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Notation 0.1. Throughout, we will fix the notation that(i) C∞ is the Riemann sphere,(ii) C∗ = C \ 0 is the punctured complex plane(iii) D(z, r) is the open disc centred at z ∈ C with radius r ,(iv) D∗(z, r) = D(z, r) \ z is the punctured disc,
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(v) D = D(0, 1) is the open unit disc,(vi) T = ∂D = S1 is the unit circle
1 Analytic functions in C

1.1 Analytic and meromorphic functionsEverything in this subsection except Casaroti-Weierstrass is from IB Complex analysis, so proofs have beenomitted.
Definition 1.1 (domain)A domain is an open connected subset of C.
Definition 1.2 (holomorphic, analytic)Let D ⊆ C be a domain, f : D → C is holomorphic, or analytic if f is C-differentiable at every z0 ∈ D.Equivalently, for any z0 ∈ D, there exists r > 0 such that f has a power series expansion

f (z) = ∞∑
n=0 an(z − z0)n

for any z ∈ D(z0, r) ⊆ D.
Proposition 1.3 (principle of isolated zeroes). Let f : D → C be an analytic function. If f (z0) = 0, theneither f is identically zero on a neighbourhood of z0, or f is nonzero on a punctured neighbourhood of z0.
Corollary 1.4 (identity principle). Let f , g : D → C be analytic functions. Either

(i) {z ∈ D | f (z) = g(z)} is discrete,(ii) or f = g on D.
Definition 1.5 (isolated singularity)An analytic function f : D∗(z0, r) → C has an isolated singularity at z0.
Proposition 1.6 (Laurent series). If an analytic function f has an isolated singularity at z0, then

f (z) = ∞∑
n=−∞

an(z − z0)n
on D∗(z0, r) for some r > 0.

Definition 1.7 (classification of singularities)Suppose f has Laurent series
f (z) = ∞∑

n=−∞
an(z − z0)n
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Then
(i) if an = 0 for n < 0, then z0 is a removable singularity. In this case, f can be extended to an analyticfunction g(z) on a neighbourhood of z0,(ii) if there exists m > 0 such that am = 0 for n < −m, a−m ̸= 0, then f has a pole of order m at z0, and

f (z) = (z − z0)−mg(z)
for some analytic function g defined on a neighbourhood of z0, and with g(z0) ̸= 0,(iii) otherwise (i.e. an ̸= 0 for infinitely many n < 0), then we say f has an essential singularity at z0.

Theorem 1.8. An analytic function f has a removable singularity at z0 if and only if f is bounded on somepunctured disc D∗(z0, r).
Theorem 1.9 (Casaroti-Weierstrass). An analytic function f : D → C has an essential singularity at z0 ifand only if f (D∗(z0, r)) is dense in C, for any r > 0 such that D∗(z0, r) ⊆ D.

Proof. ( ⇐= ) First suppose z0 was removable. Then f (D∗(z0, r)) is bounded for some r > 0, so it can’t bedense. Now suppose z0 was a pole of order m. Then
f (z) = (z − z0)−mg(z)where g is analytic and nonzero on a neighbourhood of z0. Fix ε > 0 such that

|g(z)| ≥ ε > 0on some punctured disc D∗(z0, r). Therefore, on that disc,
|f (z)| ≥ |g(z)|

|z − z0|m ≥ ε
rmso f is bounded away from 0 on D∗(z0, r), so it is not dense.Conversely, suppose f (D∗(z0, r)) was not dense. Then there exists an open disc D(w0, ε) disjoint from

f (D∗(z0, r)). Now define
h(z) = 1

f (z) − w0defined on D∗(z0, r). Since |f (z) − w0| ≥ ε for all z ∈ D∗(z0, r), we have that |h(z)| ≤ 1
ε . Hence h has aremovable singularity at z0. Then we have that

f (z) = 1
h(z) + w0

so if h(z0) ̸= 0 then f has a removable singularity at z0, and if h(z0) = 0 then f has a pole at z0.
Definition 1.10 (meromorphic function)Let D ⊆ C be a domain, A ⊆ D discrete, f : D \ A → C holomorphic, f has a pole at each z ∈ A, then fis a meromorphic function on D.

1.2 Analytic continuation

3



Definition 1.11 (function element)Let D ⊆ C be a domain. A function element on D is a pair (f , U), where U is a subdomain of D and f isan analytic function on U .
Definition 1.12 (direct analytic continuation)Suppose (f , U), (g, V ) are function elements on D, then say that (g, V ) is a direct analytic continuation of(f , U), written (f , U) ∼ (g, V ) if U ∩ V ̸= ∅ and f |U∩V = g|U∩V .
Definition 1.13 (analytic continuation)If there exists a finite sequence of direct analytic continuations

(f , U) = (f1, U1) ∼ · · · ∼ (fn−1, Un−1) ∼ (fn, Un) = (g, V )then we say that (g, V ) is an analytic continuation of (f , U), and we write (f , U) ≈ (g, V ).
Proposition 1.14. ≈ is an equivalence relation.
Definition 1.15 (complete analytic function)A ≈-equivalence class F of function elements on D is called a complete analytic function on D.
Definition 1.16 (analytic continuation along a path)Let (f , U) be a function element on a domain D, and consider an analytic continuation (f , U) ≈ (g, V ),given by

(f , U) = (f1, U1) ∼ · · · ∼ (fn−1, Un−1) ∼ (fn, Un) = (g, V )Let γ : [0, 1] → D be a continuous path, if there exists a dissection
0 = t0 < t1 < · · · < tn−1 < tn = 1such that γ([ti−1, ti]) ⊆ Ui for each 1 ≤ i ≤ n, then (g, V ) is an analytic continuation of (f , U) along γ .We write (f , U) ≈γ (g, V ).

1.3 Natural boundaryThroughout, consider wlog a power series
f (z) = ∞∑

n=0 anz
n

with radius of convergence 1. In particular, it converges absolutely and uniformly on any closed disccontained in D.
Definition 1.17 ({regular, singular} point)A point z0 ∈ T is a regular point for f if there exists an open neighbourhood U of z0 and an analyticfunction g on U such that g = f on U ∩ D. Otherwise, z0 is a singular point for f .
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Proposition 1.18. The set of regular points is open, and the set of singular points is closed.
Proposition 1.19. There exists z ∈ T which is a singular point for f .

Proof. Suppose not. Then for each z ∈ T there exists εz > 0 such that f extends analytically over D(z, εz ).By compactness, we can cover T with finitely many of these, so f extends analytically over some D(0, 1 + δ)for some δ > 0. But this implies that the radius of convergence is at least 1 + δ1, contradiction.
Definition 1.20 (natural boundary)If every z ∈ T is a singular point for f , then we say that T is a natural boundary for f .

1.4 Complex logarithmIn this subsection, we construct the complete analytic function for the logarithm.Define the domains
Un = {reiθ | r > 0, (n − 1)π/2 < θ < (n+ 1)π/2}with corresponding functions fn : Un → C given by

fn(reiθ ) = log(r) + iθ where (n − 1)π2 < θ < (n+ 1)π2Thse give us function elements Fn = (fn, Un). By considering the separate cases for m− n mod 4, we seethat Fm ∼ Fn ⇐⇒ |m − n| ≤ 1. With this, all the Fn are in the same ≈-equivalence class, so give us acomplete analytic function, which is the complex logarithm.
2 Riemann surfaces
2.1 Covering maps

Definition 2.1 (covering map)Let X, X̃ be path connected Hausdorff topological spaces, a covering map π : X̃ → X is a local homeomor-phism, that is, each x̃ ∈ X̃ has a neighbourhood Ũ such that π(Ũ) is open, and π|Ũ is a homeomorphismonto its image.
Definition 2.2 (regular covering map)A covering map π : X̃ → X is regular if for each x ∈ X , there is an open neighbourhood U of x and adiscrete set ∆x such that π−1(U) is homeomorphic to U × ∆x , and the diagram

π−1(U) U × ∆x

U

π
proj1

∼

commutes.
1For example by the integral formula for Taylor series.
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Remark 2.3. In Algebraic topology (or rather, the rest of maths), “covering maps” in this course are called localhomeomorphisms, and “regular covering maps” are called covering maps.
Proposition 2.4. exp : C → C∗ is a regular covering map.

2.2 Riemann surfacesThroughout, assume R is a connected Hausdorff topological space.
Definition 2.5 (chart, atlas)A chart on R is a pair (φ,U), where U ⊆ R open, φ : U → D is a homeomorphism onto D ⊆ C open. Aset A of charts is called an atlas on R if

1. ⋃
(φ,U)∈A

U = R

2. if (φ1, U1), (φ2, U2) ∈ A, with U1 ∩ U2 ̸= ∅, then the transition function
φ1 ◦ φ−12 : φ2(U1 ∩ U2) → φ1(U1 ∩ U2)

is analytic.
Definition 2.6 (conformal structure)A conformal structure on R is an atlas A on R which is maximal. That is, if (ψ, V ) is a chart on R suchthat for any (φ,U) ∈ A, the transition function φ ◦ ψ−1 is analytic, then (ψ, V ) ∈ A.
Definition 2.7 (Riemann surface)A Riemann surface is a pair R = (R,A), where A is a conformal structure on R .
Lemma 2.8. Every atlas A is contained in a unique conformal structure Â.

Proof. Existence: Define
Â = {(ψ, V ) chart on R s.t. ψ ◦ φ−1 analytic for all (φ,U) ∈ A

}
By definition this is maximal, so we just need to show that this is an atlas. Covering is clear as A ⊆ Â, sowe only need to show that the transition functions are analytic. Choose (ψ1, V1), (ψ2, V2) ∈ Â, and p ∈ V1 ∩V2.Since A is an atlas, there exists (φ,U) ∈ A such that p ∈ U . Then

ψ1 ◦ ψ−12 = (ψ1 ◦ φ−1) ◦ (φ ◦ ψ−12 ) = (ψ1 ◦ φ−1) ◦ (ψ2 ◦ φ−1)−1
is analytic at ψ2(p). But p was arbitrary so we are done.
Uniqueness: Suppose A′ is any atlas containing A, then Â contains A′ by definition.

Lemma 2.9. Every open subset of a Riemann surface is a Riemann surface.
Proof. Just restrict the charts.
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Canonical charts on Riemann surfacesHere we list the charts which we choose to be “canonical” for some Riemann surfaces.
Definition 2.10 ((open subsets of the) complex plane)For C, we take the chart id : C → C. For U ⊆ C open, we can take the inclusion map ι : U ↪→ C .
Definition 2.11 (Riemann sphere)Let C∞ = C∪ {∞} be the Riemann sphere. we define an atlas with two charts, given by id : C → C and
z ∈ C∞ \ {0} 7→ 1

z ∈ C.
2.3 Analytic functions

Definition 2.12 (analytic maps)Let R, S be Riemann surfaces, a continuous map f : R → S is analytic, or holomorphic if for all charts(φ,U) on R , (ψ, V ) on S , the map ψ ◦ f ◦ φ−1 is analytic on φ(U ∩ f−1V ).
Lemma 2.13. A continuous map R → S of Riemann surfaces is a analytic if and only if for each p ∈ R ,there exists a chart (φp, Up) on R with p ∈ Up, and a chart (φp, Vp) on S with f (p) ∈ Vp, such that

ψp ◦ f ◦ φ−1
pis analytic at φp(p).

Proof. ( =⇒ ) is clear. For the converse, notice that
ψ ◦ f ◦ φ−1 = (ψ ◦ ψ−1

p ) ◦ (ψp ◦ f ◦ φ−1
p ) ◦ (φp ◦ φ)and the transition functions are analytic.

Lemma 2.14. If f : R → S and g : S → T are analytic, then g ◦ f is analytic.
Proof. By the previous lemma we can just check this at p ∈ R . Then

θf (p) ◦ (g ◦ f ) ◦ φ−1
p = (θf (p) ◦ g ◦ φ−1

f (p)) ◦ (ψf (p) ◦ ψ−1
p ) ◦ (ψp ◦ f ◦ φ−1

p )for appropriate choices of charts.
Definition 2.15 (conformal equivalence)A conformal equivalence of Riemann surfaces is an analytic bijection f : R → S with analytic inverse.
Lemma 2.16. If π : R̃ → R is a covering map, R is a Riemann surface, then there is a unique conformalstructure on R̃ such that π is analytic.

Proof. Existence: Each point p ∈ R̃ has a neighbourhood Ñp such that π|Ñp
is a homeomorphism onto itsimage. Since R is a Riemann surface, we have a chart (φp, Up) about πp. Set φ̃p = φp ◦π , Ũp = Ñp ∩π−1(Up),we get a chart (φ̃p, Ũp) about p. We want to show that
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Ã = {(φ̃p, Ũp)}
p∈R̃defines an atlas on R̃ . The fact that the charts cover is clear by construction, so suffices to check that thetransition functions are analytic. But (with suitable restrictions),

φ̃p ◦ φ̃−1
q = (φp ◦ π) ◦ (π−1 ◦ φ−1

q ) = φp ◦ φ−1
qwhich is a transition function on R , so analytic. Hence Ã is an atlas, so it defines a conformal structure.At p ∈ R̃ , we can take charts (φ̃p, Ũp) and (φp, Up), and we have that

φp ◦ π ◦ φ̃−1
p = φp ◦ π ◦ π−1 ◦ φ−1

p = idwhich is analytic at p, so π is analytic.
Uniqueness: Now suppose B̃ is a conformal structure which makes π into an analytic map. Let p ∈ R̃ bearbitrary, (ψ, V ) ∈ B̃ be any chart about p. Since π is analytic, the composition

φ̃p ◦ ψ−1 = φp ◦ π ◦ ψ−1
is analytic, so φ̃p has analytic transition functions with every chart in B̃ , so Ã = B̃ .

Definition 2.17 (analytic function)An analytic function on a Riemann surface R is an analytic map R → C.
Proposition 2.18. Let f be a non-constant analytic function on a Riemann surface R , and let p ∈ R be azero of f . Then there exists a chart (φ,U) about p with φ(p) = 0 such that

f ◦ φ−1(z) = zmfor some m > 0.
Proof. Choose a chart (ψ, V ) about p, where wlog ψ(p) = 0. Then expanding in Taylor series, we have that

f ◦ φ−1(z) = zmg(z)where g is analytic, and g(0) ̸= 0. By the identity principle for Riemann surfaces, m > 0 since f is non-constant. Now as g(0) ̸= 0 and g is continous, there exists δ > 0 such that g(D(0, δ)) ⊆ D(g(0), |g(0)|). Butthen there is an analytic m-th root on D(g(0), |g(0)|), so we have an analytic function m
√
g(z) in a neighbourhoodof 0. Define h(z) = z m

√
g(z). Then h′(0) = m

√
g(0) ̸= 0, so by the inverse function theorem, h has an inverse onsome D(0, ε). Setting φ = h ◦ ψ and U = φ−1(D(0, ε)) gives the desired chart.

2.4 Complex ToriIn this subsection, we construct the complex tori.Let τ1, τ2 ∈ C be R-linearly independent. Let Λ = ⟨τ1, τ2⟩ be the subgroup generated by them. Let
T = C/Λ be the quotient group, π : C → T be the quotient map.We consider T with the quotient topology.

Definition 2.19 (fundamental parallelogram)The fundamental parallelogram of T is P ⊆ C, the parallelogram with vertices 0, τ1, τ2, τ1 + τ2.
T is obtained (topologically) by gluing opposite edges of P together. Therefore, it is homeomorphic to

S1 × S1 and is compact and Hausdorff.
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Lemma 2.20. π : C → T is a regular covering map.
Proof. Choose ε < min {|λ| | λ ∈ Λ \ 0} /2. Then for any z ∈ C, D(z, ε) ∩ z + Λ = {z}. Therefore, if
p = π(z0) ∈ T , then U = π(D(z0, ε)) is open, with preimage

π−1(U) = ⊔
λ∈ΛD(z0 + λ, ε)

Finally, we use π to construct a conformal structure on T . For any z0 ∈ C, let U = π(D(z0, ε)) with ε asabove. Then π restricts to a homeomorphism D(z0, ε) → U , so we can set φ = π|−1
D(z0,ε) to define a chart (φ,U)on T . Since z0 is arbitrary, the set of all such charts covers T . Furthermore, if (ψ, V ) is another chart of thisform, the transition fucntion φ ◦ ψ−1 is just translation by some λ ∈ Λ, which is analytic.

2.5 Open mapping theorem

Theorem 2.21 (Open mapping theorem). Any non-constant analytic map of Riemann surfaces f : R → Sis an open map.
Proof. Consider an open set W ⊆ R . Let p ∈ W be arbitrary. Then choose charts (φ,U) about p and (ψ, V )about f (p). By the identity principle for Riemann surfaces, f is not locally constant, so

ψ ◦ f ◦ φ−1 : φ(U ∩W ∩ f−1V ) → ψ(V )is a non constant analytic map, so by the open mapping theorem for domains in C, ψ ◦ f (U ∩ W ∩ f−1V )is open. Since ψ is a homeomorphism onto it’s image, f (U ∩ W ∩ f−1V ) is an open neighbourhood of f (p) in
f (W ). As p was arbitrary, f (W ) is open.

Corollary 2.22. Let f : R → S be a non-constant analytic map of Riemann surfaces. If R is compact, then
f is surjective, and S is compact.

Proof. f (R ) is a compact subset of a Hausdorff space, so closed. On the other hand, f (R ) is open by the openmapping theorem. But S is connected, so f is surjective.
2.6 Harmonic functions

Lemma 2.23. Let D ⊆ C be a disc. Then u : D → R is harmonic if and only if u = Re(f ) for some
f : D → C analytic.

Proof. Omitted (ES1 Q11).
Definition 2.24 (harmonic function)A function u : R → R on a Riemann surface R is harmonic if for any chart (φ,U) of R , u◦φ−1 is harmonic.
Proposition 2.25 (identity principle for harmonic functions). Let u, v : R → R be harmonic. Either u = v ,or the set

{p ∈ R | u(p) = v (p)}has empty interior.
Proof. Omitted (ES1 Q12).
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Theorem 2.26 (open mapping theorem for harmonic functions). Any non-constant harmonic function u :
R → R is an open map.

Proof. Suppose W ⊆ R is open. Let p ∈ W and choose a chart (φ,U) about p. Shrinking U if necessary, thereis an analytic function f : φ(U) → C such that u ◦ φ−1 = Re(f ). If f is constant on φ(U), then u is constant on
U , hence it is constant on R by the identity principle. Therefore, f is non-constant, so f ◦ φ(U) is open by theopen mapping theorem for Riemann surfaces.Say f ◦ φ(p) = a + ib. Since the topology on C is the same as the one on R × R, f ◦ φ(U) contains anopen set of the form

(a − δ, a+ δ) + i(b − ε, b+ ε)But a = u(p), hence u(W ) contains (u(p) − δ, u(p) + δ). Since p ∈ W was arbitrary, u(W ) is open.
2.7 Meromorphic functions

Definition 2.27 (meromorphic function)A meromorphic function on a Riemann surface R is an analytic map f : R → C∞ which is not identically
∞.
Proposition 2.28. Let D ⊆ C be a domain. A function f : D → C is meromorphic if and only if thereexists a discrete subset A ⊆ D such that f : D \ A → C is analytic, and f has a pole at each a ∈ A.

Proof. For ( =⇒ ), let A = f−1(∞). By the identity principle for Riemann surfaces, A is discrete. Consider thestandard chart 1/z on C∞ about ∞, any a ∈ A has a neighbourhood on which 1
f (z) is analytic, so we can write1

f (z) = (z − a)mg(z)
for some m ≥ 1, and g analytic with g(a) ̸= 0. Therefore, near a we have that

f (z) = (z − a)−m 1
g(z)so a is a pole of f . Converse follows by reversing the above argument.

2.8 Gluing Riemann surfaces

Definition 2.29 (gluing)Let X, Y be topological space, suppose we have X ′ ⊆ X and Y ′ ⊆ Y , and a homeomorphism Φ : X ′ → Y ′.Then the quotient space
X ∪Φ Y = X ⊔ Y

∼where ∼ is the relation generated by x ∼ Φ(x) for all x ∈ X ′. We call this the result of gluing X and
Y along Φ.
Proposition 2.30. Let R1, R2 be Riemann surfaces, suppose Sj ⊆ Rj for j = 1, 2 are nonempty connectedopen subsets, Φ : S1 → S2 is a conformal equivalence of Riemann surfaces. Then there is a uniqueconformal structure on

R = R1 ∪Φ R2
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such that the inclcuion maps ij : Rj ↪→ R are analytic. In particular, if R is Hausdorff then it is aRiemann surface.
Proof. For j = 1, 2, every chart (φj , Uj ) on Rj gives a chart (φj ◦ i−1

j , ij (U)) on R . By construction, these chartscover R . The transition functions betweens two charts coming from Rj are just the transition functions on Rj ,hence analytic. Now if we have (φ1, U1), (φ2, U2) are charts on R1, R2 respectively, the resulting transitionfiunction is
φ2 ◦ i−12 ◦ i1 ◦ φ−11 = φ2 ◦ Φ ◦ φ−11which is analytic as Φ is a conformal equivalence. For the uniqueness statement, suppose A is any conformalstructure on R which makes ij analytic. If (φj , Uj ) is a chart in Rj , and (ψ, V ) ∈ A, then

ψ ◦ ij ◦ φ−1
jis analytic, so φj ◦ i−1

j has analytic transition functions with every chart in A, so it is in A by maximality.Finally, as R1, R2 are path connected, S1, S2 nonempty, R is path connected. Therefore, if R is Hausdorff,then it is a Riemann surface.
3 Covering spaces, monodromy and analytic continuation
3.1 Covering spaces

Definition 3.1 (lift)Suppose π : X̃ → X is a covering map, γ : [0, 1] → X a path. Then a lift of γ along π is a path
γ̃ : [0, 1] → X̃ such that π ◦ γ̃ = γ .
Proposition 3.2 (uniqueness of lifts). Suppose γ̃1, γ̃2 are lifts of γ along a covering map π . If γ̃1(0) = γ̃2(0),then γ̃1 = γ̃2.

Proof. Let
I = {t ∈ [0, 1] | γ̃1(t) = γ̃2(t)}Then I = (γ1 × γ2)−1(∆X ) is closed as X Hausdorff implies the diagonal is closed. By looking in an openset Ũ such that π|Ũ is a homeomorphism, I is open.

Proposition 3.3 (path lifting lemma). Let π : X̃ → X be a regular covering map, γ : [0, 1] → X be a path,
π(x̃) = γ(0). Then there exists a unique lift γ̃ of γ with γ̃(0) = x̃ .

Proof. Omitted, see algebraic topology.
Notation 3.4. We write α ≃ β for paths α, β being path homotopic, i.e. rel end points.
Definition 3.5 (simply connected)A topological space X is simply connected if X is path connected and every pair α, β of paths with thesame end point are homotopic.
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Theorem 3.6 (monodromy theorem). Let π : X̃ → X be a covering map, α, β paths in X . Suppose
(i) α ≃ β in X ,(ii) there are lifts α̃ of α and β̃ of β , such that α̃(0) = β̃(0),(iii) every path γ in X with γ(0) = α(0) = β(0) has a lift to X̃ with γ̃(0) = α̃(0) = β̃(0).

Then α̃ = β̃ . In particular, α̃(1) = β̃(1).
Proof. Omitted. It’s the homotopy lifting lemma from algebraic topology.
3.2 Monodromy groupLet π : X̃ → X be a regular covering map, and fix a base point x0 ∈ X .For a loop γ based at x0 and x̃ ∈ π−1(x0), let γ̃x̃ be the unique lift of γ at x̃ . Notice

π(γ̃x̃ (1)) = γ(1) = x0so γ̃x̃ (1) ∈ π−1(x0). Define a map σγ : π−1(x0) → π−1(x0) by
σγ (x̃) = γ̃x̃ (1)

Lemma 3.7.(i) σγ only depends on the homotopy class of γ ,(ii) the constant map lifts to the identity map,(iii) if γ(t) = γ(1 − t), then σγ = σ−1
γ .(iv) σαβ = σβ ◦ σαIn particular, the set of all σγ forms a group.

Proof. (i) follows from the monodromy theorem, (ii)-(iv) follow from uniqueness of lifts.
Definition 3.8 (monodromy group)The monodromy group of the regular covering map based at x0 is

Hx0 ≤ Sym(π−1(x0))which is the subgroup formed of all σγ .
Proposition 3.9. The isomorphism class of Hx0 is independent of the choice of base point.

Proof. γ 7→ αγα defines a homomorphism of monodromy groups.
3.3 Space of germs

Notation 3.10. Let (f , U) and (g, V ) be function elements on D, For any z ∈ D ∩ E , we write
(f , U) ≡z (g, V )if f = g on a neighbourhood of z .
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Definition 3.11 (germ)Let (f , U) be a function element and z ∈ U . The ≡z-equivalence class of (f , U) is called the germ of f at
z , denoted by [f ]z .We say [f ]z = [g]w if and only if z = w and f = g on a neighbourhood of z = w .
Definition 3.12 (space of germs)The space of germs over D is

G = {[f ]z | z ∈ D, (f , U) function element with z ∈ U}

Notation 3.13. For a function element (f , U) on D, we write
[f ]U = {[f ]z | z ∈ U}

Lemma 3.14. Unions of sets of the form [f ]U defines a topology on G.
Proof. Taking the empty union shows ∅ is open. By definition, each [f ]z ∈ [f ]U for some U , so G is alsoopen. By definition the topology is closed under unions, so we only need to check that it is closed under finiteintersections. By some basic set manipulation, suffices to show any set of the form [f ]U ∩ [g]V is open. Considerany germ [h]z ∈ [f ]U ∩ [g]V . Then z ∈ U ∩ V and h agrees with f and g on a neighbourhood W of z . So [h]Wis an open neighbourhood of [h]z in [f ]U ∩ [g]V .

Lemma 3.15. G is Hausdorff.
Proof. Consider distinct germs [f ]z ̸= [g]w , and choose representative function elements (f , U) and (g, V ). If
z ̸= w , then we by shrinking U, V we can assume U, V are disjoint. So [f ]U ∩ [g]V = ∅.The case z = w is all thar remains. In this case, choose function elements (f , U) and (g,U) for U connected.Suppose [h]x ∈ [f ]U ∩ [g]U . Then x has a neighbourhood W in U in which f = g = h. By the identity principle,
f = g on U . So [f ]U = [g]U , and so [f ]z = [g]z . Contradiction.

Definition 3.16 (forgetful map)Let G be the space of germs over a domain D. The forgetful map π : G → D is
π([f ]z ) = z

Lemma 3.17. For each component G ⊆ G, the restriction of the forgetful map π : G → D is a coveringmap.
Proof. Let U ⊆ D be open. Then

π−1(U) = ⋃
V⊆U

[f ]V
where we take the union over all function elements on U . In particular, π is continuous. The restriction of πto any open set of the form [f ]U has an inverse, namely z 7→ [f ]z . Furthermore, the inverse is also continuous, asthe preimage of an open set [f ]V is the open set V ∩U . Since the sets [f ]U cover G, π is a local homeomorphism,and so its restriction to any component is also a covering map.
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Corollary 3.18. Each component of G has an atlas which makes π into an analytic map. In fact, we canwrite down an atlas, where the charts are of the form (π, [f ]U ).
Definition 3.19 (evaluation map)The evaluation map E : G → C is defined by

E ([f ]z ) = f (z)
Proposition 3.20. E restricted to each component of G is an analytic map.

3.4 Analytic continuation

Theorem 3.21. Let (f , U) and (g, V ) be function elements on a domain D ⊆ C, and let γ : [0, 1] → D bea path starting in U and ending in V . Then (f , U) ≈γ (g, V ) if and only if the lift γ̃ to a component of Gstarting at [f ]γ(0) exists, and ends at [g]γ(1).
Proof. Suppose (f , U) ≈γ (g, V ). That is, we have a sequence of direct analytic continuations

(f , U) = (f1, U1) ∼ · · · ∼ (fn−1, Un−1) ∼ (fn, Un) = (g, V )a continuius path γ : [0, 1] → D, and a dissection
0 = t0 < t1 < · · · < tn−1 < tn = 1such that γ([ti−1, ti]) ⊆ Ui for 1 ≤ i ≤ n. Define a lift by

γ̃(t) = [fi]γ(t)whenever t ∈ [ti−1, ti], which is well defined since [fi]γ(ti) = [fi+1]γ(ti) for each 0 < i < n. For continuity,notice that γ̃ is continuous on each interval on the dissection, so by the gluing lemma it is continuous on [0, 1].Conversely, suppose there is a lift γ̃ of γ to G such that γ̃(0) = [f ]γ(0) and γ̃(1) = [g]γ(1). By the compactnessof [0, 1], there is a finite sequence of function elements (fi, Ui) for 1 ≤ i ≤ n, and a dissection
0 = t0 < t1 < · · · < tn−1 < tn = 1such that γ̃([ti−1, ti]) ⊆ [fi]Ui for 1 ≤ i ≤ n. Indeed, we can assume Ui is an open disc in C. Applying theforgetful map π , we have that γ([ti−1, ti]) ⊆ Ui, so it remains to show (fi−1, Ui−1) ∼ (fi, Ui) for all i. But for eachsuch i,

[fi−1]γ(ti−1) = γ̃(ti−1) = [fi]γ(ti−1)so fi, fi−1 agree on a neighbourhood of γ(ti−1) ∈ Ui−1 ∩ Ui. Since the Ui are discs, Ui−1 ∩ Ui connected,by the identity principle fi−1 = fi on Ui−1 ∩ Ui. So (fi−1, Ui−1) ∼ (fi, Ui) for all i, and we have a sequence ofdirect analytic continuations.
Corollary 3.22. Let F be a complete analytic function on a domain D ⊆ C, then

GF = ⋃
(f ,U)∈F

[f ]U
is a path component of G.
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Definition 3.23 (Riemann surface associated with a complete analytic function)We call GF the Riemann surface associated with F .
Theorem 3.24 (classicial monodromy). Let D ⊆ C be a domain, and suppose (f , U) be a function elementin D, which can be continued along any path in D starting in U . If (f , U) ≈α (g1, V ) and (f , U) ≈β (g2, V )and α ≃ β , then g1 = g2 on V .

Proof. Let α̃, β̃ be the lifts to G of α, β respectively, starting at [f ]α(0) = [f ]β(0). Then by the previous theoremand the monodromy theorem,
[g1]α(1) = α̃(1) = β̃(1) = [g2]β(1)so g1 = g2 on a neighbourhood of α(1) = β(1), so g1 = g2 on V by the identity principle.

Corollary 3.25. Let D be a simply connected domain, (f , U) a function element on D. If (f , U) can beanalytically continued along every path in D starting in U , then (f , U) extends uniquely to an analyticfunction f : D → C.
4 Branching
4.1 Branching

Definition 4.1 (multiplicity)Let f : R → S be an analytic map of Riemann surfaces, p ∈ R . Choose charts (φ,U), (ψ, V ) about p, f (p)respectively, with φ(p) = 0 such that
ψ ◦ f ◦ φ−1(z) = zmf (p)

for some integer mf (p) ≥ 0. We call mf (p) the multiplicity of f at p.
Proposition 4.2. mf (p) is the number of preimages of points in a sufficiently small punctured neighbourhoodof f (p), so it is independent of the choice of charts.
Definition 4.3 ({ramification, branch} point, ramification index)If mf (p) > 1 then we call p a ramification point of f , and f (p) a branch point of f . In this case, we call
mf (p) the ramification index at p.
Lemma 4.4. Let f : R → C be a non-constant analytic function, p ∈ R and (φ,U) be any chart about pwith φ(p) = z0. Then p is a ramification point if and only if F ′(z0) = 0, where F = f ◦ φ−1.

Proof. We have that
F = f ◦ φ−1(z) = (z − z0)mf (p)g(z)where g analytic withg(z0) ̸= 0. Hence by the product rule,

F ′(z) = (mf (p)g(z) + (z − z0)g′(z))(z − z0)mf (p)−1
15



So
F ′(z0) = {g(z0) ̸= 0 if mf (p) = 10 if mf (p) > 1

Lemma 4.5. If f : R → S and g : S → T are analytic functions of Riemann surfaces, then
mg◦f (p) = mg(f (p))mf (p)for any p ∈ R .

Proof. Fix any chart (θ,W ) about g(f (p)), with θ(g(f (p))) = 0. Then choosing a chart (ψ, V ) about f (p) suchthat
θ ◦ g ◦ ψ−1(z) = zmg(f (p))

on a neighbourhood of 0. Likewise, we have a chart (φ,U) about p such that
ψ ◦ f ◦ φ−1(z) = zmf (p)

Hence
θ ◦ (g ◦ f ) ◦ φ−1(z) = (θ ◦ g ◦ ψ−1) ◦ (ψ ◦ f ◦ φ−1)(z) = zmg(f (p))mf (p)

4.2 Valency theorem

Theorem 4.6 (valency). Suppose f : R → S is a non-constant analytic map between compact Riemannsurfaces. Then the function n : S → N defined by
n(q) := ∑

p∈f−1(q)mf (p)
is constant on S .

Proof. Since R is compact, each q ∈ S has only finitely many preimages in R , by the identity principle2. So
n(q) is finite.Since R is connected, suffices to show that n is locally constant. Therefore, fix q0 ∈ S , n0 = n(q0). Thenit suffices to find an open neighbourhood of q0 on which n(q) = n0. Let

f−1(q0) = {p1, . . . , pk}and fix a chart (ψ, V ) about q0. Then we have charts (φi, Ui) about each pi, such that
ψ ◦ f ◦ φ−1

i (z) = zmf (pi)
on Ui. By passing to smaller charts, we may assume that the {Ui} are disjoint. Now R \

⋃
i Ui is closed,so compact. Therefore, the image f (R \

⋃
i Ui) is compact, so closed. Therefore, there is a connected openneighbourhood V ′ ⊆ V of q0 which is disjoint from K . Therefore,

f−1(V ′) ⊆ R \ f−1(K ) ⊆ R \ (R \
⋃
i
Ui) = ⋃

i
Ui

Setting U ′
i = f−1(V ′) ∩Ui, we obtain charts (φi, U ′

i ) about pi and ψ, V ′ about q such that f is a power mapcentered on some pi everywhere on the preimage of V ′. So n(q) = n0 for all q ∈ V ′.
2A closed discrete subset of a compact space is finite.
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Definition 4.7 (degree)For a non-constant analytic map f , then number n = n(q) from the theorem above is called the degree orvalency of f , written as deg(f ).
4.3 Riemann-HurwitzNote that the content about trinagulations of surfaces and Euler characteristic has been omitted.

Theorem 4.8 (Riemann-Hurwitz). Let f : R → S be any non-constant analytic map of compact Riemannsurfaces, then
χR = deg(f )χ (S) −

∑
p∈R

(mf (p) − 1)
Sketch proof. First of all, mf (p) > 1 if and only if p is a ramification point, but R is compact and ramificationpoints are isolated, so there are only finitely many of them, so the sum is finite.From the proof of the valency theorem, each q ∈ S has a neighbourhood U such that f is a power map oneach component of the preimage of U . These neighbourhoods form an open cover of S , so by compactness wehave a finite subcover U1, . . . , Uk , where Ui is the neighbourhood associated to the point qi. The only point of
Ui that can be a branch point is a qi itself, so there are only finitely many branch points.Take a triangulation of S . By a subdivision, we can assume each branch point is a vertex in the triangulation,and that each triangle is contained in a Ui. In particular, the preimage of the triangles in S form a triangulationof R . Let n = deg(f ), VS , ES , FS (resp. VR , ER , FR ) be the number of vertices, edges and faces of S (resp. R ).Then1. each triangle in S has exactly n preimages in R , so FR = nFS ,2. each face in S has exactly n preimages in R , so ER = nES ,3. each vertex q ∈ S has

n −
∑

p∈f−1(q)(mf (p) − 1)
preimages in R , so

VR = nVS −
∑
q∈S

∑
p∈f−1(q)(mf (p) − 1) = nVS −

∑
p∈R

(mf (p) − 1)
Therefore,

χR = FR − ER + VR = nFS − nES + nVS −
∑
p∈R

(mf (p) − 1) = nχ (S) −
∑
p∈R

(mf (p) − 1)

Corollary 4.9. If R and S have genus gR , gS respectively, then
2gR − 2 = n(2gS − 2) +∑

p∈R
(mf (p) − 1)

Proof. χ (R ) = 2 − 2gR and χ (S) = 2 − 2gS .
Corollary 4.10. The correction term

C =∑
p∈R

(mf (p) − 1)
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is even.
Proof. All other terms in Riemann-Hurwitz are even.

Corollary 4.11. Suppose f : R → S is a covering map (i.e. it is unramified). Then C = 0, and
gR − 1 = n(gS − 1). In particular,

(i) if gS = 0, then n = 1 and gR = 0, so f is a conformal equivalence,(ii) if gS = 1, then gR = 1 and we have no constraints on n,(iii) if gS > 1, then either n = 1, where f is a conformal equivalence, or gR > gS .
5 Rational and periodic functions
5.1 Rational functions

Proposition 5.1. Every meromorphic function f : C∞ → C∞ is a rational function. That is, it is of the form
f (z) = c (z − a1) · · · (z − am)(z − b1) · · · (z − bn)for m, n ≥ 0 and ai, bj , c ∈ C.

Proof. Without loss of generality, f is non constant, and f (∞) ∈ C. Now f−1(∞) is a finite set of poles
b1, . . . , bn′ ∈ C, and f takes the form

f (z) = ∞∑
l=−kj

cj ,l(z − bj )l
in a punctured neighbourhood of each bj . Let Qj be the principal part, i.e.

Qj (z) = ∑
l=−kj

−1cj ,l(z − bj )l
we see that all singularities of

g(z) = f (z) −
n′∑
j=1 Qj (z)

are removable. Hence g : C∞ → C∞ is not surjective, so it is constant. Since the Qj are rational functions,we are done.
Corollary 5.2. For a rational function

f (z) = c (z − a1) · · · (z − am)(z − b1) · · · (z − bn)where the ais are all distinct from the bjs, i.e. m, n minimal, then deg(f ) = max{m, n}.
5.2 Simply and doubly periodic functions

Definition 5.3 (period)Let f : C → C∞ be meromorphic. A period pf f is ω ∈ C such that f (z + ω) = f (z) for all z ∈ C.
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Lemma 5.4. Let Ω be the set of periods of a meromorphic function f on C, then one of the following holds:
(i) Ω = {0},(ii) Ω = Zω ≃ Z for some ω ̸= 0,(iii) Ω = Zω1 ⊕ Zω2 ≃ Z2 for some ω1, ω2 R-linearly independent.(iv) Ω = C.

Proof. Omitted.
Definition 5.5 (simply periodic)A meromorphic function f on C for which the group of periods is isomorphic to Z is called simply periodic.
Proposition 5.6. If f is a meromorphic function on C, and the periods of f contain an infinite cyclic group
Zω, then there is a unique meromorphic function f on C∗ such that

f (z) = f ◦ exp((2πi/ω)z)
Proof. On a small open neighbourhood of any point in C∗, choose a branch of the complex logarithm and define

f (w) = f ((ω/2πi) log(w))which is a locally defined analytic function, with f (z) = f ◦ exp((2πi/ω)z). Furthermore, this definition isindependent of the choice of branch, since
f ((ω/2πi)(log(w) + 2πin)) = f ((omega/2πi) log(w) + nω) = f ((ω/2πi) log(w)) = f (w)since nω ∈ Zω is a period of f .Morally, simply periodic functions on C are the same as functions on C∗.

Definition 5.7 (doubly periodic/elliptic)A meromorphic function f on C with periods Ω = Zω1 ⊕ Zω2 ≃ Z2 is called doubly periodic or elliptic.
Proposition 5.8. If f is a meromorphic fucntion on C and the periods of f contain a lattice Λ, then thereis a unique meromorphic function f on C/Λ such that

f (z) = f (π(z))for all z ∈ C, where π : C → C/Λ is the quotient covering map.
Proof. Same as in the simply periodic case.

Corollary 5.9. Any analytic function f on C which is doubly periodic is constant.
Proof. Since C/Λ is compact, any analytic function C/Λ → C is constant.
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Definition 5.10 (degree)For a doubly periodic function f , define deg(f ) = deg(f ), where f is the associated function on a complextorus.
Corollary 5.11. If f is a doubly periodic non constant meromorphic function, then deg(f ) ≥ 2.

Proof. Suppose deg(1) = 1. Then mf (p) = 1 for all p. In this case, the Riemann-Hurwitz theorem gives
(2 × 1 − 2) = 1 × (2 × 0 − 2)

Definition 5.12 (period parallelogram)A period parallelogram of a doubly periodic function f with Ω = Zω1 ⊕ Zω2 is
P = {z0 + t1ω1 + t2ω2 | t1, t2 ∈ [0, 1]}

Alternative proof of corollary 5.11. Let P be a period parallelogram, such that there are no zeros or poles of fon ∂P. Then by the residue theorem, we have that∑
z

Resf (z) = 12πi
∫
∂P
f (z)dz

where we sum over the poles of f in P, and Resf (z) is the residue of f at z . But as f is doubly periodic, theintegrals along parallel edges in ∂P cancel. Therefore the right hand side is zero, so the sum of the residuesis zero. Since f is non-constant, it must have at least one pole, therefore it must have at least two, countedwith multiplicity.
5.3 Weierstrass ℘-function

Definition 5.13 (Weierstrass ℘-function)Let Λ be a lattice in C. The associated Weierstrass ℘-function is
℘Λ(z) = 1

z2 + ∑
ω∈Λ\0

( 1(z − ω)2 − 1
ω2
)

We write ℘ = ℘Λ if Λ is clear from context.
Lemma 5.14. Let Λ = Zω1 ⊕ Zω2 be a lattice in C and t ∈ R. Then the sum∑

ω∈Λ\0
1

|ω|t

converges if and only if t > 2.
Proof. The set {(t1, t2) ∈ R2 | |t1| + |t2| = 1} is compact, so the function (t1, t2) 7→ |t1ω1 + t2ω2| achieves itsmaximum M and minimum m. By linear independence, m > 0. Now let (k, l) ∈ Z2. Let t1 = k/(|k| + |l|) and
t2 = l/(|k| + |l|), we get

m(|k| + |l|) ≤ |kω1 + lω2| ≤ M(|k| + |l|)so the sum we are interested in is bounded above and below by constant multiples of
20



∑
(k,l)∈Z2\0

1(|k| + |l|)t
Set n = |k| + |l|, and noting there are exactly 4n pairs (k, l) with |k| + |l| = n > 0, we have that∑

(k,l)∈Z2\0
1(|k| + |l|)t = ∞∑

n=1
4n
nt = 4 ∞∑

n=1
1

nt−1
which converges if and only if t > 2.

Theorem 5.15. ℘Λ is a well defined elliptic function with periods Λ. Moreover, ℘Λ is even and of degree2.
Proof. First of all, we prove that ℘Λ(z) converges for all z ∈ C.

∣∣∣∣ 1(z − ω)2 − 1
ω2
∣∣∣∣ = ∣∣∣∣ω2 − (z − ω)2

ω2(z − ω2)
∣∣∣∣

= ∣∣∣∣ z(2ω − z)
ω2(z − ω2)

∣∣∣∣
= ∣∣∣ zω2

∣∣∣∣∣∣∣ 2ω − z(z − ω)2
∣∣∣∣

≤ |z|
|ω|2 · 2|ω − z| + |z|

|z − ω|2
= |z|

|ω|

( 2
|z − ω| + |z|

|z − ω|2
)

But for all but finiely many ω ∈ Λ, |ω| ≥ 2|z|, so |ω − z| ≥ |ω|2 ≥ |z|. Therefore, these terms in the sumare all bounded above by
|z|

|ω|2
(

|4||ω|2 + |z|
|z||ω|/2

) = 6|z|
|ω|3Therefore the sum defining ℘Λ converges absolutely and uniformly on compact sets. In addition, the definitionimmediately implies that ℘Λ is even. To show that ℘Λ is elliptic, we need to show that each ω0 ∈ Λ is a periodof ℘Λ . Differentiating ℘Λ , we see

℘′Λ(z) = ∑
ω∈Λ

−2(z − ω)3Therefore, ω0 is a period of ℘′Λ , and we have that
℘Λ(z + ω0) − ℘Λ(z) = cfor some constant c, as it has derivative zero. Setting z = −ω0/2, and using the fact that ℘Λ is even gives
℘Λ(ω0/2) = c + ℘Λ(ω0/2)so c = 0, and ω0 is a period of ℘Λ . Finally, as the only poles of ℘′Λ are at the lattice points Λ, so theperiods are precisely Λ. In particular, ℘Λ has a unique pole of order 2 on C/Λ, so deg(℘Λ) = 2.

Corollary 5.16. ℘Λ is the unique function with the following properties:
(i) ℘Λ is meromorphic with periods Λ,(ii) ℘Λ has poles only at Λ,
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(iii) limz→0(℘Λ(z) − z−2) = 0.
Proposition 5.17.(i) ℘Λ has poles precisely at the lattice points Λ,(ii) deg(℘Λ) = 3,(iii) ℘′Λ is odd,(iv) ℘′Λ has simple zeros at ω1/2, ω2/2, (ω1 + ω2)/2 in the fundamental parallelogram,(v) the ramification points of ℘Λ in Λ are 0, ω1/2, ω2/2, (ω1 + ω2)/2, with corresponding branch points

∞,e1 = ℘Λ(ω1/2), e2 = ℘Λ(ω2/2), e3 = ℘Λ((ω1 + ω2)/2).
Proof. (i)-(iii) follow from the expression of the derivative as a series, that is

℘′Λ(z) = ∑
ω∈Λ

−2(z − ω)3
For (iv), notice that for any ω ∈ Λ,

℘′Λ(ω/2) = −℘′Λ(−ω/2) = −℘′Λ(ω/2)by oddness and periodicity, so ℘′Λ(ω/2) = 0. By the valency theorem, the zeroes at ω1/2, ω2/2, (ω1 + ω2)/2are the only ones and they are simple.For (v), recall that away from the poles, the ramification points are points where the derivative vanishes.Therefore, the ramification points are precisely 0, ω1/2, ω2/2, (ω1 +ω2)/2. Finally, by the valency theorem again
e1, e2, e3 are distinct.

Remark 5.18. Another way of seeing that there are exactly four ramification points is by Riemann-Hurwitz, which inthis case says
0 = 2 × (−2) + ∑

p∈C/Λ(m℘Λ (p) − 1)

5.4 Elliptic curves and elliptic functions

Proposition 5.19. There are constants g1, g2 ∈ C depending on Λ, such that
(℘′Λ)2 = 4℘3Λ − g2℘Λ − g3

Proof. Since ℘Λ is even, every term in its Larent expansion about zero has an even exponent. Furthermore, theconstant term is zero. Hence
℘(z) = 1

z2 + az2 + o(z4)
for some a ∈ C. Cubing this, we get

(℘(z))3 = 1
z6 + 3a

z2 + f (z)
where f is analytic in a neighbourhood of zero. On the other hand, if we differentiate ℘, we get

℘′(z) = −2
z3 + 2az + o(z3)

Squaring this gives
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(℘′(z))2 = 4
z4 − 8a

z2 + g(z)
where g is analytic in a neighbourhood of zero. Therefore,

(℘′(z))2 − 4(℘(z))3 = −20a
z2 − h(z)

for some analytic function h on a neighbourhood of zero. Set g2 = 20a, then
(℘′(z))2 − 4(℘(z))3 + g2℘(z)is periodic with the only poles being at Λ, but it is analytic in a neighbourhood of zero. Therefore it isconstant.

Corollary 5.20. The coefficients g2, g3 and e1, e2, e3 are related by
4x3 − g2x − g3 = 4(x − e1)(x − e2)(x − e3)

Proof. e1, e2, e3 are the images of the zeros of ℘′, under ℘.
Corollary 5.21. Let C/Λ be a complex torus. Then C/Λ is conformally equivalent to a one point compact-ificationa of

X ′ = {(x, y) ∈ C2 | y2 = 4x3 − g2x − g3}
aRead: projective closure

Sketch proof. We will assume that X ′ can be compactified by adding one point at infinity, and with chartscoming from the coordinate projections.Define F : C → X by F (z) = (℘(z), ℘′(z)), then as each coordinate function is analytic, F is analyic.Furthermore, as ℘ is Λ-periodic, F gives us an analytic map
Φ : C/Λ → XAs Φ is non-constant, C/Λ is compact, Φ must be surjective. For injectivity, consider a period parallelogram

P with vertices (±ω1 ± ω2)/2. Suppose z, w ∈ P, with F (z) = F (w). Then ℘(z) = ℘(w) implies that w = ±z ,since ℘ is even and of degree 2. But then as ℘′ is odd, we must have w = z .Therefore, away from the rammification points of ℘, Φ has degree 1 in C/Λ. Hence by the valency theoremdeg(Φ) = 1, so Φ is a conformal equivalence.
Theorem 5.22. Let f be elliptic, with periods Λ. Then there exists rational functions Q1, Q2 such that

f (z) = Q1(℘(z)) + Q2(℘(z))℘′(z)Furthermore, if f is even then Q2 = 0.
Proof. Furst suppose f is even. Since f and ℘ have finitely many branch points, choose c, d in C which arenot branch points. Now consider

z 7→ f (z) − c
f (z) − dHence we can assume wlog that the zeroes and poles of f are simple, and not ramification points of ℘. Saythe zeroes of f are {±a1, . . . , ±am}, which are all distinct, and the poles are {±b1, . . . , ±bn}.Now let
23



g(z) = (℘(z) − ℘(a1)) · · · (℘(z) − ℘(am))(℘(z) − ℘(b1)) · · · (℘(z) − ℘(bn))Then f and g have the same zeros and poles, so f (z)/g(z) is a nonzero elliptic function with only removablesingularities, so it is constant. Hence f (z) = cg(z) for some c ∈ C.If f is odd, then f (z)/℘′(z) is even, so f (z) = Q2(℘(z))℘′(z) by above. Finally, for arbitrary f , we have that
f (z) = f (z) + f (−z)2︸ ︷︷ ︸even

+ f (z) − f (−z)2︸ ︷︷ ︸odd

6 Quotients and uniformisation
6.1 Quotients of Riemann surfaces

Definition 6.1 (properly discontinuous)Let G act on a topological space X by homeomorphisms. The action is properly discontinuous if for every
K ⊆ X compact, the set

{g ∈ G | g(K ) ∩ K ̸= ∅}is finite.
Definition 6.2 (free)Let G act on a topological space X by homeomorphisms. The action is free if for all x ∈ X , StabG (x) = 1.
Lemma 6.3. Suppose R is a Riemann surface, G acts freely and properly discontinuously by homeomor-phisms on R . Then the quotient S = G\Ra is Hausdorff, and the quotient map π : R → S is a regularcovering map.

aIt is a left action, not a right action.
Proof. S is Hausdorff. Let x ∈ π−1(p) and y ∈ π−1(q), p, q distinct. Let U, V be disjoint relatively compactneighbourhoods of x, y respectively. Let K = U ∪ V , the set of g ∈ G such that U ∩ g(V ) ̸= ∅ is a finite set
{g1, . . . , gn}. Since y ̸= gi(x) for any i, there exists disjoint open neighbourhoods Ui of x , Vi of gi(y). Let

U ′ = U ∩
(⋂

i
Ui

) and V ′ = V ∩
(⋂

i
g−1
i (V ))

Then U ′ ∩ GV ′ = ∅. Hence π(U ′), π(V ′) are disjoint open neighbourhoods of p, q.
π : R → S is a covering map. Same as the proof for C/Λ.

Proposition 6.4. Let R be a Riemann surface, G acts freely and properly discontinuously on R byconformal equivalences. Then S = G\R is a Riemann surface, π : R → S is analytic and a regularcovering map.
Proof. Since R is connected, S = π(R ) is as well. By the previous lemma, S is Hausdorff and π is a regularcovering map. Finally, the construction of a conformal structure is the same as the construction for C/Λ.
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Theorem 6.5 (Hurwitz). Let R be a compact Riemann surface, with gR ≥ 2, and suppose G acts freelyand properly discontinuously on R by conformal equivalences. Then G is finite, with |G| ≤ gR − 1.
Proof. The quotient S = G\R is a Riemann surface, and the quotient map is an analytic regular coveringmap. In particular, it is unramified. Furthermore, by construction deg(π) = |G|. If gS is the genus of S , thenRiemann-Hurwitz gives

2gR − 2 = |G|(2gS − 2)Since the left hand side is positive, gS ≥ 2, and so
|G| ≤ |G|(gS − 1) = gR − 1

6.2 Uniformisation

Theorem 6.6 (Uniformisation). Every simply connected Riemann surface is conformally equivalent to oneof
(i) the Riemann sphere C∞,(ii) the complex plane C,(iii) the unit disc D

Proof. The three Riemann surfaces listed are not conformally equivalent, since C∞ is compact, and C and Dare not constant, by Liouville’s theorem.The rest of the proof is omitted.
Corollary 6.7. C∞ is the unique conformal structure on S2, up to conformal equivalence.

Proof. It’s simply connected and compact.
Theorem 6.8. Every Riemann surface R has a regular covering map π : R̃ → R such that R̃ is simplyconnected. Furthermore, there is a group G acting freely and properly discontinuously on R̃ , and πdescends to a conformal equivalence

G\R ≃ R

Sketch proof. The construction of R̃ is the existence of a universal cover, G = π1(R ) = GD(π) is the fundamentalgroup of R , or the deck group of the universal cover, and so π descends to a homeomorphism G\R̃ → R . Nowthere is a unique conformal structure on R̃ which makes π analytic. Finally, in standard local coordinates on
R̃ , each g ∈ G acts as the identity, so G acts by conformal equivalences. The induced map G\R̃ → R is ananalytic map of degree 1, so it is a conformal equivalence.

Corollary 6.9. Every Riemann surface R is conformally equivalent to a quotient
R ≃ G\R̃where R̃ is one of C∞,C or D, and G is a properly discontinuous group of conformal equivalences on

R̃ . We say that R is uniformised by R̃ .
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Remark 6.10. In this course, the deck group acts by conformal equivalences, i.e.
G = {φ : R̃ → R̃ | φ is a conformal equivalence, with π ◦ φ = π

}

6.3 Classification of Riemann surfaces

Proposition 6.11. If R is uniformised by C∞, then R is conformally equivalent to C∞.
Proof. The group of conformal equivalences of C∞ is the Möbius group PSL2(C). But every Möbius transfor-mation has fixed points, so G = 1.

Proposition 6.12. If R is uniformised by C, then
(i) G = 1 and R ≃ C,(ii) G ≃ Z and R ≃ C∗,(iii) G ≃ Z2 and R ≃ C/Λ for some lattice Λ.

Proof. The group of conformal equivalences of C is the group of affine linear maps, but as the action is free,they must only be translations. Then the result follows from classification of discrete subgroups of C.
Lemma 6.13. Let f : R → S be an analytic map of Riemann surfaces, R is simply connected, π : S̃ → Sbe the uniformising map of S . Then there is an analytic map F : R → S̃ such that f = π ◦ F .

Proof. Omitted.
Proposition 6.14. A Riemann surface R is uniformised by at most one of C∞,C and D.

Proof. By above and Liouville.
Proposition 6.15. The group of conformal equivalences of D is the group

eiθ z − a1 − azof Möbius transformations.
Definition 6.16 (Fuchsian group)A subgroup G of PSL2(R) acting properly discontinuous on H is called a Fuchsian group.

6.4 Corollaries of uniformisation

Corollary 6.17. If R is a compact Riemann surface, with gR ≥ 2, then R is uniformised by D.
Corollary 6.18 (Riemann mapping). If D ⊊ C is a simply connected proper subdomain of C, and D is
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conformally equivalent to D.
Sketch proof. D is not compact, so D is not conformally equivalent to C∞. It is also not conformally equivalentto C by open mapping theorem and Casaroti-Weierstrass, so D is conformally equivalent to D by uniformisation.

Corollary 6.19 (Picard). Any analytic function f : C → C \ {0, 1} is constant.
Proof. C \ {0, 1} is uniformised by D. So we have an analytic map F : C → D with f = π ◦ F . But F isconstant, by Liouville’s theorem.
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