows from theprevious lemmas. Suppose f̂ ∈ L1. Then by the dominated convergence theorem, for all x ∈ Rd , as t → 0,
ft (x) → 1(2π)d

∫
Rd

f̂ (u)e−iu·xdu

But ftn → f a.e. for some subsequence tn → 0. Hence the Fourier inversion formula holds for f .
5.3 Fourier-Plancherel

Theorem 5.17. Suppose f ∈ L1 ∩ L2. Then ∥∥∥f̂
∥∥∥2 = (2π)d/2∥∥f

∥∥2.
Proof. If f , f̂ ∈ L1, then Fourier inversion formula holds and f , f̂ ∈ L∞, and (x, u) 7→ f (x)f̂ (u) is integrable on
Rd × Rd . So by Fubini’s theorem, we get
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(2π)2∥∥f
∥∥22 = ∫

Rd
f (x)f (x)dx

= ∫
Rd

(∫
Rd

f̂ (u)e−iu·xdu
)

f (x)dx

= ∫
Rd

f̂ (u)(∫
Rd

f (x)eiu·xdx
)du

= ∫
Rd

f̂ (u)f̂ (u)du

= ∥∥∥f̂
∥∥∥2

2Now suppose f ∈ L1 ∩ L2, and let ft = f ∗ gt . By lemma, ft → f in L2, so ∥∥ft
∥∥2 →

∥∥f
∥∥2. Furthermore,

f̂t = f̂ ĝt and ĝt (u) = e−∥u∥2t/2. Hence ∥∥∥f̂t

∥∥∥2 ↗
∥∥∥f̂
∥∥∥2 by monotone convergence. But ft , f̂t ∈ L1 so we aredone.

Corollary 5.18. We can extend the (rescaled) Fourier transform to a unique isometry F : L2 → L2.
Proof. L1 ∩ L2 is dense in L2.
5.4 Weak convergence and characteristic functions

Definition 5.19 (weak convergence of measures)Let µ be a Borel probability measure on Rd , (µn) a sequence of such measures. We say that µn → µweakly if µn(f ) → µ(f ) for all continuous bounded functions f on Rd .
Note that if we consider the space of (signed) measures as the dual space to the Banach space of continuousbounded functions, then “weak convergence of measures” is in fact weak-∗ convergence in the dual space sense.However, in probability theory weak convergence is not as useful, so convention is that this is called “weakconvergence”.

Definition 5.20 (weak convergence of random variables)Given a random variable X in Rd , and a sequence of random variables (Xn) on Rd , we say that Xn → Xweakly if µXn → µX weakly.
Theorem 5.21. Let X be a random variable on Rd . Then the distribution µX of X is uniquely determinedby its characteristic function φX . Furthermore, if φX ∈ L1, then µX has density fX with respect to Lebesguemeasure, where

fX (x) = 1(2π)d
∫
Rd

φX (u)e−iu·xdu

Proof. Let Z be a standard Gaussian in Rd independent of X . Then √
tZ has density gt , and X + √

tZ hasdensity ft = µX ∗ gt . Then f̂t (u) = φX (u)e−∥u∥t/2, so by Fourier inversion formula,
ft (x) = 1(2π)d

∫
Rd

φX (u)e−∥u∥2t/2e−iu·xdu

By bounded convergence, for any g,∫
Rd

g(x)ft (x)dx = E(g(X + √
tZ )) → E(g(X )) = ∫

Rd
g(x)dµX (x)

Hence φX determines µX . The density statement follows from the dominated convergence theorem.
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Theorem 5.22 (Levy continuity). Suppose Xn, X random variables on Rd such that φXn → φX pointwiseon Rd . Then Xn → X weakly.
Proof. By density, suffices to show that E(g(Xn)) → E(g(X )) for all g ∈ C∞

c (Rd). Fix g ∈ C∞
c , and let

C = ∥∥g′∥∥
∞. Then g is C-Lipschitz. Fix ε > 0, choose t > 0 such that √

tCE|X | ≤ ε. On the other hand, byFourier inversion and dominated convergence theorem, we have that
E(g(Xn + √

tZ )) = 1(2π)d
∫
Rd×Rd

g(x)φXn (u)e−∥u∥2t/2e−ix·ududx

→ 1(2π)d
∫
Rd×Rd

g(x)φX (u)e−∥u∥2t/2e−ix·ududx

= E(g(X + √
tZ ))Hence |E(g(Xn)) − E(g(X ))| < ε for sufficiently n.

6 Ergodic theory

Definition 6.1 (measure preserving transformation)Suppose (E, E , µ) is a σ-finite measure space, θ : E → E measurable. Then θ is called measure preservingif
µ(θ−1(A)) = µ(A)for all A ∈ E .

Proposition 6.2. For all f ∈ L1(µ), µ(f ) = µ(f ◦ θ).
Definition 6.3 (invariant function)A measurable map f : E → R is θ-invariant if f ◦ θ = f .
Definition 6.4 (invariant set)A set A ∈ E is θ-invariant if θ−1(A) = A. The collection Eθ of all θ-invariant sets forms a σ-algebra.
Proposition 6.5. f is θ-invariant if and only if f is Eθ-measurable.
Definition 6.6 (ergodic)A measure preserving transformation θ is ergodic if for all A ∈ Eθ , µ(A) = 0 or µ(A∁) = 0.
Proposition 6.7. Suppose θ is ergodic and f is θ-invariant. Then f is a.e. constant.

6.1 Birkhoff and von Neumann ergodic theoremsThroughout this subsection, let (E, E , µ) be a σ-finite measure space, with a measure preserving transformation
θ. Given a measureable function f , set S0 = 0 and Sn = f + f ◦ θ + · · · + f ◦ θn−1.
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Lemma 6.8 (maximal ergodic). Let S∗ = supn≥0 Sn. Then∫
S∗>0 fdµ ≥ 0

Proof. Set S∗
n = max0≤m≤n Sm and An = {S∗

n > 0}. Then for m = 1, . . . , n,
Sm = f + Sm−1 ◦ θ ≤ f + S∗

n ◦ θOn An, we have S∗
n = max1≤m≤n Sm, so S∗

n ≤ f + S∗
n ◦ θ, and on A∁

n , we have S∗
n = 0 ≤ S∗

n ◦ θ. Hence wehave that ∫
E

S∗
ndµ ≤

∫
An

fdµ + ∫
E

S∗
n ◦ θdµ = ∫

An

fdµ + ∫
E

S∗
ndµ < ∞

which forces ∫
An

fdµ ≥ 0
As An ↗ {S∗ > 0}, the result follows by dominated convergence theorem.

Theorem 6.9 (Birkhoff). Suppose f ∈ L1(µ). Then there exists a θ-invariant f̄ ∈ L1(µ) such that
Sn
n → f a.e.

and ∥∥∥f̄
∥∥∥1 ≤

∥∥f
∥∥1.

Proof. Non-examinable and omitted.
Theorem 6.10 (von Neumann). Suppose µ(E ) < ∞, and p < ∞. Then for all f ∈ Lp, Sn/n → f̄ in Lp.

Proof. We have that ∥∥f ◦ θm∥∥
p = ∥∥f

∥∥
p for all m, so by the triangle inequality, ∥∥Sn/n

∥∥
p ≤

∥∥f
∥∥

p. Fix ε > 0,then choose K such that ∥∥f − g
∥∥ < ε, where g = (−K ) ∨ f ∧ K . By Birkhoff’s theorem, Sn(g)/n → ḡ a.e. Wehave that |Sn(g)/n| ≤ K for all n, so by bounded convergence, there exists N such that for all n ≥ N ,∥∥Sn(g)/n − ḡ

∥∥
p < εBy Fatou’s lemma,

∥∥∥f̄ − ḡ
∥∥∥p

p
= ∫

E
lim inf

n
|Sn(f − g)/n|pdµ

≤ lim inf
n

∫
E

|Sn(f − g)/n|pdµ

≤
∥∥f − g

∥∥p
pThus for n ≥ N , ∥∥∥Sn(f )/n − f̄
∥∥∥

p
< 3ε
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6.2 Shift mapIn this section, let E = RN with the product topology. Then the Borel σ-algebra is generated by the coordinateprojections πn : E → R, and it is also generated by the π-system
C = {A = ∞∏

n=1 An | An ∈ B, An = R for all but finitely many n
}

Let (Xn) be an iid sequence of random variables with distribution m, defined on a probability space (Ω, F,P).Then define X : Ω → E by
X (ω) = (X1(ω), . . . )which is measureable. Let µ = P ◦ X−1 be the image measure. Then µ is the unique measure such that

µ
( ∞∏

i=1 Ai

) = ∞∏
i=1 m(Ai)

Now define the shift map θ : E → E , θ(x) = (x2, x3, . . . ).
Theorem 6.11. The shift map is measure preserving and ergodic.

Proof. For A ∈ C, we have that
µ(A) = P(X1 ∈ A1, . . . , XN ∈ AN )= P(X1 ∈ A1) · · ·P(XN ∈ AN )= P(X2 ∈ A1) · · ·P(XN+1 ∈ AN )= µ(θ−1(A))

Thus by uniqueness, µ = µ ◦ θ−1, so θ is measure preserving.Let Tn = σ (Xn+1, . . . ) and T = ⋂
n Tn be the tail σ-algebra. Then for A ∈ σ (C), (θn)−1(A) ∈ Tn. Thus,if A is invariant, then A = (θn)−1(A) ∈ Tn for all n. Hence by the Kolmogorov zero-one law, µ(A) = 0 or

µ(A) = 1.
7 Limit theorems

Theorem 7.1 (central limit). Let (Xi) be iid random variables with mean 0 and variance 1. Then
X1 + · · · + Xn√

n ⇁ Z ∼ N(0, 1)
That is,

P
(

X1 + · · · + Xn√
n → P(Z ≤ x))

for all x ∈ R.
Proof. Set X = X1, then φX satisfies φX (0) = 1, φ′

X (u) = iE(XeiuX ) and φ′′
X (u) = −E(X 2eiuX ). In particular,

φ′(0) = 0 and φ′′(1) = −1. Then Taylor’s theorem implies that
φX (v ) = 1 − v22 + o(v2)

Thus, if we let φn be the characteristic function of (X1 + · · · + Xn)/√n, then by independence φn(u) =(
φX (u/

√
n))n by independence.

φn(u) = (1 − u22n + o(1/n))n
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The complex logarithm satisfiex log(1 + z) = z + o(z), so we get that
log(φn(u)) = n log(1 − u2/(2n) + o(1/n)) → −u2/2 as n → ∞By continuity, φn(u) → e−u2/2, so the result follows by Levy continuity.

Theorem 7.2. Suppose ∫R |x|dm(x) < ∞. Set ν = ∫R xdm(x). Then
µ
(

x ∈ RN | lim
n→∞

(x1 + · · · + xn
n

) = ν
) = 1

Proof. Set f (x) = x1, which is in L1(µ). So by the ergodic theorems with θ = id,
µ
(x1 + · · · + xn

n → ν
) = µ

(
Sn
n → ν

)
By Birkhoff, we have that Sn/n → f̄ a.s. By von Neumann,

f̄ = µ(f̄ ) = lim
n→∞

µ
(

Sn
n

) = µ(f ) = ν

Theorem 7.3 (strong law of large numbers). Suppose (Xi) is an iid sequence of integrable random variables.Then
1
n

n∑
i=1 Xi → EXi

almost surely.
Proof. Inject X : Ω → E as before, and notice that

P

(1
n

n∑
i=1 Xi → EXi

) = µ
(

x | x1 + · · · + xn
n → ν

) = 1

Remark 7.4. By the von Neumann ergodic theorem, the previous two theorems can be strengthened to L1 convergence.
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