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Definition 1.1 (o-algebra, measurable space)

Let £ be a set. A collection &£ of subsets of E is called a o-algebra if
e Jcé&
eforallAcg AL=F\Acg
e for all (A,) C¢&,

UAneé’

The pair (E, &) is called a measurable space, and A € € is called a measurable set.

Definition 1.2 (measure)

A measure pon (E, &) is a function p: € — [0, oo such that

e (D) =0,

e for all (A,) C &, with the A, pairwise disjoint, we have that
H (UAn) = ZIJ(AH)

The triple (E, &, ) is called a measure space.

Definition 1.3 (generated o-algebra)
Let A be a collection of subsets of £. Then define

o(A)={AC E | A€ & for any o-algebra & containing A}
Which is called the o-algebra generated by A.

1.2 Duynkin's lemma

Definition 1.4 (;-system)
Let A be a set of subsets of £. Then we say that A is a s-system if

e Jc A,

e forany A, Be A, ANBe A

Definition 1.5 (d-system)
Let A be a set of subsets of £. We say that A is a d-system if

o Fc A,
e forall A, B € A with A C B, we have that B\ A € A,

e for any increasing sequence (A,) C A,

UAneA



Lemma 1.6 (Dynkin's lemma). Let A be a w-system. Then any d-system containing A also contains o(A).

Proof. Let D be the intersection of all d-systems containing A. Then D is a d-system. We will show that D
is also a s-system, so it is a o-algebra. Consider

D'={BeD|BnAecDforall Ac A}

As A is a m-system, we must have that A C D’". We'll now show that D’ is a d-system. Suppose A, B € D’
with AC B, and C € A. Then

(B\ANC=(BNC)\(ANC) D

So B\ A € D'. Now suppose (B,) C D', with B, /B, then for A € A, we have that B, NA / BN A, so
BNA€D, and B € D. So we must have that D C D’ C D, so D =D’. Now define

D'"={BeD|BnAeDforall Ac D}

Then D” is a d-system, with A C D", so D” =D, and D is a m-system. O

1.3 Carathéodory extension and uniqueness of measures

Definition 1.7 (ring)
A collection A of subsets of £ is called a ring if

o JC A,

e forany A, Be A, AUB € Aand B\Aeg A

Definition 1.8 (algebra)
A collection A of subsets of £ is called an algebra if

e JE A
o forany Ac A AL € 4,
e forall ABe A AUB e A

That is, a o-algebra is an algebra where we allow countable unions.

Definition 1.9 (outer measure)

Let A be a ring of subsets of E, p: A — [0, 00] be countably additive. Then for any B C E, define the
outer measure of £ to be

ma—w{Zﬂm)

where we set inf @ = co. Let

MMCABCU&}

M= {A C & | (B) = (AN B)+ (A N B) for all B C E}

denote the set of y*-measurable sets.

Theorem 1.10 (Carathéodory extension). Let A be a ring of subsets of £, 1 : A — [0, 0] be a countably
additive set function. Then p extends to a measure on d(A).
More precisely, we will show that M is a o-algebra containing A, and p* restricts to a measure on



M extending p.

Proof. Proof is non-examinable. O

Theorem 1.11. Let p, i be measures on (E, &), with tn(E) = (E) < co. Suppose (1 = p on a
m-system A generating €. Then 1 = .

Proof Let D = {A € & | mn(A) = 12(A)}. Then by hypothesis, £ € € and for any A, B € D, with A C B, we
have that

vilA) + (BN A) = wi(B) < oo for i=1,2
So we must have thta B\ A € D. Furthermore, if (A;) C D with A, /' A, then

p(A) = limn (Ay) = lim po(Ay) = pa(A)

So A € D. Therefore D is a d-system containing A, so by Dynkin's lemma, £ C D. O

1.4 Borel and Lebesque measure

Definition 1.12 (Borel o-algebra and Borel, Radon measures)
Let £ be a Hausdorff topological spacd’] Then the o-algebra generated by the open sets of £ is called
the Borel o-algebra of &, and is denoted B(E). We write B = B(R).

A measure on (E, B(E)) is called a Borel measure. If p is a Borel measure with y(K) < oo for all
K C E compact, then we call g a Radon measure.

9Strictly speaking Hausdorff is not necessary, however as we are only looking at the open sets of a topological space, we don't
lose any generality by requiring the space to be Hausdorff.

Definition 1.13 (finite and o-finite measures)

A measure p on E,E is finite if p(E) < oo. p is o-finite if there exists sets (E,)peny € E such that
U, E, = E and p(E,) < oo for all n.

Theorem 1.14 (Lebesqgue measure). There exists a unique Borel measure ¢ on R such that for all @ < b,

p((a,b) =b—a ()

p is called the Lebesgue measure on R.

Proof. Existence: Consider the ring

A = {(ay, b1]U - - U (an, b,] disjoint intervals}
which generates B. Then for such A € A, define

uA) =) _(bi— i)
i=1
It is easy to check that p is well defined and additive. By Carathéodory's extension theorem, suffices to
show that p is countably additive on A. By additivity, suffices to show if A € A, and A, ,/ A is an increasing
sequence in A, then p(A,) / u(A). Set B, = A\ A,, then B, € A, and B, \, @. By additivity, suffices, to
show p(B,) N\, 0. Suppose not. Then there exists € > 0 such that py(B,) > 2¢ for all n. For each n, we can
find C, € A such that G, C B, and p(B, \ G,) < 27"¢. Then



/J(Bn\(C1 m"‘ﬂCn))g/J((B1\C1)ﬂ“'ﬂ(Bn\C”)g Zz_n“::(‘:

Since p(B,) > 2e, we must then have that y(G N --- N C,) > € for all n, which means that K, =
G n---NGC,#+ @ forall n. In this case, we then have that (K}) is a decreasing sequence of compact sets, so
@+ (), Ky €, By Contradiction.

Uniqueness: Let A be any measure on B satisfying (*). Fix n € Z and define

Un(A) = p((n,n + 11N A) and  A,(A) = A(n, n +1]N A)

Then 1, A, are probability measures on B and A, = p, on the s-system of intervals of the form (a, b] which
generates B. Therefore, by uniqueness of measures, 1, = A, on B. Hence for all A € B, we have that

A =) mlA) =) AlA) = AA)

Corollary 1.15. The Lebesque measure is translation invariant, if we define for x € R, B € B,

px(B) = p(B + x)
Then u, = p.

1.5 Measurable functions

Definition 1.16 (measurable function)

Let (E,€), (G, G) be measurable spaces, then f : E — G is £&-G-measurable if for any A€ G, f~1(A) € &.
If (G,G) = (R, B), we say that f is E-measurable, and if (G,G) = ([0, o0}, B([0, 00])), we say that f is a
nonnegative measurable function. Moreover, if £ is a topological space, &€ = B(E), then we say that f is
Borel measurable.

Lemma 1.17. For any f : £ — G, {{7"(A)| A€ G} is a o-algebra over £, and {A|f'(A) €€} is a
o-algebra over G.

Lemma 1.18. Suppose G = d(A), f~'(A) € € for all A € A, then f is measurable.

Proof {A|f~1(A) € £} is a o-algebra containing A, so it contains G. Hence f is measurable. O

Corollary 1.19. f : E — R is measurable if and only if {x | f(x) < y} is measurable for all y.
Corollary 1.20. If E is a topological space, f : E — R continuous, then f is measurable.

Definition 1.21 (o-algebra generated by functions)

Given any family of functions f; : E — G, i € /, we can make them all measurable by taking

E=o(f A |AEG ic



Then € is the o-algebra generated by (f;):c/.

Proposition 1.22. The sum, product, composition, lim, liminf, limsup, .. of measurable functions are
measurable.

Theorem 1.23 (Monotone class theorem). Let (£, £) be a measurable space, A a m-system generating £.
Let V be a vector space of bounded functions f : £ — R such that

1. 1eVand1aeViorall Ae A,
2. i (f,) €V, f bounded and 0 < f, /' f, then f € V.

Then V contains every bounded measurable function.

Proof. Consider D = {A€ £ |14 € V}. Then D is a d-system containing A, so D = £. Since V is a vector
space, it contains all finite linear combinations of indicator functions of measurable sets. If f is bounded
nonnegative and measurable, then

fp=2"12"fl €V with 0<f, /f

So f € V. Finally, any bounded measurable function f can be written as f = g —h, where g, h are bounded
nonnegative and measurable. O

1.6 Image measures

Definition 1.24 (image measure)

Let (E,€), (G, G) be measurable spaces, f : E — G be a measurable function and 1 a measure on €. Then
the image measure on G is defined by pro =1 where

(1o F)A) = u(f~(A)

Lemma 1.25. Let g : R — R be increasing right continuous. Then set g(£o00) = limy_,+0, g(x) and write
I = (g(—00), g(c0)). Define f: 1 — R by
fix) = inf{y € R[x < g(y)}

Then f is increasing left continuous, and for all x € /,y € R,

fx) <y &= x<gly)

We call f the generalised inverse of g.

Proof. Define J, = {y € R| x < g(y)}. Since x > g(—o0), Jx is nonempty and bounded below. Thus, f(x) =
inf J, exists. Since g is increasing, if y € J,, ¢y’ > y, then y’ € J,. As g is right continuous, if y, € J, with
Un Wy, then y € Jy. So Jy =[f(x), 00). Furthermore, x < g(y) if and only if f(x) < y.

For x < X/, we have that J, D Jy, so f(x) < f(x'). Finally, if x, " x, then J,, \, /v, and so f(x,) 7 f(x). O

Theorem 1.26. Let g : R — R be a increasing right continuous function. Then there exists a unique
Radon measure 1y on R such that



Hg((a, b)) = g(b) — g(a)

for all a < b. Furthermore, any Radon measure on R can be obtained this wauy.

Proof Let f be the generalised inverse of g, then f~'((—o0, z]) = (g(—0o0), g(2)] is measurable, so f is Borel
measurable. Thus, the image measure iy = o f~1 satisfies

pg((a, b)) = p({x | a < f(x) < b}) = w(gla), g(b)) = g(b) — g(a))

This uniquely determines the measure, by the same argument as for the Lebesque measure. Finally, if v is
any Radon measure on R, then define g : R — R by

oy g0
91v) {—v((o,y]) ify <0

Then v((a, b)) = g(b) — g(a), so v = g by uniqueness. O

1.7 Convergence of measurable functions

Definition 1.27 (almost everywhere)

Let (E, &, 1) be a measure space, a property P holds almost everywhere if

(x| not P(x)}) =0

Definition 1.28 (almost everywhere convergence)

A sequence of measurable functions f, converges to f almost everywhere if

p(Ix | falx) 2 1)}) = O

Definition 1.29 (convergence in measure)

A sequence of measurable functions f, converges to f in measure if

p{x|falx) = f(x)] > €e})=0
for all € > 0.

Theorem 1.30. Let (f,) be a sequence of measurable functions, then

(i) fp(E) < oo and f, — 0 ae, then f, — 0 in measure.

(it) If f, — 0 in measure, then f,, — 0 a.e. for some subsequence (ny).

Proof. (i) Fix € > 0, we have that

,U(|f/7| <e) >

N Ul < e}

m>n

and



u({ﬂ{fmlge}}) /N(Uﬂ{fmlse}

m>n n m>n

= p(|fn] < € eventually)

> u(f, = 0 as n — o)
= p(E)

Hence liminf, p(|f,] < €) > p(E), so limsup, p(|f,] > €) <0, and so p(|f,] > €) — 0 as n — co.
(i)By hypothesis, for fixed k and € > 0, for n large, we have that y(|f,| > 1/k) < e. Choosing € = 1/k?,
we have that along some subsequence,

p(lfa | > 11k) < 1K
Thus, Y, p(|fa.| > 1/k) < 00, so by the first Borel-Cantelli lemma, we have that

u('fnk| > 1//( LO) =0

So f,, — 0 almost everywhere. O

2 Probability theory

Definition 2.1 (probability measure)

A measure p on E,& is called a probability measure if y(E) = 1, and (E, &, u) is called a probability
space. We often write (Q, F,P) for a probability space.
We can think of Q) as the set of outcomes, F the set of events, and P(A) is the probability of an event.

2.1 Independence

Definition 2.2 (independence of events, o-algebra)
Let / be a countable set. Then (A;)ie; C F is independent if for all / C / finite,

m Al = |_| ]P)(At)

e/ el

A family (A;) of sub-o-algebras of F is independent if (A;) is independent whenever A; € A, for all i.

Theorem 2.3. Let Ay, A; be m-systems contained in F, and suppose that

P(A1 N Az) = P(A1)P(A7)
whenever A1 € Ay and A, € A,. Then o(A4) and o(A;) are independent.

Proof Fix Ay € A4, and define for A € F,

p(A) =P(A NA) and  v(A) = P(A)P(A)

Then p and v are measures which agree on the s-system A;, with p(Q) = v(Q) < oo, hence by uniqueness
of measures, = v. Thus, for all A; € g(A;), we have that

P(A N A) = p(A2) = v(A) = P(M)P(A)
Now fix A; € g(Ay), and repeat the argument with

YA =PANA) and V/(A) = P(AP(A)



to show that for all A7 € o(A4), we have that

]P)(A1 N Az) = ]P’(A1)]P>(A2)

O
2.2 Borel-Cantelli lemmas
Definition 2.4 (lim inf and lim sup of events)
Given a sequence (A,) of events, set
liminf A, = U ﬂ An and limsupA, = ﬂ U Anm
n n m>n W n m>n
We write {A, infinitely often} = limsup, A, and {A, eventually} = liminf, A,.
Lemma 2.5 (First Borel-Cantelli). If } _ P(A,) < oo, then P(A, t.o.) = 0.
Proof As n — o0, we have that
P(Ac o) <P [ | JAn| <) PA) =0
m>n m>n
O

Lemma 2.6 (Second Borel-Cantelli). If the events (A,) are independent, and )  P(A,) = oo, then
P(A, to) =1.

Proof. We will use the inequality 1 —a < e™“ Note the events (AE) are also independent. Set a, = P(A,).
Fix n € N, taking n < N — oo, we have that

N N
]P’(ﬂAE]) =|_|(1—a,,)§exp

m=n

N
—Za”) -0

m=n

Hence P (ﬂfno:n A,Cn) =0 for all n. Hence

P(A, o) =1—P =1

U

n m>n

2.3 Random variables

Definition 2.7 (random variable)

If (Q, F,P) is a probability space, (£, ) is a measurable space, then a measurable function X : Q — E is
called a random variable in E. If (E, &) = (R, B) we just call X a random variable.

Definition 2.8 (law, distribution)

If X is a random variable with value in £, then the image measure iy = Po X~V is called the law or
distribution of X.



Definition 2.9 (distribution function)

If X is a random variable, we define the distribution function of X by

Fx(x) = px((—o0, x]) = P(X < x)

Proposition 2.10. The distribution function determines the distribution of a real valued random variable.

Proof. The set of intervals (—oo, x] forms a s-system, so we can use uniqueness of measures. O

Proposition 2.11. For a random variable X, the distribution function Fy is increasing and right continuous,
with

lim Fx(x) =0 and lim Fx(x) =1
XN\,—00 X ,/'00

Conversely, any F satisfying these properties is the distribution function of a random variable.

Proof. For the converse, let Q = (0,1), F = B((0, 1)) and PP be the Lebesgue measure, then

X(w) =inf{x | w < F(x)}

defines a random variable with distribution function F. O

Definition 2.12 (independence)

A countable collection (X;);e; of random variables is independent if the g-algebras

o(X (A A€ E)

are independent.

Definition 2.13 (Rademacher functions)
Let Q = (0, 1), then the Rademacher functions are defined by

Rp(w) = wp
where we write
oo
oS
- Zn

n=1

w, € {0,1} and we forbid infinitely many zeroes.

Proposition 2.14. The Rademacher functions are independent Ber(1/2) random variables.

Proposition 2.15. There exists a sequence (Y,) of iid Unif[0, 1] random variables.

Proof. Fix a bijection m : N? — N, and define new random variables Yok = Run(n.k), which are still independent.
Define random variables

10



Yn,k

Y, = o

k

which is a bounded monotone sequence so converges. Furthermore, then Y, are still independent. Finally,
to determine the distribution of Y}, consider the s-system of intervals (i/2", (i +1)/2"] which generate the Borel
o-algebra. Then

P(Y, € (i/2", (i + 1)/2"]) = 12"

Corollary 2.16. Let (F,) be a sequence of distribution functions, then there exists a sequence of independent
random variables (Xj) with distribution functions (F,).

2.4 Convergence of random variables

In the special case of probability spaces, we give different names to some of the concepts.

e almost surely := almost everywhere

e converges in probability := converges in measure

Definition 2.17 (Convergence in distribution)

A sequence X, of random variables converges to X in distribution if

Fx, (x) = Fx(x)

n

for all x € R where Fx is continuous.

2.5 Tail events

Definition 2.18 (Tail o-algebra)

Let (X,) be a sequence of random variables, define

,177 = O_(XHJA ) Xn+Zr - )

and the tail o-algebra is

T:ﬂﬂ

Theorem 2.19 (Kolmogorov's zero-one law). Suppose (X)) is a sequence of independent random variables,
then the tail o-algebra 7 contains only events of probability 0 or 1. Moreover, if Y : (Q,7) — (R, B) is
measurable, then Y is constant almost surely.

Proof Set F, = o(Xq,..., Xp), then F, is generated by the m-system of events

whereas 7, is generated by the s-system of events,

B = {Xos1 < Xpg1, - - -, Xosk < Xpyr} for keN

i



By independence, we have that P(AN B) = P(A)P(B) for all such A, B. Thus, F, and 7, are independent.
Now |J, F, is a m-system which generates the o-algebra Fo, = o(X, | n € N). Thus, Fs and T are
independent. But 7T C Foo, s0 f A€ T,

P(A) = PANA) = P(A)P(A)
so P(A) = 0 or P(A) = 1. Finally, if Y is 7-measurable, then

where ¢ = inf{y | Fy(y) =1} O

Integration
3.1 Definition of the integral

Definition 3.1 (simple function)

A simple function is a function of the form

m

= Z G/ﬂAk
k=1

where 0 < ar < oo and Ay measurable for all k.

We define the integral of a simple function to be

[ o =it = Y o
k=1

where 0 - co = 0. For a nonnegative measurable function f, define
/du—sup{[gduogg <f,g simple]»
f

Definition 3.2 (positive and negative part)

For a function f, define

f* =max{f,0} and f~ =max{—f, 0}

Proposition 3.3.
f=ft—f and |f|=Ff"+1"

and if 7 is measurable, so is 1, 7.

Definition 3.4 (integrable)
A function f: E — R is integrable if u(|f]) < oo.

For an integrable f, define

/fduz/f*duf/f’dp

12



3.2 Monotone convergence theorem

Theorem 3.5 (monotone convergence). Let f be a nonnegative measurable function, (f,) a sequence of
nonnegative measurable functions. Suppose f,  f. Then p(f,) /7 u(f).

Proof. We perform a sequence of approximations.
Step 1: f, = 14,, f = 14. In this case, the proof is obvious from the axioms of a measure.
Step 2: f, simple, f =14. Fix € >0, and set A, = {f, > 1 —€}. Then A, /A and

(1 - 8)1/4,7 S fn S 1A

so we have that

(1= u(An) < p(fa) < p(A)

But A, /" A and € > 0 was arbitrary.
Step 3: f, and f simple. Write

f= Z U/ﬂAk
k=1
with ax > 0 for all k and the A disjoint. Then f, /' f implies that

aafy /4
so by step 2,

plfa) =Y wllafs) /Y axlAc) = plf)
k k

Step 4: 1, simple, f > 0 measurable. Let g be simple with g < f. Then f,  f implies that f, A g g,
so by step 3,

pfn) > plfn N g) /" u(g)

Since g was arbitrary we are done.
Step 5: f,,f > 0 measurable. Set g, = (27" |2"f,|) A n, then g, is simple and g, < f, < f, so

p(gn) < pi(fn) < p(f)
But f, / f forces g, / f, so p(g,) /" f by step 4. Hence p(f,) /7 u(f). O

Proposition 3.6.

(i) for f, g nonnegative measurable, a, B > 0, we have
plaf + Bg) = au(f) + Bu(g)

(it) for f < g nonnegative measurable, u(f) < u(g),
(i) p(f)=0ifand only if f =0 ae.

Proof. (i) Define simple functions f,, g, by

fo=027"2"f)An and g, =(27"|2"g|)An

Then f, /" f and g, /" g, so af, + Bg, /" af + Bg. By the monotone convergence theorem, u(f,) /7 p(f),

u(gn) /" ulg) and plaf, + Bgn) /" plaf + Bg). But u(af, + Bg,) = aulf,) + Br(gns), so we are done.

(it) is immediate from the definition of the integral.

(iit) If f =0 ae. then f, = 0 ae, so p(f) = 0. Conversely, if p(f) = 0 then p(f,) =0 for all n, te. £, =0
ae. forall n,sof=0ae O

13



Theorem 3.7. Let f,g : E — R be integrable, then

() plaf + Bg) = ap(f) + Bu(g),
(it) g < f implies p(g) < u(f),
(iit) f =0 ae. implies p(f) =0.

Proof. Follows from the case for nonnegative functions. O

3.3 Fatou and dominated convergence
Lemma 3.8 (Fatou). Let f, : E — R be measurable nonnegative functions. Then

p(liminf £,) < liminf p(f,)

Proof For k > n, we have that
inf £, < f
m>n

which means that

1 (I;r;f” fm) < ktgfn pifi) < lim inf pi(fe)
But as n — oo,

inf f,, / [‘ng'mf fo

m>n

so by monotone convergence,

U (ngr;fn f,,,) S (ltm@mf fg)

Theorem 3.9 (dominated convergence). Let f, f, be measurable functions, f, — f pointwise, and there
exists g integrable such that |f,| < g. Then f and f, are integrable, with p(f,) — p(f).

Proof. As |f,| < g, each f, is integrable. Furthermore, |f|] < g, so f is integrable as well. Furthermore,
0<g+f, = g=*f soliminf(g +f,) =g=+f By Fatou's lemma, we have that
u(g) + ulf) = u (['Lm”'mf(g + fn)) < liminf p(g + f;) = p(g) + lim inf p(f,)

ulg) — p(f) = p (liminf(g — £,)) < timinf g = f) = p(g) — lim sup p(fs)

n

Since p(g) < oo, we get that
p(f) < timinf p(f,) < limsup p(fy) < p(f)

So lim p(f,) = p(f). O

14



Theorem 3.10 (differentiation under the integral). Let U C R be open, (E, €&, 1) measure space, f :
U x E — R such that

(i) f(t,-) is measurable for all ¢,

(it) f(-, x) is differentiable for all x, with a p-integrable g such that

<g(x) forall teU

of(t, x)
=

Define

Then F is differentiable, with derivative

Fie) = /E afgt,x)dx

Proof Set

a0 = L+ h,xh) —flt,x) %(t, 4

By the mean value theorem, we have that

91(x) = Sl x) = (6.1

for some 7 € (t,t + h) (or (t + h,t) if h < 0). In particular, this means that |gs| < 2g, so g, is integrable
for all h. Furthermore, g, — 0 as h — 0, so applying the dominated convergence theorem, we have that

u(gn) — 0. But

fF(t+ h, x)—f(t, of
—F/(t)’—/E(tJr Xh) (”)—a(t,x)dx_m

3.4 Densities and image measure

Definition 3.11 (density)
Suppose f: (E, &, 1) — R measurable and nonnegative, then we can define a new measure

vi(A) = p(f14)

Proposition 3.12. For any g : £ — R measurable, we have that

vi(g) = p(fg)

Therefore, we call f the density of vy with respect to p.

Proposition 3.13. For f : E — G measurable, g : G — R nonnegative measurable, we have that

pof'(g)=ulgof)
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Proposition 3.14. If g : G — R measurable, X is a G-valued random variable, then

E(g(X)) = /QQ(X(w))d]P’(w)

3.5 Products

Definition 3.15 (product o-algebra)
Let (E1,&) and (E2, &), then define the m-system of rectangles

.A={A1 XA2|A1 651,A2€52}

and the product o-algebra

ER&E =0A)

Proposition 3.16. If £4, £, are second countable Hausdorff spaces, & = B(E;) are the Borel o-algebras,
then

B(E1 x ) = B(Ey) ® B(E)

where we give & x & the product topology.

Lemma 3.17. For fixed x, € E;, the canonical injection ¢ : £1 — E; x E; is measurable, where
((x1) = (x1, x2). Furthermore, the canonical projections 7 : £y x E; — E7 are measurable as well.

Proof. For (, suffices to check on the generating ;-system. Let A7 x A, € A, then ! (A1 x Ay) = A1 € &. For
7, note that 7 "A)=A x B, EACERE. O

Lemma 3.18. Let f be a bounded (resp. nonnegative) measurable function on £7 x E;, where 1 is a finite
measure on £5. Define for x4 € Ey,

f1(X1):/E f(X1,X2)d/Jz(X2)

Then f; is measurable. If f is bounded (resp. nonnegative), then so is f;.

Proof. In the bounded case, define a vector space

V= {f . E — R | f bounded measurable, / f(-, x2)dn(x2) bounded measurable]»
E

Then 1 € \/El and 14 € V for any A € A. Now take 0 < f, /' f, where the f, € V. By the monotone
convergence theorem,

/ . 3] = tim [ fo o, xa)da )
EZ EZ

n—00

This is &-measurable and bounded as it is the limit of bounded measurable functions. So f € V. By the
monotone class theorem, V contains all bounded measurable functions.
In the nonnegative case, set f, = f A n, use the bounded case and the monotone convergence theorem. [J

'As p(E2) < oo.
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Theorem 3.19 (product measure). Suppose (E1, &, th), (E2, &, 1) be finite measure spaces, then there
exists a unique measure p = 1 @ pp on (E1 X E2,& ® &) such that

p(Ar x Az) = i (Ar)2(A2)
forall Ay € &, A, € &.

Proof. Since we defined p on a m-system generating the o-algebra, suffices to show that it is a well defined
measure. Define

uA) = /E | ( /E | 1A(X1.X2)dN2(Xz)) din )
Then

WA X Ag) = [E ( /E 1A1<X1)1AZ<XZ)duz(xZ))dm(xﬁ—mmm(%\z)

and (@) = 0, so suffices to show p is countably additive. Let (A,) be a disjoint sequence of elements of
& ®6E. Then

N
A=Y T = S 1
n n=1

Thus, we have that

N
p (UAH) -/ (/E A}me;1A,,(X1,X2)duz(X2)) i )

n 2

( /E unm,m)duz(m) dun )

Il I
NS
- 2
S M
—

where we swap the limit and integrals by the monotone convergence theorem. O

Theorem 3.20 (Fubini). Let (E,&, p) = (B4 X £2,& ® &, th ® 1), where p;(E;) < oo. Then

(i) Let f be nonnegative measurable, then

ulf) = /E fdp = jE | ( /E 2 f(X1,X2)d/J2(X2)) dinx) = jE | ( fE | f(X1.Xz)dm(X1)) bl

(it) Suppose f is p-integrable, then

n HX1 € |/E2 f(x1, x2)dua(x2) —oo]») =0

and

/E1 (/Ez f(X%XZ)dUz(Xz)) din(x1) = /Ef(x)du(x)

Proof. (i) We proceed by a series of approximations. By definition of y/ on rectangles, we see that the result
holds in the case f = 14. By linearity of the integral, the result holds for f simple. Taking an approximating
sequence 0 < f; < - < f, we get the result using the monotone convergence theorem.

(it) Define h(xq) = sz [f(x1, x2)|dpz(x2), then by (i), p(h) < p(f) < o0, so h is integrable, hence h is finite
a.e. The final part follows from splitting into the positive and negative parts, and using (i). O
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Remark 3.21. The results in this subsection generalises to o-finite measures by splitting into finite parts.

Proposition 3.22. Let (Q, F,P) be a probability space, and (E, &) = ([, Ei, @', &). Consider X :
Q- E Xw =X(w),..., Xn(w)), then the following are equtvalent

(i) the X; are independent,

(i) px = Qi bix,
(iit) for all f; : E; = R, bounded measurable,

Proof (i) = (ii). For rectangles A; x --- x A,, we have that

n
px(Ar x . A) =P(X € A, Xo € A) = [ |P(X: € A) |_|px
i=1

Result follows by uniqueness of a measure on the generating w-system.
(i) = (iit). By Fubini's theorem, we have that

[ ]£(X)
i=1

= Hx (l_l f[(X[))
i=1
- /E|_|fi(X,‘)d(U1 Q... tp) (X1, ..., Xp)
i=1

_ /E At /E o)
= [ |E (X))
i1

(i) = (). Take f; = 14, then

4 [P spaces

Definition 4.1 (L”-norm)
For a measure space (E,&, p), and 1 < p < oo, define the LP-norm of f by

10p
I, = { [ i)

Hf”oo =esssup [f(x)] =inf{A ] |f| < Xael}
xeEE

Define the L norm by
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Definition 4.2 (LP and L spaces)
For 1 < p < o0, define the L” space by

L) = LP(E. €)= {£: E > R[], < oo}
and the corresponding L space by

[P

P -
£ f=gae

4.1 Inequalities
Proposition 4.3 (Chebyshev). Suppose f nonnegative measureable, A > 0, then

Au(f > 2) < p(f)

Proof. M, < f pointwise, integrating gives the required result. O

Corollary 4.4 (tail estimate). Suppose f € [P with p < oo, then

ulgl > A = 0(x7)

as p — oo.

Proof.
pllgl > A) = p(lgl” > ) <APp(|gl”) < oo

Lemma 4.5. Let / C R be an interval, ¢ : | — R be convex, m &€ Int(/). Then there exists a, b € R such
that ¢(x) > ax + b, with equality at x = m.

Proof. For m,x,y € I, with x < m < y, we have

c(m) —clx) _ cly) — c(m)
m—-x y—m
So there exists a € R such that for all x < m and y < m, we have that

cm) —cl) _  _ cly) = clm)
m-=x y—m
Then c(x) > a(x —m) 4 c(m) for all x € 1. O

Theorem 4.6 (Jensen’s inequality). Let X be an integrable random variable with values in an interval /,
¢ : I — R be convex. Then E(c(X)) is well defined, and

E (c(X)) > ¢ (E(X))

Proof. The case where X is almost everywhere constant is easy. Otherwise, m = E(X) must be in the interior of
I. Choose a, b as in the lemma. Then ¢(X) > aX + b, so E (c(X)*) < |a|E(X) + |b| < oo, so ¢(X) is integrable.
Moreover,

E(c(X)) > aE(x) + b =am + b = cm = c (E(X))
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Theorem 4.7 (Holder's inequality). Let p,g € (1,00) be conjugate indices, then for all measurable
functions f, g, we have

uilfgh < 111 llgll,

Proof. The case when Hf“p =0 or ||f||p = oo is clear. Then without loss of generality, we can assume

||f|| = 1. Define a probability measure P on &€ by
P
P = [ 11Pan
A
For measurable functions X > 0,

E(X) = p(X|fI") and E(X) < EX)
Now g(p — 1) = p, so

g
plfgl) = p ( |f||p|¢ 1{f>o}|fp)
lg|
—E 1
|f|p71 {|f|>0}
9]’
=K (Wﬂ{m}
< u(|g|?)
= |qll,

Theorem 4.8 (Minkowski).
I+ gll, < l17ll, + ll4ll,

Proof. The cases when p =1,p = oo, Hpr = o9, Hng = 0o or Hf+9||p = 0 are clear. Otherwise, since
|f + g” < 2°(|f” + |g|"), we have

p(|f+gl’) < 2°Pu(|f)P + |g]f) < o0
As

_ 1/ _
[ir+ P =i+ 0)" = w7 + gy

By Halder's inequality we have that
MV+m%guwmf+gW4)+mmmf+gW4>£Mﬂh*HﬂMWf+m“wq

As H|f + g H > 0, dividing through we are done. O
q

4.2 Banach and Hilbert space structure

Theorem 4.9. LF is complete.
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Proof. The case p = oo is clear. From now on, assume p < oo, then choose a subsequence (ny) such that

S=) [t =il <00
k=1

By Minkowski's inequality, for any K € N,

K

Z |f’7k+1 - fﬂk|

k=1

<S <
p

By monotone convergence, the result also holds for K = co. Thus we have that

oo

Z |fﬂk+1 - fnk| < o0 ae.
k=1

So by completeness of R, (f,,) converges a.e. Define f by

limg £y, (x)  if the limit exists
fix) = .
0 otherwise

Now given € > 0, we can find N such that for all n > N,

.u(|fn_fm|p)§8 fOr a[l m 2[7

In particular, p(|f, — f,,|") < € for sufficiently large k. Thus by Fatou's lemma, for n > N,

,U(‘fn - f|p) =4 (llmklnﬂfn - fnkp) < “mkmflf(vn - f”k|p) <¢

Hence f € LP by Minkowski, and as € > 0 was arbitrary, f, — f. O

Theorem 4.10. £? is a Hilbert space.

Proof. Since we have already shown completeness, all we need to do is define the inner product. In this case,
we define

(f.g) = /E Fgdu

Note however in the complex valued case we will need to put in an appropriate complex conjugate. O

Corollary 4.11 (Pythagoras, parallelogram).
17+ gll; = 17112 + Dall; + 247, 0)

and

17+ gll; + 117 = gll; = 2017[1; + llgll2

Theorem 4.12 (orthogonal projection). Let V be a closed subspace of L2, then for each f € L?, there exists
v e V,ue VL such that f = v + u. Moreover,

||f— v||2 < ||f— g||2 forall geV
with equality if and only if g = v ae.
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Proof. Choose a sequence (g,) C V such that

I = gull, = dir. V) = f {[|f = g]|, | g € V}
By the parallelogram law,

12(F = (go + ga)2)[[5 + |90 = gl = 20|F = gal[5 + || = gu)2)

But [|2(f — (ga Jrg,n)/2)||§ > 4d(f, V)?, so we must have ||g, fg,,,Hi — 0as n,m — oo, te. (g,) is
Cauchy. So g, — g by completeness, where g = v a.e. for some v € V as V is closed. Hence

If = vil, = tm}f = gull, = d(7, V)
Now for any h € V and t € R, we have that
dif, VY2 < ||f = v+ th)|[5 = d(f, V2 = 2¢(F — v, h) + £]|n]|5
So we must have (f —v, h) =0, ie. f —v & V. O
4.3 Convergence in L'(P) and uniform integrability

Theorem 4.13 (bounded convergence theorem). Let (X,) be random variables on (Q, F,P) such that
|X,| < C < oo and X, — X in probability. Then X, — X in L'(P).

Proof We know that X, converges almost surely along a subsequence, so |X| < C almost surely. For € > 0,
there exists N such that forall n > N,

P(|X, — X| > €/2) < €/(4C)
Then

E|X,—X|=E (\Xn —XH|X”,X‘>C/2) +E (|X,7 — X|1‘X”,XK5/2) <2C(e/(4C) + el2 =€

Lemma 4.14. Let X be an integrable random variable, and set

Ix(8) = sup {E (|X[14) | A € F,P(A) < 0}

Proof. Suppose not. Then there exists € > 0, (A,) C F such that P(A,) < 27" and E(||14,) > € for all n. Thus
by the first Borel-Cantelli lemma, P(A, i.0.) = 0. But then by dominated convergence theorem,

m

e<E (|X|1Um2,¢\ ) = E(X[14,0) =0

Contradiction. O

Definition 4.15 (uniformly integrable)
A collection X C L'(P) is uniformly integrable if it is bounded in L'(P) and

Ie(8) = sup {E(|X|14) | X € X, A€ F,PA) <56} >0 as 6—0

Lemma 4.16. If X is bounded in L” for some 1 < p < oo, then X is uniformly integrable.
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Proof. By Holder's inequality,

E ([X]14) < ||X]| B(A)"

Lemma 4.17. Let X be a family of random variables, then X is uniformly integrable if and only if

sup{E ([X[1xsk | X €X)} -0 as K- o0

Proof. Suppose X is uniformly integrable. Then given € > 0, choose 0 > 0 such that /x(0) < €, and choose
K < oo such that Iy(1) < Kd. Then for X € X, A = {|X| > K}, we have that P(A) < ¢ by Chebyshev's
inequality, so E(|X|14) < €. Hence as K — oo,

sup {E (X1 )x5x) | X € X} =0
On the other hand, if this condition holds, then since
E(X]) < K+ E (X1 )xj2«)

we have that [x(1) < oo. Now given € > 0, choose K < oo such that E (|X|1xsx) < €/2 for all X € X.
Then choose d > 0 such that Ko < /2. Now for all X € X and A € F with P(A) < 9, we have that

E (|X[14) < E (|X[1jq2k) + KPA) < €

Hence X is uniformly integrable. O

Theorem 4.18. Let X be a random variable, (X,) a sequence of random variables. Then the following are
equivalent.

(i) X, and X are integrable, with X;; — X in i

(it) {X,} is uniformly integrable and X, — X in probability.

Proof. Suppose (i) holds. By Chebyshev's inequality, for all € > 0,

P(X, — X| > €) < e 'E(|X, — X|) = 0

So X, — X in probability. Moreover, given € > 0, there exists N such that E(|X, — X]) < ¢/2 for all
n > N. Furthermore, as any finite set is uniformly integrable (by the dominated convergence theorem), we can
find 0 > 0 such that P(A) < 0 implies

E(|X|[14) <ef2 and E(X,|1a) < eforn=1,..., N
Then for n > N, and P(A) < 9, we have that

E(1X,14) < E(X, — X[1a) + E(X|1a) < E(X, — X|) + E(X[12) < €

Hence {X,} is uniformly integrable.
Now suppose (it) holds. Then there exists a subsequence (ny) such that X,, — X almost surely. So by
Fatou's lemma,

E(|X]) < llmkmfIE(|X,,k|) <0
Now given € > 0, there exists K < oo such that for all n,

E(|Xn11x,15k) < €3 and  E(|X]1x5k) < €/3

Now consider the uniformly bounded sequence XX = —K Vv X, A K and set XK = —K vV X A K. Then
XK — XK in probability, so by bounded convergence, there exists N such that for all n > N,
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EIXF — X | < ef3
But then for all n > N,

E|X, — X| S E(IX[1)x,12k) + E|[ Xy = XX| + E(IX[1)x2x) < €

5 Fourier transforms

In this section, for p < oo, we write [P = LP(RY) for some d fixed, for the set of complex values Borel measurable
functions on RY with finite p-norm.

5.1 Definitions

Definition 5.1 (Fourier transform of functions)

The Fourier transform of f € ! is defined to be

?(u):/ f(x)el*dx for ueRY
R

Proposition 5.2. For f € L', f is a countinuous bounded function on RY.

Proof. Continuity follows from the dominated convergence theorem. For boundedness, notice that

sup ?M\ <|If]l,

ueR”
O
Definition 5.3 (Fourier transform of measure)
Let i be a finite Borel measure on RY, then the Fourier transform of y is
ﬁ(u) :/ eiu-xdu(x)
Rd
Proposition 5.4. For y a finite Borel measure on RY, [ is a continuous bounded function on RY. Further-
more, if y has density f with respect to Lebesque measure, then i = f.
Proof. Again continuity follows from the dominated convergence theorem. In this case, we have
sup [B(u)] < p(R)
ueR”
O

Definition 5.5 (Characteristic function)

The characteristic function ¢x of a random variable X in RY is the Fourier transform of its law py. That
is,
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Definition 5.6 (Convolution of functions)
For f € [? and a probability measure v on RY, define the convolution f * v by

fxv(x) /Rd f(x — y)dv(y)

if the integral exists, and f * v(x) = 0 otherwise.

Proposition 5.7. The integral defining the convolution exists a.e., and we have that

1% vll, < lI71],

Proof. By Jensen’s inequality and Fubini,

p
/ ( |f(x—y)|dv(y)) dx = [ f(x — ) Pdv{y)dx
R4 R Rd JRd
_ / f(x — y)Pdxdviy)
Rd Rd

~ [ [ 1rtopaxany)
RY JRA

= [If1l;

Definition 5.8 (Convolution of probability measures)
Suppose X, Y independent random variables with laws 1, v respectively. Define p1% v to be the density
of X + Y, namely

o v{A) = /R bt y)dulaviy)

Proposition 5.9. If y has density f with respect to the Lebesgue measure, then p* v has density f * v
with respect to the Lebesqgue measure.

Proof Fubint.

Proposition 5.10.

—

] frv="r0

5.2 Gaussian convolutions and Fourier inversion

Definition 5.11 (Centred Gaussian)
For t > 0, define the centred Gaussian probability density on RY with variance t by
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gelx) = (2t) " exp ( _HZXtHZ )

Proposition 5.12.

) o\ 92
o) = e (5] = (27) guite)

Proof. Let Z be a standard one-dimensional Gaussian random variable. Then as Z is integrable, ¢ is differ-
entiable, and we can differentiate under the integral sign to obtain

: 1 )
¢y (u) =E (iZe") = N /R e ixe ™ Pdx = —ug(u)

Solving the differential equation we obtain that ¢, (u) = e~"12. Now consider d standard normal random
variables 7, ..., Z4,and set Z = (/4, .. ., Zg). Then VtZ has density g;. So

d d
gi(u) =E (ei“'ﬁz) =E |_| eluViz | — |_| br(uN1) = o uI2t2
J=1 j=1

O
Corollary 5.13. The Fourier inversion formula holds for centred Gaussian densities, that is,
1 ~ —iu-x
gf(X) = (2]T)d Rd gf(u)e du
Proposition 5.14. The Fourier inversion formula holds for all Gaussian convolutions, that is,
f _ Fx gy(u)e**d
(F*ge)(x) = W - * ge(u)e u
Proof. We use Fourier inversion for g, and Fubini's theorem
(2m)?f * gi(u) = (27)? y fix = y)gily)dy
RI x R4
:/ fix — y)e X9 g (u)e " dudy
RI xRd
- / F(u)ge(u)e " du
Rd
= / f/*zf(u)e*"“'xdu
Rd
O

Lemma 5.15. Let f € [P with p < oo, then ||f>|<gt— pr —0ast—0.
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Proof Given € > 0, there exists h € C.(RY) such that ||f — th < €. Then
00— huall, = i — =gl < 1], < e
. Thus, by a 3¢ argument, suffices to prove the result for h. Set

=/ Ih(x — y) — hx)|Pdx
Rd

Then |e(y)| < ZPHhHZ and e is continuous at 0 by the dominated convergence theorem. By Jensen's

inequality and bounded convergence theorem,

p
[h*g.—hl} = —y) = h(x)ge(y)dy| dx
/ / (x —y) — h(x)]" g¢(y)dydx
/ \[U )g1(y)dy — 0
as t — 0. O

Theorem 5.16. Let f € L', define for t > 0,

fi(x) = (ZjT)d N )A((u)ef”u”tlze*"“'xdu

Then ||f; — f||, = 0 as t — 0. Moreover, if f € L', then

1 7 —iu-x
f(X)ZW/Rdf(U)e dU

Proof. By Fourier inversion of Gaussian convolutions, f; = f % g, so the convergence result follows from the
previous lemmas. Suppose f € L. Then by the dominated convergence theorem, for all x € R?, as t — 0,

1 7 —iu-x
f[(X) — W ]Rd f(U)e du

But f;, — f a.e. for some subsequence t, — 0. Hence the Fourier inversion formula holds for f. O

5.3 Fourier-Plancherel

Theorem 5.17. Suppose f & L' 1 12 Then |7 = (2m)?2(lf]|,

Proof If f,f & L, then Fourier inversion formula holds and f,7 € [, and (x,u) — f(x)?(u) is integrable on
R? x R?. So by Fubini's theorem, we get
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a)||f|> = / F(x)F(x)dx

(/ ?(u)e"“'xdu) F(x)dx
d R?

(u) (/Rd f(x)e“"xdx) du

7

=
<

—>

¥ 7

Il
>

(u

=
[l

u

]
4
N

e

2
Now suppose f € L' N [?, and let fy = f x g;. By lemma, f; — f in L% so ||f]|, — ||f]|,- Furthermore,

—lul?/2 7, , J H?Hz by monotone convergence. But f;,f, € L' so we are
done. O

fi=T1g; and gi(u) = e Hence

Corollary 5.18. We can extend the (rescaled) Fourier transform to a unique isometry F : [? — [,
Proof ' N [? is dense in [?. O

5.4 Weak convergence and characteristic functions

Definition 5.19 (weak convergence of measures)

Let  be a Borel probability measure on RY, (1,) a sequence of such measures. We say that y, — p
weakly if 1,(f) — p(f) for all continuous bounded functions f on RY.

Note that if we consider the space of (signed) measures as the dual space to the Banach space of continuous
bounded functions, then “weak convergence of measures” is in fact weak- convergence in the dual space sense.
However, in probability theory weak convergence is not as useful, so convention is that this is called “weak
convergence”.

Definition 5.20 (weak convergence of random variables)

Given a random variable X in RY and a sequence of random variables (X,) on R? we say that X, — X
weakly if px, — px weakly.

Theorem 5.21. Let X be a random variable on RY. Then the distribution px of X is uniquely determined
by its characteristic function ¢x. Furthermore, if ¢x € L, then px has density fx with respect to Lebesque
measure, where

fx(x) = (217)0, /]Rd ¢)X(u)e’i”'xdu

Proof. Let Z be a standard Gaussian in R? independent of X. Then \/tZ has density g;, and X + +/tZ has
density f; = uy * g;. Then f,(u) = ¢x(u)e™"""? so by Fourier inversion formula,

1 v
ft()() = W /l;d d)X(u)e—HuHZt/ZG—lu»(du

By bounded convergence, for any g,

]R gy = E(g(X +ViZ)) - E(glX) = [ glx)din(x)

Rd
Hence ¢x determines px. The density statement follows from the dominated convergence theorem. O
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Theorem 5.22 (Levy continuity). Suppose X,, X random variables on RY such that ¢x — ¢y pointwise
on R?. Then X, — X weakly.

Proof By density, suffices to show that E(g(X,)) — E(g(X)) for all ¢ € C*([RY). Fix g € C=, and let
C = ||g'||,. Then g is C-Lipschitz. Fix € > 0, choose t > 0 such that v/tCE|X| < e. On the other hand, by
Fourier inversion and dominated convergence theorem, we have that

L _
(27)d / g(X)px, (u)e™ e U dudx
RI xR

1 . ,
~ 2y /d dg(X)¢X(U)e’”“"z”ze’”'”dudx
RIxR

=E(g(X + V12))
Hence |E(g(X,)) — E(g(X))| < € for sufficiently n. O

E(g(X, + VtZ)) =

6 Ergodic theory

Definition 6.1 (measure preserving transformation)

Suppose (E, &, p) is a o-finite measure space, 6 : E — E measurable. Then 8 is called measure preserving
if

forall Ae €.

Proposition 6.2. For all f € L'(y), u(f) = p(f o 9).

Definition 6.3 (invariant function)

A measurable map f: E — R is O-invariant if fo 6 = f.

Definition 6.4 (invariant set)

A set A € € is O-invariant if 07'(A) = A The collection & of all 6-invariant sets forms a o-algebra.

Proposition 6.5. f is O-invariant if and only if f is &-measurable.

Definition 6.6 (ergodic)
A measure preserving transformation 6 is ergodic if for all A € &, p(A) =0 or u(AC) =0.

Proposition 6.7. Suppose 60 is ergodic and f is G-invariant. Then f is a.e. constant.

6.1 Birkhoff and von Neumann ergodic theorems

Throughout this subsection, let (£, &, ) be a o-finite measure space, with a measure preserving transformation
0. Given a measureable function f, set Sy=0and S, =f+fo B+ - +fo 6"
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Lemma 6.8 (maximal ergodic). Let S* = sup,~y S, Then

/ fduy >0
5450

Proof. Set S* = maxo<men Sy and A, = {S: > 0}. Thenform=1,.. ., n,

Sm:f+5m7106£f+5:09

On A,, we have S¥ = maxj<men Sm, 50 S* <+ S* 00, and on AC, we have S* = 0 < S0 6. Hence we

have that

/S,fd,ugj fdu+/5;‘o@du=/ fdu+/5:du<oo
E Ay E An E
/fduzo
AIY

As A, /' {S* > 0}, the result follows by dominated convergence theorem.

which forces

Theorem 6.9 (Birkhoff). Suppose f € L'(u). Then there exists a O-invariant f € L'(y) such that

S/?
— — f ae.
n

and HfH1 < I
Proof. Non-examinable and omitted.

Theorem 6.10 (von Neumann). Suppose p(E) < oo, and p < co. Then for all f € [P, S,/n — f in LP.

Proof We have that ||f o Q”’HP = Hpr for all m, so by the triangle inequality, HSn/an < Hf”p. Fix € > 0,
then choose K such that Hf — gH < g, where g = (—K) vV f A K. By Birkhoff's theorem, S,(g)/n — g a.e. We

have that |S,(g)/n] < K for all n, so by bounded convergence, there exists N such that for all n > N,

[Sulalin—al], < e

By Fatou's lemma,

H,‘r,ng:/ummusn(ffg)/nlpdu
2 E "
< lim mf/ |Sa(f = g)In|’du
n E
<|r-ql;

Thus for n > N,

Sn(f)In — 7Hp <3¢
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6.2 Shift map

In this section, let £ = RN with the product topology. Then the Borel g-algebra is generated by the coordinate
projections 7, : E — R, and it is also generated by the s-system

C= {A = |_|A,7 | A, € B, A, =R for all but finitely many n}
n=1
Let (X,) be an iid sequence of random variables with distribution m, defined on a probability space (Q, F, P).
Then define X : Q — E by

X(w) = (Xi(w), )
which is measureable. Let = Po X~ be the image measure. Then y is the unique measure such that
u (|_|A[ = ]mA)

i=1 i=1
Now define the shift map 6: E — E, O(x) = (x2,x3,...).

Theorem 6.11. The shift map is measure preserving and ergodic.

Proof For A € C, we have that

pA) =PXi €A, Xy € An)
=P(X; € A1) - P(Xn € An)
=P(X; € A1) P(Xns1 € An)
= p(6"(A)

Thus by uniqueness, p = o 07", so O is measure preserving.

Let T, = 0(Xy41,...) and T = (), 7, be the tail o-algebra. Then for A € 0(C), (6")""(A) € T,. Thus,
if A is invariant, then A = (8")"1(A) € T, for all n. Hence by the Kolmogorov zero-one law, u(A) = 0 or
u(A) = 1. O

7 Limit theorems

Theorem 7.1 (central limit). Let (X;) be iid random variables with mean O and variance 1. Then

X1+"'+Xn

= 2~ NO)

That s,

for all x € R.

Proof. Set X = X, then ¢x satisfies ¢x(0) = 1, ¢\ (u) = [E(Xe™ ) and ¢ (u) = —E(X?e*Y). In particular,
¢'(0) =0 and ¢”(1) = —1. Then Taylor's theorem implies that
2

(V) = 1= 5 +ofv?)

Thus, if we let ¢, be the characteristic function of (X7 + -+ + X;)/\/n, then by independence ¢,(u) =
(qu(u/ﬁ))” by independence.

2 n
bo(u) = (1 —2”n+o(1/n))
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The complex logarithm satisfiex log(1 + z) = z + 0(z), so we get that
log(¢n(u)) = nlog(1 — u?/(2n) + o(1/n)) — —u?/2 as n — oo
u?)2

By continuity, ¢,(u) — e™""'4, so the result follows by Levy continuity. O

Theorem 7.2. Suppose [ |x|dm(x) < co. Set v = [ xdm(x). Then

u(XERN| Wi (u)zv)zq

n—o00 n

Proof Set f(x) = x1, which is in L'(y). So by the ergodic theorems with 8 = id,

(x1+~<+x,, ) (5n )
pl———v|=p| = —>v
n n

By Birkhoff, we have that S,/n — f as. By von Neumann,

= () = umu(sn”)=u<f>=v

Theorem 7.3 (strong law of large numbers). Suppose (X;) is an iid sequence of integrable random variables.
Then

1 n
— Z X,' — EXL
n i=1

almost surely.

Proof. Inject X : Q — E as before, and notice that

1 .
IP(E X, = EX; (x\ix“r + X

n

=1

n

=H

O

Remark 7.4. By the von Neumann ergodic theorem, the previous two theorems can be strengthened to L' convergence.
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