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1.1 Free groups and presentations
Let A= {a1,ay, ...} be an alphabet. A group F is free on A if
1. There is a map of sets A — F,

2. for any group G, and a map of sets A — G, there exists a unique group homomorphism F — G such that

A

commutes.

This is a universal property. As usual, this means that F is unique up to unique isomorphism. This shows that
F is determined by A, so we may write F = F(A).

However (as usual with definitions by universal property), we don’t know if F(A) exists. We'll show this
two different ways.

1. Topologically: Let

x=1\/s'

acA

By the Seifert-van Kempen theorem,

m(X) E F(A)
2. Combinatorially: Let
A* = {words in AUA""}

where A~" = {a7", .., a;'}. For example,

1=0,aa,aa ", aba b, a"Ppa "V, ..

1 1

A word is reducible if it contains aa™" or a~

now define

a as a subword for any a € A. Otherwise, it is reduced. We can

F(A) = {w € A" reduced}

The group operation is concatenation, followed by reduction. For example,
(abab™")(b?a) = abab~'b’a = ababa

Note that reduction terminates as each reduction step reduces the length. We won't check that this is well
defined or associative. The identity element is 1, inverses is clear.
A presentation consists of an alphabet A, which we will call generators, and a set R C F(A), which we will
call relations, and we write
<A|R>:<01,02,-~- ‘ I’1,I’2,.4.>
This presents a group

_

~(R)

where {(R)) is the normal closure of R, ie. the smallest normal subgroup of F(A) containing R.

Example 1.1.1

Some examples of presentations which we have seen:

(a|a") = ZInZ
{(r,s|r" s% srsry = Dy,
(Al) = FA)
(a,b|aba™'b™") = 7
(ar,..., dag.bi, ..., by | arbray by - agbgay b))y = (L)

where ¥, is the compact orientable surface of genus g.




As we see, presentations arise when we write down fundamental groups of spaces. In fact, all groups arise this
way.

Corollary 1.1.2 (of Seifert-van Kampen). For
G=<CI1,02,~~~ r1,r2,.”>

there exists a space X with 1(X) = G.

Proof. First, start of with a wedge of circles, one for each a;. Also consider a disjoint union of discs, one for
each r;. Attach the i-cell along its boundary, which is a loop in the wedge of circles. O

This is called the presentation complex of G. For example, if we have 72 = <a, b | aba’1b’1>, then X = T2
is the 2-torus.
In 1911, Max Dehn posed the following problems.

1. (Word problem) Given w € A*, determine whether or not w =1 in G = (A | R). That is, whether or not
w € (R) C F(A).

2. (Conjugacy problem) Given G = (A | R), u,v € A*, determine whether or not u is conjugate to v in G.

3. (Isomorphism problem) Given G = (A | R), H = (B | S), determine whether or not G is isomorphic to H.

Remark 1.1.3. The conjugacy problem is stronger than the word problem, since w = 1 if and only if w is conjugate
to 1.
Dehn was motivated by topology, but the problems asks for algorithms. We will often solve them using geometry.
All three were unsolved in the 1950s, as all three problems are algorithmically undecidable. Nevertheless, positive
solutions are known for many reasonable classes of groups.

Let A= {a1,...,a,} be a finite alphabet.

Example 1.1.4 (word problem in free groups)

Let w € A*. If w is reduced, then w = 1 if and only if w = @. Otherwise, w contains a subword
aa~" for some a € AUA™". Cancelling aa™" produces a word w’ € A*, such that w = w’ in F(A), and
o(w') = 0(w) — 2 < €(w). This terminates after finitely many steps.

We can also solve the conjugacy problem for free groups.

Definition 1.1.5

There is a natural action of Z on A* permuting words. That is,

1-ay--ax =ayas- - agay

The elements of Z - w are called the cyclic conjugates of w. Note that all u € Zw are conjugate to w. The
orbits Z\A* are called cyclic words. A word is cyclically reduced if every cyclic conjugate is reduced.

Example 1.1.6

—1

aba~" is reduced, but not cyclically reduced as ba~"a is not reduced.

Note that if w is reduced, but not cyclically reduced, then

w=aw'a

for some @ € AU A~ Note that w’ is both conjugate to w and shorter than w. Hence after finitely many
iterations, we can assume that w is cyclically reduced.
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Lemma 1.1.7 (conjugacy problem in free groups). If u, v & F(A) are cyclically reduced, then u is conjugate
to v if and only if the corresponding cyclic words are the same.

Proof. If u, v have the same cyclic words, then v is a cyclic conjugate of u, which we have seen is a conjugate
of u.

Conversely, suppose t = gvg~'. By induction on #(g), we can assume g = a € AU A" From this it
follows that either v = a='V/, or v = Vg, as v is cyclically reduced. That is, u = v'a=" or u = aV’. In both
cases, they are cyclic conjugates. O

1.2 Historical case study

Let's briefly think about the state of topology in the early 20th century. Poincaré knew that homology classifies
the compact two-dimensional surfaces. This motivated the

Conjecture 1.2.1 (Poincaré conjecture, version 1). Let M be a compact connected 3-manifold, with

HL (M) = 7Z *x=20,3
) o otherwise

Then M is homeomorphic to S°.

Such a 3-manifold M is called a homology sphere.

Theorem 1.2.2 (Poincaré, 1904). There exists a three dimensional homology sphere P, with

7T1(P)—»A5

The moral is that: homology is not enough, we need use 711 as well.

Conjecture 1.2.3 (Poincaré conjecture, version 2). Let M be a compact connected 3-manifold, with (M) =
1. Then M is homeomorphic to S°.

This was proven by Perelman in 2003. Returning to the original conjecture, in 1910 Dehn wanted to
construct more homology spheres.

Theorem 1.2.4 (Dehn, 1910). There are infinitely many non-homeomorphic 3-dimensional homology
spheres.

Remark 1.2.5. The isomorphism problem is exactly what is needed to distinguish these manifolds.

Here is Dehn's construction. Consider the trefoil knot K C R® C S3  Let N(K) be a reqular open
neighbourhood of K, i.e. a thickening of K. Let N = S?\ N(K). This is a compact 3-manifold with boundart
ON = T2

Computing,

H(N) = 7Z =01
) |0 otherwise

and
mN)Z (xy,z|x* =y’ =2)

This follows from the fact that K is a torus knot, and we can compute the 51 of the complement of a torus knot.
Note that the abelianisation map
m(N) = Hi(N) = Z
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sends z to 6, x to 3 and y to 2. Moreover, the boundary torus T has m(T) = Z°, generated by xy and z.
Under the abelianisation map, xy is sent to 5.

We can glue a solid torus D? x S" to N, by a homeomorphism on the boundary. Let A, i be the corresponding
loops on T2. The resulting manifold Mg = N Ug T is closed. m1(My) depends on g = ¢,(u). By Seifert-van
Kapmen,

(M) = jzg’
Simi
imilarly, ’
Mol = TTe )

To produce a homology sphere, we need to choose ¢ such that g = ¢.(u) = 1 in H'(N).
If g = (xy)?z®, then in H'(N) this is mapped to 5a + 6b € Z. Choose a = 6n + 5, and b = —(5n + 4) for

n € Z. He constructs ¢, such that

¢n(U) =g, = (Xg)6n+527(5n+4)

His family of manifolds
D,=N Usg, U

has

7T'](Dn) _ <X, Y,z | XZ _ yZ =z (Xg)6n+5 _ Z5n+4>

The remaining challenge is to prove the groups G, = m(D,) for n > 0 are pairwise non-isomorphic.
This is the isomorphism problem! In particular,

gn =gm = ¢, and g, are conjugate = G, = G,

So we also need to solve the word and conjugacy problem in 714 (N).

1.3 van Kampen diagrams

Definition 1.3.1

A map f: Y — X of cell complexes is called combinatorial if for all k € Z~g, and every k-cell e¥ of Y, f
maps the interior Int(eX) homeomorphically to the interior of a k-cell of X.

Consider a presentation G = <al- | r/>, and the associated presentation complex X.

Definition 1.3.2

A (singular) disc diagram is a compact contractible 2-complex D, with an embedding D — R?. A disc
diagram D is over X if it is equipped with a combinatorial map D — X.

Example 1.3.3

Recall that X is given by a wedge of circles, with discs glued on for each relation. So the 1-cells correspond
to generators, 2-cells go to relations (or cyclic conjugates, or inverses). With this:



e every oriented T-cell of D is labelled with some a; € A,

e so that each 2-cell has boundary which is a cyclic conjugate of some r/iT

Associated to each disc diagram D, we have a boundary cycle, which reads a (cgcluﬂ) word w € A*, which
reduces to an element w’ € ((r;)) < F(A). To see this, D is contractible.

D is a van Kampen diagram for w.
Lecture 4

Lemma 1.3.4 (van Kampen). If w € {(R)), then there exists a van Kampen diagram for w.

Proof. Suppose w € ((R)). Then w can be written as

in F(A), where h; € F(A), and r; € R. Now build a lollipop diagram Dy, which has boundary word wg, which
is equal to w in F(A), but may not be reduced.

If wp is reduced, w = wy, and so we are done. Otherwise, wy contains a cancelling patr, so

vv0=~~-aa_1~~~

for some a € AUA™.
We can see that eq, e; share a vertex. There are two cases to consider:

1. if the origin of ey is the terminus of e,, then the diagram Dy is a wedge Dy VvV D'

Then Dy is a van Kampen diagram for wq, which is the result of cancelling a and ¢~

2. if the origin of eq is distinct from the terminus of e,, then we can fold the edges to get Dy,

Tor a word once we choose a base point.



which has boundary word wq as above.

In either case, wy = dD; is obtained from wy by cancelling a pair. Therefore, we may proceeed by induction,
and after finitely many repetitions, we construct a van Kampen diagram D, such that w, = dD, is reduced,
and w, = w in F(A). Thus, w, = w as words, and so D, is a van Kampen diagram for w. O

Remark 1.3.5. The minimal number of 2-cells in a van Kampen diagram of w is the minimal number of k, such that

w can be written as
k
w = |_| hirE h!
=1

This is called the area of w.

Example 1.3.6
Let G =7’ = (a, b |[a, b]). Consider w = a"b"a="b~". This has van Kampen diagram

o

In this case, Area(D) = n’. We will show D is minimal, and so Area(w) = n°.

Definition 1.3.7
Let P = (A | R) be a finite presentation of a group G. Define

op . N—> N

l— max  Area(w)
we(R).e(w)=d

This is called the Dehn function.

| Remark 1.3.8. The word problem in P if and only if dp is computable.

2 Basics of geometric group theory

2.1 Cayley graphs

A graph is a 1-dimensional cell complex. Throughout, let GG be a group, with finite generating set S C G.



Definition 2.1.1
The Cayley graph Cays(G) is defined as follows:

o vertices V(Cayq(G)) = G,
e edges E(Cays(G)) correspond bijectively with G x S. That is, we have an edge g — gs.

Example 2.1.2
The trivial group given by 1 = (a, b | a, b) has Cayley graph

Example 2.1.3
S3={(r,s|srsr,r?,s%) has Cayley graph

Example 2.1.4
Z = (1) as Cayley graph

Fe e D> e

On the other hand, Z = (2, 3) has Cayley graph



Note that the action of G on itself on the left extends to an action of G on Cays(G), sending an edge
h — hs to gh — ghs. Note the right action does not work, because of our definition of the Cayley graph.

Remark 2.1.5. The action of G on Cayg(G) is free. That is, for all x € Cayg(G), Stabg(x) = 1.

Proposition 2.1.6. Let G = (S| R), and let X be the corresponding presentation complex. Then there
exists a G-equivariant isomorphism of graphs

Cays(G) = Xp)

with the 1-skeleton of the universal cover X of XEl

“and not the other way around.

Lecture 5

Proof. Consider the natural free action of G = 711(X) on X, by deck transformations. The action is by combina-
tortal endomorphisms. In particular, it preserves the 1-skeleton. So we have a free action of G on )~((1), which
sends vertices to vertices and edges to edges.

The action of G on ;((0) is free, and as X has only one vertex, transitive. Therefore, choosing a base vertex
W, the orbit-stabiliser theorem provides a G-equivariant bijection

G — Orb(Vo) = )?(0)

sending g to g - vp. So this matches up the vertices as required.
Next, let us match up the edges. For each s € S, let es be the corresponding edge of X. Let e, be the

unique lift of es to X, beginning at v. By the definition of the action of G on X, es ends at s-vy. Now an
arbitrary edge e of X maps to some es, under the covering map. Since egdes of X correspond to G-orbits
of edges in X, it folloes that & = g - e for some s € S. That is, e is the edge from g - v to gs - v. So it
corresponds to an edge from g to gs.

This shows that the G-equivariant map G — )~((0) extends to a G-equivariant isomorphism of graphs as
claimed. O

The next proposition deepens the relationship between generating sets and path connectedness.

Proposition 2.1.7. Let )~(~be a path connected topological space, and suppose that G acts on X by
homeomorphisms. If U C X is an open subset, such that G - U = X, then the set
S={gelCG|g-UnU+ o}

generates G.

Proof. Fix a base point X € U. Now for g € G, let y : [0,1] — X be a path from X to g - Xo. The set
{y""(h-U) | h € G} is an open cover of [0,1]. So it has a finite subcover, {y~"(Uy), ..., vy~ (U,)}, where
U; = g; - U. We may choose the indices so that

e xo € U,

o v (U) Ny (Uiyq) #+ @ for all i,



o g-’)\(lo e U,.

Note that the g; need not be unique. By definition, xo € UN gy - U, and so g1 € S. Similarly, if t; €
Yy (U) Ny (Uign), then xi = y(t;) € gi - UN gigr - U. Thus,

9. xeUng g U

and so s; = gf1g,v+q € S. Thus, gn = Sp—1 -+ - $251G1, is a finite product of elements of S. Finally, g’1gn es
similarly to the above, so g € (S) as required. O

Example 2.1.8

Let [ C Isom(R?) be the symmetry group of the standard tiling of the plane by equilateral triangles. Let
U be a thickened triangle. Using the proposition, we obtain a finite generating set of I'. In particular, I
is generated by the reflections in the sides of a single triangle.

In particular, this is not a covering space action, as it is not free.

Definition 2.1.9
An action of G on X by homeomorphisms is properly discontinuous if for every compact K C X, the set

{g-KnK}

is finite.
The action is cocompact if there exists K C X compact, such that

G-K=X

X is locally compact if for every neighbourhood U of x, there exists an open neighbourhood V' C U
of x, such that V' C U is compact.

Corollary 2.1.10. If G acts on X properly discontinuously and cocompactly, and X is path connected and
locally compact, then G is finitely generated.

Proof. Let K C X be compact, such that G - K :5(_ By local compactness, we may find an open U such that
K C U, and U is compact. In particular, G - U = X, and the set

S={geCGlg-UnU+2}C{g|lg-UnU+ o}

But the right hand side is finite, so S is finite. By the proposition, S generates G. O

Corollary 2.1.11. If X is compact, locally compact and has a universal cover X, then m(X) s finitely
generated.

Proof. Exercise. Sheet 1 question 10. O

2.2 The Schwarz-Milnor lemma

Cayley graphs are not just combinatorial. They admit a natural metric, called the word metric.

10
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Definition 2.2.1 (word metric)
Let S generate G. Define
Z5(G) =min{n | g = I_ls[ﬂ,s[ e S}
i=1

This defines a metric
ds(g, h) = s(g~"'h)

called the word metric associated to S.

The word metric is invariant under the left G action on itself. That is,
ds(vg, vh) = ds(g, h)
However, it is, in general, not right invariant.

Example 2.2.2
G =7° = {a) ® (b). Then the word metric is just the #-metric.

Remark 2.2.3. The word metric extends naturally to a left invariant metric on Cays(G), in which the interior of each
edge is locally isometric to (0, 1). That is, the path metric.

Lemma 2.2.4. Suppose S, T are finite generating sets for G. Then there exists constants C, C" > 1 such
that .
EdT <ds < Cldr

Proof. Let C = maxses ¢7(s). Then for any g € G,
r(g) < C¥s(q)

by induction.

That is, for finitely generated groups, the word metric is well defined, up to bi-Lipschitz equivalence.

Definition 2.2.5 (quasi-isometry)
A functionf]f : X — Y between metric spaces is a quasi-isometric embedding if there are constants C < 1,
D > 0, such that

1Ed(x,x’) — D < d(f(x), f(x") < Cd(x,x") + D

for all x, x’ € X.
If in addition, there exists a constant K such that for every y € VY, there exists x € X such that

d(f(x), y) < K, then f is called a quasi-isometry, and we write X Ly,

9t does not have to continuous.

Remark 2.2.6. On examples sheet 1, we have that L is an equivalence relation.

Example 2.2.7
Every bounded metric space is quasi-isometric to a point.

i



Definition 2.2.8 (proper)

A metric space X is proper if closed balls in X are compact.

Definition 2.2.9 (geodesic)

A geodesic in X is an isometric embedding y : [a, b] — X. The metric space X is geodesic if every pair
of points is joined by a geodesic.

Theorem 2.2.10 (Schwarz-Milnor). Suppose X is a proper geodesic metric space. Let G acts on X
properly discontinuously and cocompactly by isometries. Then G is finitely generated, and

x L(G, ds)

for any finite generating set S of G.

Proof. Fix a base point xo € X. Let B = B(xp, K) € X be a closed ball, such that G - B = X. By properness
and proper discontinuity, the set
{g € Gl dx, gx)) < 3K}

is finite. Therefore, there exists € > 0, such that
d(x0, g(x0)) < 2K + € < d(x0, g(x0)) < 2K
Moreover, in this case, gB N B + @.

If U= B(xo, K + €/2), then
S={g-UnU+o}={g-BnB+a}

Since B is compact, S is finite, since the action is properly discontinuous. But S is a generating set for G.
Since the word metric for any two finite generating sets are bi-Lipschitz, we may prove the result for the S
above. Consider the map f: G — X, f(g) = g - xo. We claim that this is a quasi-isometry. f is quasi-surjective,
since G - B = X. It remains to prove that f is a quasi-isometric embedding. That is, we want upper and lower
bounds on d(xp, g - x0) in terms of &s(g).
For the upper bound, take C = maxscs d(xo, s - Xo). Then

d(x0, g - x0) < C¥s(g)

for any g € G, using the triangle inequality.
For the lower bound, consider a geodesic y : [0, d(xo, g - Xo)] = X from xo to g - xo. Choose a dissection of
[0, d(x0, g - x0)]
O=tfo <t < - <ty <tyy1 =dx0, g x)

with
€
§§ |t —tir] < €

for 0 < i < n—1. Note we can make it so that |t, — t,11] < &, but we may not have the lower bound.
Since G- B covers X, for 1 < i < n, there exists g; € G such that y(t;) € g;-B. Set go =1 and g1 = g.
Then y(t;) € g; - B for all i. For each i,

d(gi(xo), gir1(x0)) < 2K + €
by the triangle inequality. Therefore, g; 'gi1 € {h-UN U # @} = S. Hence ¢s(g) < n + 1. Furthermore,
|t — tioq| > €2

forall 1 < i< n, so d(xo, g -x) > nel2. Combining these,

2
s(g)<n+1< gd(xo,g-xo)+1

We can rearrange this to get the lower bound. O

12
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Example 2.2.11

Recall the two Cayley graphs of Z, with generating sets {1}, and {2, 3} respectively.

The Schwartz-Milnor says that these are both quasi-isometric to Z with an appropriate word metric.
So they are quasi-isometric. More generally, for any finitely generated group G, the Cayley graphs of
any two finite generating sets are quasi-isometric.

Corollary 2.2.12. If G is finitely generated, H is a subgroup with finite index in G. Then H is finitely
generated, and H is quasi-isometric to G.

Proof. H acts on Cays(G). The action is cocompact as H has finite index. So it satisfies the Schwartz-Milnor

lemma. O

Example 2.2.13

Let ¥, be the closed orientable surface of genus 2, and G = m(X;). Choose a Riemannian metric g on

Y5 of constant curvature —1. _
This pulls back to a Riemannian metric on its universal cover L. By a classical theorem of differential

geometry, L is isometric to the hyperbolic plane H?. Moreover, the action of G on the H? by isometries,
and properly discontinuously. The action is cocompact as the quotient is L, which is compact. So by the
Schwartz-Milnor lemma, 74(X;) is quasi-isometric to H?.

3 Case study - Free groups

Let A= {ay,..., ap}. We will write F,, = F(A,). The Cayley tree is the infinite 2n-valent tree T, = Cay,(Fp).

1
—t1+

In particular, every vertex looks the same. F, acts freely on T,. The quotient X, is the wedge of n circles.

So we recover F, = m(X,), and T, is the universal cover of Xj,.
We can translate our combinatorial arguments about F,, about geometric properties of T,,.

Words

A word w € A* is equivalent to an edge path, which is a map w : [ — X, where [ is an interval.
For example, consider the word w = a’bb~'a~". The edge path is:

13
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An edge path in X, lifts to a unique edge path in T,, based at 1. Conversely, each such path in T, projects
to a path in Xj,.

3

=
T
w( Jr

-T_*<

Reduced words

A word w € A* is reduced if and only if the corresponding edge path w : [ — X, is locally injective. In turn,
this holds if and only if the corresponding edge path w : [ — T, is locally injective. This is because an edge
path can only fail to be locally injective at a vertex.

Clearly, the shortest path in T, from 1 to g € F, is injective. In particular, locally injective. So every
element of F, is represented by a reduced word.

The fact that this representative is unique follows from the next lemma.

Lemma 3.0.1. If T is a tree, and y : [ — T is a locally injective (edge) path, then y is injective.

Proof. Suppose not. Let y : [a,b] — T be the shortest counterexample. In particular, y(a) = y(b), and y is
injective on (a, b). So y descends to an injective map S' — T. But T is a tree. Contradiction. O

Similarly, if g € F, is shortest such that g is represented by distinct reduced words wq, wy, then we get
an embedding S' < T. Hence the reduced word is unique.
For g € F,, write [1, g] for the unique injective edge path from 1 to g.

Cyclically reduced words

So far, implicitly we have chosen base points. Each (nontrivial) word w € A* also defines a (based) edge loop,
by gluing together the end points of the interval. So we have a map S' — X,,. If we forget the base point of
S', then two elements u, v € A* determine the same cyclic word if and only if they represent the same edge
loop S" — X,,.

14



Now a word w € A* is cyclically reduced if and only if the corresponding map S' — X, is locally injective.
From lifting theory, we have a lift w: R — T, as below

T

3

w
Wop

=

X

>

\

S\

For example, if w = ab?. the lift is

In particular, since w is locally injective, w is as well, and so it is injective, by the lemma. The image of w
is called the axis of w.

By the definition of the action of F, on T,, w when thought of as a deck tranformation of T,, preserves its
axis. Note that w translates Axis(w) by ¢(w). This is called the translation length of w, denoted as T(w).

A geometric solution to the conjugacy problem follows from:

Lemma 3.0.2. Let u,v € F, be cyclically reduced. If v and v are conjugate, then there exists g € F,
such that

(z(u) + 7(v))

N| —

(g) <

and u = gvg~".

The conjugacy problem follows, as the lemma tells us that we only need to check u = gvg~' for finitely
many g, and each of these can be checked using the word problem.

Remark 3.0.3. The statement is existence, it does not hold for all choice of g. In particular, C(v) is infinite, as it
contains v& for all k € Z, and the length of gv¥ is unbounded as k — oo.
In fact, the set of conjugators s the double coset (u) g (v).

Proof Suppose u = gvg~', with #(g) minimal. Then

() If u €[1,g], then g = uh for some h, and there is no cancellation. Moreover, u = hvh~", and if h # g,
then ¢(h) < ¢(g). Contradiction.

(i) If v €1, g~ " is strictly between 1 and g as above, then ¢(g) wasn't minimal,

Now consider the convex hull of {1, g, u, gv}.
For this, there are three (non-degenerate) different combinatorial types for the convex hull. The first case is

15
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[ SV
> ~ {i\)ﬁsm
‘ J

By the minimality in (i), ¢(a) > 0. Similarly, £(B) > 0. On this diagram, we have Axis(u) and g - Axis(v) =
Axis(gvg™"). But u = gvg~". Contradiction (we will assume the middle length is non-zero for now).
The second case is

The axes are labelled. But they translate in opposite directions. Contradiction (again, we assume the middle

length is non-zero).
3 gv
3{\%;?@)/

The third case is:
? !

[ :3»/5‘"

If the middle length is A then
T(u) + T(v) = 20(g) + 2A > 20(q)

16



Subgroups of free groups

Proposition 3.0.4. If X is a (connected) graph, then 71 (X) is free.

Proof when X has countably many cells. Let T C X be a maximal tree, and let {ey, e5, ...} be the edges in
X and not T. Let Xy = T U {ey, ..., en}. With this,

X:Um

n>1

Pick a base vertex vy € T. For each e;, let o; be the illustrated loop.

Lecture 10

Note
Xn+1 = Xn U €nt1 = Xn Uy,

n+1

(s'ul
By Seifert-van Kampen,
71 (Xo1) = m(Xp) * (@nia)

Thus, by induction, 71(X,) is free for all n, and generated by o, ..., a,. When X is countably infinite, note
that every (edge) loop y C X is contained in X, for some n. Thus, m1(X) is generated by {a1, a2, ... }.
By the universal property of free groups, we have a surjection

n:Feo={axn,...) = m(X)

Suppose y is a loop representing an element of ker(n). As before, y is contained in X, for some n. So y is in
the kernel of the map
(aq,..., an)y — m(X,) = m(X)

The first map is an isomorphism, so y € ker(m(X,) — m1(X)).
Since X, is a retraclﬂ of X, every loop which is null-homotopic in X, is null-homotopic in X,,. So y =1 in
m(Xs) = {1, .., ) < Foo O

| Corollary 3.0.5. If G acts on a tree T freely, then G is free.

Proof. The action of G on T is a covering space action. Since T is simply connected, X = G\T is a graph,
with universal cover T, and G = m(X) is free. O

| Corollary 3.0.6 (Nielsen-Schreier). Any subgroup of H < f, is free.

Proof. Let T = T, be the Cayley tree of f,. Then F, acts on T freely, and so H acts freely on 7. By the
previous corollary, H is free. O

2ie. the inclusion X, — X has a left inverse r: X — X,

17



| Remark 3.0.7. The choice of generating set comes from the choice of a maximal tree in the proposition.

4 Bass-Serre theory

We will study groups acting on trees, not necessarily freely. We will also see how to glue groups together, or
cut groups into pieces.

4.1 Amalgamated free products

Definition 4.1.1 (pushout)

A commutative diagram of groups
i

B 4

—

T >
~

is a pushout if for any group G, and homomorphisms A — G, B — G, there exists a unique homomorphism
making the diagram
— A
r

T —— O

—_

N
~

O

commute.

In this case, I" is unique up to unique isomorphism, and therefore we may write [ = AIEI B.

Theorem 4.1.2 (Seifert-van Kampen for cell complexes). Suppose K, L C X are subcomplexes, such that
X =K UL Suppose K, L, KN L are all path connected. Then

7 (X) = m(K) M(Em) (L)

Proof omitted. O

Note we use LI as it is a coproduct.

Proposition 4.1.3. Suppose A = (Sa | Ra), B = (Sg | Rg), C = (Z|...). Let (,j be represented by
maps i : L — F(Sa),j: L — F(Sg). Then

AUB = (54, S5 | Ra, Rs, {il0)j(0) " | 0 € T})
Proof Exercise. =

Example 4.1.4
If B is trivial, then



Definition 4.1.5 ((amalgamated) free product)

If the maps i, in the definition of a pushout are injective, then we write [ = Axc B, and call [ the
amalgamated free product of A and B over C.
In particular, if C =1, we write ' = A% B, and we call this the free product of A and B.

Theorem 4.1.6 (Britton's lemma). The vertex group A (or B) injects into G = A *¢ B.

Remark 4.1.7. This is not true for pushouts. For example, Z/2 IZI 7|3 =1.

To prove the theorem, we will construct a graph of spaces X, such that G = m;(X).

diagram

Let X4 be a presentation complex for A, and Xz be a presentation complex for B. As before, let ¥ be a
generating set for C. For each o € L, let a, be a based edge loop in Xy, representing i(c). Similarly, let B,
be a based edge loop in Xz, representing j(g). To build this space:

1. Let X4, X5 be the presentation complexes, with their based points.
2. Add in an edge t from the base point of X4 to the base point of Xp.

3. For each 0 € L, consider the following “rectangular” 2-cell diagram with gluing pattern tB, 't " a,.
Attach these to the diagram.

Call the resulting space X. By construction (and the Seifert-van Kampen theorem), m(X) = G = A lg B.

Proof. Suppose g € A mapsto 1 € G = Axc B. Then g represented by a (based) loop y in X4, which is
null-homotopic in X.

By van Kampen’s Lemmﬂ y bounds a singular disc diagram D — X. Because the edge t appears in each
rectabgle, and nowhere else, the rectangular 2-cells in D are arranged in strips, which we call ¢-corridors.

diagram

Since the boundary word is y, which is contained in X4. Therefore, we can't have any t on the boundary,
so all of the t-corridors are annuli. Look at an inner most disc Dy bounded by a t-corridor.

diagram

Since Dy is contained in a t-corridor, it is contained in X or Xg. Without loss of generality (proof is
symmetric), Dy € X4. Going around the t-corridor, we get a cyclic word 6 in LU ™. In particular, () is the
inner loop, j(0) is the outer loop. But i(0) bounds a disc Dy, and so it is contractible. So i(0) = 1. But i is
injective, so 0 = 1. So j(0) =1 in B.

By van Kampen's lemma, () has a van Kampen diagram Dz — Xp. In particular, this has no t-corridors,
and the same boundary as Dy with its surrounding t-corridor. So we can remove Dy and its surrounding
t-corridor, and replace it with Dg.

diagram

This is now a van Kampen diagram, with one less t-corridor. Iterating, we can remove all of the t-corridors.
But then we obtain a disc diagram A for y with cells in X4 only. So A — X4, andso y =1 in m(Xa) = A O

Example 4.1.8

For a closed orientable surface ¥, we can cut along a curve y to get
m(X) = m(La) *z 71 (L)

What happens if we cut along a non-separating curve?

3Yes this isn't a presentation comple, it still applies.
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4.2 Higman-Neumann-Neumann extensions
Definition 4.2.1 (HNN pushout)
Suppose i, j: H — G are group homomorphisms. The HNN pushout is the quotient

G« (t)
(tiht="j(h) | h € H)

GU =
H

The t is called the stable letter.

That is, we force i(h) and j(h) to be conjugate for all h € H.

Theorem 4.2.2 (Seifert-van Kampen for non-separating decompositions). Suppose Y is a connected cell
complex, and i, j: Z — Y are two inclusion maps, with disjoint image. Define

_r
i(2) ~ j(2)
for the result of gluing Y to itself by identifying i(Z) with j(Z). Then

X=YU=
Z

m(X) =m(Y) U

m(Z)
Proof Deferred. L]
Remark 4.2.3. Suppose G has presentation <01 ,,,,, m, t|rm, ..., roopitgit™, pgtqgt’1>, where the r; do not
involve t. Define A = (ay, ..., am | r, ..., rp), and define maps i, j: F = A by i(xc) = px and j(xy) = g, then

G = Al
Fe

Definition 4.2.4 (HNN extension)

If G = AIEI, and the maps B — A are injective, then G is called an HNN extension, and we write G = AE.

Example 4.2.5
Consider m(T?) = Z? = (a,b | aba™'b7").

diagram

Cut along the non-separating curve a, we get a cylinder.

diagram

The 7 of the cylinder is Z = (a,c = ba’b™" | ac™"). Consider the maps i,/ : Z = (z) — Z, given
by i(z) = a and j(z) = c. The resulting HNN extension has presentation

<a, ot ac™’, tat‘1c_1> = <a, t | tat‘1a‘1> = 72

Example 4.2.6

Now consider ¥, surface of genus 2. Here
gl (Zz) = <(J1 by, as, by | (J1b1(]171b171 02b20271b271>

We can cut along the non-separating curve a1, and the stable letter is b1. So we have an HNN extension.
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Example 4.2.7 (Baumslag-Solitar groups)

Define
BS(m,n) = (a,b| ba"b™"a")

where m, n € Z are not zero. Notice these are HNN extensions of Z over Z, where we conjugate mZ
with nZ.

Theorem 4.2.8 (Britton's lemma for HNN extensions). The vertex group A embeds into A?.

Proof. The same proof as for A x B works. Build a graph of spaces, and apply the method of t-corridors. [

4.2.1 Sample applications of HNN extensions
e there exists an infinite group with exactly two conjugacy classes,

there exists a non-Hopfian finitely presented group. That is, there exists a map f : G — G with ker(f) = 1.
In fact, G = BS(2, 3) works,

e there exists an infinite finitely generated simple group [Higman],
e every countable group embeds into a group with two generators [HNN],

e there exists a group with an unsolvable word problem.

What about cutting surfaces along multi-curves? For example,
diagram

4.3 Graph of groups

For example, with the above decomposition, we have the graph

diagram
Lecture 13

First, we should carefully define directed (or oriented) graphs.

Definition 4.3.1 (oriented graph)

An (oriented) graph I consists of a pair of sets V' = Vi, E = Er. V is the set of vertices, and E is the set
of egdes. We have two maps
=i, T=17:E->V

We call ¢ the origin map, and T the terminus map.
The realisation of I is ||, the 1-dimensional cell complex given by the above data.

Often we will abuse notation and not distinguish between I" and |I].

Example 4.3.2

For example, we have
diagram

Definition 4.3.3
A graph of groups G consists of:

e agraph I,
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e assignments

V' — Groups

vi— G,

and
E — Groups

e Ge

e injective homomorphisms
e Goe = Gy and 7o : Ge — Gre)

Example 4.3.4
Continuing with the example as above,

Gy = m(Xq)
Gy = m(X2)
Gy = m(Z3)

The maps are given by the inclusions of 1(S") < mm(Z4).

Definition 4.3.5
Let G be a graph of groups, with connected underlying graph I'. Let T C " be a spanning tree. The
fundamental group of G with respect to T, m1(G, T) is defined as follows:

( X GV) « F(E)
veV
(Tt olh) 1 |e €E,hEGJ U ta|e € TT)

where F(Er) = (t. | e € E).

Example 4.3.6
diagram
In this case, the spanning tree is e, and

m(G, T) =G, 5 G,

Now if we have

diagram

Then
m(G,T)= Cu&k

Theorem 4.3.7 (Seifert-van Kampen for graphs of groups). Let [" be a graph. For each vertex v € V, e €
E, let X,, Xo be connected cell complexes, and let 1. : Xo — Xyo), Te 1 Xo — Xy be inclusions of
subcomplexes, or equivalently, injective cellular maps. Moreover, assume that the maps induce injections
on .

Let
I_lve V XV

le(X) ~ To(x)
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Setting G, = m(X,), Ge = m(Xe) and so on, defines a graph of groups G. Then
m(X) = m(G, T)

for any spanning tree T.

Proof idea when I is finite. Induct on the number of edges of I, and the two Seifert-van Kampen theorems we
have seen. O

Remark 4.3.8. It follows (for example by taking the spaces to be presentation complexes), that m1(G, T) does not
depend, up to isomorphism, on T. Thus, we will write 711(G).

4.3.1 Quotients

Suppose G acts on a tree T (or any graph). That is, G acts on V7 and on E7, so that

(g-€)=g-ie) and Tt(g-€) =g T(6)
There is a natural quotient graph [ = G\T. In this case,

Vi = G\Vr
Er = G\Ey
ir(G-e)=G-e)
(G -¢e)= G- 1(e)
Furthermore, I is naturally a graph of groups. Let v = Gv € V. Set G, = Stabg(v). This is well defined, up
to conjugation in G. Similarly, if e = G - ¢, then G, = Stabg(e).
Suppose ((e) = v. So G- (é) = Gv. So we may choose ¢, such that () = V. Now G, = Stabg(e) C

Stabg(v) = G,. So the map is the inclusion map, which is injective.
Let t, be the inclusion homomorphism G, — G,.

Remark 4.3.9. (, is well defined, up to conjugation in G,.

Define 7, similarly.

Example 4.3.10

Let Z = (t) act on R, considered as a graph
diagram
and t is translation by 1. The quotient is Z\R = S'. The associated graph of groups is
diagram
So Z is an HNN extension of 1 by itself.

Example 4.3.11

Let Do, = <s, t|s? t2> act on R. The graph is the same as the above. s acts by reflection in 0, and ¢t
acts by reflection in 1. In this case, Do, \R is the graph

diagram

and we have an associated graph of groups

diagram

So Dy = (Z2Z) % (Z]2Z).

Lecture 14

4.4 Bass-Serre tree

The main theorem of the subject is due to Serre, although we adopt a topological approach, due to Scott and
Wall.
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Theorem 4.4.1 (Serre, the fundamental theorem of Bass-Serre theory). Let G be a graph of groups, with
connected underlying graph I". Let G = m1(G). Then G acts on a tree T, such that

GZG\T

T s called the Bass-Serre tree of G.

Remark 4.4.2. Letting G act on a tree T is equivalent to cutting G into pieces. The theorem says that G has a
“universal cover” T, on which G = m(G) acts, and we recover G as the quotient.

Sketch proof. Using presentation complexes, build a “graph of spaces” X' corresponding to G.

diagram

For each e, let X, be a presentation complex for G,. Then build X as follows

diagram

For each “edge space’, take a product with the interval [=1, 1]. We can use the homomorphism of groups to
glue the ends of the cylinder to the appropriate vertex spaces. This is the data for X, and X is the resulting
space.

Let X be the universal cover of X. It looks something like

diagram

The result is a graph of spaces X, where each vertex space X; is the universal cover of some X,, and so
on. The edge space is [—1,1] x X, where X; is the universal cover of X,. Let I be the underlying graph of X.

Now note that X retracts onto I, by crushing all of the edge and vertex spaces to their base points. That is,
we have maps

T X and riX T
such that rot >~ id. So i, : m (F) — m ()~() is injective. But X is a universal cover, so simply connected. Hence

g (F) ts simply connected. But a simply connected graph is a tree, so [ is a tree.
Set T =1T. O

Proposition 4.4.3. Let G act on T with quotient G. Then

(i) there exists a G-equivariant bijection

Vi o U GIG,

veVr
(it) there exists a G-equivariant bijection

Er o U G/Ge

eckr

(it) for any v € V7, mapping to v € Vf, the set of edges of T incident at v is G-equivariantly bijective

with
|| Gle(Ge) U | || GilwelG

e)=v T(e)=v

Proof. For (i), choose orbit representatives v € G - v = v € V. Orbit stabiliser says that the map G — G - v
defines a G-equivariant bijection G/G, — G - V.
For (ii), let G act on the set of edges. For (iii), let Stabg(v) act on the set of incident edges. O

Remark 4.4.4. In particular, T is determined by the algebraic data of G, and so it is unique.
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Example 4.4.5

For
diagram
we have Bass-Serre tree
diagram

Example 4.4.6

For
diagram
we have Bass-Serre tree
diagram

Example 4.4.7
Here, Fo = m(G) = Z i Z, and the graph of groups is
diagram
The Bass-Serre tree is
diagram
which is the tree with countably infinite valence at each vertex.

Example 4.4.8

On the other hand, we have another graph of groups
diagram
with Bass-Serre tree
diagram
with is the usual Cayley tree.

Lecture 15

How do stable letters t, € m1(G) act on 7?7 Choose a maximal tree M in I'. The action of G in T also
depends on a choice of lift M C T, where we Lift by the quotient map T — T

For example, when D, acts on R, the Bass-Serre tree is

diagram

and the lift of a maximal tree is

diagram

The choice of M determine choices of lifts of vertices v € T mapping to v € I'. For each edge e € Er not
contained in M, choose a lift € such that (&) = L(?). The action of t. on T is determined by the fact that:

tet(e) = t(e)

Most importantly, we can understand elements of G = m11(G, M) via reduced words.

Definition 4.4.9 (loop)

Fix a base vertex vy € V. Consider an element

w=goti - guoitigi €

X cv) % F(Er)
veVr

where g; € G, and t; = t,, is the corresponding stable letter. Then w is a (based) loop if:
(i) vo = w, which is also the base vertex we fixed at the start of the definition.

(ii) the path e71---e1is a loop in I based at vy,
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(iii) "if it goes” t;g;, then v; = T(e;). On the other hand, "if it goes” t;'g;, then v; = t(e;).

Recall the relations in 1(G) say that

tote(Ge)t, | = To(Ge)

Definition 4.4.10 (pinch)
A sub-path of a loop is called a pinch if it is of the form:

(1) tete(h)t;! for h € G, or

(ii) £ 7e(h)te for h € Ge.

Remark 4.4.11. Loops should be thought of as defining paths in the Bass-Serre tree.

A pinch corresponds to when the path double backs on itself. A based loop without pinches is called
reduced.

Theorem 4.4.12 (normal form for graphs of groups). Let G be a graph of groups. Then
(i) every element g € m(G) is represented by a based loop v,

(ii) if y is reduced, then g is non-trivial.

Remark 4.4.13 (about the proof). (i) The unique path [V, gW] defines a loop representing g,

(it) reduced loops correspond to locally injective paths in T, which are globally injective. Hence gvy + W.

5 Property FA

Suppose G acts on a tree. A global fixed point p € T for G is a point xo € T such that Stab(xg) = G. We say
G acts trivially on T if there is a global fixed point.

Example 5.0.1

Let Z act on the tree T
diagram
The central point is a global fixed point. The quotient is
diagram

If G acts on some tree non-trivially, then we say that G splits. Otherwise, we say that G has property FA.
Here is a result from examples sheet 2:
Lemma 5.0.2. If ¢ is an isometry of a tree T, then either:

(i) ¢ fixes a point, or

(ii) ¢ translates a line a positive distance.

In (1), ¢ is elliptic, and in (ii), ¢ is hyperbolic.

Remark 5.0.3. If the order of ¢ is finite, then ¢ is elliptic.
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Lemma 5.0.4. Suppose ¢,y € Isom(T) are both elliptic, Fix(¢) N Fix(¢) = @, then ¢ o ¢ is hyperbolic.

Proof. Note that Fix(¢) and Fix(¢) are connected subtrees of T. Let [x, y] be the unique path from Fix(¢) to
Fix(y).

Let /=[x, y]U [~ "x, ¢y~ Ty]. Note ¢y~ "[x, y] is the path from ="' Fix(¢) to Fix(¢)).

diagram

Now note that / N ¢yl = {x}, and so repeating this, we have a line

(g1

nez

which is preserved by ¢ In fact, the line is translated by 2d(x, y). Thus, ¢y is hyperbolic. O

Next, we need a version of the Helly property.

Lemma 5.0.5 (Helly property for trees). Suppose T is a tree, Tq,.. ., T, are subtrees. If ;N T; #+ @ for
every i, j. Then

Nrito
i=1

Proof We induct on n. n = 1,2 are trivial. Let 7/ =T,_.1 N T,.

Claim 5.06. T'NT; @ forall i <n—1.

Once we show the claim, we are done by induction.

Proof of claim. Suppose not.

diagram

Then we get a non-trivial cycle in 7. Contradiction. O
O

Theorem 5.0.7 (criterion for FA). Let G be a group, and suppose S = {s1, ..., sn} is a generating set. If

(i) s; has finite order for all i,
(i) for all i, j, either s;s; or s;s; has finite order.

Then G has property FA.

Proof. Suppose G acts on a tree T. Let T; = Fix(s;). Since s; has finite order, T; is non-empty. Since at least
one of sis;,s;s; has finite order, 7; N T; is non-empty for all {, j. Hence by the Helly property,

N7+
i=1

But this is the set of global fixed points of G. O

Example 5.0.8

Let [ be the group generated by the reflections in the sides of an equilateral triangle, say reflections
re, rm, Iy, Where ro is reflection in the line e.

Sol = {(ro,rm, )< Isom(]Rz). Note that r?, r,%, r,% = 1. Composition of two reflection is a rotation of
order 3. So [ has property FA (but it is infinite).

On sheet 3, Dehn's examples also have property FA. The corresponding 3-manifolds are “non-Haken".
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6 Fuchsian groups

6.1 Hyperbolic geometry

Let H? denote the hyperbolic plane. Recall we have the disc model and the upper half plane model, both
contained in C.

diagram

which have metrics

4)dz|? |dz|?
5 and 5
(1—12[%) |Im(z)]

respectively. The geodesics in H? (with both models) are lines, or arcs of circles which intersect the boundary
orthogonally.
We will write &t = {iy | y > 0} in the upper half plane. In this case, if s > t, then

d(is,it)zjsdgy=tog(j)
t

One more useful fact is a special case of the Gauss-Bonnet theorem.

Proposition 6.1.1 (Gauss-Bonnet for triangles). if A C H? is a geodesic triangle, with interior angles
a, B, y, then
ArealA) = m—(a+ B+ V)

In particular, a + B+ y < 7.

Corollary 6.1.2. If P C H? is a geodesic n-gon, with interior angles a;, then

Area(P) = (n — 2)mr — Z Q

Recall that Isom™ (H?) = PSL(2, R), acting on the upper half plane model by Mébius transformations.

Definition 6.1.3 (Fuchsian group)
If I < PSL(2,R) is a subgroup which acts properly discontinuously on H?, then I is called a Fuchsian
group.

We can also think of them as the discrete subgroups of PSL(2, R). Some basic facts of PSL(2, R):

Proposition 6.1.4. (i) The action of PSL(2, R) on H extends continuously to H’, which is H? U 9HZ.

(it) PSL(2,R) is transitive on triples of distinct points on R U {oo},

(iit) if ¢ € PSL(2, R) and fixes any three distinct points in ﬁz, then ¢ = id.

Corollary 6.1.5 (classification of (orientation preserving) isometries of H?). Suppose ¢ & Isom™ (H?).
Then one of the following holds:

(i) ¢ fixes a point in H?, which is unique unless ¢ = id.
(ii) ¢ fixes a unique point in JH?,

(i) ¢ preserves a unique geodesic in H?, which it translates a positive distance.

28



| In (1), ¢ is elliptic, in (ii), ¢ is parabolic, and in (iii), ¢ is hyperbolic.

| Remark 6.1.6. If [ is a Fuchsian group, ¢ is elliptic, then ¢ must have finite order.

Proof Recall that ¢ : H? — H2 extends continuously to a homeomorphism ¢ : I — H’. By Brouwer's fixed

. , =2 . , , A
point theorem, Fix(¢) C H is non-empty. We saw that if ¢ has at least three fixed points, then ¢ = id, so we
can consider it case by case.

1. Fix(¢) = {¢} CH'.
(a) If & € H? then ¢ is elliptic.
(b) If & € OH?, then ¢ is parabolic.
2. Fix(¢) = {¢". ¢}
(a) If & € H? (without loss of generality), we get a unique geodesic from & to . ¢ preserves the
geodesic [T, &7). But then there is (at least) thre fixed points. So ¢ = id.

(b) If &, & € 9H?, then again we have a uique geodesic from &* to &, and ¢ preserves it. Since ¢
has two fixed points, ¢ must act on the geodesic by a translation by a positive distance.

O

When ¢ is hyperbolic, we call the geodesic it preserves its axis.

6.2 Examples of Fuchsian groups

Recall ' < Isom™(H?) is Fuchsian if the action of [T on H? is properly discontinuous. In particular, for all
x € H?, Stabr(x) is finite.
Lets start with some easy examples.

Example 6.2.1

Consider the disc model. The metric is radially symmetric, and so all rotations about O are isometries. In
particular,

2miln

Z— e V4

is an isometry, generates Z/nZ < Isom(HZ).
In fact, any elliptic isometry is conjugate to this one.

Example 6.2.2

Now consider the upper half plane model. Consider the map z — Az, for any A € R.1. This is an element
of Isom™* (H?). The axis is #*. This gives Z = (¢) < Isom™ (H?).
In fact, any elliptic isometry is conjugate to this one.

Example 6.2.3

Define ¢)(z) = z + 1. This is an isometry of H?. This gives a parabolic isometry, where the fixed point is
oo. This gives Z = (¢)) < Isom™ (H?).
In fact, any parabolic isometry is conjugate to this one.

These examples are called elementary. There's one more elementary example
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Example 6.2.4

Consider upper half plane. Let sy be rotation by s about i, and s, be rotation by m about 2i. Then we
get
(s1,52) = Do

Example 6.2.5

Let ¥, be a closed orientable surface of genus g, with g > 2. In this case, fg is isometric to H?. Then

m1(¥L4) is Fuchsian.

Definition 6.2.6
Let p, g, r € Z>4. The (p, g, r)-triangle group is defined by the presentation

[(p,g.r)={a,b,c|a’ b c" abc)y=/{a,b|a’, bl (ab)™")

From our criterion for FA, ['(p, g, r) has property FA. Thus, it does not split, and so we can't use the
techniques we have developed so far.
Is '(p, g, r) non-trivial? infinite? and so on?

Example 6.2.7
2,31 =1

However, many interesting examples arise from Poincaré's polygon theorem.

Theorem 6.2.8 (Poincaré’s polygon theorem). If p~'+g~"+r~" < 1, then I'(p, q, r) is an infinite Fuchsian
group.

Remark 6.2.9. The converse is morally true. That is, the other cases are all finite or non-Fuchsian.

Proof We start with a geodesic triangle A C H? with interior angles 7/p, 7/q, 7/r.

diagram

Let a denote rotation about u, with angle 2st/p; B about v, with angle 2;7/q and y about w, with angle
25t/r. Note all of these are anticlockwise.

Let G = (a,B,y) < lsom™(H?). Clearly a? = B9 = y" = 1. Next, we show afBy = 1.

diagram

We see that B(w) = a~'(w) = w'. Hence aBy(w) = aB(w) = w. Similarly, y(u) = B~ '(u), and so
aBy(u) = aBB~"(u) = a(u) = u. Hence by the classification of orientation preserving isometries of H?, it fixes
two distinct points in H? and so it is trivial.

Hence we have a surjective homomorphism f : ["(p, g, r) = G, sending a to a and so on. We will show that
f is an isomorphism. Let r, denote reflection in the line ¢, and Q = A U rp(A).

diagram

Define F 0
~ X
Q =

~

where ~ is the relation given by (gc, x) ~ (g, ¢(x)) for x € m, and (gb, y) ~ (g, b(y)) for y € n’. Next, define
the development map
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Note O is a complete geodesic metric space, via the path metric, and F is a local isometry, sending (sufficiently
small) open balls in Q isometrically to small open balls in H?. In fact, F is an isometric embedding.

Indeed, if x, y € O, and [x, y] is a geodesic, then F([x, y]) is a local geodestl Y from F(x) to F(y). But local
geodesics in H? are global geodesics. So d(F(x), F(y)) = d(x, y). Next, we prove that £ is surjective. im(F) is
open, since it sends small open balls to small open balls. On the other hand, Q is complete, and hence so is
im(F). But complete subsets of a metric space are closed, and so im(F) is closed. Thus, by connectedness, F
is an isometry.

So Q is isometric to HZ, and the action of " on Q is properly discontinuous by construction, so " is Fuchsian.
Since Q is compact, and F us surjective, [ must be infinite. O

Remark 6.2.10. It follows from the construction of é that only [ - u,I" - v,[" - w has non-trivial stabiliser. Moreover,
Stab(u) = (a), Stab(v) = (b) and Stab(w) = (c).
O is called a fundamental domain for the action of [T on HZ.

6.3 Centres and Dehn’s examples

Lemma 6.3.1. Suppose 1/p+1/g+1/r < 1. If g € '(p,q, r), and the order of g is finite, then g is in the
conjugate of one of (a), (b),{c).

Proof We saw that finite order elements of H fix a point in H?. If g # 1, then the fixed point z must be in
the orbit of one of u, v, w. Say (without loss of generality) z = hu. So ghu = hu, and so h~'gh € Stab(u) =
(a). O

Proposition 6.3.2. If " is a non-elementary Fuchsian group, then Z(I') = 1.

Proof. Suppose y € Z(I)\ 1. Consider Fix(y) C H’. Note that for g €1,x € Fix(y), gx = gyx = ygx, and
so gx € Fix(y).

Now we need to do some case analysis:

e if y is elliptic, then Fix(y) = {x} C H?. Without loss of generality, x = 0 in the disc model D C C. From
this,
Stabjggy: (12)(0) = {2+ €7}

By proper discontinuity, [ is a subgroup of the above, and so it is a finite cyclic group.

e if y is parabolic, then without loss of generality Fix(y) = {oo} in the upper half plane model. A direct
computation shows that
Stab|50m HZ) {Z — az + b}

For y to be the only fixed point, necessarily a = 1, and so y(z) = z + ¢ for some ¢ € R non-zero. But g
commutes with y only if @ =1, and so

F<{z—z+b|beR}
Any discrete subgroup of R is isomorphic to Z.

e if y is hyperbolic, without loss of generlttg Fix(y) = {0, oo} in the upper half plane model. So I acts by
isometries Axis(y) = ¢*, and so ' = Z or D, bg proper discontinuity.

O

We can now analyse Dehn’s examples. Recall

G, = <X, Y,z | XZ _ yB =z, (Xg)6n+5 _ 25n+4>

e locally it is a geodesic.
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for n > 0. Note that z € Z(G,). Let I, = 67 = <x y | X% y? (xy)®" ) = 1(2,3,6n +5). Therefore, I, is
a Fuchsian triangle group if n > 1, and so Z( ,) = 1. Hence Z(G,) = (z). Therefore, if ¢ : G, — G, is an

isomorphism, then ¢(Z(Gp)) = Z(G,), and so

Gm ~ Gn
Z(Gy)  Z(G))

|7n7 = = rn

But the order of torsion elements in [, are the divisors of 2,3,6n + 5. Hence if [,, =, we must have that
m = n. We have proven:

Theorem 6.3.3 (Dehn). There are infinitely many non-homeomorphic 3-dimensional homology spheres.

7/ Hyperbolic groups

The goal is to define a notion of coarse hyperbolic geometry. This is something which looks like hyperbolic
geometry that is invariant under quasi-isometry.

7.1 Hyperbolic metric spaces

Let X be a geodesic metric space. A geodesic triangle is a triple of geodesics
A =[x ylUly.2]Ulz.x]

For A C X, let
Ns(A) = {y € X | 3x € A d(x,y) < 6} = | ] Bs(x)

XEA

be its (closed) 0-neighbourhood.

Definition 7.1.1

Let 6 > 0. A geodesic triangle A is 0-slim if the 0-neighbourhood of any two sides cover the third side.
So
[x. 4yl € Ns(x, 2] Uy, 2)

and so on.

Definition 7.1.2

X is called 0-hyperbolic if every geodesic triangle A C X' is 0-slim. We also say X is Gromov-hyperbolic,
or hyperbolic.

Example 7.1.3
If diam(X) = 9, then X is 0-hyperbolic.

Example 7.1.4
If X is a tree, then X is O-hyperbolic.

Example 7.1.5 (non-example)
Euclidean space is not Gromov-hyperbolic.
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Example 7.1.6

H? is hyperbolic. To see this, A is d-slim, where ¢ is the radius of the largest semicircle which we can
inscribe in A.
Let A(r) be the area of a circle of radius r in H?. But now

%A(é) < Area(p) < 7

Since A(8) — 00 as & — oo, we see that H? is d-hyperbolic for sufficiently large 9.

7.2 The Mostow-Morse lemma

The goal is to prove that Gromov-hyperbolicity is a quasi-isometry invariant.
Lecture 20

Definition 7.2.1 (quasigeodesic)
A path y :[a, b] = X is a (A, €)-quasigeodesic if y is a (A, €)-quasi isometric embedding. That s,

1
;|5 —t|—e<dy(s), y(t) <Als—tl+ ¢

Definition 7.2.2 (Hausdoff distance)
Let A, B C X be nonempty subsets of a metric space X. Let

Nc(A) = | ) Bela) = {x € X | 3a € A, d(x, a) < ¢}

acA

The Hausdorff distance is

dhiaus(A, B) = inf{c > 0| AC N.(B) and B C N,(A)}

Definition 7.2.3 (length)
Let y :[a, b] = X be a path. The length of y is

where D ranges over all dissections

Lemma 7.2.4. For any A > 1,& > 0, there are X' > 1,& > 1, such that for any geodesic metric
space X, and any (A, €)-quasigeodesic « : [a,b] — X, there exists a continuous (A, €’)-quasigeodesic
a' :]a, b] — X, such that

(it) dyaus(im(a),im(a’)) < A+ ¢,

(i) €(a'|is,0) < Ad(d'(s), &'(t) + & foralla <s <t < b

Proof. Let | = {a, b} U(a, b) N Z. Define o’ by setting a'(t) = a(t) for all ¢t € I, and then interpolating using
a (reparametrised) geodesic between points of /.
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Continuity is clear, and so is (i). (ii) is easy. The fact that o’ is a quasi-geodesic and (iii) follow from easy,
but tedious calculations. O

Lemma 7.2.5. Let X be a 0-hyperbolic metric space. Suppose B : [a, b] — X is a geodesic, a : [a, b] = X
is a continuous path, with a(a) = B(a), a(b) = B(b). Then

d(B(t), im(a)) < 0[log,(¢(a))] + 1

Proof Let
N = log,(¢(a))]

The proof proceeds by induction on N. If N < 0 then ¢(a) < 1 and we are done.
Consider the geodesic triangle with vertices

ala), a(b), a( ¢ er b)

Since X is 0-hyperbolic, B(t) has distance at most 0 from one of the other edges of the triangle. Call the
corresponding half of a ¢/, and the geodesic B’. Now

¢
) = " Jiogy(eta)] = N1

and we have a point B'(t) such that d(B(t), B'(t')) < d. By inductive hypothesis,

d(B(t), im(a)) < d(B(t), im(a"))
< d(B(t), B(t) + d(B'(t') im(c'))
<O+ oN—=1)+1
=oN+1
as required. O

We are now ready for the main result of this section:

Theorem 7.2.6 (Mostow-Morse lemma). Let X be a (geodesic) d-hyperbolic space. Let a :[a’, b'] — X
be a (A, €)-quasigeodesic, and B : [a, b] — X a geodesic, with

Bla) = a(da’) and B(b) = a(b')
Then there exists a constant C = C(A, €, 0), such that

dpaus(im(a), im(B)) < C

Proof. We may replace a by the result of lemma [/Z:4] In particular, a is continuous, and
Oasy) <Als—tl+e
for a < s <t <b. We need to bound
Cy = inf{C | im(B) C Ne(im(a))} and G = inf{C | im(a) C N¢(im(B))}
We'll first bound Cy. For this, we'll need to bound

d(B(t), im(a)) = inf d(B(t), a(t)

t'€la,b]

Let C = sup d(B(t), im(a)). Since [@’, b'] is compact, it is realised at some B(t). Let
t€la,b]

r=max{a,t—2C} and s=min{b, t+ 2C}
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Define the path y by going from B(r) to the closest point a(r’) on @, following a until the closest point a(s’) to
B(s), and then going to B(s). Then

0(y) < 2C + 0(alr.s)
<2C+ Ada(r), a(s)) + €
<bAC+2C+ ¢

On the other hand, the lemma above shows that
C < o[log,(é(y))] + 1

Thus,
C < 0|log,(6AC +2C + €)] + 1

Since the left hand side is linear, and the right hand side is logarithmic in C, there is an upper bound on C,
which only depends on 9, A and «.

Next, we need to bound G, i.e. we need to bound d(a(t),im(B)). Let [s/, '] C [¢’, b’] be maximal such that
alis ry lies outside of Ne(im(B)). Here, C is the constant from above. By continuity, there exists t € [a, b, and
seld, s, relr, b]such that

d(B(t). a(s)). d(B(t). a(r)) < C

as the interval is connected. Thus, d(a(r), a(s)) < 2C. Hence
Olalis ) < 8(alsn) < Ad(als), alr)) + e < 2AC + €

Hence every point on a is at most 2CA + C + € from im(B). O

Corollary 7.2.7. Let X, Y be geodesic metric spaces. If X is d-hyperbolic, and X is quasi-isometric to Y,
then Y is 0’-hyperbolic for some ¢’

Proof. Let f : X — Y, g : Y — X be (A, €)-quasi-isometries, such that
d(f(g(y).y) < e and d(g(f(x)).x) < e

Consider a geodesic triangle
Y1, 42l Uly2, g3 Ulys g € Y
Consider y € [y1, y2] By the Mostow-Morse lemma, there exists x € [g(y1), g(y2)] such that

dix, g(y)) < C

Since X is d-hyperbolic, there exists (without loss of generality) X" € [g(y2), g(y3)] such that d(x, x’) < d. By
the Mostow-Morse lemma again, there exists ¢y € [y, y3] such that

d(x' gly') < €
In summary,
d(g(y). 9(y) <2C+9
and so
d(f(g(y). 1(g(y) < ARC+0) + €
and thus
dly,y') < A2C +90) + 3e
The right hand side is a function of d, A and € only. O

Example 7.2.8
Let G = 7m4(X2). This has presentation

(a1, b1, az, by | a1, bi]az, ba))

By the Schwarz-Milnor lemma, Cay(G) > H?, which is Gromov hyperbolic, and so Cay(G) is Gromov
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hyperbolic.

7.3 Hyperbolic groups
Using the previous corollary, the following properties of a group G are all equivalent.
1. G has a finite generating set S, such that Cay(G, S) is Gromov hyperbolic.
2. G is finitely generated, and for any finite generating set S, Cay(G, S) is Gromov hyperbolic.

3. G acts properly discontinuously and cocompactly by isometries on some proper geodesic Gromov hyper-
bolic metric space X.

4. Every proper geodesic metric space X on which G acts properly discontinuously and compactly is Gromov
hyperbolic.

Definition 7.3.1
G is (word) hyperbolic if any of the above hold.

Lecture 22

Example 7.3.2
If G is finite, then Cayg(G) is bounded, and so hyperbolic.

Example 7.3.3

If G = Fp, then the standard generating set gives Cays(G) which is a tree. Recall that trees are
0-hyperbolic.

Example 7.3.4
If Z? was hyperbolic, then R? would be Gromov hyperbolic, which it is not.

Example 7.3.5

For g > 2, let L be the closed oriented surface of genus g. Let Gri(Ly). Then G acts on H properly
discontinuously, cocompactly by isometries. Thus, G is hyperbolic.

Remark 7.3.6. Sometimes authors say a group acts on a space geometrically if it acts properly discontinuously and
cocompactly by isometries.

Example 7.3.7

711(M) is hyperbolic if M is any closed Riemannian manifold with negative sectional curvature.

Example 7.3.8
SLL(Z) = Z/4 Z>o72 Z[6. The Bass-Serre tree is an infinite 3-valent tree T, and SL,(Z) acts geometrically

on T, so SLy(Z) is hyperbolic.

36



Example 7.3.9 (random finitely presented groups)
If

is “chosen at random”, then G is infinite and hyperbolic.

7.4 Local geodesics

Our goal is to solve the word problem in hyperbolic groups. The key ingredient is a “local to global" statement,
about geodesics in hyperbolic metric spaces.

Definition 7.4.1
A path y in a metric space X is a c-local geodesic if d(y(s), y(t)) = |s — t| whenever |s — t| < c.

Lemma 7.4.2. Let X be a d-hyperbolic metric space. If a : [a, b] — X is a 100-local geodesic, then
im(a) € Nas(la(a), a(b))

for any geodesic [a(a), a(b)].

Proof. Let
C = sup d(a(t),[a(a), a(b)]
tela,b]
Say it is realised at ty € [a, b]. Let r = max{a, to — 50}, s = min{b, ty + 50}.

Let x, y, z € [a(a), a(b)] be the closest points to a(r), a(s), a(to) respectively. Then d(x, a(r)), d(y, a(r)) < C,
and d(a(ty), z) = C. Consider the quadrilateral with vertices a(r), a(s), x, y.

Note we can subdivide it into two triangles. and so any point p on a(|r, s]) is within distance 20 of one of
the other three sides. Apply this to p = a(ty). Suppose there is a point w € [a(r), x], such that d(a(t), w) < 20.
But then

d(a(r), w) > d(a(r), a(ty)) — d(a(ts), w) > 50 — 20 = 30

In this case,
d(a(tp), x) < 20 + d(w, x)
< 30 +d(w, x)
< d(a(r), x)
<C
But this contradicts d(a(ty), [a(a), a(b)]) = C. Therefore, a(ty) is not within 20 of [a(r), x]. By symmetry, it is
not within 20 of [a(s), y] Thus, it is within 20 of [x, y] With this, C < 20. O

Remark 7.4.3. This is a coarse analogue of the fact that local geodesics in trees are global geodesics.

A consequence of this is key to solving the word problem in hyperbolic groups.

Lemma 7.4.4 (shortcuts in hyperbolic spaces). Let X be d-hyperbolic. Any loop «a :[a, b] = X such that
f(a) > 40 contains a < s < t < b, such that

d(a(s), a(t)) < €(als,g) < 100 (*)

Proof. Unless (%) is satisfied, then a is a 100-local geodesic. By the previous lemma,
im(a) € Nas(la(a), a(b)]) = Bas(ala))
Since a is a 100 local geodesic, and diam(Bas(a(a))) < 40, it follows that £(a) < 40. O
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7.5 Dehn’s algorithm

We will solve the word problem for all hyperbolic groups, using an algorithm that Dehn exhibited for hyperbolic
surface groups, in 1912,

Theorem 7.5.1 (relations in hyperbolic groups). Let G be a hyperbolic group, and S a finite generating
set. For every non-trivial edge loop a in Cayg(G), there is an edge loop y of length at most 204, such
that

¢(apyB™") < #(a)

for some choice of path B from 1 to a point on y.

Proof If ¢(a) < 200, then we can take y = a~'. Then ay is homotopic to the constant loop, and so ¢(ay) =
0 < ().
Otherwise, from the previous lemma, let

B = (O(|[t,b])71
v = (ali) " - [als), aft)]

Then ¢(y) < 208, and aByB~" is homotopic to
a|[a.S] : [0((5), a(t” : C1"[t,b]

which has length less than ¢(a). O

Corollary 7.5.2 (Gromov). Hyperbolic groups are finitely presented.

Proof. Let S be a finite generating set for a hyperbolic group G. Consider Cays(G). This is d-hyperbolic for
some 0. Let
R = {edge loops in Cays(G) based at 1 with length at most 200}

This is a finite set, with size at most (2|S])?°° say. We claim that (S | R) is a presentation for G. To see this,

by the theorem, and induction on length, every relation is a product of conjugates of elements of R. O

Corollary 7.5.3 (Dehn, Gromov). Let G be a hyperbolic group. The word problem in G is solvable.

Proof. Consider the presentation G = (S | R), constructed in the previous corollary. Let w € F(S). The
theorem tells us that if w represents the trivial element in G, then there is a cyclic conjugate w’ of w, and
r € R, such that £(w'r) < £(w). To see this, let @ = w and let W’ = B~ "aB, r = y. Since w has finitely many
cyclic conjugates, and R is finite, we have finitely many combinations of (w/, r) to check. If we fine one such
combination, then we replace w with w’r and repeat.

On the other hand, if we cannot find (w’, r), then it must be the case that w did not represent a loop.

Since ¢(w'r) < €(w), this process has to terminate, either showing that w is not a loop, or when w'r is the
trivial element. O

Remark 7.5.4. A presentation in the corollary is called a Dehn presentation. That is, a presentation (S | R), such
that for any non-trivial word w, with w = 1 in G, there exists h € G, r*' € R such that

e(whrh™") < o(w)

It turns out a group G has a Dehn presentation if and only if G is hyperbolic.

38

Lecture 24



8 *Outlook, further topics, open problems”

Random groups

Fix a generating set S = {ay, .. ., ap}. Fix n > 1, choose a subset

For any property P of groups, we can look at
P(G € P)
which depends on m, n, €. We say that a random group has property P if
PG e P)—1

as ¢ — oo.

Theorem 8.0.1 (Gromov, Ol'shanski). For m > 2, a random group is infinite and hyperbolic.

Subgroups

One of the most important open problems concern subgroups of hyperbolic groups.

Conjecture 8.0.2 (surface subgroup). Unless G is virtually? free, if G is word hyperbolic, then there exists
a surface X4 of genus g > 2, such that m(X,) < G.

“has a finite index subgroup which is
This has been proven in a special case by Kahn-Markovich, when G = 7 (M?) for M a compact 3-manifold.

Representations and residual finiteness

A group G is linear if it is a subgroup of GL(n, C) for some n. That is, it has a faithful representation over C.

Theorem 8.0.3 (M. Kapovich). There is a hyperbolic group which is not linear.

But a weaker property is also important.

Definition 8.0.4

A group G is residually finite if for any g € G non-trivial, there exists a homomorphism f : G — O finite,
such that f(g) + 1.

All finitely generated linear groups are residually finite. Then it is an open question whether every
hyperbolic group is residually finite. Recent progress includes

Theorem 8.0.5 (Olivier-Wise, Agol). Random groups are residually finite. In fact, they are linear.

Boundaries

Recall that 0H? = S".
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Definition 8.0.6
Let X be a proper hyperbolic metric space. A geodesic ray is an isometric embedding y : [0,00) — X.
We say that y1 ~ y; if there exists C > 0 such that

divi(t), va(t)) < C

for all t.
The Gromov boundary of X is defined to be

{geodesic rays in X}

O X =

~

Remark 8.0.7. d.,X admits a natural boundary, so that d.,X and X U d,,X are compact.

A quasi-isometry f : X — Y induces a homeomorphism do, X — 0 Y. Thus, for a hyperbolic group G, we

may define
0ooG = 0o Cays(Q)

Example 8.0.8
If G is a cocompact Fuchsian group (e.g. 1(Ly) and triangle groups), then G is quasi-isometric to H?,
and so 0,,G = 0H? = ST,

Theorem 8.0.9. If G is hyperbolic and 0,,G = S', then G is virtually Fuchsian.

Conjecture 8.0.10 (Cannon). If G is hyperbolic, and do,G = S?, then G is virtually (M) for M a
3-manifold.

Non-positive curvature

Definition 8.0.11
Suppose X is a geodesic metric space. Each geodesic triangle in X has a well defined (up to isometry)
comparison triangle A C R". That is, it is a triangle with the same side lengths as A. Let f : A — A be

the natural map. B
X is CAT(0) if d(x, y) > d(f(x), f(y)) for all x,y € A.

One question: Does every hyperbolic group act geometrically on a CAT(0) space?
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