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Symplectic topology is the study of global phenomenon of symplectic manifolds, which are a pair (M, w), where
M is a smooth manifold, and w is a non-degenerate closed 2-form on M. In particular, non-generacy implies

the map

™ — T'M

Vi w(v, )

is an isomorphism.

*Based on lectures by Abigail Ward. Last updated March 14, 2024.
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Example 1.1
R?" with coordinates x, y1, . . ., Xp, Yn is @ symplectic manifold, with

wg = wp = y_dx; Ady;

Example 1.2

Let ¥ be a surface of genus g. Then any volume form makes ¥, into a symplectic manifold.

Why study such manifolds? Some motivation from classical mechanics: Say we have a phase space X
encoding position and momentum of some particles in a physical system. For example, we have a pendulum
with angular coordinate 6, and angular momentum p = m@. The phase space is then S' x R.

Given H : X — R, encoding the total energy of a configuration, we want a vector field Xy such that the
trajectory x(t) satisfies

X(t) = Xn(x(1))
It's not enough to know that H is constant on trajectories, t.e. dH(Xy) = 0, since this is a co-dimension 1
condition. Recall if X has symplectic form w, then we can take X}, such that

w(Xy, ) = dH (1)

Indeed, every phase space has such a symplectic form. Note that w is non-degenerate if and only if eq. (T) has
a solution for all H, and w being closed is that w is preserved under the flow of X}.

Example 1.3 (harmonic oscillator)

In this case, X = R?, with coordinates p for momentum, g for position. The symplectic form is
dp Adg = rdr A dO

where (r, 8) is polar coordinates on X. This has Hamiltonian

1

H
2

1
(p* +q°) = 5r°
Hence
dH = rdr

ThUS, XH = 30"

1.1  Mathematical perspective

A question to keep in mind is: How does symplectic geometry compare to e.g. Riemannian geometry, complex
geometry etc.

In this context, dw = 0 is a form of “flatness”. Suppose (Y, g) is a Riemannian manifold, i.e. we have
g e ng2 T*Y non-degenerate. It is a fact that (Y, g) is locally isometric to R" with the Euclidean metric if
and only if the curvature F of g vanishes. That is, g is flat.

On the other hand, suppose (Z, /) is an almost complex manifold. That is, / € End(TZ), with /> = —idyz.
One example would be C”, with J(z) = iz. One question is, when is (Z, ) locally isomorphic to C"? That
is, when is (Z, /) a complex manifold. A difficult result in analysis, called the Newlander-Nirenberg theorem,
shows that this occurs if and only if the Nijenhuis tensor,

Ny(v, w) = [Iv, Jw]—J([v. Jw]+ [Jv, w]) — v, W]

vanishes



Theorem 1.4 (Darboux). A manifold (X, w) with non-degenerate 2-form w, is locally modeled on (R?", ws:q)
if and only if dw = 0.

Finally, symplectic topology is ubiquitous in research in geometry and topology, e.g. global topology,

algebraic geometry and so on.
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2 (Symplectic) linear algebra

Let V be a vector space, over a field F of charactistic 0, with dim(V) = n. V* = Hom(V, F) will denote the
dual.
Define F-algebras

T(V):év@
i=0

o 1Y)

V) = (vev)

If {eq,..., en} is a basis for V, then
{eh/\"'/\eik ‘[1 <"'<ik}
is a basis for AKV. Using this,

dim(AkV) = (Z)

Proposition 2.1. AK(V*) is isomorphic to the space of alternating multilinear maps

V®k ST

Proof. The map is given by

@X/\A.A/\eXHZslgn(U)ev ® Qe

oy @ io(k)
ogESK

The rest is left as an exercise. O

In particular, A"(V*) = A"P(V*) is (non-canonically) isomorphic to span{det}, or volume forms.

Definition 2.2
A symplectic form on V is w € A’(V*), such that w: V x V — F is a perfect pairingﬂ

9That is, w(v, -) induces an isomorphism V = V*.

Example 2.3
Let M*™*2 be an oriented manifold, and V' = H*"*1(M; Q). The pairing

<a,B>:/MaUB

is a symplectic form.




Example 2.4
Let V = R?", with basis {x;, y;}, with dual basis {e;, f;}. We can define

n
w = Zé‘,‘ A\ f,‘
i=1

More generally, if (V, wy), (W, ww) are symplectic, then so is

(Ve W, wy @ ww)

We can write
w(v,w) =v- ow

where
Joej =1; and fof; = —e;

If we use complex coordinates z; = x; + iy, then Jg is just multiplication bu i.
Let (V, w) be a symplectic vector space. Let W C V be a subspace. Define

W¢={veV|ww,v)=0fralwe W}

Definition 2.5
W is

1. isotropic if W C W*,
coisotropic if W¥ C W,

symplectic t Wn W* =0,

oW N

Lagrangian if W = W*. That is, it is isotropic and coisotropic.

Example 2.6
Take R?" with the standard symplectic form

w:dei/\dy[
i

Then span{xi, x2} is isotropic. In fact, span{xy, ..., xp} is a Lagrangian subspace. On the other hand,
span{xi, y1} is a symplectic subspace.

Remark 2.7. For any subspace W C V,
dim(W) + dim(W*) = dim(V)

and we have that (W¥)¥ = W.

Theorem 2.8. Given any symplectic vector space (V, w) over R, there exists a linear isomorphism & :
V — R?" such that *wy = w.

Proof. We induct on dim(V/). Choose any v; € V non-zero. By non-degeneracy, there exists wy; € V such that
wvi, wq) = 1. Let V4 = span{vy, wq}. Define &1 : Vj — R?, by ®1(v1) = x4 and ®1(wy) = yq. This satisfies
that ®jwy = wly,.



Define V5 = V}¥. Then V4 and V5 are symplectic, and dim(V>) = dim(V) —2. By induction hypothesis, there

exists ®, 1 Vo — R?"2, with ®%wy = wly,. We can then define

d =1 @by (Vi, wly) @ (Va, wly,) = (R 2, wo) ® (R, wo) = (R?", wo)

In particular, symplectic vector spaces are always even dimensional.

Corollary 2.9. a € A?V* is symplectic if and only if a A -+ A @ € A®PV* = R is non-zero.

Proof Note that
whg =X Nyi - Ax) Ay,

is the usual volume formEl

Returning to linear algebra, we have
Hom(V, V) — Hom(A"PV,APV) = R

The composition is the determinant det : Hom,(V, V) — R.

2.1 Orientations

Define
_ {ordered bases for V}  Fr(V)

G (V) T CL(V)

ory

O
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where we consider the GL, (V)-orbits, L.e. two frames are equivalent if they are related by a transformation

with positive determinant.

In this case, ory has two elements. Given any volume form a on V/, there exists an induced orientation on V,
given by the sign of @ on a basis. In particular, any symplectic vector space has such a canonical orientation,

induced by w".

2.2 Symplectomorphism

Definition 2.10

Define
Sp(2n) = {® € GL(R?") | d*wyg = wed}

if Jo is the matrix so that w(u, v) = u - Jyv, then we have that

Sp(2n) = {® € GLR?) | T jpd = Jo}

Example 2.11
form. Hence
Sp(2) = SL(2,R)

In general, we have an embedding
Sp(2n) € SL(2n, R)

since w" is the standard volume formqd on R?".

“maybe up to a factor of n!

Tor maybe with a coefficient of nl in front of it..

For R?, w is the standard volume form dx A dy. So preserving w is the same as preserving the volume



Note if & commutes with Jy, and ¢ preserves the inner product, then ¢ & Sp(2n). So
GL(n,C) N O(2n) C Sp(2n)

In fact, we have
GL(n,C) N O(2n) = GL(n, C) N Sp(2n) = Sp(2n) N O(2n) = U(n)

Proposition 2.12. The set S of symplectic forms on R?", as a subset of A?(V*) is GL(2n, R)/Sp(2n), a
homoegenous space.

Proof. GL(2n, R) acts transitively on S, with stabiliser Sp(2n) for any point. O
Let Lag(V) be the space of Lagrangian subspaces L of V.

Example 2.13
Lag(R?) is just the one-dimensional subspaces of R?, i.e. RP' = ST More generally,

Uin)

Lag(R*") = o)

Example 2.14
Let V = C*(S", R), with

w(f,g) = /S1 fdg

Using integration by parts, this is alternating.

3 Vector bundles

If 7:& — X is a vector bundle, we can define A*E — X, A*(E*) — X, org — X, and so on. We have a vector
space ['(€) of global sections of £. In particular,

QN(X) = TN(T*X))

is the space of k-forms.
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Definition 3.1

€ is orientable if there exists a global section of org.

Example 3.2 (non-example)

The Mébius bundle over S' is not orientable. More generally, for any vector bundle, & — S, £ is trivial
if and only if it is orientable.

Let M be a (connected smooth) manifold, and consider the tangent bundle TM — M.

Definition 3.3

M s orientable if TM is. If so, a choice of orientation for M is a choice of orientation for TM.




Note that if M is orientable, then there exists two choices of orientation. If M represents one orientation,
we will write M for the other. Moreover, if M has a boundary, then dM has a canonical orientation, by saying
(er,..., ep—1) is positively oriented if (v, eq, ..., en—1) is positively oriented, where v is the outward pointing
normal.

For compact M, M is orientable if and only if H"(M;Z) = Z. A choice of orientation corresponds to a

choice of generator in {£1}. Note that elements of Diff(M) must either preserve or reverse orientation, which
we can read off from ¢, : H"(M; Z) — H"(M; Z).

3.1 Cohomology and integration

Theorem 3.4 (de Rham). We have an isomorphism between de Rham cohomology and singular homology.
Moreover, this is an isomorphism of rings, between the wedge product and the cup product.

Intuitively, the isomorphism is given by integrating a form over a chain.

Theorem 3.5 (Stokes). Let M be a smooth n-manifold with boundary, and @ a compactly supported

(n — 1)-form on M. Then
/ da = / a
M oM

One corollary of Stokes is that we have a (perfect) pairing
Hi(M;R) @ HY(M;R) — R

given by integration.
More generally, if N* is an oriented submanifold of M, a € QX(M) has da = 0, then

[ e=na)

where we take the pairing using real (co)homology of M. The proof of this is beyond the scope of the course.
Corollary 3.6. Let (M*", w) be a closed symplectic manifold. Then H**(M;R) # 0 for all 0 < k < n.

Proof We know that [, w” > 0, since w” is a volume form on M. This shows that [w"] # 0 in H*"(M). Now
noting that [w]” = [w"] gives the result. O

For example, in (CP", wrs), w = PD[hyperplane]. The class of w generates H*(CP"). Note on the other
hand the result is false when M is open. For example, consider R?" with the usual symplectic form.
Suppose ¢ : M — M is a diffeomorphism. Then ¢*w is another symplectic form. To see this,

dop*w = ¢"dw =0

The fact that ¢*w is non-degenerate is clear, as d¢ is an isomorphism on tangent spaces.
We'll say that w, ¢*w are diffeomorphic. One question is: are all symplectic forms on M diffeomorphic?
The answer is no for some M, but we only know the result for very few M.

Definition 3.7

Define
Symp(M, w) = {¢ € Diff(M) | ¢*w = w}

This is the symplectomorphism group of (M, w).

Clearly, we must have that Symp(M, w) C Diff (M, w), as symplectomorphisms preserve orientation.

Lecture 5



4 Vector fields and isotopies
Let M" be any manifold.

Definition 4.1
An isotopy of M is a smooth map ¢ : M x R — M, such that

1. forall t e R, ¢ = ¢(-, t) : M — M is a diffeomorphism,

2. $o = ldM.

Equivalently, we can replace R in the above with (—¢, €).

Example 4.2
Define ¢; to be the rotation through angle t through a fixed axis on S°.

Any isotopy defines a time-dependent vector field X;, via

d
Xi(m) = ds SZ!%(’”)
For compact M, we have a correspondence
{time dependent vector fields X;} < {isotopies ¢}

For M non-compact, a flow might blow up in finite time. We are interested in how isotopies will act on tensors.
Let X € V(M) be a vector field, with associated flow ¢; defined for all t € R. Then for a, B are covariant
and contravariant tensors respectively. Define the Lie derivative

d
Lxa = a {:O(Q‘Lt)*a
and
LxB = d (@) B
ALTIN

We have the following properties:

Proposition 4.3. 1. i Y is a vector field, then LxY =[X, Y]

2. if a is a k-form, then we have Cartan’s (magic) formula

Lxa =d(ixa) + tx(da)

3. if f € C®°(M), then Lxf = X - f = df(X). This gives a map V(M) — Derg(C*(M)), which is a
homomorphism of Lie algebras.

4. From Cartan, Lx(da) = dLxae,

5. da(X, Y) = Xa(y) — Ya(X) — a(X, Y])) when a is a 1-form,

6. if X; is a time dependent vector field, with flow ¢, then

d * *
P = @ (Lxa)

Lecture 6

5 Interlude - Examples of symplectic manifolds



Example 5.1

Any oriented surface with dimension 2, with a volume form is a symplectic manifold.
On S?, we have a standard volume form given by the embedding S? < R>. In particular,

wy(v,w)=u-(vxw)

On T2, we can take d0; A dB,, where 6, 6, are the coordinates from S.

Example 5.2
Products of symplectic manifolds is a symplectic manifold.

Example 5.3

Let Q be a smooth manifold, then T*Q is a symplectic manifold, with the canonical symplectic form

On T*Q, we have local coordinates (g1, .. ., qi. pP1, - -, Pk),

6 Lie derivatives continued

Let (M, w) be a symplectic form. When does an isotopy ¢; : M — M preserve w? Let X; be the associated
time-dependent vector field, then ¢ preserves w if and only if Lx,w = 0. In turn, by Cartan’s formula, this is
true if and only if d(ty,w) = 0, Le. 1y w is closed.

When if ix,w = dH;, for some H; : M — R? We recover Hamiltonian dynamics. In this case, we call ¢; an
Hamiltonian isotopy.

Note that if M is compact, for any Hamiltonian function, we have an associated Hamiltonian isotopy

associated to the vector field X}, given by
txy, w = dH;

Note that if H'(M;R) = 0, then all symplectic isotopy is a Hamiltonian isotopy, as every closed one-form
is exact. In particular, we have a map given by the time 1 flow

C*(M) — Ham(M) C Sympy(M)

Locally, the kernel of this map is the space of constant functions. Equivalently, if we quotient out the constant
functions, then the map is locally injective.

Theorem 6.1 (Moser). Let (wy)ipo,1) be a smooth family of symplectic forms on M, M compact, satisfying
[wy] = [wo] € HA(M; R) for all t. Then there exists ¢y € Diff(M) such that ¢*wi = wp.

Note that it is not true if [w;] is allowed to vary.

Proof (Moser’s trick). We seek an isotopy ¢; such that ¢fw; = wy. Now since [w] is constant,

(5] - -

and so
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for some g; € Q'(M). Now if ¢; is an isotopy, with associated vector field X;, then

d, . . [ dw
a(%wt):% (dtt"‘ﬁxfwt)

= ¢/ (doy + dix, wy)
We would like this to be zero, since this would imply that ¢fw; = wo. We can find X; such that
o + Lx, Wt = 0

since w; is non-degenerate. Since M is compact, letting ¢; be the flow of X; gives the result. O

Theorem 6.2 (Darboux’s theorem). For any p € (M, w), there exists a chart f : U — M, sending 0O to p,
such that f*w = weglu-

That is, there is no local symplectic geometry.

Proof Fix any chart h : U < M, with h(0) = p. Moreover, we can require that h*w € Q?(U) is equal to wey
at p, since this is just a linear algebra condition.
Let U" C U be a neighbourhood of 0, such that w; = wsig + t(h*w — wed) is symplectic for t € [0, 1]. This
exists since being non-degenerate is an open condition.
By Moser’s trick,
dwy
dt

This exists since we can choose U’ to be a disc, and so H'(U’) = 0. Let X; be such that

= h*'w— Wstd = dO}

x,wy = doy

Let ¢ be the flow of X;. In particular there exists U” C U’ open, such that for all t € [0, 1],
pU") C U

In particular,
P Wi = Weg

Now ho ¢ : U" — M satisfies the requirements. O

Lecture 8

7 Almost complex manifolds

Definition 7.1 (almost complex structure)

Let X be a smooth manifold. Then / € End(TX) is an almost complex structure if /> = —id.

Example 7.2

When X = C", we have a canonical identification T,X = C". On this, J is multiplication by i. We'll
denote this by Jig € End(TC").

Definition 7.3 (integrable)

An almost complex structure J is integrable if it is the pullback of J4g from an atlas of charts with
holomorphic transition functions. That is, if X is a complex manifold, and J is multiplication by i.
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Definition 7.4 (compatible)

Let (M, w) be a symplectic manifold. We say that an almost complex structure J is compatible with w if
o w(v,w)=w(v,Jw) forall v,w,
e w(v,Jv) > 0 for all v non-zero.

Equivalently, w(:, /) is a Riemannian metric.

Note that in this convention, we have
wsid = g(/-,+)

In this case, (g, /, w) is a compatible triple.

Proposition 7.5. Any symplectic manifold (M, w) admits a compatible almost complex structure J. More-
over, the set J(M, w) of all such J is contractible. So J is unique up to contractible choice.

Proof. Pick any Riemannian metric g on M. Then we have two isomorphisms
g,w:TM—TM

Let
A= '0:TM - TM

If we have a compatible, triple, then A is an almost complex structure. Now
w(u,v) = —w(v,u) = —g(Av,u) = —g(u, Av)
and so we obtain that A* = —A. Here, * denote the transpose. Hence AA* = —A?. Now
g(AA™ v, v) = g(A"v, A*v) > 0

So AA* is symmetric and positive definite. In particular, it is diagonalisable, with positive eigenvalues.

-1
Let J = (VAA") A Then
J=—ATAT = —id
where we use the fact that everything commutes. Moreover,
w(lu, Jv) = g(Alu, Jv) = g(JAu, Jv) = g(Au, v) = w(u, V)

and
w(u, Ju) = g(—JAu,v) = g(AA*u, u) = g(A*u, A*u) > 0

So J(M, w) is non-empty. Choose Jy € J(M, w). Define

F:JM, w) x[0,1] = JM, w)
F,t)=J

where J; is the almost complex structure associated to the Riemannian metric
gt =tgy + (1— t)gj

Here, we are using the convexity of the space of Riemannian metrics. Then F defines a retraction of J(M, w)
onto Jp. O

Definition 7.6 (Lagrangian submanifold)
A submanifold L" C (M?", w) is a Lagrangian submanifold if w|; = 0.

For example, R" C C", T" C R2", RP" C CP". If X is a projective variety defined over R, then X(R) C X(C)
is Lagrangian.

i



Example 7.7
If ¢ : M — M is a diffeomorphism, then it is a symplectomorphism if and only if the graph

4 CMxXM, wd—w)

is Lagrangian.

Theorem 7.8 (Weinstein neighbourhood). If L C (M?", wy) is a compact Lagrangian, then there exists a
neighbourhood U(L) of the zero section in T*L, and a symplectic embedding U(L) — M, sending the zero
section to L.

Lecture 9

Proof. Fix an almost complex structure J compatible with wy,. This gives us an orthogonal decomposition
M| =TLa /- TL

This is orthogonal with respect to the metric g;. Let ® : T*"M — TM be the lowering operator given by the
metric. Now define
o:UlL)y - M
@lq. 1) = expy(J - &(f))
Here, exp is the exponential map with respect to the metric g;. We can assume that ¢ is a diffeomorphism onto

its image, by compactness of L and by shrinking U(L).
Consider L C T*L embedded as the zero section. Note we have a canonical identification

Teo(TH) =TeL@®TiL
With this,
Do(v, )=v+]-d(f)eTLDJ-TL
This is by the definition of the exponential map.
We claim that ¢*wy = w; on L C T*L. Indeed,
@ wpm((v, f), (V' 1) = wml((v + JO(F), v/ + JO(F))
= wp(v, JO(F)) — wm(V', JO(F))
= ') = (V)
= dAan((v, 1), (v, )

Now apply Moser’s trick. We can write
P Wy — Wean = do

for some o € Q'(T*L), with o], = 0. The time-1 flow then gives the associated symplectic embedding. Here,
we flow along the vector field X; so that
LX,Wean = O

O

Remark 7.9. We've used that / : TL — vy is an isomorphism. This tell us that (assuming L is oriented), the
intersection number [L] - [L] = (—1)"" x(L).
In this case, if (L) # 0, then [L] # 0.

7.1  First Chern class

12



Definition 7.10

A complex vector bundle € — X is a real vector bundle, with am assocated endomorphism J/ € End(€),
with /2 = —id.

Definition 7.11

A symplectic vector bundle & — X is a vector bundle, with w € "(A°E*), such that w, is a symplectic
form on &,.

On each sympelctic vector bundle, we have a canonical choice of a complex structure J, up to homotopy.
Moreover, since we have a homotopy equivalence Sp(2n) = U(n), classification of symplectic vector bundles
and complex vector bundles are the same.

Remark 7.12. Note that classification of complex vector bundles is not the same as classification of holomorphic vector
bundles.

Example 7.13

The tautological line bundle Lyt = O(—1) over CP” is a complex vector bundle.
The canonical bundle O(1) = L}, , is also a complex vector bundle.

Theorem 7.14. There exists a correspondence
{complex line bundles on X} < H?(X; Z)

by sending £ to ¢1(L).

We have functors
X — {vector bundles on X}

and
X — H*(X, Z)

In this case, the first functor is given by the functor

X —cre)

X
homotopy

where we pullback the tautological line bundle using a continuous map. Define ¢1(£) = f*x, where H*(CP*°) =
Z|x). Note also K(Z,2) = CP*, and so CP* represents H*(-, Z). Moreover, note that CP> = BU(1), so it
represents principal U(1) bundles.

We can also define ¢q in terms of Chern-Weil theory, for example see Griffiths-Harris. In fact, for this it is
just the curvature of a unitary connection.

For a more general complex vector bundle &, we can define ¢1(€) = ¢(det(E)), where det(E) = APE is the
determinant line bundle.

In practice, for a line bundle over X satisfying Poincaré duality, ¢1(£) is the Poincaré dual of the zero locus
of a generic section of £. Note that the zero locus lives in H,_»(L), since £ is a complex line bundle.

For an almost complex manifold X, we will define ¢;(X) = ¢;(TX).

Example 7.15

For X = S?, consider rotation about a fixed axis. This has two zeroes. So ¢(S?) = PD(2 points) = 2 €
H2(S?%; Z).
More generally, if X, is the surface of genus g, ¢1(X4) is the number of zeroes of a generic vector field,

13
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which is x(L4) = 2 —2g.
e ¢((€) is invariant under homotopy of the almost complex structure J, so ¢1(M) is well defined for a
symplectic manifold M,
o (") ="1(€)
o (1(E®F) =rank(&)ci(F) + rank(F)ci(€),
* (L) = —al(L),
o ¢(Lia — CP") = —PD(H) € H?(CP"; Z), where H is a hyperplane (class).
e ¢1(CP") = (n +1)PD(H). Note here, TCP" = O(n + 1).
o if
0 A B C 0

is a short exact sequence of complex vector bundles, then ¢;(B) = ¢1(A) + ¢1(C).

7.2 Four manifolds

Let (X?,J) be an almost complex 4 manifold. Let C? C X be an almost complex curve. So J restricts to an
endomorphism TC — TC.

Proposition 7.16.
—x(C) =29(C) =2 = —c1(X) - [C] +[CF

Here, in dimension 4 we have a pairing Hx(X) ® Hx(X) — Z.

Proof. We have a short exact sequence of vector bundles

0 TC TX|C Veix —— 0

Hence
c1(TX]c) = a1(TC) + ci(veyx)

Taking intersection with [C], the right hand side is
x(C) +[C]-[C]
and the left hand side is ¢;(X) - [C] O

Let X* be a 4-manifold, with an almost complex structure.

Theorem 7.17 (Hirzebruch signature). Let X* be an almost complex manifold. Then
c1(X)? = 2x(X) + 3a(X)

Here, H?(X;R) has a non-degenerate symmetric pairing from the intersection form/cup product. Thus, it
has a signature which we denote by o(X) = by — b_.

We note that b, + b_ = by(X), and that c1(X)? = o(x) (mod 8).
Proposition 7.18. If X* admits an almost complex structure, then X#X does not.

In particular, P?#P? is not a complex manifold.

Proof. Note that by(X#X) = 2b1(X) and b (X#X) = 2b.(X). If X admits an almost complex structure, then
1— b1+ by must be even. O

In fact, a connect sum of n copies of P? has an almost complex structure if and only if n is odd.

14

Lecture 11



8 Kahler manifolds

Suppose X is a complex manifold. Let J be the almost complex structure. Define
TeX=TX®C

Then J extends to an endomorphism of TcX. But now J° +id = 0, and so J is diagonalisable, and T¢X splits
into
TOX@T'X

which are the i and —i eigenspaces of J respectively. Write

9 _ (2 9 g L1 (9,9
dz; 2 \dx ady; 0z; 2 \ dx ay;
Then T'X is the span of the 2= and T X is the span of the .
In terms of the cotangent bundle, we have a splitting

TeX = (T X @ (T7)°X

which again are the i and —i eigenspaces of J. Then (T'%)*X is the span of the dz; and (T%")*X is the span
of the dz;.
We define
/\?,kX _ /\?(T1,OX)* ® /\k(TO,WX)*

and let Q%K = Q%K) be the space of sections. Locally, elements are of the forrTE|
f/JdZ/ A dz;

where |/| = ¢ and [/| = k.
Note if f : X — C is a smooth function, then we have

of of _
df = a—Z[dzi + a—}jdzj
We write of of
of = a—Z[dzi and of = a—dzj

for the holomorphic and antiholomorphic parts. In particular, df € Q'9(X), af € Q®'(X), and f is holomorphic
if and only if of = 0.

With this all in mind, we have

“X) = P i)

pt+q=k

where
OPI(X) = T(A(TTOX) @ AY(TO1X))

Since J is integrable, the exterior derivative d : QX(X) — Qf*1(X) splits as
d:QP9(X) —» QPT9(X) @ QP9 (X)

We write 0 : QP9(X) — QP“'Q(X) and 9 : QPa9(X) — QP"?“(X).
In particular, as d? =0,

and we can define the Dolbeault cohomology.

Definition 8.1 (Kahler)

X is Kdhler if there exists a closed form

w= é S hydz A dz; € Q(X)
0L

2Summation convention applies.
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such that H = (hyj) is a positive definition Hermitian matrix.
In particular, w € Q%(X) N Q"(X), and
W' = (;) det(H)dzi A - Adzy AdZT A - A dZ5

Now det(H) is non-vanishing, and so w is non-degenerate. Thus, w defines a symplectic form.

Remark 8.2. Complex submanifolds of Kahler manifolds are Kahler when we restrict w.
Note that an alternative definition is:

Definition 8.3 (Kahler)

(X, J, w) is Kahler if J is integrable, and w is compatible with J, and so
glu,v) = w(u,Jv)

defines a Riemannian metric.

Definition 8.4 (plurisubharmonic)

p: X — R is plurisubharmonic if the matrix

’p
(32,0?/

is positive definite.

If p is plurisubharmonic, then '
L —
= =00
w = 50dp
is a Kahler form, and we call p a Kdhler potential.

Example 8.5
OnGC p=|z*= Y :zz;, and the associated Kahler form is the standard symplectic form.

Proposition 8.6. CP" is Kahler.

Proof. We will use homoegeneous coordinates [z; : - - - : z,41] on CP”. Recall that CP” is covered by standard
affines
U = {z + 0}
and on this, we have coordinates
2 G Zm
2 PR 2

Define p; on U; = C" by
pj(w) = Log(1 + |W|2)

We claim that p; is plurisubharmonic on U;, and that 00p; = 65pj on U; N U;. Then we will have a globally
defined form w. We leave these computations.
For plurisubharmonic, note that we can compute at 0 € C" and use U(n) equivariance. O

We call the above form w the Fubini-Study form.

16



Corollary 8.7. All quasi-projective varieties are Kahler.

By GAGA, we have a correspondence between closed complex submanifolds of P and projective varieties
over C. On the other hand, there exists closed Kahler manifolds which are not projective, for example a generic
K3 surface.

Theorem 8.8 (Hodge). If X is compact Kahler, then there exists isomorphisms

HYX) = €D HEY(X)

pt+qg=n

Moreover, we have a natural isomorphism

H29(X) = HIP(X)

In particular, the odd Betti numbers are even.

Theorem 8.9 (Lefschetz). The map
A [w}k . HI77/<(X) — HI7+/<(X)

is an isomorphism. Moreover, this respects the bidegree decomposition.

Let Fy = V(z{ + -+ + z7) be the Fermat hypersurface. Then
[F4] = d[H] € H,,_»(CP", Z)

Moreover, all degree d hypersurfaces in P” are symplectomorphic. To see this, note that they are all diffeo-
morphic as we have a path of smooth hypersurfaces connecting any two degree d hypersurfaces. We'll see the
fact that they are symplectomorphic later.

We can get more complex submanifolds, by taking transverse intersection of smooth hypersurfaces.

9 Symplectic blowups

let Z = {(z,#) € C" x P"" | z € ¢}. We call this BlyC", the blowup of C" at the origin. We have two
projection maps:

n:7—C"
p:Z — P!

Note that Z is also the total space of the tautological bundle O(—1). Note that for z non-zero, 7~ '(z) = {(z, £,)}
is a single point. On the other hand, we have the exceptional divisor

E=n"(0) = {0} x P

7t is an isomorphism away from E.

In general, if X is a complex manifold. Then we can form X = Bl, X, by choosing local charts about p, and
replace a neighbourhood of p with a neighbourhood of 0 in Z.

Why consider blowups?

e in symplectic geometry, we can use blowups to construct new symplectic manifolds,

e in algebraic geometry, we can use blowups to resolve singularities.

17
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Now in symplectic geometry:
Let (M, w) be a symplectic manifold. Let

Zs = '(Bs(0) € Z

and
Wy = T we + )\Zp*U)Pn—W

Then (Z5, w,) is a symplectic manifold.
Lemma 9.1. (Z5 \ £, w,) is symplectomorphic to (B(V A2 + 3%) \ B(A), wsa)-

Let W be the symplectomorphism above. Thus, to construct the symplectic blowup, suppose we have a

symplectic embedding
@ B+ 0%) > M

Let _
M = M\ ¢(B(A)) Uy Z5

Using this, we can glue to get (/\~/I, wy).

Proof of lemma[9l Let ® : C"\ 0 — P"~" be the quotient map. Then
" wpr1 = é@g\z\z
Let p, € Q(C"\ 0) be defined by '
_ s 2 2 2
Uy = 200 (\Z\ + A Log(\z\ ))

We can check that
\z|2 + X log ( \2\2)

is plurisubharmonic, and that
T UL = W)

is a symplectic form on Zz \ £ = B(d) \ 0. Now define

F:C"\0—C"\ B

A computation shows that
Frwstg = 1

Remark 9.2. Symplectic blowup is volume decreasing, as we remove a ball of radius A.

We would like to find [w,] € H?(M). We use Mayer-Vietoris,
M = M\ B(A) Uy Zs

Here, U is homotopic to S2=1So we get (for n > 2)

0 —— H’ M) —— H’M\ B(A) @ H*(Zs) —— 0

Now HZ(M\ B(4)) = H?(M). Under the above isomorphism, [w,] = [w] — 7A* PD[E].
Lecture 14

Another way to see that w, is symplectic is as follows. Note that 7*wgo and p*wp.— are both compatible
with respect to the standard complex structure J. In particular, 7 wen is symplectic away from E.
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On E, we have
0 — TE — T2l —— vg —— 0

Note that ve = ker(dp) which includes into TZ|g, which gives a splitting of the short exact sequence. Thus, we
have a pointwise splitting
(TZle)py =TE® ve

On the first factor, we have the non-degenerate form p*wps-1, and on the second factor we have the non-
degenerate form 7% wgen.
On the other hand,
AN’ PDIE] = [w,] € H(Z5)

Next, note that we have isomorphisms
H?(Zs)
= Hon2(Z5, 075)
= H2/772(Z(5)
= Hap—2(Tot(Opn-1(=1)))
=~ Hanz(P/771)
= Z|E]
and for a line L in P"~", we have H,(Z5) = [L], and so

[E]-[L] = 1(Opi (=) - [L] = =1

//UJ)‘:AZ/(U]PW—W =T
L L

Remark 9.3. Suppose we started off with an almost complex structure J. Then we would like to construct a J on the

On the other hand,

blowup M, and so on. See McDuff-Salamon.

Remark 9.4. In general, we can blow up along complex submanifolds, symplectic submanifolds, subschemes... Here,
we replace the submanifold with the projectivisation of its normal bundle.

Consider the rational map
P? --5 P
[x:y:z]—[x:y]

In an affine, this sends (x, y) to x/y. Note this is not defined at pg =[0:0: 1]. But, if we blow up at py, then
we have a well defined map. Consider the neighbourhood

{(x,y) [t : &) € C? x P! | Xt =yt }

The projection to P! defines a well defined map, which is an extension of the above map away from £. In this
case, we get a Hirzebruch surface Fy. Thus, we have a P'-bundle Fy — P'. More generally, we can write this

as
PO(-1)® O) — P’

9.1 Rational elliptic surface

Let f, g define smooth cubics in P2 Let V; = V(f) and V,; = V(g), and assume that V; h V,, and so B = V;NV,
is 9-points. So now we have a pencil of cubics, which is a P'-family of cubics sf + tg, where [s : t] € P'. Thus,
we get

Visg = V(sf + tg)
Consider the rational map [f : g] : P? -=-» P". This is not defined at B. Let
S = BlgP?

Then we have a well defined map ¢ : S — P'. Moreover, each point £; € B defines a section of ¢.

19
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Remark 9.5. If 7 is locally a submersion, F = 7~'(p) is a smooth fibre, and vr is trivial as a complex fibre bundle.

10 Fibre connect sums of symplectic manifolds

Theorem 10.1 (symplectic neighbourhood theorem). Let Q C (X, w) be a symplectic submanifold, then a
neighbourhood of O is symplectically determined by (Q, wp) and vg)x — O as a symplectic vector bundle.

Note we have an exact sequence
0 —— TQ *>TX|Q E— VQ/XZTQ“) — 0

and so the symplectic structure on vg,x is determined by the symplectic structure on T.X|o.

Corollary 10.2. For Q C X*, a symplectic neighbourhood is determined by
* [ow
e x(0Q) (corresponding to ¢1 of TQ),

e (- Q (corresponding to ¢y of the normal bundle)

Sketch proof of theorem [T0_1} Say we have symplectic embeddings (Q, w) < (Xj, wy) and into (X2, wy), with
normal bundles vi = v,. Then use the tubular neighbourhood theorem to get a diffeomorphism ¢ between the
neighbourhoods of Q in Xj, X5 respectively, which is the identity on Q.

Note that ¢*wy|to = w1lto. Then use Moser’s trick. O

Corollary 10.3. Say we have a symplectic embedding (Q*"~2, Q) — (M?", w). This extends to a map
h:(Q% x D(e), Q@ wsa) — (M™, w)

if and only if ¢1(vom) = 0.

Remark 10.4. Note h is not determined topologically from this data, since framings are classified by homotopy classes

of maps [Q,SO(2)] =[0Q, S".

Fact: There exists a symplectomorphism “turning the annulus inside out”. Here, the annulus is B°(g) \ 0,

and the map is
o(r.0) = (Ver =12, -0)

Suppose Q has two codimension 2 symplectic embeddings Q — M, QO — M, with vg, is trivial. Fix
extensions h; : Q x B?(€) — M as above. Define the symplectic fibre sum

Mi#toMa = (Mq \ Q) Uig xo (M2 \ Q)
where w = w; on M;, which agrees on the overlaps as we are gluing by a symplectomorphism.

Remark 10.5. Framings matter topologically, and € matters symplectically. We note that

vol(M#oMs) < vol(My) + vol(M,)

Fact: This construction is ‘local, so in fact we can relax the condition of ¢1(v;) = 0 to allow ¢1(v1) = —c1(v2).
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Example 10.6
If C2 C (X* w) is such that g(C) =0, C- C = —1. Then we can form

X' # (P, rwes)
{c=1}

where [ is a line in P2, and r is chosen so that

[ rurs = [ wn
L C

This is the blow down of O.

Example 10.7

Say C C (X*, w) is such that g(C) = 0, with C - C = —4. Take A C P? be a smooth conic, and the blow
down is
]P)2
{c=A}
Again, we need to scale the symplectic form on P2, In this case, A- A = (2L) - (2L) = 4 and g(A) = 0, so
everything works out.

For examples in symplectic geometry: Start off with a complex Kéhler manifold, say a projective manifold.
Then perform operations such as blow down, fibre connect sum and so on.

We will now construct a symplectic manifold with no integrable complex structure.
Recall 7 : E(1) — P' is given by blowing up the base points of a pencil of cubics. In this case, £(1) is
Kahler. Let £ be a smooth fibre.
Fact: m(E(1)\ F) =0.
Also note that c1(vF) = 0. Let (T, w = wyq + €d; A dB3). For small €, w is symplectic. Let
Ci =T x {x}
G = (8" x {+}) x (ST x {*})
These are now both symplectic submanifolds of 7% Now vC; and v( are trivial, and so there exists a

symplectic form on
Y = (T*#c—r E(1)#c—r E(1)

(choose w scaled appropriately).
Proposition 10.8. 1 (Y) = (T (m(Gy), m(G)) = Z.

Proof Seifert-van Kampen. O
In particular, H'(Y;Z) = Z, and so b'(Y) = 1. Thus, ¥ cannot be Kahler.

11 Fibrations of complex manifolds

Let f : X — Y be a holomorphic map of Kahler manifolds, with dimg(X) > dimc(Y), and assume f is surjective.
Let
S = {x € X | rank(dfy) < dimg(Y)}

In this case, S is a complex submanifold of complex dimension at most dimc(Y)—1. The fact that it is a complex
submanifold follows by the implicit function theorem. Thus, f(S) has codimension at least 1 in Y. Then we
have

FU=X\Ff(S) = W=Y\FS)
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By Ehresmann's theorem, f : U — W is a fibre bundle. But note that W is connected, since it is Y with a
smooth real codimension at least 2 subset removed. Such f : X — Y are often called fibrations.
For wi,wo € W, [f~"(wq)] = [f~"(w2)] in homology. By Moser, if we set F,, = {~'(w), then we have a
symplectomorphism
(FW1' wx

Fuy) = (Fus wxlr,,)

Since we can smoothly trivialise over a path connecting wq, wy in W.
Remark 11.1. We have not used the "horizontal” directions at all.
We can do better. On f: U — W, we can split at x € U, say x € F,
T X =T Fy @ (T Fy)”

This gives an Ehresmann connection. Given y a path in W, with y(0) = wg and y(1) = wj, this gives a parallel
transport map ¢ : f,, — ;) with respect to the above connection.
If pe = @i(po). then pi € (TyF)*.

Proposition 11.2. For all t €0, 1], ¢ is a symplectomorphism.

Thus, we have a canonical symplectomorphism between fibres connected by a path.
For a more concrete example, consider £(1) — P'.
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