CGroup Cohomology

Shing Tak Lam

Lent 2023*

Contents

T Defini | [ifions)

2 Low degree cohomology, group extensions|

2.3 Group extensions by presentations|

[3 Brauer groups and Galois cohomology|

[4  General theory|

[5  Lyndon-Hochschild-Serre spectral sequence|

b1 The Ex-page|l . . . . o

1 Definitions and resolutions

Let G be a group.

Definition 1.1 (integral group ring)

Z ngg
Le.

and we have multiplication

The integral group ring ZG has elements being formal sums

4

21 First cohomologyf. . . . . . .
2.2 Second cohomology| . . . . . ..

4.1 Long exact sequence of cohomology| . . . . ... ... ..
4.2 Cup product]. . . . . .

for ng € Z, g € G, and only finitely many ng are non-zero. This is a free abelian group under addition,

(ngg) + (ang) = Z(mg + ng)g

(Zm/,h) (ank) =Z thnk g

hk=g

11
11
12
16

21

28
28
29

30
31

This is the associative ring underlying the integral representation theory of G. We will write 1 = Te for

the multiplicative identity in G.
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Definition 1.2 (module)
A (left) ZG-module M is an abelian group under addition, and a map

7Gx M—->M

(r,m)—rm
such that
1. r(m+n)=rm+rn,
2. (r1+r2)m=rim+rm,
3. (mr)m = ri(rzm),

4. 1m=m

A module is trivial if gm = m for all g € G, m € M. We say the trivial module is Z with trivial action
gm = m. A free ZG-module on X is formal sums

Y nx

for r, € ZG, x € X, and finitely many r, non-zero. We will write ZG{X} for this.
Submodules and quotient modules are defined as we would expect.

Definition 1.3 (ZG-map)
An ZG-map (or morphism) a : My — M is a map of abelian groups, with
a(rmy) = ra(my)

for r e ZG, mi € M.

Example 1.4
The augmentation map is

e 2G —> 7
angHan

where we treat ZG as a left ZG-module, and Z as the trivial module. This is a ZG map, and it is also a
ring homomorphism.

Notation 1.5. Write Hom¢ (M, N) for the set of ZG-maps from M — N, with pointwise addition.

Example 1.6
If we regard ZG as a left ZG-module, then

Homg(ZG, M) =M

for any left ZG-module M, by sending ¢ to ¢(1). This is an isomorphism since
@(r) = o(r1) = re(1)

Note that Homg(ZG, M) is a left ZG-module, with

(s@)(r) = (rs)




In particular,
Homg(ZG,ZG) = ZG

With this, ¢ — ¢(1) corresponds to multiplication on the right by ¢(1).

Note that G may not be abelian, so the distinction between left and right modules matters.
Definition 1.7
If f: My — M, is a ZG-map, then the dual map is

f*: Homg(Ms,, N) — Homg (M, N)

for any ZG-module N. This is given by
o) =gof
Similarly, if f: Ny — Ny, then we have

f. . Homg(M, Ni) — Hom(M, Ns)

with f.(¢) = f o .

These are maps of abelian groups, since in general Homg (M, N) doesn't have to be a ZG-module, as we
don’t have a right action.

Example 1.8 (Prototypical example)

Let G = (t) be an infinite cyclic group, and consider the graph I" with vertices {v;}cz, edges v; <> vii1.
Then G acts on the set V of vertices, by tv; = vi41, and also on the set £ of edges. The action is
transitive in both cases. The formal integral sums ZV and ZE are ZG-modules, and are free. Fix the
edge e : vy <> vo. Then we have ZG-maps

d:ZE - ZV

e—Vvi—\W
and also

7V — 7

VOF—>1

This correspond to the augmentation map.

Definition 1.9 (chain complex, exact, homology)

A chain complex of ZG-modules is a sequence

ds ds— d
/\/]S*)M-Si,l 541> L)Mt

of ZG-modules and maps, such that for t < n <'s, d, od,1 = 0. We will write

Mo = (Mn: dn)tgngs

We say that M, is exact at M, if im(d,+1) = ker(dn). The sequence is exact if if it exact at all M, with
t<n<s.



The homology of M, is given by

Hs(Me) = ker(ds)
ker(d,)
Hy(Ms) = - fort<n<s
(Me) = tntde)

H¢(Ms) = coker(dy1)

A short exact sequence is a chain complex of the form

0 My — My —E g 0
In our prototypical example, we have a short exact sequence

0 ZE A% Z 0

which corresponds to
0 7G ZG Z 0

where the map ZG — ZG is multiplication on the right by t — 1.

Definition 1.10 (projective)
A ZG-module P is projective if for every surjective ZG-map a : My — My, and every ZG-map B : P — Mj,

there exists B such that
B P
y L

My —— My —— 0

commutes.

If we have any short exact sequence

0 N —s M —2s M, 0
Consider
0 —— Home(P, N) —— Home(P, Mi) —%“— Homg(P, M) — 0 (%)

Then P is projective if and only if (%) is exact. Note that in (), we always have exactness except at Homg (P, M>). Lecture 2
ecture

Lemma 1.11. Free modules are projective.

Proof Let a : My — M, be a surjective ZG-map, B : ZG{X} — M. For each x € X, since «a is surjective,
there exists m, € My such that a(m,) = B(x). We can then define B : ZG{X} — M, by

E I’X'Xl—>§ Iy - My

Definition 1.12

A projective (resp. free) resolution of the trivial module Z is an exact sequence

d; di do Z 0

P4 Po

with all the P; projective (resp. free).




Example 1.13

When G = (t) is infinite cyclic, we have the free resolution

(t=1)

0 7G 7G —— 7 0
Example 1.14
If G = (t) cyclic of order n. Then
76 — 26 £+ 26 <5 76 —<» 7 — 0

is a free resolution, where a(x) = x(t — 1) and B(x) = x(1 +t 4+ -+ t"7 1.

From algebraic topology, if we have a connected simplicial complex X, with m(X) = G, and the universal
cover X is contractible, then we have a free resolution of Z. The point is that the simplicial complex X contains
a lot of information about G. We are trying to replicate this algebraically.

For calculation purposes, we're interested in small resolutions. For example, where the free modules have
small rank. But for theory development purposes, we're wanting general constructions, and such resolutions
tend to be large.

Definition 1.15
G is of type FP, if Z has a projective resolution

dy di do

P, P, Po Z 0

so that P,, ..., Py are finitely generated.

G is of type FP,, is Z has a projective resolution with all P, finitely generated.

G is of type FP if there exists a projective resolution of Z with finite length and all P, are finitely
generated. That is, P; = 0 for s sufficiently large.

Example 1.16
G = (t) infinite cyclic is of type FP, G = C, = (t) finite cyclic is of type FP.

These are to be regarded as finiteness conditions on the group. The topological version of FP, (which is
called F,) would be asking for X with sr1(X) = G, having a finite n-skeleton. Note that these two conditions
are not equivalent.

Now lets meet some general constructions. If we have a partial projective resolution

ds dy do

P, P, o P, Po Z 0
Then we can make it longer by setting
Psi1 = ZG{Xs1}
with Xs11 = ker(ds), and set
dsi Z ryX — Z X
Then
Py = P -2 P o P Py -2 7 0

is a longer partial projective resolution. To make Ps.q smaller, we could take Xs11 to be a ZG-generating set
for ker(ds). This is particularly useful if ker(ds) is finitely generated.
Continuing this, we can get a (full) projective resolution.



Definition 1.17
The standard (or bar) resolution of Z, for any group G, is: Let

" ={lg1l.-ga]] g: € C}
be the set of symbols. In particular, G¥ = {[]} Let
be the free module on G"). The differential is given by
dalg1] - 19n] = G192 - - 1gn]
—[9192195] - -195]
+19119293] - - ga] + ...

+ (71)’771[9” - |gn=1ga]
+g1l- - - 1gn-1]

With this, d,—1d, = 0, and we have a chain complex

Fn Fn71 FO

Remark 1.18. The bar resolution corresponds to the standard resolution in algebraic topology. Consider n+1 tuples
G"*1, and form the free abelian group ZG"*" under addition. G acts on G"*' diagonally, so

So ZG"*' is a free ZG-module, on the basis of n + 1 tuples with gg = 1. Then we have a correspondence

lg1]---1gal = (1. 91,9192, ..., g1 Gn)

Note that removing the first entry gives g1(1, g2, 9293, - - ., g> -+ - g,), and removing the seconc entry in the tuple gives
(1.9192. 919293, - - -, g1+ Ggn).

Lemma 1.19. The bar resolution is exact.

Proof. We'll just consider the d, as maps of abelian groups. F, has basis G x G as a free abelian group,

and G x G is the set

{golg1l. . gall g: € G}

Define Z-linear maps s, : F, — F,41, such that

ldF = dn+1 Sn + Sn—1 CIn (*)

n

given by

sn(golg1l - 1ga) =1[gol .. 194

We can verify that (%) holds on the basis, and so if x € ker(d,+1), then

x = id(x) = dp15n(x) + Sp—1dn(x) = dpy1sa(x) € im(dp41)

That is, s, is a chain homotopy from the identity to zero. O

Corollary 1.20. A finite group is of type FP4.

Proof. The bar resolution gives such a resolution. O
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Definition 1.21

Consider a projective resolution

d,

Pn+1 an ’D1 ’DO Z 0

of Z by ZG-modules. Let M be a (left) ZG-module. Apply the functor Homg(-, M), we get the dual
sequence

- «—— Hom(P,1, M) P Hom(P,, M) +—— --- «—— Hom(Py, M) (1)

where d” = d. Then the n-th cohomology group H" (G, M) with coefficients in M is:

k dn+1
H™(G, M) = ‘M

HO(G, M) = ker(d")

for n > 1

Remark 1.22. We have dropped the Z-term in (7).
Also, these cohomology groups are the homology groups of the chain complex

C, = Homg(P-,, M)

with —oo < n < 0.
Later, we will see that these cohomology groups are independent of the choice of resolution.

Example 1.23

In our prototypical example, G = (t) infinite cyclic, we have a projective resolution

0 7G —4 5 76 7 0

where d(x) = x(t —1). For ¢ € Homg(ZG, M), x € ZG,
d'(¢)(x) = ¢(di(x)) = (x(t — 1))
Moreover, recall Homg(ZG, M) = M, where i(¢) = ¢(1). In particular,

d'(¢) = d'¢(1) = p(t — 1) = (t = 1)(1)

(t=")i(¢)

[n this case, we have

O%Mw/\/l

and so

HOYG M) ={meM|tm=m}=M"
M

H'Y(G, M) = Ty = Mg

and H"(G, M) = 0 otherwise. Here, M% is the group of invariants, the largest submodule with trivial
G-action. Conversely, Mg is the coinvariants, the largest quotient module with trivial G-action.

Remark 1.24. HY(M, G) = M© is generally true. But H'(M, G) = Mg is special behaviour of G = (t).
For any group of type FP, we have that H"(G, M) = 0 for large enough n.



Definition 1.25

G is of cohomological dimension m over Z if there exists an ZG-module M, with
H™(G, M) + 0

and H"(G, M') = 0 for any ZG-module M’, and n > m.

Note that for all G, H%(G,Z) = Z # 0.

Example 1.26

G = (t) infinite cyclic is of cohomological dimension 1 (over Z).
An exercise s to show that if G is a free group of finite rank, then it is also of cohomological dimension
1. To see this, the Cayley graph is a tree and we can construct a resultion using this.

Remark 1.27. The converse is true. A finitely generated group of cohomological dimension 1 is free. In fact, this is
true in general. See [Stallings, 1968], Swan, 1969.

Now consider the bar resolution in our definition of cohomology. Note that
Homg(ZG{G"}, M) = C"(G, M) = {functions G — M}
This is the same as function G” — M. We also have that

C%G, M) = {functions [| > M} = M

Definition 1.28
The group of n-cochains of G with coefficients in M is C"(G, M). The n-coboundary map

d": "G, M) - C"(G, M)

is dual to d, in the bar resolution. For ¢ € C"~'(G, M),

+(=1)""$(g1. 92, ... Gn1G)
+(=1)"¢(g1. 92, .. .. Gn—1)

The group of n-cocycles is Z"(G, M) = ker(d"*") C C"(G, M), and the n-coboundaries is B"(G, M) =
im(d") C C"(G, M).

Thus,

Corollary 1.29. For any group G, H%(G, M) = M is the invariants.

Definition 1.30




A derivation of G with coefficients in M is a function ¢ : G — M, such that
o(gh) = go(h) + ¢(9)

Note that Z'(G, M) is the set of derivations. Also note that these are also called ‘crossed homomorphisms'.
An inner derivation is ¢ of the form
¢lg) = gm—m

for a fixed m € M.

Corollary 1.31.

derivations G — M}
HI(G, M) =
(@.M) {inner derivationsG — M}

In particular, if M is a trivial ZG-module, then

HY(G, M) = Homgoup(G, M)

We will return to considering homology arising from different resolutions.

Definition 1.32

Let (A,, an), (Bn. Bn) be chain complexes of ZG-modules, a chain map f = (f,) are ZG-maps f, : A, — B,
such that
An L A,7,1

fnJ/ l{n—1

Bn T) anW

commutes.

Lemma 1.33. Given a chain map (f,), it induces a map on homology groups

f. : Ho(As) = Ha(Ba)

Lecture 4

Proof. Let x € ker(a,). Define f.(x]) = [f,(x)] where [-] denotes a homology class. Observe that
f(x) € ker(Bn)
since B, (fa(x)) = fo_1(a,(x)) = 0. Moreover, if X' = x + a,_1(y), then
o) = o) + Falen-1(y) = fulx) + Balla(y)

and so [f,(x)] = [f(x)]. Moreover, this gives a map of abelian groups. O

Theorem 1.34. The definition of H"(G, M) is independent of the choice of projective resolution.

Proof. Take projective resolutions (P,,d,) and (P, d’,) of Z by ZG-modules. We will produce
e chain maps f, : P, —» P, g, : P, = P,

r

H H . VAN / /
e chain homotopies s, : P, — P4, s, : P, — P|;,



That is,
ds+sd=¢gf—id and ds'+s'd=fg—id

Using this data, the f, define chain maps
*: Homg(P,, M) — Homg(P,, M) and ¢*: Homg(P,, M) — Homg(P,, M)

which induce maps between the respective homology groups. Now observe if ¢ € ker(d"*") € Hom(P,, M),
then

and so f*g*(¢) = ¢ + d(s*¢). Hence f*g* induces the identity map on homology. Similarly, g*f* also induce
the identity map. This, f*, g* yield isomorphisms on homology. It remains to construct the maps as above.
Consider the end of the resolutions, so we have f_1 : Z — Z which is the identity map, and f_, : 0 — 0 is the
zero map. Suppose we have already defined f,_1, f,. We would like to construct f,44. Thus, f,d: Pyo1 — P,
and d’(fd) = fdd = 0. Thus, the map fd has image contained in ker(d’). So we can define f,.1 as follows:

d d
Pn+1*>Pn4>’anW

foe1 27
- J{f,,d an lfnq
-

Pl ., — ker(d) —— P} — P
Here, by exactness the map P, ; — ker(d’) is surjective, and so as P}, is projective, such a map exists. We
can define g, similarly.

To define s, set h, = g,f, —id. This is a map from P, to itself. In particular, h, is a chain map, with
h_1 =0. Set sy :7Z — Py to be the zero map, and note dohg = h_1dp = 0, and so im(hg) C ker(dp). As
before, dq : Py — ker(dp) is surjective, and so we have

P ——Z

-
-
-

S0 ho ho 0

Py ker(d) —— Py —— Z

Inductively, suppose s,_1,s,—> are already defined, set t, = h, —s,_1d, : P, — P,. We have that

dntn = dnhn - d,75,7,1d,7
= hp,1d, — (hn71 - 5n72dn71)dn

= Sn72dn71 dn

=0
So im(t,) C ker(d,). So we havd]

Pn & Pn—1

b /N
Sn th Sp—1 hp—q
L/,/ / \4
Ppi1 —— ker(d,) P, - Pn

Define s/, similarly and we are done. O

'THIS DIAGRAM DOES NOT COMMUTE!
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Remark 1.35. For any (left) ZG-module N, we can take a projective (resp. free) resolution of N by ZG-modules.
Repeating everything we have done, and applying Hom(-, M) gives homology groups, which are called

Extlo (N, M)

and so
H (G, M) = Exty(Z, M)

As above, the Ext-groups are independent of resolution.

2 Low degree cohomology, group extensions

2.1 First cohomology
Recall that HY(G, M) = M is the group of invariants under G, and that a derivation (or a 1-cocycle) is a map
¢ : G — M, such that

¢(9192) = 919(g2) + ¢(g1)

We will see two interpretations of (inner) derivations. Recall that an inner derivation is one of the form
®(g) = gm — m, for some fixed m € M.
Let M be a ZG-module, and consider possible ZG-actions on the abelian group M @ Z of the form

g(m, n) = (gm + n¢(g), n)

In this case,

g192(m, n) = g1(gam + n$(gz), n) = (g1g2m + ng19(g2) + ne(g1), n)

On the other hand,
(g1g2)(m, n) = (g1g2m + n$(g1g2), n)

These are the same exactly when ¢ is a derivation. In particular, if M is a free Z-module of finite rank, then
we get a map G — GL(M), by can write this as

Oi(g) dg
o (757 )

where 01(g) is the action of g on M. In particular, this is a homomorphism of groups if and only if ¢ is a
derivation. Moreover, ¢ is an inner derivation if and only if (—m, 1) generates a ZG-submodule which is a

trivial module inside M & Z. Lecture 5

For the second interpretation:

Definition 2.1 (semidirect product)

Let G be a group, M be a ZG-module. We can construct their semidirect product M »x G as a group
M x G with operation
(m1, 1) * (M2, g2) = (M1 + gim2, g192)

Here, we have an isomorphism
M= {(m,1)| me M}

This is an abelian normal subgroup. Similarly, we have an isomorphism
G=1{0.9)]g€ed}

and conjugation by {(0, g)} corresponds to the G-action on M.

Moreover,
Mx G

fm. 1) [ m e M}
Note that there is a group homomorphism s: G — M x G, s(g) = (0, g) is such that

I

G

GCG—-MxG-— G

i



is the identity. s is called a splitting. Now if we have another splitting s1 : G — M x G, so that the composition
G — M x G — G is the identity. Define i, : G — M, so that

51(9) = (¢(9). 9)
Then ¢, € Z'(G, M), and given two splittings s, 52, ths, — ¢hs, € B'(G, M) if and only if there exists an m
such that

(m, Vsi(g)(m)~" = s2(g)

Conversely, given ¢ € Z1(G, M), there exists a splitting s1 such that ¢ = .
Theorem 2.2. H'(G, M) correspond to the M-conjugacy classes of splittings.

Proof. Examples Sheet 1. O

2.2 Second cohomology

Definition 2.3 (extension)
An extension E of G by M for a group G, and a ZG-module M, is an exact sequence

0 M E G 1

where the maps are group homomorphisms. That is, M embeds in E, so that the image M is an abelian
normal subgroup. E acts on M by conjugation, and as M is abelian, we have an induced action on
EI/M = G. This agrees with the given G-action on M.

Example 2.4
E =M x G is an extension of G by M. This is called the split extension.

Definition 2.5 (equivalent)
Two extensions are equivalent if we have a commuting diagram of group homomorphisms

E

Remark 2.6. The vertical map is an isomorphism of groups. However, the converse is false. On examples sheet 1, we
have E, E' isomorphic groups, but inequivalent extensions.

Definition 2.7 (central extension)

A central extension is one where the ZG-module is a trivial module.

Proposition 2.8. Let E be an extension of G by M. If there exists a splitting s; : G — E, then E is
equivalent to M x G.

Proof Exercise. O

12



Theorem 2.9. Let G be a group, and M be a ZG-module. Then there exists a bijection between H?(G, M)
and the equivalence classes of extensions of GG by M.

Given an extenstion

0 M E G 1
a section is a function s : G — E, such that the composition ros = id, where 7 is the map £ — G. Note that
s need not be a group homomorphism. Suppose s(1) = 1. Let
$(g1.92) = s(g1)s(g2)s(g1g2) '

Then
71(¢(g192)) =1
and so ¢(g1, g2) € ker(r) = M. That is, we have a map ¢ : G° — M, which is a 2-cochain. In fact, it is a

2-cocycle.
s(g1)s(g2)s(g2) = ¢(g1, 92)s(g192)s(g3)
= ¢(91, 92)9(9192., 93)5(919293) (%)

Similarly,
s(g1)s(g2)s(g3) = s(g1)P(g2, 92)5(92953)
s(g1)(g293)s(91) " s(g1)s(g293)
s(g1)9(9292)s(91) " d(g1. 9293)5(919295) (*%)

Equating () and (xx), cancelling the s(g1g2g3), and changing into additive notation, we get

#(91,92) + #(9192, g3) = g16(92, g3) + $(91, 9295)

Hence
d¢(g1,92,.93) =0
and so ¢ € Z%(G, M). Note ¢ is normalised That is, (1, g) = ¢(g, 1) = 0. So what we have shown is that
an extension of G by M, along with a choice of section s, yields a normalised 2-cocycle ¢ € Z%(G, M).
Now take another choice of section s’, with s’(1) = 1. Then the corresponding normalised cocycles ¢ and
¢’ differ by a coboundary, and so we have defined a map

{extensions} — H(G, M)

To see this, note that 7(s(g)s’(g)™") = 1, and Y(qg) = s(g)s’(g)~"

¢ G — M. Then

€ ker(m) = M. Thus, we have a map

s'(g1)s'(g2) = (g1)s(g1)¢(g2)s(g2)
= P(g1)s(g1)¢(g2)s(g1) ' s(g1)s(g2)
= Y(g1)s(g1)P(g2)s(91) " Dlgr. g2)s(g192)
= P(g1)s(g1)P(92)s(92) " Dlgr. g2)(g192) 'S (g192)

Switching to additive notation:

#'(g1.92) = Y(g1) + g1tb(ga) + (g1, 92) — ¥(g192)
= ¢(g1,92) + ddi(g1, 92)

Thus, ¢ and ¢’ differ by a coboundary. For the rest of the proof, we need:
(a) to show that equivalent extensions give the same cohomology class,
(b) construct an inverse map from cohomology classes to extensions,

(c) show that the two maps are inverse to each other.

We will show (b), and leave (a) and (c). For this, we need

13
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Lemma 2.10. Let ¢ € Z%(G, M). Then there exists a cochain ¢y € C'(G, M), such that ¢ + d¢ is a
normalised cocycle. Hence every cohomology class can be reresented by a normalised cocycle.

Proof. Let ¢(g) = —¢(1, g). Then
(@ +dy)(1.9) = o(1.9) = (¢(1, 9) — ¢(1. 9) + ¢(1, 1)) = ¢(1, 9) — (1, 1)

and
(@+dy)(g.1) = ¢(g. 1) —gP(1.1)

But we know that d¢(1,1,g) = d¢(g,1,1) = 0 as ¢ is a cocycle. A computation shows that both of the above
are zero. O

Now take a normalised cocycle ¢ representating our cohomology class. We construct an extension as
follows.
0 M Eg G 1

by considering £ = M x G, with the product structure

(m1, g1)(m2, g2) = (M1 + gim2 + (g1, 92), g192)

For this to be a group operation, we use that ¢ is normalised. In this case, we do have an extension, where
the map s is projection onto the second factor. Notice if we have another normalised 2-cocycle ¢’ representing
our cohomology class, then ¢ — ¢ = di is a coboundary, and we can define a map

E¢ — E¢/
(m, g)— (m+4lg) g)

This gives us an equivalence of extensions.

Example 2.11 (central extensions of Z* by Z)
Note we already know of (at least) two such. We could have

0 —Z —7Z&7Z —— 7 —— 0

and we also have the Heisenberg group

T r m
H= 1 s r,s,meiz
1
and we have an extension given by
1T 0 m
m— 1 0
1
1T r 0
1T 0] —(rs)
1

Now if we write things multiplicatively, T = Z? is generated by @, b. We have a free resolution

0 —— 2T Ly @rp 227 2.7 0
where

B(z) = (z(1 = b), z(a — 1))
alx,y) =x(a—=1)+yb—1)

14



and ¢ is the augmentation map. Now applying Hom (-, Z), we get the chain complex
Hom7(ZT,Z) —%— Hom((ZT)?, Z) £, Homr(ZT,Z) —— 0

In fact, a*, B* are the zero maps, and so H*(T,Z) = Hom7(ZT,Z) = 7Z, with generator corresponding to
the augmentation map ¢ : ZT — Z.
To see that a*, B* are zero, take a ZT-map f : (ZT)? — Z and z € ZT, then

(B*)(2) = f(B(2))

f(z(1 = b), z(a — 1))
f(z—bz,0)+ (0, za — 2)
(1—=b)f(z,0) 4+ (a —1)f(0,2) =0

The proof that o* is zero is similar.
Next, we will interpret H?(T, Z) in terms of cocycles from the bar resolution. We will construct a chain
map

ZT{T®} —— ZT{T} —— ZT{T9} 25 Z —— 0

R

ZT ——— (TP ZT z 0

[ed

Note that for degrees —1 and 0, we can just take the identity map. To construct f; : ZT{TM} — (ZT)?,
we need that afy = d. So we just need to define the image of the symbols [a"b%], for r, s € Z. Say

fa"y’)) = (X0 Yrs)

and we need
a(Xrs, Yrs) = d7 = a"b* =1 = (a" = 1)b° + (b° = 1)

Define

1 r=1 0
S(a,r)=«{ +ﬁa+ +a r>
—a

T—...—g r<0
We note that S(a, r)(a — 1) = a" — 1 in both cases. Then
a(S(a, r)b*, S(b, s)) = S(a, r)b*(a — 1) + S(b, s)(b — 1) = d””"

as required. So we can define
fila"b*] = (S(a, r)b®, S(b, s))

Example 2.12 (continued)
We need to define f,. For each [a"b® | a'b"], we find

Zrsty € 7T

such that
fids[a"b® | a'b"] = B(zrstu)

Note that

f1d2[(]rbs | albu] _ f1(0rbs[atbu]_[ar+tbs+u] +[arbs])
=a'b*S(a, t)b" — S(a, r+ t)b°" + S(a, r)b®> — a"b*S(b, u) — S(b, s + u) + S(b, s)

15
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Note that
Zrsty = S(a, r)b°S(b, u)

works. So we define
Hla"b® | a'b'] = S(a, r)b°S(b, u)

Now we find a cochain ¢ : T2 — Z representing the cohomology class p € Z = Hom¢(ZT,Z) = H*(T, Z).
Such a cochain is given by the composition

72 L g P,y
¢
Since €(S(a, r)) = r, we find that
¢(a"b®, a'b") = pe(z,s1,) = pru
The group structure on Z x T correspnding to ¢ is
(m,a"b®)(n,a'b") = (m + n + pru,a"'bt)
This corresponds to the group of matrices

1 pr m
0 1 s r,s,melz
0 0 1

2.3 Group extensions by presentations

Another approach to consider (central) extensions is to use a partial resolution arising from generators and
relations.

Let G be a group, and let X be a generating set. Then we have a canonical map F = F(X) — G. Let R
be the kernel. Then we have a short exact sequence

1 R F G 1

which is the presentation of G. The subgroup R can be thought of as the set of relations. Now R < F, and so
F acts on R by conjugation. Often we take a set of generators of R as a normal subgroup for F.

Let Ry, = R/[R, R] be the abelianisation of R. It inherits an action of F, but R acts trivially on R,p, and so
we ahve an induced action by G = F/R. Thus, Ry is a ZG-module, called the relation module.

Associated to this is an extension

1—— Ry — FIR R —— G —— 1
For a central extension, we need
1—— RIRF]— FIRF] — G —— 1

Unfortunately, there isn't a largest (or univeral) central extension, since we can always form direct products
with an abelian group. The central extension above does have good properties.

Theorem 2.13 (Maclane). Given a presentation of G, let M be a left ZG-module. Then there is an exact
sequence

H'(F, M) —— Homg(Rap, M) —— H?(G,M) —— 0

Thus, any equivalence class of extensions of G by M corresponding to a cohomology class, arises from a
Z.G-map Ry, — M.

Note that M is a ZF-module, via the map F — G.

16



Corollary 2.14. In the above, if M is a trivial module, then we have

Hom(F, M) —— Homg(R/[R, F], M) —— H(G, M) —— 0

Proof M is a trivial ZF-module, and so H'(F, M) = Hom(F, M) which are the group homomorphisms to an
abelian group, which factors through the abelianisation. So H'(F, M) = Hom(Fay, M).
Similarly, Homg(Rab, M) = Hom¢(R/[R, F], M). O

There is also a connection with homology groups. Given a projective resolution of the trivial ZG-module Z,
instead of applying Hom(-, M), we can apply the functor Z ®z¢ -. We get a chain complex, and we can define

the associated homology groups.

The homology groups don't depend on the choice of resolution. We will write the homology groups as
H,(G; Z).

Definition 2.15 (Schur multiplier)
The Schur multiplier (or multiplicator) is M(G) = Hy(G; Z).

This is important for studying central extensions.

Theorem 2.16 (universal coefficient). Let G be a group, and M be a trivial ZG-module. Then there is a
short exact sequence

0 —— Ext'(Gop, M) —— H2(G, M) —— Hom(M(G), M) —— 0

where Ext'(G,, M) arises by applying Homz(-, M) to a projective resolution of an abelian group Gap.

Corollary 2.17. Suppose G =[G, G]. Then Gap = 1, and we get that

H?(G, M) Z Hom(M(G), M)

Remark 2.18. Sometimes people define the Schur multiplier to be H*(G, C*) instead of H,(G; Z). Schur was consid-
ering projective representations, G — PGL(C). Such a map lifts to a linear representation of a central extension of

There is a formula:

Theorem 2.19 (Hopf). Given a presentation G = F/R,

M(G) = [F[‘RF’}Q]R

Note that this is not necessarily all of F/[R, F].

Remark 2.20. This shows that ([F, F]N R)/[R, F] is independent of the choice of presentation.

Define Ir = ker(e : ZF — 7Z), and Iz = ker(ZF — ZG), where the map ZF — ZG is induced by the map
F — G. These are ideals in ZF.

17
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Proposition 2.21. We have an exact sequence

dq

Rik® =2 Iri(TrlF)

where dq is induced by the map ZF — ZG, and d; is induced by the inclusion Ir — Ir. Furthermore,

I l(IrlF) and TRl are free left ZG-modules.
Finally, im(d2) = Ir/(Ir/F), which is isomorphic to Ry, as ZG-modules.

Remark 2.22. Here, R,, is a ZG-module via the action induced on R by conjugation by F.

From Geometric Group Theory, we know that subgroups of free groups are free, and so R is a free group. Thus,
R.b is a free abelian group, on the same alphabet as R.

This partial resolution can be completed to a full resolution, called the Gruenberg resolution.

In practice, when wanting to deduce information about second (co)homology, it is enough to know about the image
of d?.

Lemma 2.23. Let G be a group, and M is a (left) ZG-module. Then
(1) Ic = ker(e : ZG — Z) is a free abelian group under addition, on the basis {g — 1| g € G\ 1},
(i) le/lg = Gab,
(ii) Der(G, M) = Homg(lg, M).

Proof. For (i), the kernel of € : ZG — Z are of the form

Z”gg
an=0

where

In this case, we can write

ang:an(gfﬂqLan:an(gfﬂ

Clearly anything of this form is in the kernel of €. Also, the set {g —1| g € G\ 1} forms a basis, since if

an(g—1)=0

Then by reading off the coefficient of g, we see that ny = 0.
For (ii), define a group homomorphism

93/G_>Gab
g— 1 g[G, (]

But (g1 — 1)(g2 — 1) = (g1g2 — 1) — (g1 — 1) — (g2 — 1), and so /2 C ker(6). Hence we have a natural map
lcl1E = Gab.
Conversely, define ¢ : G — Ig/IZ, by sending g — (g —1) + /2. This is a group homomorphism. Since I¢//%
is abelian, we have an induced map ¢ : Ga, — Ig//Z. Then we can check that these two maps define inverses.
For (iii), the map sends a derivation ¢ to 8 € Hom¢(/g, M), where 8(g — 1) = ¢(g). We can check that 6
is a ZG-map. Conversely, given 8 € Homg(/g, M), define ¢ by ¢(g) = B(g —1). O

Lemma 2.24. (i) Let F be a gree group on X. Then /¢ is a free ZF-module, on X = {x=1|xe X}

(i) If R is a normal subgroup of F, then R is free on a set Y, then Ir is a free (left) ZF-module on
Y={y—-1|yeY}

18



Proof. For (i), let o : X — M be a function, to a ZF-module M. By definition of freeness, it suffices to show
that a extends to a ZF-map Ir — M.

First let @ - F — M x F, defined by o/(x) = (a(x — 1), x). This is a group homomorphism as F is free.
Thus for each f € F, d(f) = (a, f) for some @ € M. Then we have a function @ : F — M, sending f to a.
Hence

o(f) = (a(f). f)
Note that
a(fifz) = alfr)a(f)
= (alh), f)(al(f), 1)
= (a(fr) + ha(f), 1)
Hence a(fif,) = @a(f) + fia(f,). Hence @ is a derivation F — M. By the previous lemma, we have a

corresponding ZF-map Ir — M.
For (ii), suppose

Y ryly—1)=0

with r, € ZF. Choose a transversal T to the cosets of R in f~. We can write

fy = Z tS[’y

teT
with s;, € ZR. So
Y Y tsiyly—1)=0
tel yeY
Since ZF is free abelian, for each t,
Y swyly—1)=0
yey
But /g is a free ZR-module on {y — 1|y € Y} by (i), andso s,y =0forally € YV, t € T. O

Proof of proposition[ZZ7] By (i) of the preceding lemma, /¢ is a free ZF-module on {x — 1 | x € X}. Hence
Il(IrlF) is a free left ZG-module, on the basis {x — 1| x € X}.

Now /g is a free left ZF-module on {y—1|y € Y}. So E/Ez is a free left ZG-module on {y—1|y € Y}

The image of d; is Ir/(IrlF). Consider Iz as a right ZF-module. By the analogous version of the lemma
with right modules, this is a free right ZF-module on {y — 1|y € Y}. So Ir/(Irlf) is a free abelian group on
{y =1y € Y} and so is isomorphic to Ry, as they are free abelian groups on the same basis.

For the left ZG-action, we have that

gly—1)=(gyg " —N)g (mod Irlr)
=(gyg~ ' —1) (mod Iglr)

So this left ZG-action corresponds to the conjugation action of G on Rap. -
Exactness is basically clear from definitions, since im(dy) = I = ker(g) and ker(d1) = Ir/(IrlF) = im(d2). O

Lemma 2.25. Given a projective resolution

dy

P Py Z

Let J, =im(d,) € P,_1, and let ¢ : P, — J, be the induced map. Then

(i) For a left ZG-module M, we have an exact sequence
Hom¢(Py—1, M) —— Homg(Jy, M) —— H"(G, M) —— 0

where the first map is by restriction.

19
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(ii) There is an exact sequence

0 —— Hn(GvZ) — Z®ZG//7 — Z®ZC Pn71

Proof. For (i), we have

1
Pn+1 ’Dn jn 0
\ ll
d,
Pn—1
where the first row is exact. So we have

Homg(Ppi1, M) Pl Homg(P,, M) L Homg(Jy, M) <—— 0

\ [+

Homg(Py—1, M)

where the first row is exact. So Lm(t,[l*) ker(d"*1), ker(¢*) = 0. With this, im(¢*) = Homg(J,, M).
But also im(d") = im(¢* o ¢*) = im(c*). Thus,

, ~ker(d™) im(¢y*)  Homg(J,, M)
HH(G M) = im(d")  im(*)  im(c)

(i) is similar. O

Proof of theorem 213 Applying the previous lemma to our partial resolution, we get an exact sequence

Homg (=) —— Hom(Ruy, M) —— H(G, M) —— 0

But
Ir Ir
Homg [ =— M| = Homg | =— M
RIF RIF
= HOITIF(/F,/\/’)

since M is a ZG-module, and so it is trivial as a ZR-module. Thus, any ZF-map Iz — M factors through
Ir/lrlF. But
Homg(lp, M) = Der(F, M)

by lemma [223] (iii). Recall an inner derivation is of the form
fr(f—=1)m

In particular, any inner derivation sends r +— 0, where r € R. Thus, the restriction map

Homg (/F) — Homg(Ryy, M)
Il

sends inner derivations to zero. Hence we have an induced map
H'(F, M) — Homg(Ruy, M)

and we are done. O

Remark 2.26. We will see this again with the five term exact sequence.
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Proof of theorem[2Z79 Apply the lemma again, we get

0 — Ha(G.Z) — Z®zc Ry —— Z®z6 74

But Z ®z¢ - is the same as taking the coinvariants, and so

R
Z ®z6 Rap = W

ok F

The kernel of the map

Example 2.27

Let G = V = (Z/27)? be the Klein 4 group. Say x, y are generators, I = I, free group on x,y, R is
generated as a normal subgroup of F by x?, y%,[x, y]. So

G={(xy|x ¢ [xyl)

Note another presentation is G = (x, y | x*, y?, (xy)*). Let

Rp = <<X2, Y%, (XU)4>>

Note that Rp C R, and so we have a map Dg = F/Rp — F/R = V. Note that the kernel of this map is
the centre of Dg. So [R, F] C Rp, and [R, F] C [F, F]. In Hopf's formula, [F, F] is generated as a normal
subgroup by [x, y] and so [F, F] C R. So in the formula, [F, FIN R =[F, F].
Observe 1 =[x, y’] =[x, yly[x, yly~" =[x, y]’ (mod [R, F]). Hence [F, F]/[R, F] is generated by [, y]
as a ZF module, and is a trivial module, and is killed by multiplication by 2. So
[F.Fl

M =R

is either 0 or Z/2. But [R, F] s [F, F], so M(G) = Z/2.

| Remark 2.28. The universal coefficient theorem and the corollary will be left unproved.

3 Brauer groups and Galois cohomology

Definition 3.1 (central simple algebra)

A central simple algebra A over a field k is a finite dimensional k-vector space, with associative multipli-
cation. Moreover, Z(A) = k and the only two-sided ideals are 0 and A.

Example 3.2

Mat, (k) is a central simple algebra.
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Example 3.3

Let k = R. Then the quaternions H is a central simple algebra. This is in fact a division ring, any
non-zero element has a multiplicative inverse.

We would like to classify central simple k-algebras, for a field k.

Theorem 3.4 (Artin-Wedderburn). A finite dimensional simple k-algebra A is isomorphic to Mat,(D),
where D is a division ring over k.

We will prove this later.

Remark 3.5. Note that Z(A) = {A/ | A € Z(D)}.

We will define an equivalence relation on central simple k-algebras: We say that A ~ B if
A ® Mat, (k) = B ®, Mat,, (k)
for some m, n. From Artin-Wedderburn, A = M, (D), and so [A] = [D].

Definition 3.6 (Brauer group)

The Brauer group Br(k) is the set of equivalence classes, with
[AlB] = [A ®« B

Recall that
(a1 ® b1)(a2 ® by) = (a1a2) ® (b1b7)

This has identity element
[k] = [Mat, (k)]

and
A = 1Am)
Lecture 10

Definition 3.7 (opposite ring)

A% is the k-algebra with the same underlying k-vector space, but with

apb=>ba
| Remark 3.8. A right (resp. left) A-module is the same as a left (resp. right) A°®-module.

| Lemma 3.9. A® A%® = Mat,(k), where n = dimg(A).

We will prove this later.
Example 3.10

If k is algebraically closed, Br(k) = 1 since any division algebra D which is finite dimensional over k is
k itself, since any non-zero element is algebraic over k, and so in k.
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Example 3.11
Br(R) = {[R], [H]}.

Definition 3.12

The subgroup Br(L/k) of Br(k) is the group of equivalence classes represented by a central simple k-
algebra A, such that A®x L = Mat,(L) for some n, and L/k is (finite) Galois. In this case, we say that A
is split by L.

We will prove

Theorem 3.13. There exists a homomorphism of abelian groups
H?(Gal(L/k), L) — Br(L[k)

which sends [¢] to [A(L, G, ¢)] where G = Gal(L/k). A(L, G, ¢) is a crossed product which we will construct.

Remark 3.14. In fact, this homomorphism is an isomorphism.

Remark 3.15. We have a directed union

Brik)= [ J  Br(L/k)

L/kfinite Galois

and so we can express Br(k) as a directed union of second cohomology groups.

Example 3.16

When k = R, we know that there are only two Galois extensions, namely R and C. We know Gal(C/R)
is cyclic of order 2, generated by complex conjugation. In this case, H*(G, C*) = Z/27Z, generated by ¢
say.
In our prototypical example, H = A(C, G,, ¢). In this case, we can write

C=ReRiCH®Ca&C/

C is a maximal subfield of H, and we have a basis e1 =1, e4 = j over C.
We have a map ¢ : G x G — C¥, given by

eqer = P(0, T)egsr

Here, ¢(0, 1) € C* and ¢ is a normalised 2-cocycle.

Our general construction will start from a Galois extension L/k, and constructing an algebra with a 2-cocycle
telling us how to multiply basis elements.
Before that, we need to prove some things:

Proof of theorem[34 Consider the sum / of the minimal non-zero right A-submodules of A4, which is A thought
of as a right A-module.
Thus, / is a sum of simple right A-modules.
Let M be a simple right A-submodule of A4, consider the map
0, M — aM
m— am

6, is a right A-module map. Since M is simple, 6, is zero or injective. Thus, aM is either zero or itself a
simple submodule of Ay, isomorphic to M.
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Now consider

Za/\/l

acA

This is a two-sided ideal of A, and it is the sum of simple right A-modules isomorphic to M. Thus,

Ar=> aM

aceA

We need

Lemma 3.17 (Schur’s lemma). Enda(M) = D is a division algebra, for a simple right A-module M.

Proof. Any module map ¢ : M — M is either zero or an isomorphism, by considering the options of ker(¢) and
im(¢). Thus, any non-zero element of Enda(M) is invertible. O

Now A4 is a sum of simple right A-submodules, isomorphic to M. An easy induction shows that we may
take A, to be a direct sum. Thus,
Av=EPM;

where M; = M. Now
Enda(A4) = Mat, (End,(M))

But as k-algebras, A = Enda(A4), since an endomorphism is determined by the image of 1. Thus, A =
Mat, (D).

O

Corollary 3.18. Every finitely generated right A module V is isomorphic to a direct sum of copies of M
(as above), and any two A-modules with the same dimension are isomorphic.
Moreover, Enda(V) = Mat,(D) for some r.

Proof. Let M be a simple submodule of As, vq, ..., vs be a set of generators of V' as a right A-module. Then
the map
(a1, ..., as) — Z aiv
i

shows V' as a quotient of a sum of copies of Ay. But Aa is a direct sum of copues of M, and so V' is a quotient
of a direct sum of copies of M.
Induction shows that V' = @;M;, where M; is isomorphic to M. In particular,

Enda(V) = Mat, (D)

where D = Enda(M) and the dimension of V' as a k-vector space determines r. O

Definition 3.19

Let V' be a finite dimensional k-vector space, with basis {e;}ic;. For v € V, define its support

JW) ={i€!]a;+0}

VvV = E a;e;
i

For W a subspace of V, w € W non-zero is primordial with respect to the basis if

where

1. J(w) is minimal amongst {J(w’) | w’ € W},

2. a; =1 for some i, when w =) a;e;.
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Lemma 3.20. (i) For w,w' € W, with J(w) minimal, J(w') C J(w) if and only if w/ = cw for some
c € k. If so, J(w) = J(w).

(ii) The primordial elements span W.

Proof. (i) is clear. For (it), induct on |/(w)]. Let
w = ‘L & j(W)lUiel‘

Amongst non-zero elements w’ € W with J(w') C J(w), choose one with |/(w’)] minimal. Then wy = cw’ for
some ¢ € k* is primordial. Now

w = a;wy + (W — a;w)
with w —a;wp € W, and ’j(w— GJ'WO)‘ < | Hw)).

By the inductive hypothesis, w — a;wyq is a linear combination of primordial elements. O

Remark 3.21. All of the same applies for vector spaces over division algebras.

Lemma 3.22. Let A be a k-algebra, D a division algebra over k, with centre k. Then every two-sided
ideal / of AQ« D is generated as a left D-module by /N (A® 1).

Proof. The left D-module structure on A®y D is given by

da®0d)=a®(60)

The ideal / is a D-submodule of A® D.
Let {e;}ics be a basis for A as a k-vector space, then {e; ® 1}/ is a basis for A®, D as a left D-module,
Let r € I be primordial with respect to this basis, say

r= Zéi(ei®1): Zei@éi
)

ieJ(r ieJ(r)

For any non-zero 0 € D, ro € /, and

r6=> &id(e;®1)

In particular, J(ro) = J(r), and so ro = 0’r for some 0’ € D.
Since r is primordial, we have that 0; = 1 for some i, d = ¢’, and so each 0; € Z(D) = k,andso r € A® 1.
Hence every primordial element of / is in A® 1. But by the previous lemma, the primordial elements span. [

Proposition 3.23. The tensor product of two finite dimensional simple k-algebras, at least one of which
is central, is simple.

Proof. By Artin-Wedderburn, we may assume that one of the algebras is Mat, (D), where D is a division ring
over k and central. Let A be the other simple algebra. By the lemma, A®, D is simple. So by Artin-Wedderburn,
A®i D = Mat,(D') for some division algebra D’ over k, and thus,

A® Mat, (D) = Mat, (A & D) = Mat, (Mat, (D)) = Mat,, (D)

and this is simple. O
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Corollary 3.24. The tensor product of two central simple k-algebras is a central simple k-algebra.

Proof. Use the proposition, along with the fact that
Z(A®k B) = Z(A) @« Z(B)

Thus, the Brauer group is defined. For the inverses, consider thr ring homomorphism

A® AP — End(V)
a®d — (v avd)

Here, V' is the vector space underlying A and A°". The map is injective, since A® A is simple, and T® 1 is
mapped to the identity. By dimension counting, it is a linear isomorphism.

Definition 3.25

Let G = Gal(L/k), where L[k is a finite Galois extension, and ¢ : G x G — L* is a normalised 2-cocycle.
We will define A = A(L, G, ¢).
As a L-vector space, let A have basis {es}sec. The multiplication is

(Z)‘aea) (Z.Ur@r) = Z A0 (i) P(0, T)eg r

oG teC o,7eCG

This has multiplciative identity eq, since ¢ is normalised. The multiplication is associative, since ¢ is a
2-cocycle.

The centre of A(L, G, ¢) is k. To see this, assume

x=> s € Z(A)

Then for B € L, (Be1)x = x(Beq). That is,

> (Bhoes =Y As0(Bles

g

Thus, B =o(B) forany B € L, 0 € G with A; # 0. Thus, A, = 0 for 0 # 1, and hence x = Aje4. But this has
to commute with all e,, and so
Z(A) = kes = k

Next, we note that A is simple. Let / be a two-sided dieal, and x € [ non-zero. Say
X =Ag € + -+ Ag €0,
with m minlmalﬂ If m > 1, we can find B € L* such that 0,(B) # dm—1(B). Then
y=x—o,Bxp " €1

The coefficient of ey, in y is zero, and this contradicts minimality. So x = A,e, for some o € G. This is a unit,
and has inverse x™' = 07 '(A;")e, 1. Hence [ = A

Suppose [¢] = [¢'], where ¢, ¢’ are normalised 2-cocycles. Then ¢, ¢ differ by a coboundary. So
¢'(0,7) = ¢(0, T)o(ur)ugyus
where we write things multiplicatively, and v : G — L*. Define a L-linear map
FLAL G, ¢)— AL G, )

F(e)) = ugeq

2We choose x such that m is minimal.
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With this,
Fleg)F(er) = Fleger)

T

and so F is an algebra homomorphism A(L, G, ¢') — A(L, G, ¢). But these are simple algebras, and the equality
of dimension on both sides means that F is an isomorphism.

Thus, the map H?(G, L*) — Br(k) only depends on the cohomology class. Recall that every cohomology
class is represented by a(t least one) normalised cocycle. It remains to show our map

H?(Gal(L/k), LX) — Br(k)

is a homomorphism of abelian groups.

Lemma 3.26. For normalised 2-cocycles ¢, ¢/,

AL G, ¢+ ¢)~AL G ¢)®A(L, G, ¢

Proof Let A= A(L G, ¢),B =A(L G,¢),C =A(L, G, ¢+ ¢) Regard A B as left L-vector spaces. Define

V = A®; B. Note that
_ AR B

{((lay®b—a®(lb)|ae A be B, lel)
V has a right A ®, B-structure, given by

(0’ ®; b')(a ® b) = (d’'a) ®, (b'b)
and V has a left C-module structure,
(leg)(a ®; b) = (lega) ®; (eb)

where (e4) is a basis of A, (e]) is a basis of B, and (e7) is a basis of C.
The two actions commute, and so the right action of A®; B on V' defines a homomorphism

f:(A®¢ B — Endc(V)

Note here we need the opposite ring since we think of End¢ as endomorphisms as a left-module. f is injective,
since A®y B is simple.

Claim 3.27. The two algebras have the same dimension, and so f is an isomorphism.

We'll assume this for now. Then note that
Endc(V) ~ C
since we swap from a left C-module to a right C°"-module. Thus,
(A® B ~
and so A®, B ~ C, and [A|B] = [A®, B] = [C] in Br(k).

Proof of claim. We know that C is a simple algebra, and so C° is as well. V is a left C-module, and so it is
a right C°P-module. Moreover,
V=g
i=1

where M is a simple C°P-module. Thus,
Endc(V) = Endew (V) = Mat, (D)

for some division algebra D = Endce(M). But

m

cor = @ M
i=1
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by Artin-Wedderburn, which in turn is isomorphic to Mat,, (D), with dim(M) = m dim(D).
Now consider dimensions,

dim(Ende(V)) = r? dim(D)

and so
dim(End¢(V)) dim(C) = d'Lm(\/)2

Remark 3.28. The dimension count can also be done using the double centraliser theorem.

Theorem 3.29 (double centraliser). Let A be a central simple k-algebra, with simple subalgebra 5. Then
(i) the centraliser C4(B) is also simple,
(it) dim(B)dim(Ca(B)) = dim(A)
(it) Ca(Ca(B)) = A.
(iv) if B is central, then Cx(B) is central and A = B ®; Ca(B).

Proof. Exercise. O
In fact, the image of the map H?(Gal(L/k), L*) — Br(k) is contained in Br(L/k). See the examples sheet.

Remark 3.30. (i) By a theorem of Wedderburn, if k is a finite field, then Br(k) is trivial. This is becuase finite
division algebras are fields.

(ii) for a non-Archimedean local field k, Br(k) = Q/Z,

(iit) for a number field K, we have a short exact sequence

0 — Br(K) — @, Br(K,) — QIZ —— 0

4 General theory
4.1 Long exact sequence of cohomology

Proposition 4.1 (long exact sequence of cohomology). Let

0 M, My M 0

be a short exact sequence, then we have a long exact sequence

- — H"(G, M) —— H"(G, Mp) —— H"(G, M)

H/7+1(G’ /\/’1) Hn+1(G, MZ) , Hn+1(GI /\/]3) s L
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Lemma 4.2 (snake). Let

0 Ae B, G 0

be a short exact sequence of chain complexes, then there exists connecting maps 9 : H,11(Ce) = H,(As),
such that we have a long exact sequence

e Hn+1(Co) — Hn(Ao) — Hn(Bo) — Hn(Co) —_—

Proof of proposition[41} Consider a projective resolution P, of Z. Since the modules in the resolution are
projective, we have a short exact sequence of chain complexes

0 —— Homg(Ps, M) —— Hom¢g(P., My) —— Homg(P., M3) —— 0

Apply the snake lemma. O

4.2  Cup product

Definition 4.3 (cup product)
Given [u] € HP(G, M),[v] € HI(G, N), define their cup product [u] — [v] = [u — v] € HPTI(G, M @z N)

by defining it on cochains:
The diagonal action of G on M ®z N is given by
g(m ® n) = (gm) ® (gn)
Let u € CP(G, M), v € CI(G, N), define u — v € CP(G,M ® N) by
(U= Vg1, Gprg) = (=1)PTulgr. ... Gp) ® (g1~ GpV(Gps1. - - Gpiq))

This induces a cup product on cohomology classes.

In degree zero,
HO(G, M) — H%(G, N) = HY(G,M & N)

corresponds the map M% ® N¢ — (M ® N)“ induced by inclusions.

Moreover, there exists 1 € H%(G, Z) which is the unit for the cup product. For associativity, if we have
u; € H*(G, M;), then

(g — u2) — u3 = uy — (uz — u3) € H(G, My @ My @ Ms)
In addition, this is graded commutative. For v € HP(G, M), v € HI(G, N), then
u—v=(=1la(v—u)
where a : M®& N — N ® M is the canonical isomorphism. This means that H*(G, Z) is graded commutative.

Remark 4.4. Graded commutative does not imply commutative. But if we restrict outselves to cohomology of even
degree only, then it is commutative.

Moreover, we have a natural graded H*(G, Z)-module structure on H*(G, M).
Now suppose a : H — G is a group homomorphism. Then o*(u — v) = o*u — a*v, for v € H*(G, M) and
v € H*(G, N). Thus,
o HYG,Z) - H*(H, Z)

is a ring homomorphism.
Remark 4.5. Recall that we can take a projective resolution of M, and apply Homg(:, N), for ZG-modules M, N, to

get Ext"(M, N). Taking M = N, we get Ext"(M, M), which is a graded H*(G, Z)-module. So we can study modules
M by considering these modules for H*(G, Z).
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| See Benson-Carlson.

5 Lyndon-Hochschild-Serre spectral sequence

Let G be a group, H be a normal subgroup, Q = G/H. We would like to calculate the cohomology of G from
that for H and Q. In low degree, we get the five term exact sequence. We use a general method for calculating
(co)homology of double complexes using filtrations.

For the Lyndon-Hochschild-Serre spectral sequence, we have a particular double complex. Let X*® be a
ZG-projective resolution of Z. amd Y* be a ZQ-projective resolution of Z. Then X* is also a ZH-projective
resolution of Z. Let M be a ZG-module. Then G acts on Homy(X*®, M) by

(gN(x) = g(f(g~'x))

Since H acts trivially under the above action, we may view Homy(X®, M) as a ZQ-module. We then form a
double complex
A = Homg(Y*, Homy(X*, M))

with differentials

d = Homg(d,, id)
d” = Homo(id, d)

In this case, AP9 is zero outside of the first quadrant. In general, we have a double complex AP9, and differentials
d’, d” of degree (1,0) and (0, 1) respectively. Here, we require

(d/)Z _ (d//)z =0

and
d'd”+d"d" =0
Thus, if we set d = d’+d”, then d’ = 0. In our case, we don't have this unless if we put in alternating signs in

either of the differentials. We'll follow the convention from Cartan-Eilenberg, which is that we don't write the
signs, but remember that they are implied. We imply a (—1)P where p is the grading on X. Write

AT — @ APa

p+q=n

Consider the cohomology of the total complex (A", d).

The strateqy is to filter the total cohomology by using subcomplexes FPA, whose components to the left of
the p-th column are zero. Then

(FPA) = A
p'=p
Note (F°A)" = A", and (FPA)" = 0 for p > n. The inclusions FPA < A induces a map H"(FPA) — H"(A). We
set
FPH"(A) = im(H"(FPA) — H"(A))

Thus, we get a filtration
H"(A) = FOH"(A) 2 F'H"(A)2--- D0 (1)

The first spectral sequence allows us to calculate

n erHn(A)
% Fm+1 HH(A)
There is a graded action of H"(A). Thus, we know H"(A) as an extension of abelian groups.

Alternatively, we could consider the subcomplex obtained by removing rows from the bottom of our double
complex. This will give H?(A) up to extensions of abelian groups in a (potentially) different way. Fortunately,
with our case of the Lyndon-Hochschild-Serre spectral sequence, this second sequence actually only has one
non-trivial factor, and so we get that

H"(A) = H"(G, M)
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Thus, the first sequence is giving H"(G, M), up to extensions of abelian groups. So how do we calculate (7)?
Back to our initial filtration. Let

Cri={xe (FPA)PTa | dx € (Fp+f)p+q+1}

Define for r > 2,
CP9 4 (FPHTApPTa

d Cf;r+1,q+r72 + (/—_P“A)Pﬂi

FPa =

r

This is called the E,-page.

In this case, d induces a map d?9 . EPT Ef)+r'q7r+1, satisfying d% = 0. In practice, we have the E>-page
with d», and then we compute the cohomology

H(Ez, d2) = E3

in general,
H(El’r dr) = Er-M

Note that this process must stabilise for a particular coordinate (p, g). For large enough r, the map d, is
going to have image zero when applied to an element with coordinate (p, g). Similarly, for large enough r, the
elements whose image under d, has coordinate (p, g) must be zero. Thus, when we take the cohomology, we
are just dealing with zero maps. What we end up is denoted by E&%7 Note we don't necessarily have an r
where E,, = E,, since the r for which the terms stabilise depend on (p, g).

5.1 The E,-page

In the first spectral sequence, we consider H'(H”(A)), where H" and H’ denote cohomology with respect to d’
and d” respectively. Since d'd” + d”d’ = 0O, the horizontal differential d’ induces a differential on H”(A). We
can then calculate H'(H”(A)).

Note that for the second spectral sequence, we consider H”(H'(A)) instead. Consider how to compute
H’(H”(A)). Start in the (p, g)-th position. Let aP9 be a vertical cocycle. So d”aP9 = 0. This defines a class
in H”(A), modulo the image under d” of eleents in (p, g — 1)-th position. For aP9 to represent a horizontal
cocycle in H”(A) under d’, it must be that d’a”9 (which has coordinates (p + 1, g)), is the image under d” of
an element a”*19=1 with coordinates (p + 1, g — 1). Thus,

d(ap,q _ Up+1,qf1) = —d'gPtha1 c A2

Here, we are using d = d’ + d”. Hence a”9 — a”*"9~" is a cocycle under d modulo everything two-steps to
the right of the (p, g)-th position. Similarly, if a”7 represents coboundary in H”(A) under d’, then there are
elements bP~"9 and bP9~" such that

d’bP=11 =0

d’pp~1a = ¢"ppa-1 4 gPa
Thus,

d(bpflq _ bpvqf1) = gPd

modulo eveything everything two to the right of (p — 1, g). Thus, the cohomology classes in H'(H”(A)) gives
elements of the E»-page, and vice versa. The upshot is that the E;-page is H'(H”(A)), together with d, which
is induced by d.

Suppose a € A" is a cocycle with respect to d, starting in A?9, where p+ g = n. Thatis, a &€
(FPA)"\ (FP*TA)". Then da = 0, and so we get an element in £/7 for all r. Since d, is induced by d, d,a = 0.
Thus, a determines an element of £2?, and thus we have a map

FPHPTI(A) — EP.1
This map is surjective, and so

FPH"(A)

EPa —
o) Py Fp+1Hn(A)
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This is a graded version of H*(A). In the particular case of the Lyndon-Hochschild-Serre sequences, A =
Homo(Y*®, Homy(X*®, M)). Here,

d’ = Homo(dy, id)
d” = Homg(id, d%)

Recall we have suppressed the alternating sign in d”. Now
H"(A) = Homo(Y, H*(Homy(X*®, M)))
Since terms of Y* are ZQ-projective, and so Homo(Y, ) preserves exactness. Thus,
E; = H'H"(A) = H*(Homo(Y*, H" (H, M))) = H*(Q, H*(H, M))

Recall H*(H, M) is a ZQ-module so this makes sense. The d; is induced from d.
For the second spectral sequence, we have that the E;-page is given by H”(H’(A)), and we have

H'(Homo(Y*, Homy(X®, M))) = H*(Q, Hompy(X*, M)

Lemma 5.1. HP(Q, Homy(X*®, M)) =0 for p > 0.

We'll prove this later. Thus, H'(A) is concentrated on the line p = 0. On this line,
HO(Q, Hompy(X*®, M)) = Homy(X®, M)? = Homg(X®, M)

Hence
H”(H'(A)) = H*(Homg(X*, M)) = H*(G, M)

Thus, for the second spectral sequence, the £>-page is concentrated on the line p = 0. It follows E, = E
for r > 2. So E., is also concentrated on the line p = 0. Hence the filtration of H"(A) has only one non-trivial

factor. Thus, we get
H"(A) = H"(G, M)

for each n.

Proof of lemma Bl Since each X9 is ZG-projective, it is a direct summand of a free module. It suffices to
prove the lemma for ZG. Let M be M as an additive group, but with trivial ZG-module structure. We claim
that there is an isomorphism of ZG-modules

Homy(ZG, M) = Homy(ZG, M)

where G acts on the left hand side by (gf)(x) = g(f(g~"x)), and on the right hand side as in the coinduced
module on examples sheet 1. That is, (gf)(x) = f(xg). N
To see this, for f € Homy(ZG, M), define ' € Homy(ZG, M) by

f'(x) = xf(x")

for x € G. We leave the check that " is well defined, (f') = f and this gives a ZG-module isomorphism.
This claim allows us to use Shapiro's lemma, and noting that we have an isomorphism

Homu(ZG, M) = Hom(ZQ, M)
since H acts trivially. Thus,
HP (O, Homy(ZG, M) = HP(Q, Hom(ZQ, M)) = HP(1, M) = 0
for p > 0, where Shapiro’s lemma says that

HP(H, N) = HP(G, coind{! (M)
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Example 5.2
Let G = S3, viewed as the extension

1 G S3 G 1
Thus, we need to consider
HP(G, HY(G, Z))
Here, C; acts on 3 by conjugation, i.e.

12123012 "'=(132

which is the inversion map. Since this is a group homomorphism, the induced map on H*(C5, Z) is a ring

homomorphism. As a ring,
Z|c|
H*(C5,Z) =
(G.Z) 30

where deg(c) = 2. Note that this is a commutatitve ring, and

Z *=0
HY(G,Z) = { Z|3Z * >0 even
0 * odd

The action of G on H?(G3, Z) is multiplication by —1. We found a generator on examples sheet 1. Then
the action of G on H* is trivial, and on H¥**2 s multiplication by —1. Thus, we have

HY(G, H* (G5, 2)) = 0
HO(G, H(C3, Z)) = Z/3Z

Also from the examples sheet, H?((5, Z/37Z) = 0 for any p > 1. So the E,-page of the first spectral
sequence is as follows:

737

Z 0 Z[2Z 0 YA
Note that d, goes down 1 and right 2. Hence all differentials are zero maps. To work out £, we need

to take the homology of the E;-page to get the Es-page, which is the same, and d3 = 0 and so on. Thus,
we have a picture of Eo,. Thus, we get

0 7127 H¥*(A) —— Z/3Z —— 0
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which forces H*(A) = Z/6Z, and we deduce that

Z n=20

0 n odd

Z[2Z n=2 (mod 4)

ZI6Z n=0 (mod4),n>0

H"(S5,Z) =

Remark 5.3. On examples sheet 3, we will work this out for G = Qg in two ways. Once from a well-chosen resolution,
and once from spectral sequences. This shows us that the spectral sequence only gives us cohomology up to extension.

| Remark 5.4. Calculations are harder when we have to think about d;, d3 and so on.

| Remark 5.5. Spectral sequences behave well with products, and we can use them to work out the product structure
on H*(G, Z).

Now let us think about low degree cohomology.

Proposition 5.6 (five term exact sequence). The first spectral sequence of a double complex A, with
AP9 =0 unless p, g > 0, gives an exact sequence

da

0 E)° H'(A) EY! E5° H2(A)

Corollary 5.7 (five term exact sequence of group cohomology). Let H < G, and M be a ZG-module. Then
there is an exact sequence

0 —— H'(Q, M) —— H'(G, M) —— H'(H, M)® —— H2(Q, MH) —— H(G, M)

Proof of proposition[56} On the E,-page, we have

3,-1
EZ

and so £5° = £,° Repeating, we see that £ = £,°. But this is the bottom factor of out filtration of H'(A),
and so it injects into H'(A) with cokernel £2;'. Thus, we get

0 EL0 H(A) —— E%' —— 0
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Now returning to the E>-page, we have

—2.2
EZ

£
and EZZ'O is not-necessarily zero. This, E;“ = I<er(E§'1 — Ezz'o). On the E3-page, the differential d3 has

-3,3
EB

£
and we have that £0' = ES‘W.

Moreover, E20 < H?(A) since it is the bottom factor in the filtration of H?(A). Sticking everything together,
we get the result. O

If we apply this to the Lyndon-Hochschild-Serre spectral sequence, we get corollary 5.7}
Recall the ZQ-module structure on H"(H, M) is as follows:
Let G act on cochains C"(H, M) by

(g-@)h1,....hy) =golg 'hg,...,qg " hyq)

This descends to an action of G on H"(H, M). Under this, H acts trivially, and so we have a Q action. Here,
we're only interested in H'(H, M), and so if ¢ : H — M is a derivation, representing the cohomology class [¢],
then

[¢] € H'(H. M) < [¢]=[g¢]

forall g € G. If M is a trivial ZG-module, then H1(H, M) = Hom(Hap, M), and the fixed points are the
Z.Q-maps.
For the maps in corollary we have restriction maps H"(G, M) — H"(H, M), where we define the maps
on cochains by
felC'(GMresf=f

€ C"(H, M)

which then induces a map on cohomology.
Next, we have inflation maps H"(Q, M) — H"(G, M), defined on cochain as follows:

feC"(Q M) —inffe CG M)

given by
G" Qn f MH M

Next, we have the transgression map 7, : HY'(H, M)? — H?(Q, M"), which corresponds to d» on the
E>-page.
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For general M, let s: Q — G be a set-theoretic section, with s(1) = 1. Define
p:G—>H
plg) = gs(gH)™
Then we take the cohomology class represented by the derivation f : H — M, and define
Ty(f): G* > M
Ty(f)(g1. 92) = f(p(g1)p(g2)) — f(p(g192))

Note that changing g1, g> by multiplication by elements of H does not change tthe value. So we can define a
cochain Tg(f) : Q? — M. The image lies in M" and it is a cocycle. Thus, we have a map

[] € H'(H, M) = [Ty(f)] € H*(Q, M")

For a special case, assume the action of H on M is trivial. We have the short exact sequence

1 H G GIH 1

and we have an extension

1 —— Hy — GI[H, H GIH 1

Let € € H*(G/[H, H], Hap) correspond to this extension. Take [f] € H'(H, M)“/H = Hom(H,,, M)¢/". That is, f
is a Z(G/H)-map Ha, — M. Thus, we have

f. - HX(GIH, Hy) — HX(GIH, M)

and then Ty(f) = f,(e).

Corollary 5.8. Given a presentation G — F/R, M is a left ZG-module, then we have

0 —— H'Y(G, M) —— H'(F, M) —— Homg(Rap, M) —— HA(G, M) — 0

Proof. Use corollary 5.7} O

This fills in the left hand side of MaclLane's theorem.
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