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1 Combinatorial group theory
Combinatorial group theory is a sibling field to Geometric group theory. Both study infinite discrete groups.

∗Based on lectures by Henry Wilton. Last updated March 13, 2024.
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1.1 Free groups and presentationsLet A = {a1, a2, . . . } be an alphabet. A group F is free on A if1. There is a map of sets A → F ,2. for any group G , and a map of sets A → G , there exists a unique group homomorphism F → G such that
F

A Gcommutes.This is a universal property. As usual, this means that F is unique up to unique isomorphism. This shows that
F is determined by A, so we may write F = F (A).However (as usual with definitions by universal property), we don’t know if F (A) exists. We’ll show thistwo different ways.

1. Topologically: Let
X = ∨

a∈A
S1

By the Seifert-van Kempen theorem,
π1(X ) ∼= F (A)

2. Combinatorially: Let
A∗ = {words in A ⊔ A−1}where A−1 = {a−11 , . . . , a−1

n }. For example,1 = ∅, aa, aa−1, aba−1b−1, a100ba−100b, . . .A word is reducible if it contains aa−1 or a−1a as a subword for any a ∈ A. Otherwise, it is reduced. We cannow define
F (A) = {w ∈ A∗ reduced}The group operation is concatenation, followed by reduction. For example,(abab−1)(b2a) = abab−1b2a = ababaNote that reduction terminates as each reduction step reduces the length. We won’t check that this is welldefined or associative. The identity element is 1, inverses is clear.A presentation consists of an alphabet A, which we will call generators, and a set R ⊆ F (A), which we willcall relations, and we write

⟨A | R⟩ = ⟨a1, a2, · · · | r1, r2, . . .⟩This presents a group
G = F (A)

⟨⟨R⟩⟩where ⟨⟨R⟩⟩ is the normal closure of R , i.e. the smallest normal subgroup of F (A) containing R .
Example 1.1.1Some examples of presentations which we have seen:

⟨a | an⟩ ∼= Z/nZ〈
r, s | rn, s2, srsr〉 ∼= D2n

⟨A |⟩ ∼= F (A)〈
a, b | aba−1b−1〉 ∼= Z2〈

a1, . . . , ag, b1, . . . , bg | a1b1a−11 b−11 · · ·agbga−1
g b−1

g
〉 ∼= π1(Σg)

where Σg is the compact orientable surface of genus g.
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As we see, presentations arise when we write down fundamental groups of spaces. In fact, all groups arise thisway.
Corollary 1.1.2 (of Seifert-van Kampen). For

G = ⟨a1, a2, · · · | r1, r2, . . .⟩
there exists a space X with π1(X ) = G .

Proof. First, start of with a wedge of circles, one for each ai. Also consider a disjoint union of discs, one foreach ri. Attach the i-cell along its boundary, which is a loop in the wedge of circles.This is called the presentation complex of G . For example, if we have Z2 = 〈
a, b | aba−1b−1〉, then X = T2is the 2-torus.In 1911, Max Dehn posed the following problems.1. (Word problem) Given w ∈ A∗, determine whether or not w = 1 in G = ⟨A | R⟩. That is, whether or not

w ∈ ⟨⟨R⟩⟩ ⊆ F (A).2. (Conjugacy problem) Given G = ⟨A | R⟩, u, v ∈ A∗, determine whether or not u is conjugate to v in G .3. (Isomorphism problem) Given G = ⟨A | R⟩ , H = ⟨B | S⟩, determine whether or not G is isomorphic to H . Lecture 2
Remark 1.1.3. The conjugacy problem is stronger than the word problem, since w = 1 if and only if w is conjugateto 1.Dehn was motivated by topology, but the problems asks for algorithms. We will often solve them using geometry.All three were unsolved in the 1950s, as all three problems are algorithmically undecidable. Nevertheless, positivesolutions are known for many reasonable classes of groups.
Let A = {a1, . . . , an} be a finite alphabet.

Example 1.1.4 (word problem in free groups)Let w ∈ A∗. If w is reduced, then w = 1 if and only if w = ∅. Otherwise, w contains a subword
aa−1 for some a ∈ A ∪ A−1. Cancelling aa−1 produces a word w ′ ∈ A∗, such that w = w ′ in F (A), and
ℓ(w ′) = ℓ(w) − 2 < ℓ(w). This terminates after finitely many steps.
We can also solve the conjugacy problem for free groups.

Definition 1.1.5There is a natural action of Z on A∗ permuting words. That is,
1 · a1 · · ·ak = a2a3 · · ·aka1

The elements of Z ·w are called the cyclic conjugates of w . Note that all u ∈ Zw are conjugate to w . Theorbits Z\A∗ are called cyclic words. A word is cyclically reduced if every cyclic conjugate is reduced.
Example 1.1.6
aba−1 is reduced, but not cyclically reduced as ba−1a is not reduced.
Note that if w is reduced, but not cyclically reduced, then

w = aw ′a−1
for some a ∈ A ∪ A−1. Note that w ′ is both conjugate to w and shorter than w . Hence after finitely manyiterations, we can assume that w is cyclically reduced.
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Lemma 1.1.7 (conjugacy problem in free groups). If u, v ∈ F (A) are cyclically reduced, then u is conjugateto v if and only if the corresponding cyclic words are the same.
Proof. If u, v have the same cyclic words, then v is a cyclic conjugate of u, which we have seen is a conjugateof u.Conversely, suppose u = gvg−1. By induction on ℓ(g), we can assume g = a ∈ A ∪ A−1. From this itfollows that either v = a−1v ′, or v = v ′a, as v is cyclically reduced. That is, u = v ′a−1 or u = av ′. In bothcases, they are cyclic conjugates.
1.2 Historical case studyLet’s briefly think about the state of topology in the early 20th century. Poincaré knew that homology classifiesthe compact two-dimensional surfaces. This motivated the

Conjecture 1.2.1 (Poincaré conjecture, version 1). Let M be a compact connected 3-manifold, with
H∗(M) = {

Z ∗ = 0, 30 otherwise
Then M is homeomorphic to S3.
Such a 3-manifold M is called a homology sphere.

Theorem 1.2.2 (Poincaré, 1904). There exists a three dimensional homology sphere P , with
π1(P) ↠ A5

The moral is that: homology is not enough, we need use π1 as well.
Conjecture 1.2.3 (Poincaré conjecture, version 2). Let M be a compact connected 3-manifold, with π1(M) =1. Then M is homeomorphic to S3.
This was proven by Perelman in 2003. Returning to the original conjecture, in 1910 Dehn wanted toconstruct more homology spheres.

Theorem 1.2.4 (Dehn, 1910). There are infinitely many non-homeomorphic 3-dimensional homologyspheres.
Remark 1.2.5. The isomorphism problem is exactly what is needed to distinguish these manifolds.

Lecture 3Here is Dehn’s construction. Consider the trefoil knot K ⊆ R3 ⊆ S3. Let N(K ) be a regular openneighbourhood of K , i.e. a thickening of K . Let N = S3 \ N(K ). This is a compact 3-manifold with boundart
∂N ∼= T2.Computing,

H∗(N) = {
Z ∗ = 0, 10 otherwiseand

π1(N) ∼= 〈
x, y, z | x2 = y3 = z

〉
This follows from the fact that K is a torus knot, and we can compute the π1 of the complement of a torus knot.Note that the abelianisation map

π1(N) → H1(N) ∼= Z
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sends z to 6, x to 3 and y to 2. Moreover, the boundary torus T has π1(T ) = Z2, generated by xy and z .Under the abelianisation map, xy is sent to 5.We can glue a solid torus D2×S1 to N , by a homeomorphism on the boundary. Let λ, µ be the correspondingloops on T2. The resulting manifold Mφ = N ∪φ T is closed. π1(Mφ) depends on g = φ∗(µ). By Seifert-vanKapmen,
π1(Mφ) = π1(N)

⟨⟨g⟩⟩Similarly, H1(Mφ) = Z
⟨[g] ∈ H1(N)⟩To produce a homology sphere, we need to choose φ such that g = φ∗(µ) = 1 in H1(N).If g = (xy)azb, then in H1(N) this is mapped to 5a+ 6b ∈ Z. Choose a = 6n+ 5, and b = −(5n+ 4) for

n ∈ Z. He constructs φn such that
φn(µ) = gn = (xy)6n+5z−(5n+4)

His family of manifolds
Dn = N ∪φn Uhas

π1(Dn) = 〈
x, y, z | x2 = y2 = z, (xy)6n+5 = z5n+4〉

The remaining challenge is to prove the groups Gn = π1(Dn) for n ≥ 0 are pairwise non-isomorphic.This is the isomorphism problem! In particular,
gn = gm =⇒ gn and gm are conjugate =⇒ Gn ∼= Gm

So we also need to solve the word and conjugacy problem in π1(N).
1.3 van Kampen diagrams

Definition 1.3.1A map f : Y → X of cell complexes is called combinatorial if for all k ∈ Z≥0, and every k-cell ek of Y , fmaps the interior Int(ek ) homeomorphically to the interior of a k-cell of X .
Consider a presentation G = 〈

ai | rj
〉, and the associated presentation complex X .

Definition 1.3.2A (singular) disc diagram is a compact contractible 2-complex D, with an embedding D ↪→ R2. A discdiagram D is over X if it is equipped with a combinatorial map D → X .

Example 1.3.3

Recall that X is given by a wedge of circles, with discs glued on for each relation. So the 1-cells correspondto generators, 2-cells go to relations (or cyclic conjugates, or inverses). With this:
5



• every oriented 1-cell of D is labelled with some ai ∈ A,• so that each 2-cell has boundary which is a cyclic conjugate of some r±1
j .

Associated to each disc diagram D, we have a boundary cycle, which reads a (cyclic1) word w ∈ A∗, whichreduces to an element w ′ ∈
〈〈
rj

〉〉
≤ F (A). To see this, D is contractible.

D is a van Kampen diagram for w . Lecture 4
Lemma 1.3.4 (van Kampen). If w ∈ ⟨⟨R⟩⟩, then there exists a van Kampen diagram for w .

Proof. Suppose w ∈ ⟨⟨R⟩⟩. Then w can be written as
w = k∏

i=1 hir
±1
i hi

in F (A), where hi ∈ F (A), and ri ∈ R . Now build a lollipop diagram D0, which has boundary word w0, whichis equal to w in F (A), but may not be reduced.

If w0 is reduced, w = w0, and so we are done. Otherwise, w0 contains a cancelling pair, so
w0 = · · ·aa−1 · · ·

for some a ∈ A ∪ A−1.We can see that e1, e2 share a vertex. There are two cases to consider:1. if the origin of e1 is the terminus of e2, then the diagram D0 is a wedge D1 ∨ D′.

Then D1 is a van Kampen diagram for w1, which is the result of cancelling a and a−1.2. if the origin of e1 is distinct from the terminus of e2, then we can fold the edges to get D1,
1or a word once we choose a base point.
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which has boundary word w1 as above.In either case, w1 = ∂D1 is obtained from w0 by cancelling a pair. Therefore, we may proceeed by induction,and after finitely many repetitions, we construct a van Kampen diagram Dn such that wn = ∂Dn is reduced,and wn = w in F (A). Thus, wn = w as words, and so Dn is a van Kampen diagram for w .
Remark 1.3.5. The minimal number of 2-cells in a van Kampen diagram of w is the minimal number of k , such that
w can be written as

w = k∏
i=1 hir

±1
i h−1

i

This is called the area of w .
Example 1.3.6Let G = Z2 = ⟨a, b | [a, b]⟩. Consider w = anbna−nb−n. This has van Kampen diagram

In this case, Area(D) = n2. We will show D is minimal, and so Area(w) = n2.
Definition 1.3.7Let P = ⟨A | R⟩ be a finite presentation of a group G . Define

δP : N → N
ℓ 7→ max

w∈⟨⟨R⟩⟩,ℓ(w)=dArea(w)
This is called the Dehn function.

Remark 1.3.8. The word problem in P if and only if δP is computable.
2 Basics of geometric group theory
2.1 Cayley graphsA graph is a 1-dimensional cell complex. Throughout, let G be a group, with finite generating set S ⊆ G .
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Definition 2.1.1The Cayley graph CayS (G) is defined as follows:• vertices V (CayS (G)) = G ,• edges E (CayS (G)) correspond bijectively with G × S . That is, we have an edge g → gs.
Example 2.1.2The trivial group given by 1 = ⟨a, b | a, b⟩ has Cayley graph

Example 2.1.3
S3 = 〈

r, s | srsr, r3, s2〉 has Cayley graph

Example 2.1.4
Z = ⟨1⟩ as Cayley graph

On the other hand, Z = ⟨2, 3⟩ has Cayley graph
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Note that the action of G on itself on the left extends to an action of G on CayS (G), sending an edge
h → hs to gh → ghs. Note the right action does not work, because of our definition of the Cayley graph.

Remark 2.1.5. The action of G on CayS (G) is free. That is, for all x ∈ CayS (G), StabG (x) = 1.
Proposition 2.1.6. Let G = ⟨S | R⟩, and let X be the corresponding presentation complex. Then thereexists a G-equivariant isomorphism of graphs

CayS (G) ∼= X̃(1)
with the 1-skeleton of the universal cover X̃ of X a.

aand not the other way around.
Lecture 5

Proof. Consider the natural free action of G = π1(X ) on X̃ , by deck transformations. The action is by combina-torial endomorphisms. In particular, it preserves the 1-skeleton. So we have a free action of G on X̃(1), whichsends vertices to vertices and edges to edges.The action of G on X̃(0) is free, and as X has only one vertex, transitive. Therefore, choosing a base vertex
ṽ0, the orbit-stabiliser theorem provides a G-equivariant bijection

G → Orb(ṽ0) = X̃(0)sending g to g · ṽ0. So this matches up the vertices as required.Next, let us match up the edges. For each s ∈ S , let es be the corresponding edge of X . Let ẽs be theunique lift of es to X̃ , beginning at ṽ0. By the definition of the action of G on X̃ , es ends at s · ṽ0. Now anarbitrary edge ẽ of X̃ maps to some es, under the covering map. Since egdes of X correspond to G-orbitsof edges in X̃ , it folloes that ẽ = g · ẽs for some s ∈ S . That is, ẽ is the edge from g · ṽ0 to gs · ṽ0. So itcorresponds to an edge from g to gs.This shows that the G-equivariant map G → X̃(0) extends to a G-equivariant isomorphism of graphs asclaimed.The next proposition deepens the relationship between generating sets and path connectedness.
Proposition 2.1.7. Let X̃ be a path connected topological space, and suppose that G acts on X̃ byhomeomorphisms. If U ⊆ X̃ is an open subset, such that G · U = X̃ , then the set

S = {g ∈ G | g · U ∩ U ̸= ∅}

generates G .
Proof. Fix a base point x̃0 ∈ U . Now for g ∈ G , let γ : [0, 1] → X̃ be a path from x̃0 to g · x̃0. The set
{γ−1(h · U) | h ∈ G} is an open cover of [0, 1]. So it has a finite subcover, {γ−1(U1), . . . , γ−1(Un)}, where
Ui = gi · U . We may choose the indices so that• x̃0 ∈ U1,• γ−1(Ui) ∩ γ−1(Ui+1) ̸= ∅ for all i,

9



• g · x̃0 ∈ Un.Note that the gi need not be unique. By definition, x0 ∈ U ∩ g1 · U , and so g1 ∈ S . Similarly, if ti ∈
γ−1(Ui) ∩ γ−1(Ui+1), then xi = γ(ti) ∈ gi · U ∩ gi+1 · U . Thus,

g−1
i · xi ∈ U ∩ g−1

i gi+1 · U

and so si = g−1
i gi+1 ∈ S . Thus, gn = sn−1 · · · s2s1g1, is a finite product of elements of S . Finally, g−1gn ∈ Ssimilarly to the above, so g ∈ ⟨S⟩ as required.

Example 2.1.8Let Γ ⊆ Isom(R2) be the symmetry group of the standard tiling of the plane by equilateral triangles. Let
U be a thickened triangle. Using the proposition, we obtain a finite generating set of Γ. In particular, Γis generated by the reflections in the sides of a single triangle.In particular, this is not a covering space action, as it is not free.
Definition 2.1.9An action of G on X̃ by homeomorphisms is properly discontinuous if for every compact K ⊆ X̃ , the set

{g · K ∩ K}

is finite.The action is cocompact if there exists K ⊆ X̃ compact, such that
G · K = X̃

X̃ is locally compact if for every neighbourhood U of x , there exists an open neighbourhood V ⊆ Uof x , such that Ṽ ⊆ U is compact.
Corollary 2.1.10. If G acts on X̃ properly discontinuously and cocompactly, and X̃ is path connected andlocally compact, then G is finitely generated.

Lecture 6
Proof. Let K ⊆ X̃ be compact, such that G · K = X̃ . By local compactness, we may find an open U such that
K ⊆ U , and U is compact. In particular, G · U = X̃ , and the set

S = {g ∈ G | g · U ∩ U ̸= ∅} ⊆ {g | g · U ∩ U ̸= ∅}

But the right hand side is finite, so S is finite. By the proposition, S generates G .
Corollary 2.1.11. If X is compact, locally compact and has a universal cover X̃ , then π1(X ) is finitelygenerated.

Proof. Exercise. Sheet 1 question 10.
2.2 The Schwarz-Milnor lemmaCayley graphs are not just combinatorial. They admit a natural metric, called the word metric.
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Definition 2.2.1 (word metric)Let S generate G . Define
ℓS (G) = min{n | g = n∏

i=1 s
±1
i , si ∈ S}

This defines a metric
dS (g, h) = ℓS (g−1h)called the word metric associated to S .

The word metric is invariant under the left G action on itself. That is,
dS (γg, γh) = dS (g, h)

However, it is, in general, not right invariant.
Example 2.2.2
G = Z2 = ⟨a⟩ ⊕ ⟨b⟩. Then the word metric is just the ℓ1-metric.
Remark 2.2.3. The word metric extends naturally to a left invariant metric on CayS (G), in which the interior of eachedge is locally isometric to (0, 1). That is, the path metric.
Lemma 2.2.4. Suppose S, T are finite generating sets for G . Then there exists constants C, C ” ≥ 1 suchthat 1

C dT ≤ dS ≤ C ′dT

Proof. Let C = maxs∈S ℓT (s). Then for any g ∈ G ,
ℓT (g) ≤ CℓS (g)

by induction.That is, for finitely generated groups, the word metric is well defined, up to bi-Lipschitz equivalence.
Definition 2.2.5 (quasi-isometry)A functiona f : X → Y between metric spaces is a quasi-isometric embedding if there are constants C ≤ 1,
D ≥ 0, such that 1

C d(x, x ′) − D ≤ d(f (x), f (x ′)) ≤ Cd(x, x ′) + D

for all x, x ′ ∈ X .If in addition, there exists a constant K such that for every y ∈ Y , there exists x ∈ X such thatd(f (x), y) ≤ K , then f is called a quasi-isometry, and we write X qi∼ Y .
aIt does not have to continuous.

Remark 2.2.6. On examples sheet 1, we have that qi∼ is an equivalence relation.
Example 2.2.7Every bounded metric space is quasi-isometric to a point.
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Definition 2.2.8 (proper)A metric space X is proper if closed balls in X are compact.
Definition 2.2.9 (geodesic)A geodesic in X is an isometric embedding γ : [a, b] → X . The metric space X is geodesic if every pairof points is joined by a geodesic.
Theorem 2.2.10 (Schwarz-Milnor). Suppose X is a proper geodesic metric space. Let G acts on Xproperly discontinuously and cocompactly by isometries. Then G is finitely generated, and

X qi∼ (G, dS )
for any finite generating set S of G .

Proof. Fix a base point x0 ∈ X . Let B = B(x0, K ) ⊆ X be a closed ball, such that G · B = X . By propernessand proper discontinuity, the set
{g ∈ G | d(x0, g(x0)) ≤ 3K}is finite. Therefore, there exists ε > 0, such that

d(x0, g(x0)) < 2K + ε ⇐⇒ d(x0, g(x0)) ≤ 2KMoreover, in this case, gB ∩ B ̸= ∅. Lecture 7If U = B(x0, K + ε/2), then
S = {g · U ∩ U ̸= ∅} = {g · B ∩ B ̸= ∅}Since B is compact, S is finite, since the action is properly discontinuous. But S is a generating set for G .Since the word metric for any two finite generating sets are bi-Lipschitz, we may prove the result for the Sabove. Consider the map f : G → X , f (g) = g · x0. We claim that this is a quasi-isometry. f is quasi-surjective,since G · B = X . It remains to prove that f is a quasi-isometric embedding. That is, we want upper and lowerbounds on d(x0, g · x0) in terms of ℓS (g).For the upper bound, take C = maxs∈S d(x0, s · x0). Then

d(x0, g · x0) ≤ CℓS (g)for any g ∈ G , using the triangle inequality.For the lower bound, consider a geodesic γ : [0, d(x0, g · x0)] → X from x0 to g · x0. Choose a dissection of[0, d(x0, g · x0)] 0 = t0 < t1 < · · · < tn < tn+1 = d(x0, g · x0)with ε2 ≤ |ti − ti+1| < εfor 0 ≤ i ≤ n− 1. Note we can make it so that |tn − tn+1| < ε, but we may not have the lower bound.Since G ·B covers X , for 1 ≤ i ≤ n, there exists gi ∈ G such that γ(ti) ∈ gi ·B. Set g0 = 1 and gn+1 = g.Then γ(ti) ∈ gi · B for all i. For each i,
d(gi(x0), gi+1(x0)) < 2K + εby the triangle inequality. Therefore, g−1

i gi+1 ∈ {h · U ∩ U ̸= ∅} = S . Hence ℓS (g) ≤ n+ 1. Furthermore,
|ti − ti−1| ≥ ε/2for all 1 ≤ i ≤ n, so d(x0, g · x0) ≥ nε/2. Combining these,

ℓS (g) ≤ n+ 1 ≤ 2
εd(x0, g · x0) + 1

We can rearrange this to get the lower bound.
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Example 2.2.11Recall the two Cayley graphs of Z, with generating sets {1}, and {2, 3} respectively.The Schwartz-Milnor says that these are both quasi-isometric to Z with an appropriate word metric.So they are quasi-isometric. More generally, for any finitely generated group G , the Cayley graphs ofany two finite generating sets are quasi-isometric.
Corollary 2.2.12. If G is finitely generated, H is a subgroup with finite index in G . Then H is finitelygenerated, and H is quasi-isometric to G .

Proof. H acts on CayS (G). The action is cocompact as H has finite index. So it satisfies the Schwartz-Milnorlemma.
Example 2.2.13Let Σ2 be the closed orientable surface of genus 2, and G = π1(Σ2). Choose a Riemannian metric g onΣ2 of constant curvature −1.This pulls back to a Riemannian metric on its universal cover Σ̃2. By a classical theorem of differentialgeometry, Σ̃2 is isometric to the hyperbolic plane H2. Moreover, the action of G on the H2 by isometries,and properly discontinuously. The action is cocompact as the quotient is Σ2, which is compact. So by theSchwartz-Milnor lemma, π1(Σ2) is quasi-isometric to H2.

3 Case study - Free groups
Let A = {a1, . . . , an}. We will write Fn = F (An). The Cayley tree is the infinite 2n-valent tree Tn = CayA(Fn).

Lecture 8In particular, every vertex looks the same. Fn acts freely on Tn. The quotient Xn is the wedge of n circles.So we recover Fn = π1(Xn), and Tn is the universal cover of Xn.We can translate our combinatorial arguments about Fn, about geometric properties of Tn.
WordsA word w ∈ A∗ is equivalent to an edge path, which is a map w : I → Xn, where I is an interval.For example, consider the word w = a2bb−1a−1. The edge path is:
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An edge path in Xn lifts to a unique edge path in Tn, based at 1. Conversely, each such path in Tn projectsto a path in Xn.

Reduced wordsA word w ∈ A∗ is reduced if and only if the corresponding edge path w : I → Xn is locally injective. In turn,this holds if and only if the corresponding edge path w : I → Tn is locally injective. This is because an edgepath can only fail to be locally injective at a vertex.Clearly, the shortest path in Tn from 1 to g ∈ Fn is injective. In particular, locally injective. So everyelement of Fn is represented by a reduced word.The fact that this representative is unique follows from the next lemma.
Lemma 3.0.1. If T is a tree, and γ : I → T is a locally injective (edge) path, then γ is injective.

Proof. Suppose not. Let γ : [a, b] → T be the shortest counterexample. In particular, γ(a) = γ(b), and γ isinjective on (a, b). So γ descends to an injective map S1 → T . But T is a tree. Contradiction.Similarly, if g ∈ Fn is shortest such that g is represented by distinct reduced words w1, w2, then we getan embedding S1 ↪→ T . Hence the reduced word is unique.For g ∈ Fn, write [1, g] for the unique injective edge path from 1 to g.
Cyclically reduced wordsSo far, implicitly we have chosen base points. Each (nontrivial) word w ∈ A∗ also defines a (based) edge loop,by gluing together the end points of the interval. So we have a map S1 → Xn. If we forget the base point of
S1, then two elements u, v ∈ A∗ determine the same cyclic word if and only if they represent the same edgeloop S1 → Xn.

14



Now a word w ∈ A∗ is cyclically reduced if and only if the corresponding map S1 → Xn is locally injective.From lifting theory, we have a lift w̃ : R → Tn as below
Tn

R Xn

S1
p

w

w◦p

w̃

For example, if w = ab2. the lift is

In particular, since w is locally injective, w̃ is as well, and so it is injective, by the lemma. The image of w̃is called the axis of w .By the definition of the action of Fn on Tn, w when thought of as a deck tranformation of Tn, preserves itsaxis. Note that w translates Axis(w) by ℓ(w). This is called the translation length of w , denoted as τ(w). Lecture 9A geometric solution to the conjugacy problem follows from:
Lemma 3.0.2. Let u, v ∈ Fn be cyclically reduced. If u and v are conjugate, then there exists g ∈ Fn,such that

ℓ(g) ≤ 12 (τ(u) + τ(v ))
and u = gvg−1.
The conjugacy problem follows, as the lemma tells us that we only need to check u = gvg−1 for finitelymany g, and each of these can be checked using the word problem.

Remark 3.0.3. The statement is existence, it does not hold for all choice of g. In particular, C (v ) is infinite, as itcontains v k for all k ∈ Z, and the length of gv k is unbounded as k → ∞.In fact, the set of conjugators is the double coset ⟨u⟩g ⟨v⟩.
Proof. Suppose u = gvg−1, with ℓ(g) minimal. Then(i) If u ∈ [1, g], then g = uh for some h, and there is no cancellation. Moreover, u = hvh−1, and if h ̸= g,then ℓ(h) < ℓ(g). Contradiction.(ii) If v ∈ [1, g−1] is strictly between 1 and g as above, then ℓ(g) wasn’t minimal.Now consider the convex hull of {1, g, u, gv}.For this, there are three (non-degenerate) different combinatorial types for the convex hull. The first case is
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By the minimality in (i), ℓ(α) > 0. Similarly, ℓ(β) > 0. On this diagram, we have Axis(u) and g · Axis(v ) =Axis(gvg−1). But u = gvg−1. Contradiction (we will assume the middle length is non-zero for now).The second case is

The axes are labelled. But they translate in opposite directions. Contradiction (again, we assume the middlelength is non-zero).The third case is:

If the middle length is λ, then
τ(u) + τ(v ) = 2ℓ(g) + 2λ ≥ 2ℓ(g)

16



Subgroups of free groups

Proposition 3.0.4. If X is a (connected) graph, then π1(X ) is free.
Proof when X has countably many cells. Let T ⊆ X be a maximal tree, and let {e1, e2, . . . } be the edges in
X and not T . Let XN = T ∪ {e1, . . . , eN}. With this,

X = ⋃
n≥1XnPick a base vertex v0 ∈ T . For each ei, let αi be the illustrated loop.

Lecture 10Note
Xn+1 = Xn ∪ en+1 = Xn ∪Yn+1 (S1 ∪ I)By Seifert-van Kampen,

π1(Xn+1) = π1(Xn) ∗ ⟨αn+1⟩Thus, by induction, π1(Xn) is free for all n, and generated by α1, . . . , αn. When X is countably infinite, notethat every (edge) loop γ ⊆ X is contained in Xn for some n. Thus, π1(X ) is generated by {α1, α2, . . . }.By the universal property of free groups, we have a surjection
η : F∞ = ⟨α1, . . .⟩ → π1(X )

Suppose γ is a loop representing an element of ker(η). As before, γ is contained in Xn for some n. So γ is inthe kernel of the map
⟨α1, . . . , αn⟩ → π1(Xn) → π1(X )The first map is an isomorphism, so γ ∈ ker(π1(Xn) → π1(X )).Since Xn is a retract2 of X , every loop which is null-homotopic in X , is null-homotopic in Xn. So γ = 1 in

π1(Xn) = ⟨α1, . . . , αn⟩ ≤ F∞.
Corollary 3.0.5. If G acts on a tree T freely, then G is free.

Proof. The action of G on T is a covering space action. Since T is simply connected, X = G\T is a graph,with universal cover T , and G = π1(X ) is free.
Corollary 3.0.6 (Nielsen-Schreier). Any subgroup of H ≤ Fn is free.

Proof. Let T = Tn be the Cayley tree of Fn. Then Fn acts on T freely, and so H acts freely on T . By theprevious corollary, H is free.
2i.e. the inclusion Xn → X has a left inverse r : X → Xn
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Remark 3.0.7. The choice of generating set comes from the choice of a maximal tree in the proposition.
4 Bass-Serre theory
We will study groups acting on trees, not necessarily freely. We will also see how to glue groups together, orcut groups into pieces.
4.1 Amalgamated free products

Definition 4.1.1 (pushout)A commutative diagram of groups
C A

B Γ
i

j k

ℓis a pushout if for any group G , and homomorphisms A → G,B → G , there exists a unique homomorphismmaking the diagram
C A

B Γ
Gcommute.

In this case, Γ is unique up to unique isomorphism, and therefore we may write Γ = A ⨿
C
B.

Theorem 4.1.2 (Seifert-van Kampen for cell complexes). Suppose K, L ⊆ X are subcomplexes, such that
X = K ∪ L. Suppose K, L, K ∩ L are all path connected. Then

π1(X ) = π1(K ) ⨿
π1(K∩L) π1(L)

Proof omitted.Note we use ⨿ as it is a coproduct.
Proposition 4.1.3. Suppose A = ⟨SA | RA⟩ , B = ⟨SB | RB⟩, C = ⟨Σ | . . .⟩. Let i, j be represented bymaps î : Σ → F (SA), ĵ : Σ → F (SB). Then

A ⨿
C
B = 〈

SA, SB
∣∣ RA, RB, {̂i(σ )̂j(σ )−1 | σ ∈ Σ}

〉
Proof. Exercise.

Example 4.1.4If B is trivial, then
A ⨿

C
1 = A/ ⟨⟨i(C )⟩⟩
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Definition 4.1.5 ((amalgamated) free product)If the maps i, j in the definition of a pushout are injective, then we write Γ = A ∗C B, and call Γ the
amalgamated free product of A and B over C .In particular, if C = 1, we write Γ = A ∗ B, and we call this the free product of A and B.
Theorem 4.1.6 (Britton’s lemma). The vertex group A (or B) injects into G = A ∗C B.
Remark 4.1.7. This is not true for pushouts. For example, Z/2 ⨿

Z
Z/3 = 1.

Lecture 11To prove the theorem, we will construct a graph of spaces X , such that G = π1(X ).
diagramLet XA be a presentation complex for A, and XB be a presentation complex for B. As before, let Σ be agenerating set for C . For each σ ∈ Σ, let ασ be a based edge loop in XA , representing i(σ ). Similarly, let βσbe a based edge loop in XB , representing j(σ ). To build this space:
1. Let XA, XB be the presentation complexes, with their based points.2. Add in an edge t from the base point of XA to the base point of XB .3. For each σ ∈ Σ, consider the following “rectangular” 2-cell diagram with gluing pattern tβ−1

σ t−1ασ .Attach these to the diagram.
Call the resulting space X . By construction (and the Seifert-van Kampen theorem), π1(X ) = G = A ⨿

C
B.

Proof. Suppose g ∈ A mapsto 1 ∈ G = A ∗C B. Then g represented by a (based) loop γ in XA , which isnull-homotopic in X .By van Kampen’s lemma3, γ bounds a singular disc diagram D → X . Because the edge t appears in eachrectabgle, and nowhere else, the rectangular 2-cells in D are arranged in strips, which we call t-corridors.
diagramSince the boundary word is γ , which is contained in XA . Therefore, we can’t have any t on the boundary,so all of the t-corridors are annuli. Look at an inner most disc D0 bounded by a t-corridor.
diagramSince D0 is contained in a t-corridor, it is contained in XA or XB . Without loss of generality (proof issymmetric), D0 ⊆ XA . Going around the t-corridor, we get a cyclic word δ in Σ ∪ Σ−1. In particular, i(δ) is theinner loop, j(δ) is the outer loop. But i(δ) bounds a disc D0, and so it is contractible. So i(δ) = 1. But i isinjective, so δ = 1. So j(δ) = 1 in B.By van Kampen’s lemma, j(δ) has a van Kampen diagram DB → XB . In particular, this has no t-corridors,and the same boundary as D0 with its surrounding t-corridor. So we can remove D0 and its surrounding

t-corridor, and replace it with DB .
diagramThis is now a van Kampen diagram, with one less t-corridor. Iterating, we can remove all of the t-corridors.But then we obtain a disc diagram ∆ for γ with cells in XA only. So ∆ → XA , and so γ = 1 in π1(XA) = A.

Example 4.1.8For a closed orientable surface Σ, we can cut along a curve γ to get
π1(Σ) = π1(ΣA) ∗Z π1(ΣB)

What happens if we cut along a non-separating curve?
Lecture 12

3Yes this isn’t a presentation complex, it still applies.
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4.2 Higman-Neumann-Neumann extensions

Definition 4.2.1 (HNN pushout)Suppose i, j : H → G are group homomorphisms. The HNN pushout is the quotient
G⨿
H

= G ∗ ⟨t⟩
⟨⟨ti(h)t−1j(h) | h ∈ H⟩⟩

The t is called the stable letter.
That is, we force i(h) and j(h) to be conjugate for all h ∈ H .

Theorem 4.2.2 (Seifert-van Kampen for non-separating decompositions). Suppose Y is a connected cellcomplex, and i, j : Z ↪→ Y are two inclusion maps, with disjoint image. Define
X = Y∪

Z
= Y
i(z) ∼ j(z)

for the result of gluing Y to itself by identifying i(Z ) with j(Z ). Then
π1(X ) ∼= π1(Y ) ⨿

π1(Z )
Proof. Deferred.

Remark 4.2.3. Suppose G has presentation 〈
a1, . . . , am, t | r1, . . . , rn, p1tq1t−1, . . . , pℓ tqℓ t−1〉, where the ri do notinvolve t . Define A = ⟨a1, . . . , am | r1, . . . , rn⟩, and define maps i, j : Fℓ → A by i(xk ) = pk and j(xk ) = qk , then

G = A⨿
Fℓ

Definition 4.2.4 (HNN extension)If G = A⨿
B

, and the maps B → A are injective, then G is called an HNN extension, and we write G = A∗
B
.

Example 4.2.5Consider π1(T2) = Z2 = 〈
a, b | aba−1b−1〉.

diagramCut along the non-separating curve a, we get a cylinder.
diagramThe π1 of the cylinder is Z = 〈

a, c = ba′b−1 | ac−1〉. Consider the maps i, j : Z = ⟨z⟩ → Z, givenby i(z) = a and j(z) = c. The resulting HNN extension has presentation〈
a, c, t | ac−1, tat−1c−1〉 ∼= 〈

a, t | tat−1a−1〉 ∼= Z2

Example 4.2.6Now consider Σ2, surface of genus 2. Here
π1(Σ2) = 〈

a1, b1, a2, b2 | a1b1a−11 b−11 a2b2a−12 b−12 〉
We can cut along the non-separating curve a1, and the stable letter is b1. So we have an HNN extension.
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Example 4.2.7 (Baumslag-Solitar groups)Define BS(m, n) = 〈
a, b | bamb−1an〉where m, n ∈ Z are not zero. Notice these are HNN extensions of Z over Z, where we conjugate mZwith nZ.

Theorem 4.2.8 (Britton’s lemma for HNN extensions). The vertex group A embeds into A∗
C
.

Proof. The same proof as for A ∗
C
B works. Build a graph of spaces, and apply the method of t-corridors.

4.2.1 Sample applications of HNN extensions• there exists an infinite group with exactly two conjugacy classes,• there exists a non-Hopfian finitely presented group. That is, there exists a map f : G ↠ G with ker(f ) ̸= 1.In fact, G = BS(2, 3) works,• there exists an infinite finitely generated simple group [Higman],• every countable group embeds into a group with two generators [HNN],• there exists a group with an unsolvable word problem.
What about cutting surfaces along multi-curves? For example,
diagram

4.3 Graph of groupsFor example, with the above decomposition, we have the graph
diagram Lecture 13First, we should carefully define directed (or oriented) graphs.

Definition 4.3.1 (oriented graph)An (oriented) graph Γ consists of a pair of sets V = VΓ, E = EΓ. V is the set of vertices, and E is the setof egdes. We have two maps
ι = ιΓ, τ = τΓ : E → VWe call ι the origin map, and τ the terminus map.The realisation of Γ is |Γ|, the 1-dimensional cell complex given by the above data.

Often we will abuse notation and not distinguish between Γ and |Γ|.
Example 4.3.2For example, we have

diagram

Definition 4.3.3A graph of groups G consists of:• a graph Γ,
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• assignments
V → Groups
v 7→ Gv

and
E → Groups
e 7→ Ge

• injective homomorphisms
ιe : Ge → Gι(e) and τe : Ge → Gτ(e)

Example 4.3.4Continuing with the example as above,
Gu = π1(Σ1)
Gv = π1(Σ2)
Gw = π1(Σ3)

The maps are given by the inclusions of π1(S1) ↪→ π1(Σ1).
Definition 4.3.5Let G be a graph of groups, with connected underlying graph Γ. Let T ⊆ Γ be a spanning tree. The
fundamental group of G with respect to T , π1(G, T ) is defined as follows:(∗

v∈V
Gv

)
∗ F (EΓ)

⟨⟨{teιe(h)t−1
e τe(h)−1 | e ∈ E, h ∈ Ge} ∪ {te | e ∈ T}⟩⟩

where F (EΓ) = ⟨te | e ∈ E⟩.
Example 4.3.6
diagramIn this case, the spanning tree is e, and

π1(G, T ) = Gu ∗
Ge
Gv

Now if we have
diagramThen

π1(G, T ) = Gu ∗
Ge

Theorem 4.3.7 (Seifert-van Kampen for graphs of groups). Let Γ be a graph. For each vertex v ∈ V , e ∈
E , let Xv , Xe be connected cell complexes, and let ιe : Xe → Xι(e), τe : Xe → Xτ(e) be inclusions ofsubcomplexes, or equivalently, injective cellular maps. Moreover, assume that the maps induce injectionson π1.Let

X = ⊔
v∈V Xv

ιe(x) ∼ τe(x)
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Setting Gv = π1(Xv ), Ge = π1(Xe) and so on, defines a graph of groups G. Then
π1(X ) ∼= π1(G, T )

for any spanning tree T .
Proof idea when Γ is finite. Induct on the number of edges of Γ, and the two Seifert-van Kampen theorems wehave seen.

Remark 4.3.8. It follows (for example by taking the spaces to be presentation complexes), that π1(G, T ) does notdepend, up to isomorphism, on T . Thus, we will write π1(G).
4.3.1 QuotientsSuppose G acts on a tree T (or any graph). That is, G acts on VT and on ET , so that

ι(g · ẽ) = g · ι(ẽ) and τ(g · ẽ) = g · τ(ẽ)
There is a natural quotient graph Γ = G\T . In this case,

VΓ = G\VT
EΓ = G\ET

ιΓ(G · ẽ) = G · ι(ẽ)
τΓ(G · ẽ) = G · τ(ẽ)

Furthermore, Γ is naturally a graph of groups. Let v = Gṽ ∈ VΓ. Set Gv = StabG (ṽ ). This is well defined, upto conjugation in G . Similarly, if e = G · ẽ, then Ge = StabG (ẽ).Suppose ι(e) = v . So G · ι(ẽ) = Gṽ . So we may choose ẽ, such that ι(ẽ) = ṽ . Now Ge = StabG (ẽ) ⊆StabG (ṽ ) = Gv . So the map is the inclusion map, which is injective.Let ιe be the inclusion homomorphism Ge → Gv .
Remark 4.3.9. ιe is well defined, up to conjugation in Gv .
Define τe similarly.

Example 4.3.10Let Z = ⟨t⟩ act on R, considered as a graph
diagramand t is translation by 1. The quotient is Z\R = S1. The associated graph of groups is
diagramSo Z is an HNN extension of 1 by itself.

Example 4.3.11Let D∞ = 〈
s, t | s2, t2〉 act on R. The graph is the same as the above. s acts by reflection in 0, and tacts by reflection in 1. In this case, D∞\R is the graph

diagramand we have an associated graph of groups
diagramSo D∞ = (Z/2Z) ∗ (Z/2Z).

Lecture 14
4.4 Bass-Serre treeThe main theorem of the subject is due to Serre, although we adopt a topological approach, due to Scott andWall.
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Theorem 4.4.1 (Serre, the fundamental theorem of Bass-Serre theory). Let G be a graph of groups, withconnected underlying graph Γ. Let G = π1(G). Then G acts on a tree T , such that
G ∼= G\T

T is called the Bass-Serre tree of G.
Remark 4.4.2. Letting G act on a tree T is equivalent to cutting G into pieces. The theorem says that G has a“universal cover” T , on which G = π1(G) acts, and we recover G as the quotient.

Sketch proof. Using presentation complexes, build a “graph of spaces” X corresponding to G.
diagramFor each •, let X• be a presentation complex for G•. Then build X as follows
diagramFor each “edge space”, take a product with the interval [−1, 1]. We can use the homomorphism of groups toglue the ends of the cylinder to the appropriate vertex spaces. This is the data for X , and X is the resultingspace.Let X̃ be the universal cover of X . It looks something like
diagramThe result is a graph of spaces X̃ , where each vertex space X̃ṽ is the universal cover of some Xv , and soon. The edge space is [−1, 1] × X̃ẽ, where X̃ẽ is the universal cover of Xe. Let Γ̃ be the underlying graph of X̃ .Now note that X̃ retracts onto Γ̃, by crushing all of the edge and vertex spaces to their base points. That is,we have maps

ι : Γ̃ ↪→ X̃ and r : X̃ → Γ̃such that r ◦ ι ≃ id. So ι∗ : π1(Γ̃) → π1(X̃ ) is injective. But X̃ is a universal cover, so simply connected. Hence
π1(Γ̃) is simply connected. But a simply connected graph is a tree, so Γ̃ is a tree.Set T = Γ̃.

Proposition 4.4.3. Let G act on T with quotient G. Then(i) there exists a G-equivariant bijection
VT ↔

⊔
v∈VΓ

G/Gv

(ii) there exists a G-equivariant bijection
ET ↔

⊔
e∈EΓ

G/Ge

(iii) for any ṽ ∈ VT , mapping to v ∈ VΓ, the set of edges of T incident at ṽ is G-equivariantly bijectivewith  ⊔
ι(e)=v Gv /ιe(Ge)

 ⊔

 ⊔
τ(e)=v Gv /τe(Ge)


Proof. For (i), choose orbit representatives ṽ ∈ G · ṽ = v ∈ VΓ. Orbit stabiliser says that the map G → G · ṽdefines a G-equivariant bijection G/Gv → G · ṽ .For (ii), let G act on the set of edges. For (iii), let StabG (ṽ ) act on the set of incident edges.

Remark 4.4.4. In particular, T is determined by the algebraic data of G, and so it is unique.
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Example 4.4.5For
diagramwe have Bass-Serre tree
diagram

Example 4.4.6For
diagramwe have Bass-Serre tree
diagram

Example 4.4.7Here, F2 = π1(G) = Z ∗1 Z, and the graph of groups is
diagramThe Bass-Serre tree is
diagramwhich is the tree with countably infinite valence at each vertex.

Example 4.4.8On the other hand, we have another graph of groups
diagramwith Bass-Serre tree
diagramwith is the usual Cayley tree.

Lecture 15How do stable letters te ∈ π1(G) act on T ? Choose a maximal tree M in Γ. The action of G in T alsodepends on a choice of lift M̃ ⊆ T , where we lift by the quotient map T → Γ.For example, when D∞ acts on R, the Bass-Serre tree is
diagramand the lift of a maximal tree is
diagramThe choice of M̃ determine choices of lifts of vertices ṽ ∈ T mapping to v ∈ Γ. For each edge e ∈ EΓ notcontained in M , choose a lift ẽ such that ι(ẽ) = ι̃(e). The action of te on T is determined by the fact that:

teτ̃(e) = τ(ẽ)
Most importantly, we can understand elements of G = π1(G,M) via reduced words.

Definition 4.4.9 (loop)Fix a base vertex v0 ∈ VΓ. Consider an element
w = g0t±11 · · ·gk=1t±1

k gk ∈
(∗
v∈VΓ Gv

)
∗ F (EΓ)

where gi ∈ Gvi , and ti = tei is the corresponding stable letter. Then w is a (based) loop if:(i) v0 = vk , which is also the base vertex we fixed at the start of the definition.(ii) the path e±1 1 · · · e±
k 1 is a loop in Γ based at v0,
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(iii) “if it goes” tigi, then vi = τ(ei). On the other hand, “if it goes” t−1
i gi, then vi = ι(ei).

Recall the relations in π1(G) say that
teιe(Ge)t−1

e = τe(Ge)
Definition 4.4.10 (pinch)A sub-path of a loop is called a pinch if it is of the form:(i) teιe(h)t−1

e for h ∈ Ge, or(ii) t−1
e τe(h)te for h ∈ Ge.

Remark 4.4.11. Loops should be thought of as defining paths in the Bass-Serre tree.
A pinch corresponds to when the path double backs on itself. A based loop without pinches is called

reduced.
Theorem 4.4.12 (normal form for graphs of groups). Let G be a graph of groups. Then(i) every element g ∈ π1(G) is represented by a based loop γ ,(ii) if γ is reduced, then g is non-trivial.
Remark 4.4.13 (about the proof). (i) The unique path [̃v0, gṽ0] defines a loop representing g,(ii) reduced loops correspond to locally injective paths in T , which are globally injective. Hence gṽ0 ̸= ṽ0 .

5 Property FA
Suppose G acts on a tree. A global fixed point p ∈ T for G is a point x0 ∈ T such that Stab(x0) = G . We say
G acts trivially on T if there is a global fixed point.

Example 5.0.1Let Z act on the tree T
diagramThe central point is a global fixed point. The quotient is
diagram

If G acts on some tree non-trivially, then we say that G splits. Otherwise, we say that G has property FA.Here is a result from examples sheet 2:
Lemma 5.0.2. If φ is an isometry of a tree T , then either:(i) φ fixes a point, or(ii) φ translates a line a positive distance.In (i), φ is elliptic, and in (ii), φ is hyperbolic.
Remark 5.0.3. If the order of φ is finite, then φ is elliptic.
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Lemma 5.0.4. Suppose φ, ψ ∈ Isom(T ) are both elliptic, Fix(φ) ∩ Fix(ψ) = ∅, then φ ◦ ψ is hyperbolic.
Proof. Note that Fix(φ) and Fix(ψ) are connected subtrees of T . Let [x, y] be the unique path from Fix(φ) toFix(ψ).Let I = [x, y] ∪ [ψ−1x, ψ−1y]. Note ψ−1[x, y] is the path from ψ−1 Fix(φ) to Fix(ψ).

diagramNow note that I ∩ φψI = {x}, and so repeating this, we have a line⋃
n∈Z

(φψ)nI
which is preserved by φψ . In fact, the line is translated by 2d(x, y). Thus, φψ is hyperbolic. Lecture 16Next, we need a version of the Helly property.

Lemma 5.0.5 (Helly property for trees). Suppose T is a tree, T1, . . . , Tn are subtrees. If Ti ∩ Tj ̸= ∅ forevery i, j . Then
n⋂
i=1Ti ̸= ∅

Proof. We induct on n. n = 1, 2 are trivial. Let T ′ = Tn−1 ∩ Tn.
Claim 5.0.6. T ′ ∩ Ti ̸= ∅ for all i < n− 1.
Once we show the claim, we are done by induction.

Proof of claim. Suppose not.
diagramThen we get a non-trivial cycle in T . Contradiction.

Theorem 5.0.7 (criterion for FA). Let G be a group, and suppose S = {s1, . . . , sn} is a generating set. If(i) si has finite order for all i,(ii) for all i, j , either sisj or sjsi has finite order.Then G has property FA.
Proof. Suppose G acts on a tree T . Let Ti = Fix(si). Since si has finite order, Ti is non-empty. Since at leastone of sisj , sjsi has finite order, Ti ∩ Tj is non-empty for all i, j . Hence by the Helly property,

n⋂
i=1Ti ̸= ∅

But this is the set of global fixed points of G .
Example 5.0.8Let Γ be the group generated by the reflections in the sides of an equilateral triangle, say reflections
rℓ , rm, rn, where r• is reflection in the line •.So Γ = ⟨rℓ , rm, rn⟩ ≤ Isom(R2). Note that r2ℓ , r2m, r2n = 1. Composition of two reflection is a rotation oforder 3. So Γ has property FA (but it is infinite).
On sheet 3, Dehn’s examples also have property FA. The corresponding 3-manifolds are “non-Haken”.

27



6 Fuchsian groups
6.1 Hyperbolic geometryLet H2 denote the hyperbolic plane. Recall we have the disc model and the upper half plane model, bothcontained in C.

diagramwhich have metrics 4|dz|2(1 − |z|2)2 and |dz|2
|Im(z)|2respectively. The geodesics in H2 (with both models) are lines, or arcs of circles which intersect the boundaryorthogonally.We will write ℓ+ = {iy | y > 0} in the upper half plane. In this case, if s > t , then

d(is, it) = ∫ s

t

dy
y = log(s

t

)
One more useful fact is a special case of the Gauss-Bonnet theorem.

Proposition 6.1.1 (Gauss-Bonnet for triangles). if ∆ ⊆ H2 is a geodesic triangle, with interior angles
α, β, γ , then Area(∆) = π − (α + β + γ)
In particular, α + β + γ < π.

Corollary 6.1.2. If P ⊆ H2 is a geodesic n-gon, with interior angles αi, then
Area(P) = (n− 2)π −

∑
i
αi

Recall that Isom+(H2) ∼= PSL(2,R), acting on the upper half plane model by Möbius transformations.
Definition 6.1.3 (Fuchsian group)If Γ ≤ PSL(2,R) is a subgroup which acts properly discontinuously on H2, then Γ is called a Fuchsian
group.
We can also think of them as the discrete subgroups of PSL(2,R). Some basic facts of PSL(2,R):

Proposition 6.1.4. (i) The action of PSL(2,R) on H extends continuously to H2, which is H2 ∪ ∂H2.(ii) PSL(2,R) is transitive on triples of distinct points on R ∪ {∞},
(iii) if φ ∈ PSL(2,R) and fixes any three distinct points in H2, then φ = id.

Corollary 6.1.5 (classification of (orientation preserving) isometries of H2). Suppose φ ∈ Isom+(H2).Then one of the following holds:(i) φ fixes a point in H2, which is unique unless φ = id.(ii) φ fixes a unique point in ∂H2,(iii) φ preserves a unique geodesic in H2, which it translates a positive distance.
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In (i), φ is elliptic, in (ii), φ is parabolic, and in (iii), φ is hyperbolic.
Remark 6.1.6. If Γ is a Fuchsian group, φ is elliptic, then φ must have finite order.

Lecture 17
Proof. Recall that φ : H2 → H2 extends continuously to a homeomorphism φ : H2 → H2. By Brouwer’s fixedpoint theorem, Fix(φ) ⊆ H2 is non-empty. We saw that if φ has at least three fixed points, then φ = id, so wecan consider it case by case.

1. Fix(φ) = {ξ} ⊆ H2.(a) If ξ ∈ H2, then φ is elliptic.(b) If ξ ∈ ∂H2, then φ is parabolic.2. Fix(φ) = {ξ+, ξ−}.(a) If ξ+ ∈ H2 (without loss of generality), we get a unique geodesic from ξ+ to ξ−. φ preserves thegeodesic [ξ+, ξ−). But then there is (at least) thre fixed points. So φ = id.(b) If ξ+, ξ− ∈ ∂H2, then again we have a uique geodesic from ξ+ to ξ−, and φ preserves it. Since φhas two fixed points, φ must act on the geodesic by a translation by a positive distance.
When φ is hyperbolic, we call the geodesic it preserves its axis.

6.2 Examples of Fuchsian groupsRecall Γ ≤ Isom+(H2) is Fuchsian if the action of Γ on H2 is properly discontinuous. In particular, for all
x ∈ H2, StabΓ(x) is finite.Lets start with some easy examples.

Example 6.2.1Consider the disc model. The metric is radially symmetric, and so all rotations about 0 are isometries. Inparticular,
z 7→ e2πi/nzis an isometry, generates Z/nZ ≤ Isom( H2).In fact, any elliptic isometry is conjugate to this one.

Example 6.2.2Now consider the upper half plane model. Consider the map z 7→ λz , for any λ ∈ R>1. This is an elementof Isom+(H2). The axis is ℓ+. This gives Z ∼= ⟨φ⟩ ≤ Isom+(H2).In fact, any elliptic isometry is conjugate to this one.
Example 6.2.3Define ψ(z) = z + 1. This is an isometry of H2. This gives a parabolic isometry, where the fixed point is
∞. This gives Z ∼= ⟨ψ⟩ ≤ Isom+(H2).In fact, any parabolic isometry is conjugate to this one.
These examples are called elementary. There’s one more elementary example
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Example 6.2.4Consider upper half plane. Let s1 be rotation by π about i, and s2 be rotation by π about 2i. Then weget
⟨s1, s2⟩ ∼= D∞

Example 6.2.5Let Σg be a closed orientable surface of genus g, with g ≥ 2. In this case, Σ̃g is isometric to H2. Then
π1(Σ̃g) is Fuchsian.
Definition 6.2.6Let p, q, r ∈ Z≥1. The (p, q, r)-triangle group is defined by the presentation

Γ(p, q, r) = ⟨a, b, c | ap, bq, cr , abc⟩ = ⟨a, b | ap, bq, (ab)−r⟩
From our criterion for FA, Γ(p, q, r) has property FA. Thus, it does not split, and so we can’t use thetechniques we have developed so far.Is Γ(p, q, r) non-trivial? infinite? and so on?

Example 6.2.7Γ(2, 3, 1) = 1.
However, many interesting examples arise from Poincaré’s polygon theorem.

Theorem 6.2.8 (Poincaré’s polygon theorem). If p−1 +q−1 +r−1 < 1, then Γ(p, q, r) is an infinite Fuchsiangroup.
Remark 6.2.9. The converse is morally true. That is, the other cases are all finite or non-Fuchsian.

Proof. We start with a geodesic triangle ∆ ⊆ H2 with interior angles π/p, π/q, π/r . Lecture 18
diagramLet α denote rotation about u, with angle 2π/p; β about v , with angle 2π/q and γ about w , with angle2π/r . Note all of these are anticlockwise.Let G = ⟨α, β, γ⟩ ≤ Isom+(H2). Clearly αp = βq = γr = 1. Next, we show αβγ = 1.
diagramWe see that β(w) = α−1(w) = w ′. Hence αβγ(w) = αβ(w) = w . Similarly, γ(u) = β−1(u), and so

αβγ(u) = αββ−1(u) = α(u) = u. Hence by the classification of orientation preserving isometries of H2, it fixestwo distinct points in H2 and so it is trivial.Hence we have a surjective homomorphism f : Γ(p, q, r) ↠ G , sending a to α and so on. We will show that
f is an isomorphism. Let rℓ denote reflection in the line ℓ , and Q = ∆ ∪ rℓ (∆).

diagramDefine
Q̃ = Γ × Q

∼where ∼ is the relation given by (gc, x) ∼ (g, c(x)) for x ∈ m, and (gb, y) ∼ (g, b(y)) for y ∈ n′. Next, definethe development map

F : Q̃ → H2
F (g, x) = f (g)x
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Note Q̃ is a complete geodesic metric space, via the path metric, and F is a local isometry, sending (sufficientlysmall) open balls in Q̃ isometrically to small open balls in H2. In fact, F is an isometric embedding.Indeed, if x, y ∈ Q̃, and [x, y] is a geodesic, then F ([x, y]) is a local geodesic4 from F (x) to F (y). But localgeodesics in H2 are global geodesics. So d(F (x), F (y)) = d(x, y). Next, we prove that F is surjective. im(F ) isopen, since it sends small open balls to small open balls. On the other hand, Q̃ is complete, and hence so isim(F ). But complete subsets of a metric space are closed, and so im(F ) is closed. Thus, by connectedness, Fis an isometry.So Q̃ is isometric to H2, and the action of Γ on Q̃ is properly discontinuous by construction, so Γ is Fuchsian.Since Q is compact, and F us surjective, Γ must be infinite.
Remark 6.2.10. It follows from the construction of Q̃ that only Γ · u,Γ · v,Γ · w has non-trivial stabiliser. Moreover,Stab(u) = ⟨a⟩ ,Stab(v ) = ⟨b⟩ and Stab(w) = ⟨c⟩.

Q is called a fundamental domain for the action of Γ on H2 .
6.3 Centres and Dehn’s examples

Lemma 6.3.1. Suppose 1/p+ 1/q+ 1/r < 1. If g ∈ Γ(p, q, r), and the order of g is finite, then g is in theconjugate of one of ⟨a⟩ , ⟨b⟩ , ⟨c⟩.
Proof. We saw that finite order elements of H2 fix a point in H2. If g ̸= 1, then the fixed point z must be inthe orbit of one of u, v, w . Say (without loss of generality) z = hu. So ghu = hu, and so h−1gh ∈ Stab(u) =
⟨a⟩.

Proposition 6.3.2. If Γ is a non-elementary Fuchsian group, then Z (Γ) = 1.
Proof. Suppose γ ∈ Z (Γ) \ 1. Consider Fix(γ) ⊆ H2. Note that for g ∈ Γ, x ∈ Fix(γ), gx = gγx = γgx , andso gx ∈ Fix(γ). Lecture 19Now we need to do some case analysis:• if γ is elliptic, then Fix(γ) = {x} ⊆ H2. Without loss of generality, x = 0 in the disc model D ⊆ C. Fromthis, StabIsom+(H2)(0) = {z 7→ eiθz}By proper discontinuity, Γ is a subgroup of the above, and so it is a finite cyclic group.• if γ is parabolic, then without loss of generality Fix(γ) = {∞} in the upper half plane model. A directcomputation shows that StabIsom+(H2)(∞) = {z 7→ az + b}For γ to be the only fixed point, necessarily a = 1, and so γ(z) = z + c for some c ∈ R non-zero. But gcommutes with γ only if a = 1, and so

Γ ≤ {z 7→ z + b | b ∈ R}

Any discrete subgroup of R is isomorphic to Z.• if γ is hyperbolic, without loss of generlity Fix(γ) = {0,∞} in the upper half plane model. So Γ acts byisometries Axis(γ) = ℓ+, and so Γ ∼= Z or D∞ by proper discontinuity.
We can now analyse Dehn’s examples. Recall

Gn = 〈
x, y, z | x2 = y3 = z, (xy)6n+5 = z5n+4〉

4i.e. locally it is a geodesic.
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for n ≥ 0. Note that z ∈ Z (Gn). Let Γn = Gn
⟨z⟩ = 〈

x, y | x2, y3, (xy)6n+5〉 = Γ(2, 3, 6n + 5). Therefore, Γn isa Fuchsian triangle group if n ≥ 1, and so Z (Γn) = 1. Hence Z (Gn) = ⟨z⟩. Therefore, if φ : Gm → Gn is anisomorphism, then φ(Z (Gm)) = Z (Gn), and so
Γm = Gm

Z (Gm) ∼= Gn
Z (Gn) = Γn

But the order of torsion elements in Γn are the divisors of 2, 3, 6n + 5. Hence if Γm ∼= Γn, we must have that
m = n. We have proven:

Theorem 6.3.3 (Dehn). There are infinitely many non-homeomorphic 3-dimensional homology spheres.
7 Hyperbolic groups
The goal is to define a notion of coarse hyperbolic geometry. This is something which looks like hyperbolicgeometry that is invariant under quasi-isometry.
7.1 Hyperbolic metric spacesLet X be a geodesic metric space. A geodesic triangle is a triple of geodesics

∆ = [x, y] ∪ [y, z] ∪ [z, x ]
For A ⊆ X , let

Nδ (A) = {y ∈ X | ∃x ∈ A, d(x, y) ≤ δ} = ⋃
x∈A

Bδ (x)
be its (closed) δ-neighbourhood.

Definition 7.1.1Let δ ≥ 0. A geodesic triangle ∆ is δ-slim if the δ-neighbourhood of any two sides cover the third side.So [x, y] ⊆ Nδ ([x, z] ∪ [y, z])and so on.
Definition 7.1.2
X is called δ-hyperbolic if every geodesic triangle ∆ ⊆ X is δ-slim. We also say X is Gromov-hyperbolic,or hyperbolic.
Example 7.1.3If diam(X ) = δ , then X is δ-hyperbolic.
Example 7.1.4If X is a tree, then X is 0-hyperbolic.
Example 7.1.5 (non-example)Euclidean space is not Gromov-hyperbolic.
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Example 7.1.6
H2 is hyperbolic. To see this, ∆ is δ-slim, where δ is the radius of the largest semicircle which we caninscribe in ∆.Let A(r) be the area of a circle of radius r in H2. But now12A(δ) ≤ Area(∆) < π

Since A(δ) → ∞ as δ → ∞, we see that H2 is δ-hyperbolic for sufficiently large δ .
7.2 The Mostow-Morse lemmaThe goal is to prove that Gromov-hyperbolicity is a quasi-isometry invariant. Lecture 20

Definition 7.2.1 (quasigeodesic)A path γ : [a, b] → X is a (λ, ε)-quasigeodesic if γ is a (λ, ε)-quasi isometric embedding. That is,
1
λ |s− t| − ε ≤ d(γ(s), γ(t)) ≤ λ|s− t| + ε

Definition 7.2.2 (Hausdoff distance)Let A, B ⊆ X be nonempty subsets of a metric space X . Let
NC (A) = ⋃

a∈A
Bc(a) = {x ∈ X | ∃a ∈ A, d(x, a) ≤ c}

The Hausdorff distance is
dHaus(A, B) = inf{c > 0 | A ⊆ Nc(B) and B ⊆ Nc(A)}

Definition 7.2.3 (length)Let γ : [a, b] → X be a path. The length of γ is
ℓ(γ) = sup

D

n∑
i=1 d(γ(ti−1), γ(ti))

where D ranges over all dissections
a = t0 < t1 < · · · < tn = b

Lemma 7.2.4. For any λ ≥ 1, ε ≥ 0, there are λ′ ≥ 1, ε′ ≥ 1, such that for any geodesic metricspace X , and any (λ, ε)-quasigeodesic α : [a, b] → X , there exists a continuous (λ′, ε′)-quasigeodesic
α ′ : [a, b] → X , such that(i) α ′(a) = α(a), α ′(b) = α(b),(ii) dHaus(im(α), im(α ′)) ≤ λ+ ε,(iii) ℓ(α ′|[s,t]) ≤ λ′d(α ′(s), α ′(t)) + ε, for all a ≤ s ≤ t ≤ b.

Proof. Let I = {a, b} ∪ (a, b) ∩ Z. Define α ′ by setting α ′(t) = α(t) for all t ∈ I , and then interpolating usinga (reparametrised) geodesic between points of I .
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Continuity is clear, and so is (i). (ii) is easy. The fact that α ′ is a quasi-geodesic and (iii) follow from easy,but tedious calculations.
Lemma 7.2.5. Let X be a δ-hyperbolic metric space. Suppose β : [a, b] → X is a geodesic, α : [a, b] → Xis a continuous path, with α(a) = β(a), α(b) = β(b). Then

d(β(t), im(α)) ≤ δ⌊log2(ℓ(α))⌋ + 1
Proof. Let

N = ⌊log2(ℓ(α))⌋The proof proceeds by induction on N . If N ≤ 0 then ℓ(α) ≤ 1 and we are done.Consider the geodesic triangle with vertices
α(a), α(b), α(a+ b2

)
Since X is δ-hyperbolic, β(t) has distance at most δ from one of the other edges of the triangle. Call thecorresponding half of α α ′, and the geodesic β ′. Now

ℓ(α ′) = ℓ(α)2 =⇒ ⌊log2(ℓ(α ′))⌋ = N − 1
and we have a point β ′(t′) such that d(β(t), β ′(t′)) ≤ δ . By inductive hypothesis,

d(β(t), im(α)) ≤ d(β(t), im(α ′))
≤ d(β(t), β ′(t′)) + d(β ′(t′), im(α ′))
≤ δ + δ(N − 1) + 1= δN + 1

as required.We are now ready for the main result of this section:
Theorem 7.2.6 (Mostow-Morse lemma). Let X be a (geodesic) δ-hyperbolic space. Let α : [a′, b′] → Xbe a (λ, ε)-quasigeodesic, and β : [a, b] → X a geodesic, with

β(a) = α(a′) and β(b) = α(b′)
Then there exists a constant C = C (λ, ε, δ), such that

dHaus(im(α), im(β)) ≤ C

Proof. We may replace α by the result of lemma 7.2.4. In particular, α is continuous, and
ℓ

(
α[s,t]) ≤ λ|s− t| + ε

for a ≤ s ≤ t ≤ b. We need to bound
C1 = inf{C | im(β) ⊆ NC (im(α))} and C2 = inf{C | im(α) ⊆ NC (im(β))}

We’ll first bound C1. For this, we’ll need to bound
d(β(t), im(α)) = inf

t′∈[a,b]d(β(t), α(t′))
Let C = sup

t∈[a,b]d(β(t), im(α)). Since [a′, b′] is compact, it is realised at some β(t). Let
r = max{a, t − 2C} and s = min{b, t + 2C}
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Define the path γ by going from β(r) to the closest point α(r′) on α , following α until the closest point α(s′) to
β(s), and then going to β(s). Then

ℓ(γ) ≤ 2C + ℓ(α|[r′,s′ ])
≤ 2C + λd(α(r′), α(s′)) + ε
≤ 6λC + 2C + ε Lecture 21On the other hand, the lemma above shows that
C ≤ δ⌊log2(ℓ(γ))⌋ + 1Thus,

C ≤ δ⌊log2(6λC + 2C + ε)⌋ + 1Since the left hand side is linear, and the right hand side is logarithmic in C , there is an upper bound on C ,which only depends on δ, λ and ε.Next, we need to bound C2, i.e. we need to bound d(α(t), im(β)). Let [s′, r′] ⊆ [a′, b′] be maximal such that
α|(s′,r′) lies outside of NC (im(β)). Here, C is the constant from above. By continuity, there exists t ∈ [a, b], and
s ∈ [a′, s′], r ∈ [r′, b′] such that

d(β(t), α(s)), d(β(t), α(r)) ≤ Cas the interval is connected. Thus, d(α(r), α(s)) ≤ 2C . Hence
ℓ(α|[s′,r′ ]) ≤ ℓ(α|[s,r]) ≤ λd(α(s), α(r)) + ε ≤ 2λC + εHence every point on α is at most 2Cλ+ C + ε from im(β).

Corollary 7.2.7. Let X, Y be geodesic metric spaces. If X is δ-hyperbolic, and X is quasi-isometric to Y ,then Y is δ ′-hyperbolic for some δ ′.
Proof. Let f : X → Y , g : Y → X be (λ, ε)-quasi-isometries, such that

d(f (g(y)), y) ≤ ε and d(g(f (x)), x) ≤ εConsider a geodesic triangle [y1, y2] ∪ [y2, y3] ∪ [y3, y1] ⊆ YConsider y ∈ [y1, y2]. By the Mostow-Morse lemma, there exists x ∈ [g(y1), g(y2)] such that
d(x, g(y)) ≤ CSince X is δ-hyperbolic, there exists (without loss of generality) x ′ ∈ [g(y2), g(y3)] such that d(x, x ′) ≤ δ . Bythe Mostow-Morse lemma again, there exists y′ ∈ [y2, y3] such that
d(x ′, g(y′)) ≤ CIn summary,

d(g(y), g(y′)) ≤ 2C + δand so
d(f (g(y)), f (g(y′))) ≤ λ(2C + δ) + εand thus

d(y, y′) ≤ λ(2C + δ) + 3εThe right hand side is a function of δ, λ and ε only.
Example 7.2.8Let G = π1(Σ2). This has presentation

⟨a1, b1, a2, b2 | [a1, b1][a2, b2]⟩
By the Schwarz-Milnor lemma, Cay(G) qi∼ H2, which is Gromov hyperbolic, and so Cay(G) is Gromov
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hyperbolic.
7.3 Hyperbolic groupsUsing the previous corollary, the following properties of a group G are all equivalent.1. G has a finite generating set S , such that Cay(G,S) is Gromov hyperbolic.2. G is finitely generated, and for any finite generating set S , Cay(G,S) is Gromov hyperbolic.3. G acts properly discontinuously and cocompactly by isometries on some proper geodesic Gromov hyper-bolic metric space X .4. Every proper geodesic metric space X on which G acts properly discontinuously and compactly is Gromovhyperbolic.

Definition 7.3.1
G is (word) hyperbolic if any of the above hold.

Lecture 22
Example 7.3.2If G is finite, then CayS (G) is bounded, and so hyperbolic.
Example 7.3.3If G = Fm, then the standard generating set gives CayS (G) which is a tree. Recall that trees are0-hyperbolic.
Example 7.3.4If Z2 was hyperbolic, then R2 would be Gromov hyperbolic, which it is not.
Example 7.3.5For g ≥ 2, let Σg be the closed oriented surface of genus g. Let Gπ1(Σg). Then G acts on H2 properlydiscontinuously, cocompactly by isometries. Thus, G is hyperbolic.
Remark 7.3.6. Sometimes authors say a group acts on a space geometrically if it acts properly discontinuously andcocompactly by isometries.
Example 7.3.7
π1(M) is hyperbolic if M is any closed Riemannian manifold with negative sectional curvature.
Example 7.3.8SL2(Z) ∼= Z/4 ∗

Z/2 Z/6. The Bass-Serre tree is an infinite 3-valent tree T , and SL2(Z) acts geometricallyon T , so SL2(Z) is hyperbolic.
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Example 7.3.9 (random finitely presented groups)If
G = ⟨a1, . . . , am | r1, . . . , rn⟩is “chosen at random”, then G is infinite and hyperbolic.

7.4 Local geodesicsOur goal is to solve the word problem in hyperbolic groups. The key ingredient is a “local to global” statement,about geodesics in hyperbolic metric spaces.
Definition 7.4.1A path γ in a metric space X is a c-local geodesic if d(γ(s), γ(t)) = |s− t| whenever |s− t| ≤ c.
Lemma 7.4.2. Let X be a δ-hyperbolic metric space. If α : [a, b] → X is a 10δ-local geodesic, then

im(α) ⊆ N2δ ([α(a), α(b)])
for any geodesic [α(a), α(b)].

Proof. Let
C = sup

t∈[a,b]d(α(t), [α(a), α(b)])
Say it is realised at t0 ∈ [a, b]. Let r = max{a, t0 − 5δ}, s = min{b, t0 + 5δ}.Let x, y, z ∈ [α(a), α(b)] be the closest points to α(r), α(s), α(t0) respectively. Then d(x, α(r)), d(y, α(r)) ≤ C ,and d(α(t0), z) = C . Consider the quadrilateral with vertices α(r), α(s), x, y.Note we can subdivide it into two triangles. and so any point p on α([r, s]) is within distance 2δ of one ofthe other three sides. Apply this to p = α(t0). Suppose there is a point w ∈ [α(r), x ], such that d(α(t0), w) ≤ 2δ .But then

d(α(r), w) ≥ d(α(r), α(t0)) − d(α(t0), w) ≥ 5δ − 2δ = 3δIn this case,
d(α(t0), x) ≤ 2δ + d(w, x)

< 3δ + d(w, x)
≤ d(α(r), x)
≤ CBut this contradicts d(α(t0), [α(a), α(b)]) = C . Therefore, α(t0) is not within 2δ of [α(r), x ]. By symmetry, it isnot within 2δ of [α(s), y]. Thus, it is within 2δ of [x, y]. With this, C ≤ 2δ .

Remark 7.4.3. This is a coarse analogue of the fact that local geodesics in trees are global geodesics.
A consequence of this is key to solving the word problem in hyperbolic groups.

Lemma 7.4.4 (shortcuts in hyperbolic spaces). Let X be δ-hyperbolic. Any loop α : [a, b] → X such that
ℓ(α) > 4δ contains a ≤ s < t ≤ b, such that

d(α(s), α(t)) < ℓ(α|[s,t]) ≤ 10δ (∗)
Proof. Unless (∗) is satisfied, then α is a 10δ-local geodesic. By the previous lemma,im(α) ⊆ N2δ ([α(a), α(b)]) = B2δ (α(a))Since α is a 10δ local geodesic, and diam(B2δ (α(a))) ≤ 4δ , it follows that ℓ(α) ≤ 4δ . Lecture 23
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7.5 Dehn’s algorithmWe will solve the word problem for all hyperbolic groups, using an algorithm that Dehn exhibited for hyperbolicsurface groups, in 1912.
Theorem 7.5.1 (relations in hyperbolic groups). Let G be a hyperbolic group, and S a finite generatingset. For every non-trivial edge loop α in CayS (G), there is an edge loop γ of length at most 20δ , suchthat

ℓ(αβγβ−1) < ℓ(α)for some choice of path β from 1 to a point on γ .
Proof. If ℓ(α) ≤ 20δ , then we can take γ = α−1. Then αγ is homotopic to the constant loop, and so ℓ(αγ) =0 < ℓ(α).Otherwise, from the previous lemma, let

β = (α|[t,b])−1
γ = (α|[s,t])−1 · [α(s), α(t)]

Then ℓ(γ) < 20δ , and αβγβ−1 is homotopic to
α|[a,s] · [α(s), α(t)] · α|[t,b]which has length less than ℓ(α).

Corollary 7.5.2 (Gromov). Hyperbolic groups are finitely presented.
Proof. Let S be a finite generating set for a hyperbolic group G . Consider CayS (G). This is δ-hyperbolic forsome δ . Let

R = {edge loops in CayS (G) based at 1 with length at most 20δ}This is a finite set, with size at most (2|S|)20δ say. We claim that ⟨S | R⟩ is a presentation for G . To see this,by the theorem, and induction on length, every relation is a product of conjugates of elements of R .
Corollary 7.5.3 (Dehn, Gromov). Let G be a hyperbolic group. The word problem in G is solvable.

Proof. Consider the presentation G = ⟨S | R⟩, constructed in the previous corollary. Let w ∈ F (S). Thetheorem tells us that if w represents the trivial element in G , then there is a cyclic conjugate w ′ of w , and
r ∈ R , such that ℓ(w ′r) < ℓ(w). To see this, let α = w and let w ′ = β−1αβ , r = γ . Since w has finitely manycyclic conjugates, and R is finite, we have finitely many combinations of (w ′, r) to check. If we fine one suchcombination, then we replace w with w ′r and repeat.On the other hand, if we cannot find (w ′, r), then it must be the case that w did not represent a loop.Since ℓ(w ′r) < ℓ(w), this process has to terminate, either showing that w is not a loop, or when w ′r is thetrivial element.

Remark 7.5.4. A presentation in the corollary is called a Dehn presentation. That is, a presentation ⟨S | R⟩, suchthat for any non-trivial word w , with w = 1 in G , there exists h ∈ G, r±1 ∈ R such that
ℓ(whrh−1) < ℓ(w)

It turns out a group G has a Dehn presentation if and only if G is hyperbolic.
Lecture 24
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8 *Outlook, further topics, open problems*
Random groupsFix a generating set S = {a1, . . . , am}. Fix n ≥ 1, choose a subset

{r1, . . . , rn} ⊆ F (S)
uniformly at random such that ℓ(ri) = ℓ for all i. Consider the resulting group

G = ⟨a1, . . . , am | r1, . . . , rn⟩For any property P of groups, we can look at
P(G ∈ P)

which depends on m, n, ℓ . We say that a random group has property P if
P(G ∈ P) → 1

as ℓ → ∞.
Theorem 8.0.1 (Gromov, Ol’shanski). For m ≥ 2, a random group is infinite and hyperbolic.

SubgroupsOne of the most important open problems concern subgroups of hyperbolic groups.
Conjecture 8.0.2 (surface subgroup). Unless G is virtuallya free, if G is word hyperbolic, then there existsa surface Σg of genus g ≥ 2, such that π1(Σg) ≤ G .

ahas a finite index subgroup which is
This has been proven in a special case by Kahn-Markovich, when G = π1(M3) for M a compact 3-manifold.

Representations and residual finitenessA group G is linear if it is a subgroup of GL(n,C) for some n. That is, it has a faithful representation over C.
Theorem 8.0.3 (M. Kapovich). There is a hyperbolic group which is not linear.
But a weaker property is also important.

Definition 8.0.4A group G is residually finite if for any g ∈ G non-trivial, there exists a homomorphism f : G → Q finite,such that f (g) ̸= 1.
All finitely generated linear groups are residually finite. Then it is an open question whether everyhyperbolic group is residually finite. Recent progress includes

Theorem 8.0.5 (Olivier-Wise, Agol). Random groups are residually finite. In fact, they are linear.
BoundariesRecall that ∂H2 = S1.
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Definition 8.0.6Let X be a proper hyperbolic metric space. A geodesic ray is an isometric embedding γ : [0,∞) → X .We say that γ1 ∼ γ2 if there exists C ≥ 0 such that
d(γ1(t), γ2(t)) ≤ C

for all t .The Gromov boundary of X is defined to be
∂∞X = {geodesic rays in X}

∼

Remark 8.0.7. ∂∞X admits a natural boundary, so that ∂∞X and X ∪ ∂∞X are compact.
A quasi-isometry f : X → Y induces a homeomorphism ∂∞X → ∂∞Y . Thus, for a hyperbolic group G , wemay define

∂∞G = ∂∞ CayS (G)
Example 8.0.8If G is a cocompact Fuchsian group (e.g. π1(Σg) and triangle groups), then G is quasi-isometric to H2,and so ∂∞G = ∂H2 = S1.
Theorem 8.0.9. If G is hyperbolic and ∂∞G ∼= S1, then G is virtually Fuchsian.
Conjecture 8.0.10 (Cannon). If G is hyperbolic, and ∂∞G ∼= S2, then G is virtually π1(M) for M a3-manifold.

Non-positive curvature

Definition 8.0.11Suppose X is a geodesic metric space. Each geodesic triangle in X has a well defined (up to isometry)
comparison triangle ∆ ⊆ Rn. That is, it is a triangle with the same side lengths as ∆. Let f : ∆ → ∆ bethe natural map.

X is CAT(0) if d(x, y) ≥ d(f (x), f (y)) for all x, y ∈ ∆.
One question: Does every hyperbolic group act geometrically on a CAT(0) space?
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