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(v) D = D(0,1) is the open unit disc,
(vi) T =0D = S is the unit circle

1 Analytic functions in C

1.1 Analytic and meromorphic functions

Everything in this subsection except Casaroti-Weierstrass is from IB Complex analysis, so proofs have been
omitted.

Definition 1.1 (domain)

A domain is an open connected subset of C.

Definition 1.2 (holomorphic, analytic)

Let D C C be a domain, f : D — C is holomorphic, or analytic if f is C-differentiable at every zg € D.
Equivalently, for any zg € D, there exists r > 0 such that f has a power series expansion

o

f(z) = Z an(z — 29)"

n=0
forany z € D(z9,r) C D

Proposition 1.3 (principle of isolated zeroes). Let f : D — C be an analytic function. If f(zg) = 0O, then
either f is identically zero on a neighbourhood of zy, or f is nonzero on a punctured neighbourhood of z.

Corollary 1.4 (identity principle). Let f, g : D — C be analytic functions. Either
() {z€ D|f(z) = g(2)} is discrete,

(it) or f =g on D.

Definition 1.5 (isolated singularity)

An analytic function f : D.(zp, r) — C has an isolated sinqularity at zp.

Proposition 1.6 (Laurent series). If an analytic function f has an isolated singularity at zp, then

f(z) = Z an(z — z9)"

on Di(zg, r) for some r > 0.

Definition 1.7 (classification of singularities)

Suppose f has Laurent series



Then

(i) if a, =0for n <0, then zy is a removable singularity. In this case, f can be extended to an analytic
function g(z) on a neighbourhood of z,

(i) if there exists m > 0 such that a, =0 for n < —m, a_,, # 0, then f has a pole of order m at zy, and
f(z) = (z—20)"g(2)

for some analytic function g defined on a neighbourhood of zg, and with g(zp) # O,

(iit) otherwise (i.e. a, # 0O for infinitely many n < 0), then we say f has an essential singularity at z.

Theorem 1.8. An analytic function f has a removable sinqularity at zy if and only if f is bounded on some
punctured disc Dy (zg, r).

Theorem 1.9 (Casaroti-Weierstrass). An analytic function f : D — C has an essential sinqularity at zp if
and only if f(Dy(zo, r)) is dense in C, for any r > 0 such that D.(z, r) C D.

Proof. ( <= ) First suppose zy was removable. Then f(D,(zo, r)) is bounded for some r > 0, so it can't be
dense. Now suppose zy was a pole of order m. Then

—m

g(2)

where g is analytic and nonzero on a neighbourhood of z5. Fix € > 0 such that

f(2) = (z — z)

lg(z)] > >0

on some punctured disc Dy(zg, r). Therefore, on that disc,

so f is bounded away from 0 on D, (z, r), so it is not dense.
Conversely, suppose f(D.(zo, r)) was not dense. Then there exists an open disc D(wp, €) disjoint from

f(Dy(20, r)). Now define

1

"= T,

defined on D.(zo, r). Since |f(z) — wo| > € for all z € D,(zo, r), we have that |h(z)] < 1. Hence h has a
removable sinqularity at zgp. Then we have that

f(z) = %Z)-i-WO

so if h(zg) # O then f has a removable sinqgularity at zp, and if h(z) = 0 then f has a pole at zp. O

Definition 1.10 (meromorphic function)
Let D C C be a domain, A C D discrete, f : D\ A — C holomorphic, f has a pole at each z € A, then f
is @ meromorphic function on D.

1.2 Analytic continuation



Definition 1.11 (function element)

Let D C C be a domain. A function element on D is a pair (f, U), where U is a subdomain of D and f is
an analytic function on U.

Definition 1.12 (direct analytic continuation)

Suppose (f, U), (g, V) are function elements on D, then say that (g, V) is a direct analytic continuation of
(f, U), written (f, U) ~ (g, V) funv % @ and f‘Uﬂ\/ = g|Uﬂ\/-

Definition 1.13 (analytic continuation)
If there exists a finite sequence of direct analytic continuations
(f, U) = (f1,Ur) ~ - ~ (famr, Una) ~ (fa, Un) = (9, V)
then we say that (g, V) is an analytic continuation of (f, U), and we write (f, U) = (g, V).

Proposition 1.14. ~ is an equivalence relation.

Definition 1.15 (complete analytic function)

A =-equivalence class F of function elements on D is called a complete analytic function on D.

Definition 1.16 (analytic continuation along a path)

Let (f, U) be a function element on a domain D, and consider an analytic continuation (f, U) = (g, V),
given by

(f, U) = (f1, U1) &0 000 &I (fn—1r UHJ) ~ (fn: Un) = (g, \/)

Let y :[0,1] — D be a continuous path, if there exists a dissection

O=tf<t < <th1<t,=1

such that y([t;i—1, t;]) C U; for each 1 < i < n, then (g, V) is an analytic continuation of (f, U) along y.
We write (f, U) =, (g, V).

1.3 Natural boundary

Throughout, consider wlog a power series

f(z) = i apz”

n=0

with radius of convergence 1. In particular, it converges absolutely and uniformly on any closed disc
contained in D.

Definition 1.17 ({regular, singular} point)

A point zg € T is a regular point for f if there exists an open neighbourhood U of zy and an analytic
function g on U such that g = f on U N D. Otherwise, zg is a singular point for f.



Proposition 1.18. The set of reqular points is open, and the set of singular points is closed.

Proposition 1.19. There exists z € T which is a singular point for .

Proof. Suppose not. Then for each z € T there exists £, > 0 such that f extends analytically over D(z, &,).
By compactness, we can cover T with finitely many of these, so f extends analytically over some D(0,1 + 0)
for some 0 > 0. But this implies that the radius of convergence is at least 1+ (ﬁ contradiction. O

Definition 1.20 (natural boundary)

If every z € T is a singular point for f, then we say that T is a natural boundary for f.

1.4 Complex logarithm

In this subsection, we construct the complete analytic function for the logarithm.
Define the domains

Uy ={re® [ r>0,(n—1)m/2 < 0 < (n+ )72}

with corresponding functions f, : U, — C given by

(n—"r (n+Mm
A P il

2 VST

Thse give us function elements F, = (f,, U,). By considering the separate cases for m —n mod 4, we see
that F,, ~ F, < |m—n| < 1. With this, all the F, are in the same =-equivalence class, so give us a
complete analytic function, which is the complex logarithm.

fo(re®) = log(r) + i@ where

2 Riemann surfaces
2.1 Covering maps

Definition 2.1 (covering map)

Let X, X be path connected Hausdorff topological spaces, a covering map 7 : X — X is a local homeomor-
phism, that is, each X € X has a neighbourhood U such that 7(U) is open, and 7|, is a homeomorphism
onto its image.

Definition 2.2 (regular covering map)

A covering map 7 : X — X is reqular if for each x € X, there is an open neighbourhood U of x and a
discrete set A, such that 7='(U) is homeomorphic to U x A,, and the diagram

a (U) ———— U x A,
proj;

U

commutes.

TFor example by the integral formula for Taylor series.



Remark 2.3. In Algebraic topology (or rather, the rest of maths), “covering maps” in this course are called local
homeomorphisms, and “reqular covering maps” are called covering maps.

Proposition 2.4. exp : C — C, is a regular covering map.

2.2 Riemann surfaces

Throughout, assume R is a connected Hausdorff topological space.

Definition 2.5 (chart, atlas)
A chart on R is a pair (¢, U), where U C R open, ¢ : U — D is a homeomorphism onto D C C open. A
set A of charts is called an atlas on R if

1.

2. iF (g1, Uh), (2, Uz) € A, with Uy N U, # @, then the transition function
$10¢," 1 ha(Ui N L) — ¢i(Ur N Ly)

is analytic.

Definition 2.6 (conformal structure)
A conformal structure on R is an atlas A on R which is maximal. That is, if (¢, V) is a chart on R such
that for any (¢, U) € A, the transition function ¢ o ¢y~ is analytic, then (i, V) € A.

Definition 2.7 (Riemann surface)

A Riemann surface is a pair R = (R, A), where A is a conformal structure on R.

Lemma 2.8. Every atlas A is contained in a unique conformal structure A

Proof Existence: Define

A= {(LL/ V) chart on Rst. (yo ¢~ analytic for all (¢, U) € A}

By definition this is maximal, so we just need to show that this is an atlas. Covering is clear as A C A, so
we only need to show that the transition functions are analytic. Choose (1, V4), (Yo, Vo) € A, and p € ViN V5.
Since A s an atlas, there exists (¢, U) € A such that p € U. Then

Yrody' =(hod o(pody')=Wrod )o(rod )

is analytic at ¢n(p). But p was arbitrary so we are done.
Uniqueness: Suppose A’ is any atlas containing A, then A contains A’ by definition. O

Lemma 2.9. Every open subset of a Riemann surface is a Riemann surface.

Proof Just restrict the charts. O



Canonical charts on Riemann surfaces

Here we list the charts which we choose to be “canonical” for some Riemann surfaces.

Definition 2.10 ((open subsets of the) complex plane)
For C, we take the chart id : C — C. For U C C open, we can take the inclusion map ¢: U — C.

Definition 2.11 (Riemann sphere)
Let Coo = CU {o0} be the Riemann sphere. we define an atlas with two charts, given by id : C — C and
zeC\ {0}~ 1ecC

2.3 Analytic functions

Definition 2.12 (analytic maps)

Let R, S be Riemann surfaces, a continuous map f : R — S is analytic, or holomorphic if for all charts
(¢, U)on R, (b, V) on S, the map o fo ¢~ is analyticon ¢(UN V).

Lemma 2.13. A continuous map R — S of Riemann surfaces is a analytic if and only if for each p € R,
there exists a chart (¢,, U,) on R with p € U, and a chart (¢,, V) on S with f(p) € V), such that

¢pofo¢;1

is analytic at ¢,(p).

Proof. (=) is clear. For the converse, notice that

Yofod ™ =(oy,)olpofop,)ol(pyoq)

and the transition functions are analytic. O

Lemma 2.14. If f : R - S and g : S — T are analytic, then g o f is analytic.

Proof. By the previous lemma we can just check this at p € R. Then

Oy o (gof)od," = (Orp) 0 godrp)o (o, )o(gpofod,”)

for appropriate choices of charts. O

Definition 2.15 (conformal equivalence)

A conformal equivalence of Riemann surfaces is an analytic bijection f : R — S with analytic inverse.

Lemma 2.16. If 7 : R — R is a covering map, R is a Riemann surface, then there is a unique conformal
structure on R such that 7 is analytic.

Proof. Existence: Each point p € R has a neighbourhood Np such that ]T|Np is a homeomorphism onto its

image. Since R is a Riemann surface, we have a chart (¢,, U,) about 71,. Set ¢, = ¢, o, U, = N, (U,),
we get a chart (<7>p, [Jp) about p. We want to show that



_,Z\ = {(‘%pr Up)}

peER

defines an atlas on R. The fact that the charts cover is clear by construction, so suffices to check that the
transition functions are analytic. But (with suitable restrictions),

&po(}f = ((i)poﬂ)o(7771 ogb?) = ¢po¢;1

which is a transition function on R, so analytic. Hence A'is an atlas, so it defines a conformal structure.
At p € R, we can take charts (¢,, U,) and (¢,, U,), and we have that

¢pono¢;1 :d)pOJTOJT71O¢';1 =id

which is analytic at p, so 7 is analytic. )
Uniqueness: Now suppose B is a conformal structure which makes 7 into an analytic map. Let p € R be
arbitrary, (¢, V) € B be any chart about p. Since 7 is analytic, the composition

&’pol/r1 =¢p07ro¢r1

is analytic, so ép has analytic transition functions with every chart in B, so A=B O

Definition 2.17 (analytic function)

An analytic function on a Riemann surface R is an analytic map R — C.

Proposition 2.18. Let f be a non-constant analytic function on a Riemann surface R, and let p € R be a
zero of f. Then there exists a chart (¢, U) about p with ¢(p) = 0 such that

fogp (z) =2"

for some m > 0.

Proof. Choose a chart (¢, V) about p, where wlog ¢)(p) = 0. Then expanding in Taylor series, we have that

fod'(2)=2"g(2)
where g is analytic, and g(0) # 0. By the identity principle for Riemann surfaces, m > 0 since f is non-
constant. Now as g(0) # 0 and g is continous, there exists 0 > 0 such that g(D(0, 8)) C D(g(0), |g(0)]). But
then there is an analytic m-th root on D(g(0), |g(0)]), so we have an analytic function {/g(z) in a neighbourhood
of 0. Define h(z) = z{/g(z). Then h’(0) = {/¢g(0) # 0, so by the inverse function theorem, h has an inverse on
some D(0, €). Setting ¢ = ho ¢ and U = ¢~ (D(0, €)) gives the desired chart. O

2.4 Complex Tori

In this subsection, we construct the complex tori.

Let 7y, » € C be R-linearly independent. Let A = (1, o) be the subgroup generated by them. Let
T = CJA be the quotient group, ;1 : C — T be the quotient map.

We consider T with the quotient topology.

Definition 2.19 (fundamental parallelogram)

The fundamental parallelogram of T is P C C, the parallelogram with vertices 0, T, 72, T1 + .

T is obtained (topologically) by gluing opposite edges of P together. Therefore, it is homeomorphic to
S" x S" and is compact and Hausdorff.



Lemma 2.20. 7 : C — T is a reqular covering map.

Proof. Choose € < min{|A|| A€ A\O} /2. Then for any z € C, D(z,e) Nz + A = {z}. Therefore, if
p = 7(zo) € T, then U = m(D(zp, €)) is open, with preimage

7 (U) = | | Dizo + A €)
AEN
O

Finally, we use 7 to construct a conformal structure on 7. For any zp € C, let U = 7(D(zp, €)) with € as

above. Then  restricts to a homeomorphism D(zg, €) — U, so we can set ¢ = JT‘B:ZO’E) to define a chart (¢, U)

on T. Since zy is arbitrary, the set of all such charts covers T. Furthermore, if (¢, V) is another chart of this
form, the transition fucntion ¢ o /=" is just translation by some A € A, which is analytic.

2.5 Open mapping theorem

Theorem 2.21 (Open mapping theorem). Any non-constant analytic map of Riemann surfaces f : R — S
s an open map.

Proof. Consider an open set W C R. Let p € W be arbitrary. Then choose charts (¢, U) about p and (¢, V)
about f(p). By the identity principle for Riemann surfaces, f is not locally constant, so

Yofod i pUNWNF V)= (V)

is a non constant analytic map, so by the open mapping theorem for domains in C, o f(UN W N f~1V)
is open. Since ¢ is a homeomorphism onto it's image, /(U N W N f~'V) is an open neighbourhood of f(p) in
f(W). As p was arbitrary, f(W) is open. O

Corollary 2.22. Let f : R — S be a non-constant analytic map of Riemann surfaces. If R is compact, then
f is surjective, and S is compact.

Proof. f(R) is a compact subset of a Hausdorff space, so closed. On the other hand, f(R) is open by the open
mapping theorem. But S is connected, so f is surjective. O

2.6 Harmonic functions

Lemma 2.23. lLet D C C be a disc. Then v : D — R is harmonic if and only if u = Re(f) for some
f: D — C analytic.

Proof Omitted (EST Q11). O

Definition 2.24 (harmonic function)

A function u : R — R on a Riemann surface R is harmonic if for any chart (¢, U) of R, uo ¢~ is harmonic.

Proposition 2.25 (identity principle for harmonic functions). Let u, v : R — R be harmonic. Either u = v,
or the set

{p € R|ulp)=v(p)}

has empty interior.

Proof. Omitted (EST Q12). O



Theorem 2.26 (open mapping theorem for harmonic functions). Any non-constant harmonic function v :
R — R is an open map.

Proof. Suppose W C R is open. Let p € W and choose a chart (¢, U) about p. Shrinking U if necessary, there
is an analytic function f : ¢(U) — C such that uo ¢! = Re(f). If f is constant on ¢(U), then u is constant on
U, hence it is constant on R by the identity principle. Therefore, f is non-constant, so f o ¢(U) is open by the
open mapping theorem for Riemann surfaces.

Say f o ¢(p) = a + ib. Since the topology on C is the same as the one on R X R, f o ¢(U) contains an
open set of the form

(@—0,a+0)+ib—e b+¢)
But a = u(p), hence u(W) contains (u(p) — 9, u(p) + d). Since p € W was arbitrary, u(W) is open. O

2.7 Meromorphic functions

Definition 2.27 (meromorphic function)

A meromorphic function on a Riemann surface R is an analytic map f : R — C which is not identically
0.

Proposition 2.28. Let D C C be a domain. A function f : D — C is meromorphic if and only if there
exists a discrete subset A C D such that f : D\ A — C is analytic, and f has a pole at each a € A.

Proof For (=), let A= f~'(00). By the identity principle for Riemann surfaces, A is discrete. Consider the
standard chart 1/z on Cy, about oo, any @ € A has a neighbourhood on which ﬁ is analytic, so we can write

1 m
e (z—a)"g(2)

for some m > 1, and g analytic with g(a) # 0. Therefore, near a we have that

f(z) = (z — a)*mﬁ

so a is a pole of f. Converse follows by reversing the above argument. O

2.8 Gluing Riemann surfaces

Definition 2.29 (gluing)

Let X, Y be topological space, suppose we have X’ C X and Y’ C Y, and a homeomorphism ¢ : X" — Y’
Then the quotient space

Xuy

XUy Y =

where ~ is the relation generated by x ~ ®(x) for all x € X’". We call this the result of gluing X and
Y along .

Proposition 2.30. Let Ry, R be Riemann surfaces, suppose S; € R; for j = 1,2 are nonempty connected
open subsets, ® : S; — S, is a conformal equivalence of Riemann surfaces. Then there is a unique
conformal structure on

R=R Us R>

10



such that the inclcuion maps i; : R; < R are analytic. In particular, if R is Hausdorff then it is a
Riemann surface.

Proof. For j = 1,2, every chart (¢;, U;) on R; gives a chart (¢; o [-/—1’ i;(U)) on R. By construction, these charts
cover R. The transition functions betweens two charts coming from R; are just the transition functions on R;,
hence analytic. Now if we have (¢4, Uy), (¢2, Us) are charts on Ry, Ry respectively, the resulting transition
flunction is

$rois' oirody =drodog;’

which is analytic as ¢ is a conformal equivalence. For the uniqueness statement, suppose A is any conformal
structure on R which makes i; analytic. If (¢;, U;) is a chart in R;, and (i, V) € A, then

: —1
gljotjod)j

is analytic, so ¢; o iﬂ has analytic transition functions with every chart in A, so it is in \A by maximality.
Finally, as Ry, R> are path connected, S1, S; nonempty, R is path connected. Therefore, if R is Hausdorff,
then it is a Riemann surface. O

3 Covering spaces, monodromy and analytic continuation
3.1 Covering spaces
Definition 3.1 (lift)

Suppose 7 : X — X is a covering map, y : [0,1] — X a path. Then a lift of y along 7 is a path
:[0,1] = X such that oy = y.

Proposition 3.2 (uniqueness of lifts). Suppose 4, ¥, are lifts of y along a covering map 7. If 1(0) = $2(0),
then f/1 = )72.

Proof Let

I={te[0,1]]| m(t) = n(t)}

Then | = (y1 x y2) "' (Ay) is closed as X Hausdorff implies the diagonal is closed. By looking in an open
set U such that 7|, is a homeomorphism, / is open. O

Proposition 3.3 (path lifting lemma). Let 77 : X — X be a reqgular covering map, y : [0, 1] — X be a path,
(%) = y(0). Then there exists a unique lift y of y with y(0) = &.

Proof. Omitted, see algebraic topology. O

Notation 3.4. We write o = B for paths a, B being path homotopic, i.e. rel end points.

Definition 3.5 (simply connected)

A topological space X is simply connected if X is path connected and every pair a, B of paths with the
same end point are homotopic.

i



Theorem 3.6 (monodromy theorem). Let 7 : X — X be a covering map, a, B paths in X. Suppose
() a=pBin X,
(i) there are lifts & of @ and B of B, such that &(0) = B(0),

(iii) every path y in X with y(0) = a(0) = B(0) has a lift to X with 7(0) = &(0) = B(0).

Then & = B. In particular, &(1) = B(1).
Proof. Omitted. It's the homotopy lifting lemma from algebraic topology.

3.2 Monodromy group

Let 7 X — X be a reqular covering map, and fix a base point xy € X.
For a loop y based at xp and ¥ € 7" (xg), let y5 be the unique lift of y at %. Notice

7(yx(1)) = ¥(1) = xo

so 7;(1) € 77" (x). Define a map g, : 7' (xo) — 7 '(x0) by

a,(%) = ¥x(1)

Lemma 3.7.

(i) oy only depends on the homotopy class of y,
(it) the constant map lifts to the identity map,
(ii)) if y(t) = y(1 —t), then oy = 0, .

(v) 0ep = 0g o 04

In particular, the set of all g, forms a group.

Proof. (i) follows from the monodromy theorem, (ii)-(iv) follow from uniqueness of lifts.

Definition 3.8 (monodromy group)

The monodromy group of the regular covering map based at xg is

Hyy < Sym(mr (x0))

which is the subgroup formed of all g,.

Proposition 3.9. The isomorphism class of H,, is independent of the choice of base point.

Proof. y — aya defines a homomorphism of monodromy groups.

3.3 Space of germs
Notation 3.10. Let (f, U) and (g, V) be function elements on D, For any z € DN E, we write

(f.U)=:(9.V)

if f = g on a neighbourhood of z.

12



Definition 3.11 (germ)

Let (f, U) be a function element and z € U. The =,-equivalence class of (f, U) is called the germ of f at
z, denoted by [f],.
We say [f], =[g]w if and only if z = w and f = g on a neighbourhood of z = w.

Definition 3.12 (space of germs)

The space of germs over D is

G ={[fl. | z € D, (f, U) function element with z € U}

Notation 3.13. For a function element (f, U) on D, we write

(flo = A{lfl: | z € U}

Lemma 3.14. Unions of sets of the form [f] defines a topology on G.

Proof. Taking the empty union shows @ is open. By definition, each [f], € [f]y for some U, so G is also
open. By definition the topology is closed under unions, so we only need to check that it is closed under finite
intersections. By some basic set manipulation, suffices to show any set of the form [f]y N[g]y is open. Consider
any germ [h], € [fluN]g]y. Then z € UN V and h agrees with f and g on a neighbourhood W of z. So [h]w
is an open neighbourhood of [h], in [flu N[g]v- O

Lemma 3.15. G is Hausdorff.

Proof. Consider distinct germs [f], # [g]., and choose representative function elements (f, U) and (g, V). If
z # w, then we by shrinking U, V' we can assume U, V are disjoint. So [f]y N[gly = @.

The case z = w is all thar remains. In this case, choose function elements (f, U) and (g, U) for U connected.
Suppose [h]y € [fluN]g]u. Then x has a neighbourhood W in U in which f = g = h. By the identity principle,
f=gon U Solfly =[g]u, and so [f], = [g],. Contradiction. O

Definition 3.16 (forgetful map)

Let G be the space of germs over a domain D. The forgetful map 7 : G — D is

7([fle) = z

Lemma 3.17. For each component G C G, the restriction of the forgetful map 7 : G — D is a covering
map.

Proof. Let U C D be open. Then

vcu

where we take the union over all function elements on U. In particular, 7 is continuous. The restriction of 7
to any open set of the form [f]y has an inverse, namely z +— [f],. Furthermore, the inverse is also continuous, as
the preimage of an open set [f]y is the open set VN U. Since the sets [f]y cover G, 7 is a local homeomorphism,
and so its restriction to any component is also a covering map. O

13



Corollary 3.18. Each component of G has an atlas which makes 7 into an analytic map. In fact, we can
write down an atlas, where the charts are of the form (i, [f]v).

Definition 3.19 (evaluation map)

The evaluation map £ : G — C is defined by

Proposition 3.20. & restricted to each component of G is an analytic map.

3.4 Analytic continuation

Theorem 3.21. Let (f, U) and (g, V) be function elements on a domain D C C, and let y : [0, 1] = D be

a path starting in U and ending in V. Then (f, U) =, (g, V) if and only if the lift y to a component of G
starting at [f]y(0) exists, and ends at [g],).

Proof. Suppose (f, U) =, (g, V). That is, we have a sequence of direct analytic continuations

(F,U)=(f,Ur) ~ -~ (fo1, Upr) ~ (F, Un) = (9, V)

a continuius path y :[0,1] — D, and a dissection

0=t0<t1 <"'<tnf1 <tn=1
such that y([ti—1, t;]) C U; for 1 < i < n. Define a lift by

v(6) = [fily

whenever t € [ti_1, t;], which is well defined since [fi, ) = [fis1]y) for each 0 < i < n. For continuity,
notice that ¥ is continuous on each interval on the dissection, so by the gluing lemma it is continuous on [0, 1].

Conversely, suppose there is a lift  of y to G such that y(0) = [f],0) and ¥(1) = [g],¢1). By the compactness
of [0, 1], there is a finite sequence of function elements (f;, U;) for 1 < i < n, and a dissection

0=t0<t1<"'<tnf1<tn:1

such that p([ti1, t;]) C [fi]u, for 1 < i < n. Indeed, we can assume U; is an open disc in C. Applying the
forgetful map s, we have that y([t;i—1, t;]) C U,, so it remains to show (fi_1, Ui_1) ~ (f;, U;) for all i. But for each
such i,

[ficalyitny) = V(tica) = iy

so f;, fi_1 agree on a neighbourhood of y(t;_1) € U1 N U;. Since the U; are discs, U;—1 N U; connected,
by the identity principle fi_y = f; on Ui_1 N U;. So (fiiq, Ui1) ~ (fi, U;) for all i, and we have a sequence of
direct analytic continuations. O

Corollary 3.22. Let F be a complete analytic function on a domain D C C, then

Gr = U [flu

(f,U)eF

is a path component of G.
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Definition 3.23 (Riemann surface associated with a complete analytic function)

We call G£ the Riemann surface associated with F.

Theorem 3.24 (classicial monodromy). Let D C C be a domain, and suppose (f, U) be a function element
in D, which can be continued along any path in D starting in U. If (f, U) =, (g1, V) and (f, U) =g (g2, V)
and a ~ B, then g1 = g on V.

Proof. Let &, B be the lifts to G of @, B respectively, starting at [f]yo) = [f]gio). Then by the previous theorem
and the monodromy theorem,

(911 = (1) = B(1) = [g2lsp)
so g1 = g2 on a neighbourhood of a(1) = B(1), so g1 = g2 on V by the identity principle. O

Corollary 3.25. Let D be a simply connected domain, (f, U) a function element on D. If (f, U) can be
analytically continued along every path in D starting in U, then (f, U) extends uniquely to an analytic
function f: D — C.

4 Branching
4.1 Branching
Definition 4.1 (multiplicity)
Let f: R — S be an analytic map of Riemann surfaces, p € R. Choose charts (¢, U), (¢, V) about p, f(p)

respectively, with ¢(p) = 0 such that

Wofog (z)=2"P
for some integer mys(p) > 0. We call m(p) the multiplicity of f at p.

Proposition 4.2. m¢(p) is the number of preimages of points in a sufficiently small punctured neighbourhood
of f(p), so it is independent of the choice of charts.

Definition 4.3 ({ramification, branch} point, ramification index)

If m¢(p) > 1 then we call p a ramification point of f, and f(p) a branch point of f. In this case, we call
m¢(p) the ramification index at p.

Lemma 4.4. Let f : R — C be a non-constant analytic function, p € R and (¢, U) be any chart about p
with ¢(p) = zo. Then p is a ramification point if and only if F'(z) = 0, where F = fo ¢~

Proof We have that

F=fod '(2) =(z—2)""g(z)
where g analytic withg(zp) # 0. Hence by the product rule,

F'(2) = (mr(p)g(2) + (z = 20)/(2))(z — 20)"""
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So

F/(z0) = g(z0) F 0 if me(p) =1
’ 0 if me(p) > 1

Lemma 45. If f: R — S and g: S — T are analytic functions of Riemann surfaces, then

Mgof(p) = mq(f(p))me(p)
forany p € R.

Proof. Fix any chart (6, W) about g(f(p)), with 8(g(f(p))) = 0. Then choosing a chart (¢, V) about f(p) such
that

Bogo L,[F1 (z) = ZMolf(P))
on a neighbourhood of 0. Likewise, we have a chart (¢, U) about p such that
gofog¢(z)=2""

Hence

Bo(goflod(z)=(0ogoy o(Yofod )z)=_zm\EImp)

4.2 Valency theorem

Theorem 4.6 (valency). Suppose f : R — S is a non-constant analytic map between compact Riemann
surfaces. Then the function n: S — N defined by

is constant on S.

Proof. Since R is compact, each g € S has only finitely many preimages in R, by the identity princhleEl So
n(q) is finite.

Since R is connected, suffices to show that n is locally constant. Therefore, fix go € S, ng = n(qo). Then
it suffices to find an open neighbourhood of gg on which n(q) = ng. Let

(qo) = {p1..... pi}
and fix a chart (¢, V) about go. Then we have charts (¢;, U;) about each p;, such that

yolog () =2

on U;. By passing to smaller charts, we may assume that the {U;} are disjoint. Now R\ [J; U; is closed,
so compact. Therefore, the image f(R\ |, U:) is compact, so closed. Therefore, there is a connected open
neighbourhood V/ C V of go which is disjoint from K. Therefore,

VY S RAFK) S RVRN [ J b =

Setting U/ = f~1(V’)N U,, we obtain charts (¢;, U!) about p; and ¢, V" about g such that f is a power map
centered on some p; everywhere on the preimage of V. So n(q) = ng for all g € V" O

2A closed discrete subset of a compact space is finite.
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Definition 4.7 (degree)
For a non-constant analytic map f, then number n = n(q) from the theorem above is called the degree or
valency of f, written as deg(f).

4.3 Riemann-Hurwitz

Note that the content about trinagulations of surfaces and Euler characteristic has been omitted.

Theorem 4.8 (Riemann-Hurwitz). Let f : R — S be any non-constant analytic map of compact Riemann
surfaces, then

Xr = deg(f)x(S) =) _(mr(p) —1)

pER

Sketch proof First of all, m¢(p) > 1 if and only if p is a ramification point, but R is compact and ramification
points are isolated, so there are only finitely many of them, so the sum is finite.

From the proof of the valency theorem, each g € S has a neighbourhood U such that f is a power map on
each component of the preimage of U. These neighbourhoods form an open cover of S, so by compactness we
have a finite subcover Uy, .. ., Uy, where U; is the neighbourhood associated to the point g;. The only point of
U; that can be a branch point is a g; itself, so there are only finitely many branch points.

Take a triangulation of S. By a subdivision, we can assume each branch point is a vertex in the triangulation,
and that each triangle is contained in a U;. In particular, the preimage of the triangles in S form a trianqulation
of R. Let n = deg(f), Vs, Es, Fs (resp. Vg, Eg, Fr) be the number of vertices, edges and faces of S (resp. R).
Then

1. each triangle in S has exactly n preimages in R, so Fr = nFs,

2. each face in' S has exactly n preimages in R, so Er = nks,

n— ) (midp)=1)

pEf(q)

3. each vertex g € S has

preimages in R, so

Ve=nVs—=> > (mip)—1)=nVs—) (mi(p)—1)
)

qeS pef-(q peER

Therefore,

Xr=Fr—Er+ Ve =nFs—nEs+nVs—> (mip)—1)=nx(S) =) (ms(p)—1)

pER peER
O
Corollary 4.9. If R and S have genus gg, gs respectively, then
29r =2 =n(295 = 2) +)_(mi(p) = 1)
pPER
Proof. x(R) =2 —2gr and x(S) = 2 — 2gs. O

Corollary 4.10. The correction term

C=> (mp)—1)
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s even.

Proof. All other terms in Riemann-Hurwitz are even. O

Corollary 4.11. Suppose f : R — S is a covering map (ie. it is unramified). Then C = 0, and
gr —1=n(gs —1). In particular,

(i) f gs =0,then n=1and gr =0, so f is a conformal equivalence,
(it) if gs =1, then gr = 1 and we have no constraints on n,

(iit) if gs > 1, then either n =1, where f is a conformal equivalence, or gr > gs.

5 Rational and periodic functions

5.1 Rational functions

Proposition 5.1. Every meromorphic function f : Co, — Cy is a rational function. That is, it is of the form

(2_01)"'(2_0117)
(z—b1) - (z—by)

flz) = c

form,n >0 and a;, b;, c € C.

Proof Without loss of generality, f is non constant, and f(co) € C. Now f~'(c0) is a finite set of poles
by, ..., b, € C, and f takes the form

o

flz) =Y ciulz—b))

I=—k;
in a punctured neighbourhood of each b;. Let Q; be the principal part, Le.
Qi(z) = > —Tcjulz— b))
(=—k;

we see that all singularities of

9(2) = fl2) =) Q(2)
j=1

are removable. Hence g : C, — Cy, is not surjective, so it is constant. Since the Q; are rational functions,
we are done. O

Corollary 5.2. For a rational function

(z—ay)-- (z—ap)
(z—=Db1)--(z—by)

where the a;s are all distinct from the bjs, te. m, n minimal, then deg(f) = max{m, n}.

flz)=c

5.2 Simply and doubly periodic functions

Definition 5.3 (period)
Let f : C — Cy be meromorphic. A period pf f is w € C such that f(z + w) = f(z) for all z € C.
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Lemma 5.4. Let Q be the set of periods of a meromorphic function f on C, then one of the following holds:
(i) Q= {0},

(i) Q=Zw = Z for some w # 0,

(iil) Q = Zw; ® Zw, ~ Z? for some wy, wy R-linearly independent.

iv) Q=C.

Proof. Omitted. O

Definition 5.5 (simply periodic)
A meromorphic function f on C for which the group of periods is isomorphic to Z is called simply periodic.

Proposition 5.6. If f is a meromorphic function on C, and the periods of f contain an infinite cyclic group
Zw, then there is a unique meromorphic function f on C, such that

f(z) = f o exp((27ilw)z)

Proof. On a small open neighbourhood of any point in C,, choose a branch of the complex logarithm and define

f(w) = f((w/27i) log(w))

which is a locally defined analytic function, with f(z) = f o exp((27i/w)z). Furthermore, this definition is
independent of the choice of branch, since

f((w/27i)(log(w) + 27in)) = f((omega/27i) log(w) + nw) = f((w/27i) log(w)) = f(w)
since nw € Zw is a period of f. O

Morally, simply periodic functions on C are the same as functions on C.,.

Definition 5.7 (doubly periodic/elliptic)
A meromorphic function f on C with periods Q = Zw @ Zw, ~ Z? is called doubly periodic or elliptic.

Proposition 5.8. If f is a meromorphic fucntion on C and the periods of f contain a lattice A, then there
is a unique meromorphic function f on C/A such that

f(z) = f(n(2))

for all z € C, where 7 : C — C/A is the quotient covering map.

Proof. Same as in the simply periodic case. O

Corollary 5.9. Any analytic function f on C which is doubly periodic is constant.

Proof. Since C/A is compact, any analytic function C/A — C is constant. O
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Definition 5.10 (degree)

For a doubly periodic function f, define deqg(f) = deg(f), where f is the associated function on a complex
torus.

Corollary 5.11. If f is a doubly periodic non constant meromorphic function, then deg(f) > 2.

Proof. Suppose deg(1) = 1. Then m¢(p) = 1 for all p. In this case, the Riemann-Hurwitz theorem gives

2x1-2)=1x(2x0-2)

Definition 5.12 (period parallelogram)
A period parallelogram of a doubly periodic function f with Q = Zwy & Zw; is

P = {Zo+ t1w + Hhwy ‘ t1, b & [O,ﬂ}

Alternative proof of corollary[577] Let P be a period parallelogram, such that there are no zeros or poles of f
on dP. Then by the residue theorem, we have that

g Res((z) = Zim ]a . f(z)dz

where we sum over the poles of f in P, and Res¢(z) is the residue of f at z. But as f is doubly periodic, the
integrals along parallel edges in 0P cancel. Therefore the right hand side is zero, so the sum of the residues
is zero. Since f is non-constant, it must have at least one pole, therefore it must have at least two, counted
with multiplicity. O

5.3 Weierstrass p-function

Definition 5.13 (Weierstrass p-function)

Let A be a lattice in C. The associated Weierstrass gp-function is

1 1 1
me= 3+ T (o )

we\0

We write o = g if A is clear from context.

Lemma 5.14. Let A = Zw ® Zw, be a lattice in C and t € R. Then the sum

Z 1
G
weN\0 |U.)|

converges if and only if t > 2.

Proof The set {(t;,t;) € R? | |ti| + |t2] = 1} is compact, so the function (t, &) + |tjw1 + tw| achieves its
maximum M and minimum m. By linear independence, m > 0. Now let (k, [) € Z?. Let t; = k/(|k| + |{|) and
to = U/(|k| + [l]), we get

m(|k| + |1]) < [kwr + lwz| < M([K| + [1])

so the sum we are interested in is bounded above and below by constant multiples of
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1
2 (1K +[d)*

(k,))EZ2\0

Set n = |k| + |{|, and noting there are exactly 4n pairs (k, {) with |k| + |{| = n > 0, we have that

1 = 4n =1
Z (\kHM)r:Zﬁ:“an

(k,)€Z2\0

which converges if and only if t > 2. O

Theorem 5.15. pp is a well defined elliptic function with periods A. Moreover, pa is even and of degree
2.

Proof. First of all, we prove that ga(z) converges for all z € C.

1 1 W’ — (2 — w)?
z—w? 2| | (z—?)
Z(2w — 2)
- w(z — w?)
z || 2w—2z
- E‘ (z — w)?
2| 2w -2z + 7|
Clel 2wl

7|

B2,
PAVER R

But for all but finiely many w € A, |w| > 2|z, so |w—z| > ‘%‘ > |z|. Therefore, these terms in the sum
are all bounded above by

2| ( 2 2| ) 6|z|
— | |4||w|” + =—
|w]? sl |z||w]/2 |w]?

Therefore the sum defining g converges absolutely and uniformly on compact sets. In addition, the definition
immediately implies that pn is even. To show that gpa is elliptic, we need to show that each wy € A is a period
of pa. Differentiating pp, we see

, -2
on(2) = Z m

weN

Therefore, wp is a period of p/’\, and we have that

Az + wo) — pa(z) = ¢

for some constant ¢, as it has derivative zero. Setting z = —wp/2, and using the fact that pa is even gives

on(wol2) = ¢ + gon(wol2)

so ¢ = 0, and wp is a period of py. Finally, as the only poles of g, are at the lattice points A, so the
periods are precisely A. In particular, pa has a unique pole of order 2 on C/A, so deg(gpn) = 2. O

Corollary 5.16. gpp is the unique function with the following properties:

(1) gon is meromorphic with periods A,

(it) gpn has poles only at A,
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(i) lim,—o(pon(2) — 27%) = 0.

Proposition 5.17.
(i) gn has poles precisely at the lattice points A,
(it) deglgpn) =3,
(itt) g, is odd,
(iv) o) has simple zeros at w1/2, wz/2, (w1 + w>)/2 in the fundamental parallelogram,
(v) the ramification points of ga in A are 0, wi/2, wz/2, (w1 + wy)/2, with corresponding branch points

00, e1 = pa(wi/2), e2 = pp(w2/2), e3 = (w1 + w2)/2).

Proof. (i)-(iii) follow from the expression of the derivative as a series, that is

For (iv), notice that for any w € A,

P (w]2) = —pp(-w/2) = —p\(w/2)

by oddness and periodicity, so gn(w/2) = 0. By the valency theorem, the zeroes at w1/2, w2/2, (wy + w?)/2
are the only ones and they are simple.

For (v), recall that away from the poles, the ramification points are points where the derivative vanishes.
Therefore, the ramification points are precisely 0, w1 /2, w2/2, (w1 + wy)/2. Finally, by the valency theorem again
e1, e2, e3 are distinct. O

Remark 5.18. Another way of seeing that there are exactly four ramification points is by Riemann-Hurwitz, which in
this case says

0=2x(=2+ ) (mylp)=1)

peCIA

5.4 Elliptic curves and elliptic functions

Proposition 5.19. There are constants g1, g2 € C depending on A, such that
(17)” = 4R — gapon — g3

Proof. Since gpa is even, every term in its Larent expansion about zero has an even exponent. Furthermore, the
constant term is zero. Hence

.
o) = — + az’ + o(z")
for some @ € C. Cubing this, we get

1T 3
P = % + =5 +1(2)

where f is analytic in a neighbourhood of zero. On the other hand, if we differentiate p, we get

-2
/ _ _~ ) 3
©'(2) = + 2az + 0(2°)

Squaring this gives
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4 8a

74

(p'(2))" =

where g is analytic in a neighbourhood of zero. Therefore,

- +9(2)

(0'(2))° = 4p(2)’ = ——5 — h(z2)

for some analytic function h on a neighbourhood of zero. Set g, = 20a, then

(1'(2)) = 4lp(2)” + g2p0(2)
is periodic with the only poles being at A, but it is analytic in a neighbourhood of zero. Therefore it is
constant. O

Corollary 5.20. The coefficients g», g3 and eq, ey, e3 are related by

4x3 — gox — gz = 4(x —e1)(x — e2)(x — e3)

Proof. eq, e, e3 are the images of the zeros of @/, under p. O

Corollary 5.21. Let C/A be a complex torus. Then C/A is conformally equivalent to a one point compact-
ification of

X' ={(x,y) € C? | y? :4X3—92X—g3}

“Read: projective closure

Sketch proof We will assume that X’ can be compactified by adding one point at infinity, and with charts
coming from the coordinate projections.

Define F : C — X by F(2) = (p(2),#'(2)), then as each coordinate function is analytic, F is analyic.
Furthermore, as g is A-periodic, F gives us an analytic map

¢:CIN— X

As ¢ is non-constant, C/A is compact, ® must be surjective. For injectivity, consider a period parallelogram
P with vertices (w & wy)/2. Suppose z, w € P, with F(z) = F(w). Then p(z) = p(w) implies that w = £z,
since p is even and of degree 2. But then as g’ is odd, we must have w = z.

Therefore, away from the rammification points of p, ® has degree 1 in C/A. Hence by the valency theorem
deg(®) =1, so ¢ is a conformal equivalence. O

Theorem 5.22. Let f be elliptic, with periods A. Then there exists rational functions Qy, @, such that

f(2) = Qi(p(2)) + Q:(p(2))p(2)

Furthermore, if f is even then O, = 0.

Proof. Furst suppose f is even. Since f and p have finitely many branch points, choose ¢, d in C which are
not branch points. Now consider

flz)—c
VA el
flz) —d
Hence we can assume wlog that the zeroes and poles of f are simple, and not ramification points of p. Say
the zeroes of f are {£ay, ..., +a,}, which are all distinct, and the poles are {£by, ..., +b,}.

Now let
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g(7) = (0(2) = plar)) - - (p(2) — plam))
(p(2) = p(b1)) - - (p(2) = p(b))
Then f and g have the same zeros and poles, so f(z)/g(z) is a nonzero elliptic function with only removable
singularities, so it is constant. Hence f(z) = cg(z) for some ¢ € C.
If f is odd, then f(2)[p/(z) is even, so f(z) = Qx(p(2))p’(z) by above. Finally, for arbitrary f, we have that

f(2)+ fl—2)  fz) = f(—2)
2 T2

even odd

flz) =

6 Quotients and uniformisation
6.1 Quotients of Riemann surfaces

Definition 6.1 (properly discontinuous)

Let G act on a topological space X by homeomorphisms. The action is properly discontinuous if for every
K C X compact, the set

{ge Gl g(K)NnK + o}

is finite.

Definition 6.2 (free)
Let G act on a topological space X by homeomorphisms. The action is free if for all x € X, Stabg(x) = 1.

Lemma 6.3. Suppose R is a Riemann surface, G acts freely and properly discontinuously by homeomor-
phisms on R. Then the quotient S = G\Rﬂ is Hausdorff, and the quotient map 7 : R — S is a reqular
covering map.

It is a left action, not a right action.

Proof S is Hausdorff. Let x € 77'(p) and y e ﬂj(q), p. q distinct. Let U, V be disjoint relatively compact
neighbourhoods of x, y respectively. Let K = U U V, the set of g € G such that U N g(V) # @ s a finite set
{g1,..., gn}. Since y = gi(x) for any i, there exists disjoint open neighbourhoods U; of x, V; of g;(y). Let

Nu

Then U'Nn GV' = @. Hence w(U'), m(V') are disjoint open neighbourhoods of p, g.
m:R — S is a covering map. Same as the proof for C/A. O

U=Un

and V' =Vvn (ﬂgﬂ(w

Proposition 6.4. Let R be a Riemann surface, G acts freely and properly discontinuously on R by
conformal equivalences. Then S = G\R is a Riemann surface, 7 : R — S is analytic and a reqular
covering map.

Proof. Since R is connected, S = x1(R) is as well. By the previous lemma, S is Hausdorff and 7 is a reqular
covering map. Finally, the construction of a conformal structure is the same as the construction for C/A. O
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Theorem 6.5 (Hurwitz). Let R be a compact Riemann surface, with gr > 2, and suppose G acts freely
and properly discontinuously on R by conformal equivalences. Then G is finite, with |G| < gr — 1.

Proof. The quotient S = G\R is a Riemann surface, and the quotlent map is an analytic reqular covering
map. In particular, it is unramified. Furthermore, by construction deg(r) = |G|. If gs is the genus of S, then

Riemann-Hurwitz gives

29r — 2 = |G|(2gs —2)

Since the left hand side is positive, gs > 2, and so

Gl < 1Gl(gs = 1) = gr —1

6.2 Uniformisation

Theorem 6.6 (Uniformisation). Every simply connected Riemann surface is conformally equivalent to one
of

(i) the Riemann sphere Cg,
(it) the complex plane C,
(iit) the unit disc D
Proof. The three Riemann surfaces listed are not conformally equivalent, since Co, is compact, and C and D

are not constant, by Liouville's theorem.
The rest of the proof is omitted. O

Corollary 6.7. C,, is the unique conformal structure on S?, up to conformal equivalence.

Proof. It's simply connected and compact. O

Theorem 6.8. Every Riemann surface R has a reqular covering map 7 : R — R such that R is simply
connected. Furthermore, there is a group G acting freely and properly discontinuously on R, and =
descends to a conformal equivalence

G\R~ R

Sketch proof The construction of R is the existence of a universal cover, G = m(R) = Gp(7) is the fundamental
group of R, or the deck group of the universal cover, and so 7 descends to a homeomorphism G\R — R. Now
there is a unique conformal structure on R which makes 7 analytic. Finally, in standard local coordinates on
R, each g € G acts as the identity, so G acts by conformal equivalences. The induced map G\R — R is an
analytic map of degree 1, so it is a conformal equivalence. O

Corollary 6.9. Every Riemann surface R is conformally equivalent to a quotient

R~ G\R

where R is one of Co, C or I, and G is a properly discontinuous group of conformal equivalences on
R. We say that R is uniformised by R.
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Remark 6.10. In this course, the deck group acts by conformal equivalences, ie.

G= {¢ ‘R — R| ¢ is a conformal equivalence, with 70 ¢ = JT}
6.3 Classification of Riemann surfaces

Proposition 6.11. If R is uniformised by C, then R is conformally equivalent to Cq..

Proof. The group of conformal equivalences of C, is the Mobius group PSL,(C). But every Mdébius transfor-
mation has fixed points, so G = 1. O

Proposition 6.12. If R is uniformised by C, then
(i) G=1and R=C,

(i) G =Zand R = C,,

(iii) G ~ Z? and R ~ C/A for some lattice A.

Proof. The group of conformal equivalences of C is the group of affine linear maps, but as the action is free,
they must only be translations. Then the result follows from classification of discrete subgroups of C. O

Lemma 6.13. Let f : R — S be an analytic map of Riemann surfaces, R is simply connected, 7 : S-S
be the uniformising map of S. Then there is an analytic map F : R — S such that f = 7w o F.

Proof Omitted. O

Proposition 6.14. A Riemann surface R is uniformised by at most one of C.,, C and D.

Proof. By above and Liouville. O

Proposition 6.15. The group of conformal equivalences of D is the group

0 Z—d
1—az
of Mobius transformations.

Definition 6.16 (Fuchsian group)
A subgroup G of PSL;,(R) acting properly discontinuous on H is called a Fuchsian group.

6.4 Corollaries of uniformisation

Corollary 6.17. If R is a compact Riemann surface, with gr > 2, then R is uniformised by D.

Corollary 6.18 (Riemann mapping). If D C C is a simply connected proper subdomain of C, and D is

26



conformally equivalent to .

Sketch proof. D is not compact, so D is not conformally equivalent to C.. It is also not conformally equivalent
to C by open mapping theorem and Casaroti-Weierstrass, so D is conformally equivalent to D by uniformisation.
O

Corollary 6.19 (Picard). Any analytic function f : C — C\ {0, 1} is constant.

Proof. C\ {0,1} is uniformised by D. So we have an analytic map £ : C — D with f = wro F. But F is
constant, by Liouville's theorem. O
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