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1 Definitions and resolutions
Let G be a group.

Definition 1.1 (integral group ring)The integral group ring ZG has elements being formal sums∑
ngg

for ng ∈ Z, g ∈ G , and only finitely many ng are non-zero. This is a free abelian group under addition,i.e. (∑
mgg

)+ (∑ngg
) =∑(mg + ng)gand we have multiplication

(∑
mhh

)(∑
nkk
) =∑

g

∑
hk=gmhnk

g

This is the associative ring underlying the integral representation theory of G . We will write 1 = 1e forthe multiplicative identity in G .

∗Based on lectures by Chris Brookes. Last updated March 14, 2024.
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Definition 1.2 (module)A (left) ZG-module M is an abelian group under addition, and a map
ZG ×M → M(r, m) 7→ rm

such that1. r(m+ n) = rm+ rn,2. (r1 + r2)m = r1m+ r2m,3. (r1r2)m = r1(r2m),4. 1m = m

A module is trivial if gm = m for all g ∈ G , m ∈ M . We say the trivial module is Z with trivial action
gm = m. A free ZG-module on X is formal sums ∑

rxx

for rx ∈ ZG, x ∈ X , and finitely many rx non-zero. We will write ZG{X} for this.
Submodules and quotient modules are defined as we would expect.

Definition 1.3 (ZG-map)An ZG-map (or morphism) α : M1 → M2 is a map of abelian groups, with
α(rm1) = rα(m1)

for r ∈ ZG,m1 ∈ M1.
Example 1.4The augmentation map is

ε : ZG → Z∑
ngg 7→

∑
ng

where we treat ZG as a left ZG-module, and Z as the trivial module. This is a ZG map, and it is also aring homomorphism.
Notation 1.5. Write HomG (M,N) for the set of ZG-maps from M → N , with pointwise addition.
Example 1.6If we regard ZG as a left ZG-module, then

HomG (ZG,M) ∼= M

for any left ZG-module M , by sending φ to φ(1). This is an isomorphism since
φ(r) = φ(r1) = rφ(1)

Note that HomG (ZG,M) is a left ZG-module, with
(sφ)(r) = φ(rs)
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In particular, HomG (ZG,ZG) ∼= ZGWith this, φ 7→ φ(1) corresponds to multiplication on the right by φ(1).
Note that G may not be abelian, so the distinction between left and right modules matters.

Definition 1.7If f : M1 → M2 is a ZG-map, then the dual map is
f ∗ : HomG (M2, N) → HomG (M1, N)

for any ZG-module N . This is given by
f ∗(φ) = φ ◦ fSimilarly, if f : N1 → N2, then we have

f∗ : HomG (M,N1) → Hom(M,N2)
with f∗(φ) = f ◦ φ.
These are maps of abelian groups, since in general HomG (M,N) doesn’t have to be a ZG-module, as wedon’t have a right action.

Example 1.8 (Prototypical example)Let G = ⟨t⟩ be an infinite cyclic group, and consider the graph Γ with vertices {vi}i∈Z, edges vi ↔ vi+1.Then G acts on the set V of vertices, by tvi = vi+1, and also on the set E of edges. The action istransitive in both cases. The formal integral sums ZV and ZE are ZG-modules, and are free. Fix theedge e : v0 ↔ v1. Then we have ZG-maps
d : ZE → ZV

e 7→ v1 − v0
and also

ZV → Z
v0 7→ 1

This correspond to the augmentation map.
Definition 1.9 (chain complex, exact, homology)A chain complex of ZG-modules is a sequence

Ms Ms−1 · · · Mt
ds ds−1 dt+1

of ZG-modules and maps, such that for t < n < s, dn ◦ dn+1 = 0. We will write
M• = (Mn, dn)t≤n≤s

We say that M• is exact at Mn if im(dn+1) = ker(dn). The sequence is exact if if it exact at all Mn with
t < n < s.
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The homology of M• is given by
Hs(M•) = ker(ds)
Hn(M•) = ker(dn)im(dn+1) for t < n < s

Ht (M•) = coker(dt+1)A short exact sequence is a chain complex of the form
0 M1 M2 M3 0α β

In our prototypical example, we have a short exact sequence
0 ZE ZV Z 0

which corresponds to 0 ZG ZG Z 0where the map ZG → ZG is multiplication on the right by t − 1.
Definition 1.10 (projective)A ZG-module P is projective if for every surjective ZG-map α : M1 → M2, and every ZG-map β : P → M2,there exists β such that

P

M1 M2 0α

β
β

commutes.
If we have any short exact sequence

0 N M1 M2 0f α

Consider 0 HomG (P,N) HomG (P,M1) HomG (P,M2) 0f∗ α∗ (∗)Then P is projective if and only if (∗) is exact. Note that in (∗), we always have exactness except at HomG (P,M2). Lecture 2
Lemma 1.11. Free modules are projective.

Proof. Let α : M1 → M2 be a surjective ZG-map, β : ZG{X} → M2. For each x ∈ X , since α is surjective,there exists mx ∈ M1 such that α(mx ) = β(x). We can then define β : ZG{X} → M1, by∑
rx · x 7→

∑
rx ·mx

Definition 1.12A projective (resp. free) resolution of the trivial module Z is an exact sequence
· · · P1 P0 Z 0d2 d! d0

with all the Pi projective (resp. free).
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Example 1.13When G = ⟨t⟩ is infinite cyclic, we have the free resolution
0 ZG ZG Z 0·(t−1) ε

Example 1.14If G = ⟨t⟩ cyclic of order n. Then
· · · ZG ZG ZG ZG Z 0εαβα

is a free resolution, where α(x) = x(t − 1) and β(x) = x(1 + t + · · · + tn−1).
From algebraic topology, if we have a connected simplicial complex X , with π1(X ) = G , and the universalcover X̃ is contractible, then we have a free resolution of Z. The point is that the simplicial complex X containsa lot of information about G . We are trying to replicate this algebraically.For calculation purposes, we’re interested in small resolutions. For example, where the free modules havesmall rank. But for theory development purposes, we’re wanting general constructions, and such resolutionstend to be large.

Definition 1.15
G is of type FPn if Z has a projective resolution

· · · P2 P1 P0 Z 0d2 d1 d0

so that Pn, . . . , P0 are finitely generated.
G is of type FPn is Z has a projective resolution with all Pn finitely generated.
G is of type FP if there exists a projective resolution of Z with finite length and all Pn are finitelygenerated. That is, Ps = 0 for s sufficiently large.

Example 1.16
G = ⟨t⟩ infinite cyclic is of type FP, G = Cn = ⟨t⟩ finite cyclic is of type FP∞.
These are to be regarded as finiteness conditions on the group. The topological version of FPn (which iscalled Fn) would be asking for X with π1(X ) = G , having a finite n-skeleton. Note that these two conditionsare not equivalent.Now lets meet some general constructions. If we have a partial projective resolution

Ps Ps−1 · · · P1 P0 Z 0ds d1 d0

Then we can make it longer by setting
Ps+1 = ZG{Xs+1}with Xs+1 = ker(ds), and set ds+1 :∑ rxx 7→

∑
rxxThen

Ps+1 Ps Ps−1 · · · P1 P0 Z 0ds d1 d0ds+1
is a longer partial projective resolution. To make Ps+1 smaller, we could take Xs+1 to be a ZG-generating setfor ker(ds). This is particularly useful if ker(ds) is finitely generated.Continuing this, we can get a (full) projective resolution.
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Definition 1.17The standard (or bar) resolution of Z, for any group G , is: Let
G(n) = {[g1| . . . |gn] | gi ∈ G}

be the set of symbols. In particular, G(0) = {[]} Let
Fn = ZG{G(n)}

be the free module on G(n). The differential is given by
dn[g1| . . . |gn] = g1[g2| . . . |gn]

− [g1g2|g3| . . . |gn]+ [g1|g2g3| . . . |gn] + . . .+ (−1)n−1[g1| . . . |gn−1gn]+ [g1| . . . |gn−1]
With this, dn−1dn = 0, and we have a chain complex

· · · Fn Fn−1 · · · F0 Z 0[]7→1

Remark 1.18. The bar resolution corresponds to the standard resolution in algebraic topology. Consider n+1 tuples
Gn+1 , and form the free abelian group ZGn+1 under addition. G acts on Gn+1 diagonally, so

g · (h0, . . . , hn) = (gh0, . . . , ghn)So ZGn+1 is a free ZG-module, on the basis of n+ 1 tuples with g0 = 1. Then we have a correspondence
[g1| . . . |gn] 7→ (1, g1, g1g2, . . . , g1 · · ·gn)Note that removing the first entry gives g1(1, g2, g2g3, . . . , g2 · · ·gn), and removing the seconc entry in the tuple gives(1, g1g2, g1g2g3, . . . , g1 · · ·gn).

Lemma 1.19. The bar resolution is exact.
Proof. We’ll just consider the dn as maps of abelian groups. Fn has basis G × G(n) as a free abelian group,and G × G(n) is the set

{g0[g1| . . . |gn] | gi ∈ G}Define Z-linear maps sn : Fn → Fn+1, such that
idFn = dn+1sn + sn−1dn (∗)

given by
sn(g0[g1| . . . |gn]) = [g0| . . . |gn]We can verify that (∗) holds on the basis, and so if x ∈ ker(dn+1), then

x = id(x) = dn+1sn(x) + sn−1dn(x) = dn+1sn(x) ∈ im(dn+1)That is, sn is a chain homotopy from the identity to zero.
Corollary 1.20. A finite group is of type FP∞.

Proof. The bar resolution gives such a resolution. Lecture 3
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Definition 1.21Consider a projective resolution
· · · Pn+1 Pn · · · P1 P0 Z 0dn

of Z by ZG-modules. Let M be a (left) ZG-module. Apply the functor HomG (·,M), we get the dual
sequence

· · · Hom(Pn+1,M) Hom(Pn,M) · · · Hom(P0,M)dn+1 († )
where dn = d∗

n. Then the n-th cohomology group Hn(G,M) with coefficients in M is:

Hn(G,M) = ker(dn+1)im(dn) for n ≥ 1
H0(G,M) = ker(d1)

Remark 1.22. We have dropped the Z-term in († ).Also, these cohomology groups are the homology groups of the chain complex
Cn = HomG (P−n,M)

with −∞ < n ≤ 0.
Later, we will see that these cohomology groups are independent of the choice of resolution.

Example 1.23In our prototypical example, G = ⟨t⟩ infinite cyclic, we have a projective resolution
0 ZG ZG Z 0d

where d(x) = x(t − 1). For φ ∈ HomG (ZG,M), x ∈ ZG ,
d1(φ)(x) = φ(d1(x)) = φ(x(t − 1))

Moreover, recall HomG (ZG,M) ∼= M , where i(φ) = φ(1). In particular,
d1(φ) 7→ d1φ(1) = φ(t − 1) = (t − 1)φ(1) = (t − 1)i(φ)

In this case, we have 0 M M(t−1)·and so
H0(G,M) = {m ∈ M | tm = m} = MG

H1(G,M) = M(t − 1)M = MG

and Hn(G,M) = 0 otherwise. Here, MG is the group of invariants, the largest submodule with trivial
G-action. Conversely, MG is the coinvariants, the largest quotient module with trivial G-action.
Remark 1.24. H0(M,G) = MG is generally true. But H1(M,G) = MG is special behaviour of G = ⟨t⟩.For any group of type FP, we have that Hn(G,M) = 0 for large enough n.
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Definition 1.25
G is of cohomological dimension m over Z if there exists an ZG-module M , with

Hm(G,M) ̸= 0
and Hn(G,M ′) = 0 for any ZG-module M ′, and n > m.
Note that for all G , H0(G,Z) = Z ̸= 0.

Example 1.26
G = ⟨t⟩ infinite cyclic is of cohomological dimension 1 (over Z).An exercise is to show that if G is a free group of finite rank, then it is also of cohomological dimension1. To see this, the Cayley graph is a tree and we can construct a resultion using this.
Remark 1.27. The converse is true. A finitely generated group of cohomological dimension 1 is free. In fact, this istrue in general. See [Stallings, 1968], Swan, 1969.
Now consider the bar resolution in our definition of cohomology. Note that

HomG (ZG{G(n)},M) ∼= Cn(G,M) = {functions G(n) → M
}

This is the same as function Gn → M . We also have that
C 0(G,M) = {functions [] → M} = M

Definition 1.28The group of n-cochains of G with coefficients in M is Cn(G,M). The n-coboundary map

dn : Cn−1(G,M) → Cn(G,M)
is dual to dn in the bar resolution. For φ ∈ Cn−1(G,M),

(dnφ)(g1, . . . , gn) = g1φ(g2, . . . , gn)
− φ(g1g2, . . . , gn)+ φ(g1, g2g3, . . . , gn)+ . . .+ (−1)n−1φ(g1, g2, . . . , gn−1gn)+ (−1)nφ(g1, g2, . . . , gn−1)

The group of n-cocycles is Z n(G,M) = ker(dn+1) ⊆ Cn(G,M), and the n-coboundaries is Bn(G,M) =im(dn) ⊆ Cn(G,M).
Thus, Hn(G,M) = Z n(G,M)

Bn(G,M)
Corollary 1.29. For any group G , H0(G,M) = MG is the invariants.
Definition 1.30
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A derivation of G with coefficients in M is a function φ : G → M , such that
φ(gh) = gφ(h) + φ(g)

Note that Z 1(G,M) is the set of derivations. Also note that these are also called ‘crossed homomorphisms’.An inner derivation is φ of the form
φ(g) = gm−mfor a fixed m ∈ M .

Corollary 1.31. H1(G,M) = {derivations G → M}
{inner derivationsG → M}In particular, if M is a trivial ZG-module, then

H1(G,M) = HomGroup(G,M)
We will return to considering homology arising from different resolutions.

Definition 1.32Let (An, αn), (Bn, βn) be chain complexes of ZG-modules, a chain map f = (fn) are ZG-maps fn : An → Bn,such that
An An−1
Bn Bn−1

αn

βn

fn fn−1

commutes.
Lemma 1.33. Given a chain map (fn), it induces a map on homology groups

f∗ : Hn(A•) → Hn(B•)
Lecture 4

Proof. Let x ∈ ker(αn). Define f∗([x ]) = [fn(x)], where [·] denotes a homology class. Observe that
fn(x) ∈ ker(βn)

since βn(fn(x)) = fn−1(αn(x)) = 0. Moreover, if x ′ = x + αn−1(y), then
fn(x ′) = fn(x) + fn(αn−1(y)) = fn(x) + βn(fn(y))

and so [fn(x ′)] = [fn(x)]. Moreover, this gives a map of abelian groups.
Theorem 1.34. The definition of Hn(G,M) is independent of the choice of projective resolution.

Proof. Take projective resolutions (Pn, dn) and (P ′
n, d′

n) of Z by ZG-modules. We will produce• chain maps fn : Pn → P ′
n, gn : P ′

n → Pn,• chain homotopies sn : Pn → Pn+1, s′
n : P ′

n → P ′
n+1,
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That is, ds+ sd = gf − id and ds′ + s′d = fg− idUsing this data, the fn define chain maps
f ∗ : HomG (P ′

n,M) → HomG (Pn,M) and g∗ : HomG (P ′
n,M) → HomG (Pn,M)

which induce maps between the respective homology groups. Now observe if φ ∈ ker(dn+1) ∈ Hom(Pn,M),then
f ∗g∗(φ)(x) = φ(g(f (x)))= φ(x) + φ(ds(x)) + φ(s d(x))= φ(x) + s∗dφ(x) + ds∗φ(x)= φ(x) + ds∗φ(x)

and so f ∗g∗(φ) = φ + d(s∗φ). Hence f ∗g∗ induces the identity map on homology. Similarly, g∗f ∗ also inducethe identity map. This, f ∗, g∗ yield isomorphisms on homology. It remains to construct the maps as above.Consider the end of the resolutions, so we have f−1 : Z → Z which is the identity map, and f−2 : 0 → 0 is thezero map. Suppose we have already defined fn−1, fn. We would like to construct fn+1. Thus, fnd : Pn+1 → P ′
n,and d′(fd) = fdd = 0. Thus, the map fd has image contained in ker(d′). So we can define fn+1 as follows:

Pn+1 Pn Pn−1
P ′
n+1 ker(d′) P ′

n Pn−1

d d
fn fn−1

d′

fndfn+1

Here, by exactness the map P ′
n+1 → ker(d′) is surjective, and so as P ′

n+1 is projective, such a map exists. Wecan define gn similarly.To define sn, set hn = gnfn − id. This is a map from Pn to itself. In particular, hn is a chain map, with
h−1 = 0. Set s−1 : Z → P0 to be the zero map, and note d0h0 = h−1d0 = 0, and so im(h0) ⊆ ker(d0). Asbefore, d1 : P1 → ker(d0) is surjective, and so we have

P0 Z

P1 ker(d) P0 Z

h0 0h0s0

Inductively, suppose sn−1, sn−2 are already defined, set tn = hn − sn−1dn : Pn → Pn. We have that
dntn = dnhn − dnsn−1dn= hn−1dn − (hn−1 − sn−2dn−1)dn= sn−2dn−1dn= 0

So im(tn) ⊆ ker(dn). So we have1
Pn Pn−1

Pn+1 ker(dn) Pn Pn−1

dn

dn
hn hn−1sn−1tnsn

Define s′
n similarly and we are done.

1THIS DIAGRAM DOES NOT COMMUTE!
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Remark 1.35. For any (left) ZG-module N , we can take a projective (resp. free) resolution of N by ZG-modules.Repeating everything we have done, and applying HomG (·,M) gives homology groups, which are called
ExtnZG (N,M)

and so Hn(G,M) = ExtnZG (Z,M)As above, the Ext-groups are independent of resolution.
2 Low degree cohomology, group extensions
2.1 First cohomologyRecall that H0(G,M) = MG is the group of invariants under G , and that a derivation (or a 1-cocycle) is a map
φ : G → M , such that

φ(g1g2) = g1φ(g2) + φ(g1)We will see two interpretations of (inner) derivations. Recall that an inner derivation is one of the form
φ(g) = gm−m, for some fixed m ∈ M .Let M be a ZG-module, and consider possible ZG-actions on the abelian group M ⊕ Z of the form

g(m, n) = (gm+ nφ(g), n)
In this case,

g1g2(m, n) = g1(g2m+ nφ(g2), n) = (g1g2m+ ng1φ(g2) + nφ(g1), n)On the other hand, (g1g2)(m, n) = (g1g2m+ nφ(g1g2), n)These are the same exactly when φ is a derivation. In particular, if M is a free Z-module of finite rank, thenwe get a map G → GL(M), by can write this as
g 7→

(
θ1(g) dg0 1 )where θ1(g) is the action of g on M . In particular, this is a homomorphism of groups if and only if φ is aderivation. Moreover, φ is an inner derivation if and only if (−m, 1) generates a ZG-submodule which is atrivial module inside M ⊕ Z. Lecture 5For the second interpretation:

Definition 2.1 (semidirect product)Let G be a group, M be a ZG-module. We can construct their semidirect product M ⋊ G as a group
M × G with operation (m1, g1) ∗ (m2, g2) = (m1 + g1m2, g1g2)

Here, we have an isomorphism
M ∼= {(m, 1) | m ∈ M}This is an abelian normal subgroup. Similarly, we have an isomorphism
G ∼= {(0, g) | g ∈ G}

and conjugation by {(0, g)} corresponds to the G-action on M .Moreover,
M ⋊ G

{(m, 1) | m ∈ M}
∼= G

Note that there is a group homomorphism s : G → M ⋊ G , s(g) = (0, g) is such that
G → M ⋊ G → G
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is the identity. s is called a splitting. Now if we have another splitting s1 : G → M⋊G , so that the composition
G → M ⋊ G → G is the identity. Define ψs1 : G → M , so that

s1(g) = (ψs1 (g), g)Then ψs1 ∈ Z 1(G,M), and given two splittings s1, s2, ψs1 − ψs2 ∈ B1(G,M) if and only if there exists an msuch that (m, 1)s1(g)(m1)−1 = s2(g)Conversely, given φ ∈ Z 1(G,M), there exists a splitting s1 such that φ = ψs1 .
Theorem 2.2. H1(G,M) correspond to the M-conjugacy classes of splittings.

Proof. Examples Sheet 1.
2.2 Second cohomology

Definition 2.3 (extension)An extension E of G by M for a group G , and a ZG-module M , is an exact sequence
0 M E G 1

where the maps are group homomorphisms. That is, M embeds in E , so that the image M is an abeliannormal subgroup. E acts on M by conjugation, and as M is abelian, we have an induced action on
E/M ∼= G . This agrees with the given G-action on M .
Example 2.4
E = M ⋊ G is an extension of G by M . This is called the split extension.
Definition 2.5 (equivalent)Two extensions are equivalent if we have a commuting diagram of group homomorphisms

E

0 M G 1
E ′

Remark 2.6. The vertical map is an isomorphism of groups. However, the converse is false. On examples sheet 1, wehave E, E ′ isomorphic groups, but inequivalent extensions.
Definition 2.7 (central extension)A central extension is one where the ZG-module is a trivial module.
Proposition 2.8. Let E be an extension of G by M . If there exists a splitting s1 : G → E , then E isequivalent to M ⋊ G .

Proof. Exercise.
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Theorem 2.9. Let G be a group, and M be a ZG-module. Then there exists a bijection between H2(G,M)and the equivalence classes of extensions of G by M .
Given an extenstion 0 M E G 1a section is a function s : G → E , such that the composition π ◦ s = id, where π is the map E → G . Note that

s need not be a group homomorphism. Suppose s(1) = 1. Let
φ(g1, g2) = s(g1)s(g2)s(g1g2)−1

Then
π(φ(g1g2)) = 1and so φ(g1, g2) ∈ ker(π) = M . That is, we have a map φ : G2 → M , which is a 2-cochain. In fact, it is a2-cocycle.

s(g1)s(g2)s(g2) = φ(g1, g2)s(g1g2)s(g3)= φ(g1, g2)φ(g1g2, g3)s(g1g2g3) (∗)Similarly,
s(g1)s(g2)s(g3) = s(g1)φ(g2, g2)s(g2g3)= s(g1)φ(g2g3)s(g1)−1s(g1)s(g2g3)= s(g1)φ(g2g2)s(g1)−1φ(g1, g2g3)s(g1g2g3) (∗∗)Equating (∗) and (∗∗), cancelling the s(g1g2g3), and changing into additive notation, we get

φ(g1, g2) + φ(g1g2, g3) = g1φ(g2, g3) + φ(g1, g2g3)Hence dφ(g1, g2, g3) = 0and so φ ∈ Z 2(G,M). Note φ is normalised. That is, φ(1, g) = φ(g, 1) = 0. So what we have shown is thatan extension of G by M , along with a choice of section s, yields a normalised 2-cocycle φ ∈ Z 2(G,M).Now take another choice of section s′, with s′(1) = 1. Then the corresponding normalised cocycles φ and
φ′ differ by a coboundary, and so we have defined a map

{extensions} → H2(G,M) Lecture 6To see this, note that π(s(g)s′(g)−1) = 1, and ψ(g) = s(g)s′(g)−1 ∈ ker(π) = M . Thus, we have a map
ψ : G → M . Then

s′(g1)s′(g2) = ψ(g1)s(g1)ψ(g2)s(g2)= ψ(g1)s(g1)ψ(g2)s(g1)−1s(g1)s(g2)= ψ(g1)s(g1)ψ(g2)s(g1)−1φ(g1, g2)s(g1g2)= ψ(g1)s(g1)ψ(g2)s(g2)−1φ(g1, g2)ψ(g1g2)−1s′(g1g2)Switching to additive notation:
φ′(g1, g2) = ψ(g1) + g1ψ(g2) + φ(g1, g2) − ψ(g1g2)= φ(g1, g2) + dψ(g1, g2)Thus, φ and φ′ differ by a coboundary. For the rest of the proof, we need:(a) to show that equivalent extensions give the same cohomology class,(b) construct an inverse map from cohomology classes to extensions,(c) show that the two maps are inverse to each other.We will show (b), and leave (a) and (c). For this, we need
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Lemma 2.10. Let φ ∈ Z 2(G,M). Then there exists a cochain ψ ∈ C 1(G,M), such that φ + dψ is anormalised cocycle. Hence every cohomology class can be reresented by a normalised cocycle.
Proof. Let ψ(g) = −φ(1, g). Then

(φ + dψ)(1, g) = φ(1, g) − (φ(1, g) − φ(1, g) + φ(1, 1)) = φ(1, g) − φ(1, 1)
and (φ + dψ)(g, 1) = φ(g, 1) − gφ(1, 1)But we know that dφ(1, 1, g) = dφ(g, 1, 1) = 0 as φ is a cocycle. A computation shows that both of the aboveare zero.Now take a normalised cocycle φ representating our cohomology class. We construct an extension asfollows. 0 M Eφ G 1
by considering E = M × G , with the product structure

(m1, g1)(m2, g2) = (m1 + g1m2 + φ(g1, g2), g1g2)For this to be a group operation, we use that φ is normalised. In this case, we do have an extension, wherethe map π is projection onto the second factor. Notice if we have another normalised 2-cocycle φ′ representingour cohomology class, then φ − φ′ = dψ is a coboundary, and we can define a map
Eφ → Eφ′(m, g) 7→ (m+ ψ(g), g)

This gives us an equivalence of extensions.
Example 2.11 (central extensions of Z2 by Z)Note we already know of (at least) two such. We could have

0 Z Z ⊕ Z2 Z2 0
and we also have the Heisenberg group

H =

1 r m1 s1

 ∣∣∣∣ r, s, m ∈ Z


and we have an extension given by

m 7→

1 0 m1 01


1 r 01 01
 7→ (r, s)

Now if we write things multiplicatively, T ∼= Z2 is generated by a, b. We have a free resolution
0 ZT (ZT )2 ZT Z 0β α ε

where
β(z) = (z(1 − b), z(a− 1))

α(x, y) = x(a− 1) + y(b− 1)
14



and ε is the augmentation map. Now applying HomT (·,Z), we get the chain complex
HomT (ZT ,Z) HomT ((ZT )2,Z) HomT (ZT ,Z) 0α∗ β∗

In fact, α∗, β∗ are the zero maps, and so H2(T ,Z) = HomT (ZT ,Z) ∼= Z, with generator corresponding tothe augmentation map ε : ZT → Z.To see that α∗, β∗ are zero, take a ZT -map f : (ZT )2 → Z and z ∈ ZT , then
(β∗f )(z) = f (β(z))= f (z(1 − b), z(a− 1))= f (z − bz, 0) + f (0, za− z)= (1 − b)f (z, 0) + (a− 1)f (0, z) = 0

The proof that α∗ is zero is similar.Next, we will interpret H2(T ,Z) in terms of cocycles from the bar resolution. We will construct a chainmap
ZT{T (2)} ZT{T (1)} ZT{T (0)} Z 0

ZT (ZT )2 ZT Z 0
ε

β α

id =f1f2

Note that for degrees −1 and 0, we can just take the identity map. To construct f1 : ZT{T (1)} → (ZT )2,we need that αf1 = d. So we just need to define the image of the symbols [arbs], for r, s ∈ Z. Say
f1([arys]) = (xr,s, yr,s)

and we need
α(xr,s, yr,s) = darbs = arbs − 1 = (ar − 1)bs + (bs − 1)Define

S(a, r) = {1 + a+ · · · + ar−1 r > 0
−a−1 − · · · − ar r ≤ 0

We note that S(a, r)(a− 1) = ar − 1 in both cases. Then
α(S(a, r)bs, S(b, s)) = S(a, r)bs(a− 1) + S(b, s)(b− 1) = darbs

as required. So we can define
f1[arbs] = (S(a, r)bs, S(b, s))

Lecture 7
Example 2.12 (continued)We need to define f2. For each [arbs | atbu], we find

zrstu ∈ ZT

such that
f1d2[arbs | atbu] = β(zrstu)Note that

f1d2[arbs | atbu] = f1(arbs[atbu] − [ar+tbs+u] + [arbs])= arbsS(a, t)bu − S(a, r + t)bs+u + S(a, r)bs − arbsS(b, u) − S(b, s+ u) + S(b, s)

15



Note that
zrstu = S(a, r)bsS(b, u)works. So we define

f2[arbs | atbu] = S(a, r)bsS(b, u)Now we find a cochain φ : T 2 → Z representing the cohomology class p ∈ Z = HomT (ZT ,Z) = H2(T ,Z).Such a cochain is given by the composition
T 2 ZT Zpεf2

φ

Since ε(S(a, r)) = r , we find that
φ(arbs, atbu) = pε(zrstu) = pru

The group structure on Z × T correspnding to φ is
(m, arbs)(n, atbu) = (m+ n+ pru, ar+tbs+u)

This corresponds to the group of matrices
1 pr m0 1 s0 0 1

 ∣∣∣∣ r, s, m ∈ Z


2.3 Group extensions by presentationsAnother approach to consider (central) extensions is to use a partial resolution arising from generators andrelations.Let G be a group, and let X be a generating set. Then we have a canonical map F = F (X ) ↠ G . Let Rbe the kernel. Then we have a short exact sequence

1 R F G 1
which is the presentation of G . The subgroup R can be thought of as the set of relations. Now R ⊴ F , and so
F acts on R by conjugation. Often we take a set of generators of R as a normal subgroup for F .Let Rab = R/[R, R ] be the abelianisation of R . It inherits an action of F , but R acts trivially on Rab, and sowe ahve an induced action by G = F/R . Thus, Rab is a ZG-module, called the relation module.Associated to this is an extension

1 Rab F/[R, R ] G 1
For a central extension, we need

1 R/[R, F ] F/[R, F ] G 1
Unfortunately, there isn’t a largest (or univeral) central extension, since we can always form direct productswith an abelian group. The central extension above does have good properties.

Theorem 2.13 (MacLane). Given a presentation of G , let M be a left ZG-module. Then there is an exactsequence H1(F,M) HomG (Rab,M) H2(G,M) 0Thus, any equivalence class of extensions of G by M corresponding to a cohomology class, arises from a
ZG-map Rab → M .
Note that M is a ZF-module, via the map F → G .

16



Corollary 2.14. In the above, if M is a trivial module, then we have
Hom(F,M) HomG (R/[R, F ],M) H2(G,M) 0

Proof. M is a trivial ZF-module, and so H1(F,M) = Hom(F,M) which are the group homomorphisms to anabelian group, which factors through the abelianisation. So H1(F,M) = Hom(Fab,M).Similarly, HomG (Rab,M) = HomG (R/[R, F ],M).There is also a connection with homology groups. Given a projective resolution of the trivial ZG-module Z,instead of applying Hom(·,M), we can apply the functor Z ⊗ZG ·. We get a chain complex, and we can definethe associated homology groups.The homology groups don’t depend on the choice of resolution. We will write the homology groups asHn(G;Z).
Definition 2.15 (Schur multiplier)The Schur multiplier (or multiplicator) is M(G) = H2(G;Z).
This is important for studying central extensions.

Theorem 2.16 (universal coefficient). Let G be a group, and M be a trivial ZG-module. Then there is ashort exact sequence
0 Ext1(Gab,M) H2(G,M) Hom(M(G),M) 0

where Ext1(Gab,M) arises by applying HomZ(·,M) to a projective resolution of an abelian group Gab.
Corollary 2.17. Suppose G = [G,G]. Then Gab = 1, and we get that

H2(G,M) ∼= Hom(M(G),M)
Remark 2.18. Sometimes people define the Schur multiplier to be H2(G,C∗) instead of H2(G;Z). Schur was consid-ering projective representations, G → PGL(C). Such a map lifts to a linear representation of a central extension of
G .
There is a formula:

Theorem 2.19 (Hopf). Given a presentation G = F/R ,
M(G) = [F, F ] ∩ R[R, F ]

Note that this is not necessarily all of F/[R, F ].
Remark 2.20. This shows that ([F, F ] ∩ R )/[R, F ] is independent of the choice of presentation.

Lecture 8Define IF = ker(ε : ZF → Z), and IR = ker(ZF → ZG), where the map ZF → ZG is induced by the map
F → G . These are ideals in ZF .
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Proposition 2.21. We have an exact sequence
IR /IR

2 IF /(IR IF ) ZG Z 1d2 d1 ε

where d1 is induced by the map ZF → ZG , and d2 is induced by the inclusion IR ↪→ IF . Furthermore,
IF /(IR IF ) and IR /IR 2 are free left ZG-modules.Finally, im(d2) = IR /(IR IF ), which is isomorphic to Rab as ZG-modules.
Remark 2.22. Here, Rab is a ZG-module via the action induced on R by conjugation by F .From Geometric Group Theory, we know that subgroups of free groups are free, and so R is a free group. Thus,
Rab is a free abelian group, on the same alphabet as R .This partial resolution can be completed to a full resolution, called the Gruenberg resolution.In practice, when wanting to deduce information about second (co)homology, it is enough to know about the imageof d2 .
Lemma 2.23. Let G be a group, and M is a (left) ZG-module. Then(i) IG = ker(ε : ZG → Z) is a free abelian group under addition, on the basis {g− 1 | g ∈ G \ 1},(ii) IG /I2G ∼= Gab,(iii) Der(G,M) ∼= HomG (IG ,M).

Proof. For (i), the kernel of ε : ZG → Z are of the form∑
ngg

where ∑
ng = 0In this case, we can write ∑

ngg =∑ng(g− 1) +∑ng =∑ng(g− 1)
Clearly anything of this form is in the kernel of ε. Also, the set {g− 1 | g ∈ G \ 1} forms a basis, since if∑

ng(g− 1) = 0
Then by reading off the coefficient of g, we see that ng = 0.For (ii), define a group homomorphism

θ : IG → Gab
g− 1 7→ g[G,G]

But (g1 − 1)(g2 − 1) = (g1g2 − 1) − (g1 − 1) − (g2 − 1), and so I2G ⊆ ker(θ). Hence we have a natural map
IG /I2G → Gab.Conversely, define φ : G → IG /I2G , by sending g → (g−1)+ I2G . This is a group homomorphism. Since IG /I2Gis abelian, we have an induced map φ : Gab → IG /I2G . Then we can check that these two maps define inverses.For (iii), the map sends a derivation φ to θ ∈ HomG (IG ,M), where θ(g − 1) = φ(g). We can check that θis a ZG-map. Conversely, given θ ∈ HomG (IG ,M), define φ by φ(g) = θ(g− 1).

Lemma 2.24. (i) Let F be a gree group on X . Then IF is a free ZF-module, on X̃ = {x − 1 | x ∈ X}.(ii) If R is a normal subgroup of F , then R is free on a set Y , then IR is a free (left) ZF-module on
Ỹ = {y− 1 | y ∈ Y }.
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Proof. For (i), let α : X̃ → M be a function, to a ZF-module M . By definition of freeness, it suffices to showthat α extends to a ZF-map IF → M .First let α ′ : F → M ⋊ F , defined by α ′(x) = (α(x − 1), x). This is a group homomorphism as F is free.Thus for each f ∈ F , α ′(f ) = (a, f ) for some a ∈ M . Then we have a function α : F → M , sending f to a.Hence
α ′(f ) = (α(f ), f )Note that

α(f1f2) = α(f1)α(f2)= (α(f1), f1)(α(f2), f2)= (α(f1) + f1α(f2), f1f2)Hence α(f1f2) = α(f1) + f1α(f2). Hence α is a derivation F → M . By the previous lemma, we have acorresponding ZF-map IF → M .For (ii), suppose ∑
ry(y− 1) = 0with ry ∈ ZF . Choose a transversal T to the cosets of R in F . We can write

ry =∑
t∈T

tst,y

with st,y ∈ ZR . So ∑
t∈T

∑
y∈Y

tst,y(y− 1) = 0
Since ZF is free abelian, for each t , ∑

y∈Y

st,y(y− 1) = 0
But IR is a free ZR-module on {y− 1 | y ∈ Y } by (i), and so st,y = 0 for all y ∈ Y , t ∈ T .

Proof of proposition 2.21. By (i) of the preceding lemma, IF is a free ZF-module on {x − 1 | x ∈ X}. Hence
IF /(IR IF ) is a free left ZG-module, on the basis {x − 1 | x ∈ X}.Now IR is a free left ZF-module on {y−1 | y ∈ Y }. So IR /IR 2 is a free left ZG-module on {y−1 | y ∈ Y }.The image of d2 is IR /(IR IF ). Consider IR as a right ZF-module. By the analogous version of the lemmawith right modules, this is a free right ZF-module on {y− 1 | y ∈ Y }. So IR /(IR IF ) is a free abelian group on
{y− 1 | y ∈ Y }, and so is isomorphic to Rab as they are free abelian groups on the same basis.For the left ZG-action, we have that

g(y− 1) ≡ (gyg−1 − 1)g (mod IR IF )
≡ (gyg−1 − 1) (mod IR IF )So this left ZG-action corresponds to the conjugation action of G on Rab.Exactness is basically clear from definitions, since im(d1) = IG = ker(ε) and ker(d1) = IR /(IR IF ) = im(d2). Lecture 9

Lemma 2.25. Given a projective resolution
· · · P1 P0 Zd1

Let Jn = im(dn) ⊆ Pn−1, and let ψ : Pn → Jn be the induced map. Then(i) For a left ZG-module M , we have an exact sequence
HomG (Pn−1,M) HomG (Jn,M) Hn(G,M) 0

where the first map is by restriction.
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(ii) There is an exact sequence
0 Hn(G,Z) Z ⊗ZG Jn Z ⊗ZG Pn−1

Proof. For (i), we have
Pn+1 Pn Jn 0

Pn−1

ψ

dn
ι

where the first row is exact. So we have
HomG (Pn+1,M) HomG (Pn,M) HomG (Jn,M) 0

HomG (Pn−1,M)
ψ∗dn+1

dn
ι∗

where the first row is exact. So im(ψ∗) = ker(dn+1), ker(ψ∗) = 0. With this, im(ψ∗) ∼= HomG (Jn,M).But also im(dn) = im(ψ∗ ◦ ι∗) ∼= im(ι∗). Thus,
Hn(G,M) = ker(dn+1)im(dn) = im(ψ∗)im(ι∗) = HomG (Jn,M)im(ι∗)(ii) is similar.

Proof of theorem 2.13. Applying the previous lemma to our partial resolution, we get an exact sequence
HomG

(
IF
IR IF

) HomG (Rab,M) H2(G,M) 0
But

HomG

(
IF
IR IF

,M
) = HomF

(
IF
IR IF

,M
)

= HomF (IF ,M)
since M is a ZG-module, and so it is trivial as a ZR-module. Thus, any ZF-map IF → M factors through
IF /IR IF . But HomF (IF ,M) = Der(F,M)by lemma 2.23 (iii). Recall an inner derivation is of the form

f 7→ (f − 1)m
In particular, any inner derivation sends r 7→ 0, where r ∈ R . Thus, the restriction map

HomG

(
IF
IR IF

)
→ HomG (Rab,M)

sends inner derivations to zero. Hence we have an induced map
H1(F,M) → HomG (Rab,M)

and we are done.
Remark 2.26. We will see this again with the five term exact sequence.
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Proof of theorem 2.19. Apply the lemma again, we get
0 H2(G,Z) Z ⊗ZG Rab Z ⊗ZG

IF
IR IF

But Z ⊗ZG · is the same as taking the coinvariants, and so
Z ⊗ZG Rab = R[R, F ]

Z ⊗ZG
IF
IR IF

= IF
I2F = F[F, F ] = Fab

The kernel of the map
R[R, F ] → F[F, F ]is [F, F ] ∩ R[R, F ]

Example 2.27Let G = V = (Z/2Z)2 be the Klein 4 group. Say x, y are generators, F = F2 free group on x, y, R isgenerated as a normal subgroup of F by x2, y2, [x, y]. So
G = 〈x, y | x2, y2, [x, y]〉

Note another presentation is G = 〈x, y | x2, y2, (xy)2〉. Let
RD = 〈〈x2, y2, (xy)4〉〉

Note that RD ⊆ R , and so we have a map D8 = F/RD → F/R = V . Note that the kernel of this map isthe centre of D8. So [R, F ] ⊆ RD , and [R, F ] ⊊ [F, F ]. In Hopf’s formula, [F, F ] is generated as a normalsubgroup by [x, y], and so [F, F ] ⊆ R . So in the formula, [F, F ] ∩ R = [F, F ].Observe 1 ≡ [x, y2] ≡ [x, y]y[x, y]y−1 ≡ [x, y]2 (mod [R, F ]). Hence [F, F ]/[R, F ] is generated by [x, y]as a ZF module, and is a trivial module, and is killed by multiplication by 2. So
M(G) = [F, F ][R, F ]

is either 0 or Z/2. But [R, F ] ̸= [F, F ], so M(G) = Z/2.
Remark 2.28. The universal coefficient theorem and the corollary will be left unproved.

3 Brauer groups and Galois cohomology

Definition 3.1 (central simple algebra)A central simple algebra A over a field k is a finite dimensional k-vector space, with associative multipli-cation. Moreover, Z (A) = k and the only two-sided ideals are 0 and A.
Example 3.2Matn(k ) is a central simple algebra.
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Example 3.3Let k = R. Then the quaternions H is a central simple algebra. This is in fact a division ring, anynon-zero element has a multiplicative inverse.
We would like to classify central simple k-algebras, for a field k .

Theorem 3.4 (Artin-Wedderburn). A finite dimensional simple k-algebra A is isomorphic to Matn(D),where D is a division ring over k .
We will prove this later.

Remark 3.5. Note that Z (A) = {λI | λ ∈ Z (D)}.
We will define an equivalence relation on central simple k-algebras: We say that A ∼ B if

A ⊗k Matn(k ) ∼= B ⊗k Matm(k )
for some m, n. From Artin-Wedderburn, A ∼= Mn(D), and so [A] = [D].

Definition 3.6 (Brauer group)The Brauer group Br(k ) is the set of equivalence classes, with
[A][B] = [A ⊗k B]

Recall that (a1 ⊗ b1)(a2 ⊗ b2) = (a1a2) ⊗ (b1b2)This has identity element [k ] = [Matn(k )]and [A]−1 = [Aop] Lecture 10
Definition 3.7 (opposite ring)
Aop is the k-algebra with the same underlying k-vector space, but with

a ·op b = b · a

Remark 3.8. A right (resp. left) A-module is the same as a left (resp. right) Aop-module.
Lemma 3.9. A ⊗ Aop ∼= Matn(k ), where n = dimk (A).
We will prove this later.

Example 3.10If k is algebraically closed, Br(k ) = 1 since any division algebra D which is finite dimensional over k is
k itself, since any non-zero element is algebraic over k , and so in k .
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Example 3.11Br(R) = {[R], [H]}.
Definition 3.12The subgroup Br(L/k ) of Br(k ) is the group of equivalence classes represented by a central simple k-algebra A, such that A ⊗K L ∼= Matn(L) for some n, and L/k is (finite) Galois. In this case, we say that Ais split by L.
We will prove

Theorem 3.13. There exists a homomorphism of abelian groups
H2(Gal(L/k ), L×) → Br(L/k )

which sends [φ] to [A(L, G, φ)], where G = Gal(L/k ). A(L, G, φ) is a crossed product which we will construct.
Remark 3.14. In fact, this homomorphism is an isomorphism.
Remark 3.15. We have a directed union

Br(k ) = ⋃
L/kfinite Galois Br(L/k )

and so we can express Br(k ) as a directed union of second cohomology groups.
Example 3.16When k = R, we know that there are only two Galois extensions, namely R and C. We know Gal(C/R)is cyclic of order 2, generated by complex conjugation. In this case, H2(G,C∗) = Z/2Z, generated by φsay.In our prototypical example, H = A(C, C2, φ). In this case, we can write

C = R ⊕ Ri ⊆ H ⊕ C ⊕ Cj

C is a maximal subfield of H, and we have a basis e1 = 1, eφ = j over C.We have a map φ : G × G → C∗, given by
eσeτ = φ(σ, τ)eστ

Here, φ(σ, τ) ∈ C∗ and φ is a normalised 2-cocycle.
Our general construction will start from a Galois extension L/k , and constructing an algebra with a 2-cocycletelling us how to multiply basis elements.Before that, we need to prove some things:

Proof of theorem 3.4. Consider the sum I of the minimal non-zero right A-submodules of AA , which is A thoughtof as a right A-module.Thus, I is a sum of simple right A-modules.Let M be a simple right A-submodule of AA , consider the map
θa : M → aM

m 7→ am

θa is a right A-module map. Since M is simple, θa is zero or injective. Thus, aM is either zero or itself asimple submodule of AA , isomorphic to M .
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Now consider ∑
a∈A

aM

This is a two-sided ideal of A, and it is the sum of simple right A-modules isomorphic to M . Thus,
AA =∑

a∈A

aM

We need
Lemma 3.17 (Schur’s lemma). EndA(M) ∼= D is a division algebra, for a simple right A-module M .

Proof. Any module map φ : M → M is either zero or an isomorphism, by considering the options of ker(φ) andim(φ). Thus, any non-zero element of EndA(M) is invertible.Now AA is a sum of simple right A-submodules, isomorphic to M . An easy induction shows that we maytake AA to be a direct sum. Thus,
AA =⊕

i
Mi

where Mi
∼= M . Now EndA(AA) ∼= Matn(EndA(M))But as k-algebras, A ∼= EndA(AA), since an endomorphism is determined by the image of 1. Thus, A ∼=Matn(D).

Corollary 3.18. Every finitely generated right A module V is isomorphic to a direct sum of copies of M(as above), and any two A-modules with the same dimension are isomorphic.Moreover, EndA(V ) ∼= Matr (D) for some r .
Proof. Let M be a simple submodule of AA , v1, . . . , vs be a set of generators of V as a right A-module. Thenthe map (a1, . . . , as) 7→

∑
i
aivi

shows V as a quotient of a sum of copies of AA . But AA is a direct sum of copues of M , and so V is a quotientof a direct sum of copies of M .Induction shows that V ∼= ⊕iMi, where Mi is isomorphic to M . In particular,
EndA(V ) ∼= Matr (D)

where D = EndA(M) and the dimension of V as a k-vector space determines r . Lecture 11
Definition 3.19Let V be a finite dimensional k-vector space, with basis {ei}i∈I . For v ∈ V , define its support

J(v ) = {i ∈ I | ai ̸= 0}

where
v =∑

i
aiei

For W a subspace of V , w ∈ W non-zero is primordial with respect to the basis if1. J(w) is minimal amongst {J(w ′) | w ′ ∈ W },2. ai = 1 for some i, when w =∑aiei.
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Lemma 3.20. (i) For w,w ′ ∈ W , with J(w) minimal, J(w ′) ⊆ J(w) if and only if w ′ = cw for some
c ∈ k . If so, J(w) = J(w ′).(ii) The primordial elements span W .

Proof. (i) is clear. For (ii), induct on |J(w)|. Let
w = |i ∈ J(w)|aiei

Amongst non-zero elements w ′ ∈ W with J(w ′) ⊆ J(w), choose one with |J(w ′)| minimal. Then w0 = cw ′ forsome c ∈ k× is primordial. Now
w = ajw0 + (w − ajw0)with w − ajw0 ∈ W , and ∣∣J(w − ajw0)∣∣ < |J(w)|.By the inductive hypothesis, w − ajw0 is a linear combination of primordial elements.

Remark 3.21. All of the same applies for vector spaces over division algebras.
Lemma 3.22. Let A be a k-algebra, D a division algebra over k , with centre k . Then every two-sidedideal I of A ⊗k D is generated as a left D-module by I ∩ (A ⊗ 1).

Proof. The left D-module structure on A ⊗k D is given by
δ(a⊗ δ ′) = a⊗ (δδ ′)

The ideal I is a D-submodule of A ⊗k D.Let {ei}i∈I be a basis for A as a k-vector space, then {ei ⊗ 1}i∈I is a basis for A⊗k D as a left D-module,Let r ∈ I be primordial with respect to this basis, say
r = ∑

i∈J(r) δi(ei ⊗ 1) = ∑
i∈J(r) ei ⊗ δi

For any non-zero δ ∈ D, rδ ∈ I , and
rδ =∑

i
δiδ(ei ⊗ 1)

In particular, J(rδ) = J(r), and so rδ = δ ′r for some δ ′ ∈ D.Since r is primordial, we have that δi = 1 for some i, δ = δ ′, and so each δi ∈ Z (D) = k , and so r ∈ A⊗1.Hence every primordial element of I is in A⊗ 1. But by the previous lemma, the primordial elements span.
Proposition 3.23. The tensor product of two finite dimensional simple k-algebras, at least one of whicbis central, is simple.

Proof. By Artin-Wedderburn, we may assume that one of the algebras is Matn(D), where D is a division ringover k and central. Let A be the other simple algebra. By the lemma, A⊗kD is simple. So by Artin-Wedderburn,
A ⊗k D ∼= Matn′ (D′) for some division algebra D′ over k , and thus,

A ⊗k Matn(D) ∼= Matn(A ⊗k D) ∼= Matn(Matn′ (D′)) = Matnn′ (D′)
and this is simple.
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Corollary 3.24. The tensor product of two central simple k-algebras is a central simple k-algebra.
Proof. Use the proposition, along with the fact that

Z (A ⊗k B) = Z (A) ⊗k Z (B)
Thus, the Brauer group is defined. For the inverses, consider thr ring homomorphism

A ⊗k Aop → End(V )
a⊗ a′ 7→ (v 7→ ava′)

Here, V is the vector space underlying A and Aop. The map is injective, since A ⊗ Aop is simple, and 1 ⊗ 1 ismapped to the identity. By dimension counting, it is a linear isomorphism.
Definition 3.25Let G = Gal(L/k ), where L/k is a finite Galois extension, and φ : G ×G → L× is a normalised 2-cocycle.We will define A = A(L, G, φ).As a L-vector space, let A have basis {eσ}σ∈G . The multiplication is(∑

σ∈G

λσeσ

)(∑
τ∈G

µτeτ

) = ∑
σ,τ∈G

λσσ (µτ )φ(σ, τ)eσ,τ
This has multiplciative identity e1, since φ is normalised. The multiplication is associative, since φ is a2-cocycle.
The centre of A(L, G, φ) is k . To see this, assume

x =∑ λσeσ ∈ Z (A)
Then for β ∈ L, (βe1)x = x(βe1). That is,∑

σ
(βλσ )eσ =∑

σ
λσσ (β)eσ

Thus, β = σ (β) for any β ∈ L, σ ∈ G with λσ ̸= 0. Thus, λσ = 0 for σ ̸= 1, and hence x = λ1e1. But this hasto commute with all eτ , and so
Z (A) = ke1 ∼= kNext, we note that A is simple. Let I be a two-sided dieal, and x ∈ I non-zero. Say

x = λσ1eσ1 + · · · + λσmeσmwith m minimal2. If m > 1, we can find β ∈ L× such that σm(β) ̸= σm−1(β). Then
y = x − σm(β)xβ−1 ∈ I

The coefficient of eσm in y is zero, and this contradicts minimality. So x = λσeσ for some σ ∈ G . This is a unit,and has inverse x−1 = σ−1(λ−1
σ )eσ−1 . Hence I = A. Lecture 12Suppose [φ] = [φ′], where φ, φ′ are normalised 2-cocycles. Then φ, φ′ differ by a coboundary. So

φ′(σ, τ) = φ(σ, τ)σ (uτ )u−1
στ uσwhere we write things multiplicatively, and u : G → L×. Define a L-linear map

F : A(L, G, φ′) → A(L, G, φ)
F (e′

σ ) = uσeσ
2We choose x such that m is minimal.
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With this,
F (e′

σ )F (e′
τ ) = F (e′

σe′
τ )and so F is an algebra homomorphism A(L, G, φ′) → A(L, G, φ). But these are simple algebras, and the equalityof dimension on both sides means that F is an isomorphism.Thus, the map H2(G, L×) → Br(k ) only depends on the cohomology class. Recall that every cohomologyclass is represented by a(t least one) normalised cocycle. It remains to show our map

H2(Gal(L/k ), L×) → Br(k )
is a homomorphism of abelian groups.

Lemma 3.26. For normalised 2-cocycles φ, φ′,
A(L, G, φ + φ′) ∼ A(L, G, φ) ⊗ A(L, G, φ′)

Proof. Let A = A(L, G, φ), B = A(L, G, φ′), C = A(L, G, φ + φ′). Regard A, B as left L-vector spaces. Define
V = A ⊗L B. Note that

V = A ⊗k B
⟨(la) ⊗ b− a⊗ (lb) | a ∈ A, b ∈ B, l ∈ L⟩

V has a right A ⊗k B-structure, given by
(a′ ⊗L b′)(a⊗k b) = (a′a) ⊗L (b′b)

and V has a left C-module structure,
(le′′

σ )(a⊗L b) = (leσa) ⊗L (e′
σb)where (eσ ) is a basis of A, (e′

σ ) is a basis of B, and (e′′
σ ) is a basis of C .The two actions commute, and so the right action of A ⊗k B on V defines a homomorphism

f : (A ⊗k B)op → EndC (V )
Note here we need the opposite ring since we think of EndC as endomorphisms as a left-module. f is injective,since A ⊗k B is simple.

Claim 3.27. The two algebras have the same dimension, and so f is an isomorphism.
We’ll assume this for now. Then note that

EndC (V ) ∼ C op
since we swap from a left C-module to a right C op-module. Thus,

(A ⊗k B)op ∼ C op
and so A ⊗k B ∼ C , and [A][B] = [A ⊗k B] = [C ] in Br(k ).
Proof of claim. We know that C is a simple algebra, and so C op is as well. V is a left C-module, and so it isa right C op-module. Moreover,

V ∼= r⊕
i=1 Mwhere M is a simple C op-module. Thus,

EndC (V ) ∼= EndC op (V ) ∼= Matr (D)
for some division algebra D = EndC op (M). But

C op ∼= m⊕
i=1 M

27



by Artin-Wedderburn, which in turn is isomorphic to Matm(D), with dim(M) = m dim(D).Now consider dimensions,
dim(V ) = dim(M)dim(C ) = dim(C op) = m2 dim(D)dim(EndC (V )) = r2 dim(D)

and so dim(EndC (V )) dim(C ) = dim(V )2

Remark 3.28. The dimension count can also be done using the double centraliser theorem.
Theorem 3.29 (double centraliser). Let A be a central simple k-algebra, with simple subalgebra B. Then(i) the centraliser CA(B) is also simple,(ii) dim(B) dim(CA(B)) = dim(A)(iii) CA(CA(B)) = A.(iv) if B is central, then CA(B) is central and A = B ⊗k CA(B).

Proof. Exercise.In fact, the image of the map H2(Gal(L/k ), L×) → Br(k ) is contained in Br(L/k ). See the examples sheet.
Remark 3.30. (i) By a theorem of Wedderburn, if k is a finite field, then Br(k ) is trivial. This is becuase finitedivision algebras are fields.(ii) for a non-Archimedean local field k , Br(k ) ∼= Q/Z,(iii) for a number field K , we have a short exact sequence

0 Br(K ) ⊕
v Br(Kv ) Q/Z 0

4 General theory
4.1 Long exact sequence of cohomology

Proposition 4.1 (long exact sequence of cohomology). Let
0 M1 M2 M3 0

be a short exact sequence, then we have a long exact sequence
· · · Hn(G,M1) Hn(G,M2) Hn(G,M3)

Hn+1(G,M1) Hn+1(G,M2) Hn+1(G,M3) · · ·
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Lemma 4.2 (snake). Let 0 A• B• C• 0be a short exact sequence of chain complexes, then there exists connecting maps δ : Hn+1(C•) → Hn(A•),such that we have a long exact sequence
· · · Hn+1(C•) Hn(A•) Hn(B•) Hn(C•) · · ·

Proof of proposition 4.1. Consider a projective resolution P• of Z. Since the modules in the resolution areprojective, we have a short exact sequence of chain complexes
0 HomG (P•,M1) HomG (P•,M2) HomG (P•,M3) 0

Apply the snake lemma.
4.2 Cup product

Definition 4.3 (cup product)Given [u] ∈ Hp(G,M), [v ] ∈ Hq(G,N), define their cup product [u] ⌣ [v ] = [u ⌣ v ] ∈ Hp+q(G,M ⊗Z N)by defining it on cochains:The diagonal action of G on M ⊗Z N is given by
g(m⊗ n) = (gm) ⊗ (gn)

Let u ∈ Cp(G,M), v ∈ Cq(G,N), define u ⌣ v ∈ Cp(G,M ⊗N) by
(u ⌣ v )(g1, . . . , gp+q) = (−1)pqu(g1, . . . , gp) ⊗

(
g1 · · ·gpv (gp+1, . . . , gp+q))

This induces a cup product on cohomology classes.
In degree zero, H0(G,M) → H0(G,N) → H0(G,M ⊗N)corresponds the map MG ⊗NG → (M ⊗N)G induced by inclusions. Lecture 13Moreover, there exists 1 ∈ H0(G,Z) which is the unit for the cup product. For associativity, if we have

ui ∈ H∗(G,Mi), then
(u1 ⌣ u2) ⌣ u3 = u1 ⌣ (u2 ⌣ u3) ∈ H∗(G,M1 ⊗M2 ⊗M3)In addition, this is graded commutative. For u ∈ Hp(G,M), v ∈ Hq(G,N), then

u ⌣ v = (−1)pqα∗(v ⌣ u)
where α : M ⊗N → N ⊗M is the canonical isomorphism. This means that H∗(G,Z) is graded commutative.

Remark 4.4. Graded commutative does not imply commutative. But if we restrict outselves to cohomology of evendegree only, then it is commutative.
Moreover, we have a natural graded H∗(G,Z)-module structure on H∗(G,M).Now suppose α : H → G is a group homomorphism. Then α∗(u ⌣ v ) = α∗u ⌣ α∗v , for u ∈ H∗(G,M) and

v ∈ H∗(G,N). Thus,
α∗ : H∗(G,Z) → H∗(H,Z)is a ring homomorphism.

Remark 4.5. Recall that we can take a projective resolution of M , and apply HomG (·, N), for ZG-modules M,N , toget Extn(M,N). Taking M = N , we get Extn(M,M), which is a graded H∗(G,Z)-module. So we can study modules
M by considering these modules for H∗(G,Z).
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See Benson-Carlson.
5 Lyndon-Hochschild-Serre spectral sequence
Let G be a group, H be a normal subgroup, Q = G/H . We would like to calculate the cohomology of G fromthat for H and Q. In low degree, we get the five term exact sequence. We use a general method for calculating(co)homology of double complexes using filtrations.For the Lyndon-Hochschild-Serre spectral sequence, we have a particular double complex. Let X • be a
ZG-projective resolution of Z. amd Y • be a ZQ-projective resolution of Z. Then X • is also a ZH-projectiveresolution of Z. Let M be a ZG-module. Then G acts on HomH (X •,M) by

(gf )(x) = g(f (g−1x))
Since H acts trivially under the above action, we may view HomH (X •,M) as a ZQ-module. We then form adouble complex

A = HomQ(Y •,HomH (X •,M))with differentials
d′ = HomQ(dy, id)d′′ = HomQ(id, d∗

X )
In this case, Ap,q is zero outside of the first quadrant. In general, we have a double complex Ap,q, and differentialsd′, d′′ of degree (1, 0) and (0, 1) respectively. Here, we require

(d′)2 = (d′′)2 = 0
and d′d′′ + d′′d′ = 0Thus, if we set d = d′ + d′′, then d2 = 0. In our case, we don’t have this unless if we put in alternating signs ineither of the differentials. We’ll follow the convention from Cartan-Eilenberg, which is that we don’t write thesigns, but remember that they are implied. We imply a (−1)p where p is the grading on X . Write

An = ⊕
p+q=nA

p,q

Consider the cohomology of the total complex (An, d).The strategy is to filter the total cohomology by using subcomplexes F pA, whose components to the left ofthe p-th column are zero. Then (F pA)n =⊕
p′≥p

Ap′,n−p′

Note (F 0A)n = An, and (F pA)n = 0 for p > n. The inclusions F pA ↪→ A induces a map Hn(F pA) → Hn(A). Weset
F pHn(A) = im(Hn(F pA) → Hn(A))Thus, we get a filtration Hn(A) = F 0Hn(A) ⊇ F 1Hn(A) ⊇ · · · ⊇ 0 († )The first spectral sequence allows us to calculate

n⊕
m=0

FmHn(A)
Fm+1Hn(A)

There is a graded action of Hn(A). Thus, we know Hn(A) as an extension of abelian groups.Alternatively, we could consider the subcomplex obtained by removing rows from the bottom of our doublecomplex. This will give Hn(A) up to extensions of abelian groups in a (potentially) different way. Fortunately,with our case of the Lyndon-Hochschild-Serre spectral sequence, this second sequence actually only has onenon-trivial factor, and so we get that Hn(A) = Hn(G,M)
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Thus, the first sequence is giving Hn(G,M), up to extensions of abelian groups. So how do we calculate († )?Back to our initial filtration. Let
Cp,q
r = {x ∈ (F pA)p+q | dx ∈ (F p+r )p+q+1}

Define for r ≥ 2,
Ep,q
r = Cp,q

r + (F p+1A)p+qd(Cp−r+1,q+r−2
r−1 )+ (F p+1A)p+q

This is called the Er-page. Lecture 14In this case, d induces a map dp,qr : Ep,q
r → Ep+r,q−r+1

r , satisfying d2
r = 0. In practice, we have the E2-pagewith d2, and then we compute the cohomology

H(E2, d2) = E3
in general, H(Er , dr ) = Er+1Note that this process must stabilise for a particular coordinate (p, q). For large enough r , the map dr isgoing to have image zero when applied to an element with coordinate (p, q). Similarly, for large enough r , theelements whose image under dr has coordinate (p, q) must be zero. Thus, when we take the cohomology, weare just dealing with zero maps. What we end up is denoted by Ep,q

∞ . Note we don’t necessarily have an rwhere E∞ = Er , since the r for which the terms stabilise depend on (p, q).
5.1 The E2-pageIn the first spectral sequence, we consider H′(H′′(A)), where H′ and H′ denote cohomology with respect to d′and d′′ respectively. Since d′d′′ + d′′d′ = 0, the horizontal differential d′ induces a differential on H′′(A). Wecan then calculate H′(H′′(A)).Note that for the second spectral sequence, we consider H′′(H′(A)) instead. Consider how to computeH′(H′′(A)). Start in the (p, q)-th position. Let ap,q be a vertical cocycle. So d′′ap,q = 0. This defines a classin H′′(A), modulo the image under d′′ of eleents in (p, q − 1)-th position. For ap,q to represent a horizontalcocycle in H′′(A) under d′, it must be that d′ap,q (which has coordinates (p + 1, q)), is the image under d′′ ofan element ap+1,q−1, with coordinates (p+ 1, q− 1). Thus,

d(ap,q − ap+1,q−1) = −d′ap+1,q−1 ∈ Ap+2,q−1
Here, we are using d = d′ + d′′. Hence ap,q − ap+1,q−1 is a cocycle under d modulo everything two-steps tothe right of the (p, q)-th position. Similarly, if ap,q represents coboundary in H′′(A) under d′, then there areelements bp−1,q and bp,q−1 such that {d′′bp−1,q = 0d′bp−1,q = d′′bp,q−1 + ap,q

Thus, d(bp−1,q − bp,q−1) ≡ ap,qmodulo eveything everything two to the right of (p − 1, q). Thus, the cohomology classes in H′(H′′(A)) giveselements of the E2-page, and vice versa. The upshot is that the E2-page is H′(H′′(A)), together with d2 whichis induced by d.Suppose a ∈ An is a cocycle with respect to d, starting in Ap,q, where p + q = n. That is, a ∈(F pA)n \ (F p+1A)n. Then da = 0, and so we get an element in Ep,q
r for all r . Since dr is induced by d, dra = 0.Thus, a determines an element of Ep,q

∞ , and thus we have a map
F pHp+q(A) → Ep,q

∞This map is surjective, and so
Ep,q

∞ =⊕
p,n

F pHn(A)
F p+1Hn(A)
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This is a graded version of H∗(A). In the particular case of the Lyndon-Hochschild-Serre sequences, A =HomQ(Y •,HomH (X •,M)). Here, d′ = HomQ(dY , id)d′′ = HomQ(id, d∗
X )Recall we have suppressed the alternating sign in d′′. NowH′′(A) = HomQ(Y ,H∗(HomH (X •,M)))Since terms of Y • are ZQ-projective, and so HomQ(Y , ·) preserves exactness. Thus,

E2 = H′H′′(A) = H∗(HomQ(Y •,H∗(H,M))) = H∗(Q,H∗(H,M))Recall H∗(H,M) is a ZQ-module so this makes sense. The d2 is induced from d.For the second spectral sequence, we have that the E2-page is given by H′′(H′(A)), and we haveH′(HomQ(Y •,HomH (X •,M))) = H∗(Q,HomH (X •,M))
Lemma 5.1. Hp(Q,HomH (X •,M)) = 0 for p > 0.
We’ll prove this later. Thus, H′(A) is concentrated on the line p = 0. On this line,H0(Q,HomH (X •,M)) = HomH (X •,M)Q = HomG (X •,M)Hence H′′(H′(A)) = H∗(HomG (X •,M)) = H∗(G,M)Thus, for the second spectral sequence, the E2-page is concentrated on the line p = 0. It follows Er = E∞for r ≥ 2. So E∞ is also concentrated on the line p = 0. Hence the filtration of Hn(A) has only one non-trivialfactor. Thus, we get Hn(A) = Hn(G,M)for each n. Lecture 15

Proof of lemma 5.1. Since each Xq is ZG-projective, it is a direct summand of a free module. It suffices toprove the lemma for ZG . Let M̃ be M as an additive group, but with trivial ZG-module structure. We claimthat there is an isomorphism of ZG-modules
HomH (ZG,M) ∼= HomH (ZG, M̃)where G acts on the left hand side by (gf )(x) = g(f (g−1x)), and on the right hand side as in the coinducedmodule on examples sheet 1. That is, (gf )(x) = f (xg).To see this, for f ∈ HomH (ZG,M), define f ′ ∈ HomH (ZG, M̃) by

f ′(x) = xf (x−1)for x ∈ G . We leave the check that f ′ is well defined, (f ′)′ = f and this gives a ZG-module isomorphism.This claim allows us to use Shapiro’s lemma, and noting that we have an isomorphism
HomH (ZG, M̃) = Hom(ZQ, M̃)since H acts trivially. Thus,

Hp(Q,HomH (ZG,M)) ∼= Hp(Q,Hom(ZQ, M̃)) ∼= Hp(1, M̃) = 0for p > 0, where Shapiro’s lemma says thatHp(H,N) = Hp(G, coindHG (M))
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Example 5.2Let G = S3, viewed as the extension
1 C3 S3 C2 1

Thus, we need to consider Hp(C2,Hq(C3,Z))Here, C2 acts on C3 by conjugation, i.e.
(1 2)(1 2 3)(1 2)−1 = (1 3 2)

which is the inversion map. Since this is a group homomorphism, the induced map on H∗(C3,Z) is a ringhomomorphism. As a ring, H∗(C3,Z) = Z[c]
⟨3c⟩where deg(c) = 2. Note that this is a commutatitve ring, and

H∗(C3,Z) =

Z ∗ = 0
Z/3Z ∗ > 0 even0 ∗ odd

The action of C2 on H2(C3,Z) is multiplication by −1. We found a generator on examples sheet 1. Thenthe action of C2 on H4k is trivial, and on H4k+2 is multiplication by −1. Thus, we have
H0(C2,H4k+2(C3,Z)) = 0H0(C2,H4k (C3,Z)) = Z/3Z

Also from the examples sheet, Hp(C2,Z/3Z) = 0 for any p ≥ 1. So the E2-page of the first spectralsequence is as follows:
...

Z/3Z
0
0
0
Z 0 Z/2Z 0 Z/2Z · · ·

Note that d2 goes down 1 and right 2. Hence all differentials are zero maps. To work out E∞, we needto take the homology of the E2-page to get the E3-page, which is the same, and d3 = 0 and so on. Thus,we have a picture of E∞. Thus, we get
0 Z/2Z H4k (A) Z/3Z 0
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which forces H4k (A) = Z/6Z, and we deduce that
Hn(S3,Z) =


Z n = 00 n odd
Z/2Z n ≡ 2 (mod 4)
Z/6Z n ≡ 0 (mod 4), n > 0

Remark 5.3. On examples sheet 3, we will work this out for G = Q8 in two ways. Once from a well-chosen resolution,and once from spectral sequences. This shows us that the spectral sequence only gives us cohomology up to extension.
Remark 5.4. Calculations are harder when we have to think about d2, d3 and so on.
Remark 5.5. Spectral sequences behave well with products, and we can use them to work out the product structureon H∗(G,Z).
Now let us think about low degree cohomology.

Proposition 5.6 (five term exact sequence). The first spectral sequence of a double complex A, with
Ap,q = 0 unless p, q ≥ 0, gives an exact sequence

0 E1,02 H1(A) E0,12 E2,02 H2(A)d2

Corollary 5.7 (five term exact sequence of group cohomology). Let H ⊴ G , and M be a ZG-module. Thenthere is an exact sequence
0 H1(Q,M) H1(G,M) H1(H,M)Q H2(Q,MH ) H2(G,M)

Proof of proposition 5.6. On the E2-page, we have
E−1,12

E1,02
E3,−12

and so E1,03 = E1,02 . Repeating, we see that E1,0
∞ = E1,02 . But this is the bottom factor of out filtration of H1(A),and so it injects into H1(A) with cokernel E0,1

∞ . Thus, we get
0 E1,0

∞ H1(A) E0,1
∞ 0
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Now returning to the E2-page, we have
E−2,22

E0,12
E2,02

E4,−12
and E2,02 is not-necessarily zero. This, E0,13 = ker(E0,12 → E2,02 ). On the E3-page, the differential d3 has

E−3,33

E0,13

E3,−13
and we have that E0,1

∞ = E0,13 . Lecture 16Moreover, E2,0
∞ ↪→ H2(A) since it is the bottom factor in the filtration of H2(A). Sticking everything together,we get the result.If we apply this to the Lyndon-Hochschild-Serre spectral sequence, we get corollary 5.7.Recall the ZQ-module structure on Hn(H,M) is as follows:Let G act on cochains Cn(H,M) by

(g · φ)(h1, . . . , hn) = gφ(g−1hg, . . . , g−1hng)
This descends to an action of G on Hn(H,M). Under this, H acts trivially, and so we have a Q action. Here,we’re only interested in H1(H,M), and so if φ : H → M is a derivation, representing the cohomology class [φ],then [φ] ∈ H1(H,M)Q ⇐⇒ [φ] = [gφ]for all g ∈ G . If M is a trivial ZG-module, then H1(H,M) = Hom(Hab,M), and the fixed points are the
ZQ-maps.For the maps in corollary 5.7, we have restriction maps Hn(G,M) → Hn(H,M)Q , where we define the mapson cochains by

f ∈ Cn(G,M) 7→ res f = f |Hn ∈ Cn(H,M)which then induces a map on cohomology.Next, we have inflation maps Hn(Q,MH ) → Hn(G,M), defined on cochain as follows:
f ∈ Cn(Q,MH ) 7→ inf f ∈ Cn(G,M)

given by
Gn Qn MH Mf

Next, we have the transgression map Tg : H1(H,M)Q → H2(Q,MH ), which corresponds to d2 on the
E2-page.
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For general M , let s : Q → G be a set-theoretic section, with s(1) = 1. Define
ρ : G → H
ρ(g) = gs(gH)−1

Then we take the cohomology class represented by the derivation f : H → M , and define
Tg(f ) : G2 → M

Tg(f )(g1, g2) = f (ρ(g1)ρ(g2)) − f (ρ(g1g2))
Note that changing g1, g2 by multiplication by elements of H does not change tthe value. So we can define acochain Tg(f ) : Q2 → M . The image lies in MH and it is a cocycle. Thus, we have a map

[f ] ∈ H1(H,M)Q 7→ [Tg(f )] ∈ H2(Q,MH )
For a special case, assume the action of H on M is trivial. We have the short exact sequence

1 H G G/H 1
and we have an extension

1 Hab G/[H,H ] G/H 1
Let ε ∈ H2(G/[H,H ], Hab) correspond to this extension. Take [f ] ∈ H1(H,M)G/H = Hom(Hab,M)G/H . That is, fis a Z(G/H)-map Hab → M . Thus, we have

f∗ : H2(G/H,Hab) → H2(G/H,M)
and then Tg(f ) = f∗(ε).

Corollary 5.8. Given a presentation G − F/R , M is a left ZG-module, then we have
0 H1(G,M) H1(F,M) HomG (Rab,M) H2(G,M) 0

Proof. Use corollary 5.7.This fills in the left hand side of MacLane’s theorem.
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