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Recall that an elliptic curve E over a field k, which is a proper curve which is also a group. In particular,
they are projective (in fact, we can write it as a nonsingular plane cubic), and that the group is commutative. If

k is algebraically closed, then E(k) is divisible, and for all n € N,
E[n] = ker(n- : E(k) — E(k))
is finite. In particular, if n is invertible in k, then
Eln] = (ZInZ)?
On the other hand, if char(k) = p > 0, then either
Elp'|=ZIp"Z

forall r > 1, or
Elp']=0

forall r > 1.

“Based on lectures by Tony Scholl. Last updated March 15, 2024.
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The Abel-Jacobi theorem gives a homomorphism

E(k) — Cl°(E) = {degree 0 divisors}

{principal divisors}

Given by P +— (P) — (0). In fact, by Riemann-Roch, this is an isomorphism.
Abelian varieties are ‘higher dimensional analogues of an elliptic curve”. That is, they are a proper variety
over k which is a group. If X is an abelian variety, we will see:

e X is projective and nonsingular,
e X is commutative,
e if k is algebraically closed, then X(k) is divisible, with
X[n] Z (ZInZ)*
where g = dim(X), n invertible in k. If char(k) = p > 0, then
X|p'| = (ZIp'Z)’
with0<t<g.

e and an analogue of the Abel-Jacobi theorem, there exists another abelian variety X, with dim()A() =g,
called the dual abelian variety, and an isomorphism

~

X(k) Z Pic’(X) C Pic(X)

where Pic(X) is the group of isomorphism classes of line bundles on X, which is in turn, isomorphic to
the divisor class group. Moreover, we have a morphism X — X, which is surjective with finite kernel.
Note that we don't need to have X = X.

In contrast to the one-dimensional case, we need a lot of algebraic geometry, especially the cohomology
of coherent sheaves to prove these. One reason is that unlike elliptic curves, we don’t have nice equations for
them.

Conventions for this course: Every ring will be commutative unital, and ring homomorphisms will be unital.
If f: A — B is a ring homomorphism, we say B is an A-algebra. We'll write ab for f(a)b. An A-module is
finite if it is finitely generated. An A-algebra B is finite if it is finite as an A-module, and it is of finite type if
it is finitely generated as an A-algebra.

A family (x;)ie; of elements of a set S is just x; € S, indexed by a set /. This is the same as a function
I — S, We'll write #S for the size of a set S, C and C will be used interchangably. Finally,

N={01,.}

1 Kahler differentials

Let ¢ : A — B be a ring homomorphism. We'll define a B-module Qpga, which is the module of (K&hler)
differentials, with an additive map d = dgja : B — Qpa, such that

d(b1b2) = b1db, + bydby
da =d(p(a)) =0foralla e A

In particular, d is an A-linear map.

Definition 1.1
We define Qpgja = P/Q, where

P = free B-module on symbols [b] for b € B
Q = submodule generated by [a],[b1 + bz2] — [b1] — [b2], [b1b2] — bi[b2] — ba[b1]

and
db =[b] mod Q




An A-derivation of B into a B-module M is an additive map D : B — M, such that
DA) =0
D(b1b2) = b1D(b2) + b2D(b)

We will write Ders(B, M) for the set of A-derivations B — M. This is a B-module, with (b'D)(b) = b’D(b).
Moreover, Dera(B, ) is a functor. That is, if we have a B-module homomorphism f : M — M’, then we have a
map

Der(A, M) — Der(A, M)

given by D+ f o D. In particular, (Qgja, dgja) is the universal derivation.

Proposition 1.2. Suppose M is a B-module, then there is an isomorphism of 5-modules,

Homg(Qpja, M) = Dera(B, M)
Y= odgpn

Proof. The fact that it is a B-module homomorphism is trivial. Let D € Dera(B, M). Set LZI : P — M to be
B-linear, with ([b]) = D(b). Since D is a derivation, ¢)(Q) = 0, so we have a map ¢ : P/Q = Qpja — M, with
pod=D.

On the other hand, if y od =0, then ¢y = 0 since Qpja is generated by the image of d. O

Another characterisation of Q4 is as follows. Consider the map 1 : B&4B — B, given by p(b1®b2) = b1bs.
In particular, p is a B-algebra homomorphism, for each of the B-algebra structues on B ®4 B. Let J = ker(u).
Then //)? is a B®x B-module, killed by /, so it is a B-module. In particular, all of the B-module structures on
it agree.

Let

d:B =/
b—(1®b—b®1) mod J°
Then d’ is an A-derivation. To see this,
d(@)=1®a—a®1=0
for all ¢ € A. Next,

bid'(by) = (b1 @ 1)1 ® by — b, ®1) mod
= b1 ®by—bib,®1 mod J

and by symmetry,
byd'(by) =1® biby — by ® b, mod J?

Adding these together gives the Leibniz rule. By the universal property, there exists a unique B-linear map
W Qpia — J1J?, such that Yod = d’.

Proposition 1.3. ¢ is an isomorphism.

So we could have defined (Qg4, d) as (J//%, d') instead.

Proof Consider the map

@:B®sB— Qg
@(b1 ® by) = by d(b2)

J={Y @b | Y b, -0}

3

Now
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We claim that J is generated (as a B-module) by elements of the form 1 ® b — b ® 1. To see this,
Y bi®@bi=> (bi@1)1®bj—b®@1)+) bb®]1

and the last term is zero. So it is a B-module under the b ® 1 action. Now
p(leb—bN)1eb —b ®1)=0
and so @ vanishes on J?, and it factors through (B®4B)/J?. It remains to check that poys = id and op|; . = id.
O

We leave this as an exercise.

Remark 1.4. Let C = (B ®, B)//?, then we have

B——3 BuA— C

\J“

B
This gives us an isomorphism of B = B ®x A-algebras,
BoJIP=C
The ring structure on the left hand side is given by

(b, f) - (b, f) = (bb', bf' + b'f)

From the definition, any commutative square of rings

B—— B

1

A— A

induces a map
Qpia — Qpa

which is B-linear, commuting with d. Moreover, this is transitive for B - B’ — B”.
Proposition 1.5. (i) If B = B®4 A, then
Qpa®@aA = Qpa®s B = Qpa

(i) f A=A and B’ = S7'B is a localisation of B, then

Qs-1ga = S 'Qaa

Proof Exercise. O

Example 1.6
IfB=At,..., tn] is the polynomial algebra, then

Qpja = @ Bdt;

is free. To see this,
BosaB=A{ti®1.10t}=A{t:®1, z}] = B{z}]

where z = 1® t; — t; ® 1. Using this, the map p: B®&®4s B — B is just z; — 0 and the identity map on B.
So we have that

and




Thus, J//2 is the free module

@ B 0 (Z[ mOd jz)
But z; mod J? is just d'(z) = dt;.

We have two exact sequences for Q:

Proposition 1.7 (transitivity). if A— B — C are ring homomorphisms, then

Qpa®p C Qca Qe 0

is exact.

Proposition 1.8 (second exact sequence). If A — B — C are ring homomorphisms, with say C = B/,
then

[ Ca— Qpa® C Qcia 0

is exact, where f mod /2 +— df ® 1. This is an exact sequence of C-modules.

Proof of both have been left as exercises.

Corollary 1.9. If B = A{x;}], and C = B/({f;}), then
@[ CdX,‘

0O =
CIA y_cdl,
In this case, i
df; =Y =Ldx

- 6)(,'
i

1.1  Sheafification

Let f : X — Y be a morphism of schemes. We would like to define a quasicoherent Ox-module Qy;y, and a
map
d: OX — QX/Y

which is f~1Oy-linear, and satisfies the Leibniz rule for sections. This is called the sheaf of relative differentials,
or the cotangent sheaf. There are two constructions, let's see the ‘dirty" one first.
If we have open affines U = Spec(B) C X, V = Spec(A) C Y, with f(U) C V, then we can define

Qxpvlu = Qi
where QAB/JA is the quasicoherent Oy-module attached to the B-module Qgja. The map d is induced by

Ox(U) —2= Qyy (V)

g E

— Qg
Functoriality means that we can glue to get a quasicoherent sheaf on X. We will omit the details.
For the second construction, consider the diagonal map A : X — X xy X. This map is an immersion, and
so it factors as
X — X xy X

clo& A
U



Let i : X — U be the closed immersion. Define
Qxpy = I (ZxwlZi)

where Ty, is the ideal sheaf. When X = Spec(B) and Y = Spec(A), this is just 6,;/;\.

Note that we also have that Qy;y = i*Zxy, since
[*IX/U =0x® iiql'x/u = [71 (OU/IX/U) X [71IX/U

If X — Y is separated, then we can take U = X xy X.
We will define d : Ox — Qxy by: if we have open affines V = Spec(B) C X, U = Spec(A) C Y, with
f(V) C U, then
d: O)((\/) =B — QB/A = Qx/y(\/)

is defined. Moreover, this is compatible with restriction to smaller open affines. The set of open affines
Spec(B) C X such that the image is contained in an open affine in Y, forms a basis for the topology on X.
Thus, this extends to a map of sheaves.

Amusing fact: There exists an immersion X — Z (ie. a closed immersion then an open immersion), which
cannot be factored as an open immersion, then a closed immersion.

We can rewrite the exact sequences, in the setting of sheaves.

e if we have morphisms of schemes f : X — Y, g: Y — S, then we have

*Qys Qx/s Qxy — 0

o If Z— X is a closed immersion, with ideal sheaf Z, and f : X — Y a morphism of sheaves, then we have
the exact sequence

I/ZZ Emd l*QX/y Emd QZ/Y — 0

By construction, Qx;y is quasicoherent.

Proposition 1.10. If f : X — Y is of finite type, and X and Y are Noetherian, then Qx;y is coheren{?]

“Le. affine locally it is the sheaf associated to a finite module.

Proof. Locally, we can cover X with Spec(B), such that f(Spec(B)) C Spec(A), and this makes B a finite type
A-algebra. That is,

where [ = (f;, ..., fa). The second exact sequence is

P —— Quya ®ay B Qpa 0

But note that
Qs 4y B = @ Bdt;

and so Qpya is a finite B-module, and so Qy;y is coherent. O

For field extensions, Q tells us whether the extension is separable.

Example 1.11
Let L/K be a finite field extension. Then L/K is separable if and only if Q;x = 0. To see this, factor the
extension as K C Kj C [, with K;/K separable, and L/Kj purely inseparable. That is, Kj is the set of all
elements of L which is separable over K.

By the primitive element theorem, K7 = K(a) = K][t]/{g), where g € K][t] is irreducible, g(a) = 0 and

g'(a) #+ 0. So
K1C|O(

Kig'(a)da
by corollary But this is zero as g’(a) # 0. In this case, transitivity gives us Q;x = Q. If L = Kj,

Qr ik =

Lecture 3



te. L/K is separable, then Qk, = 0.
Conversely, if L/K is inseparable, then there exists K; with Ki C K, C L, such that L = K3(B) =
K[t]/ (tP — b), with p = char(K) > 0, b € K5 is not a p-th power. In this case.

QL//Q = LdB

since in this case, %(tp — b) = 0. Thus, by transitivity again, Qk =+ 0.

1.2 Tangent and cotangent spaces

Let X be a k-scheme, locally of finite type. That is, X has an open cover by affines Spec(A), where A is a finite
type k-algebra. Let |X| denote the set of closed points of X. If x € | X|, then the residue field at k,

k(x) = Ox . /my

is a finite extension of k. Define
Qxk(x) = Qxirx oy, K(X)

This s a finite dimensional «(x) vector space. This follows from the fact that Qx/« is coherent. We call this the
cotangent space of X at x.
The corresponding tangent space is

TX,X = HomK(X)(QX/k(X), K(X))

Proposition 1.12. If k(x) = k, then there exists a canonical isomorphism

Qxi(x) = my/m?

of k-vector spaces.

Proof In this case,
Qxik(x) = Qoy ik Boy, k

The second exact sequence gives us that

mx/mi —_— QOX‘X/k QR k —— Qk/k =0 ——0

It suffices to show that the first map is injective, which in turn, means that it suffices to show that the dual
Homo, k(Qo, k. k) — Homy(m, /m?, k)
is surjective. The left hand side can be identified with
Deri(Qx x, k)

and so the map is given by
D~ (f+m s D(f) mod m)

Since D(mf) = 0 by Leibniz. As Ox y/m, = k — Ox , we must have that
Ox/m? = k ® m, /m?

as k-vector spaces. Let 7 : Oy /m? — m,/m? be the projection. For ¢ : m,/m? — k, the map D = po 7 is a
derivation which maps to ¢.
To show that it is a derivation, recall the ring structure on k @mx/mf from before. In particular,

(a,b)(d’, b') = (ad’, ab’ + d’b)

O
Lecture 4



Remark 1.13. THe statement holds more generally, if x(x) is separable over k.

This leads to a "geometric” interpretation of the tangent space.

Proposition 1.14. Let x € | X|, X locally of finite type over k, and suppose «(x) = k. Then

el

Txx = {morphlsms of k-schemes Spec ( (e2)

) — X whose image is X]»

The ring k[e]/ (&%) is called the ring of dual numbers, and Spec(k[e]/ (%)) = {(€)}. The map Spec(k) —
Spec(k[s]/<52>) is given by sending € to 0. This is a closed immersion.
Morally, Spec(k[e]/ (¢%)) is “a point with a direction”.

Proof. Giving such a morphism is equivalent to giving a local homomorphism

kle]
Oxx — —+
P T )
of k-algebras. But Ox, = k & m,, since k is the residue field. So ¢ is determined by its restriction to m,
which is a k-linear map m, — ke C k[e]/ (&%) (as it is a local map).
Since €2 =0, ¢ is zero on mZ. So it is a k-linear map

m,/m> — ke = k
So the set of such morphisms is isomorphic to

Homy (my /my, k) = Hom Qe (x), k) = Txx

As above, this is also true when k(x)/k is separable.
Aside: In the proofs of the above, we used the fact that if k(x) = k, then

OX,X = k@mx

If k(x) # k, in general, Ox , will not be a k(x)-algebra. But it is the case (at least) when «(x)/k is separable.

But o
X x ~ m
Zx = Kk(x)® mi)z(

X

That is, there is a field inside Oy ,/m?, which maps isomorphically onto k(x). The proof is just Hensel's lemma,
write k(x) = k(a), with g(a) = 0. Lift g(a) to a solution of g(t) =0 mod m?.
As an example, let X = A;@ = Spec(Q[t]), and let x = (* + 1) € X. Then «(x) = Q(i). But Q(i) can’t be a
subfield of the local ring
OX,X g Q(t)
But the completion
Lim

— n
n mX

does contain a copy of k(x).

1.3 Nonsingular varieties

Let X be an integral scheme of finite type over a field k. Let d = dim(X).
We say that X is smooth over k if Qx/x is locally free of rank d. If k is algebraically closed, then this is
equivalent to the other conditions:



Theorem 1.15. Suppose X is an integral scheme of dimension d, and of finite type over an algebraically
closed field k. Then the following are equivalent.

(i) X is smooth over k,
(i) for all x € |X|, dim(Txx) = d,

(iii) for all x € |X], the local ring Ox.x is regular] (of dimension d).

YA Noetherian local domain R of dimension d is reqular if it's maximal ideal m can be generated by d elements.

Proof We know dimy(Tx ) = dimy(m,/m?).
To show (ii) and (iil) are equivalent, note that

2
m,/m; = m, ®o,, k

and m, is a finite Ox-module. Nakayama’'s lemma implies that if ¢4, .. ., t, € my, thenm, = (t, ..., tn) if and
only if t; +m? generate m,/m? as a k-vector space.
To show (i) implies (i),

Txx = Home(Qxk(x), k)

this has dimension d as Qx/ is locally free of rank d. For (it) implies (i), let K be the function ﬁelcﬂ of X. Now
as k is algebraically closed, K is a finite separable extension of Ky = k(t1, ..., tq), for t; € K algebraically

independent over k. Hence
Qg = Qioix By K

and so
Qo = P Kodt,

Thus, dimg(Qkk) = d. But
Qkik = Qxpey

Lemma 1.16. Let X be as above.

(1) F a coherent sheaf Ox-module, such that for all closed points x € |X|, dimi(Fy ®o, , k) is the same
as dimg(F,) = n, then F is locally free.

(i) In general, there exists a non-empty open subscheme U C X, such that for all x € |X|, Fy is free if
and only if x € U.

Remark 1.17. There are two notions of locally free for any A-module M. The first is that M, is free for all p € Spec(A).

The second is that M is a locally free sheaf on Spec(A).
These are not equivalent in general. For example, A = Z and

m
M= {7
n
M, is free, but M is not locally free.
In the course, we will always use the second one. If A is Noetherian, and M is finite, then the two are equivalent.

n squarefree]» cQ

Proof of lemma. For both of these statements, we can assume that X = Spec(A) is affine, and F = M, for a
finite A-module M. K = Frac(A), so n = dimg(M ®4 K).
Let m € maxSpec(A) be a maximal ideal. By assumption,

n = dimg(M ® (A/m))

Tie. the local ring at the unique generic point.
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Choose tq, ..., t, € M, whose images in M/mM form a basis. Now consider the natural mapE| A" — M from
this basis. By Nakayama, the localisation
An = My

is surjective. So the map K" — M ®4 K is surjective, so it is an isomorphism. Hence the above map is an
isomorphism.

We need to show that there exists a nonempty open U C Spec(A), such that the map
u— A~/’\U
is an isomorphism. We know that the map A" — M is injective, and has finite torsion cokernel N say, since it
is an isomorphism after tensoring with K. Then the map

o}, = M|y

is an isomorphism for U = X'\ V(Ann(N)). Now note that Ann(N) is non-zero, so U is non-empty. Moreover,
Ann(M) £ m, som & U.

For (ii), choose t; € M such that the map K" — M ®4 K is an isomorphism. The corresponding map
A" — M has finite torsion cokernel as above, and so at a maximal ideal m, we have an isomorphism A7 — Mgy,
if and only if m & V(Ann(coker(-))). O

O

Remark 1.18. The theorem holds more generally, for k perfect. But it fails for general k. Let X = Spec(K), where
K = k(t"P), k = F,(t). Here,
Qe = K(t)d(t")
is non-zero, but K is clearly regular (of dimension 0).
Thus, over non-perfect fields, regular and smoothness are not equivalent.

Theorem 1.19. Let k be algebraically closed, X/k an integral scheme of finite type over k, then there
exists a maximal non-empty open U C X which is smooth over k.

Proof. As in the proof of (ii) implies (i) in the previous theorem, we know that
QX/k,/] = K(X)d

The second part of the lemma says that there exists a non-empty open U, such that for all x € |X|, x € U if
and only if Qxyy is free of rank d. But by the theorem, this is the same as

d[mk(TX’X) = d

1.4 Digression - some general (nice) properties of schemes

Let X be a scheme. Recall:
e X (s quasicompact if X is a finite union of open affines.
Example 1.20 (non-example)
Let X = A® = Spec(k[x1, x2,...]), and U = X'\ {0}. This is not quasicompact.

e X is separated if the diagonal map is closed. In this case, the intersection of open affines is an open
affine.

te. (aq,..., ap)— a1ty + -+ apty.
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Example 1.21 (non-example)

The bug-eyed plane is not separated.
e (for completeness) X is quasi-separated if the intersection of any two open affines is quasicompact.

Example 1.22 (non-example)

Let X be the union of two copies of A?°, glued on the complement of the origin.

Sometimes, people will say “X is gcgs”, to say X is quasicompact and quasiseparated.
If f: X — Y is a morphism,

e it is quasicompact, if for all open affines V C Y, f~(V) is quasicompact,

e it is locally of finite type, if for all x € X, there exists an open affine neighbourhoods x € U = Spec(B),
and f(U) C V = Spec(A), where B is a finite type A-algebra.

e it is of finite type if it is quasicompact and locally of finite type.

o (for completeness) it is locally of finite presentation if locally it is Spec(B) — Spec(A), where B is a
finitely presented A-algebra. So

B =

When A is Noetherian, this is the same as locally of finite type. That is, when Y is locally Noetherian.
In this case, f is of finite presentation if moreover it is quasicompact and quasiseparated.

2 Flatness and related notions

Let A be a ring. An A-module M is flat over A if for every injection N — N’ of A-modules, the corresponding
map M ®&s N — M ®4 N is injective.
We say that an A-algebra B is flat if it is flat as an A-module.
Proposition 2.1. Some facts:
(i) A s flat over itself,
(it) any free module is flat, so vector spaces over a field are flat,
(iit) M is flat if and only if for all ideals | < A, the map M ®a | — M is injective,

(iv) M is flat if and only if for every short exact sequence

0 Ny N, N 0

The corresponding sequence
0 — MRAN ——= MR N, ——= M@ N3 —— 0

is still exact. That is, M ®4 - is an exact functor. Note that it is always exact except at M ®4 Nj.
So tensoring is a right exact functor.

(v) if M is A-flat, A — B is a ring homomorphism, then M ®4 B is B-flat. This follow from the fact that

M@sB)@sN=M®®sN

(vi) M is A-flat if and only if M, is Ap-flat for all p € Spec(A). This follows from the fact that A-
modules are the same as quasicoherent sheaves on Spec(A), and exactness of sheaves is equivalent
to exactness on stalks.

i



(vii) if A'is a PID (or more generally, a Dedekind domain), then M is flat if and only if it is torsion-free.
By the above, we can reduce to the case of M, being Ap-flat. But A, is (a field or) a discrete
valuation ring. The result then follows from (iit), since in a DVR, | = (x") for some n.

(viit) Let A be Noetherian, M a finite A-module. Then the following are equivalent.

o M is flat,
e M is projective,
e M, is free over A, for all p € Spec(A),

o Mis locally free. That is, there exists f1, ..., f, € A such that (fy, ..., fa) = A and My is
free over Ay for all i.

So over a Noetherian ring, finite flat is the same as being finite and locally free.

(ix) Since localisation is exact, it preserves flatness.

Proposition 2.2. Let
Ly kT L) Kn L K+l
be a complex of A-modules. Now suppose we have an A-module M, then we have a natural map

HY(K®, d*) ®4 M — H"(K* ®4 M, d* ® id)

which is an isomorphism if M is flat.

Proof. The sequence

0 — ker(d”) —— K" —— K"t

is exact, so we get
ker(d") ® 4 M — ker(d" ® idy) C K" @4 M (%)

and we have

K1 405 ker(d") —— H7(K®, d*) — 0

which is also exact. So the rows of

K" @sM —— ker(d") @q M —— H"(K) @M —— 0

l l l (%)

K'"@aM —— ker(d” ®4 idy)) —— H'(K @ M) —— 0

are exact. Hence we have an induced map H"(K)@ M — H"(K @ M). If M is flat, then the map ker(d,) @4 M —
ker(d” ®a idy) is an isomorphism. Hence by the five lemma, the map H"(K) 4 M — H"(K ®4 M) is an
isomorphism. O

Returning to (algebraic) geometry: Let f : X — Y be a morphism of schemes. We say that f is flat if one
of the following (equivalent) conditions are satisfied:

e locally, f is of the form Spec(B) — Spec(A), where B is a flat A-algebra,
e forall x € X, Ox « is flat over Oy r(y.

More generally, a queasicoherent Ox-module F is flat over Y if for all x € X, F is a flat Oy py-module.

Example 2.3
Open immersions are flat, since locally, they are isomorphisms. Closed immersions are in general, not flat.

12
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Let X, Y be k-schemes. Then
X XSpec(k) Y =Y

is flat. Morally, flatness is saying that “the fibres vary continuously".

See more in section in Hartshorne on flat morphisms, especially Example 111.9.8.4, of a particular flat family
of curves.

Fact: Let f : X — Y be a flat morphism of integral k-schemes of finite type. Then for all y € Y, and every
irreducible component Z C f~'(y), dim(Z) is independent of choice of ¢, Z, and is equal to dim(X) — dim(Y).

Example 2.4

Let ¥ =P, and let X be the blowup of Y at a point y € Y(kf] Then for all ¢’ + y, f~'(y/) is a point,
as we have an isomorphism X\ f~'(y) Z Y\ {y}. But f~'(y) =P}. So f is not flat.

@Y (k) = Homspec(k) (Spec(k), Y) is the set of k-points of Y.

As an example of blowup for A?, consider

{(x0, 1), (yo : y1) | xoy1 = x1y0} € A? x P’

and the projection onto the A?~factor. Away from the origin, the fibre is a line. At the origin, the fibre is a P'.

One way to think about this is that fibre dimension is constant across a flat family.

Example 2.5
Let Y = Spec(k[t]), and take X = Spec(k[x, y, t]/ {(xy — t)). We have a ring map k[t] = k[x, y, t]/ (xy — t),
so we have a scheme map X — Y.

When a is non-zero, the fibre is the (smooth irreducible) conic xy = a. When a = 0, then we have
the singular curve xy = 0, and the fibre is reducible.

If instead we considered X = Spec(k[x, y, t}/<x2 — tg>). When t = 0, we have x2 = 0, which is a
non-reduced scheme.

We have the very useful result:

Theorem 2.6 ((a special case of) miracle flatness). Let X, Y be integral k-schemes of finite type and
smooth over k. Let f : X — Y be a morphism. Suppose that for all y € VY, and for all irreducible
components Z C f~'(y), dim(Z) = dim(X) — dim(Y). Then f is flat.

This is actually true under much weaker hypotheses on X. See Eisenbud Commutative Algebra for a proof.

Fact: Let f : X — Y be flat, and locally of finite presentation (for example, if X, Y are Noetherian, then f
just has to be flat of finite type). Then f is an open map.

Note that a finiteness condition is necessary, for example, if X' = Spec(Q) — Spec(Z) = Y, then this is flat
but not open.

3 Sheaf cohomology

In this section, we will assume (unless stated otherwise), all schemes are Noetherian and separated. In
particular, they are quasicompact.

3.1 Homological algebra
Recall a (cochain) complex of abelian groups (or R-modules, or sheaves) is a sequence of maps (A®, d)

A4 oo 4
which may or may not be infinite, such that d° = 0. Associated to a (cochain) complex is the cohomology, which
is
ker(d : AP — APTT)
im(d : AP=1 — Ap)

HP(A®) =

13
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We write

H*(A®) = EPHP(A%)
p

for the graded R-module. A morphism of complexes f : (A, d) — (B, d) is a family of maps fP : AP — BP, such
that
df = fd

This induces homomorphisms
HP(f): HP(A®) — HP(B®)

Suppose
0 A Lo g2 0

is an exact sequence of complexes, then we have homomorphisms 0 : H?(C®) — HP*'(A®), such thats

0 — HO(A) —— H(B) HO(C) H(A) —— H'(B) — ---

is exact.
Suppose f,g : A — B are morphisms of chain complexes. They are homotopic if there exists maps
hP - AP — BP1 such that

dh+hd=f—g
If f and g are homotopic, then they induce the same map on cohomology. In particular, if A = B, and
hP i AP — AP~1 are such that
dh+hd=1id

Then the identity and zero maps on cohomology are equal, so the cohomology is zero. If such an h exists, we
say that A is null-homotopic.

Example 3.1

Let A be a cochain complex of abelian groups, n > 0. Let Z|—n] be the complex which is Z in degree n,
and zero otherwise. Then the set of morphisms Z|—n] — A is the same as the set of maps f : Z — A",
with df = 0. But any such map is of the form f(k) = kx for some x € ker(d : AP — AP*1). Moreover, the
homotopy classes of such maps is the above quotiented by im(d : AP~" — AP), ie. H"(A). So we obtain
the identification

H"(A) = {homotopy classes of morphisms Z[—n] — A}

In general, we can have that H*(A) = 0, with A not null-homotopic. For example, consider

712 —2 74 72 0

This is exact, but not null-homotopic.
If Ais a complex of vector spaces over a field k, then we can always “split off" the cohomology as a direct
summand of A”. In particular, if H"(A) = 0 for all n, then we can write A as

B —— B"¢B" — B'oB —— -
The obvious map h? : BP~' @ BP — BP~? @ B~ satisfies
dh+ hd = id
and so for complexes of k-vector spaces, H* = 0 is equivalent to being null-homotopic.

As a special case of the long exact sequence, if we have long exact sequences of length 2, so A — A" and
so on.

0 A B C 0
Lo
+ + +

0 A B’ C’ 0

14



Then the long exact sequence is

0 — ker(a) —— ker(B) ——— ker(y)

coker(a) —— coker(B) —— coker(y) —— 0
It is very easy to see that this holds with some of the zeroes removed. This is the Snake lemma.

Suppose (A®,da), (B®,dg) are complexes of R-modules. We define the tensor product A ®r B as follows:
In degree n, we have

AerB) = (P A" ®r B

p+q=n
For x € AP,y € BY, the differential is

dx®y)=dax®y+ (—1)’x®dgy

Note that the sign is required for d* = 0.

Theorem 3.2 (naive Kiinneth). Suppose R = k is a field, then for all n > 0,

H'(A®« B) = € HP(A) @ H(B)
p+q=n

Proof. Consider H*(A) to be a complex, with differential being zero. The cohomology groups are H*(A). Now
as the AP are k-vector spaces, we can write
A= HA) e C*
where H*(C) = 0. Thus, C is null-homotopic, via a chain homotopy h®. Then
AR B=H'A) & B® C*® B*
It's easy to see that h ® idg shows C* ®, B* is null-homotopic. Do the same with B, and we see that

H (A @ B) = H'(H(4) @ H*(B)) = (D H(A) ®, H(B)
p+qg=n

3.2 Sheaf cohomology

Let X be a topological space. An exact sequence of sheaves (of abelian groups)

0 F; I 3 0

of abelian groups, then we have an exact sequence

0 —— Fi(X) Fa(X) F5(X)

But the last map is not usually surjective.
There exists families of groups H'(X, F) of abelian groups, such that

o HYX, F) = F(X),

e there exists a long exact sequence (associated to a short exact sequence of sheaves)

0 —— HOX, Fy) —— HYX, F) —— HOX, F)

HY(X, F1) —— H'(X, F2) —— HI(X, F3) — - -

15
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e If f: X — Y is a continuous map, F a sheaf on X and G a sheaf on Y, and a map of sheaves f*G — F
(or G — f.F), then there are maps

f* o HY(Y,G) = H* (X, F)
compatible with the long exact sequence.

Now suppose X is a scheme (which is Noetherian and separated).
e |f F is a quasi-coherent Ox-module, then for any open affine cover U; of X.
HI(X, F) = (U, F)
e for general F, s
HO(X, F) = H(U;, F)
and, 5
H'(X,F)=lim H'(U,F)

—
open covers

o if i > dim(X), then H(X, F) = 0 for all sheaves F on X.
e if X is affine and F is quasicoherent, then H/(X, F) =0 for all i > 1.

Theorem 3.3 (finiteness). Suppose X — Spec(A) is proper, with A Noetherian. Suppose F is a coherent
Ox-module. Then for all i, H‘(X,]—") is a finite A-module.

There is a proof in Hartshorne for X projective, For a full proof, see Itaka’s book on Birational Geometry,
or Stacks project.

A particular case is that if A= k is a field, X — Spec(k) is proper, and F is coherent, then H{(X, F) are
finite dimensional.

Finally, if X — Spec(k) is a scheme, F is a coherent Ox-module, and K/k is a field extension, then

H[(X X Spec(k) Spec(K), Fk) = Hi(X,]:) R K

where Fx is the pullback. We will prove a more general result later.

3.3 Cech cohomology

Now suppose we have a finite open cover U = (U, ..., Upn), F is a sheaf on X, then we define the Cech
cohomology for the cohomology of the complex

HF(U,)‘)H]:(U,HUJ)% |_| ]:(U,‘ﬁUijk)

i<j i<j<k
where
d: |_| FlUpn-nU,.,)— |_| FUyn---NU,)
o< <y lo<<p
(f[‘O"'[‘p—W) (g (gig-~ip)
where
p
g[()"'[p = Z(_/I)qflofqlp Uiyn--NUj,
q=0

If I ={i, ..., ip}, with ip < - < ip, we will write Uy = U, n--- N U;,. So

CuF) =[] Fu)

#l=p+1

16



We can also sheafify the Cech complex. For V C X open, define
e, X)(V) = C(V N U, F)

So 5
cuXy=[1 (iFlu

H#l=p+1

where j; : Uy — X is the inclusion. So é(Zx{,X) is a sheaf, and the differential gives a complex of sheaves
0 —— F — CUF) — C'UF) —

If F is quasicoherent and U is an affine cover, then the above is exact, and C has no higher cohomology.

Proposition 3.4. Let X be a (Noetherian, separated) scheme, and U an open affine cover. Let F be a
quasicoherent Ox-module. Then

(i) we have an exact sequence of quasicoherent sheaves
0 — F — CUF) — C'UF) — -

(i) forall p >0,
CPU,F) i=0

Hi (X,ép(u,f)) - {0 0

Lemma 3.5. Let X be a Noetherian separated scheme. Let j : V < X be an open affine, G be a
quasicoherent Oy-module, then .G is quasicoherent, and for all i > 0, H{(X, j.G) = 0.

Proof. Since X is separated, j is an affine map. That is, the preimage of any affine is an affine. Therefore, .G
is quasicoherent: If we have f : Spec(B) — Spec(A), and G = M for an B-module M. Then .G = N, where N
is M viewed as an A-module.

To compute its cohomology, we will compute its Cech cohomology for an open affine cover U = (U;) of X.
Now

WG =[] Guinv)=Crunv).g)

#l=p+1

So H(X, j.G) = H(V,G) as (U; N V) is an open affine cover of V, and this is zero if i > 0. O

Proof of proposition[34 By the lemma, (j;).F|y, is quasicoherent, so the Cech complex sheaves are quasico-
herent. Moreover, _
HY(X, (f/)*]:|U/) =0

for all / = {ipg < --- < iy}, with p > 0. This proves (i) for i > 0. For i = 0 it is true by definition.
Thus it remains to show exactness in (i). It suffices to check on an open affine V. C X. Then we have
0 —— F(V) — COU F)V) — -
But . 5
Cu,F)(V)=C(UnV),Flv)

But we know that
F(V) i=0

Ci((U[ﬂV),fv)={O (>0

and so the result follows. O
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Definition 3.6 (resolution)
Suppose
0 F g° g'

is an exact sequence, we say that the complex (G*) is a resolution of F.

In particular, (i) in the proposition is called the Cech resolution of F.

Definition 3.7 (acyclic)
Let X be a topological space. A sheaf G on X is acyclic if for all i > 0, H{(X,G) = 0.

Theorem 3.8 (resolution principle). Let X be a topological space, F be an abelian sheaf on X, and
F — G* a resolution of F by acyclic sheaves GP. Then

H"(X, F) = H(I(X, %))

Example 3.9

Let F be a quasicoherent Ox-module, on a scheme X, and U is an open affine cover of X. By the
proposition,

0 — F — CUF) — C'UF) — -
is an acyclic resolution of F. Thus, the resolution principle gives us that
HI(X, F) = HY(C(X, C*U, F))) = H'WU, F)

So sheaf cohomology agrees with Cech cohomology.

Proof. Split up the resolution into short exact sequences

0 F G° im(d®) 0
where d' is the map G' — G*', and
0 —— im(d™") —— G' —— im(d) —— 0
Since the G' are all acyclic, the long exact sequence of cohomology gives

0 —— HO(X, F) —— HO(X,G%) —— HO(X, im(d))

/ (0

HY(X, F) ———— 0
and for all p > 1, we have
0 —— HP(X,im(d%)) —— HP(X,F) —— 0 (iR)
so HP(X, F) = HP=Y(X, im(d%). For the second short exact sequence, we get
HP=1 (X, im(d")) Z HP(X, im(d" ) (iid)
fori>1,p>1.

As HO(X, im(d?)) = HO(X, ker(d")) = ker(H°(X,G") — HO(X, G?)) C H°(X,G"). So (i) gives the result for HY
and H'. So we just need to do n > 2.

18



Let n > 2, and consider the resolution
0 —— im(d?) —— G —— G ——
We can apply the result which we have just shown, to get
HY(X, m(d"™%)) = H"(T(X, G%))
But we can use (ii) and (iii) to get
H7(X, T(X,G%) = HA(X,im(d" 7)) = - = H" (X, im(d°)) = H"(X, F)
as required. O

We can also use other acyclic resolution.

Definition 3.10 (flasque)

Let X be a topological space. A sheaf F on X is flasqueﬂ (or ﬂabbgﬂ or flaskEb if for all opens V C U,
the restriction map F(U) — F(V) is surjective.

%in French
bwhen translated
‘when translated in America

Fact: Flasque sheaves are acyclic.
For any sheaf F, there exists an injection

F - GF = [ |(i). %

xeX

where iy : {x} — X is the inclusion map. Then GF s flasque, and we have a resolution

0 F GF G(GF) —— -

of F by flasque sheaves. So every sheaf have a (canonical) flasque sheaves, where G refers to Goderment. Lecture 10
ecture

Theorem 3.11. Let ¢ : Y < X be the inclusion of a closed subspace of a topological space X. Let F be

a sheaf on Y. Then
H*(Y, F) = H*(X, .F)

By abuse of notation, often we will write H*(X, F).

Proof. Choose a flasque resolution F — G* on Y. By the resolution principle,
H* (Y, F) = H*("(Y, G*))

By the detinition, since G is flasque, so is .GP, and .F — ,G® is also a resolution. For this, note that we

can check exactness on stalks, to see that 1, is exact.
So
H*(X, . F) = H*([(X, ,.G®%)) = H*(T(Y, G*))

Theorem 3.12 (Mayer-Vietoris). Suppose X = UU V, and F is an abelian sheaf on X. There is a long
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exact sequence

0 —— HYX, F) — HYU, F)e HY(V, F) — HY(UN V,F)

—enenn =

H'(X,F) & H'(U,F)@ H(V,F) — H'(UNV,F) — ---

Proof. Choose a flasque resolution F — G*. Then we have an exact sequence of complexes
00— I'(X,g°) — U, gel(v,g) — ruUnv,g’) — 0

This is exact on the right as the G” are flat. Taking the long exact sequence on cohomology gives the result,
since H*(-, F) = H* (' (-, G*)). O

Another application:

Theorem 3.13 (Kiinneth). Let X, Y be Noetherian separated schemes over a field k, F,G quasicoherent
sheaves on X and Y respectively. Then

H™(X xy Y, pry F 510 = HP (X, F) @ HI(Y,
(X xi YopriF @ priG)= (P HIX. F)@x HI(Y.9)

Xoxg Y pa—n

In particular,

H (X xi Y, Oxx,v) = €D HP(X,0x) @ HI(Y, Oy)
p+qg=n

Notation 3.14. We will denote
f@g:f)%g: priF ® pryG

Xxp Y

Lemma 3.15. (i) Let A B be k-algebras, M an A-module, N a B-module, then on Spec(A) xSpec(B) =
Spec(A @« B),
MRN = M Rk N
(i) if F = K°*, G — L* are resolutions of quasicoherent sheaves on k-schemes X, Y, then
FXG—- K XKL

is a resolution of quasicoherent sheaves on X x Y, where

(K RLY) = P KPRL

p+q=n

Proof. For (i), note

~ —_—

pri(M) = M ®4 (A B)
and so
MEN = (M (A® B) ® (N ®5 (A®k B))
—Ma N

For (i), we can check exactness on an affine cover, so we reduce to the case where X, Y are affine.

So F = /\~/I,Q = N,K' = /?:,E' — [* By (i), we reduce to a statement about modules, showing that if
M — K*, N — [* are resolutions, then
Aﬂ(@k N — K‘(@k L®
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is a resolution. That is,

HY (K* @ L) = {M& N =0

0 otherwise
Since
HIR®) = {SA :tf:’er_w?se
This follows from the naive Kiinneth formula. O

Proof of theorem[313 Take open affine covers U,V of X and Y respectively. So we have Cech resolutions,
F—-CWUF) and G—C(V.G)

By the lemma, we get a resolution

FXG—K®
where . v
K*=C'U,FYRC(V,G)
Now note
K= P [l Ku
ptg=n \#l=p+1#/=q+1
where

Kij=(uxy)(FXG)
where ¢ Uy — X, V) — Y are the inclusion maps. This is acyclic, as for the usual Cech complex. Thus,
H*X x Y, FRG) =H (X x Y,K*)

Now
CX X Y, Kpy) =T (U x U, (FRG)|uxu) = F(U) @ G(U)

by the lemma. Thus, . y
M(X x Y,K*) =CU,F)oCV,G)

So by naive Kiinneth, the cohomology of this in degree n is

P HX F) e HI(Y,G)
p+qg=n

O

Suppose Y = X. Then for p,q > 0, F,G quasicoherent Ox-modules, A : X — X x; X is the diagonal
map. Then A*(F X G) = F ® G, and so we get

HP(X, F) @ HI(X,G) —— HPHI(X x X, F®G) —>— HPTI(X,F ® Q)

The map K is from the Kiinneth formula.

Definition 3.16
The composition A* o K is called the cup product.

When F = G = Oy, the cup product makes H*(X, Oy) into a graded k-algebra.
Fact: The multiplication in H*(X, Ox) is graded-commutative. That s,

X—y= (_1)deg(X)deg(y)y X

3.4 Cohomology of sheaves on PN
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Definition 3.17 (support)
Let X be any Noetherian scheme, F a coherent Ox-module. Then the support of F is

supp(F) = {x € X' | F + 0}

This is a closed subset of X. In fact, it suppose to check for X = Spec(R) and F = M. Then
supp(F) = {p € Spec(R) | My # 0}

But M, = 0 if and only if there exists r € R\ p, with rM = 0. This is because M is finite. Equivalently,
Ann(M) € p. So
supp(F) = V(Ann(M))
More precisely, there exists a closed subscheme i : Z < X, with underlying point set supp(F), such that
F = i,.G for some coherent Oz-module G. When X = Spec(R) is affine, Z = Spec(R/Ann(M)).
If X is proper over a field k, then H*(X, F) is finite dimensional for coherent F. In this case, we can define
the Euler characteristic

XX, F) =3 (=) dim (H{(X, F))

i

By the long exact sequence of cohomology, if we have a short exact sequence

0 Fi F> F3 0
of Ox-modules, then
x(X, F2) = x(X, F1) + x(X, F3)

Recall that on
X =P} = Proj(k[To, .. ., V)

we have an invertible Ox-module (Le. a line bundle) Opn(n), with sections being quotients f/g, with f, g €
K[To, ..., Tn] homogeneous, and deg(f) = n + deg(g).
In Part Il Algebraic Geometry, we computed

k[TO rrrrr T/\/]n [ = O, n>0
KTo, ..., TNy i=nn<—=N-—1

—n—1

In the first case, the dimension is ,and in the second case ( N ) [n this case,

(/\/;rn)
x(BN,0(n)) = P(n)

where
r+N) _ (AN (14T

P(t)_( N NI

This generalises to any coherent F on PN

Theorem 3.18. There exists a polynomial P(F, t) € Q[t] such that
X(BY, F(n)) = P(F, n)
for all n € Z, and deg(P(F, t)) = dim(supp(F)). Here, F(n) = F @ O(n).
Suppose i : X — P} is a closed immersion. Then Ox(n) = i*(Opi(n)). More generally, we can replace k
by any (Noetherian) ring. For any k-scheme X, an invertible Ox-module L is very ample if
L = "Opn(1)

If we have a projective embedding i : X < PV as above, Ox(1) is a very ample line bundle on X, then we
can define for coherent F on X,
P(X,F, t)=P(i.F., 1)
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and P(X,t) = P(X,Ox, t). These are called Hllbert polynomials.
Since ‘ ‘
H{(X, F) = H'(PN, i,.F)

We must have that
P(X,F,n)= x(X,F(n)

Moreover, as y is additive in short exact sequences, so is the Hilbert polynomial.
A related notion is an ample line bundle, which is one which satisfies one of the following conditions.
Theorem 3.19. Let X/k be proper, £ a line bundle on X. Then the following are equivalent:

(1) for some r > 1, L®" is very ample,

(ii) for some rp > 1 and all r > rp, L®" is very ample,

(iii) for every coherent Ox-module F, there exists ng such that for all n > ng, F ® L®" is generated
by global sections. That is, there exists a surjection

OF —» F @ L2

(iv) for every coherent sheaf F, there exists ng such that for all n > ng, i > 0,

HI(X, F®L®") =0

For a curve, £ is ample if and only if £ = O(D) for some deg(D) > 0.

Proposition 3.20. Let X C P} be an integral closed subscheme, of dimension d. Let n € X be its generic
point. Let F be a coherent Ox-module. Then

P(X, F . t) = dim, (}",,) P(X,t) + terms of degree less than d

Proof Let eq, ..., er be a k(n) basis for F,. Then there exists ng such that eq, ..., e, extend to sections of
F(no). Thus, we have an exact sequence

0——= 0 N Fln) —s ¢ ——0
where G, = 0, and so dim(supp(G)) < d. But then
P(X,F, tng) = P(X, F(no), t) = rP(X, t) + P(X, G, t)
where P(X, G, t) has degree less than d. O

Idea of proof of the existence of Hilbert polynomials. First of all, we can assume k is algebraically closed.

We can use exact sequences and induction on dimension of supp(F), to reduce to the case where supp(F)
is irreducible, of dimension d, and we can find a hyperplane H = {f = 0}, such that the map F — F(1), given
by multiplication by f is injective. Then we have an exact sequence

0 —— F(n) —L= Fin+1) —= Gn+1) —— 0
and supp(G) = supp(F) N H, which has dimension d — 1. Then

X(F(n+ 1)) = x(F(n)) = x(G(n))

which is a polynomial in n, of degree d — 1. O
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3.5 Cohomology and base change

How does cohomology vary in a family? That is, if we have a morphism f : X — S and a sheaf F on X, we
would like to compare H*(Xs, F|x.) and H*(X:, F|x,) for s, t € S.

Suppose that S = Spec(A) is Noetherian and separated, and we have a ring homomorphism A — B. Then
we have the fibre product

Xg = X Xspec) Spec(B) ————— X
f/l f
Spec(B) 7 Spec(A)

Suppose F is a quasicoherent Ox-module. In this case, H*(X,F) is an A-module, and by functoriality, we
have a map
HP(X, F) = HP (X5, F)

where Fp = (¢')*F. In particular, we have

HP (X, F) —————— HP(Xg, Fa)

|

HP (X, F) ®a B

We would like to know when is Bg an isomorphism. For example, if B = «(s), where s &€ Spec(A), then we
would like to know when HP(X;, F|x,) is tsomorphic to HP(X, F) ®a k(s).
We will approach this using Cech cohomology. Say X = |, U; is an open affine cover. Then

XB = U U[ XSpec(A) Spec(B) = U U[,B

is also an open affine cover. Now
Fp(U,s) = F(U)ea B

Hence . .
C((Uig). Fs) = C((Ui), F) ®a B

Say K* = é'((U,-),]—'). So we have

HP(X, F) @4 B ———— HP(K*) @4 B

BB‘/ i

Theorem 3.21. Suppose B is A-flat. Then Bg is an isomorphism.

Proof. Since in this case, we know that H*(K* ®4 B) = H*(K*) ®4 B. O

Example 3.22
Suppose k C K are fields, with X/Spec(k). Then

H*(Xk, Fx) = H* (X, F) & K

For the general case, we will need to put some hypotheses on X and on F. The problem is that the modules
K* are typically large. For example, they are rarely finite. Assume from now on, f : X — Spec(A) is proper, F
is coherent and flat over Spec(A). In this case. HP(X, F) is a finite A-module, and vanishes for p sufficiently
large.
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Theorem 3.23. Suppose HP(X, F) is zero for all p > n. Then there exists a complex

L0 L o L" 0 0

of finite flat A-modules, and for all A-algebras B, isomorphisms
H*(L* ®4 B) — H*(Xz, F3)

which are functorial in B.

Recall finite flat is equivalent to finite and locally free, since A is Noetherian. In fact, the same is true for
any A-module M,
H*(L* ®4 M) = H*(X, F @4 M)
Here, F a M =F ® FM.
Since H*(Xg, Fg) = H*(K® ®4 B), where K* is the Cech complex, by our assumptions it suffices to prove
the purely algebraic statement:

Theorem 3.24. Let A be a Noetherian ring, K*® a complex of A-modules, such that H?(K*®) is finite for all
p., and zero for p > n. Then there exists a complex

L0 [ e L" 0 0

of finite A-modules and a morphisms of complexes [* to K*, inducing an isomorphism H{(L®) = H{(K®),
and L', ..., L™ are all free.
If in addition all K? are flat, then L% is locally free, and for every A-module M, we have an isomorphism

H*(L* @4 M) = H(K® ®4 M)

Remark 3.25. For the application to the previous theorem, note that if F is A-flat, then the

K= [ 7w

#1=p+1

is also A-flat.

Proof. We start from the top. Pick a finite free module L”, and a surjection L" — H"(K). Since L" is free, we
can lift this to a map L” — ker(d : K" — K"*"). So we have

" — 0

P

KO K1 . Kn71 K" Kn+1 .

Now choose a finite free module P, and a surjection P — ker(L" — H"(K)). So we have

P L" 0
b
KO K1 L Kn71 K" Kn+1 .

Since P is free, we have a lift P — K"~ making the square commute. To see this, the composition P — H"(K)
is zero, and so P maps to im(d : K"~' — K”), hence we have a lift.

Next, choose a finite free Q and a surjection Q — H"~'(K), which lifts to a map Q — ker(d : K"" — K").
Now let L' = Q@ P. The map "' — L" is given by QO — 0. Now we have H"(L) = H"(K), and
H"="(L) = H"~"(K). We can continue this, and after n steps, we get

LO LT L Ln% Lr 0
I Ir | J{f” |
KO K1 . Kn—1 K" Kn+l
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where for 0 < p < n, HP(K®) = HP(L*), and HO(L*) — HO(K*). Replacing L% bt [°/ker(H%(f)) gives the
isomorphism at degree 0. Let C* be the following complex (usually called the mapping cone of f).
P =1reKr!

and
d(x, y) = (dx, —dy + f(x))

We have an exact sequence of complexes
0 —— K[-1]=(K*", —dg) —— (C*,d¢) —— (L*,d)) —— 0
Therefore, we have a long exact sequence of cohomology
HP=(K®) —— HP(C®) —— HP(L®) SN HP(K)

and 0 = HP(f). In particular, this is an isomorphism for all p, and so C*® is acyclic, i.e H*(C) = 0.
Since K? = 0 for sufficiently large p, for some N,

0 co C' cN 0

is exact. But C', ..., CN are all flat, so CY is also flat (see examples sheet 2).
Finally, let M be any A-module. Write

0 Q P M 0

with P free. Assume for all such M, and g > p, the map
HY(L® M) - HI (K ® M)
is an isomorphism. For example, this is true with p = n. As K*, L* are flat, we get

0 —— L0 —— LP —— LM —— 0

| | |

00— K®OQ — KQP — KM —— 0
which has exact rows. Hence we get a commutative diagram with long exact rows
H(L® Q) —— HP(L® P) —— HP(LOM) —— HPFY(L® Q) —— HPF(L® P)

| | | |
: ’ | ; :
HAK ® Q) —— HP(K® P) —— HP(K @ M) —— HPY (K ® 0) —— HPH (K ® P)

By induction hypothesis, y, € are isomorphisms. Since P is free, B is an isomorphism. By the five lemma,
the middle map is surjective. The same argument for a shows that a is surjective, and so the middle map is
injective. O

Lemma 3.26 (five lemma). Suppose we have

A B C D 3
L
A B c D E’

where the rows are exact, b, d are isomorphisms. Then:
e if e is @ monomorphism, then ¢ is an epimorphism,

e if a is an epimorphism, then ¢ is monomorphism.
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|
Proof. Omitted, just a diagram chase. O

Recall the assumptions we have made, that is, X — Spec(A) proper, F on X is coherent and flat over
Spec(A).
HO(Xg, Fg) = ker(d : [°® B — L' ® B), and for any finite flat (or equivalently, locally free) A-module M,

M &4 B = Homa(M", B) = Homa(Homa(M, A), B)

and so
HO(Xg, Fi) = ker(Homa((L°)", B) — Homu((L")", B))
Let
0 = coker((L")Y — (%))
and so

Corollary 3.27. There exists a finite A-module Q, such that for all B,
HP (X, F) = Homx(Q, B)

and this is functorial in B.

Corollary 3.28 (semicontinuity for H%). For every r > 0, the subset
Z = {s € Spec(A) ‘ dimys) (HO(XS,]:(S)) > r)} C Spec(A)

is closed. Here, F(s) = F ®a k(s), viewed as a coherent Ox.-module.

| Remark 3.29. Note Mumford calls F(s) Fs, but this can cause confusion with stalks.

| Remark 3.30. This is also true for all H?. The statement implies that if s € {t}, then dim(HO(X;)) > dim(H°(X,)).

Proof By localising on Spec(A), we can assume that [0, [" are free, isomorphic to A™, A" respectively. Then
(d)" is represented by an m x n matrix over A. So

Zi = {s | rank ((do)T ® idys)) < m—r}
= {s|all m —r+1 minors of C vanish in «(s)}

Corollary 3.31. Assume Spec(A) is connected. Then x(Xs, F(s)) is independent of s € Spec(A).
If X C P} is projective, then the Hilbert polynomial P(X;, Fs, t) is independent of s.

Proof Localising, we can assume [ is free. But then
XX, F($) = (=1 dimygy (H7(L ® K(s)
p
= (=1 dimq)(L” ® K(s))
p
But

dimy(s)(LP ® K(x)) = rank(L)

which is independent of s. O
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Note here, we use the fact from homological algebra that if we have a chain complex consisting of k-vector
spaces, we can compute the Euler characteristic using cohomology or as the alternating sum of the dimensions.

Now lets look at the top dimensional cohomology, since [P = 0 for p > n, we must have that H”(Xg, Fg) = 0
for p > n. Moreover,

H"(Xg, Fg) = coker(L"' @4 B — L" @4 B) = coker(L"™" — L") ®4 B = H"(X, F) @4 B

Here, we use the fact that the tensor product is right exact. Hence the base change map is an isomorphism on
the top degree.
Fibres: Assume A is reduced. Then the map

A= T

peSpec(A)

T >

is injective. As H(X, F) is a finite A-module, we get that

H'(X,F) -0 < Vs & Spec(A), H"(X, F) @4 «(s) =0
< Vs & Spec(A), H"(X;, F(s)) =0

If these hold, then we can replace n with n — 1, and by descending induction,

Corollary 3.32. Suppose A is reduced, and let p > 0. Then the following are equivalent:
(i) forall i > p, H{(X, F) =0,
(ii) for all i > p, s € Spec(A), H{(Xs, F(s)) =0

In particular, setting p = 0, H*(X, F) = 0 if and only if H*(X,, F(s)) = 0 for all s € Spec(A).
Higher direct images: Suppose f : X — Y is a morphism of (separated Noetherian) schemes, F a
quasicoherent sheaf on X. Let V' = Spec(A) C Y be an open affine. Let

Go(V) = HP (1 (V), Fli1 1)

This is an A-module. Now if we have V' = Spec(A’) C V affine, then G,(V') = G,(V) ®4 A, by flat base
change.

in particular, by question 2 on examples sheet 2, there exists a unique quasicoherent sheaf on Y, extending
G,. We write RPf,F for this sheaf, which is called the higher direct image sheaf.

Remark 3.33. For any abelian sheaf F on X, there is are sheaves RPf.F on Y, which are the sheafifications of
Vi HP(F1(V), F).
We can also define this as H*(f.K*®), for a suitable resolution of F, see the relevant section of Hartshorne.

We can rephrase the earlier results in terms of higher direct images. For example,

Theorem 3.34 (restatement of theorem 33). Suppose f : X — Y is proper, F is q coherent Ox-module,
then RPf.F is coherent.

and we can restate corollary 3.32 as

Corollary 3.35. Suppose Y is reduced. Then for all p > 0, the following are equivalent:
(i) forall i > p, R'fL.F =0,
() forall i > p,y € Y, H(X,, F(y)) =0
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4 Group schemes over a field

Fix a field k. Write Sch/k for the category of k-schemes, i.e. schemes with a morphism ax : X — Spec(K).
The morphisms are morphisms of schemes such that the diagram

X Y

Spec(k)

commutes. We write Aff/k for the category of affine k-schemes. Equivalently, the opposite category of the

category of k-algebras.
For X, S &€ Sch/k, write X(S) = Mor(S, X), and if R is a k-algebra, we write X(R) = X(Spec(R)) for the
R-points.
If X = V() C A, then
X(R)y={(x) e R"|f(x)=0forall f €I}

We will write X x V' = X x ¥V = X Xspeqk) Y- Finally, in this course,

Definition 4.1 (variety)
A variety is a separated k-scheme X of finite type which is geometrically integralf]

That is, X xx Spec(k) is integral.

Example 4.2
X = Spec(Q(V2)) = V(t* = 2) C Af@ is not a variety. This is not a variety as X x Spec(Q) is two points.

Theorem 4.3. Let X/k be a proper varletgﬂ Then HO(X, Oy) = k.

“That is, the map X — Spec(k) is proper.

Proof Since 7
HO(X, Ox) ® k = H(Xg, Ox)

we may assume that k = k is algebraically closed. Now H%(X, Oy) is a finite integral k-algebra, which must
be just k. O

Remark 4.4. Proper varieties are also called complete varieties.

Definition 4.5
A k-group scheme is a k-scheme G, with a morphism m : G x G — G, such that for every k-algebra R,
m makes G(R) into a group.

Note the set G is rarely a group.

Example 4.6
The additive group G, = Spec(k[t]). The group operation is given by
K[t] = ku, V]
t—u+v
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and for any k-algebra R, G4(R) = (R, +).

Example 4.7
The multiplicative group G,, = Spec(kt, t="]). The group operation is given by

K[t] = K[u, v, u™", v

t— uv

For any k-algebra R, G, (R) = (R*, ).

Example 4.8

The general linear group is

GL, = Spec (k l(t[-/), detlﬁ)} )
i

n
1
- a . i), —————
h/ — ;:1 flrtr/ € k [(t’/)' (tu) ' det(tij)

with multiplication

det(t:,-)]

Example 4.9
Let [ be a group, and

G = | | Spec(k)

yel

with the discrete topology. There's an obvious way to make this into a group scheme using the group
structure on .

Lecture 15

Recall from earlier that G, = Spec(k[t]), and this does not form a group. For example, what do we do with
the generic point? Even if we just consider closed points, in general, they don't form a group.

The S-valued points, X(S) = Mor(S, X) (as S varies), plays the role of the usual points.

Let S be a k-scheme. Then X(S) = {f: S — X}. Now if we have g : S" — S, then we have a map of sets

(-og): X(S) = X(5))

and this is compatible with composition S” — S’ — S. In particular, for each X, we have a functor, called the
functor of points,
hx : Sch/k — Sets®

or quivalently, a contravariant functor Sch/k — Sets.

Lemma 4.10 (Yoneda). We have a natural bijection

Mor(X, Y) < {(fs : X(S) = Y(S))seschik | Vg :S" — S, x € X(S), fs(x) o g = fs(x 0 g)}

Proof. Given f : X — Y a morphism, x € X(5), define fs = f ox € Y(S). On the other hand, given a family
(fs), define f = fx(idx) € Y(X) = Mor(X, Y). O

Lemma 4.11 (Yoneda+). The same bijection holds when we restrict to affine S. That is, X is determined
by the functor R +— X(R) on k-algebras.
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Proof. We need to reconstruct X(S) from the X(R). Let
s=Ju
where U; are affine. Then

X(S) = Mor(S, X) = {(f; € Mor(Us, X)) | for all V' C U; N Ujaffine, £y = fi]v}

So the restriction to affines determine X(S). O

Proposition 4.12. Suppose we have a k-group scheme G. Then
(i) for all S € Sch/k, G(S) is a group,

(i) for all S” — S morphism of k-schemes, the corresponding map G(S) — G(S) is a group homomor-
phism

Proof. First we prove (ii) for affines. Suppose S’ = Spec(R’) — Spec(R) = S. Then G(R) — G(R’) is a group
homomorphism if and only if the right hand square in

mgr

(G % G)(R) —— G(R) x G(R) —2*— G(R)

| | |

(G x G)R) — G(R') x G(R) —— G(R)

commutes. But the outer rectangle commutes, as it is the map induced by G x G — G, and the left square
commutes by definition of the fibre product. Hence the right hand square commutes.
For (i), let S =, U;, U; affine. Then

G(S) = {(gi)ier | gi € G(U)), forall V C U;n U affine , gi|lv = g;|v}

But we just saw that the restriction maps G(U;) — G(V/) are homomorphisms, so G(S) is a subgroup of [ ] G(U,).
Same argument as before implies (ii) for general morphisms S" — S. O

Corollary 4.13. There exists e € G(k), i : G — G such that for all S, e maps to the identity element of
G(S), and is : Gs — Gs is the inverse.

Proof. The first part is because G(k) — G(S) is a homomorphism, induced by the map S — Spec(k). The
second part is just Yoneda. Explicitly, i € G(G) is the inverse of idg € G(G).
Here, idg is the identity map G — G. 0

Remark 4.14. An equivalent definition of a group scheme consists of (G,m : G x G — G, e € G(k),i: G — G), such
that various diagrams commute, such as

(GxC)x G2 Gx G

GX(GXG)WGXG

112

G

for associativity, and so on. That is, it is a group object in Sch/k.
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Definition 4.15

A homomorphism of group schemes is a morphisms f : G — (', such that for all R, fr : G(R) — G(R’) is
a homomorphism.

By Yoneda, fs : G(S) — G(S) is a homomorphism for all S € Sch/k. We leave as an exercise to show that
f is @ homomorphism if and only if a certain diagram commutes.

Definition 4.16

A closed subgroup scheme is a closed subscheme i : H — G, such that for all R, H(R) C G(R) is a
subgroup.

We need to check that H is a group scheme. For all S, H(S) C G(S) is a subgroup (same argument as
before), and we have a diagram

So we need to show that we have the dotted arrow making the diagram commute. Taking S = H x H, and
idyxy € (H x H)(H x H), this maps to some H x H — H making H into a group scheme.

Example 4.17 (trivial)

e : Spec(k) — G is a closed subgroup scheme.

Example 4.18
Let f: G — G’ be a homomorphism of group schemes. Define ker(f) to be the fibre product

ker(f) ————— G

Spec(k) — o

By definition of the fibre product, ker(f)(S) = ker(fs : G(S) — G'(S)). €’ is a closed point, and so ker(f)
is a closed subscheme. Hence it is a subgroup scheme.

Example 4.19

Let G = GL,. Then det: GL, — GL; = G,,, where detr : GL,(R) — R* is the usual determinant, is a
homomorphism of group schemes. Then we have

SL, := ker(det)

Remark 4.20. 1. Existence of quotient schemes is much harder.

2. Essentially everything works as is, if Spec(k) is replaced by an arbitrary base scheme T. So we replace Sch/k
by Sch/T and so on. Note
Aff/T ={S — T | S is affine}

Note this is not the same as S — T being an affine morphism.
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5 Abelian varieties

Definition 5.1 (left translation)

Suppose G/k is a group scheme, and x € G(k). The (left) translation morphism T, : G — G is the unique
morphism such tha for all k-algebras R, y € G(R),

Tly) = xy = m(x, y)

That is, T is the composition

xxidg

G x Speclk) x G —% Gx G "= G

Similarly, we can define right translation. Clearly
o [, =1d,
o =TT,

So Ty : G — G is an isomorphism of k-schemes. We don't just need to consider k-points.

Definition 5.2
Let S be a k-scheme, x € G(S), then define 7, : G x S — G x S to be the morphism

id x(x,ids) m!xids GxS

GxS Gx(GxS)=(GxG) xS

where m'(g, h) = m(h, g).

When S = Spec(k), this is the same as the above. In particular, taking S = G, x = id¢ € G(G) to be the
“tautological point’, we get the universal translation

GxG—->GxG

given by (g, h) + (hg, h). This is universal since if x € G(S) for any S, then we have the commutative diagram

GxG—"" 66

idg xx idg xx

GxS—" yGxS

In fact, this is a cartesian diagram.

Definition 5.3 (group variety, abelian variety)

A group variety over k is a k-group scheme which is also a variety. An abelian variety is a group variety
which is proper over k.

Remark 5.4. An algebraic group is sometimes a group variety, or sometimes a group scheme of finite type.

Example 5.5

Gy, Gy, GL,, SL, are group varieties. The simplest non-trivial abelian variety is an elliptic curve E/k (a
non-singular plane cubic with a point e € E(k)). The group law on E is the chord/tangent construction
for a plane cubic. This makes E into an abelian variety of dimension 1.
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Theorem 5.6 ((classical form of) Mumford's rigidity lemma). Let X, Y, Z be varieties over k, where X is
proper and X(k) # @. Suppose f : X x Y — Z is a morphism. If for some yg € Y, 20 € Z,

X x {yo} € ()

then there exists g : Y — Z such that f = g o pr,. In particular, for all y € Y, f(X x {y}) is a single
point.

In words, suppose X is proper, and we are given a family of maps X — Z indexed by Y. If one of the maps
is constant, then they all are.
Note that here

X x {yo} = pry " (yo)
is the fibre.

Remark 5.7 (properness). Suppose X = Y = Z = A}, and f : A" x A’ — A’ is given by f(x,y) = xy. For y =0,
this is the zero morphism A" — A'. But if y # 0 it is an isomorphism.

Corollary 5.8. Suppose X is an abelian variety, G any group variety. If f : X — G is a morphism and
g = f(ex). Then T,-1 0 f is a homomorphism.

Proof. Replacing f with 7,1 o f, we may assume f(ex) = ec. Consider the morphism h : X x X — G, given
on (R-valued) points by

hx, y) = F()f(y)f (xy)~"
Then
h(X x {ex}) = {ec} = h({ex} x X)

Applying rigidity, the first equality implies that h factors through pr,. The second equality implies h factors
through pr,. Hence h(x, y) = eg for all x, y € X(R). Hence f is a homomorphism. O

| Corollary 5.9. Abelian varieties are commutative.

Proof. Consider the inverse map ¢t: X — X. As ((e) = e, t is a homomorphism. This means X(R) is commutative
for all R, since a group is abelian if and only if the inverse map is a homomorphism. O

Remark 5.10. The “abelian” in abelian varieties is the same Abel as for abelian groups, but not for the same reason.
Similarly, abelian functions are a generalisation of elliptic functions.

Instead of the rigidity lemma, we will prove a stronger statement:

Theorem 5.11. Let p : X — Y be a proper morphism of schemes, where Y is integral, and admits a
section s: Y — X. That is, pos =idy. Assume p,Ox = Oy.

Let f : X — Z be a morphism where Z is a separated scheme. Suppose there exists y € Y,z € Z,
such that X, = p~'(y) C (). So f collapses X, to a point. Then f = gop, for some unique g : ¥ — Z.

Remark 5.12. To deduce theorem ISEI we have p = pr, : X x Y — Y. Integral and separated follow from Y being a
variety. s is given by any element of X(k). (pr,).Oxxy = Oy, since H(X, Ox) = k for a proper variety.

Proof. If g exists, then fos =go(pos) =g, and so g is unique, and it exists if and only if f = f o (sop).
Suppose also there exists an open dense Y’ C Y, over which g exists. Then f|s1(yy = (f o 50 p)|;1(yy. But as
Y is reduced and Z is separated, f = f o s o p everywhere, see Hartshorne.
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We know f maps X, C X to {z} C Y, and so let W be an open affine neighbourhood of z. Then (W) is
an open neighbourhood of Xj. Since p is proper, it is closed, and any such neighbourhood of f~'(W) contains
p~'(Y’) for some sufficiently small open affine neighbourhood Y’ of y.

To see this, let T = p(X \ f~"(W)). This is closed and does not contain y. Hence any open affine
neighbourhood of y in Y\ 7 works. So let X" = p~'(Y’), and let p’ : X’ — Y’ be the restriction. Then f maps
X' to W = Spec(B) C Z. Hence this is induced by a ring homomorphism B — (X", Ox:) = (Y, Oy/), since
f.Ox = Oy. So f|y factors as X’ — Y' — W. Since Y is integral, Y’ is dense in Y. O

Proposition 5.13. Let k be a field, G a group variety over k, then G is smooth over k.

Proof First of all, if X/k is a scheme of finite type, let X = X x Spec(k). Then X/k is smooth if and only if
X[k is smooth.

To see this, smooth is equivalent to Q being locally free (and of the correct rank). Let px : X — X be the
projection map. Then

Qxir = PxQxik

Thus, if Qx/ is locally free, then so is Qy/p For the other direction, it reduces to X = Spec(A) and Qxx = /\~/I
where M = Quj which is a finite A-module. We know that M ® k is a free A® k-module. For this, we need
to take a sufficiently small open affine. Then M C M ® k is a direct summand as an A-module, since k C k
has a vector space complement. Hence M ®; k is a free A-module, so M is projective and thus locally free.
So if G is a group variety, we may assume k = k. Then G is integral, and so there exists a non-empty
open U C G which is smooth. If x € G(k) and y € U(k), then T,,+1(U) C G is a smooth open containing x.
So we can cover G by smooth opens, so G is smooth. O

Remark 5.14. If char(k) = O, then Cartier's theorem says that every finite type group scheme over k is smooth. This
is false for char(k) =p > 0.

Our aim is now to:

e prove that abelian varieties are projective,

e show X[n] = {x € X(k) | nx = e} is finite (and determine the structure),

e relate X(k) and Pic(X x Spec(k)), where the Picard group is the group of isomorphism classes of line
bundles.

The last one is a generalisation of the Abel-Jacobi theorem, where if £ is an elliptic curve, then we have a
homomorphism

E(k) — CI°(E x Spec(k))
p— [p]—le]

6 Seesaw, cube and square

Theorem 6.1 (seesaw). Let X, Y be varieties over k, with X proper. Let £ be a line bundldfon X x Y.
For y € Y, write
iy X x Spec(k(y)) — X x Y

for the inclusion of a fibre pry'(y). Suppose for all closed points y € Y, L(y) = L s tr'Lv'La Then
there exists a line bundle M on Y, such that £ = pry M. Morover, M = (pr,).L, and so it is unique up
to isomorphism.

%Le. an invertible Oxxy-module, or locally free of rank 1
bie. isomorphic to Oxxy, where X x y = X x Spec(k(y)).
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Proof. First, we will show that every y € Y has an open affine neighbourhood V, such that L|xxv = Oxxv,
and so L|xxv = pr5 Oy. Suppose Y = Spec(A) is affine. Then X x Y — Y is flat, and so there exists a finite
A-module Q, such that for all A-algebras 5,

HO(X x Spec(B), Lg) = Homa(Q, B)

In particular,
HO(X x y, i; £) = Homa(Q, k(y)) = (Q ®x (y))”

As HO(X x y, i3 £) = HO(X x y, Ox.y), which has dimension 1 for all closed points y & Y. Hence

dimam(QmQ) =1

for all m & maxSpec(A), and so Q is locally free of rank 1.

Localising further, every yo has an open neighbourhood for which Q is free of rank 1, say equal to A - g.
Then HY(X x Spec(A), £) = Hom(Q,A) = A- q". For each closed y € Spec(A), " maps to a generator of
HO(X x y, tyL), which is everywhere non-vanishing on X x y, since i; £ Z 0. Hence g defines an isomorphism

Oxxspecit) = L

and as
(prZ)*OXXSPGC(A) = OSpec(A)

we have that
pri(pry). L = L

and so in this case, M = Ospeqa)-

For general Y, the preceding argument shows that if M = (pr,).L, then M is locally free of rank 1, and
the map pr5 M — L (through adjunction) is an isomorphism.

If £ = prj M’ say, then we have an isomorphism M’ = (pr,).L (as locally on Y, both £ and M’ are free),
and so M = M. O

Remark 6.2. If we have the fibre product X x Y, with Y — Spec(k) flat, and so by flat base change,

(pry)«Oxxy = Oy

as H(X, Ox) = k.

If moreover, x € X(k) and L|,xy is trivial (as Lyxy = M), and L is trivial. However, it is not sufficient to
just assume that Ly y, Lxxy for fixed (x, y). We need it to be true for all (x, y).
On the other hand, if we have X x Y x Z, then the analogous statement would be true. That is, if

£|x>< YxZ £|X><y><Zr £|X><Y><z

are trivial, then so is L.

Theorem 6.3 (cube). Let X, Y, Z be k-varieties, with X, Y proper. Let x € X,y € Y,z € Z, and L be a
line bundle on X x Y x Z. Suppose that each of

»C|x>< YxZ »C'|X><g><Z: E‘XXYXZ

is trivial. Then L is trivial.

Proof See section Bl O

Remark 6.4. (i) In fact, this is true for more general k-schemes Z. On the other hand, the assumption of X, Y
being proper is essential.

(it) For all line bundles £ on X x Y x Z, there exists an isomorphism

E= pr}xY£1 ® prj(xZ L£;® pr*YxZ ‘C3
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for line bundles L; on the appropriate spaces. On the other hand, this is not true for the product of two varieties.

Corollary 6.5. Let X be an abelian variety over k, and £ a line bundle on X. Let Y be any k-scheme,
f,g,h:Y — X morphisms. Then

M=Migh=(+g+h"LO(I+g)'L'®(+hL ®(g+h'LYRIFLRGLRNL
is trivial. Here, f + g : Y — X is the composition

y 29 X x s X

Proof. First consider the case where Y = X x X x X, f = pr{, g = pr3, h = pr3 are the projections. Here, pr/
is the projection X" — X on the i-th factor. Let x = y = z = e. By the theorem of the cube, we need to show
that M|xxxxe = Oxxx. By symmetry it'll hold for the other cases. Now, M|xxxxe = G*M, where

g X xX—=>XxXxX

qlx.y) = (x,y.e)

Now

prioq = pr;

pry oq = pr5

pr% og = constant morphism e
Hence

(pri+pry+pr3) o g = (pr +pr3)oqg=m

(pri+pr3) o q = pri

(pr3 +pr3)oq =pr
With this,

GM=m"Lem L ® (pri) LY ® (pr3) LY ® (pr{)"L ® (pr3)"L ® Oxxex = Oxux
and so M = Oxxxxx. For the general case, we have that

Mign=(f xgx h)*Mpr«prz,prs

Theorem 6.6 (square). Let X be an abelian variety, £ a line bundle on X, x,y € X(k). Then T}, L =

x+y
TL®TIL®L.

Proof. Apply the corollary with Y = X, f = x, g = y, h = idx. Thenf+h =T, g+h =T and f+g+h = Ty,
f + g is the constant morphism x + y. If p : X x X is constant, then p*£ = Ox. Then we get

T LR®TILY@T LY ®L=0x

Corollary 6.7. Let X be an abelian variety, £ an abelian variety on X. For n € Z, let [n] : X — X be
the multiplication by n morphism. Then

W*ﬁ ~ £®n(n+1)/2 ® (i*’c)@n(nfﬂ/z

Here, i =[—1] is the inversion map.
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In particular, if £ is symmetric, Le. if £ is isomorphic to i*£, then [n]*£ = £&". On the other hand, if
L =LY, then [n]'L = L®".

Here, for n negative,
£®n _ (ﬁ\/)@\ﬂ\

Proof. It's clear when n = 0,1. For n > 2, apply corollary 5 with f = [n — 1], g = idx =[1, h = i = [-1]

Then

[
f+qg=1In]
f+h=[n-2]
g+ h=][0]

Hence we get that
(n=1LENLR[N-2ILROJLR[n—1]L ]'LY @ [-1]'LY

In particular,
MPLE - 1L @ - 2L @ L IL

Inserting the result for n — 1 and n — 2, we get the result for n. This shows the result for n > 0. For n <0,
note that

[=n["L =[] (" L)

7 Picard group of abelian varieties

Recall for any scheme X, Pic(X) is the group of isomorphism classes of line bundles on X. The group law is
tensor product of line bundles. We will study Pic(X) and Pic(Xg) for an abelian variety X/k.

Proposition 7.1. Suppose X is a k-variety, which is proper. Then the natural map Pic(X) — Pic(Xg)
induced by the map X — X is injective.

So we can check identities between line bundles after passing to k.

Proof It is a homomorphism, and so it suffices to show that if Ly = Ox_, then L is trivial. But on the

examples sheet, we see that £ = Ox if and only if HO(X, £) and HO(X, L£Y) are non-zero. But as HY(Xg, L7) =
HO(X, L) @y k, we get the result. O

From now on, assume X is an abelian variety over k. To study Pic(X), we will use:

Proposition 7.2. Let £ be a line bundle on X. For x € X(k), define
oc(x) =T L® LY € Pic(Xy)
More precisely, it's the isomorphism class of 7L ® LY in the Picard group. Then

or : X(k) = Pic(Xg)

is a homomorphism.
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Proof

pric+y)=TL Lol
o) +ocly) =T LRL T, @ LY
These two are equal by the theorem of the square. O
Note we will write the group operation in Pic(X) either as + or as ®. Thus, ¢z combines the group law

on X and on Pic(Xg).

Definition 7.3 (Néron-Severi group)

Define
Pic’(Xg) = {£ | ¢z = 0}
and
K(£L) = ker(¢r)
Define the Néron-Severi group of X to be
NS(Xg) = w
Pic’(Xp)

Note that NS(Xg) is a subgroup of Hom(X(k), Pic(Xg)). In the end, Pico(X;) will turn out to be the k-points of

another abelian variety X, the dual abelian variety, and NS(X7) is a finitely generated free abelian group.
First of all, we will give an alternative characterisation of Pic’.

Proposition 7.4. Let A(L) = m*L @ pri LY @ pr5 LY € Pic(X x X). Then £ € Pic’(X) if and only of A(L)
is trivial. That s,
mL=pri LRpr; L

N(L) is called the Mumford line bundle.

Proof. ¢ depends only on the isomorphism class of £ € Pic(Xg), and so we can assume k = k. Let x € X(k).
Then

mo (id xx) = Ty
pryo (id xx) = idx
pryo (id xx) = x
Hence
NEL)xsx = TIL® LY ® Ox = ¢y(x)

Moreover, A(L)|exx = @r(e) = Ox is trivial. Thus, by seesaw, A(£) is trivial if and only if for all x € X(k),
L‘XXX;OX- That is, ¢ = 0. O

Proposition 7.5.
(i) for all line bundles L, im(¢.) C P'Lco(X;),
(ii) if £ € Pic®(Xg), then *L = LV,
Proof Without loss of generality, assume k = k. For (i), let x € X(k) and M = ¢(x) = ;L ® L". For

y & X(k).
omly) = THTILO® L)@ (TIL®LY) = Ox

by the theorem of the square. Hence ¢y =0, and so M & PLCO(X;).
For (ii), by the previous proposition,
m'L=pri LRpr5L
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and consider d : X — X x X, d(x) = (x, —x). Now
d(priLRpr L) =L L
and
d*mL = (mo d)*L = O
as mo d is the constant map. Thus, L ® i*£ = Ox,a nd so i*L = LV, O

Theorem 7.6. Let £ € Pic’(X) be non-trivial. Then H'(X, £) = 0 for all r > 0.

Proof To start off, we will show HO(X,ﬁ) is zero. If not, let s € HO(X,E) be a non-zero section. This has
an effective divisor D = div(s), and £ = Ox(D). Now £ € Pic’(X), and so £Y Z i*£ = Ox(i*D). and so
HO(X, £Y) = HY(X, Ox(i* D)) # 0. But then from the examples sheet, if both £ and £" have a non-zero global
section, then L is trivial.

So assume for all 0 < i < n, H{(X, £) = 0. Consider

So on H"(X, £), the identity map factors as

(id xe)*
—_—

H (X, £) —2s H(X x X, m*L) H™(X, L)

Now m*L = pr; L@ pr5 L = LK L. By Kinneth,
H'(X x X, LR L) = P H(X, L)@ HI(X, L)
p+qg=n

The right hand side vanishes by the induction hypothesis. But the identity map factors through the zero map,
and so H"(X, L) = 0. 0

Lecture 20

Proposition 7.7. Suppose £ € Pic(X). Then there exists a closed subgroup scheme Z C X such that

K(L) = Z(k), and A(L)|xx7 s trivial.

Proof Recall
NL) =m*L@pri LY @ pr5 LY € Pic(X x X)

and that for all x € X(k),
A(£)|X><x = T:[, ® L' = QDL(X)

and
AL)]exx = Ox;
Hence B
K(£) = {x € X(k) [ NL)[xxx = Ox. }
Thus, if

/= {X e X | /\(ﬁ)|Xxx = OXxSpec(K(x))}

Then by sheet 3 question 2, Z is closed, and Z(k) is K(L).
Give Z the reduced subscheme structure. Then the seesaw theorem implies that

NL)|xxz = pr; M
for some M € Pic(Z). Now
AL)|exx = Ox

40



and so restricting to e x Z, we get M = Oz. So we just need to check that Z is a subgroup scheme.
First, Z is non-empty, and so consider the automorphism of X x X given by

fF-XxX—=-XxX
(X, y)— (x+y,y)

We just need to check that it takes Z x Z isomorphically to itself. Since Z is reduced, and X is a variety, it is
enough to check

f(Z x Z)(k) = (£ x Z2)(k)
But this is true since Z(k) = K(L) is a subgroup of X(k). O

Remark 7.8. (i) Infact, it's not hard to prove that there exists a unique closed subgroup scheme K (L), which need
not be reduced, such that for any closed subscheme S C X, S C K(£) if and only if

/\(‘C’)|X><S = OXXS

(i) If K(£) is infinite, then dim(Z) > 0. Thus, taking the irreducible component containing e, there exists an
abelian subvariety Y C X such that Y(k) € K(£). This is immediate if kK = k, and in general, we just need to
check that Y is geometrically integral.

7.1  Ampleness criterion

Suppose L = Ox(D) for some D > 0 effective divisor. We can take Weil or Cartier divisors, since they are
equivalent in this case. Say
D= Z n[D,'

where n; > 0 and D; are integral closed subschemes of codimension 1 of X. In this case,

K(£) 2 H(D) = {x € X(k) | T«(D) = D}

where T,(D) = D is equality of divisors on Xz. H(D) is a subgroup of X(k), and it is also the k-points of a
closed subscheme of X¢.

Assume k = k. So if x € X(k), and Y C X any closed subset, T,Y = Y if and only if for all y € Y(k),
x +y € Y. Equivalently,

xe (Y ixlxyem ' M= () prX xynm ()
yeY(k) yeY(k)

and the right hand side is a closed subset.

Theorem 7.9. Let £ = Ox(D). Then the following are equivalent:
(i) £ is ample,
(it) K(L) is finite,
(iit) H(D) is finite.

Remark 7.10. Since H(D) C K(L) € X(k), they only depend on L. But if L is ample, then so is L. For this, note
that
HY(X, F ® L") @ k = H'(Xg, Fr ® L7)

for F coherent on X. See theorem B19iil).
In particular, we can assume k = k to prove the theorem.

Proof. (ii) implies (iii) is obvious, as H(D) € K(L). We'll now prove (i) implies (ii). Suppose L is ample, but
K(L) is infinite. Then there exists an abelian subvariety such that K(£) contains Y(k) and dim(Y) > 0.
But L restricited to Y (or any closed subscheme) is also ample, by any of the criterion in theorem 319

3ie. a subvariety which is also a closed subgroup scheme
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Replacing X by Y, we may assume that K(£) = X(k). That is, £ € Pic’(X). But then *£ = £Y, and i
is an automorphism, and so LY is ample. Note that if £4, £, are ample, then for all coherent F, then there
exists ng such that for n > ng, 7 ® L and L5 are generated by global sections, and so F ® (£ ® L>)" is also
generated by global sections, and so £1 ® L, is ample.

But in this case, we have that L® LY = Oy is ample. But as dim(X) > 0, there exists a non-empty proper
closed subscheme W, and the ideal sheaf Z; has

0 =HY%X,Zy) C HYX, Ox) = k
So dim(X) = 0. Contradiction.

It remains to show that if H(D) is finite, then £ is ample. It suffices to show that £ is ample. For any
x € X(k), by the theorem of the square,

LETLR®T LEOXTD+T",D)
Let s, € HO(X, £?) be non-zero, with div(s,) = T;D + T*,D. Note here T:D = T'D = T_,D. If y € X(k),

then x(y) =0 if and only if y € T7D + T2, D. In turn, this is true if and only if x € £, = T;D + T*,D.
Thus, for all x & (X\ E,)(k), s«(y) # 0. Therefore, sections of L? give a morphism f : X — PY, where
N = dim(H(X, £?)) — 1, and f*Opn(1) = L.
Note here if
HO(X, £%) = span,{fo, . . ., N}

Then X = J; Ui, where U; = {f; # 0}. Define

foU — AY ={t+0} CPY

PR ) fioa ’ fita f

Here, f;/f; € Ox(U;) as L is invertible.
Claim 7.11. f has finite fibres.

Proof of claim. Suppose y,y’" € X(k) are such that f(y) = f(y’). Then for all s € HO(X, £?), either both
s(y), s(y’) are zero, or they are both non-zero. In particular, x € E, if and only if x € E,. Thus, as subsets of
X, Ey,=Ey.
So if f does not have finite fibres, then there exists p € PN(k), such that f~'(p) contains a closed subscheme
Y of positive dimension, and for all y,y" € Y, £, = Ey. If D' is any component of D, then 77D’ is equal to
T;,D’ € £y, since they are equal for y = y’, and as Y is connected, they have to be equal for all y’. Thus,
T;LgD’ for all components D’ of D, and so y’ — y € H(D), which is a finite set. Contradiction.
O

Remark 7.12. Note that it might happen that f~'(p) is not connected, and ¢’ — y € H(D) only holds for y, ¢’ in the
same connected component.

It remains to show that £ is ample, using finiteness which we have just proven.

Lemma 7.13. If f : X — Y is a morphism of proper k-varieties, with finite fibres and L is an ample line
bundle on Y, then f*£ is an ample line bundle on X.

Sketch proof. f being proper with finite fibres implies that it is finite. This is a consequence of Zariski's main
theorem. However, this is easy when f is projective.
Now for any coherent sheaf F on X, i > 0

HI(X, F ® (L)") = H(Y, LF ® L") = 0

for n sufficiently large. O

42

Lecture 21



Corollary 7.14. Abelian varieties are projective.

Proof. It is enough to find an effective divisor such that H(D) is finite. Let U be a non-empty affine open, and
let D be the complement, with the reduced subscheme structure. Then (see examples sheet 4), D is a divisor.

Now we will show that H(D) is finite. We can assume k is algebraically closed. Then H(D) is the set
of k-points of a closed subgroup scheme Z C X, Here, Z is the closure of H(D). Now for any x € H(D),
T)D =D, and so T;U = U. Hence if xop € U, then x + xo € U for all x € H(D). So U contains a translate
of H(D), and so it contains a translate of Z, since H(D) = Z(k). Now Z is proper, and U is affine, and so
dim(Z) = 0. Hence H(D) is finite. O

Corollary 7.15. For all n > 1, the set
ker(n))(k) = {x € X(k) | nx = e}
is finite. The map [n]: X — X is surjective. Moroever, X(k) is divisible.

Proof Suppose ker([n))(k) is finite. Then for all x, x" € X(k), [n](x) = [n](x) if and only if X' — x € ker([n]), Le.
for all y € X(k), [n]7"(y) is finite.

The morphism [n]: X — X having finite fibres over each y € X(k) has to be dominant, and as X is proper,
it has to be surjective. In particular, [n]~'(y) is non-empty for all y € X(k), hence X(k) is divisible.

Thus, it remains to show that ker([n])(k) is finite. Assume k is algebraically closed. Suppose if ker([n])(k) is
infinite. Then it contains a subvariety V/(k) of positive dimension. The composition

[n]

Ve X ——X

is the constant map v — Spec(k) — X at e. Let £ be an ample line bundle on X. If we replace it by £L ® i*L,
we may assume that £ = *£L. In this case, [n]['L = L™, which is also ample on X, and so it is ample on V.
But [n]*L]v = Oy. So V admits a trivial ample line bundle, and so dim(V) = 0. Contradiction. O

As [n] has finite fibres, and is proper (in fact projective, as X is projective), [n] is a finite morphism (for
projective morphisms, this is a rather easy fact, it is enough to find a hypersurface H C P" which (locally)
doesn’'t meet X for f: X — P}. Then locally on Y, X C PY\ Y, which is affine over Y. Then it follows that X
is finite over Y).

Now as X is a smooth variety, so [n] : X — X finite surjective, is flat. Hence [n],Ox is a locally free
Ox-module of some rank r, called the degree of [n]. This is equal to the degree of the extension of function
fields [n]* : k(X) = k(X), by passing to the generic point of X.

Theorem 7.16.
deg([n]: X — X) = n?9

where g = dim(X). In paticular, ker([n])(k) has at most n%9 points. This holds as

n?9 = dimy (I (ker([n]), ©))

Proof Recall if X C PV is projective, and F is a coherent sheaf on X, then
Px(F, 1) € Qlt]

is such that
Px(F.n) = x(X, F(n)) = x(X, F & Ox(n))

with
deg(Px(F,-)) = dim(supp(F))

Recall from proposition that if X C PY is integral, dim(X) = d and with generic point 5, then

Px(F, t) = dimyp (]-",7) Px(t) + terms of degree less than d
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Let £ be an ample line bundle on X, and assume i*£ = £. We can do this since we can replace £ with L& i*L
if required. This then determines an embedding X < P}, for which £ = Ox(1). Let F = [n].Ox. Then in this
case,

Px([n]«Ox, t) = deg([n])Px(t) + terms of degree less than g

and deg(Px(t)) = g. As [n] is finite, for any m € Z, and any open affine U C X, we have that
(n):0x ® L")(U) = (0] L™)([n]™" V)

and so ,
HO(X, [n).Ox ® £™) = HO(X, [ L™ = HO(X, £™™))

Next, recall for m sufficiently large, Px(F, m) = dim(H°(X, F(m))) as the other cohomology groups vanish. For
m sufficiently large,

deg([n])Px(m) = Px([n]:Ox, m) + terms of degree less than g
= dtm(HO X, [n:Ox ® L)) + terms of degree less than g

= dim(H(X L ™) + terms of degree less than g

= Pyx(n’m) + terms of degree less than g

Since deg(Px(t)) = g,
Px(n’t) = n?9Px(t) 4 terms of degree less than g

Thus, deg([n]) = n?9. O

Theorem 7.17. If char(k) 1 n, then ker((n))(k) = (Z/nZ)?9. If char(k) = p > 0, then

ker((p/)(F) = (ZJp,2)"

for all j > 1. Here, 0 < r < h is independent of j. r is called the p-rank of X.
To complete the study of ¢z, we have the following result:

Theorem 7.18. Suppose L is ample. Then ¢ : X(k) — Pic® (X%) C Pic(Xg) is surjective. That is,

X(k)

Pic’(Xg) = K(L)

where K(L) is finite.

Proof We may assume k = k. Let M & Pic’(X) and suppose M & im(qr). Let F = A(L) ® pri MY. This is
a line bundle on X x X. If x € X, then

f|X><X = T:»C ® Lv ®Mv S PLC(XK(X))

By assumption, for all x € X(k), Flxxx F Ox, since M F @r(x). Now by sheet 3, question 2 (it), F|xxx is
non-trivial for all x € X. As
Flxxx = pelx) @ MY € Pic

By theorem [76] N e 0
K(x)r Xxx) =

for all i. Thus, for any open affine U C X, H((X x U, F|xxu) = 0. Therefore, by sheet 2 question 5,
H(X x X,F)=0

for all i. Equivalently, R' pry F = 0. On the other hand, F|yxx = A(L)|xxx as pri M|xxx = Ox = T}L = LY.
So if X ¢ K(L),
Fluxx F Ox
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and so as above, ,
HL(X X er|x><X)

is zero for all i. Again, for all open affines U C X'\ K(L),
HY(U x X, Fluxx)

is zero for all i. As K(L) is finite and X is projective, there exists an open affine V' containing K(£). Same
exercise shows that ’ ‘
0=H(XxX,F)=H(V x X, Flvx)

But now for all x € V, A
Hi(x x X, Flyxx) =0

Taking x = e € K(£) C V, Flexx = Ox. This has non-zero H’. Contradiction. O

Proof of theorem 712 ‘We may assume k = k. Since X(k) is divisible, and ker([n])(k) is finite, it follows that
for all primes p, ker([p/])(k) = (Z/p’Z)", with r independent of j, by considering
0 —— ker((pI=")(k) —— ker(pI)(k) X ker([p)(k) —— 0
Let G = ker(n) C X. This is a finite group scheme over k. We know that
dimi(I(G, Og)) = n*? = deg([n))
If n is invertible in k, then we have a map (examples sheet 4 question 1)
[N :TGe = Tae

on the tangent space, which is multiplication by n. Then this is an isomorphism. On the other hand, [n]: G — G

factors through Spec(k),
G o G
~
)

Spec(k

and so we must have that T¢ . is zero. Hence Og . = k. But then

G= u Spec(O¢ ) = u Spec(k)

xeG(k) x€G(k)

since translation induces an isomorphism Og, = Oge. So G is a constant group scheme, of order n?9.
Therefore, G is isomorphci to the constant group scheme (Z/nZ)?9.

Now suppose char(k) = p > 0. It is enough to compute G(k) for G = ker([p]) € X. From examples sheet
4 question 3, we have a Frobenius homomorphism F = Fxy : X — X’ = X, which on the structure sheaf is
t — tP. To make the Frobenius a k-morphism, we have

X X' = X
I
Spec(k) — Spec(k)

Moreover, ker(F) is killed by [p], Le. ker(F) C ker([p]). Also,
~ Kltr, ..., ty]
ker(F) =S e R

er(F) pec (< 5 tp>)

Let me = <f1 ..... tg>. Then ker(F) is a one-point scheme, and
dim(l" (ker(F), O)) = p9

Thus,
dlm(OC,e) > pg

and as p?9 = dim(I'(G, 0)) = |G(k)| dim(O¢..), |G(k)| = p" for some 0 < r < g. O
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Remark 7.19. If g = 1, then X is an elliptic curve and either r = 1, so X is ordinary, or r = 0 and X is supersingular.
In general, for 0 < r < g, there exists X of dimension g, with p-rank r. Take X = Ef x EJ ", where E; is ordinary
and £y is supersingular.

Remark 7.20. If k is algebraically closed, char(k) = p > 0. Then

o |If r =g, then ‘
ker((p’)) = (ZIp'Z)? x ()’
where 1, = ker((p’] : G — Gp),

e Otherwise,
ker((p'])) = (ZIp'Z)" x G°

where G° is a single point. In general, G° is not isomorphic to (u})?9~".

Moreover, there exists a classification and duality theory for finite group schemes over a perfect field, and G fits into
this classification.

Recall that for X/k, if £ is an ample line bundle on X, then we have a homomorphism
or - X(k) = Pi(X0) C Pic(Xy)
with finite kernel.
Theorem 7.21. There exists a dual abelian variety X over k, with dim()A() = dim(X), and we have an

isomorphism
W X(k) = Pic(Xg)

and for any ample L, there exists a unique surjective homomorphism Az : X' — X such that

Az

X(k) —— Pi(Xp)
v

Pr

X(K)

When g =1, X is an elliptic curve E, and we have Abel's theorem, which says that
E(R) = CO(F)
where Cl%(F7) are degree zero divisors, sending x to (x) — (e). Thus, if £ = O(e), then
pr(—x) = TLL® LY = O((x) — (e))

and so we have that £ = £. Thus, we have a canonical line bundle O(e) on E.
Suppose X/k is any proper variety. Then we would like a group scheme Picy/, which classify line bundles
on X. These are called Picard schemes. We certainly want

Picyy (k) = Pic(X)
First guess for any k-scheme S,
Picy(S) = Pic(X x 5)
However, this cannot be the case. There cannot be a group scheme G with G(S) = Pic(X x S), for two reasons:

1. 1f S =Y, U, then
G(S) = {(fi: Ui = Q) | filunu, = filunu }

But then
Pic(X x S) = ker [ [ |Pic(X x U) — [ | Pic(X x (Ui n 1))
i ij

where we send (£;) to (£; ® EY)U‘QU/, This fails even for X = Spec(k) and S = PP]. Here, we have an
“extraneous” Pic(5).
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2. We could instead hope that
Pic(X x 5)
G(S) = 2 722
(%) prs Pic(5)

For any k-variety G, if k'/k is a finite Galois extension, then
G(k) — G(k/)Gauk//k)

Let X be the conic x§ + x{ + x5 = 0 in P&. Then X(R) = @ and X¢ = Pl.. But Pic(P}) = Z. In this
case, we have

Pic(Xe) ———— Z

|

Pic(X) ——— 2Z
Thus, Gal(C/R) acts trivially on Pic(Xc), and so Pic(X) # Pic(Xg) ! CR),
We have two solutions, which give the “correct” Picy/,.

1. sheafification (for étale topology)
2. assume e € X(k) # @. Define

Pico(X x S) = {L£ € Pic(X x S) | L]exs = Os}

A basic result of Grothendieck: If X/k is a projective variety, e € X(k), then there exists a group scheme
Picy locally of finite type over k, such that Picy, (S) = Pic.(X x S) and this is natural in S. The proof uses
Hilbert schemes.

8 Proof of theorem

Step 1: We will prove the statement for Z = Spec(A), where A is a finite local k-algebra. with residue field
k. So A = k & m with m nilpotent, and so Z = {pt}.

Induct on dimg(A). If dimg(A) =1, then A =k, and so £ = L|xxyx, is trivial. Otherwise, we can find an
ideal / C m with dimension 1. To see this, any minimal non-zero ideal of A is necessarily killed by m, and is
a k-vector space. Thus, by minimality it has dimension 1. Say / = span,{t}. Let Z; = Spec(A/l).

If V/k is a proper variety, then for any K-algebra B, H(Vz, Oy,) = B, since H(V,Oy) = k and we can
use flat base change.

Lemma 8.1 (tangent space to Pic). Let V be a proper k-variety. Then there exists an exact sequence,
functorial in V,

0 —— H'(V,0y) — Pic(V x Z) —— Pic(V x Z)

where the last map is induced by inclusion.

When Z = Spec(k[e]/e?), then Z; = k, and ker(Pic(V x Z) — Pic(V)) is the “tangent space”
For example, this tells us that the dimension of Pic, . is at most the dimension of H'(V, Oy).

Proof. First note that we have an exact sequence of abelian groups

0 | 2=l A (Al — 1

Note that (1 + a)(1+ b) = 1+ (a + b) since /> = 0. On the other hand,

ker(A* — (AI)*) =1+ 1
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and the cokernel is trivial, since if @ € A is a unit in A/l, then a is a unit, since (1 + /) € A*. Therefore, we
have an exact sequence of sheaves on V/, given by

0 —— 0y — Oy, —> Oy, —— 1

Note that as topological spaces, V,V x Z,V x Z; are all the same (or canonically isomorphic). But now
multiplication by t defines an isomorphism Oy = IOy, and so by the long exact sequence of cohomology,
we obtain

0 —— H(V,0v) —— H(Vx 2,07, ;) —— H*(V x 2,07, )

T

H (\/,O\/) — H' (\/ XZ'OéxZ) — H' (\/ XZ]'Oéxzw)

On the first row, we get
0 k A (All*

and we saw the last map is surjective. Thus, the map H'(V < Oy) — H'(V x Z, 05 ,) is injective. Moroever,
for any scheme X,
Pic(X) = H'(X, 0%)

To see that Pic(X) = H'(X, O%), note that if £ is a line bundle on X, then there exists an open cover
x=Ju
of X, such that for all i, we have an isomorphism

Ou =Ly,

say sending 1 to s; € ['(U;, £). On U; N U;, there exists a unique a; € Ox(U; N Uj)* such that s; = ays;.
Clearly the (aj;) satisfy the cocycle conditions, and it defines a Cech 1-cocycle. Thus, we gave an element of
IZU((U,-),O)X()A Passing to the limit of all covers, we get an element of H'(X, O%).

Lots of checking to show that this only depends on the isomorphism class, and that it is an isomorphism of
groups and so on...

Returning to the proof. by induction, assume L|xxyxz is trivial. Apply the lemma, we get

0 — 5 HI(X x Y, Oxpy) ———— PicX x ¥ xZ) ——— 3 Pic(X x Y x 7))

[ [
a b
+ <+

0 —— H'(X,0x) @ H'(Y,0y) —— Pic(X x Z) & Pic(Y x Z) — Pic(X x Z;) & Pic(Y x Z;)

The rows are exact, and the vertical maps are induced by restruction y*, x*. By Kinneth, a is an isomorphism.
Now L € Pic(X x Y x Z), with b(L) = 0 by hypothesis, and ¢(£) = 0 by the induction hypothesis. From the
diagram, we must then have that £ =0 € Pic(X x Y x Z).

Step 2: Consider Z = Spec(A) where A is a local Noetherian k-algebra, with Ajm = k. Let

A
Zy =95 —
pec (m” )

by the previous step, L|xxyxz, is trivial for all n. As before, we have finity cyclic A-modules Q, Q’, such that
for all A-algebras B, HY(Lg) = Homa(Q, B) and H%(L}) = Homa(Q', B). For all n > 1,

Al L A

oe (m) =

since L|xxyxz, s trivial. So



So Q, Q" are isomorphic to A. Thus, L is trivial.
Step 3: Now assume that Z is a k-variety. Then L|xxyxo,. s trivial, by the previous part. Let

F={Z € Z| L|xxyx» is trivial}

Then F contains the generic point of z (which is the generic point of O7,), and as F is closed, F = Z. Thus,

by theorem [6.1]
L=priM

for a line bundle M on Z. But then
OZ = ExxyxZ = M

and thus L is trivial.
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