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1 What is a toric variety?

Definition 1.1 (affine variety)An affine variety is V = Spec(R ), where R is a finitely generated integrala C-algebra.
aR is an integral domain.

∗Based on lectures by Renata Picciotto. Last updated March 12, 2024.
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Fact: Given such an R , we can choose generators and relations, and write
R = C[x1, . . . , xn]

Iwhere I is a prime ideal. This gives an affine embedding. i.e. a closed embedding
V = V(I) = An

Note that the affine embedding is not unique.
Definition 1.2 ((complex) variety)A (complex) variety is a scheme X which is integral (reduced and irreducible), separated, and of finitetype.
We can avoid schemes, and glue varieties out of affine varieties. We need1. a finite collection {Vα}α∈A of affine varieties, say Vα = Spec(Rα ),2. for α, β ∈ A, we need Zariski opens Vαβ ⊆ Vα ,3. algebraic transition maps gαβ : Vαβ → Vβα , satisfying the usual cocycle conditions,4. check that the resulting

X = ⊔
α Vα
∼is irreducible and separated (Hausdorff).

Definition 1.3 (torus)An (algebraic complex) torus of dimension n is
Tn = (C∗)n = Spec(C[x±11 , . . . , x±1

n ]) = (A1 \ {0})n
Note that this is not the same as the usual torus (S1)n. In particular, we have an affine embedding

Tn = Spec( C[z0, . . . , zn]
⟨z0 · · · zn − 1⟩

) = V(z0 · · · zn − 1) ⊆ An+1
Exercise: Check that we have an isomorphism of rings

C[z±11 , . . . , z±1
n ] ∼= C[z0, . . . , zn]

⟨z0 · · · zn − 1⟩

The torus is also a commutative group scheme, that is, we have algebraic morphisms
e : • → Tn

m : Tn × Tn → Tn

i : Tn → Tn

making Tn into an abelian group with identity e, multiplication m and inverse i. On the level of coordinaterings, we have the identity section,
e♯ : C[t±11 , . . . , t±1

n ] → C
t±1
i 7→ 1

The multiplication map is given by pointwise operations, i.e.
m((x1, . . . , xn), (y1, . . . , yn)) = (x1y1, . . . , xnyn)
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With this, we have comultiplication

m♯ : C[t±11 , . . . , t±1
n ] → C[x±11 , . . . , x±1

n ] ⊗ C[y±11 , . . . , y±1
n ]

ti 7→ xi ⊗ yiand the inverse map is given by
i♯ : C[t±11 , . . . , t±1

n ] → C[t±11 , . . . , t±1
n ]

ti 7→ t−1
i

Definition 1.4 (toric variety)A toric variety is a variety X with a dense open Tn ⊆ X , and an action (i.e. algebraic map)
a : Tn × X → X

which extends the multiplication on X .
Example 1.5Tn is itself a toric variety.

Cohomology
Example 1.6
An = Spec(C[x1, . . . , xn]), with the torus

Spec(C[x±11 , . . . , x±1
n ])

with
a((t1, . . . , tn), (x1, . . . , xn)) = (t1x1, . . . , tnxn)

Example 1.7Projective space
Pn = Proj(C[z0, . . . , zn]) = {(z0 : · · · : zn) | (z0, . . . , zn) ̸= (0, . . . , 0)}

is also a toric variety, with torus
Tn = {(z0 : · · · : zn) | z0 · · · zn ̸= 0}

with action given coordinate-wise again, i.e.
a((t0 : · · · : tn), (z0 : · · · : zn)) = (t0z0 : · · · : tnzn)

in non-homogeneous coordinates (i.e. in the affine z0 ̸= 0) of the torus, we can define the action by
(t1, . . . , tn) · (z0 : · · · : zn) = (z0 : t1z1 : · · · : tnzn)

We can check that Tn is contained in all of the standard opens Ui = D(zi), and if we choose the usualaffine coordinates, then Tn embeds into affine space as above.
Toric varieties are determined by the dimension n of the torus, and the toric boundary X \ Tn. For example,

P2 \ T2 has three components,1. V0 = V(z0),
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2. V1 = V(z1),3. V2 = V(z2)The Vi intersect pairwise, but not all three at the same time. Each Vi is invariant under the action of the torus,so P2 can be represented as

In particular, this gives us a stratification of P2, with strata T2, C∗ = T 1 corresponding to Vi with the verticesremoved, and the three vertices. Lecture 2
2 Characters, cocharacters and lattices
Recall from the last lecture that Tn = (C∗)n is an algebraic group.

Definition 2.1 (character)A character χ of Tn is a morphism χ : Tn → C∗ of algebraic groups. That is, χ : Tn → C∗ is a morphismsof schemes, such that
χ (e) = 1 and (χ♯ ⊗ χ♯) ◦ m♯ = m♯ ◦ χ♯

We will write Homalg-gp(·, ·) for the set of morphisms of algebraic groups.
Theorem 2.2. The characters of Tn are

M = Homalg-gp(Tn,C∗) = Zn

Proof. First of all, note that Homalg-gp(Tn,C∗) = (Hom(C∗,C∗))nThus, without loss of generality n = 1. Now we need a C-algebra map
χ♯ : C[x±1] → C[y±1]This is determined by χ♯(x) = p(y, y−1). Note that x is a unit in C[x±1], and so χ♯(x) is a unit. Thus,

p(y, y−1) = ayk , for some a ∈ C, k ∈ Z.Next, we need that e♯ ◦ χ♯ = χ♯ ◦ e♯. That is,
a = e♯(χ♯(x)) = χ♯(e♯(x)) = χ♯(1) = 1Hence χ♯(x) = xk , for some k ∈ Z. Note that χ♯(x ⊗ x) = χ♯(x) ⊗ χ♯(x) automatically, so we are done.The characters of Tn are of the form

χ (t1, . . . , tn) = ta11 · · · tan
nfor some (a1, . . . , an) ∈ Zn. Expressions of the form

ta11 · · · tan
n
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are called Laurent monomials. We will write
χa(t) = ta = ta11 · · · tan

nfor this character. The correspondence is then
Homalg-gp(Tn,C∗) → Zn

χa 7→ a

The characters form a group. Given characters χ, χ ′ : Tn → C∗,
χ · χ ′(t) = χ (t) · χ ′(t)

Thus, we have taht
χa · χa′ = χa+a′

Hence the identification Homalg-gp(Tn,C∗) ∼= Zn is also a group isomorphism.
Definition 2.3 (cochacter)A cocharacter of Tn is

λ ∈ Homalg-gp(C∗, Tn)We also call them one-parameter subgroup.
We can check that

N = Homalg-gp(C∗, Tn) ∼= Zn

by showing that any λ ∈ N is of the form
λ(t) = (tu1 , . . . , tun )

for u = (u1, . . . , un) ∈ Z. So we can write the above cocharacter as λu as before. N is a group, and theidentification is a group isomorphism. That is,
λu · λu′ = λu+u′

Example 2.4For n = 2, we can identify T2 = {(t1 00 t2
) ∣∣∣∣ t1t2 ̸= 0}

Under the identification M ∼= N ∼= Z2,
χ (a,b)(t1 00 t2

) = ta1 · tb2
and

λ(u,v )(t) = (tu 00 tv

)

Definition 2.5 (lattice)A lattice is a free abelian group of finite rank.
Note that with this definition, any lattice is isomorphic to Zn when we choose a basis.
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Example 2.6
Z, 2Z,Z ⊕ Z,Z ⊕ 3Z, . . . are all lattices.
There is a perfect pairing1, given by

⟨·, ·⟩ : M × N → Z
⟨a, u⟩ = a · u = a1u1 + · · · + anunIn a coordinate-free manner,

M × N = Hom(C∗, Tn) × Hom(Tn,C∗) → Hom(C∗,C∗)(λ, χ ) 7→ χ ◦ λ

Using the identification Hom(C∗,C∗) ∼= Z as before gives the pairing.We can describe a torus TN starting from a lattice N , through
TN = N ⊗Z C∗

with this, Hom(C∗, TN ) = NFormally, TN = Spec(Z[N ] ⊗Z C[x, x−1])With this, give a torus T, we get two dual lattices N, M . Conversely, given a lattice N , we get a torus TNand a dual lattice M . Choosing a basis on one gives a basis on the other two.
3 Cocharacters and limit points - Part I
Back to toric varieties. Let X be a toric variety, with torus T. We can think of X as a “partial compactification”of T . That is, we can construct X by adding limit points2 to T.Given a one-parameter subgroup u ∈ N , we have

λu : C∗ → T ⊆ X

We can ask when does lim
t→0 λu(t)exist in X . The idea will be that we can determine X by saying which λu have a limit. See later.

Example 3.1Consider T2 ⊆ P2
z0 :z1 :z2 . The embedding is given by (t1, t2) 7→ (1 : t1 : t2). Choose u ∈ Z2, so u = (u1, u2).

lim
t→0 λu(t) = lim

t→0(1 : tu1 : tu2 )
All these limit points exist, since P2 is completea. In particular, if u1, u2 > 0, the limit is (1 : 0 : 0). If

u1 < 0, u2 > u1, the limit is (0 : 1 : 0). Similarly if u2 < 0, u1 > u2 then the limit is (0 : 0 : 1).The upshot is that we have partitioned NR = N ⊗R = R2 into cones, so that if u1, u2 are in the samecone if and only if they have the same limit. In fact, we can construct P2 from this.
aOr in algebraic geometry, it satisfies the valuative criterion for properness for some choice of DVR.

Lecture 3
4 Affine toric varieties and cones

1That is, it induces isomorphism HomZ(M,Z) = M∨ ∼= N and vice versa.2In the Euclidean topology.
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Definition 4.1 (cone)A (rational polyhedral) cone is
σ ⊆ NR = N ⊗Z R = Rn

where
σ =∑

i∈I
λiui | λi ≥ 0, u1, . . . , un ∈ N

We will also write
σ = Cone(u1, . . . , ur )and the set {ui}r

i=1 is the set of generators of the cone.
Example 4.2If NR

∼= Re, then we have the cone σ1 = Cone(e),Next, σ2 = Cone((1, 0)) isand σ3 = Cone((1, 0), (0, 1)) isand σ4 = Cone((1, 0), (1, 2)) is
Definition 4.3 (dimension)The dimension of a cone σ is dim(σ ) = dim(V ), where V = span{σ} ⊆ NR. A cone is top-dimensional if
V = NR.
Definition 4.4 (strongly convex)
σ is strongly convex if it does not contain any lines through the origin. Equivalently, σ ∩ −σ = {0}.
We would like to associate a to a cone σ , an affine toric variety Uσ = Spec(Rσ ). That is, we would like todefine

Rd ⊆ C[x±11 , . . . , x±1
n ]a sub-C-algebra.We will do this as follows:1. We will associate a dual cone σ∨ ⊆ MR,2. Then we will generate a commutative semigroup Sσ ,3. from this, we will define Rσ .

4.1 Dual cone

Definition 4.5 (dual cone)The dual cone σ∨ of σ is
σ̌ = {m ∈ MR | ⟨u, m⟩ ≥ 0 for all u ∈ σ} ⊆ MR

where we extend the pairing to NR ⊗ MR → R.
Example 4.6Using the same examples as before, we have the dual cones σ̌1and σ̌2,Note here we see that the dual cone depends on the embedding (or lattice). Moreover, the dual of a
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strongly convex cone does not have to be strongly convex.
Fact: ˇ̌σ = σ .

Lemma 4.7. The dual σ̌ of a cone σ is a cone.
Proof. We’ll define an algorithm to find m1, . . . , ms ∈ M , such that

σ̌ = Cone(m1, . . . , ms)From linear algebra, for m ∈ M = N∨, we have a hypersurface
m⊥ = Hm = {u ∈ NR | ⟨u, m⟩ = 0}

We also have half spaces
H+

m = {u ∈ NR | ⟨m, u⟩ ≥ 0}

Definition 4.8 (supporting hyperplane)A supporting hyperplane of σ is Hm, such that σ ⊆ H+
m . Equivalently, m ∈ σ̌ .

Now note that
σ̌ = Cone(m1, . . . , ms) ⇐⇒ σ = s⋂

i=1 H+
mi

So to construct σ̌ , we need to express σ as an intersection of half spaces.For example, σ̌3 = Cone((1, 0), (0, 1))and similarly, σ̌4 = Cone((2, −1), (0, 1)).In general, we can do this by identifying the facets τ ≼ σ , and taking the corresponding dual element
mτ ∈ M , and

σ̌ = Cone(mτ | τ ≼ σ )when σ is top dimensional.
Definition 4.9A face τ ≼ σ is the intersection σ ∩ Hm, for a supporting hyperplane Hm. Note that the faces are allcones, and we call τ a facet if dim(τ) = dim(σ ) − 1, and τ an edge if dim(τ) = 1.
Note by taking m = 0, σ ≼ σ .When σ is not top dimensional, then spanR(σ ) = W ̸= NR. Write σ for σ considered as a subspace of W .Now σ is top-dimensional, and so we can the dual

σ̌ ⊆ MR

W ⊥Say
σ̌ = Cone(m1, . . . , ms)where

mi ∈ MR

W ⊥Choose representatives mi ∈ MR, and choose a basis ms+1, . . . , mk of W ⊥ in MR. With this,
σ̌ = Cone(m1, . . . , ms, ±ms+1, . . . , ±mk )

4.2 Commutative semigroup
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Definition 4.10 (commutative semigroup)A commutative semigroup is (S, +), such that + is an associative commutative binary operation on S .
In particular, a semigroup with identity is called a monoid. S is finitely generated if there exists A ⊆ Sfinite, such that

S = {∑
n

λnan

∣∣∣∣ λn ∈ Z>0, an ∈ A
}

S is affine if it is finitely generated, and (S, +) is a subsemigroup of a lattice (Zn, +).
Example 4.11Any group is a semigroup. Given a (not necessarily unital) ring R , R under multiplication is a semigroup.For example, Z>0 is a semigroup under multiplication, but this is not finitely generated.

Lecture 4
Definition 4.12Let σ be a cone. Define

Sσ = σ̌ ∩ M ⊆ MRfor the semigroup associated to σ .
This is a semigroup as cones are closed under addition. Now we want to show that this is affine. This doesnot follow immediately from being a subgroup of (Zn, +). For example, consider

S = {(x, y) | x ≤
√2y}This is a semigroup, but it is not finitely generated.

Lemma 4.13 (Gordan’s lemma). If σ is a cone, then Sσ is a finitely generated semigroup.
Proof. We know that σ̌ = Cone(m1, . . . , mr ), for some mi ∈ M . Say x ∈ Sσ . By definition,

x = r∑
i=1 αimi

where αi ∈ R≥0. Write
αi = ai + biwhere ai = ⌊αi⌋, bi = {αi} ∈ [0, 1). Then

x =∑
i

aimi +∑
i

bimi

Now x ∈ M , and ∑i aimi ∈ M , and M is a group, so∑
i

bimi ∈ M

On the other hand, ∑bimi is contained in a compact set
K = {∑ cimi | 0 ≤ ci ≤ 1}

Since M is discrete, K is compact, K ∩ M is finitely many points, say K ∩ M = {mr+1, . . . , mℓ}. Then Sσ isgenerated by
m1, . . . , mr , mr+1, . . . , mℓso it is finitely generated.
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Example 4.14When σ = Cone(1), then σ̌ = Cone(1), and so Sσ is generated by 1.Now if σ = Cone(e1) ⊆ R2, then σ̌ = Cone(e1, e2, −e2), and these are the generators of Sσ .If σ = Cone(e1, e2) ⊆ R2, then σ̌ = Cone(e1, e2), which are the generators of Sσ .Finally, if σ = Cone(e1, e1 + 2e2), then σ̌ = Cone(e2, 2e1 − e2). Here, Gordan’s lemma shows that Sσis generated by
e2, 2e1 − e2, e1

4.3 Coordinate ring

Definition 4.15The algebra C[S ] of a semigroup (S, +) is the C-algebra of finite sums
C[S ] = {∑

i
aixsi | ai ∈ C, si ∈ S

}
with xsxs′ = xs+s′ .
Example 4.16The semigroup Zn is generated by e1, . . . , en, −e1, . . . , −en, so

C[Zn] = C[x±11 , . . . , x±1
n ]

where x±1
i = x±ei .

Lemma 4.17. If (S, +) is a finitely generated semigroup, C[S ] is a finitely generated C-algebra. If (S, +)is affine, then C[S ] is the algebra of an affine variety.
Proof. If S is generated by A = {s1, . . . , sℓ}, then {xs1 , . . . , xsℓ } generates C[S ] as a C-algebra.Now suppose S is affine. Then C[S ] is finitely generated by the above, and we have that (S, +) ⊆ (Zn, +),so we have

C[S ] ⊆ C[Zn] = C[x±11 , . . . , x±1
n ]So C[S ] is a subring of an integral domain, hence it is an integral domain. To conclude, every finitely generatedintegral domain is the coordinate ring of an affine variety.Define Rσ = C[Sσ ]. From this, we know that Uσ = Spec(Rσ ) is an affine variety.

Example 4.18For σ = Cone(1), let x = xe1 , then C[Sσ ] = C[x ], and so Uσ = A1. The inclusion C[x ] ⊆ C[x±1] definesthe torus.When σ = Cone(e1) ⊆ R2, let x = xe1 , y = xe2 , then C[Sσ ] = C[x, y±1], and Uσ = A1 × C∗. The torusis given by the inclusion
C[x, y±1] ⊆ C[x±1, y±1]When σ = Cone(e1, e2) ⊆ R2, set x = xe1 , y = xe2 , then Uσ = Spec(C[x, y]) = A2.Finally, when σ = Cone(e1, e1 + 2e2). Let A = e1, B = 2e1 − e2, C = e2. Then Sσ is generated by

A, B, C . We have a relation B + A = 2C . Define x = xA, y = xB, z = xC , then
C[Sσ ] = C[x, y, z]

⟨xy = z2⟩
With this, Uσ = Spec(C[Sσ ]) = V(xy − z2) ⊆ A3. In particular, this is a singular toric variety. In this
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case, the torus is given by
C[x, y, z]
⟨xy − z2⟩ ⊆ C[x±1, z±1] = C[M ]

To see this, we have an inclusion
C[x, y, z]
⟨xy − z2⟩ ⊆ C[x±1, y, z±1]

⟨xy − z2⟩

Remark 4.19. We know that Sσ ⊆ M , and so we have an inclusion of algebras C[Sσ ] ⊆ C[M ]. A fact from commutativealgebra is that, the image of the map
Tn = Spec(C[M ]) → Uσ = Spec(C[Sσ ])is dense, as these are integral domains.

Remark 4.20. Tn may map to some smaller torus Tn′ ⊆ Uσ , with n′ ≤ n. We claim that if σ is strongly convex, thenTn ⊆ Uσ as a dense open subset. See examples sheet 1, questions 1 and 3. For this, note that σ is strongly convexif and only if σ̌ is top dimensional.
From now on, restrict to strongly convex σ . Lecture 5What remains is to construct the torus action. Recall TN = Spec(C[M ]). We will define this by

a♯ : C[Sσ ] → C[Sσ ] ⊗ C[M ]
χm 7→ χm ⊗ χm

This extends
m♯ : C[M ] → C[M ] ⊗ C[M ]

χm 7→ χm ⊗ χm

Remark 4.21. The reason this works is the fact that Sσ ⊆ M tells us which functions on Uσ are monomials.
With this all in mind, given a strongly convex cone σ , we have an affine toric variety Uσ , with torus TN . Wewill see that

{affine toric varieties} {affine semigroups}

{affine normal toric varieties} {strongly convex cones}
5 Opens in UσWe will see that τ ≼ σ , correspond to principal opens Uτ ⊆ Uσ . Recall that a face is τ = σ ∩ Hm for some
m ∈ σ̌ ∩ M = Sσ .

Theorem 5.1. If τ = σ ∩ Hm, then
C[Sτ ] = C[Sσ ]χm = C[Sσ ][χ±m]

Proof. First, since τ ∈ Hm, ⟨u, m⟩ = 0 for all u ∈ τ . So m and −m are in τ̌ ∩ M = Sτ . Also, if m′ ∈ Sσ , then
⟨m′, u⟩ ≥ 0 for all u ∈ τ . Putting these together,

C[Sσ ]χm ⊆ C[Sτ ]
11



For the reverse inclusion, take m′ ∈ Sτ \ Sσ . We want to show m′ + km ∈ Sσ for some k ∈ Z. For u ∈ σ \ τ ,
⟨m′, u⟩ < 0. But we also have that ⟨m, u⟩ > 0, so we can pick k large enough such that ⟨m′ + km, u⟩ > 0.This tells us that m′ + km ∈ Sσ

3.
Example 5.2Let σ = Cone(e1, e2). Let ⋆ = (0, 0). This is a face, and S⋆ = C[x±1, y±1]. Hence U⋆ = T ⊆ A2.Now if τ1 is the face y = 0, then we get

C[Sτ1 ] = C[x, y]χe2 =y = C[x, y±1]
So

Uτ1 = A1 × C∗

6 Fans and toric varieties

Definition 6.1 (fan)A fan Σ is a finite collection of strongly convex cones σ ⊆ NR, such that1. for all σ ∈ Σ, τ ≼ σ , then τ ∈ Σ.2. for any σ1, σ2 ∈ Σ, τ = σ1 ∩ σ2 is a face of both.
Notation 6.2. The support of Σ is

|Σ| = ⋃
σ∈Σ σ ⊆ NR

and we will write Σ(r) ⊆ Σfor the subset of r-dimensional cones.
Example 6.3First, let σ = Cone(e) ⊆ R, then Σ1 = {σ, −σ, ⋆} is a fan.Next, we have seen the fan Σ for P2. Here, Σ(0) = {⋆}, Σ(1) = {Cone(e1), Cone(e2), Cone(−e1 − e2)}and so on.Next, consider the cone given by σ0 = Cone(e1, e1 + e2), σ1 = Cone(e1 + e2, e2) and their faces.Finally, consider the rays passing through (0, 1), (1, 0), (0, −1), (−1, a), for soem a ∈ Z>0.
By the above construction, we can associate to each σ ∈ Σ an affine toric variety, and if τ ≼ σ is a face,then Uτ ⊆ Uσ is an open. Thus, we can glue the Uσ s together, using the explicit open embeddings. This givesan (abstract) variety XΣ.

Remark 6.4. The second condition will imply separatedness.
Example 6.5For the first example, Uσ = Spec(C[x ]), and U−σ = Spec(C[x−1]). Finally, the origin corresponds toSpec(C[x, x−1]). So we get A1 and A1 glued along C∗, which is P1.

Lecture 6
3Since we only need to show positivity on the finitely many generators of the cone.
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Example 6.6For the fan with for P2 as above, the dual fan is
diagramLet

x = χ (1,0)
y = χ (0,1)

In this case,
Uσ0 = Spec(C[x, y])
Uσ1 = Spec(C[x−1, x−1y])
Uσ2 = Spec(C[y−1, xy−1])

We would like to identify XΣ with P2, with homogeneous coordinates [z0 : z1 : z2]. If
x = z1

z0 and y = z2
z0This identifies Uσ0 with the open {z0 ̸= 0}. Similarly, we can identify the other opens.

Example 6.7Consider now the fan given by
σ1 = Cone(e1, e1 + e2)
σ2 = Cone(e1 + e2, e2)

The dual cones are
σ∨1 = Cone(e2, e1 − e2)
σ∨2 = Cone(e1, −e1 + e2)

Note that the dual of a fan is not a fan. In this case,
Uσ1 = Spec(C[y, xy−1])
Uσ2 = Spec(C[x, x−1y])

Set t = xy−1. Then we have a projection map to P1. In particular, this is the total space of O(−1)a, whichis
{xz1 = yz0} ⊆ C2

x,y × P1[z0,z1 ]Setting t = z0/z1 gives the identification. This is also the blowup of A2 at 0.
awhich is the tautological bundle. Using relative spec, we can also write this asSpecP1 (Sym•

P1 O(1))More generally, taking the spec of the symmetric algebra associates a vector bundle to a locally free sheaf. The vector bundle hasa trivialising open affine cover.Conversely, for a vector bundle, take the sheaf of sections.
Fact: If Σ1, Σ2 are fans, then so is Σ1 × Σ2, and XΣ1×Σ2 = XΣ1 × XΣ2 .

7 Affine embeddings and toric ideals Lecture 7We’ll see two alternative ways of describing toric varieties:
13



1. toric ideals, V = V(IL) ⊆ As, where IL is a toric ideal,2. torus embedding, V = ΦA (T ), where ΦA : T → As given by monomials.Recall for σ = Cone((1, 0), (1, 2)), we have σ∨ = Cone((0, 1), (2, −1)), and
Sσ = Z≥0A

where A = {A, B, C}, where A = (0, 1), B = (1, 0), C = (2, −1). We have a map
π : Z3

A,B,C → M ∼= Z2
A 7→ (0, 1)
B 7→ (1, 0)
C 7→ (2, −1)

As a matrix, (0 1 21 0 −1)Then
ker(π) = Z

 1
−21


If we restrict to N3
A,B,C and Sσ , then we have a surjection of semigroups. In particular, Sσ = N3

A,B,C / ∼, where
∼ is the relation A + C = 2B. On algebras,

C[Sσ ] = C[NA,B,C ]
ILLet x = χA, y = χB, z = χC . Then A + C = 2B corresponds to xz = y2. Then IL = 〈

xz − y2〉. In particular,this shows that we have an affine embedding Uσ = V(IL) ⊆ A3.On the other hand, χA, χB, χC are maps T → C∗. We can define a map
ΦA : T → A3

(s, t) 7→
(
χA(s, t), χB(s, t), χC (s, t)) = (t, s, s2t−1)

In this case,
Uσ = ΦA (T )Moreover, ΦA with coordinates s, t, acts on Uσ by

(s, t)(x, y, z) = (tx, sy, s2t−1z)
More generally, if S is an affine semigroup, generated by A = {m1, . . . , ms}, where mi ∈ M , a lattice. So

S = Z≥0A . We can associate an ideal and a torus embedding as above.
Definition 7.1A lattice ideal is an ideal IL in C[x1, . . . , xs], of the form

IL = 〈xα − xβ | α − β ∈ L
〉

for some lattice L. Note here we use the multi-index notation.
IL is toric if it is prime.

Now given S as above, consider the map
π : s⊕

i=1 Z · mi → M

14



and L = ker(π) is a sublattice. These relations give an ideal
IL = 〈xℓ+ − xℓ− ∣∣ ℓ+ − ℓ− ∈ L; ℓ+, ℓ− ∈

⊕
Z≥0 · mi

〉
This is an ideal of

C[x1, . . . , xs] = C

[ s⊕
i=1 Z≥0 · mi

]
where xi = χmi . We can define a variety V = V(IL) ⊆ As.Now for ΦA , we recall that M = ZS , and TN = Spec(C[M ]). We can define

ΦA : TN → As

t 7→ (χm1 (t), . . . , χms (t))
Theorem 7.2. If V is an affine variety, then the following are equivalent:(i) V is an affine toric variety,(ii) V = Spec(C[S ]) for an affine semigroup S ,(iii) V = V(IL) for a toric ideal IL ,(iv) V = ΦA (T ) for some finite collection A generating an affine semigroup.

Proof. We have seen (ii) implies (iii) and that (iii) implies (iv). To see that (iv) implies (i), note that ΦA givesan action of T on As, and if V = ΦA (T ), then ΦA (T ) ⊆ V is a dense open torus, and we just need to checkthat for t ∈ T , t · V ⊆ V . Now t · V contains ΦA (T ), so it is contained in the closure of ΦA (T ), which is V .For (iv) implies (i), we need a lemma from representation theory:
Lemma 7.3. If A ⊆ C[M ] is a subrepresentation of TN , then A splits into

A = ⊕
m∈S

C · χm

for some subseta S ⊆ M .
aSince the multiplicity in C[M ] is one for each eigenspace, each eigenspace appears either zero or one times, so we can considera subset without thinking about multiplicity.

Note that here, multiplication by t defines a map TN → TN , which in turn is a map on coordinate rings
C[M ] → C[M ].Applying the lemma to C[V ] → C[M ]. The collection S of monomial appearing in C[V ] needs to form asemigroup S , as C[V ] is a ring. This is finitely generated as C[V ] is finitely generated, as it is the coordinatering of an affine variety.Under the correspondence

{affine toric variety} ↔ {affine semigroups}
Restricting, we get

{normal affine toric varieties} ↔ {saturated semigroups}
Example 7.4Let M = Z, and S = ⟨2, 3⟩ = {0, 2, 3, . . . }. But we can still construct a toric variety

V = Spec(C[S ])
15



So we have a map
Z2 → Z
e1 7→ 2
e2 7→ 3

and the kernel is generated by 2e2 − 3e1. Now take x = χe1 , y = χe2 ∈ C[Z2]. We have an associatedideal, IL = 〈
y2 = x3〉. Then C = Spec(C[x, y]/IL) = V(IL) is the affine toric variety associated to S . Inparticular, this is a cuspidal cubic.For a parametrisation, we have

ΦA : C∗ → A2
t 7→ (t2, t3)

and C = ΦA (C∗).On the other hand, this is not a normal variety.
Lecture 8

Definition 7.5 (normal)An integral domain R with K = Frac(R ) is normal (i.e. integrally closed) if for all x ∈ K , with x being aroot of a monic polynomial with coefficients in R , x ∈ R .Equivalently, if xn + an−1xn−1 + · · · + a0, with ai ∈ R , then x ∈ R .
For an affine variety, it is normal if and only if its coordinate ring is normal. In general, we need to considerstalks, or an affine cover.

Example 7.6We’ll show that R = C[x, y]/ 〈y2 − x3〉 is not normal. Note that
x = y2

x2 = (y
x

)2
∈ Frac(R )

Now
z = y

x /∈ R

but z2 − x2 = 0.
Definition 7.7 (saturated)An affine semigroup S ⊆ M is saturated if for every m ∈ M, k ∈ N with km ∈ S , then m ∈ S .
Lemma 7.8. The semigroup Sσ of a (strongly convex) cone is saturated.

Proof. We defined Sσ as the intersection of a cone (which is convex) and M .
Theorem 7.9. If V is an affine toric variety, with torus TN , then the following are equivalent:(i) V is normal,(ii) V = Spec(C[Sσ ]), for some cone σ ,

16



(iii) V = Spec(C[S ]), for some saturated affine semigroup S ,
Proof. For (i) implies (iii), if V is affine toric, then V = Spec(C[S ]), for some affine semigroup S . Say m ∈ M ,and km ∈ S , for some k ∈ Z>0. This means that χkm ∈ C[S ], and χm ∈ C(S) = Frac(C[S ]). But χm is theroot of the monic integral polynomial

yk − χkm = 0so χm ∈ C[S ] as C[S ] is normal.For (iii) implies (ii), let S be saturated and affine, and let A be a finite generating set. Define σ∨ = Cone(A ).Then S = M ∩ σ∨. Taking the dual gives σ .For (ii) implies (i), take σ = Cone(v1, . . . , vr ). Let ρi be the ray generated by vi. Without loss of generality,we can assume that vi is a minimal generator of ρi. Now we have that
σ∨ = r⋂

i=1 H+
vi = r⋂

i=1 ρ∨
i

Intersecting with the lattice,
Sσ = r⋂

i=1 Sρi

and so
C[Sσ ] = r⋂

i=1C[ρi]
We just have to check the varieties Ui = Spec(C[Sρi ]) are normal. But if we only have one ray ρ, say generatedby x1, then

C[Sρ ] = C[x1, x±12 , . . . , x±1
n ]So Uρ = A1 × (C∗)n−1 which is normal.With this, we have a correspondence

{normal affine toric varieties} ↔ {strongly convex cones}
8 Points of Uσ and limit points - Part II
We want u ∈ σ to correspond to one-parameter subgroups λu : C∗ → T ⊆ Uσ , such that

lim
t→0 λu(t)

exists in Uσ (with the Euclidean topology). Equivalently, λu extends to a map C → Uσ .
Theorem 8.1. Let σ be a strongly convex cone. Let u ∈ N . Then u ∈ σ if and only if

lim
t→0 λu(t)

exists in Uσ .
Proof. For any u ∈ N , m ∈ Sσ , say ⟨u, m⟩ = d ∈ Z. This means that the composition

C∗ T C∗λu χm

is x 7→ xd . Moreover,
u ∈ σ ⇐⇒ ⟨u, m⟩ ≥ 0 for all m ∈ Sσ ⇐⇒ lim

t→0(χm ◦ λu)(t) exists for all m ∈ Sσ

So we need to show that
lim
t→0(χm ◦ λu)(t) exists for all m ∈ Sσ ⇐⇒ lim

t→0 λu(t) exists in Uσ

17



⇐= is clear. Conversely, recall (a closed point) x ∈ Uσ is a C-algebra homomorphism
x♯ : C[Sσ ] → C

Define
x0(χm) = lim

t→0 χm(λu(t)) = {0 if ⟨u, m⟩ > 01 if ⟨u, m⟩ = 0Then lim
t→0 λu(t) = x0

Remark 8.2. lim
t→0 χm(λu(t)) = {0 if ⟨u, m⟩ > 01 if ⟨u, m⟩ = 0and the limit does not exist if ⟨u, m⟩ < 0.

Definition 8.3 (distinguished point)The distinguished point of σ is
xσ : C[Sσ ] → C

χm 7→
{0 if m ∈ Sσ \ σ⊥1 otherwise

Note m ∈ Sσ \ σ⊥ if and only if ⟨u, m⟩ > 0 for all m. Lecture 9
Lemma 8.4. We have a one-to-one correspondence between points x ∈ Uσ and semigroup homomorphisms

γx : (Sσ , +) → (C, ·)
Proof. For x ∈ Uσ , we have a corresponding map

x♯ : C[Sσ ] → C
x♯(χm) = χm(x)

and we can take γx (m) = χm(x). Conversely, given γ : Sσ → C, define
x♯

γ : C[Sσ ] → C

x♯
γ (χm) = γ(m)

Example 8.5The distinguished point xσ ∈ Uσ corresponds to the semigroup homomorphism
γσ : Sσ → C

γσ (m) = {1 m ∈ σ⊥ ∩ Sσ0 m ∈ Sσ \ σ⊥

18



Corollary 8.6. For all u ∈ Int(σ ) ∩ N , lim
t→0 λu(t) = xσ

Example 8.7Consider the cone σ = Cone(e1, e2) ⊆ R2. In this case, σ⊥ = {0}. Now Uσ = A2, and we would like tofind xσ , xτ1 , where τ1 = Cone(e1).First of all, in this case, we have that γσ (0) = 1, and γσ (m) = 0 otherwise. The corresponding point
xσ is given by

xσ : C[Sσ ] → C

χm 7→
{1 m = 00 otherwise

This is just evaluation at zero of the polynomial ring. So xσ = (0, 0) ∈ A2. Next, we want to show thatthis is the limit point for all one-parameter subgroups λu, for u ∈ Int(σ ) ∩ N . That is, u = (a, b), with
a, b > 0. Now

λ(a,b)(t) = (ta, tb)Since a, b > 0, lim
t→0 λ(a,b)(t) = (0, 0) = xσ

For τ1, we have that τ∨1 = Cone(e1, e2, e−12 ). In this case,
Uτ1 = A1 × C∗

and Sτ1 = Z≥0e1 ⊕ Ze2. First of all, (a, b) ∈ Int(τ1) ∩ N if and only if a > 0, b = 0. So we have
λ(a,0)(t) = (ta, 1)

and so lim
t→0 λ(a,0)(t) = (0, 1)

On the other hand,
γτ1 : Sτ1 → C

e1 7→ 0
e2 7→ 1

and so the map is
C[x, y±1] → C

x 7→ 0
y 7→ 1

and so xτ1 = (0, 1).
Example 8.8For σ = Cone(∅) = {0} ⊆ NR. Then σ∨ = MR, and Sσ = Ze1 ⊕ · · · ⊕ Zen. Then

C[Sσ ] = C[x±11 , . . . , x±1
n ]

The distinguished point is given by γσ (m) = 1 for all m. So we have the point (1, . . . , 1), which is theidentity of the group TN = Uσ . This is the limit point for all u ∈ Int(σ ).
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9 Smoothness

Lemma 9.1. If σ = Cone(v1, . . . , vk ) for vi ∈ N , and suppose v1, . . . , vk can be completed to a Z-basis
v1, . . . , vn of N . Then Uσ

∼= Ak × (C∗)n−k .
Moreover, we claim that these are the only non-singular affine toric varieties.

Proof. Complete v1, . . . , vk to a basis v1, . . . , vn. Then Sσ is generated by w∗1 , . . . , w∗
k , ±w∗

k+1, . . . , ±w∗
n . So

C[Sσ ] = C[x1, . . . , xk ] ⊗ C[x±1
k+1, . . . , x±1

n ]
Recall if v1, . . . , vn ∈ Zn forms a basis of Rn, it does not have to form a basis of Zn.

Example 9.2Take v1 = (1, 0), v2 = (1, 2). These form a R-basis, but not a Z-basis. In this case, Uσ is a singularvariety.
In general, if v1, . . . , vn ∈ Zn are R-linearly independent, then they form a basis of Zn if and only if

V =


...
...

v1 · · · vn
...

...

 ∈ GL(n,Z)
Equivalently, det(V ) = ±1.

Definition 9.3 (regular point)Let X be a variety of dimension n. Then x ∈ X is called a regular or nonsingular point if dimC(ΩX,x ) = n.Otherwise, we say that x is a singular point.
Here, ΩX,x is the Zariski cotangent space to x at X . Recall that a closed point x ∈ Spec(R ) corresponds to

x♯ : R → C, and defines a maximal ideal mx = ker(x♯).Then ΩX,x = mx
m2

xThis is a C-vector space.
Definition 9.4We say that X is smooth or nonsingular, if X has no singular points.
Note that over some fields, smooth implies non-singular, but the converse is false. An alternative definitionof smoothness:

Proposition 9.5 (Jacobian criterion). Let V = V(f1, . . . , fr ) ⊆ As be an affine variety of dimension d.Then V is smooth at x ∈ V if and only if the matrix
J(f1,...,fr )(x) = ( ∂fi

∂xj

)
i=1,...,r;j=1,...,shas rank s − d for all x ∈ V .

We can identify ker(J(x)) = (mx /m2
x )∨. In terms of differential geometry, we have a map F : As → Ar , andker(dF ) = TV . Lecture 10
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Theorem 9.6. If U is an affine toric variety, then the following are equivalent:(i) U = Uσ for some σ is generated by e1, . . . , ek , which is part of a basis for N ,(ii) U ∼= Ak × (C∗)n−k ,(iii) U is smooth,(iv) xσ ∈ U is smooth.
Proof. So far we have shown (i) =⇒ (ii) =⇒ (iii) =⇒ (iv).

Lemma 9.7. If σ is a strongly convex top dimensional cone, then the set of indecomposable elements
H = {m ∈ Sσ \ {0} | m ̸= m′ + m′′ for all m′, m′′ ∈ Sσ \ {0}}

generates Sσ as a semigroup.
H is the Hilbert basis of Sσ .

Proof. Let m ∈ Sσ \ 0. Suppose m /∈ H. Then m = m′ + m′′, for some m′, m′′ ∈ Sσ \ {0}. If m′, m′′ ∈ H, thenwe are done. Otherwise, we can keep splitting. We need to show that the process terminates.Since σ is top dimensional and strongly convex, σ∨ is top dimensional and strongly convex. Then thereexists u ∈ σ such that
⟨m, u⟩ ∈ Z>0for all m ∈ Sσ \ {0}. So if m = m′ + m′′ as above, then

⟨m, u⟩ = 〈m′, u
〉 + 〈m′′, u

〉
Each of the terms is a positive integer, and so the process must terminate.We will now show (iv) implies (i). First assume σ is top dimensional. Then by assumption,

ΩX,xσ = mxσ

m2
xσhas rank n. In this case,

γσ : Sσ → C
m 7→ 0 if m ∈ Sσ \ S⊥

σ = Sσ \ {0}0 7→ 1So the associated map of rings is
C[Sσ ] → C

χm 7→ 0 for m ̸= 0
χ0 7→ 1In this case,

mxσ = ⟨χm | m ∈ Sσ \ {0}⟩and so
m2

xσ = 〈χm′+m′′ | m′, m′′ ∈ Sσ \ {0}
〉

Hence
mxσ

m2
xσ

= ⟨χm | m ∈ Sσ \ {0} indecomposable⟩

We know that this has rank n, so we must have that
mxσ

m2
xσ

= ⟨χm | m ∈ H⟩

Since H is a basis of Sσ , and ZSσ = N , σ is generated by an integral basis of N . This shows (i) for this case.Now suppose dim(σ ) = k < n. We will reduce to the previous case.
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Remark 9.8 (interlude on non-top-dimensional affine toric varieties). Suppose dim(σ ) = k < dim(NR). Then Nσ =span(σ ) ∩ N is a k-dimensional sublattice of N . Then we have an exact sequence
0 Nσ N N(σ ) = N/Nσ 0

Note everything is torsion free. Dualising, we get
0 N⊥

σ M M/N⊥
σ 0

Consider σ ⊆ Nσ ⊗Z R. We define this as the same cone as σ , but viewed as a top dimensional cone in spanR(σ ) =
Nσ ⊗Z R. Now

σ∨ ⊆ M
N⊥

σ
⊗Z R

Say σ∨ = Cone(v1, . . . , vr ). Choosing a splitting of the second exact sequence, we find vi ∈ M mapping to vi . Then
σ∨ = Cone(v1, . . . , vr ) × Cone(±e1, . . . , ±en−k )where e1, . . . , en−k is a basis of N⊥
σ .So Uσ = Uσ × TN(σ ) = Uσ × (C∗)n−k . The torus action on this splits as TN = TNσ × TN(σ ) . In particular,

xσ = (xσ , 1TN (σ )), where 1TN(σ ) is the identity of TN(σ ) .
If xσ is smooth, then xσ is smooth, and σ is a top dimensional cone in Nσ . So by the above, σ =Cone(e∗

n−k+1, . . . , e∗
n), where the e∗

n−k+1, . . . , e∗
n is a basis of Nσ . With this,

σ = Cone(e∗
n+k+1, . . . , e∗

n)and
σ∨ = Cone(±e1, . . . , ±en−k , en−k+1, . . . , en)and so

Uσ = Ak × (C∗)n−k

10 Toric morphisms

Definition 10.1 (morphism of toric varieties)Let X, Y be toric varieties, with torus TX , TY respectively. Then a morphism of toric varieties X → Y is
toric if f (TX ) ⊆ TY , and f : TX → TY is a group homomorphism.
Note that if TN , TN ′ are tori, then

Homalg-gp(TN , TN ′ ) ∼= HomZ(N, N ′) ∼= Mat(n′ × n,Z)
For a morphism φ ∈ Homalg-gp(TN , TN ′ ), we will write φ̂ = Jφ(1) for the associated element of HomZ(N, N ′).We want to start with φ and understand from pictures of Σ, Σ′, whether φ extends to a toric morphism
f : XΣ → XΣ′ .

Example 10.2Consider the map A1 → C = Spec(C[x, y]/ 〈y2 − x3〉) ⊆ A2, given by t 7→ (t2, t3). This clearly restrictsto a map C∗ → (C∗)2 given by t 7→ (t2, t3). This is a group homomorphism, so the above is a morphismof toric varieties.On semigroups, this is the inclusion
2Z≥0 + 3Z≥0 ↪→ Z≥0

This is called saturation, and the map A1 → C is the normalisation.
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Example 10.3 (non-example)The map
A2 → A1(x, y) 7→ x + y

is not a toric morphism, since it does not restrict to a map on tori.
Lecture 11

Lemma 10.4. A toric morphism is equivariant, with respect to the torus actions. That is,
f (tx) = f (t)f (x)

for all t ∈ TN , x ∈ X .
Proof. It is true for x ∈ TN , and we can extend by continuity to all of X , since TN is dense in X .To start off, given φ : TN → TN ′ , or equivalently φ̂ : N → N ′, when does it extend to f : X → Y ?Note that if the extension exists, then it is unique. In addition,

Auttoric(X ) ↔ Autalg-gp(TN ) ↔ GLn(Z)
Definition 10.5 (morphism of fans)Let Σ ⊆ NR and Σ′ ⊆ N ′

R be fans, and fix a morphism φ̂ : N → N ′. Then φ̂R is a morphism of fans Σ → Σ′if for any cone σ ∈ Σ,
φ̂R(σ ) ⊆ σ ′

for some σ ′ ∈ Σ′.In particular, a morphism of cones σ → σ ′ is φ̂ such that φ̂R(σ ) ⊆ σ ′.
Example 10.6
diagramThis is a morphism of fans, given by the projection Z2 → Z.
Theorem 10.7. Let φ : TN → TN ′ be a homomorphism of tori. Then this extends to f : XΣ → XΣ′ if andonly if φ̂ : N → N ′ is a morphism of fans from Σ to Σ′.

Proof. Omitted.
Corollary 10.8. There is an equivalence of categories

{normal toric varieties with toric morphisms} ↔ {fans with morphisms of fans}
Example 10.9Consider the previous example, the morphism between tori is (x, y) 7→ x . This is also the map P1×P1 → P1.
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Example 10.10Consider the map
diagramThe domain is the total space of the tautological bundle, equivalently

V(xY − yX ) ⊆ A2
x,y × P1[X :Y ]

and equivalently again, this is the blowup Bl0 A2. The map is to A2.We are replacing the point xσ = (0, 0) ∈ A2 by some other cones. In fact,
π−1(0, 0) = P1[X :Y ]

Example 10.11Consider
diagramThis is not a morphism of fans. This is because the image of the red cone does not fall inside anycone. In fact, there is no morphism P2 → P1. This is just a rational map (so it is defined on a dense open).If we compute what the map is, in homogeneous coordinates

[z0 : z1 : z2] 7→ [z0 : z1]
This is undefined at [0 : 0 : 1]. Note that the left fan corresponds to [0 : 0 : 1].(maybe all up to rotation?)If we add a ray generated by (−1, 0), then f turns into a toric morphism. In fact, we have added(−1, −1) + (0, 1). But now the red cone is isomorphic to A2. So what we have done is a blowup. inparticular, we get

X = Bl[0:0:1] P2 → P2
Bl[0:0:1] P2 P2

P2
f

Remark 10.12. In general, we can blow up a variety X at any subvariety Z ⊆ X ,. Let IZ be the corresponding idealsheaf. Then
∞⊕

d=0 Id
Z

is a sheaf of graded algebras, where we assume the generators of IZ live in degree 1. Then
π : ProjX

( ∞⊕
d=0 Id

Z

)
→ X

is the blowup. If Z ⊆ X is regular, then
∞⊕

d=1 Id
Z = Sym•

OZ
(IZ )

We can think of this as the conormal bundle of Z in X .Some facts:• π is a proper birational map,• π is an isomorphism away from Z , and π−1(Z ) is the projectivised conormal bundle,• π “enlarges” Z to a divisor.We can use blowups to:
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• resolve the indeterminancy locus of a rational map,• resolving singularities
The only toric blowups we’ll see are when Z is a point.

Theorem 10.13 (Hironaka). If X is a singular variety over a field k of characteristic 0, there exists aresolution of singularities
f : X̃ → Xwhich is a finite composition of blowups.

Definition 10.14A resolution of singularities for a singular variety X is a morphism f : X̃ → X , such that
1. X̃ is smooth,2. f is proper and birational,

Remark 10.15. Blowups are proper and birational.
Theorem 10.16. If XΣ is a singular toric surface, then we can find a toric resolution of singularities. Thatis, we have

XΣ̃n
· · · XΣ̃1 XΣ

where XΣ̃n
is smooth, and all morphisms are toric, proper and birational.

Lecture 12
Proposition 10.17. A morphism of toric varieties XΣ̃ → XΣ is proper if φ̂ : Ñ → N has φ−1|Σ| = ∣∣∣Σ̃∣∣∣. Inparticular, XΣ is proper (or complete) if |Σ| = NR.

Proof. Fulton §2.4.So we can obtain proper morphisms by refinement of fans. That is, if we keep N fixed, and subdivide thefans, then we get a proper morphism, and birational. To see this, f |TN = id, and TN is a dense open, so f is abirational map.
Proof of theorem 10.16. Since XΣ is normal, it is regular in codimension 1, and so it only has points assingularities. Now we can work locally, and assume XΣ = Uσ , where σ ⊆ NR = R2 is a top-dimensional cone.Note if Uσ did not come from a top-dimensional cone, then Uσ is isomorphic to Uσ × C∗, where Uσ is anormal 1-dimensional toric variety, and so it is smooth.So we have that the only singular point is xσ . Say Uσ = Cone(v1, v2), where v1, v2 are minimal.

Claim 10.18. There is a toric automorphism of Uσ , such that v1 is mapped to (0, 1) and v2 is mapped to(m, −k ), 0 < k < m and gcd(m, k ) = 1.
Proof. This is just linear algebra. We can send v1 7→ (0, 1) and v2 7→ (m, x), for m ∈ Z>0, with a matrix inGL2(Z). Then change basis by (1 0

c 1)We get (1 0
c 1)(0 m1 x

) = (0 1
m x + mc

)
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For an appropriate choice of c, we can make it so that 0 ≤ k < m. Note that if k = 0, then σ =Cone((0, 1), (m, 0)), so we can pick the minimal generator (1, 0) of the second ray and σ is smooth, since
Uσ is A2. But we assumed minimality, so we can assume k > 0.If gcd(m, k ) > 1, then we can just divide by the common factor, which again contradicts minimality.Thus, we can just consider Uσ , where σ = Cone((0, 1), (m, −k )). Now insert a new ray generated by (1, 0).

diagramLet σ ′ = Cone((0, 1), (1, 0)) and σ1 = Cone((m, −k )). Then σ ′ is smooth, and σ1 is “less singular” than σ .Let Σ̃1 be this fan. Then XΣ̃1 is still possibly singular, but we only have to worry about σ1. Now apply theclaim and make σ1 into the form above.
1. Apply a rotation to get (0 −11 0 )(1 m0 −k

) = (0 k1 m

)
2. apply a shear to get (0 k1 −k1

)
with 0 ≤ k1 < k and gcd(k, k1) = 1. Let m1 = k .

With this, we get a new cone σ1 = Cone((0, 1), (m1, −k1)). Now m1 < m, and k1 < m1. If k1 = 0, then weare done, since Uσ1 = A2, and XΣ̃1 is a toric resolution of singularities. Otherwise, we repeat the process.
10.1 Quotient mapsLet X = Spec(S), let G be a finite group acting on S by ring homomorphisms. Then the ring of invariants is

SG = {s ∈ S | gs = s for all g ∈ G}

The inclusion map SG ↪→ S gives a morphism
π : X = Spec(S) → Spec(SG )

But we claim that the orbit space X/G is just Spec(SG ). Note that this only works for G finite. To generalise,we need GIT.
Example 10.19Let G = Cd = {ζ = e2πi/d} ⊆ C∗ act on C[x, y] with weights (1, 1). So

(ζ · f )(x, y) = f (ζx, ζy)
Now C[x, y]G = C[xd, xd−1y, . . . , xyd−1, yd]. So we can identify

Spec(C[xd, xd−1y, . . . , xyd−1, yd]) = A2/G
This has a cyclic quotient singularity. Note also that

C[xd, xd−1y, · · · , xyd−1, yd] = C[u, uv, . . . , uvd]
where u = xd, v = y/x . The right hand side is the ring of invariants

C[u1/d, u1/dv ]G
where G acts with weights (1, 1), i.e. (ξ · f )(u1/d, u1/dv ) = f (ξu1/d, ξu1/dv ). So

(ζ · f )(u, v ) = f (u, ζv )
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Note this does not work for the action of C∗ on A2, since
C[x, y]C∗ = C

But A2/C∗ ̸= Spec(C).
Let φ̂ : N ′ → N be a morphism of lattices of finite index. That is, we have an exact sequence

0 N ′ N N/N ′ 0
where N/N ′ is finite. Note by the structure theorem, N/N ′ is a product of cyclic groups.

Theorem 10.20. Say N ′ ↪→ N is a morphism of lattices with finite index, and say σ ⊆ NR
∼= N ′

R is acone. Then we have a morphism
f : Uσ,N ′ → Uσ,Nand(i) G = N/N ′ ∼= M ′/M ∼= HomZ(M ′/M,C∗),(ii) G acts on C[Uσ,N ′ ] = C[σ∨ ∩ M ′], and

C[Uσ,N ′ ]G = C[Uσ,M ] = C[σ∨ ∩ M ]
(iii) Uσ,N = Uσ,N ′ /G .

Lecture 13
Proof. For simplicity, say we have

0 N ′ = dZ N = Z Z/dZ 0
Dualising, we get 0 M = Z M ′ = 1

dZ Z/dZ 0
Say G = µd = Z/dZ. Then this acts on M ′ by multiplication. Taking HomZ(·,C∗), gives (as groups)

0 µd Hom(M ′,C∗) = TN ′ TN 0
Now we can see that N/N ′ ∼= M ′/M ∼= HomZ(M ′/M,C∗). In particular, given [v ] ∈ N/N ′, the correspondinghomomorphism sends [m] ∈ M ′/M by [m] 7→ e2πi⟨v,m⟩

Now µd is a subgroup of T ′
N , which acts on Uσ,N ′ , and so it acts on the ring C[σ∨ ∩ M ′], and C[σ∨ ∩ M ′]G =

C[σ∨ ∩ M ].
Example 10.21Consider

N ′ = 2Z ⊕ Z N = Z2
Say we have the cone Cone((0, 1), (1, −1) in N ′. In N , this will be the cone Cone(((0, 1), (2, −1))). Dual-ising, 0 M M ′ = 12Z ⊕ Z µ2 0
In M , we have the dual cone Cone((1, 0), (1, 2)), and so Uσ,N = Spec(C[u, uv, uv2]). On the other hand, in
M ′, we have

Uσ,N ′ = Spec(C[u, uv ]) = A2
and we have a corresponding toric morphism.
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More generally, φ̂ : dZ ⊕ Z → Z2 and σ = Cone((0, 1), (1, −1)) gives a morphism A2 → A2/µd .Singularities arising in this way are called cyclic quotient singularities. In particular, this is the Ad−1singularity.
Definition 10.22Suppose σ = Cone(v1, . . . , vr ), with v1, . . . , vr ∈ N and v1, . . . , vr being R-linearly independent. Then wesay σ is a simplicial cone,
In particular, from the theorem,

Uσ = Ar × (C∗)n−r

G = Ar

G × (C∗)n−r

So Uσ has a cyclic quotient singularity.In two dimensions, every cone is simplicial. But this is not true in higher dimensions, for example, we canhave a cone in R3 which is generated by (at least) four rays.
11 Torus orbits and orbit-cone correspondence
Let x ∈ XΣ. The orbit of x is

T · x = {t · x | t ∈ T } ⊆ XΣ
Remark 11.1. T · x = a(T × {x}).
As usual, as a set, XΣ is a disjoint union of torus orbits.

Example 11.2Consider the action (t, s)(x, y) = (tx, sy) of (C∗)2 on A2. Orbits are:• (C∗)2 ⊆ A2, which is the orbit of (1, 1), the distinguished point of the origin.• C∗ × {0}, which is the orbit of (1, 0). This is the distinguished point of τ2.• {0} × C∗, which is the orbit of (0, 1), the distinguished point of τ1,• {(0, 0)}, which is the distinguished point of σ , the top dimensional cone.We can see that a smaller cone corresponds to a larger orbit, and so on.
Theorem 11.3 (orbit-cone correspondence). There is a bijection

{cones in Σ} ↔ {torus orbits in XΣ}

given by sending σ to Orb(σ ) = T ·xσ , such that dim(Orb(σ )) = n−dim(σ ), where n = rank(N) = dim(XΣ).Moreover, Orb(σ ) ∼= (C∗)n−dim(σ )

Lemma 11.4. If σ ⊆ NR
∼= Rn is a strongly convex cone of dimension k , then Orb(σ ) = TN(σ ) ∼= (C∗)n−k ,where Nσ = spanR(σ ) ∩ N and N(σ ) = N/Nσ .

Proof. Consider σ = σ × {0}, where σ ⊆ Nσ ⊗ R is top dimensional. Then Uσ = Uσ,Nσ × U{0},N(σ ). Then
xσ = (xσ , x{0}) = (0, . . . , 0, 1, . . . , 1). Hence Orb(xσ ) = TN(σ )x{0} = (C∗)n−k .
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Corollary 11.5. xσ is a torus fixed point if and only if σ is a top dimensional cone.
Lecture 14First of all, note that for all σ ∈ Σ, Uσ is fixed by T . Let x ∈ Uσ , or equivalently, a ring homomorphism

C[Sσ ] → C, or a map of semigroups Sσ → C. For t ∈ TN = Hom(M,C∗), we have a corresponding γt : M → C∗group homomorphism, sending m to χm(t).Then t · x ∈ Uσ corresponds to
γt·x (m) = χm(t)χx (m)

Lemma 11.6. (C∗)n−dim(σ ) ∼= Orb(σ ) = Homsemigroup(σ⊥ ∩ M,C∗)
Proof. Observe that σ⊥ ⊆ σ∨, and σ⊥ ∩ M ⊆ σ∨ ∩ M = Sσ is the largest lattice contained in Sσ , and has rank
n − dim(Sσ ).Recall xσ corresponds to the morphism γσ : Sσ → C, with

γσ (m) = {1 m ∈ σ⊥ ∩ M0 otherwise
Now t · xσ corresponds to the morphism

γt·σ (m) = {χm(t) m ∈ σ⊥ ∩ M0 otherwise
This shows that Orb(σ ) is contained in Hom(σ⊥ ∩ M,C∗).We will sketch the converse. For all morphisms of semigroups, γ : σ⊥ ∩ M → C , pick t ∈ TN , such that γsends all elements of σ⊥ ∩ M to 1, and extend by zero on points m ∈ Sσ \ σ⊥. This will give γσ .To prove theorem 11.3, it remains to show that we have a bijection

{cones in Σ} ↔ {torus orbits in XΣ}

Proof. The map sending a cone to its orbit is clear. For the reverse map, let O be an orbit. Then O = T · xfor some x ∈ XΣ. Now choose σx to be the smallest cone containing x . Since Uσx is closed under T -action,
O = T · x ⊆ Uσx . We claim that O = Orb(σx ). Note that it suffices to show that x ∈ Orb(σx ).

Corollary 11.7.
Uσ = ⋃

τ≼σ
Orb(τ)

Definition 11.8The orbit closure of Orb(σ ) in XΣ is the Zariski closure
V (σ ) = Orb(σ )

Lemma 11.9. The correspondence in theorem 11.3 is order reversing. That is, for τ, σ ∈ Σ,(i) τ ≼ σ if and only if Orb(σ ) ⊆ V (τ),(ii) V (σ ) = ⋃σ≼τ Orb(τ).
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Example 11.10For A2, the orbits are:• {(0, 0)},• {0} × C∗,• C∗ × {0},• (C∗)2,and the orbit closures are
A2

{0} × A1 A1 × {0}

{(0, 0)}
Example 11.11Consider Bl0(A2). Say τ3 the new edge we add. Orb(τ3) = C∗, σ1 and σ2 lie above τ3, and their orbitsare a point. Thus,

V (τ3) = C∗ ∪ {pt} ∪ {pt} = P1
In particular, V (σ ) is a toric variety, and a toric subvariety of XΣ. Let Nσ = spanR{σ} ∩ N . Then we havethe short exact sequence 0 Nσ N N(σ ) 0If τ is a cone which contains σ as a face, let τ be the image of τ under the projection π : NR → N(σ ) ⊗ R.The collection Star(σ ) = {τ | σ ≼ τ}defines a fan in N(σ ) ⊗ R ∼= Rn−dim(σ ).

Theorem 11.12. For any cone σ ∈ Σ,
V (σ ) = XStar(σ )is a toric subvariety of XΣ.

Proof sketch. For σ ≼ τ , we claim that τ is a strongly convex cone in N(σ )R, which corresponds to the variety
Uσ = Spec(C[τ∨ ∩ N(σ )∨]) = Spec(C[τ∨ ∩ σ⊥ ∩ M ])

and the closed embedding is given by
C[τ∨ ∩ M ] ↠ C[τ∨ ∩ σ⊥ ∩ M ]

χm 7→
{

χm m ∈ σ⊥0 otherwise
We need to check that these local closed maps glue to a closed embedding XStar(σ ) ↪→ XΣ, and that the iamgeof XStar(σ ) is V (σ ).
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Example 11.13For P2, we have
V (τ2) = XStar(τ2) ∼= P1 ⊆ P2

as V(z2). Recall XΣ ∼= P2, with
Uσ0 = Spec(C[x, y])
Uσ1 = Spec(C[x−1, x−1y])
Uσ2 = Spec(C[y−1, y−1x ])

The homogeneous coordinates on P2 are [z0 : z1 : z2], which corresponds to x = z1/z0, y = z2/z0. So
Uσi = {zi ̸= 0} in P2. Now U0 ∼= A2 ⊆ P2, by mapping (x, y) 7→ [1 : x : y], and so on.Now we focus on τ2 = R≥0 · e2. The short exact sequence is

0 Nτ2 = Z · e2 N = Z · e1 ⊕ Z · e2 N(τ2) = Z · e1 0
Now Star(τ2) is a fan in Z · e1 ⊗ R, given by

{τ2 = {0}, σ0 = Cone(e1), σ1 = Cone(−e1)}
Lecture 15

Example 11.14 (example continued)Thus, XStar(τ2) ∼= P1, and we have a morphism N(τ2) = Z · e2 ↪→ Ze1 ⊕ Ze2, which gives the embedding
XStar(τ2) ↪→ XΣ. So we can check that XStar(τ2) is embedded as

[w0 : w1] 7→ [w0 : w1 : 0]
On the other hand,

V (τ2) = T · xτ2but xτ2 = [1 : 1 : 0], and by the orbit-cone correspondence
Orb(τ2) = (C∗)2 ⊆ P2(s, t) 7→ [s : t : 0]

and so
V (τ2) = C∗ × A1 ⊆ P2(t, z) 7→ [1 : t : z]

XΣ is stratified by orbit closures V (τ) correspond to torus invariant4 subvarieties. Moreover, codim(V (τ)) =dim(τ).
12 Divisors
Assume that X is separated, Noetherian, normal in codimension 1. In particular, for any toric variety whichcomes from a cone, X = XΣ satisfies the above requirements.The group of Weil divisors is

Div(X ) = ⊕
V ⊆X codimension 1 subvarietyZ · V

The principal divisors is Div0(X ) = {div(f ) | f ∈ Γ(K∗
X )}

4i.e. T V ⊆ V
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where div(f ) = ∑
V ⊆X

ordV (f ) · V

where ordV (f ) is the order of vanishing of f on V , and K∗
X is the sheaf of non-zero rational functions on X .Recall OX,V is a discrete valuation ring, and we have a corresponding discrete valuation ν : Γ(K∗) → Z.

Example 12.1For X = Spec(C[X ]) = A1, the origin is a codimension 1 subvariety, and OA1,0 = C[x ]⟨x⟩. This is a DVR,and it induces a valuation C(t) → Z, which is the order of vanishing at 0.
The Weil class group is Cl(X ) = Div(X )Div0(X ) = An−1(X )

Note there is a higher dimensional generalisation, producting a group A•(X ) called the Chow group.Fact: If X = Spec(R ) where R is a UFD, then Cl(X ) = 0.Thus, Cl(An) and Cl((C∗)n) are zero.If X = XΣ, the group of T -invariant Weil divisors is
DivT (X ) = ⊕

V ⊆XΣ codim. 1 subvar., T ·V ⊆V
Z · V = ⊕

ρ∈Σ(1)Z · V (ρ) = ZΣ(1)

Let f ∈ Γ(K∗
XΣ ), then div(f ) ∈ DivT (XΣ) if and only if f |TN ∈ Γ(O∗

TN
) has no zeroes or poles.But this is the same as morphisms TN → C∗, and so this is the same as f = χm for some m ∈ M . That is,we have a morphism M → Div0(X ) ∩ DivT (X ), sending m to div(χm). Recall

Theorem 12.2 (Excision). Let U ⊆ X be open, Z = X \ U . Write Z = Z1 ∪ · · · ∪ Zs ∪ W , where Zi arethe codimension 1 irreducible components, and W consists of the higher codimension components. Thenwe have an exact sequence
Zs Cl(X ) Cl(U) 0

Apply this to a toric variety X = XΣ and U = TN . Then the codimension 1 irreducible components of
XΣ \ TN , which are the V (ρ) for ρ ∈ Σ(1). We also know that Cl(TN ) = 0, and so we get a surjection

DivT (X ) = ZΣ(1) ↠ Cl(XΣ)Thus, we have a sequence
M ZΣ(1) Cl(XΣ) 0 (i)Let us look at the morphism M → DivT (XΣ) more closely.

Lemma 12.3. ordV (ρ)(χm) = 〈vρ, m
〉

where vρ is the minimal generator of ρ.
Proof. We can work locally in Uρ

∼= A1 × (C∗)n−1, by considering V (ρ) ∩ Uρ . Now consider the composite map
C Uρ C

λvρ χm

This sends x to xd , where d = 〈vρ, m
〉. Now
ordvρ (χm) = ord0(χm ◦ λvρ ) = 〈vρ, m

〉
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Then div(χm) = ∑
ρ∈Σ(1)

〈
vρ, m

〉
· V (ρ) ∈ DivT (X )

If spanR(Σ(1)) = NR, or equivalently if XΣ has no torus factor, then
div(χm) = 0 ⇐⇒

〈
vρ, m

〉 = 0
for all ρ ∈ Σ(1). In turn, this is true if and only if m = 0. In this case, the sequence (i) is exact on the left. Sowe get 0 M ZΣ(1) Cl(X ) 0 (ii) Lecture 16
12.1 ExamplesLet X be a toric variety, T ⊆ X the dense torus. In this case, we have a supply of• integral closed codimension 1 subschemes, from Dρ , for ρ ∈ Σ(1),• for m ∈ M , we have χm : T → C∗.and from the above, we have Cl(X ) = ⊕

ρ Z · ρim(M →
⊕

ρ Z · ρ)where m 7→
∑〈

vρ, m
〉

ρ.
Example 12.4Recall that we know Cl(Pn) = Z, where 1 is sent to a hyperplane class. In this case, the rays in the fanof Pn are generated by e1, . . . , en, en+1 = −e1 − · · · − en ∈ N ∼= Zn. By (ii), we have

0 M
n+1⊕
i=1 Z · ρi Cl(Pn) 0

In this case,
m 7→

∑
i

⟨m, ei⟩ ρi

By choosing the dual basis e∨
i for M , the image of e∨

i is ρi − ρn+1. Thus, the cokernel can be identifiedwith Z · ρn+1 (or any Z · ρi).
A similar computation shows thwt Cl(Pn × Pm) ∼= Z2.For nice schemes, we know that the class group is a finitely generated abelian group. Can it have torsion?Yes, say if we take U = Pn \ Xd , where Xd is a degree d irreducible hypersurface. In this case, Cl(U) = Z/dZ.Is there a toric example?

Example 12.5Let
Ĉ2 = Spec( C[x, y, z]

⟨x2 − yz⟩

)
Ĉ2 is toric, and a possible fan is given by

Cone((2, −1), (0, 1))
Choose basis e1, e2 of N , v1 = e2, v2 = 2e1 − e2. The exact sequence (ii) is as follows

0 Z · e∨1 ⊕ Z · e∨2 Z · v1 ⊕ Z · v2 Cl(Ĉ2) 0A
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where
A(e∨1 ) = 2v1
A(e∨2 ) = v1 − v2

Thus, in the class group
[D1] − [D2] = [div(χe∨2 )]2[D1] = [div(χe∨1 )]

Thus, Cl(Ĉ2) = Z/2Z.
Warning: Calculating the cokernel of an integer matrix requires calculating Smith normal form.
End of examinable material

13 *Line bundles*
Let Pic(X ) be the group of line bundles on X , up to isomorphism, with group operation ⊗. Given a line bundle
L, let

L∨ = HomOX (L, OX )denote the dual, which is the inverse of L, and OX is the identity element. For toric varieties (or anythingwhich is integral over a field), Pic(X ) ∼= CaCl(X ) = CaDiv(X )Prin(X )which is the Cartier class group. If X is normal, then the group of Cartier divisors CaDiv(X ) is a subgroup ofDiv(X ), where the image correspond to the Weil divisors which are locally principal. That is, divisors D suchthat there exists an open cover Ui, such that
D|Ui = div(fi)

For X toric, Pic(X ) = CaCl(X ), we have the following
M CaDivT (X ) Pic(X ) 0
M DivT (X ) Cl(X ) 0=

How do we tell when D ∈ DivT (X ) is Cartier?
Remark 13.1. If X is smooth, then CaDivT (X ) = DivT (X ).
In general, to find Pic(X ), we need to answer this question.

Lemma 13.2 (Fulton chapter 3, CLS chapter 4). Let Uσ be affine toric, with cone σ . Then
CaDivT (Uσ ) = {div(χm) | m ∈ Sσ }

Thus, D ∼ 0 for all D ∈ CaDivT (Uσ ), and CaCl(Uσ ) = Pic(Uσ ) = 0.
Example 13.3Say XΣ = V(xy − zw) ⊆ A3 ⊆ P3. In this case,

DivT (XΣ) =⊕
i

Z · ρi
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For m ∈ M , then div(χm) =∑ ⟨m, vi⟩ Dρi

Theorem 13.4. If XΣ is toric, then
Pic(XΣ) = {φ : |Σ| → R | continuous and restricts to a linear function on each σ ∈ Σ}

M = globally linear function
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