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0 Introduction

We will study second order elliptic PDEs on (a domain in) R". For example, arising from variational problems.
Ultimately, we are interested in non-linear PDEs. To do this, we will first understand the linear theory.
Setup: Consider a domain QO C R”, i.e. open, bounded and connected, and a function

F:OxRxR"—-R
(x,z,p)— F(x,z p)
and consider the functional

Flu] =/QF(X, u(x), Ou(x))dx

Note we will use 0, D, V essentially interchangably. Assume F is sufficiently reqular. Let u € S, a suitable
vector space of functions v : Q — R. Frequently, S = H'(Q), or S = C"¢(Q).
Suppose u minimises F, subject to u|aq = g, for some given g : 9Q — Rﬂ Soforall p €S,

Flu + te] > Flu]

In particular, this means that

d
T r:oj:[u +tp]=0

“Based on lectures by Greg Taujunskas (lectures 1 - 12) and Neshan Wickramasekera (lectures 13 - 24). Last updated February 19,
2024.

"Boundary conditions are needed for well-posedness
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Or another words,
d

dt

/ F(x,u+te, du+ tdp)dx =0
t=0 JQ

Assume enough regularity so that we can exchange the derivative and integral, we get that
/(QZF)(X, u,du)p + 0;p(0p;iF)(x, u, du)dx =0 )
Q

As usual, we will use the summation convention. To ensure that u+ t¢ satisfies the correct boundary conditions,
¢laa = 0. Integrate eq. by parts, we get

/ @(x) (0,F — 0:0pF) (x, u, du)dx = 0
o

This is true for all ¢ € S, and so by the fundamental lemma of calculus of variations,

oF a(aF)_O

0z ox \dpi

which is the Euler-Lagrange equation for F. We can rewrite this as

oOF 5, 9F _
0z e é)p,apj N

This is now a second order quasilinear PDE in u. More generally, consider

a’(x, u, 0u)0?ju —b(x,u,0u)=0 (3)

Definition 0.1
We say that eq. (3) is elliptic in Q if a¥(x, u, du) is a positive definite matrix in Q.

In the case of eq. (2), this is equivalent to F being convex in the variable p.

Example 0.2 (Dirichlet energy)

When
2
F(x.z,p) = |p|

One gets
Au=0

Extremisers of this are called harmonic functions.

Example 0.3 (Minimal surfaces)
When

Flx,z.p) =1+ |pl*

We leave as an exercise to interpret Flu]. In this case, we get the minimal surface equation, which is

R B T "

1+ |Vul?

Locally, Vu is a constant, and so eq. (4) looks like Au = 0, and so solutions have similar local properties.
But the existence theory for Laplace’s equation is ‘trivial, whereas the existence theory for eq. (@) may
fail. That is, global properties are important.

For entire solutions (i.e. solutions defined all of R"), global behaviour is very different.




Theorem 0.4 (Liouville). If u:R” — R is C?, Au =0 and u is bounded, then u is a constant.

Theorem 0.5 (Bernstein). (The only entire solutions to eq. (@) in R” are planar (Le. u is linear)) if and
only if n < 7.

1 Harmonic functions

1.1 Basic properties

Let Q C R” be a domain, i.e. open and connected.

Definition 1.1 (hamonic, subharmonic, superharmonic)

A function u € C?(Q) is harmonic if Au = 0. It is subharmonic if Au > 0 and superharmonic if Au < 0.

Let B,(y) denote the open ball with centre y and radius p. Then

Theorem 1.2 (mean value property). If u € C?(Q) is subharmonic, and B,(y) C Q, then

1
d 5
) < o [ s 5)
where w, = |B(0)|. Moreover,
1
U(y) < W /ggl(y) U(X)dX (6)

If u is superharmonic, then the inequalities are reversed. If v is harmonic, then equality holds.

Proof We have that

0< / Audx
Boly)

integrating by parts = / Vu - wdx where w is the outwards normal
9B, (y)

=p"! / w - Vu(y + pw)dw
Sn—1

d
n—1
= —u(y + pw)dw
p /5 p (Y + pw)

where we use the fact that pw = x — y. Exchanging integrals and derivatives,

0
Og—/ u(y + pw)dw
3 Jor (y + pw)

Thus, the map
p— u(y + pw)dw
Sn—=1
is increasing. Thus,
/ uly + pw)dw < / y(y + rw)dw
Sn—1 Sn—1

for 0 < p < r. Taking the limit as p — 0, we get eq. (B). Integrating in r to get eq. (B). The superharmonic
case is similar. The harmonic case follows from the subharmonic and superharmonic cases. O



Remark 1.3. The mean value property characterises harmonic functions. See examples sheet 1.

Theorem 1.4 (strong maximum principle). Suppose u € C?(Q) is subharmonic on Q. Suppose there exists
yo € Q such that

u(yo) = supu
Q

Then u is constant.

Remark 1.5. If u is superharmonic, then we have a corresponding statement for when u(yo) = infq u. If u is harmonic,
then either sup or inf work.

Proof. Let M = supy u < oo, and
L={yeQluly) =M}

By assumption, £ is non-empty, as yo € ¥. Since u is continuous, £ is closed. Since Q is connected, it suffices
to show that I is open, since this implies ¥ = Q.
Pick y € ¥. By the mean value property, for p > 0 such that B,(y) C (), we have that

1
M =u(y) < - / u(x)dx
WnP™ JBy(y)

/ (M —u(x))dx <0
By(y)

But M — u(x) > 0, and so it must be identically zero, ie. v = M on B,(y). Hence By(y) € L, and L is
open. O

Here, the strong maximum principle is easy as we have the mean value property. For more general elliptic
PDEs, this is not the case. We will prove a weaker statement which does generalise.

Theorem 1.6 (weak maximum principle). Suppose Q C R” is a bounded domain, and u € C*(Q) N C°(Q).
If u is subharmonic on Q), then

Supu = supu
Q a0

Proof. This follows from the strong maximum principle. Since Q is bounded, supg, u is attained in Q. So by the
maximum principle, these cannot be attained in ) unless v is constant. O

Remark 1.7. If u is superharmonic, we replace sup with inf, and if u is harmonic then both hold.

The mean value property states that u always an average of itself. In particular, this suggest that u cannot
vary too much. Can we use this to relate sup u and inf u?

Theorem 1.8 (Harnack's inequality). Suppose v € C?(Q), u > 0 and Au =0in Q. Then if ' € Q is
any bounded subdomain, we have

supu < Cinfu

O/ Q/

where C = C(n, Q, QO) does not depend on u.

Proof. First, choose y € Q and p > 0, such that By,(y) € Q. Choose xq,x € B,(y). By the mean value

property,
1 1
n us n Y
Wp P B/)(Xﬂ Wpp BZp(U)

ulxy) =
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On the other hand,

1 1
u(x) = ] u> / u
wn(3p)" Bsoly) wa(3p)" Jg,,,

Ply)
Combining these, we see that
u(xq) < 3"u(x)

for all x4, x, € B,(y). So Harnack holds locally in balls, with constant independent of u. It is also independent
of p,y as long as p is sufficiently small. Now choose x, x, in ' C Q, such that

supu = u(xq) and l(r)]fu = u(x)

QO

p such that 4p < d(y, 9Q), and N = N(QY, Q) such that we can cover y by N-balls of radius
Apply the local result to each ball, and we get

u(xi) < 3" Nu(x) = 3"Nu(x2)

By path connectedness of Q, there exists a continuous map y : [0, 1] € (/, with y(0) = x; and y%= x2. Choose

Theorem 1.9 (derivative estimates). Suppose u € C3(Q) is harmonic on Q. Then if B,(y) C Q, we have
that

C
IDu(y)] < — sup |ul
9B, (y)

where C = C(n).

Proof Since Au =0,
0 = Dy(Au) = A(D;u)

So D;u is harmonic. By the mean value property,

1
Diu(y) = / u
(v) o p -
_ / V.0, . U, 0)dx
wnpn

= u(x) - vi(x)dx
Wnp" /aBp(y)

where v(x) is the unit normal at x. But |vi(x)| <1, and so

Duly)] € —— sup |u \/ = sup |yl
WnP" 9B, (y) P 9B,(y)

Remark 1.10. We can apply this result repeatedly, to get that for Q" C Q" C (), and any multi-index «, if u €
C“"*Z(Q), with Au =0 in Q, then

sup |D%| < Csup |u]

Q// Q//

for some C = C(n, a,Q, Q).
That is,
DU ooy < Cllullzsogeyy

c/ u(x)dx| < C/|u|
Bp(y) 0

By the mean value property, for some y € Q" C Q,

supu = [u(y)| =
O!/

2This follows from the fact that ) is relatively compact



So
||DG(U)HLDQ(Q/) g CHUHU(Q)

Theorem 1.11 (uniqueness of solutions for the Dirichlet problem). Suppose Q) is bounded, and uq, u; €
C?(Q) N C°(Q) with

Aui =Auy, inQ

U = Uy on 0Q)

Then uq = uy in Q.

Proof. Set w = up —u;. Then w is harmonic function in Q, and w = 0 on 9Q. By the weak maximum principle,
we get that w = 0 in Q.

Remark 1.12. Of course, we can integrate by parts to get the same result, but the weak maximum principle will apply
for non divergence form equations.

Theorem 1.13 (Liouville). If u € C*°(R") is harmonic, and grows sublinearly at infinity. Then u is
constant.

Remark 1.14. “growing sublinearly” means that
Ju(x)] < C (1+[x])

where 0 < a < 1.

Proof From derivative estimates, we know that for all x € R”, we have that

C
IDu(y)| < — sup |u]
P Boly)

Plugging in the growth assumption, we get that

Du(y)| < %m +(o+ Iy

Taking p — oo, we get that Du(y) = 0. But y was arbitrary, and so we are done. O

1.2 Existence theory for harmonic functions

We will consider the classical problem of solving the Dirichlet problem for the Laplacian on bounded domains

Q CR" and ¢ : Q — R continuous. We wish to find v € C=(Q) N C%(Q) such that

Au=0 inQ
u=¢ ondQ

We will assume for simplicity that dQ is smooth, and ¢ &€ C*(Q).

We have (at least) three methods to solve this problem.

1. Hilbert space methods (c.f. Analysis of PDEs). Use the Riesz representation theorem to obtain a solution
u € H'(Q), and deal with regularity afterwards. This relies on the equation being linear.

2. Direct method of calculus of variations. We can rephrase Au = 0 as a variational problem. That is, the
Euler-Lagrange equation of
[ ot

and prove existence using the functional.

Lecture 3



3. Perron’s method. Use the fact that solvability in balls impies solvability in more general domains. This
method is based on maximum principles.

Remark 1.15. In all cases, we obtain a rougher solution first, and improve regulaity later.

We will focus on the second method. Define
S ={w e H(Q) |w—¢e HQ}

That is, H'! functions which agree with ¢ on the boundary. Clearly ¢ € .#, and so . is non-empty. Set

elwl = [ [owl’

i

and define

By the definition of the infimum, there exists a seqeunce (w;) C %, such that
gw)| — B

We want to extract a convergent subsequence and show that its limit is a solution. Clearly for j large, we have
that

/\Dw,yzg3+1
Q

Since w; — @ € HJ(Q), by the Poincaré inequality,

[ 1w =o < [ 1pw,— ol

||W/'Hi2(o) < C(Q ¢ B) <oo

In particular, this implies that

Indeed, , ,
HWJHLZ(Q) < Cl[Pw; - DQDHU(Q) < CQ . B)

Expanding the left hand side, we get
HWJHiZ(O) -2 <Wf' (p>L2(Q) < C(Q, 0. p)

In particular, by Young's inequality,

1
||W/Hi2(o) < Cle.Q.B) + SHWIHiZ(Q) + EH‘PHiZ(Q)

Take 0 < € < 1, and rearrange.
So we have that ||W/-Ha1(0) < C, so by Banach-Alaoglu,

wj, — w in H'(Q)

By Reluch—KondrachO\ﬂ

wj, — win L4(Q)

3Recall

Theorem 1.16 (Rellich-Kondrachov). Let Q be bounded, 1 < p < n, then
WP Q) — LP7(Q)

and
WP Q) e L9(Q)
for 1 < g < p*. Here, p* is the conjugate

In particular, when p =2, p* > 2if n > 2.



for some w € H'(Q)). Hence for all v € H'(Q), we have that

/DW/’~DV—>/DW~DV
Q Q

Also, clearly we have that w;, —¢ — w— ¢ in H'(Q), as ¢ is smooth. But w;, — ¢ € H}(Q), but H{(Q) € H'(Q))
is norm closed, so it is weakl dosecEI Hence w — ¢ € H)(Q), so w € .. Finally, since &[] is sequentially
weakly lower semicontinuousﬁ in H'(Q), we have that

Ew] < liminf&lw; ] = B

Hence Elw] = B. We have found a global minimum w. That is, for all v € H}(Q), w + tv € .7,
f(t) = Ew + tv] > E[w]

Thus, (0) = 0. But

f'(0) = DEw](v)
—lim Elw + tv] — Ew]
t—0 t

:Z/DW-DV

Q

/DW'DV:O
Q

is the weak formulation of Aw = 0. We will next upgrade the reqularity, and show that weak solutions are in
fact smooth.

In particular,

1.3 Interior reqularity

We wish to improve the regularity of the weak solution. What we have shown is that there exists a weak
solution u € L'(Q), such that
/ ulAv =0
Q

4This follows from Hahn-Banach. In fact, it follows for any convex subset of a Banach space.

for all v € C=(Q).

Lemma 1.17. Let X be a Banach space, for C C X convex, C is norm-closed if and only if C is weakly closed.

Proof Weak closed implies norm closed is clear. For the converse, we can show that X'\ C is weakly open. Let xp € X'\ C, by the
Hahn-Banach separation, there exists ¢ € X’ such that

@lc =0 and ¢(x) #0
Then

1
[rex] 1o > Siowa} < x v

is a weakly open neighbourhood of xp. O

5That is, if uj— uin H'(Q), then
Elu] < lim inf Elu]

/DLI/WDV%/DU'D\/

Q Q
]DU/’DU%/‘DUF
Q Q

Eu) = lim/ Duj - Du
Q

= lim ’Lnf/ Du; - Du
0

< liminf Elu;]"2Elu]'?

To see this, note that

Setting u = v, we see that

Thus,



Theorem 1.18 (Weyl's lemma). Weakly harmonic functions are smooth. That is, for Q C R” a domain,

u e L] (Q), if we have u is a weak solution to Laplace’s equation, then v is C* and Au =0 in Q.

Proof. Mollify u. Take ¢ € C*(R"), such that
e 0< o
e ¢(x) =0 for [x| >1,

¢ fwmo=1
e ¢ is radially sgmmetrl(ﬂ
For o > 0, set

Polx) = Uiq)(%)

Then ¢, € C°(B,(0)) is nonnegative and has integral 1.
Define

Ug(X) = (@g * u)(x)
This is well defined for
x €Qp={xe€Q|dx, 00Q) > d}

Then ug is smooth, uy — v in L] (Q). Moreover, Au, = 0. To see this,

loc.

d d d
Grrto = [ o= yidy = = [ uto)3gutx = )iy
and so
Avtioly) = /Q u(y)Dy @o(x — y)dy =0

as u is weakly harmonic.
By the a priort derivative estimates for harmonic functions, for Q' € Q,

sup |ID%,4| < C/ |ugl
Q/ /
G}

for some 1(QY) small, where
Q,=Q'U{xeQ|dx )< g}

Since uy — u in L (Q), for o small enough,
‘.
Q

sup [D%q| < C/ (lul+1)
o Q

7

wol <€ [ (il +1)

,
s Q,

Hence

So D%uy is uniformly bounded in L*°(Q)'). Hence (as bounded derivatives imply equicontinuity) by Arzela-Ascoli,
there exists a subsequence (o;) such that g; — 0, and there exists u € C*(Q) such that ug — U in C(QY) for
all k. Hence

At = lim Aug, =0

Jj—00

in Q, as O’ was arbitrary. By properties of mollifiers, uy; — v ae. in Q, and so U = v ae. O

Remark 1.19. We do not say anything about boundary reqularity. It is possible to get (at least) u € C%(Q).

Let's now improve our C* existence result to C°.

5This is not a standard assumption for mollifiers, but we can assume this.



Theorem 1.20 (existence and uniqueness for the Dirichlet problem with C° data). Suppose Q is bounded
with 0Q sufficiently reqular, then for any ¢ € C%(0Q), there exists a unique u € C=(Q) N C%(Q) solving

Au=0 inQ
u=¢ ondQ

Remark 1.21. We might have

/ IDuf’ = oo
Q

Proof. Choose a sequence (¢,) € C*(R"), such that ¢, — @ on dQ, in [*°. Then we know that there exists
u, € C(Q) N C%Q), such that

for this solution.

Au, =0 inQ
up, =@, on dQ
Then forall n,m € N, Alu, —up) =01in Q, and v, — uy = @, — @y on 0Q. By the weak maximum principle,
SEP |Un - Um‘ S SUP |Un - Um| = H(Pn - (pmHLm - O
QO 0Q

as n,m — 0o. So (u,) is Cauchy in C°(Q), which is a Banach space, so by completeness, there exists u € C°(Q))
such that u, — u uniformly on Q. In particular, u = ¢ on 0Q.

By the derivative estimates, (u,) converges in C(QY), for any Q' € Q, and so v is smooth in the interior.
Thus, Au = 0 in the interior. O

Remark 1.22. A sufficient condition for reqularity is that dQ is C2. More generally, it is enough to have the exterior
sphere condition, which says that for all z € 0Q, there exists B,(y), such that B,(y) N dQ = {z}. There exists
bounded domains in which this fails, and the conclusion of the theorem fails in that case as well. For example, when
the boundary has a cusp.

2 General second order elliptic operators

From now on, write B _
Lu = a‘faiaju + b‘aiu + cu

We will work on Q C R” open, u € C*(Q), a¥, b', c : Q — R and consider the Dirichlet problem
lu=f inQ
u=¢ ondQ

for given f and ¢. If we can write L in divergence form

Lu = 0,(a"0,u) + b'd,u + cu

then we can use Hilbert space methods, as in Analysis of PDEs. But if a¥ is only C° say, we will need
Schauder theory.

The idea is to deform L into A using a series of rescalings. In particular, this does not involve Sobolev
spaces. Since u € C?(Q), we can assume a' is symmetric.

Definition 2.1
We say that L is elliptic in Q if the matrix (a¥) is positive definite in Q. So that
0 < AX)IE]* < aT(x)&EE < A)| &

for all & € R” non-zero. In particular, A is the minimum eigenvalue, and A is the maximum.
L is strictly elliptic if there exists Ag such that 0 < Ag < A(x) for all x. L is uniformly elliptic if it is
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elliptic, and A(x)/A(x) is uniformly bounded.

Remark 2.2. In general, uniformly elliptic does not imply strictly elliptic.

Example 2.3

The minimal surface equation

v 0

Du B
/14 |Dul?

y D;uD;u
i t J
a' = ( i

1
i — )
2
T+ 1Dul" | /1 4 |Duf?

has

This is elliptic but not uniformly elliptic.

We are interested in general second order elliptic operators, with a¥, b',c € C%%(Q). In particular, we

cannot write them in divergence form, as a”/ are not C'.

2.1 Basic properties

Theorem 2.4 (weak maximum principle). Suppose that L is elliptic and that

2l <
3 o

sup
Q

for some i. Moreover, suppose Q is bounded, open, u € C*(Q) N C°(Q), such that Lu > (ﬂ

Then

e if c =0, then
supu = supu
Q a0
e if c <0, then
supu < supu”
Q a0

where u™ = max(u, 0).

9We say that u is a subsolution.

Remark 2.5. The assumption that ¢ < 0 is crucial. For example, when n =1, let Q = (0, ), and uv” + u = 0. Then

u(x) = sin(x) is a solution. But then supy u =1, and sup,, u™ = 0.
Forn=2 Q=(0, ]T)Z, and Au + 2u = 0. Then

u(x, y) = sin(x) sin(y)

has the same properties as the above.

Proof. First suppose ¢ = 0. If Lu > 0 in Q, then in fact the strong maximum principle holds. Indeed, if xo € Q
is a local maximum, then

diu(xo) =0 and 0;0ju(xg) <0

Since a'(xg) = 0, we have that )
a'0;0;u(xo) = tr(AV2u(xo)) < 0

Hence 0 < Lu(xo) = a¥0;0;u(xo) + b'0;u(x0) < 0. Contradiction. More generally, if Lu > 0 in Q, consider

v(x) = e™

i
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for some y > 0 to be chosen. Here, we assume without loss of generality that (%) holds for i = 1. Then
div=ye"™ and odiv=0fori=+1
and
(91(91 V)/Zé'yx1

and all other second derivatives are zero. So
Lv=e"(a"y* + b'y)
> e (Ay” + b'y)

bl
= ye’™ (v2 + Ay)

This is positive for y large enough. Hence
Llu+ev)>0
for all € > 0. By the above,

ulx) <sup(u+ev) asv>0
Q

< sup(u + €v)
a0

<supu + esupv
e} 0

Taking € — 0, we get that u(x) < supyq u. Since this is true for all x € Q, then
supu < supu
Q aQ

The reverse inequality is trivial.
Now suppose ¢ < 0. Define ) _
Lou = a0;0;u + b'diu
and consider
O ={xeQ|ux) >0}
Since cu < 0 on QT,
Lou=Lu—cu>0

on Q*. Note if Ot = &, then supgu < 0, and vt = 0, and the conclusion is trivial. Thus, without loss of
generality assume QF =+ @. Then there exists xp € 0Q N QT, with u(xp) > 0. If not, then

00TNoO =2

and so dQ* C Q, and so it 00T C O\ Q. So u|pg+ < 0. But this contradicts the first part for Lo on Q.
Hence

supu = supu
Q o+

=supu
a0+

<supu

Corollary 2.6. Let Q be bounded open, u € C%(Q) N C°(Q), L is elliptic, with the same bound on (), and
c<0in Q. Then

1. if Lu <0 in Q, then

infu > infu™
Q o)

where v~ = min(u, 0).
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2. if Lu =0, then
sup [u| = sup |u]
00 Q

Proof Exercise.

Corollary 2.7. Let L as above, and suppose we have u, v, w € C*(Q) N C°(QQ), such that
Llu>0 [v=0 and [w<O0
Then
1. fu<vonadQ, then u <vin Q.

2. ifv< wondQ, then v < win Q.

Proof Exercise.

We want to build towards a strong maximum principle. For this, we need

Theorem 2.8 (Hopf boundary point lemma). Let Q C R” be open, and take y € dQ). Suppose 0Q2 satisfies
the interior sphere conditior{’] at y. Let L be uniformly elliptic in Q, with

16]
sup — +sup |c|A < o0
o A o)

Suppose u € C*(Q)N Co%{y} UQ), such that u(y) > u(x) for all x € Q, and Lu > 0 in Q. Finally, assume
one of the following holds:

) c=0inQ,
(i) c<0in Qand u(y) >0,
(iit) u(y) =0

Then s
u
M >0

if it exists, where v is the outwards pointing normal at y to dBg(z), coming from the interior sphere
condition.

“That is, there exists R > 0, z € Q, such that Br(z) C Q, y € dBr(2).

Remark 2.9. The weak maximum principle implies that

du
— >0
dv —

and so the content of the theorem is the strict inequality.

Proof Let
A= Bgr(2)\ B;(2)

for some 0 < r < R. We will first solve cases (i) and (ii). On A, consider

—alx—z)* _ efaRZ

v(ix) =e
First note that on A, v > 0. :
9,v(x) = —2a(x, — z,)e K
and , ,
0:0,v(x) = —2ad;e” P 1 40’ (x; — z)(x; — zj)e~ P
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So on A .
Lv = e (40 (x; — z)(x; — zj) — 20a" —2ab'(x; — z)) + ¢) — ce F

By ellipticity and the sign of ¢,
Lv > 27 (402 A(x)|x — z|* — 2anA(x) — 2alb||x — z| — |c])

A b
> e’a‘X’Z‘Z)\(X) a’R? — 2ansup — — aRsup u —sup M
o A Qa A a4

where r is chosen such that |x — Z|2 > (R/2)%. In particular, this is positive for a large enough. Fix such an a. Lecture 5
ecture

Set w(x) = u(x) — u(y) + €v(x), for some small € to be determined. Now
Lw=Lu+¢elv—-culy) >0

in A, by above (and the assumptions). Also,
V]oBa(y = 0

and because u(x) < u(y) on Q, so
Wlagg() <0

Also, u(x) < u(y) on dg.(,), so we can choose € small enough such that
wlag,) < 0
So wlaa < 0. Apply the weak maximum principle to w in A we get w < 0, and so
ux) —ufy) +evix) <0

in A. Choose t < 0, and we have that

uly + tv) —uly) > Ayt tv) —vly)
t t
Note v(y) = 0. Sending t — O,
du v
a( ) > *Sa(y)
_ Yi —Zi
- Sa,V(y) ( R )
= 2aeRe
>0
For case (iil), consider N
L=1L—c"
So Lu = Lu— c*u > 0, and we can apply the above to L O

Theorem 2.10 (strong maximum principle). Suppose QO C R” is a domain, with non-empty boundary 9Q
satisfying the interior sphere condition for all y € 0Q. Let L be uniformly elliptic, with

NICEIEA
A

Suppose u € C?(Q), with M = supy u < oo, and Lu > 0 on Q. Suppose (at least) one of the following
holds

Q

(i) f ¢ =0, and u(y) = M for some y € Q.
(i) f ¢ <0,M >0 and u(y) = M for some y € Q,
(iit) f M =0 and u(y) = M = 0 for some y € Q.

Then u is constant.
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Proof. Let
L={xeQ|ux) =M}

By continuity, I is closed in Q. Suppose Q\ L # @. Choose z € Q\ L, such that
d(z,0Q) > d(z, 0x)
To see this, first choose z; € 0L N Q). Then choose p; > 0 such that B, (z1) € Q. Then choose any
z € Byp(z)\ T

Let
R =sup{p| By(z) € Q\ I}

By construction, there exists y € dBg(z)NEL. Since Du(y) = 0, this contradicts the Hopf boundary point lemma.
SoQ\L =g, te. Q=1L souis constant.

The assumption (i), (it) and (iii) are so we can apply the Hopf boundary point lemma. O

Some corollaries of this:

Corollary 2.11 (comparison principle). Let
L = a{j(?[@j =+ bia[ + C

be uniformly elliptic in Q C R”, with

N (|b|+|c|)
p < 0
Q A

Suppose u, v € CZ(Q), such that Lu > Lv and u < v in Q. Then
e cither u = v on Q,

e or u <von(,

Proof. L(u—v)>01in(Q, and u—v < 0. So if there exists xp € Q, with u(xp) = v(xo), then the strong maximum
principle implies v = v. If not, then v < v in Q. O

Corollary 2.12 (uniqueness for the Neumann problem). Suppose Q C R” is a bounded domain, and 9Q)
satisfies the interior sphere condition at each point. Suppose L is uniformly elliptic, with

N (|b|+|c|)
p < o0
Q A

and ¢ < 0. Then if uy, u; € C*(Q) N C%(Q) is such that

Lu; =1 in Q
ou
alt:gon(?()

for some f: QQ - R, g:0Q — R. Then uq — uy is constant.

Proof. Let u = uq — uy. This satisfies the Neumann problem

Lu=01in Q
ou
R:Oona()

15



Let M = supg u > 0. We can assume this since we can just take —u instead. By the strong maximum principle,
if u#£ M on Q, then there exists y € 0Q), such that u(y) = M, and u(x) < u(y) for all x € Q. But by Hopf,

diu
dv
Contradiction. O

(y)=0

Remark 2.13. This says that the trivial Neumann problem (i.e. with zero data) has solutions which are constants.
Now
IM=0

but if LM = Mc(x) for all x, and so if ¢ is not identically zero, then M = 0. This constant is only non-zero when
c =

“But this is obvious, since Lu in this case only involves derivatives of u.

What happens when for non-zero right hand side? The following will be critical for Schauder theory.

Theorem 2.14 (maximum principle a priori estimate). Suppose 0 C R” is a bounded domain, L elliptic,
c <0, and B =|b|/Ais % Let u € C*(Q)NCQ) and f: Q — R, then

(i) f Lu > f, then
|

f
supu < supu™ + Csup (|)
0 a0 o \ A

(i) if Lu = f, then
su 17
plu] < sup Ju] + Csup
Q a0 o \ A

where C is a constant which only depends on £ and diam(()).

Proof. Set d = diam(Q) = sup, ,cq [x — y|. As Q is bounded, we can contain
QC{x|a<x <a+d}

for some a € R. Without loss of generality, @ = 0. As before, we will construct subsolutions, and use the weak
maximum principle. Let

f
v(x) = sup u™ + (€99 — e®™1) sup If
90 a A

where a is to be determined.
We can compute Lv:

(a70,0; + b'0))e™ = e™(a""a® + b'a) > e™ Aa* + Ba) > A

if we take a = B+ 1. Hence

Lv < cv—)\supg < —/\S;J)p|i|
as ¢ < 0,v>0. Then:
(i) if Lu > f, then
Llu—v)>f+ Asup Il >0

7 =
Lecture 6

Note that v < u™, and ulaq < v]aq from the definition of v. So by the weak maximum principle, we have
u<vin(Q, and

su + m
p<u<Lsupv <supu +Csup
Q Q 00 o A
where
C = sup (e(ﬁﬂ)d _ 9(8+1)X1)
Q
For (ii), if Lu = f, apply (i) to —u. O

16



2.2 Holder spaces
Fix Q C R” open, and let a € (0, 1].

Definition 2.15
we say u : Q — R is uniformly Holder continuous with exponent a, or uniformly a-Hdlder continuous, if

[U]a,(): sup ‘U(X)—U(UH

< 00
x,yeQ |X_ g‘a

This is the Holder seminorm.

If @ =1, this says that v is uniformly Lipschitz. If @ > 1, then u is constant, by the mean value theorem.

Definition 2.16

We say that v is locally a-Hdlder continuous if for all K € Q, ulx : K — R is uniformly a-Holder
continuous.

Let k € NU {oo}. Recall for a multi-index B € N”, we have
Bl = ZB[

and
CHQ) = {u:Q - R | DPu exists and is continuous for all |8] < k}

Definition 2.17
The Hélder space CK%(Q)) is the space

CH(Q) = {u € C5(Q) | DPu is locally a-Hélder continuous for all |8] < k}

and
C*(Q) = {u € c5(Q) | DPu is uniformly a-Holder continuous for all |B] < k}

For a € (0, 1), we will write
C(Q) = C**(Q)

and B B
CoQ) = % Q)
Moreover, we have

CHQ) = CQ) and CO(Q) = CK(Q)

Remark 2.18. On the other hand, note that C**'(QQ) # C*'(Q), since Lipschitz continuity does not imply C'. On the
other hand, Lipschitz functions are differentiable almost everywhere.

Finally, define
CyQ) = k() = {u e cA(Q) | supp(u) compact}

To define norms on these spaces: for k € N, u € C*(Q), define

(U = [Dku]ovo = SUP[DBU]OVQ = sup sup ’DBU(X”
1Bk 1Bl=k xeQ

For u € C*9(Q), define

[ulka:o = [D*u]oq = sup[D*uleq
|B=k

17



Note that these are seminorms. To get norms, set

k
Nullerigy = |ulgq = lulpon = Z |D/“’o,o
=0

and
Null ko) = Ul a0 = luliq + D ulaa

With these norms, C* and C*“ become Banach spaces. Since we will be using sequences, it is important
to understand the compactness properties.

Theorem 2.19 (Arzela-Ascoli for Holder spaces). Let O C R” be a domain, k € N, and a € (0,1]. If (u;);
is a sequence in C*9(Q) such that

S ’u/‘k,a,ﬂ’ <00
j

for all Q' € Q, then there exists u € CX?(Q), and a subsequence (uj); such that uy — v in C(QY).

Remark 2.20. Nothing is said about convergence in C*<.

Proof Examples sheet 2. O

We have two more ingredients before starting Schauder theory. The first is interpolation.
If we have Banach spaces X € Y C Z, then we can bound the norm in Y by X and Z norms. Interpolation
is the exchange of sizes of the X and Z norms. Here, we have

Ch(Q) e CH@Q) € cf Q)

Theorem 2.21 (interpolation inequality for Holder spaces). Let € > 0, ¢ € N, a € (0,1} Then there
exists C = C(n, ¢, a, €), such that if u € C*%(Bgr(xo)), then

Rk|DkU’o,BR(XO) < “:RHG[DgU]a,BR(m) + C|U|0,BR(X0>

forall 0 < k < ¢

Sketch proof. For details, see examples sheet 2. By rescaling and shifting, it suffices to consider the case
R = 1. Then arqgue by contradiction using Arzela-Ascoli. O

The second ingredient is the following lemma.

Theorem 2.22 (Simon's absorbing lemma). Let Bg(x) € R" be fixed, and let S be a nonnegative,
subadditive function on the collection of sub-balls of Bg(x). That is, if

N
LJ ,(yj) € Brlx)

then
N
Z p, y/

Llet A > 0,0 € (0,1), then there exists 0 = 5(n,)\, 0) € (0,1) such that: Suppose that for all balls
B,(y) € Bg(x), we have

pAS(ng(y)) < 5PAS(B/J(H)) +v

for some fixed y. Then
R'S(Bgr(x)) < Cy

18



| for some C = C(n, 0, A).

side to get a global bound.

Proof of Simon’s absorbing lemma. Let

Q= sup p'S(Boply))
B, ()CBelx)

Recall we have that
P S(Baply)) < 6p"S(By(y)) + v
By subadditivity of S, we have that
Q < R*S(Bg(x)) < o

Fix any B,(y) € Bgr(x). Cover Bg,(y) by a collection of balls

{5(179)92;)(2/)}/2

with N < C(0, n), which is independent of p and y. Moreover, z; € Bg,(y). To do this: Choose a maximal

pairwise disjoint collection of balls
{5(179)92,)/2(2/')}/&

where z; € Bgp,). We claim that these z;'s work. If not, then there exists

N

z € Bgy(y) \ U Bi—ey625(2)

i=1
and so d(z, z) > (1 — 0)6?p for all j. In particular,
Bi—e)62p12(2) N Bi—gye2p2(2)) = 2

This contradicts maximality.
For the bound on N, note that from considering radii,

-

I
kN

J

Since the balls on the left hand side are disjoint, there exists a volume bound

_ 2 n o 2
an((1 29)9p) <w”((1 29)9P

Which is independent of p and y.
To conclude, by subadditivity,

N
S(Bgp(y) Z (Ba-g)025(2)))

(1—0)6 Z( (1 — 0)6p)" S(Bi1-gyeplz)) + v

<o((1—0)8) ANQ+ Ny((1 = 6)0)™
Now taking the supremum over all B, C Bgr(x),
Q<0G+ Gy

where Cy, C; depends on n, 8, A. Choose 0 sufficiently small such that 6G; < 1. Taking 0 = 1/(2Gy),

Q<L 2Gy

19

Remark 2.23. This says that if there exists a local bound on S, then we can “absorb” the S-term on the right hand

Bi—0)62p12(2) € Ba—ey62p12+0p(Yy) € Byly)

Lecture 7



3 Schauder theory

3.1 Interior Schauder estimates

We will first prove interior estimates in the unit ball, and then extend them to more general domains. The main
point is: if the coefficients of L are a-Hélder continuous, then any C*“-solution of Lu = f can be bounded in
C?? on a smaller ball by |ul, and f.

Theorem 3.1 (unit scale interior Schauder estimates). Let a € (0,1),8 > 0, and suppose a¥, b, c €
C%9(B4(0)), with

|Gij|0,a;31(0) + |bi|o,a;31(0) + [€lo,aa0) < B

Suppose L is strictly elliptic, so there exists A > 0 such that
0(0)&gj > Algl*

for all x € B;(0), & € R™. Then if u € C2%(B,(0)) N CO(By{0)), and f € CO4(B,(0)) satisfies Lu = f in
B1(0), then
Ul 08,000 £ € | Ulo.g,0) F 1Flo.05:0)

for some constant C = C(n, A, a, B).

Remark 3.2. e We can never take a = 0 or @ = 1. The theorem is false in these cases.

e Strict ellipticity gives a lower bound for A, and upper bound on |a"|; , gives an upper bound on A. So A/A is
bounded, and so we have uniform ellipticity.

e Note that we can control two derivatives of u using no derivatives on u or f.

e We will in fact strengthen this to

|U‘Z,a,89(0) <C |U|O,Bq(0) + |f|0,a,51(0)

forall 6 € (0,1), C = C(n, A a,B,0)
e We may no assumptions, and state no conclusions, about the regularity on the boundary.

e The Schauder estimate gives a compactness property for the space of solutions to Lu = f. If (uy) € C?>%(B4(0))N
CY%(B;(0)) solves Luy = f in B;(0), and
y = supsup |ug] < o0
k= B1(0)

Then
|Uk|z,a;30(0) < C(y,n, 0,8 A1)

and so by Arzela-Ascoli, there exists a subsequence (uy), with u € C#%(B4(0)), such that ug — Uy in C?(Bg(0))
for all 6 € (0,1). Passing to the limit, Lu = f.

Lecture 8

Proof. Omitted.
O
Lecture 9

We now give some corollaries.

Corollary 3.3 (scale invariant Schauder estimate). Suppose Br(xg) € R”, and a¥, b', c € C%%(Br(xo)),
with .
a8 > Agf

for some A > 0. Suppose also that

‘aij‘O,BR(xo) + Ra[aij]a,BR(xo) +R (‘bi‘O,BR(XO) + Ra[bi]a,BR(Xo)) + RZ (|C|0,BR(X()) + RG[C]O{,BR(XO) < B
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for some B > 0. Suppose u € C*%(Bg(x0)) N C°(Br(xo)), satisfying Lu = f € C%%(Bg(xg)). Then
|U|/2,G;BR/2(X0) <C (‘U|OBR(X0) + R2V|OBR(XO) + R2+a[f]a'BR(X0)

where

k
i j k k
|U|;<,a;8p(y) = Zp/’D/uh)va(y) + P +G[D U]a,Bp(y)
j=0

and C = C(n, A, a, B) is independent of u and of R.

Proof. Apply theorem 3.1 with x — xo + Rx. O
Corollary 3.4 (interior Schauder estimates in general domains). Let @ € (0, 1), Q C R" open and bounded.
Suppose we have a¥, b', c € C%%(Q), with

|aij|0,a;0 + ’bi|0,a;Q + |C|0,a;Q S B

with B
al()&E > A&

for some A > 0. Suppose u € C>?(Q) N C%(Q) satisfies Lu = f € C%(Q). Then for all open Qe
|U|2,a;6 < € (|U|O,Q + |f|0,a;0)

where C = C(n, a, B, A, d(Q, 9Q)).

Proof Let B B
d = d(Q,00) = sup{r > 0| (Q) c Q)
where B
Q. = [ B/x)
v

is the r-neighbourhood of Q. Then for all x € (~) we have that By(x) C Q, and so
||, +d|b']; +d?|c|; < C(d)B
0,a;Bq4(x) 0,a;Bq4(x) 0,a;B4(x) =
Then by corollary B.3] we have an estimate
[Ulo.8,,00 T dIDUlo 5,0 T 0'2|D2 )T d** D% ule, 8,00 < C lulo,gy + d2|f|0;Bd(x) + d” (o8,

g C(‘“'O;Q + |f|0,a;())

u {O,Bd/z(x

where C = C(n, A, a, B, d). In particular,
[u)] + D] + [D2ux)] < € (Juloq + floea)

for all x € Q. So
020 < € (I6loq + flou) (b

But also, by (a),
v |D2u(x) — Dzu(g)|

sup <C (‘U|0;Q + |f|o,a;o)

~ | a
x,yeQ, |x—y|<d/2 X y'

On the other hand, of |x — y| > d/2, then

|D?u(x) — D?u(y)| AN
= = o+ o
D < (5] s < (olon + o)
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by (b). Hence
[Dzu}g;ﬁ < ‘U|O;Q + |f|0,a;0

and so combining this with (b), we get the required result.

3.2 Boundary Schauder estimates
Write
R? = {(x',x") [ ¥ €R"" x" > 0}
R” = {(x',x") [ ¥ € R x" < 0}
Br(y) = Brly) NR]
Br = Bz(0)
Sr(y) = Brly) N {x" = 0}

Theorem 3.5 (boundary Schauder estimates in a unit ball). As before, 0 < a < 1, a¥, b’, c € C*%(BY),
and . ,
|‘Jl/|o,a;31+ + |bl‘o,afg+ +lcloasr < B

and B
a(x)&& > A&
for all x € Bf. Suppose u € C*%(B{) satisfies

Lu=f inBf
u=0 on S

where f € C%% and @ € C*?. Then

|u‘2,a,8{72 <C (‘U|O;Bfr + |’[|0,0(;B{r + ‘(p|2,01;5{r

Proof. By considering v = u — ¢, suffices to consider the case when ¢ = 0, since Lo € C*%(By).
The rest of the proof is as in theorem which we will omit.

Proposition 3.6 (reflection principle for harmonic functions). Let QF be an open subset of R", and let
T =007 N {x" =0} Let Q™ be the reflection of Q* in {x" = 0}. Let v € C*(Q*)n C%Q* U T), and
let v be the odd reflection of v in T. Thatis, v: QT UT — Q= — R, where

- / n)

S x _1V(X/,X'7) . xmeQtuT

v, —x") (X" e

Then if Av =0in QF and v|r =0, then V € C?(Int(Q* U T U Q7)) and AV = 0.

Proof. Use the mean value property. See examples sheet 2.

Remark 3.7. This is trivial if T = @, since Q" and Q™ are disjoint. The important part of this theorem is that v is
C? across T.

Proposition 3.8 (boundary absorbing lemma). Given 8 € (0,1), p € R, then there exists & = 0(n, 6, p),
and C = C(n, 6, p) such that:
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Fix R >0, and let
B={B,(y) | Byly) < B(0)}
B = {B/(y)|y" =0,B;(y) € BL(0)}
Suppose S : BUB"™ — R is a nonnegative subadditve function, such that
puS(Bg,(y)) < 0puS(By(y) + v

for all B (y) € B*, and
pHS(Bep(y)) < v

for B,(y) € B. Then
R'S(Bgr(0)) < Cy

Proof. Examples sheet 2. O
Lecture 10
Let (H) denote the following hypothesis: “Suppose () C R" is a bounded domain, and 0 < a < 1. Suppose
a', bt, c € CO(Q), with ) _
|GU|O,O(;Q + {bl|0,a;0 + |C|O,a;Q S B
and suppose there exists A > 0 such that B
a"(x)&&; > A<’
Theorem 3.9 (boundary Schauder estimates in general domains). Suppose (H) holds, ad Q is a C%e
domain. Then there exists € = £(Q) > 0 such that if u € C29(Q), f € C%(Q), ¢ € C*%(Q) such that
Lu=1f inQ
u=¢ ondQ
Then for all x € 0Q),
‘u|2,a;5’5(x)ﬂ0 < € (|U|O;Q + ‘f|0,a;0 + |§0|2,a;0
Remark 3.10. We need Q to be C>“ for u to be C*“ on Q.
Proof. Omitted.
O
3.3 Global Schauder estimates
We can combine the interior and boundary estimates to get:
Theorem 3.11 (global Schauder estimates). Suppose (H) holds, and suppose that Q is a C*® domain. If
u e C*(Q), f e C'Q), ¢ € C*9(Q) is such that
Lu=1f inQ
u=¢ ondQ
Then
‘u|2,a;0 S C (|U‘O,Q + ‘f|0,a;0 + |(p|2,a;0
where C = C(n, A, a, B, Q).
Lecture 11
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4 Solvability of the Dirichlet problem

Given ai bt, c € C%%(Q), the Dirichlet problem for L is: Given f € C%%(Q), ¢ € C*9(Q), is there a solution
ue C%Q) to
Lu=1f inQ
u=¢ ondQ
If so, is it unique?
Theorem 4.1. Let @ € (0, 1), Q C R” is a bounded C* domain. Suppose a’, b', c € C%?(Q), with ¢ < 0

in Q. Then the following are equivalent:

(i) for any given f € C%(Q) and ¢ € C*?(Q), the Dirichlet problem

Lu=1f inQ
u=¢ ondQ

has a solution u € C*9(Q)).

(i) For any given f € C%*(Q) and ¢ € C*9(Q), the Dirichlet problem

Au=1f inQ
u=¢ onodQ

has a solution u € C*%(Q).

Proof. Omitted. O
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