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0 Introduction
We will study second order elliptic PDEs on (a domain in) Rn. For example, arising from variational problems.Ultimately, we are interested in non-linear PDEs. To do this, we will first understand the linear theory.

Setup: Consider a domain Ω ⊆ Rn, i.e. open, bounded and connected, and a function
F : Ω × R × Rn → R(x, z, p) 7→ F (x, z, p)

and consider the functional
F [u] = ∫Ω F (x, u(x), ∂u(x))dx

Note we will use ∂, D, ∇ essentially interchangably. Assume F is sufficiently regular. Let u ∈ S, a suitablevector space of functions u : Ω → R. Frequently, S = H1(Ω), or S = C 1,α (Ω).Suppose u minimises F , subject to u|∂Ω = g, for some given g : ∂Ω → R1. So for all φ ∈ S,
F [u + tφ] ≥ F [u]

In particular, this means that ddt

∣∣∣∣
t=0F [u + tφ] = 0

∗Based on lectures by Greg Taujunskas (lectures 1 - 12) and Neshan Wickramasekera (lectures 13 - 24). Last updated February 19,2024.1Boundary conditions are needed for well-posedness
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Or another words, ddt

∣∣∣∣
t=0
∫

Ω F (x, u + tφ, ∂u + t∂φ)dx = 0
Assume enough regularity so that we can exchange the derivative and integral, we get that∫

Ω(∂zF )(x, u, ∂u)φ + ∂iφ(∂piF )(x, u, ∂u)dx = 0 (1)
As usual, we will use the summation convention. To ensure that u+ tφ satisfies the correct boundary conditions,
φ|∂Ω = 0. Integrate eq. (1) by parts, we get∫

Ω φ(x) (∂zF − ∂i∂piF ) (x, u, ∂u)dx = 0
This is true for all φ ∈ S, and so by the fundamental lemma of calculus of variations,

∂F
∂z − ∂

∂xi

(
∂F
∂pi

) = 0
which is the Euler-Lagrange equation for F . We can rewrite this as

∂F
∂z − ∂i∂ju

∂2F
∂pi∂pj

= 0 (2)
This is now a second order quasilinear PDE in u. More generally, consider

aij (x, u, ∂u)∂2
iju − b(x, u, ∂u) = 0 (3)

Definition 0.1We say that eq. (3) is elliptic in Ω if aij (x, u, ∂u) is a positive definite matrix in Ω.
In the case of eq. (2), this is equivalent to F being convex in the variable p.

Example 0.2 (Dirichlet energy)When
F (x, z, p) = |p|2One gets ∆u = 0Extremisers of this are called harmonic functions.

Example 0.3 (Minimal surfaces)When
F (x, z, p) =√1 + |p|2We leave as an exercise to interpret F [u]. In this case, we get the minimal surface equation, which is

∇ ·

 ∇u√1 + |∇u|2
 = 0 (4)

Locally, ∇u is a constant, and so eq. (4) looks like ∆u = 0, and so solutions have similar local properties.But the existence theory for Laplace’s equation is ‘trivial’, whereas the existence theory for eq. (4) mayfail. That is, global properties are important.For entire solutions (i.e. solutions defined all of Rn), global behaviour is very different.
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Theorem 0.4 (Liouville). If u : Rn → R is C 2, ∆u = 0 and u is bounded, then u is a constant.
Theorem 0.5 (Bernstein). (The only entire solutions to eq. (4) in Rn are planar (i.e. u is linear)) if andonly if n ≤ 7.

1 Harmonic functions
1.1 Basic propertiesLet Ω ⊆ Rn be a domain, i.e. open and connected.

Definition 1.1 (hamonic, subharmonic, superharmonic)A function u ∈ C 2(Ω) is harmonic if ∆u = 0. It is subharmonic if ∆u ≥ 0 and superharmonic if ∆u ≤ 0.
Let Bρ(y) denote the open ball with centre y and radius ρ. Then

Theorem 1.2 (mean value property). If u ∈ C 2(Ω) is subharmonic, and Br (y) ⊆ Ω, then
u(y) ≤ 1

ωnrn

∫
Br (y) u(x)dx (5)

where ωn = |B1(0)|. Moreover,
u(y) ≤ 1

nωnrn−1
∫

∂Br (y) u(x)dx (6)
If u is superharmonic, then the inequalities are reversed. If u is harmonic, then equality holds.

Proof. We have that 0 ≤
∫

Bρ (y) ∆udx

integrating by parts = ∫
∂Bρ (y) ∇u · wdx where w is the outwards normal

= ρn−1 ∫
Sn−1 w · ∇u(y + ρw)dw

= ρn−1 ∫
Sn−1

∂
∂ρ u(y + ρw)dw

where we use the fact that ρw = x − y. Exchanging integrals and derivatives,
0 ≤ ∂

∂ρ

∫
Sn−1 u(y + ρw)dw

Thus, the map
ρ 7→

∫
Sn−1 u(y + ρw)dw

is increasing. Thus, ∫
Sn−1 u(y + ρw)dw ≤

∫
Sn−1 y(y + rw)dw

for 0 ≤ ρ ≤ r . Taking the limit as ρ → 0, we get eq. (6). Integrating in r to get eq. (5). The superharmoniccase is similar. The harmonic case follows from the subharmonic and superharmonic cases.
3



Remark 1.3. The mean value property characterises harmonic functions. See examples sheet 1. Lecture 2
Theorem 1.4 (strong maximum principle). Suppose u ∈ C 2(Ω) is subharmonic on Ω. Suppose there exists
y0 ∈ Ω such that

u(y0) = supΩ u

Then u is constant.
Remark 1.5. If u is superharmonic, then we have a corresponding statement for when u(y0) = infΩ u. If u is harmonic,then either sup or inf work.

Proof. Let M = supΩ u < ∞, and Σ = {y ∈ Ω | u(y) = M}By assumption, Σ is non-empty, as y0 ∈ Σ. Since u is continuous, Σ is closed. Since Ω is connected, it sufficesto show that Σ is open, since this implies Σ = Ω.Pick y ∈ Σ. By the mean value property, for ρ > 0 such that Bρ(y) ⊆ Ω, we have that
M = u(y) ≤ 1

ωnρn

∫
Bρ (y) u(x)dx

So ∫
Bρ (y)(M − u(x))dx ≤ 0

But M − u(x) ≥ 0, and so it must be identically zero, i.e. u ≡ M on Bρ(y). Hence Bρ(y) ⊆ Σ, and Σ isopen.Here, the strong maximum principle is easy as we have the mean value property. For more general ellipticPDEs, this is not the case. We will prove a weaker statement which does generalise.
Theorem 1.6 (weak maximum principle). Suppose Ω ⊆ Rn is a bounded domain, and u ∈ C 2(Ω) ∩ C 0(Ω).If u is subharmonic on Ω, then supΩ u = sup

∂Ω u

Proof. This follows from the strong maximum principle. Since Ω is bounded, supΩ u is attained in Ω. So by themaximum principle, these cannot be attained in Ω unless u is constant.
Remark 1.7. If u is superharmonic, we replace sup with inf , and if u is harmonic then both hold.
The mean value property states that u always an average of itself. In particular, this suggest that u cannotvary too much. Can we use this to relate sup u and inf u?

Theorem 1.8 (Harnack’s inequality). Suppose u ∈ C 2(Ω), u ≥ 0 and ∆u = 0 in Ω. Then if Ω′ ⋐ Ω isany bounded subdomain, we have supΩ′
u ≤ C infΩ′

u

where C = C (n, Ω, Ω′) does not depend on u.
Proof. First, choose y ∈ Ω and ρ > 0, such that B4ρ(y) ⊆ Ω. Choose x1, x2 ∈ Bρ(y). By the mean valueproperty,

u(x1) = 1
ωnρn

∫
Bρ (x1) u ≤ 1

ωnρn

∫
B2ρ (y) u
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On the other hand,
u(x2) = 1

ωn(3ρ)n
∫

B3ρ (y) u ≥ 1
ωn(3ρ)n

∫
B2ρ(y) u

Combining these, we see that
u(x1) ≤ 3nu(x2)for all x1, x2 ∈ Bρ(y). So Harnack holds locally in balls, with constant independent of u. It is also independentof ρ, y as long as ρ is sufficiently small. Now choose x1, x2 in Ω′ ⊆ Ω, such that

supΩ′
u = u(x1) and infΩ′

u = u(x2)
By path connectedness of Ω, there exists a continuous map γ : [0, 1] ⊆ Ω′, with γ(0) = x1 and γ(1) = x2. Choose
ρ such that 4ρ < d(γ, ∂Ω), and N = N(Ω′, Ω) such that we can cover γ by N-balls of radius ρ2.Apply the local result to each ball, and we get

u(x1) ≤ (3n)Nu(x2) = 3nNu(x2)

Theorem 1.9 (derivative estimates). Suppose u ∈ C 3(Ω) is harmonic on Ω. Then if Bρ(y) ⊆ Ω, we havethat
|Du(y)| ≤ C

ρ sup
∂Bρ (y) |u|

where C = C (n).
Proof. Since ∆u = 0, 0 = Di(∆u) = ∆(Diu)So Diu is harmonic. By the mean value property,

Diu(y) = 1
ωnρn

∫
Bρ (y) u

= 1
ωnρn

∫
Bρ (y) ∇ · (0, . . . , u, . . . , 0)dx

= 1
ωnρn

∫
∂Bρ (y) u(x) · νi(x)dx

where ν(x) is the unit normal at x . But |νi(x)| ≤ 1, and so
|Diu(y)| ≤ 1

ωnρn sup
∂Bρ (y) |u|

∫
∂Bρ (y) dx = n

ρ sup
∂Bρ (y) |u|

Remark 1.10. We can apply this result repeatedly, to get that for Ω′ ⊆ Ω′′ ⊆ Ω, and any multi-index α , if u ∈
C |α|+2(Ω), with ∆u = 0 in Ω, then supΩ′′

|Dαu| ≤ C supΩ′′
|u|

for some C = C (n, α, Ω, Ω′).That is, ∥∥Dαu
∥∥

L∞(Ω′) ≤ C∥u∥L∞(Ω′)By the mean value property, for some y ∈ Ω′′ ⊆ Ω,
supΩ′′

u = |u(y)| = ∣∣∣∣∣c ∫Bρ (y) u(x)dx
∣∣∣∣∣ ≤ C

∫
Ω |u|

2This follows from the fact that Ω′ is relatively compact
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So ∥∥Dα (u)∥∥L∞(Ω′) ≤ C∥u∥L1(Ω)

Theorem 1.11 (uniqueness of solutions for the Dirichlet problem). Suppose Ω is bounded, and u1, u2 ∈
C 2(Ω) ∩ C 0(Ω) with {∆u1 = ∆u2 in Ω

u1 = u2 on ∂Ω
Then u1 = u2 in Ω.

Proof. Set w = u2 −u2. Then w is harmonic function in Ω, and w = 0 on ∂Ω. By the weak maximum principle,we get that w = 0 in Ω.
Remark 1.12. Of course, we can integrate by parts to get the same result, but the weak maximum principle will applyfor non divergence form equations. Lecture 3
Theorem 1.13 (Liouville). If u ∈ C∞(Rn) is harmonic, and grows sublinearly at infinity. Then u isconstant.
Remark 1.14. “growing sublinearly” means that

|u(x)| ≤ C
(1 + |x|α

)
where 0 < α < 1.

Proof. From derivative estimates, we know that for all x ∈ Rn, we have that
|Du(y)| ≤ C

ρ sup
Bρ (y) |u|

Plugging in the growth assumption, we get that
|Du(y)| ≤ C

ρ (1 + (ρ + |y|)α )
Taking ρ → ∞, we get that Du(y) = 0. But y was arbitrary, and so we are done.
1.2 Existence theory for harmonic functionsWe will consider the classical problem of solving the Dirichlet problem for the Laplacian on bounded domainsΩ ⊆ Rn, and φ : Ω → R continuous. We wish to find u ∈ C∞(Ω) ∩ C 0(Ω) such that{∆u = 0 in Ω

u = φ on ∂Ω
We will assume for simplicity that ∂Ω is smooth, and φ ∈ C∞(Ω).We have (at least) three methods to solve this problem.1. Hilbert space methods (c.f. Analysis of PDEs). Use the Riesz representation theorem to obtain a solution

u ∈ H1(Ω), and deal with regularity afterwards. This relies on the equation being linear.2. Direct method of calculus of variations. We can rephrase ∆u = 0 as a variational problem. That is, theEuler-Lagrange equation of ∫
|Du|2

and prove existence using the functional.
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3. Perron’s method. Use the fact that solvability in balls impies solvability in more general domains. Thismethod is based on maximum principles.
Remark 1.15. In all cases, we obtain a rougher solution first, and improve regulaity later.
We will focus on the second method. Define

S = {w ∈ H1(Ω) | w − φ ∈ H10(Ω)}
That is, H1 functions which agree with φ on the boundary. Clearly φ ∈ S , and so S is non-empty. Set

E [w ] = ∫Ω |Dw|2
and define

β = inf
w∈S

E [w ]
By the definition of the infimum, there exists a seqeunce (wj ) ⊆ S , such that

E [wj ] → βWe want to extract a convergent subsequence and show that its limit is a solution. Clearly for j large, we havethat ∫
Ω
∣∣Dwj

∣∣2 ≤ β + 1
Since wj − φ ∈ H10(Ω), by the Poincaré inequality,∫

Ω
∣∣wj − φ

∣∣2 ≤ C
∫

Ω
∣∣D(wj − φ)∣∣2

In particular, this implies that ∥∥wj
∥∥2

L2(Ω) ≤ C (Ω, φ, β) < ∞Indeed, ∥∥wj
∥∥2

L2(Ω) ≤ C
∥∥Dwj − Dφ

∥∥2
L2(Ω) ≤ C (Ω, φ, β)Expanding the left hand side, we get∥∥wj

∥∥2
L2(Ω) − 2 〈wj , φ

〉
L2(Ω) ≤ C (Ω, φ, β)

In particular, by Young’s inequality,∥∥wj
∥∥2

L2(Ω) ≤ C (φ, Ω, β) + ε
∥∥wj
∥∥2

L2(Ω) + 1
ε
∥∥φ
∥∥2

L2(Ω)Take 0 < ε < 1, and rearrange.So we have that ∥∥wj
∥∥2H1(Ω) ≤ C , so by Banach-Alaoglu,

wjk ⇁ w in H1(Ω)By Rellich-Kondrachov3,
wjk → w in L2(Ω)

3Recall
Theorem 1.16 (Rellich-Kondrachov). Let Ω be bounded, 1 ≤ p < n, then

W 1,p(Ω) ↪→ Lp∗ (Ω)and
W 1,p(Ω) ⋐ Lq(Ω)for 1 ≤ q < p∗ . Here, p∗ is the conjugate

p∗ = np
n − p

In particular, when p = 2, p∗ > 2 if n > 2.
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for some w ∈ H1(Ω). Hence for all v ∈ H1(Ω), we have that∫
Ω Dwj · Dv →

∫
Ω Dw · Dv

Also, clearly we have that wjk −φ ⇁ w −φ in H1(Ω), as φ is smooth. But wjk −φ ∈ H10(Ω), but H10(Ω) ⊆ H1(Ω)is norm closed, so it is weakly closed4. Hence w − φ ∈ H10(Ω), so w ∈ S . Finally, since E [·] is sequentially
weakly lower semicontinuous5 in H1(Ω), we have that

E [w ] ≤ lim inf E [wjk ] = βHence E [w ] = β . We have found a global minimum w . That is, for all v ∈ H10(Ω), w + tv ∈ S ,
f (t) = E [w + tv ] ≥ E [w ]Thus, f ′(0) = 0. But

f ′(0) = DE [w ](v )
= lim

t→0 E [w + tv ] − E [w ]
t= 2∫Ω Dw · Dv

In particular, ∫
Ω Dw · Dv = 0

is the weak formulation of ∆w = 0. We will next upgrade the regularity, and show that weak solutions are infact smooth.
1.3 Interior regularityWe wish to improve the regularity of the weak solution. What we have shown is that there exists a weaksolution u ∈ L1(Ω), such that ∫

Ω u∆v = 0
for all v ∈ C∞

c (Ω).
4This follows from Hahn-Banach. In fact, it follows for any convex subset of a Banach space.
Lemma 1.17. Let X be a Banach space, for C ⊆ X convex, C is norm-closed if and only if C is weakly closed.

Proof. Weak closed implies norm closed is clear. For the converse, we can show that X \ C is weakly open. Let x0 ∈ X \ C , by theHahn-Banach separation, there exists φ ∈ X ′ such that
φ|C = 0 and φ(x0) ̸= 0Then {

x ∈ X
∣∣∣∣ |φ(x)| > 12 |φ(x0)|} ⊆ X \ Cis a weakly open neighbourhood of x0 .

5That is, if uj ⇁ u in H1(Ω), then
E [u] ≤ lim inf E [uj ]To see this, note that ∫

Ω Duj · Dv →
∫

Ω Du · DvSetting u = v , we see that ∫
Ω Duj · Du →

∫
Ω |Du|2Thus,

E [u] = lim∫Ω Duj · Du

= lim inf ∫Ω Duj · Du

≤ lim inf E [uj ]1/2E [u]1/2
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Theorem 1.18 (Weyl’s lemma). Weakly harmonic functions are smooth. That is, for Ω ⊆ Rn a domain,
u ∈ L1loc.(Ω), if we have u is a weak solution to Laplace’s equation, then u is C∞ and ∆u = 0 in Ω.

Proof. Mollify u. Take φ ∈ C∞(Rn), such that• 0 ≤ φ,• φ(x) = 0 for |x| ≥ 1,• ∫Rn φ = 1,• φ is radially symmetric6.For σ > 0, set
φσ (x) = 1

σn φ
( x

σ

)
Then φσ ∈ C∞

c (Bσ (0)) is nonnegative and has integral 1.Define
uσ (x) = (φσ ∗ u)(x)This is well defined for

x ∈ Ωσ = {x ∈ Ω | d(x, ∂Ω) ≥ σ}Then uσ is smooth, uσ → u in L1loc.(Ω). Moreover, ∆uσ = 0. To see this,
∂

∂x i uσ = ∫Ω u(y) ∂
∂x i φσ (x − y)dy = −

∫
Ω u(y) ∂

∂yi φσ (x − y)dy

and so ∆xuσ (x) = ∫Ω u(y)∆yφσ (x − y)dy = 0
as u is weakly harmonic.By the a priori derivative estimates for harmonic functions, for Ω′ ⋐ Ω,

supΩ′
|Dαuσ | ≤ C

∫
Ω′

σ1
|uσ |

for some σ1(Ω′) small, where Ω′
σ = Ω′ ∪ {x ∈ Ω | d(x, ∂Ω′) < σ}Since uσ → u in L1loc.(Ω), for σ small enough,

C
∫

Ω′
σ1

|uσ | ≤ C
∫

Ω′
σ ′

(|u| + 1)
Hence supΩ′

|Dαuσ | ≤ C
∫

Ω′
σ1
(|u| + 1)

So Dαuσ is uniformly bounded in L∞(Ω′). Hence (as bounded derivatives imply equicontinuity) by Arzela-Ascoli,there exists a subsequence (σj ) such that σj → 0, and there exists ũ ∈ C∞(Ω) such that uσj → ũ in C k (Ω′) forall k . Hence ∆ũ = lim
j→∞

∆uσj = 0
in Ω, as Ω′ was arbitrary. By properties of mollifiers, uσ → u a.e. in Ω, and so ũ = u a.e.

Remark 1.19. We do not say anything about boundary regularity. It is possible to get (at least) u ∈ C 0(Ω).
Let’s now improve our C∞ existence result to C 0.

6This is not a standard assumption for mollifiers, but we can assume this.
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Theorem 1.20 (existence and uniqueness for the Dirichlet problem with C 0 data). Suppose Ω is boundedwith ∂Ω sufficiently regular, then for any φ ∈ C 0(∂Ω), there exists a unique u ∈ C∞(Ω) ∩ C 0(Ω) solving{∆u = 0 in Ω
u = φ on ∂Ω

Remark 1.21. We might have ∫
Ω |Du|2 = ∞

for this solution.
Proof. Choose a sequence (φn) ⊆ C∞(Rn), such that φn → φ on ∂Ω, in L∞. Then we know that there exists
un ∈ C∞(Ω) ∩ C 0(Ω), such that {∆un = 0 in Ω

un = φn on ∂ΩThen for all n, m ∈ N, ∆(un − um) = 0 in Ω, and un − um = φn − φm on ∂Ω. By the weak maximum principle,supΩ |un − um| ≤ sup
∂Ω |un − um| = ∥∥φn − φm

∥∥
L∞ → 0

as n, m → ∞. So (un) is Cauchy in C 0(Ω), which is a Banach space, so by completeness, there exists u ∈ C 0(Ω)such that un → u uniformly on Ω. In particular, u = φ on ∂Ω.By the derivative estimates, (un) converges in C k (Ω′), for any Ω′ ⋐ Ω, and so u is smooth in the interior.Thus, ∆u = 0 in the interior.
Remark 1.22. A sufficient condition for regularity is that ∂Ω is C 2 . More generally, it is enough to have the exterior
sphere condition, which says that for all z ∈ ∂Ω, there exists Bρ(y), such that Bρ(y) ∩ ∂Ω = {z}. There existsbounded domains in which this fails, and the conclusion of the theorem fails in that case as well. For example, whenthe boundary has a cusp.

2 General second order elliptic operators
From now on, write

Lu = aij∂i∂ju + bi∂iu + cuWe will work on Ω ⊆ Rn open, u ∈ C 2(Ω), aij , bi, c : Ω → R and consider the Dirichlet problem{
Lu = f in Ω
u = φ on ∂Ωfor given f and φ. If we can write L in divergence form

Lu = ∂i(aij∂ju) + b̂i∂iu + cuthen we can use Hilbert space methods, as in Analysis of PDEs. But if aij is only C 0 say, we will needSchauder theory.The idea is to deform L into ∆ using a series of rescalings. In particular, this does not involve Sobolevspaces. Since u ∈ C 2(Ω), we can assume aij is symmetric.
Definition 2.1We say that L is elliptic in Ω if the matrix (aij ) is positive definite in Ω. So that

0 ≤ λ(x)|ξ |2 ≤ aij (x)ξ iξ j ≤ Λ(x)∣∣ξ2∣∣
for all ξ ∈ Rn non-zero. In particular, λ is the minimum eigenvalue, and Λ is the maximum.

L is strictly elliptic if there exists λ0 such that 0 < λ0 ≤ λ(x) for all x . L is uniformly elliptic if it is
10



elliptic, and Λ(x)/λ(x) is uniformly bounded.
Remark 2.2. In general, uniformly elliptic does not imply strictly elliptic.
Example 2.3The minimal surface equation

∇ ·

 Du√1 + |Du|2
 = 0

has
aij = (δij − DiuDju1 + |Du|2

) 1√1 + |Du|2This is elliptic but not uniformly elliptic.
Lecture 4We are interested in general second order elliptic operators, with aij , bi, c ∈ C 0,α (Ω). In particular, wecannot write them in divergence form, as aij are not C 1.

2.1 Basic properties

Theorem 2.4 (weak maximum principle). Suppose that L is elliptic and that
supΩ
∣∣∣∣bi

λ

∣∣∣∣ < ∞ ((∗))
for some i. Moreover, suppose Ω is bounded, open, u ∈ C 2(Ω) ∩ C 0(Ω), such that Lu ≥ 0a.Then• if c = 0, then supΩ u = sup

∂Ω u

• if c ≤ 0, then supΩ u ≤ sup
∂Ω u+

where u+ = max(u, 0).
aWe say that u is a subsolution.

Remark 2.5. The assumption that c ≤ 0 is crucial. For example, when n = 1, let Ω = (0, π), and u′′ + u = 0. Then
u(x) = sin(x) is a solution. But then supΩ u = 1, and sup∂Ω u+ = 0.For n = 2, Ω = (0, π)2 , and ∆u + 2u = 0. Then

u(x, y) = sin(x) sin(y)
has the same properties as the above.

Proof. First suppose c = 0. If Lu > 0 in Ω, then in fact the strong maximum principle holds. Indeed, if x0 ∈ Ωis a local maximum, then
∂iu(x0) = 0 and ∂i∂ju(x0) ≼ 0Since aij (x0) ≽ 0, we have that
aij∂i∂ju(x0) = tr(A∇2u(x0)) ≤ 0Hence 0 < Lu(x0) = aij∂i∂ju(x0) + bi∂iu(x0) ≤ 0. Contradiction. More generally, if Lu ≥ 0 in Ω, consider

v (x) = eγx1

11



for some γ > 0 to be chosen. Here, we assume without loss of generality that (∗) holds for i = 1. Then
∂1v = γeγx1 and ∂iv = 0 for i ̸= 1and

∂1∂1vγ2eγx1and all other second derivatives are zero. So
Lv = eγx1 (a11γ2 + b1γ)

≥ eγx1 (λγ2 + b1γ)
= γeγx1

(
γ2 + b1

λ γ
)

This is positive for γ large enough. Hence
L(u + εv ) > 0for all ε > 0. By the above,

u(x) ≤ supΩ (u + εv ) as v ≥ 0
≤ sup

∂Ω (u + εv )
≤ sup

∂Ω u + ε sup
∂Ω v

Taking ε → 0, we get that u(x) ≤ sup∂Ω u. Since this is true for all x ∈ Ω, thensupΩ u ≤ sup
∂Ω u

The reverse inequality is trivial.Now suppose c ≤ 0. Define
L0u = aij∂i∂ju + bi∂iuand consider Ω+ = {x ∈ Ω | u(x) > 0}Since cu ≤ 0 on Ω+,

L0u = Lu − cu ≥ 0on Ω+. Note if Ω+ = ∅, then supΩ u ≤ 0, and u+ = 0, and the conclusion is trivial. Thus, without loss ofgenerality assume Ω+ ̸= ∅. Then there exists x0 ∈ ∂Ω ∩ ∂Ω+, with u(x0) ≥ 0. If not, then
∂Ω+ ∩ ∂Ω = ∅and so ∂Ω+ ⊆ Ω, and so it ∂Ω+ ⊆ Ω \ Ω+. So u|∂Ω+ ≤ 0. But this contradicts the first part for L0 on Ω+.Hence supΩ u = supΩ+ u

= sup
∂Ω+ u

≤ sup
∂Ω u

≤ sup
∂Ω u+

Corollary 2.6. Let Ω be bounded open, u ∈ C 2(Ω) ∩ C 0(Ω), L is elliptic, with the same bound on Ω, and
c ≤ 0 in Ω. Then1. if Lu ≤ 0 in Ω, then infΩ u ≥ inf

∂Ω u−

where u− = min(u, 0).
12



2. if Lu = 0, then sup
∂Ω |u| = supΩ |u|

Proof. Exercise.
Corollary 2.7. Let L as above, and suppose we have u, v, w ∈ C 2(Ω) ∩ C 0(Ω), such that

Lu ≥ 0 Lv = 0 and Lw ≤ 0
Then1. if u ≤ v on ∂Ω, then u ≤ v in Ω.2. if v ≤ w on ∂Ω, then v ≤ w in Ω.

Proof. Exercise.We want to build towards a strong maximum principle. For this, we need
Theorem 2.8 (Hopf boundary point lemma). Let Ω ⊆ Rn be open, and take y ∈ ∂Ω. Suppose ∂Ω satisfiesthe interior sphere conditiona at y. Let L be uniformly elliptic in Ω, with

supΩ
|b|
λ + supΩ |c|λ < ∞

Suppose u ∈ C 2(Ω)∩ C 0({y} ∪Ω), such that u(y) ≥ u(x) for all x ∈ Ω, and Lu ≥ 0 in Ω. Finally, assumeone of the following holds:(i) c = 0 in Ω,(ii) c ≤ 0 in Ω and u(y) ≥ 0,(iii) u(y) = 0Then
∂u
∂ν > 0

if it exists, where ν is the outwards pointing normal at y to ∂BR (z), coming from the interior spherecondition.
aThat is, there exists R > 0, z ∈ Ω, such that BR (z) ⊆ Ω, y ∈ ∂BR (z).

Remark 2.9. The weak maximum principle implies that
∂u
∂ν ≥ 0

and so the content of the theorem is the strict inequality.
Proof. Let

A = BR (z) \ Br (z)for some 0 < r < R . We will first solve cases (i) and (ii). On A, consider
v (x) = e−α|x−z|2 − e−αR2

First note that on A, v > 0.
∂iv (x) = −2α(xi − zi)e−α|x−z|2

and
∂i∂jv (x) = −2αδije−α|x−z|2 + 4α2(xi − zi)(xj − zj )e−α|x−z|2s

13



So on A,
Lv = e−α|x−z|2 (aij4α2(xi − zi)(xj − zj ) − 2αaii − 2αbi(xi − zi) + c) − ce−αR2

By ellipticity and the sign of c,
Lv ≥ 2−α|x−z|2 (4α2λ(x)|x − z|2 − 2αnΛ(x) − 2α|b||x − z| − |c|)

≥ e−α|x−z|2λ(x)(α2R2 − 2αn supΩ
Λ
λ − αR supΩ

|b|
λ − supΩ

|c|
λ

)
where r is chosen such that |x − z|2 ≥ (R/2)2. In particular, this is positive for α large enough. Fix such an α . Lecture 5Set w(x) = u(x) − u(y) + εv (x), for some small ε to be determined. Now

Lw = Lu + εLv − cu(y) ≥ 0in A, by above (and the assumptions). Also,
v |∂BR (x) = 0and because u(x) ≤ u(y) on Ω, so
w|∂BR (z) ≤ 0Also, u(x) < u(y) on ∂Br (z), so we can choose ε small enough such that
w|∂Br (z) < 0So w|∂A ≤ 0. Apply the weak maximum principle to w in A, we get w ≤ 0, and so

u(x) − u(y) + εv (x) ≤ 0in A. Choose t < 0, and we have that
u(y + tν) − u(y)

t ≥ −ε v (y + tν) − v (y)
tNote v (y) = 0. Sending t → 0,

∂u
∂ν (y) ≥ −ε ∂v

∂ν (y)
= −ε∂iv (y)(yi − zi

R

)
= 2αεRe−αR2
> 0For case (iii), consider

L̃ = L − c+
So L̃u = Lu − c+u ≥ 0, and we can apply the above to L̃.

Theorem 2.10 (strong maximum principle). Suppose Ω ⊆ Rn is a domain, with non-empty boundary ∂Ωsatisfying the interior sphere condition for all y ∈ ∂Ω. Let L be uniformly elliptic, with
supΩ
(

|b| + |c|
λ

)
< ∞

Suppose u ∈ C 2(Ω), with M = supΩ u < ∞, and Lu ≥ 0 on Ω. Suppose (at least) one of the followingholds(i) if c = 0, and u(y) = M for some y ∈ Ω.(ii) if c ≤ 0, M ≥ 0 and u(y) = M for some y ∈ Ω,(iii) if M = 0 and u(y) = M = 0 for some y ∈ Ω.Then u is constant.
14



Proof. Let Σ = {x ∈ Ω | u(x) = M}By continuity, Σ is closed in Ω. Suppose Ω \ Σ ̸= ∅. Choose z ∈ Ω \ Σ, such that
d(z, ∂Ω) > d(z, ∂Σ)

To see this, first choose z1 ∈ ∂Σ ∩ Ω. Then choose ρ1 > 0 such that Bρ1 (z1) ⊆ Ω. Then choose any
z ∈ Bρ1/2(z1) \ Σ

Let
R = sup{ρ | Bρ(z) ⊆ Ω \ Σ}By construction, there exists y ∈ ∂BR (z)∩Σ. Since Du(y) = 0, this contradicts the Hopf boundary point lemma.So Ω \ Σ = ∅, i.e. Ω = Σ, so u is constant.The assumption (i), (ii) and (iii) are so we can apply the Hopf boundary point lemma.Some corollaries of this:

Corollary 2.11 (comparison principle). Let
L = aij∂i∂j + bi∂i + c

be uniformly elliptic in Ω ⊆ Rn, with
supΩ
(

|b| + |c|
λ

)
< ∞

Suppose u, v ∈ C 2(Ω), such that Lu ≥ Lv and u ≤ v in Ω. Then• either u = v on Ω,• or u < v on Ω,
Proof. L(u − v ) ≥ 0 in Ω, and u − v ≤ 0. So if there exists x0 ∈ Ω, with u(x0) = v (x0), then the strong maximumprinciple implies u = v . If not, then u < v in Ω.

Corollary 2.12 (uniqueness for the Neumann problem). Suppose Ω ⊆ Rn is a bounded domain, and ∂Ωsatisfies the interior sphere condition at each point. Suppose L is uniformly elliptic, with
supΩ
(

|b| + |c|
λ

)
< ∞

and c ≤ 0. Then if u1, u2 ∈ C 2(Ω) ∩ C 0(Ω) is such that
Lui = f in Ω
∂ui
∂ν = g on ∂Ω

for some f : Ω → R, g : ∂Ω → R. Then u1 − u2 is constant.
Proof. Let u = u1 − u2. This satisfies the Neumann problem

Lu = 0 in Ω
∂u
∂ν = 0 on ∂Ω

15



Let M = supΩ u ≥ 0. We can assume this since we can just take −u instead. By the strong maximum principle,if u ̸= M on Ω, then there exists y ∈ ∂Ω, such that u(y) = M , and u(x) < u(y) for all x ∈ Ω. But by Hopf,
∂u
∂ν (y) = 0

Contradiction.
Remark 2.13. This says that the trivial Neumann problem (i.e. with zero data) has solutions which are constants.Now

LM = 0but if LM = Mc(x) for all x , and so if c is not identically zero, then M = 0. This constant is only non-zero when
c = 0a .

aBut this is obvious, since Lu in this case only involves derivatives of u.
What happens when for non-zero right hand side? The following will be critical for Schauder theory.

Theorem 2.14 (maximum principle a priori estimate). Suppose Ω ⊆ Rn is a bounded domain, L elliptic,
c ≤ 0, and β = |b|/λ is L∞. Let u ∈ C 2(Ω) ∩ C 0(Ω) and f : Ω → R, then(i) if Lu ≥ f , then supΩ u ≤ sup

∂Ω u+ + C supΩ
(

|f |
λ

)
(ii) if Lu = f , then supΩ |u| ≤ sup

∂Ω |u| + C supΩ
(

|f |
λ

)
where C is a constant which only depends on β and diam(Ω).

Proof. Set d = diam(Ω) = supx,y∈Ω |x − y|. As Ω is bounded, we can containΩ ⊆ {x | a ≤ x1 ≤ a + d}for some a ∈ R. Without loss of generality, a = 0. As before, we will construct subsolutions, and use the weakmaximum principle. Let
v (x) = sup

∂Ω u+ + (eαd − eαx1 ) supΩ
|f |
λwhere α is to be determined.We can compute Lv :(aij∂i∂j + bi∂i)eαx1 = eαx1 (a11α2 + b1α) ≥ eαx1λ(α2 + βα) ≥ λif we take α = β + 1. Hence

Lv ≤ cv − λ sup |f |
λ ≤ −λ supΩ

|f |
λas c ≤ 0, v ≥ 0. Then:(i) if Lu ≥ f , then

L(u − v ) ≥ f + λ sup |f |
λ ≥ 0 Lecture 6Note that u ≤ u+, and u|∂Ω ≤ v |∂Ω from the definition of v . So by the weak maximum principle, we have

u ≤ v in Ω, and supΩ ≤ u ≤ supΩ v ≤ sup
∂Ω u+ + C supΩ

|f |
λwhere

C = supΩ
(
e(β+1)d − e(β+1)x1)

For (ii), if Lu = f , apply (i) to −u.
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2.2 Hölder spacesFix Ω ⊆ Rn open, and let α ∈ (0, 1].
Definition 2.15we say u : Ω → R is uniformly Hölder continuous with exponent α , or uniformly α-Hölder continuous, if

[u]α,Ω = sup
x,y∈Ω

|u(x) − u(y)|
|x − y|α < ∞

This is the Hölder seminorm.
If α = 1, this says that u is uniformly Lipschitz. If α > 1, then u is constant, by the mean value theorem.

Definition 2.16We say that u is locally α-Hölder continuous if for all K ⋐ Ω, u|K : K → R is uniformly α-Höldercontinuous.
Let k ∈ N ∪ {∞}. Recall for a multi-index β ∈ Nn, we have

|β| =∑
i

βi

and
C k (Ω) = {u : Ω → R | Dβu exists and is continuous for all |β| ≤ k}

Definition 2.17The Hölder space C k,α (Ω) is the space
C k,α (Ω) = {u ∈ C k (Ω) | Dβu is locally α-Hölder continuous for all |β| ≤ k}

and
C k,α (Ω) = {u ∈ C k (Ω) | Dβu is uniformly α-Hölder continuous for all |β| ≤ k}

For α ∈ (0, 1), we will write
C α (Ω) = C 0,α (Ω)and
C α (Ω) = C 0,α (Ω)Moreover, we have

C k,0(Ω) = C k (Ω) and C k,0(Ω) = C k (Ω)
Remark 2.18. On the other hand, note that C k+1(Ω) ̸= C k,1(Ω), since Lipschitz continuity does not imply C 1 . On theother hand, Lipschitz functions are differentiable almost everywhere.
Finally, define

C k,α0 (Ω) = C k,α
c (Ω) = {u ∈ C k,α (Ω) | supp(u) compact}To define norms on these spaces: for k ∈ N, u ∈ C k (Ω), define

[u]k,Ω = [Dku]0,Ω = sup
|β|=k

[Dβu]0,Ω = sup
|β|=k

sup
x∈Ω
∣∣Dβu(x)∣∣

For u ∈ C k,α (Ω), define [u]k,α ;Ω = [Dku]α,Ω = sup
|β|=k

[Dku]α,Ω

17



Note that these are seminorms. To get norms, set
∥u∥C k (Ω) = |u|k,Ω = |u|k,0,Ω = k∑

j=0
∣∣Dju

∣∣0,Ω
and ∥u∥C k,α (Ω) = |u|k,α,Ω = |u|k,Ω + [Dku]α,ΩWith these norms, C k and C k,α become Banach spaces. Since we will be using sequences, it is importantto understand the compactness properties.

Theorem 2.19 (Arzelà-Ascoli for Hölder spaces). Let Ω ⊆ Rn be a domain, k ∈ N, and α ∈ (0, 1]. If (uj )jis a sequence in C k,α (Ω) such that sup
j

∣∣uj
∣∣
k,α,Ω′ < ∞

for all Ω′ ⋐ Ω, then there exists u ∈ C k,α (Ω), and a subsequence (uj ′ )j ′ such that uj ′ → u in C k (Ω′).
Remark 2.20. Nothing is said about convergence in C k,α .

Proof. Examples sheet 2.We have two more ingredients before starting Schauder theory. The first is interpolation.If we have Banach spaces X ⋐ Y ⊆ Z , then we can bound the norm in Y by X and Z norms. Interpolationis the exchange of sizes of the X and Z norms. Here, we have
C k,α (Ω) ⋐ C k (Ω) ⊆ C k (Ω)

Theorem 2.21 (interpolation inequality for Hölder spaces). Let ε > 0, ℓ ∈ N, α ∈ (0, 1]. Then thereexists C = C (n, ℓ, α, ε), such that if u ∈ C ℓ,α (BR (x0)), then
R k ∣∣Dku

∣∣0,BR (x0) ≤ εR ℓ+α [Dℓu]α,BR (x0) + C |u|0,BR (x0)for all 0 ≤ k ≤ ℓ .
Sketch proof. For details, see examples sheet 2. By rescaling and shifting, it suffices to consider the case
R = 1. Then argue by contradiction using Arzelà-Ascoli.The second ingredient is the following lemma.

Theorem 2.22 (Simon’s absorbing lemma). Let BR (x) ⊆ Rn be fixed, and let S be a nonnegative,subadditive function on the collection of sub-balls of BR (x). That is, if
Bρ(y) ⊆

N⋃
j=1 Bρj (yj ) ⊆ BR (x)

then
S(Bρ(y)) ≤

N∑
j=1 S(Bρj (yj ))

Let λ ≥ 0, θ ∈ (0, 1), then there exists δ = δ(n, λ, θ) ∈ (0, 1) such that: Suppose that for all balls
Bρ(y) ⊆ BR (x), we have

ρλS(Bθρ(y)) ≤ δρλS(Bρ(y)) + γfor some fixed γ . Then
RλS(BθR (x)) ≤ Cγ

18



for some C = C (n, θ, λ).
Remark 2.23. This says that if there exists a local bound on S , then we can “absorb” the S-term on the right handside to get a global bound. Lecture 7

Proof of Simon’s absorbing lemma. Let
Q = sup

Bρ (y)⊆BR (x) ρλS(Bθρ(y))
Recall we have that

ρλS(Bθρ(y)) ≤ δρλS(Bρ(y)) + γBy subadditivity of S , we have that
Q ≤ RλS(BR (x)) < ∞Fix any Bρ(y) ⊆ BR (x). Cover Bθρ(y) by a collection of balls

{B(1−θ)θ2ρ(zj )}N
j=1with N ≤ C (θ, n), which is independent of ρ and y. Moreover, zj ∈ Bθρ(y). To do this: Choose a maximalpairwise disjoint collection of balls

{B(1−θ)θ2ρ/2(zj )}N
j=1where zj ∈ Bθρ(y). We claim that these zj ’s work. If not, then there exists

z ∈ Bθρ(y) \
N⋃

i=1 B(1−θ)θ2ρ(zj )
and so d(z, zj ) ≥ (1 − θ)θ2ρ for all j . In particular,

B(1−θ)θ2ρ/2(z) ∩ B(1−θ)θ2ρ/2(zj ) = ∅This contradicts maximality.For the bound on N , note that from considering radii,
N⋃

j=1 B(1−θ)θ2ρ/2(zj ) ⊆ B(1−θ)θ2ρ/2+θρ(y) ⊆ Bρ(y)
Since the balls on the left hand side are disjoint, there exists a volume bound

Nωn

( (1 − θ)θ2ρ2
)n

≤ ωn

( (1 − θ)θ2ρ2 + θρ
)

Which is independent of ρ and y.To conclude, by subadditivity,
ρλS(Bθρ(y)) ≤ ρλ

N∑
j=1 S(B(1−θ)θ2ρ(zj ))

≤ ((1 − θ)θ)−λ
N∑

j=1
(

δ ((1 − θ)θρ)λ S(B(1−θ)θρ(zj )) + γ
)

≤ δ((1 − θ)θ)−λNQ + Nγ ((1 − θ)θ)−λ

Now taking the supremum over all Bρ(y) ⊆ BR (x),
Q ≤ δC1Q + C2γwhere C1, C2 depends on n, θ, λ. Choose δ sufficiently small such that δC1 < 1. Taking δ = 1/(2C1),

Q ≤ 2C2γ
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3 Schauder theory
3.1 Interior Schauder estimatesWe will first prove interior estimates in the unit ball, and then extend them to more general domains. The mainpoint is: if the coefficients of L are α-Hölder continuous, then any C 2,α-solution of Lu = f can be bounded in
C 2,α on a smaller ball by |u|0 and f .

Theorem 3.1 (unit scale interior Schauder estimates). Let α ∈ (0, 1), β > 0, and suppose aij , bi, c ∈
C 0,α (B1(0)), with ∣∣aij ∣∣0,α ;B1(0) + ∣∣bi∣∣0,α ;B1(0) + |c|0,α ;B1(0) ≤ βSuppose L is strictly elliptic, so there exists λ > 0 such that

aij (x)ξiξj ≥ λ|ξ |2
for all x ∈ B1(0), ξ ∈ Rn. Then if u ∈ C 2,α (B1(0)) ∩ C 0(B1(0)), and f ∈ C 0,α (B1(0)) satisfies Lu = f in
B1(0), then

|u|2,α ;B1/2(0) ≤ C
(

|u|0;B1(0) + |f |0,α ;B1(0))for some constant C = C (n, λ, α, β).
Remark 3.2. • We can never take α = 0 or α = 1. The theorem is false in these cases.• Strict ellipticity gives a lower bound for λ, and upper bound on |aij |0,α gives an upper bound on Λ. So Λ/λ isbounded, and so we have uniform ellipticity.• Note that we can control two derivatives of u using no derivatives on u or f .• We will in fact strengthen this to

|u|2,α ;Bθ (0) ≤ C
(

|u|0;B1(0) + |f |0,α ;B1(0)
)

for all θ ∈ (0, 1), C = C (n, λ, α, β, θ).• We may no assumptions, and state no conclusions, about the regularity on the boundary.• The Schauder estimate gives a compactness property for the space of solutions to Lu = f . If (uk ) ⊆ C 2,α (B1(0))∩
C 0(B1(0)) solves Luk = f in B1(0), and

γ = sup
k

sup
B1(0) |uk | < ∞

Then
|uk |2,α ;Bθ (0) ≤ C (γ, n, θ, β, λ, f )and so by Arzela-Ascoli, there exists a subsequence (uk ′ ), with u ∈ C 2,α (B1(0)), such that uk ′ → Uk in C 2(Bθ (0))for all θ ∈ (0, 1). Passing to the limit, Lu = f .

Lecture 8
Proof. Omitted.

Lecture 9We now give some corollaries.
Corollary 3.3 (scale invariant Schauder estimate). Suppose BR (x0) ⊆ Rn, and aij , bi, c ∈ C 0,α (BR (x0)),with

aijξiξj ≥ λ|ξ |2for some λ > 0. Suppose also that∣∣aij ∣∣0,BR (x0) + Rα [aij ]α,BR (x0) + R
(∣∣bi∣∣0,BR (x0) + Rα [bi]α,BR (x0))+ R2 (|c|0,BR (x0) + Rα [c]α,BR (x0)) ≤ β
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for some β > 0. Suppose u ∈ C 2,α (BR (x0)) ∩ C 0(BR (x0)), satisfying Lu = f ∈ C 0,α (BR (x9)). Then
|u|′2,α ;BR/2(x0) ≤ C

(
|u|0,BR (x0) + R2|f |0,BR (x0) + R2+α [f ]α,BR (x0))

where
|u|′k,α ;Bρ (y) = k∑

j=0 ρj ∣∣Dju
∣∣0,Bρ (y) + ρk+α [Dku]α,Bρ (y)

and C = C (n, λ, α, β) is independent of u and of R .
Proof. Apply theorem 3.1 with x → x0 + Rx .

Corollary 3.4 (interior Schauder estimates in general domains). Let α ∈ (0, 1), Ω ⊆ Rn open and bounded.Suppose we have aij , bi, c ∈ C 0,α (Ω), with∣∣aij ∣∣0,α ;Ω + ∣∣bi∣∣0,α ;Ω + |c|0,α ;Ω ≤ β

with
aij (x)ξiξj ≥ λ|ξ |2for some λ > 0. Suppose u ∈ C 2,α (Ω) ∩ C 0(Ω) satisfies Lu = f ∈ C 0,α (Ω). Then for all open Ω̃ ⋐ Ω,

|u|2,α ;Ω̃ ≤ C
(

|u|0,Ω + |f |0,α ;Ω)
where C = C (n, α, β, λ, d(Ω̃, ∂Ω)).

Proof. Let
d = d(Ω̃, ∂Ω) = sup{r > 0 |

(Ω̃)
r

⊆ Ω}where (Ω̃)r = ⋃
x∈Ω̃ Br (x)

is the r-neighbourhood of Ω̃. Then for all x ∈ Ω̃, we have that Bd(x) ⊆ Ω, and so∣∣aij ∣∣′0,α ;Bd(x) + d
∣∣bi∣∣′0,α ;Bd(x) + d2|c|′0,α ;Bd(x) ≤ C (d)β

Then by corollary 3.3, we have an estimate
|u|0;Bd/2(x) + d|Du|0,Bd/2(x) + d2∣∣D2u∣∣0,Bd/2(x) + d2+α [D2u]α,Bd/2(x) ≤ C

(
|u|0,Bd(x) + d2|f |0;Bd(x) + d2+α [f ]α,Bd(x))

≤ C (|u|0;Ω + |f |0,α ;Ω) (a)
where C = C (n, λ, α, β, d). In particular,

|u(x)| + |Du(x)| + ∣∣D2u(x)∣∣ ≤ C
(

|u|0,Ω + |f |0,α ;Ω)
for all x ∈ Ω̃. So

|u|2,Ω ≤ C
(

|u|0;Ω + |f |0,α ;Ω) (b)But also, by (a), sup
x,y∈Ω̃,|x−y|<d/2

∣∣D2u(x) − D2u(y)∣∣
|x − y|α ≤ C

(
|u|0;Ω + |f |0,α ;Ω)

On the other hand, of |x − y| ≥ d/2, then∣∣D2u(x) − D2u(y)∣∣
|x − y|α ≤

(
d2
)−α

|u|2,Ω̃ ≤
(

|u|0;Ω + |f |0,α ;Ω)
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by (b). Hence [D2u]α ;Ω̃ ≤
(

|u|0;Ω + |f |0,α ;Ω)and so combining this with (b), we get the required result.
3.2 Boundary Schauder estimatesWrite

Rn+ = {(x ′, xn) | x ′ ∈ Rn−1, xn > 0}
Rn

− = {(x ′, xn) | x ′ ∈ Rn−1, xn < 0}
B±

R (y) = BR (y) ∩ Rn
±

B±
R = B±

R (0)
SR (y) = BR (y) ∩ {xn = 0}

Theorem 3.5 (boundary Schauder estimates in a unit ball). As before, 0 < α < 1, aij , bi, c ∈ C 0,α (B+1 ),and ∣∣aij ∣∣0,α ;B+1 + ∣∣bi∣∣0,α,B+1 + |c|0,α ;B+1 ≤ βand
aij (x)ξiξj ≥ λ|ξ |2for all x ∈ B+1 . Suppose u ∈ C 2,α (B+1 ) satisfies{

Lu = f in B+1
u = 0 on S1

where f ∈ C 0,α and φ ∈ C 2,α . Then
|u|2,α,B+1/2 ≤ C

(
|u|0;B+1 + |f |0,α ;B+1 + |φ|2,α ;B+1

)
Proof. By considering v = u − φ, suffices to consider the case when φ = 0, since Lφ ∈ C 0,α (B+1 ).The rest of the proof is as in theorem 3.1, which we will omit.

Proposition 3.6 (reflection principle for harmonic functions). Let Ω+ be an open subset of Rn+, and let
T = ∂Ω+ ∩ {xn = 0}. Let Ω− be the reflection of Ω+ in {xn = 0}. Let v ∈ C 2(Ω+) ∩ C 0(Ω+ ∪ T ), andlet v be the odd reflection of v in T . That is, v : Ω+ ∪ T → Ω− → R, where

v (x ′, xn) = {v (x ′, xn) (x ′, xn) ∈ Ω+ ∪ T
−v (x ′, −xn) (x ′, xn) ∈ Ω−

Then if ∆v = 0 in Ω+ and v |T = 0, then v ∈ C 2(Int(Ω+ ∪ T ∪ Ω−)) and ∆v = 0.
Proof. Use the mean value property. See examples sheet 2.

Remark 3.7. This is trivial if T = ∅, since Ω+ and Ω− are disjoint. The important part of this theorem is that v is
C 2 across T .
Proposition 3.8 (boundary absorbing lemma). Given θ ∈ (0, 1), µ ∈ R, then there exists δ = δ(n, θ, µ),and C = C (n, θ, µ) such that:

22



Fix R > 0, and let
B = {Bρ(y) | Bρ(y) ⊆ B+

R (0)}
B + = {B+

ρ (y) | yn = 0, B+
ρ (y) ⊆ B+

R (0)}
Suppose S : B ∪ B + → R is a nonnegative subadditve function, such that

ρµS(B+
θρ(y)) ≤ δρµS(B+

ρ (y)) + γ

for all B+
ρ (y) ∈ B +, and

ρµS(Bθρ(y)) ≤ γfor Bρ(y) ∈ B . Then
RµS(B+

θR (0)) ≤ Cγ

Proof. Examples sheet 2. Lecture 10Let (H) denote the following hypothesis: “Suppose Ω ⊆ Rn is a bounded domain, and 0 < α < 1. Suppose
aij , bi, c ∈ C 0,α (Ω), with ∣∣aij ∣∣0,α ;Ω + ∣∣bi∣∣0,α ;Ω + |c|0,α ;Ω ≤ βand suppose there exists λ > 0 such that

aij (x)ξiξj ≥ λ|ξ |2”
Theorem 3.9 (boundary Schauder estimates in general domains). Suppose (H) holds, ad Ω is a C 2,αdomain. Then there exists ε = ε(Ω) > 0 such that if u ∈ C 2,α (Ω), f ∈ C 0,α (Ω), φ ∈ C 2,α (Ω) such that{

Lu = f in Ω
u = φ on ∂Ω

Then for all x ∈ ∂Ω,
|u|2,α ;Bε (x)∩Ω ≤ C

(
|u|0;Ω + |f |0,α ;Ω + |φ|2,α ;Ω)

Remark 3.10. We need Ω to be C 2,α for u to be C 2,α on ∂Ω.
Proof. Omitted.
3.3 Global Schauder estimatesWe can combine the interior and boundary estimates to get:

Theorem 3.11 (global Schauder estimates). Suppose (H) holds, and suppose that Ω is a C 2,α domain. If
u ∈ C 2,α (Ω), f ∈ C 0,α (Ω), φ ∈ C 2,α (Ω) is such that{

Lu = f in Ω
u = φ on ∂Ω

Then
|u|2,α ;Ω ≤ C

(
|u|0,Ω + |f |0,α ;Ω + |φ|2,α ;Ω)where C = C (n, λ, α, β, Ω).

Lecture 11
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4 Solvability of the Dirichlet problem
Given aij , bi, c ∈ C 0,α (Ω), the Dirichlet problem for L is: Given f ∈ C 0,α (Ω), φ ∈ C 2,α (Ω), is there a solution
u ∈ C 2(Ω), to {

Lu = f in Ω
u = φ on ∂ΩIf so, is it unique?

Theorem 4.1. Let α ∈ (0, 1), Ω ⊆ Rn is a bounded C 2,α domain. Suppose aij , bi, c ∈ C 0,α (Ω), with c ≤ 0in Ω. Then the following are equivalent:(i) for any given f ∈ C 0,α (Ω) and φ ∈ C 2,α (Ω), the Dirichlet problem{
Lu = f in Ω
u = φ on ∂Ω

has a solution u ∈ C 2,α (Ω).(ii) For any given f ∈ C 0,α (Ω) and φ ∈ C 2,α (Ω), the Dirichlet problem{∆u = f in Ω
u = φ on ∂Ω

has a solution u ∈ C 2,α (Ω).
Proof. Omitted.
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