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1 What is a toric variety?

Definition 1.1 (affine variety)

An affine variety is V = Spec(R), where R is a finitely generated integral”] C-algebra.

YR is an integral domain.
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Fact: Given such an R, we can choose generators and relations, and write

where / is a prime ideal. This gives an affine embedding. i.e. a closed embedding
V=V()=A"

Note that the affine embedding is not unique.

Definition 1.2 ((complex) variety)

A (complex) variety is a scheme X which is integral (reduced and irreducible), separated, and of finite
type.

We can avoid schemes, and glue varieties out of affine varieties. We need
1. a finite collection {V,}qea of affine varieties, say V, = Spec(Ry,),
2. for a, B € A we need Zariski opens Vg C Vg,
3. algebraic transition maps geg : Vap — Vga, satisfying the usual cocycle conditions,
4. check that the resulting
o Ve

is irreducible and separated (Hausdorff).

Definition 1.3 (torus)

An (algebraic complex) torus of dimension n is

T" = (C)" = Spec(Clx;, ..., ;") = (AT\ {0})"
Note that this is not the same as the usual torus (S")". In particular, we have an affine embedding
z) =V(zo---z, —1) C A™

Exercise: Check that we have an isomorphism of rings

Clz, . .., Zp)

Ol 2] = 2

The torus is also a commutative group scheme, that is, we have algebraic morphisms

e:o— 1"
m:T"xT" = T"
(1" =T

making T" into an abelian group with identity e, multiplication m and inverse i. On the level of coordinate
rings, we have the identity section,

ef e, 1> C

ti1

A

The multiplication map is given by pointwise operations, L.e.



With this, we have comultiplication

Definition 1.4 (toric variety)

A toric variety is a variety X with a dense open T” C X, and an action (i.e. algebraic map)
a:T"x X =X

which extends the multiplication on X.

Example 1.5

T" is itself a toric variety.

Cohomology

Example 1.6

with

Example 1.7

Projective space

is also a toric variety, with torus
T"={(zo:-:24) | 202, # 0}
with action given coordinate-wise again, Le.
a((to:- 1 ta) (201 20) = (tozo: -+ thzn)
in non-homogeneous coordinates (i.e. in the affine zy # 0) of the torus, we can define the action by
(t, ..., th) (zo:- 1 zy)=(20:t121: - : tyzp)

We can check that T" is contained in all of the standard opens U; = D(z), and if we choose the usual
affine coordinates, then T” embeds into affine space as above.

Toric varieties are determined by the dimension n of the torus, and the toric boundary X\ T". For example,
P2\ T? has three components,

1. Vo = V(z),



2. Vi =V(z1),
3. Vo =V(z)

The V; intersect pairwise, but not all three at the same time. Each V; is invariant under the action of the torus,
so P? can be represented as

In particular, this gives us a stratification of P2, with strata T2, C* = T' corresponding to V; with the vertices

removed, and the three vertices.
Lecture 2

2 Characters, cocharacters and lattices

Recall from the last lecture that T” = (C*)" is an algebraic group.

Definition 2.1 (character)

A character x of T" is a morphism x : T" — C* of algebraic groups. That is, y : T" — C* is a morphisms
of schemes, such that
x(e)=1 and (x* ® x*) omH = m¥ o y*

We will write Homgiggp(-, -) for the set of morphisms of algebraic groups.

Theorem 2.2. The characters of T" are

M = Homaig_gp(T", C*) = Z"

Proof First of all, note that
Hom,ig-gp(T", C*) = (Hom(C*, C*))"

Thus, without loss of generality n = 1. Now we need a C-algebra map
X C*'] = Cly™]

This is determined by x*(x) = p(y,y~'). Note that x is a unit in C[x*'], and so x*(x) is a unit. Thus,
ply, y=") = ayk, for some a € C, k € Z
Next, we need that ef o y* = y% o ef. That s,

a = (")) = x*(ef(x) = xH(1) = 1
Hence x*(x) = x¥, for some k € Z. Note that x*(x ® x) = x*(x) ® x*(x) automatically, so we are done. O
The characters of T are of the form
x(t, ..., ty) =t -t
for some (a1, ..., ap) € Z". Expressions of the form

ay ap
t1 T tn



are called Laurent monomials. We will write

for this character. The correspondence is then

Homgig-gp(T", C*) — Z"

X% a

The characters form a group. Given characters y, x': T" — C*,

Thus, we have taht
Xa 'Xa’ _ Xa+a’

Hence the identification Homyiq-qp(T", C*) = Z" is also a group isomorphism.

Definition 2.3 (cochacter)

A cocharacter of T" is
A € Homgiggp(C*, T")

We also call them one-parameter subgroup.

We can check that
N = Homgig-qp(C*, T") = Z"

by showing that any A € N is of the form

foru = (uq,..., up) € Z. So we can write the above cocharacter as A, as before. N is a group, and the
identification is a group isomorphism. That is,

)\u : )\u/ = /\u+u’

Example 2.4

For n = 2, we can identify

Under the identification M = N = 7?2,

a t 0 a
X (6 tz) =t
and
)\(u,v)(t)

Il
—_—
o "t
T o
—_

Definition 2.5 (lattice)

A lattice is a free abelian group of finite rank.

Note that with this definition, any lattice is isomorphic to Z" when we choose a basis.



Example 2.6
27,22, 7.® 7,7 & 37, ... are all lattices.

There is a perfect pairingﬂ given by
() MxN->Z

(a,u)y=a-u=aju1+ -+ ayu,

In a coordinate-free manner,

M x N = Hom(C*, T") x Hom(T", C*) — Hom(C*, C*)
(A x) = x oA

Using the identification Hom(C*, C*) = Z as before gives the pairing.

We can describe a torus Ty starting from a lattice N, through

Tn=N®zC*

with this,

Hom(C*, Tn) = N

Formally,

Ty = Spec(ZN] ®z Clx, x "))

With this, give a torus T, we get two dual lattices N, M. Conversely, given a lattice N, we get a torus Ty
and a dual lattice M. Choosing a basis on one gives a basis on the other two.

3 Cocharacters and limit points - Part |

Back to toric varieties. Let X be a toric variety, with torus T. We can think of X as a “partial compactification”

of T. That is, we can construct X by adding limit po'mtsﬂ to T.
Given a one-parameter subgroup u € N, we have

M C*STCX

We can ask when does

Lim Au(t)

t—0

exist in X. The idea will be that we can determine X by saying which A, have a limit. See later.

Example 3.1
Consider T? C P?

20.21:22"

The embedding is given by (t1, &)+ (1 : t1 : tz). Choose u € Z?, so u = (u1, u3).

im Ay (t) = lim(1 : ¢t ;¢
[y Ault) = gl 2 )
All these limit points exist, since IP? is completeﬂ In particular, if u1, up > 0, the limitis (1:0:0). If
ur < 0,uy > uy, the limit is (0:1:0). Similarly if vz <0, uy > vy then the limitis (0:0:1).
The upshot is that we have partitioned Ng = N®R = R? into cones, so that if uy, uy are in the same
cone if and only if they have the same limit. In fact, we can construct P? from this.

“Or in algebraic geometry, it satisfies the valuative criterion for properness for some choice of DVR.

4  Affine toric varieties and cones

"That is, it induces isomorphism Homz (M, Z) = MY Z N and vice versa.
2In the Euclidean topology.
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Definition 4.1 (cone)
A (rational polyhedral) cone is
cCNg=N®zR=R"

where
o=) Aui|A=0u, ..., u, €N

iel

We will also write

and the set {u;}/_, is the set of generators of the cone.

Example 4.2

If Nr = Re, then we have the cone gy = Cone(e),
Next, o = Cone((1,0)) is
and a3 = Cone((1,0), (0, 1)) is
and a4 = Cone((1,0), (1, 2)) is

Definition 4.3 (dimension)

The dimension of a cone ¢ is dim(g) = dim(V/), where V = span{o} C Ng. A cone is top-dimensional if
V = Ng.

Definition 4.4 (strongly convex)

o is strongly convex if it does not contain any lines through the origin. Equivalently, ¢ N —o = {0}.

We would like to associate a to a cone o, an affine toric variety Uy = Spec(Ry). That is, we would like to
define

a sub-C-algebra.
We will do this as follows:

1. We will associate a dual cone ¥ C Mg,
2. Then we will generate a commutative semigroup Sy,

3. from this, we will define R,.

41 Dual cone

Definition 4.5 (dual cone)
The dual cone g of o is

og={meMg|{um)>0foral uead}t CMg

where we extend the pairing to Ng @ Mr — R.

Example 4.6

Using the same examples as before, we have the dual cones ¢
and &5,
Note here we see that the dual cone depends on the embedding (or lattice). Moreover, the dual of a



| strongly convex cone does not have to be strongly convex.

Qe

Fact: 0 = 0.

| Lemma 4.7. The dual ¢ of a cone ¢ is a cone.

Proof. We'll define an algorithm to find mq, ..., ms € M, such that

From linear algebra, for m e M = NY, we have a hypersurface
m* = Hy={ue& Ng|{um=0}

We also have half spaces
HY ={u e Ng | (m, u) >0}

Definition 4.8 (supporting hyperplane)
A supporting hyperplane of o is H,, such that ¢ C H,. Equivalently, m € &.

Now note that

So to construct g, we need to express ¢ as an intersection of half spaces.
For example, g3 = Cone((1,0), (0, 1))
and similarly, d4 = Cone((2, —1), (0, 1)).
In general, we can do this by identifying the facets T < o, and taking the corresponding dual element
m; € M, and
& = Cone(m; | T < 0)

when ¢ is top dimensional.

Definition 4.9

A face T X o is the intersection o N H,, for a supporting hyperplane H,. Note that the faces are all
cones, and we call 7 a facet if dim(t) = dim(og) — 1, and T an edge if dim(7) = 1.

Note by taking m =0, 0 < 0.
When o is not top dimensional, then spang(c) = W # Ng. Write @ for o considered as a subspace of W.
Now 0 is top-dimensional, and so we can the dual

. M]R
0C —
Say
o = Cone(my, ..., ms)
where
_ M
m; WL
Choose representatives m; € Mg, and choose a basis mgi1, ..., my of Wt in Mg. With this
o = Cone(my, ..., ms, =Meiq, ..., +my)

4.2 Commutative semigroup



Definition 4.10 (commutative semigroup)

A commutative semigroup is (S, +), such that + is an associative commutative binary operation on S.

In particular, a semigroup with identity is called a monoid. S is finitely generated if there exists A C S

finite, such that
S= ‘|:Z)\nan

S is dffine if it is finitely generated, and (S, +) is a subsemigroup of a lattice (Z", +).

Ay € Z~g, Gy € A}

Example 4.11

Any group is a semigroup. Given a (not necessarily unital) ring R, R under multiplication is a semigroup.
For example, Z~q is a semigroup under multiplication, but this is not finitely generated.

Lecture 4

Definition 4.12

Let o be a cone. Define

for the semigroup associated to 0.

This is a semigroup as cones are closed under addition. Now we want to show that this is affine. This does
not follow immediately from being a subgroup of (Z", +). For example, consider

S ={lxy) | x < V2y}

This is a semigroup, but it is not finitely generated.
Lemma 4.13 (Gordan’s lemma). If o is a cone, then S, is a finitely generated semigroup.

Proof. We know that & = Cone(my, . . ., m,), for some m; € M. Say x € S;. By definition,

r
X = E aim;
i=1

where a; € Ryg. Write
a; = a; + b;

where a; = ||, b; = {a;} €10,1). Then
X = Za[m[ + Zb,'m[
i i
Now x € M, and ) _, a;m; € M, and M is a group, so
Z bim; e M
On the other hand, > b;m; is contained in a compact set

K={qu[|0§q§1}

Since M is discrete, K is compact, K N M is finitely many points, say KN M = {m 41, ..., mg}. Then S, is
generated by

so it is finitely generated. O



Example 4.14

When o = Cone(1), then ¢ = Cone(1), and so S, is generated by 1.
Now if 0 = Cone(eq) C R?, then § = Cone(eq, e2, —e3), and these are the generators of Sg.
If 0 = Cone(e, e2) C R?, then & = Cone(eq, e3), which are the generators of S,.
Finally, if 0 = Cone(eq, e1 + 2e3), then & = Cone(ey, 2e1 — e3). Here, Gordan’s lemma shows that S,
is generated by
€,2e1 — e, eq

4.3 Coordinate ring

Definition 4.15
The algebra C[S] of a semigroup (S, +) is the C-algebra of finite sums

C[S] = ‘[Z CI[XS’ | a; € (C,S[ (S S:|’

. / /
with x°x° = x5t

Example 4.16

The semigroup Z" is generated by eq, ..., e, —e1, ..., —e,, SO

where x*=! = x*eé.

Lemma 4.17. If (S, +) is a finitely generated semigroup, C[S] is a finitely generated C-algebra. If (S, +)
is affine, then C[S] is the algebra of an affine variety.

Proof If S is generated by A= {sy, ..., se}, then {x°1, ..., x*t} generates C[S] as a C-algebra.
Now suppose S is affine. Then C[S] is finitely generated by the above, and we have that (S, +) C (Z", +),
so we have

Cs|c gz =, ..., X1

So C[S] s a subring of an integral domain, hence it is an integral domain. To conclude, every finitely generated
integral domain is the coordinate ring of an affine variety. O

Define R, = C[S,]. From this, we know that U, = Spec(R;) is an affine variety.

Example 4.18
For 0 = Cone(1), let x = x®, then C[S,] = Clx], and so U, = A". The inclusion C[x] C C[x*"] defines
the torus.

When o = Cone(eq) C R?, let x = x°1, y = x%2, then C[S,] = Clx, y*'], and U, = A’ x C*. The torus
is given by the inclusion

(C[X, gi1] C C[Xi1, gi1]

When o = Cone(eq, e2) C R?, set x = x°, y = x2, then U, = Spec(Clx, y]) = A?.

Finally, when o = Cone(eq, e1 + 2e3). Let A= e, B =2e; — e, C = e,. Then S, is generated by
A, B, C. We have a relation B+ A = 2C. Define x = x*, y = xB, z = x¢, then

Clx, y, 7]

o= 5y =)

With this, U, = Spec(C[S,])) = V(xy — z°) € A3, In particular, this is a singular toric variety. In this

10



case, the torus is given by

To see this, we have an inclusion

Remark 4.19. We know that S, C M, and so we have an inclusion of algebras C[S,] C C[M]. A fact from commutative
algebra is that, the image of the map

T" = Spec(CIM]) — U, = Spec(C[S,))

is dense, as these are integral domains.

Remark 4.20. T" may map to some smaller torus 77" C U,, with n’ < n. We claim that if o is strongly convex, then
T" C U, as a dense open subset. See examples sheet 1, questions 1 and 3. For this, note that ¢ is strongly convex
if and only if & is top dimensional.

From now on, restrict to strongly convex o.

What remains is to construct the torus action. Recall Ty = Spec(C[M]). We will define this by
a*: C[S,] — C[S,]® CM]
Xm —s Xm ® Xm
This extends
m* : C]M] — C[M] ® C|M)]
X" X" e X"

Remark 4.21. The reason this works is the fact that S, € M tells us which functions on U, are monomials.

With this all in mind, given a strongly convex cone g, we have an affine toric variety Uy, with torus Tn. We
will see that

{affine toric varieties} {affine semigroups}

{affine normal toric varieties} ——————— {strongly convex cones}

5 Opens in U,

We will see that T < o, correspond to principal opens U; C U,. Recall that a face is t = o N H,, for some
meonM=S,.

Theorem 5.1. If T = o N H,,, then

C[S:] = C[Selym = C[Sa}[)(im}

Proof. First, since t € Hy, (u,m) =0forall v € . So m and —m are in TNM = S;. Also, if m" € S, then
(m’,u) >0 for all u € 7. Putting these together,

ClSolym < C[S]

i

Lecture 5



For the reverse inclusion, take m” € S;\ ' S,. We want to show m’ + km € S, for some k € Z. For u € 0\ 1,
(m’,uy < 0. But we also have that (m, u) > 0, so we can pick k large enough such that (m’" + km, u) > 0.
This tells us that m’ + km € SJJ O

Example 5.2

Let o = Cone(eq, e). Let x = (0,0). This is a face, and S, = C[x*', y*']. Hence U, = T C A%,
Now if 71 is the face y = 0, then we get

C[Sy] = Cx, y]x”2=y = Clx, in

So
Uy, =A"xC*

6 Fans and toric varieties

Definition 6.1 (fan)

A fan T is a finite collection of strongly convex cones 0 C N, such that
1. foral 0 € L, 1< 0, then T € L.

2. forany 01,00 €L, T =01 N0, is a face of both.

Notation 6.2. The support of L is
I = JoC M
oEL

and we will write
Incr

for the subset of r-dimensional cones.

Example 6.3
First, let 0 = Cone(e) C R, then &1 = {0, —0, *} is a fan.
Next, we have seen the fan I for P2. Here, £(0) = {x}, L(1) = {Cone(e+), Cone(e;), Cone(—e; — e;)}
and so on.
Next, consider the cone given by gy = Cone(eq, e1 + e3), 01 = Cone(e; + ez, ;) and their faces.
Finally, consider the rays passing through (0, 1), (1,0), (0, —=1), (=1, a), for soem a € Z.

By the above construction, we can associate to each ¢ € L an affine toric variety, and if T < o is a face,
then U; C U, is an open. Thus, we can glue the U,s together, using the explicit open embeddings. This gives
an (abstract) variety Xr.

Remark 6.4. The second condition will imply separatedness.

Example 6.5

For the first example, U, = Spec(C|[x)), and U_, = Spec(C[x~']). Finally, the origin corresponds to
Spec(C[x, x")). So we get A" and A" glued along C*, which is P'.

3Since we only need to show positivity on the finitely many generators of the cone.

12
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Example 6.6
For the fan with for P2 as above, the dual fan is

diagram
Let
x = 10
y = 0
[n this case,

Ug, = Spec(Clx, y))
U, = Spec(@[x_1,x_1g])
Uy, = Spec(Cly™", xy™"))

We would like to identify Xy with P, with homogeneous coordinates [z : 2 : 2] If

2 22
x=— and y=—
20 20

This identifies Uy, with the open {zg # 0}. Similarly, we can identify the other opens.

Example 6.7
Consider now the fan given by

o1 = Cone(eq, e1 + €3)

0, = Cone(e1 + ez, e2)
The dual cones are

o) = Cone(ez, 1 — €3)

0, = Cone(e;, —eq + €3)
Note that the dual of a fan is not a fan. In this case,

Uy, = Spec(Cly, xy™")
Uy, = Spec(C[x, x*1y])

Set t = xy~'. Then we have a projection map to P'. In particular, this is the total space of O(—Tﬂ which
is
{xz1 = yz} C (Cig x P,

[20.21]

Setting t = zo/z1 gives the identification. This is also the blowup of A? at 0.

“which is the tautological bundle. Using relative spec, we can also write this as
Specpt (Symg; O(1))

More generally, taking the spec of the symmetric algebra associates a vector bundle to a locally free sheaf. The vector bundle has
a trivialising open affine cover.
Conversely, for a vector bundle, take the sheaf of sections.

Fact: If 1, X, are fans, then so is &1 x ¥, and Xy, xx, = Xz, x Xg,.

7 Affine embeddings and toric ideals

Lecture 7

We'll see two alternative ways of describing toric varieties:
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1. toric ideals, V = V{(/;) C A®, where /; is a toric ideal,

2. torus embedding, V = & (T), where &g : T — A® given by monomials.
Recall for o = Cone((1,0), (1, 2)), we have ¥ = Cone((0, 1), (2, —1)), and
Sy = Lot
where o = {A, B, C}, where A= (0,1), B=(1,0), C = (2, —1). We have a map

7 Zhge — METZ?

A (0,1)
B (1,0)
Cr (2,-1)
As a matrix,
o1 2
70 -1
Then
1
ker(m) =Z | =2
1

If we restrict to N/B—\,B,C and Sg, then we have a surjection of semigroups. In particular, S, = Ni,B,C/ ~, where
~ is the relation A4+ C = 25. On algebras,

_ CINyB,c]

Clsi] = =

Let x = x*, y = xB,z = x©. Then A+ C = 2B corresponds to xz = y°. Then /, = <XZ — g2>. In particular,
this shows that we have an affine embedding U, = V(/;) C A°.
On the other hand, x*, x?, x¢ are maps T — C*. We can define a map

Gy T — A
(s, 1) (x™(s,

In this case,

Moreover, ., with coordinates s, t, acts on U, by
(s, t)(x, y,2) = (tx, sy, s°t"'2)

More generally, if S is an affine semigroup, generated by & = {m-, ..., ms}, where m; € M, a lattice. So
S = Z>oo/. We can associate an ideal and a torus embedding as above.

Definition 7.1
A lattice ideal is an ideal /; in Clx, .. ., xs), of the form
h=(x"—xfla—Bel)

for some lattice L. Note here we use the multi-index notation.
Iy is toric if it is prime.

Now given S as above, consider the map

ﬂ:@Z-m[—M\/I
i=1

14



and L = ker(r) is a sublattice. These relations give an ideal
= (" =x" |t — et 0 e @ mi)

This is an ideal of

S
Y ]
=1

where x; = x™. We can define a variety V = V(/;) C A°.
Now for @/, we recall that M = ZS, and Ty = Spec(C[M)]). We can define

by Ty — A
t— ("), ..., x™ (1)

Theorem 7.2. If V is an affine variety, then the following are equivalent:
(i) V is an affine toric variety,
(it) V' = Spec(C[S]) for an affine semigroup S,
(iit) V =V(/;) for a toric ideal /;,

(iv) V. = &4 (T) for some finite collection &7 generating an affine semigroup.

Proof. We have seen (it) implies (iit) and that (iil) implies (iv). To see that (iv) implies (i), note that ., gives

an action of T on A®, and if V = &(T), then &, (T) C V is a dense open torus, and we just need to check

thatfor t € 7,t-V C V. Now t- V contains ®(T), so it is contained in the closure of ® 4 (T), which is V.
For (iv) implies (i), we need a lemma from representation theory:

Lemma 7.3. If A C C[M] is a subrepresentation of Ty, then A splits into

A=@(C~Xm

meS

for some subse{d S C M.

9Since the multiplicity in C[M] is one for each eigenspace, each eigenspace appears either zero or one times, so we can consider
a subset without thinking about multiplicity.

Note that here, multiplication by t defines a map Ty — Tn, which in turn is a map on coordinate rings
CIM] — CIM.

Applying the lemma to C[V] — C[M]. The collection S of monomial appearing in C[V] needs to form a
semigroup S, as C[V] is a ring. This is finitely generated as C[V] is finitely generated, as it is the coordinate
ring of an affine variety. O

Under the correspondence
{affine toric variety} < {affine semigroups}

Restricting, we get
{normal affine toric varieties} < {saturated semigroups}

Example 7.4
Llet M=72Z,and S =(2,3) =1{0,2,3,...}. Butwe can still construct a toric variety

V' = Spec(C[S))

15



So we have a map

7?7
61}—>2

6’2}—>3

and the kernel is generated by 2e, — 3e1. Now take x = x®,y = x* € C[Z?]. We have an associated
ideal, /, = (y? = x*). Then C = Spec(C[x, y/l;) = V(I;) is the affine toric variety associated to S. In
particular, this is a cuspidal cubic.

For a parametrisation, we have

by CF - A?
t (2, 1)

and C = ¢,(Cx).
On the other hand, this is not a normal variety.

Definition 7.5 (normal)

An integral domain R with K = Frac(R) is normal (i.e. integrally closed) if for all x € K, with x being a
root of a monic polynomial with coefficients in R, x € R.
Equivalently, if x" + apx" "+ + ag, with @; € R, then x € R.

For an affine variety, it is normal if and only if its coordinate ring is normal. In general, we need to consider
stalks, or an affine cover.

Example 7.6
We'll show that R = C[x, y)/ (y* — x*) is not normal. Note that
2 2
Y Y
X = 2 (X) € Frac(R)
Now
z=2¢R
X

but 22 — x2 = 0.

Definition 7.7 (saturated)
An affine semigroup S C M is saturated if for every m € M, k € N with km € S, then m € S.

Lemma 7.8. The semigroup S, of a (strongly convex) cone is saturated.

Proof. We defined S, as the intersection of a cone (which is convex) and M.

Theorem 7.9. If V is an affine toric variety, with torus Ty, then the following are equivalent:
(i) V is normal,

(it) V = Spec(C[S;]), for some cone o,

16
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(it) V = Spec(C[S)), for some saturated affine semigroup S,

Proof. For (i) implies (iit), if V' is affine toric, then V = Spec(C[S]), for some affine semigroup S. Say m € M,
and km € S, for some k € Z-o. This means that x*™ € C[S], and x" € C(S) = Frac(C[S]). But x" is the
root of the monic integral polynomial

g —x m=0

so x™ € C[S] as C[S] is normal.

For (iil) implies (ii), let S be saturated and affine, and let & be a finite generating set. Define ¢ = Cone ().
Then S =M N a". Taking the dual gives o.

For (i) implies (i), take o = Cone(vy, .. ., vr). Let p; be the ray generated by v;. Without loss of generality,
we can assume that v; is a minimal generator of p;. Now we have that

Intersecting with the lattice,

and so

We just have to check the varieties U; = Spec(C[S,,]) are normal. But if we only have one ray p, say generated
by x1, then
C[S,) = Clx, x5, .., X

So U, = A" x (C*)"=" which is normal. O

With this, we have a correspondence

{normal affine toric varieties} « {strongly convex cones}

8 Points of U, and limit points - Part I
We want u € o to correspond to one-parameter subgroups A, : C* — T C U,, such that

lim A, (1)

t—0

exists in Uy (with the Euclidean topology). Equivalently, A, extends to a map C — U,.

Theorem 8.1. Let ¢ be a strongly convex cone. Let v € N. Then u € o if and only if

lim Ay (£)

t—0

exists in U,.

Proof. For any u € N, m € S,, say (u, m) = d € Z. This means that the composition
. A " .
¢ — 7T —C
is x — x9. Moreover,

ueo & (umy>0forallme S, }er(])(x’” o A)(t) exists for all m € S,

So we need to show that

lln(w)()(’" 0 Ay)(t) exists forall m € S5 ling) Ay(t) exists in Uy
t— t—

17



« s clear. Conversely, recall (a closed point) x € U, is a C-algebra homomorphism

Xt ClSs] = C
Define
)= ={5 o
Then
lim Ay (t) = xo
Remark 8.2.
I

and the limit does not exist if (v, m) < 0.

Definition 8.3 (distinguished point)
The distinguished point of o is
xg 1 C[Ss] — C

” 0 ifme S,\ot
X = .
1 otherwise

Note m € S, \ ot if and only if (u, m) > 0 for all m.

Lemma 8.4. We have a one-to-one correspondence between points x € U, and semigroup homomorphisms

Vo i (So.+) = (C.)

Proof. For x € Uy, we have a corresponding map
X C[S,] - C
(") = x"(x)
and we can take y,(m) = x"(x). Conversely, given y : S, — C, define

xp: C[S,] = C

m)

X (") = y(m)

Example 8.5
The distinguished point x, € U, corresponds to the semigroup homomorphism
Vo:Se—C
(m) = 1 meatns,
YW= 10 mes,\ot

18
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Corollary 8.6. For all u € Int(a) N N,

iyt =

Example 8.7

Consider the cone o = Cone(ey, e2) € R In this case, o+ = {0}. Now U, = A?, and we would like to
find x4, Xz;, where 71 = Cone(eq).

First of all, in this case, we have that y,(0) = 1, and ys(m) = 0 otherwise. The corresponding point
Xg 1S given by

xg 1 C[Ss] — C

m T m=0
X = .
0 otherwise

This is just evaluation at zero of the polynomial ring. So x, = (0,0) € A%. Next, we want to show that
this is the limit point for all one-parameter subgroups A,, for v € Int(o) N N. That is, v = (a, b), with
a, b > 0. Now

Aan)(t) = (19, 1)

Since a, b > 0,
l'Ln?) Aab)(t) = (0,0) = x,
t—

For 7y, we have that T1V = Cone(eq, ez, 62—1)' [n this case,
U, =A"xC*

and Sy, = Zsoe1 @ Zey. First of all, (a, b) € Int(ry) NN if and only if @ > 0,b = 0. So we have
Aao(t) = (t°,1)

and so
l'Lng) Aao)(t) = (0, 1)
t—

On the other hand,

Yo 1 S, — C
91l—>0

ey — 1
and so the map is

Clx,y*'| > C
x— 0

y—1

and so xr, = (0, 1).

Example 8.8
For 0 = Cone(@) = {0} C Ng. Then ¥ = Mg, and S, = Ze 1 @& - - & Ze,. Then

ClS,] =, ..., X

The distinguished point is given by ys(m) = 1 for all m. So we have the point (1,..., 1), which is the
identity of the group Ty = U,. This is the limit point for all u € Int(o).
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9 Smoothness

Lemma 9.1. If o = Cone(w;, ..., vk) for v € N, and suppose v, ..., vk can be completed to a Z-basis
Vi, v, of N. Then U, = AX x (C*)"k.
Moreover, we claim that these are the only non-singular affine toric varieties.

Proof. Complete v1, ..., vk to a basis vq, ..., vp. Then Sy is generated by wy, ..., W EWE 4, +w! So

ClSsl=Clx, ..., X ® Clx ... xE

O
Recall if vy, ..., v, € Z" forms a basis of R”, it does not have to form a basis of Z".
Example 9.2
Take v = (1,0),v, = (1,2). These form a R-basis, but not a Z-basis. In this case, U, is a singular
variety.
In general, if vy, ..., v, € Z" are R-linearly independent, then they form a basis of Z" if and only if
V=1|wv - v,| €CGLn 2z

Equivalently, det(V) = £1.

Definition 9.3 (reqular point)

Let X be a variety of dimension n. Then x € X is called a regular or nonsingular point if dimg(Qx ) = n.
Otherwise, we say that x is a singular point.

Here, Qx . is the Zariski cotangent space to x at X. Recall that a closed point x € Spec(R) corresponds to
x¥: R — C, and defines a maximal ideal m, = ker(x¥).
Then

This is a C-vector space.

Definition 9.4

We say that X is smooth or nonsingular, if X has no singular points.

Note that over some fields, smooth implies non-singular, but the converse is false. An alternative definition
of smoothness:

Proposition 9.5 (Jacobian criterion). Let V = V(f,..., f:) € A° be an affine variety of dimension d.
Then V' is smooth at x € V if and only if the matrix

has rank s — d for all x € V.

We can identify ker(/(x)) = (m,/m?)". In terms of differential geometry, we have a map F : A> — A’, and
ker(dF)=TV.

20
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Theorem 9.6. If U is an affine toric variety, then the following are equivalent:
(i) U= U, for some o is generated by eq, ..., ek, which is part of a basis for N,
(i) UZ A* x (CHk,
(iii) U is smooth,

(iv) x5 € U is smooth.

Proof So far we have shown (i) = (ii) = (i) = ().

Lemma 9.7. If ¢ is a strongly convex top dimensional cone, then the set of indecomposable elements
H=1{me S;\{0} | m=#m+m"forall m’,m"” € S, \ {0}}

generates S, as a semigroup.
‘H is the Hilbert basis of S,.

Proof Let m € S;\ 0. Suppose m & H. Then m = m’ + m”, for some m’, m” € S, \ {0}. If m’, m” € H, then
we are done. Otherwise, we can keep splitting. We need to show that the process terminates.
Since o is top dimensional and strongly convex, ¢" is top dimensional and strongly convex. Then there
exists u € o such that
(m,u) € Zso

for all m € S, \ {0}. So if m = m’ + m” as above, then
(m,u) = <m’, u> + <m”, u>
Each of the terms is a positive integer, and so the process must terminate. O

We will now show (iv) implies (i). First assume o is top dimensional. Then by assumption,

m,,
QX,XU = 2
Xo
has rank n. In this case,
Vo 1S, — C
me—0ifme SJ\Si =S, \ {0}
01
So the associated map of rings is
C[S;]— C
x"+— 0form=+0
XO — 1
In this case,
m,, = (x" [ m e 5.\ {0})
and so
o= [ Lt 5 o)
Hence m
m;’ = (x" | me Sz \ {0} indecomposable)
Xo

We know that this has rank n, so we must have that
m,,
m?

=" |men)

Since H is a basis of S,, and ZS, = N, o is generated by an integral basis of N. This shows (i) for this case.
Now suppose dim(g) = k < n. We will reduce to the previous case.
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Remark 9.8 (interlude on non-top-dimensional affine toric varieties). Suppose dim(o) = k < dim(Ng). Then N, =
span(o) N N is a k-dimensional sublattice of N. Then we have an exact sequence

0 N, N N(o) = NIN;, — 0

Note everything is torsion free. Dualising, we get

0 N+ M MINE 0

[

Consider 0 C N, ®z R. We define this as the same cone as o, but viewed as a top dimensional cone in spang(o) =
N, ®z R. Now

M
7' C —®zR
S NI ®z
Say @’ = Cone(wy, ..., V7). Choosing a splitting of the second exact sequence, we find v; € M mapping to v;. Then
a’ = Cone(vy,...,v;) x Cone(+eq, ..., +e, )
where e1,..., e, is a basis of Ni.
So Uy = Us X T = Us X (C*)"=*. The torus action on this splits as Ty = Ty, x Tn)- In particular,

Xo = (X, 17y(e)), Where 1 is the identity of Tr(g.

TN(o)

If x5 is smooth, then xz is smooth, and @ is a top dimensional cone in Ny So by the above, 7 =

Cone(ey;_y,q, ..., ey), where the e; _, ,, ..., e} is a basis of N,. With this,
o = Cone(ey k41, -, €})
and
g/ = Cone(*eq, ..., ®te€p—k, €n—ki1, .-, €n)
and so

UU _ Ak % (C*)N7k

10 Toric morphisms

Definition 10.1 (morphism of toric varieties)

Let X, Y be toric varieties, with torus Tx, Ty respectively. Then a morphism of toric varieties X — Y is
toric f f(Tx) C Ty, and f: Tx — Ty is a group homomorphism.

Note that if Ty, Ty are tori, then
Homaig-gp( T, Tav) = Homz(N, N') = Mat(n" x n, Z)

For a morphism ¢ € Homaig-gp(Tn, Tiv), we will write @ = J,(1) for the associated element of Homz(N, N').
We want to start with ¢ and understand from pictures of L, ¥’, whether ¢ extends to a toric morphism
f: XZ — XZA

Example 10.2
Consider the map A" — C = Spec(C[x, y)/ (y> — x*)) C A?, given by t — (t?, £*). This clearly restricts
to a map C* — (C*)? given by t + (¢, £3). This is a group homomorphism, so the above is a morphism
of toric varieties.

On semigroups, this is the inclusion

2220 + 3220 —> Zzo

This is called saturation, and the map A" — C is the normalisation.
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Example 10.3 (non-example)
The map

A? 5 A
(X, y)—x+y

is not a toric morphism, since it does not restrict to a map on tori.

Lecture 11

Lemma 10.4. A toric morphism is equivariant, with respect to the torus actions. That s,
f(tx) = f(t)f(x)

forall t € Ty, x € X.

Proof. It is true for x € Ty, and we can extend by continuity to all of X, since Ty is dense in X. O

To start off, given @ : Tyy — T, or equivalently ¢ : N — N/, when does it extend to f : X — ¥?
Note that if the extension exists, then it is unique. In addition,

Autioric(X) <> Autaiggp(Tn) <> GL,(Z)

Definition 10.5 (morphism of fans)

Let L C Ng and ¥’ C N be fans, and fix a morphism ¢ : N — N'. Then @g is a morphism of fans & — ¥’
if for any cone 0 € &,
pr(0) C 0’

for some 0" € ¥'.
In particular, a morphism of cones ¢ — ¢’ is @ such that ggr(0) C o’

Example 10.6

diagram
This is a morphism of fans, given by the projection Z? — Z.

Theorem 10.7. Let ¢ : Ty — Tnr be a homomorphism of tori. Then this extends to f : Xy — Xy if and
only if  : N — N’ is a morphism of fans from I to L'.

Proof. Omitted. O

Corollary 10.8. There is an equivalence of categories

{normal toric varieties with toric morphisms} < {fans with morphisms of fans}

Example 10.9
Consider the previous example, the morphism between tori is (x, y) — x. This is also the map P! xP! — P'.
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Example 10.10

Consider the map
diagram
The domain is the total space of the tautological bundle, equivalently

VixY —yX) C A7, x Py

and equivalently again, this is the blowup Blg A%. The map is to A’.
We are replacing the point x, = (0,0) € A’ by some other cones. In fact,

771(0,0) = Py,

Example 10.11
Consider

diagram

This is not a morphism of fans. This is because the image of the red cone does not fall inside any
cone. In fact, there is no morphism P> — P'. This is just a rational map (so it is defined on a dense open).
If we compute what the map is, in homogeneous coordinates

(20121 2] > [20 1]

This is undefined at [0 : 0 : 1]. Note that the left fan corresponds to [0: 0 : 1].

(maybe all up to rotation?)

If we add a ray generated by (—1,0), then f turns into a toric morphism. In fact, we have added
(—1,=1) + (0,1). But now the red cone is isomorphic to A?. So what we have done is a blowup. in
particular, we get

X = Bl[o;o;”PZ - P?

Bl P> ——————— P?

Remark 10.12. In general, we can blow up a variety X at any subvariety Z C X,. Let Z, be the corresponding ideal

sheaf. Then .
D
d=0

is a sheaf of graded algebras, where we assume the generators of Z; live in degree 1. Then

o]

D

d=0

7 Proj, — X

is the blowup. If Z C X is reqular, then

Pz = syms, (12)

d=1
We can think of this as the conormal bundle of Z in X.
Some facts:

e 7 is a proper birational map,
e 7 is an isomorphism away from Z, and 7'(Z) is the projectivised conormal bundle,
e 7 “enlarges” Z to a divisor.

We can use blowups to:
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e resolve the indeterminancy locus of a rational map,

e resolving singularities
The only toric blowups we'll see are when Z is a point.

Theorem 10.13 (Hironaka). If X is a sinqular variety over a field k of characteristic 0, there exists a
resolution of sinqularities

f-X—-=X

which is a finite composition of blowups.

Definition 10.14

A resolution of singularities for a singular variety X is a morphism f : X = X, such that
1. X is smooth,

2. f is proper and birational,

Remark 10.15. Blowups are proper and birational.

Theorem 10.16. If Xr is a singular toric surface, then we can find a toric resolution of singularities. That
is, we have

an o X’iW XX

where X5 is smooth, and all morphisms are toric, proper and birational.

Proposition 10.17. A morphism of toric varieties Xz — X is proper if @ : N = N has e '] = lf‘ In
particular, Xt is proper (or complete) if |£| = Ng.

Proof Fulton §2.4. O

So we can obtain proper morphisms by refinement of fans. That is, if we keep N fixed, and subdivide the
fans, then we get a proper morphism, and birational. To see this, f|7, = id, and Ty is a dense open, so f is a
birational map.

Proof of theorem[I018 Since Xy is normal, it is reqular in codimension 1, and so it only has points as
singularities. Now we can work locally, and assume Xz = U, where 0 C Ng = R is a top-dimensional cone.
Note if Uy did not come from a top-dimensional cone, then Uy is isomorphic to Uz x C*, where Uz is a
normal T-dimensional toric variety, and so it is smooth.
So we have that the only singular point is x5. Say Uy = Cone(vy, v2), where vq, v, are minimal.

Claim 10.18. There is a toric automorphism of U,, such that v; is mapped to (0, 1) and v, is mapped to
(m,—k), 0 < k < m and gcd(m, k) = 1.

Proof. This is just linear algebra. We can send v +— (0, 1) and v; +— (m, x), for m & Zso, with a matrix in
GLy(Z). Then change basis by

We get

P HE S O,
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For an appropriate choice of ¢, we can make it so that 0 < k < m. Note that if kK = 0, then 0 =
Cone((0, 1), (m, 0)), so we can pick the minimal generator (1,0) of the second ray and o is smooth, since
Uy is A%, But we assumed minimality, so we can assume k > 0.

If gcd(m, k) > 1, then we can just divide by the common factor, which again contradicts minimality. O

Thus, we can just consider Uy, where o = Cone((0, 1), (m, —k)). Now insert a new ray generated by (1, 0).

diagram

Let ¢’ = Cone((0, 1), (1,0)) and gy = Cone((m, —k)). Then ¢’ is smooth, and oy is “less singular” than o.
Let &4 be this fan. Then X, is still possibly singular, but we only have to worry about 1. Now apply the

claim and make ¢y into the form above.
0 -1 T m\ [0 k
1 0 0 —k|] {1 m

")

with 0 < k1 < k and ged(k, k1) = 1. Let my = k.

1. Apply a rotation to get

2. apply a shear to get

With this, we get a new cone g1 = Cone((0, 1), (m1, —k1)). Now mq1 < m, and k1 < mq. If kj = 0, then we
are done, since U,, = A?, and X§1 is a toric resolution of singularities. Otherwise, we repeat the process. [

10.1  Quotient maps
Let X = Spec(S), let G be a finite group acting on S by ring homomorphisms. Then the ring of invariants is

St={seS|gs=sforall g€ G}
The inclusion map S < S gives a morphism
7 X = Spec(S) — Spec(SY)

But we claim that the orbit space X/G is just Spec(S%). Note that this only works for G finite. To generalise,
we need GIT.

Example 10.19
Let G = Cy = {{ = e”9} C C* act on C[x, y] with weights (1,1). So

(€~ Nlx.y) = F(¢x, Cy)
Now C[x, y]¢ = C[x9, x4y, . . ., xy?=" y9] So we can identify
Spec((C[xd, Paa Y, ..., Xyd71 , gd]) = A?/G
This has a cyclic quotient singularity. Note also that
C[Xd,xd_1g,-~~ ,ng_1,gd]=(C[u,uv ,,,,, uv?

d

where u = x?, v = y/x. The right hand side is the ring of invariants

Clu', yMey)©
where G acts with weights (1,1), te. (& f)(u'?, u9v) = £(Eu?, EuM19v). So

(C-H)u,v)="1(u,Cv)
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Note this does not work for the action of C* on A?, since
Clx,ylt =C
But A?/C* # Spec(C).
Let ¢ : N" — N be a morphism of lattices of finite index. That is, we have an exact sequence

0 N’ N NIN' 0

where N/N' is finite. Note by the structure theorem, N/N’ is a product of cyclic groups.

Theorem 10.20. Say N/ — N is a morphism of lattices with finite index, and say 0 C Ng = Nj is a
cone. Then we have a morphism
f: Ug,/\// - Ugy/\/

and
i) G=NIN'Z MM = Homz(M'JM, C¥),
(it) G acts on ClUy n] = Clo¥ N M'], and

ClUs ] = CUg ] = Cla¥ N M]

(iit) Usn = UgnrlG.

Proof. For simplicity, say we have

0 —— N=dZ — N=1Z Z|dZ 0

Dualising, we get
0 — M=Z —— M =172 Z|dZ 0

Say G = py = Z/dZ. Then this acts on M’ by multiplication. Taking Homg(-, C*), gives (as groups)
0 —— py —— Hom(M',C=Ty —— Ty — 0

Now we can see that NIN' = M'/M = Homgz(M'IM, C*). In particular, given [v] € N/N', the corresponding
homomorphism sends [m] € M'/M by

[m} N eZm’(v,m)

Now 4y is a subgroup of T}, which acts on Uy nr, and so it acts on the ring Cla¥ N M}, and Clg¥ N M'|¢ =
Clg¥ N M. O

Example 10.21
Consider
N =227 — N=17°
Say we have the cone Cone((0,1), (1, =1) in N'. In N, this will be the cone Cone(((0, 1), (2, —1))). Dual-
ising,

O%M%/\/I’:%Z@Z%w%O

In M, we have the dual cone Cone((1,0), (1,2)), and so Uy n = Spec(C[u, uv, uv?)). On the other hand, in
M’ we have
Uy n = Spec(Clu, uv]) = A?

and we have a corresponding toric morphism.
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More generally, ¢ : dZ ® Z — Z? and o = Cone((0,1), (1, —1)) gives a morphism A’ — A?/u,.
Singularities arising in this way are called cyclic quotient singularities. In particular, this is the Ag_1
singularity.

Definition 10.22

Suppose g = Cone(vy, . . ., ve), with vy, .., vv e Nandwv,..., v, being R-linearly independent. Then we
say o is a simplicial cone,

In particular, from the theorem,

g = AT A e

So U, has a cyclic quotient singularity.
In two dimensions, every cone is simplicial. But this is not true in higher dimensions, for example, we can
have a cone in R® which is generated by (at least) four rays.

11 Torus orbits and orbit-cone correspondence

Let x € Xyz. The orbit of x is
T-x={t-x|teT}CXs

Remark 11.1. T - x = a(T x {x}).

As usual, as a set, Xt is a disjoint union of torus orbits.

Example 11.2
Consider the action (t, s)(x, y) = (tx, sy) of (C*)? on A’. Orbits are:

e (C*)? C A? which is the orbit of (1,1), the distinguished point of the origin.
e C* x {0}, which is the orbit of (1,0). This is the distinguished point of 7.
e {0} x C*, which is the orbit of (0, 1), the distinguished point of 7,

e {(0,0)}, which is the distinguished point of g, the top dimensional cone.

We can see that a smaller cone corresponds to a larger orbit, and so on.

Theorem 11.3 (orbit-cone correspondence). There is a bijection
{cones in L} « {torus orbits in Xz}
given by sending o to Orb(g) = T - x4, such that dim(Orb(o)) = n —dim(o), where n = rank(N) = dim(Xg).

Moreover, _
OI’b(O’) >~ (C*)nfdtm(u)

Lemma 11.4. If 0 € Ng = R” is a strongly convex cone of dimension k, then Orb(0) = Ty = (C*)n=k,

where N, = spang(g) N N and N(g) = N/Ng.

Proof Consider 0 = @ x {0}, where @ C N, ® R is top dimensional. Then U, = Usn, X Upo}n)- Then
Xo = (xz, x10)) = (0, ..., 0,1,..., 1). Hence Orb(xs) = To)Xgo} = (C*)"F. O
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Corollary 11.5. x, is a torus fixed point if and only if o is a top dimensional cone.

First of all, note that for all ¢ € L, U, is fixed by T. Let x € U,, or equivalently, a ring homomorphism
C[Sy] — C, or a map of semigroups S, — C. For t € Ty = Hom(M, C*), we have a corresponding y; : M — C*
group homomorphism, sending m to x™(t).

Then t - x € U, corresponds to

Vex(m) = X" (t)x(m)
Lemma 11.6. (C*)"~4™ = Orb(g) = Homsemigroup(0+ N M, C*)

Proof Observe that o+ C ¢¥,and c:NM C a¥NM = S, is the largest lattice contained in Sy, and has rank
n — dim(Sy).
Recall x, corresponds to the morphism y, : Sy — C, with

(m) = 1 meotnM
Yo |0 otherwise

Now t - x,; corresponds to the morphism

X"ty meaotnM
o(m) =
Vealm) {O otherwise

This shows that Orb(o) is contained in Hom(a* N M, C*).
We will sketch the converse. For all morphisms of semigroups, y : 6t N M — C, pick t € Ty, such that y
sends all elements of - N'M to 1, and extend by zero on points m € S, \ a*. This will give y,. O

To prove theorem it remains to show that we have a bijection
{cones in L} « {torus orbits in X;}

Proof. The map sending a cone to its orbit is clear. For the reverse map, let O be an orbit. Then O = T - x
for some x € Xz. Now choose g, to be the smallest cone containing x. Since Uy, is closed under T-action,
O=T xC U, We claim that O = Orb(g). Note that it suffices to show that x € Orb(gy). O

Corollary 11.7.
Us = | J Orb(a)

X0

Definition 11.8

The orbit closure of Orb(g) in Xz is the Zariski closure

Lemma 11.9. The correspondence in theorem [TT.3]is order reversing. That is, for 7,0 € £,
() T < o ifand only if Orb(g) C V(1)
(i) V(0) = U<, Orb(1)
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Example 11.10
For A?, the orbits are:

* {(0.0)},
e {0} x C*,
o C* x {0},
o (C*)
and the orbit closures are
A
///
{0} x A’

\
{(0

Al x {0}

7

2
0)}

Example 11.11

Consider Blg(A?). Say 13 the new edge we add. Orb(t3) = C*, 0y and o lie above T3, and their orbits
are a point. Thus,
V(rs) = C* U {pt} U {pt} = P'

In particular, V(o) is a toric variety, and a toric subvariety of Xz. Let Ny = spang{c} N N. Then we have
the short exact sequence

0 N, N N(o) 0

If T is a cone which contains o as a face, let T be the image of T under the projection 7 : Ng — N(0) ® R.
The collection
Star(o) = {T| 0 < 1}

defines a fan in N(o) ® R = R"—4im(0),

Theorem 11.12. For any cone 0 € L,
V(o) = Xstar(o)

is a toric subvariety of X;.

Proof sketch. For o < 7, we claim that T is a strongly convex cone in N(o)r, which corresponds to the variety
Uy = Spec(C[T" N N(0)"])) = Spec(C[t" N N M)
and the closed embedding is given by

CltY NnM]— [t nat N M

s x"™ me ot
0 otherwise

We need to check that these local closed maps glue to a closed embedding Xsiar(e) = Xg, and that the iamge
of XStaF(U) is V(o). O
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Example 11.13

For P2, we have
V(12) = Xstar(m) = P' C P?

as V(z). Recall Xz = P?, with
Ug = Spec(Clx, y])
Us, = Spec(Clx ", x~"y)
Up, = Spec(Cly~", y~'x]
The homogeneous coordinates on P? are [z0 © 21 : 23], which corresponds to x = z1/zp, y = z2/7p. So

Uy, = {z: # 0} in P2 Now Uy = A% C IP?, by mapping (x, y) +— [1: x : y, and so on.
Now we focus on 7, = Rsg - e2. The short exact sequence is

0*>NT2:Z~6‘2*>NIZ'E1@Z'62*>N(T2)ZZ'€1 — 0

Now Star(t;) is a fan in Z - e ® R, given by

{m = {0}, @ = Cone(eq), 77 = Cone(—e1)}

Example 11.14 (example continued)

Thus, Xstar(r) = P', and we have a morphism N(12) = Z - e; — Ze @ Ze;, which gives the embedding
Xstar(r)) = Xz. So we can check that Xsi(r,) is embedded as

[(Wo : wi]— [wp : wy 2 0]

On the other hand,
V() =T xq

but x;, =[1:1:0], and by the orbit-cone correspondence
Orb(m) = (C*)? C P(s, t) > [s:t:0]
and so

V() =C* x Al CP?
(t,.2)—=[1:t:27]

Xr is stratified by orbit closures V(1) correspond to torus anarlanlﬂ subvarieties. Moreover, codim(V/(7)) =

dim(7).

12 Divisors

Assume that X is separated, Noetherian, normal in codimension 1. In particular, for any toric variety which
comes from a cone, X = Xy satisfies the above requirements.

The group of Weil divisors is

Div(X) = £ yARY

VCX codimension 1 subvariety

The principal divisors is

Divo(X) = {div(f) | f € T(K})}

e TVCV
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where

div(f) = > ordy(f) - V

VX

where ordy(f) is the order of vanishing of f on V, and K% is the sheaf of non-zero rational functions on X.
Recall Oy, v is a discrete valuation ring, and we have a corresponding discrete valuation v : [ (K*) — Z.

Example 12.1

For X = Spec(C[X]) = A', the origin is a codimension 1 subvariety, and Op1 = Cx]). This is a DVR,
and it induces a valuation C(t) — Z, which is the order of vanishing at 0.

The Weil class group is
Div(X)
CUX) = =A1(X
X) = Bany = A1)
Note there is a higher dimensional generalisation, producting a group A+(X) called the Chow group.
Fact: If X = Spec(R) where R is a UFD, then Cl(X) = 0.
Thus, CL{A") and CL((C*)") are zero.

If X = Xz, the group of T-invariant Weil divisors is

Divr(X) = @ 7.V = @ Z - V(p) = Z*"
)

VCXz codim. 1 subvar, T-VCV peL(1

Let f € ['(K.), then div(f) € Divy(Xg) if and only if f|7, € ['(O7,) has no zeroes or poles.
But this is the same as morphisms Ty — C*, and so this is the same as f = x™ for some m € M. That is,
we have a morphism M — Divg(X) N Divy(X), sending m to div(x™). Recall

Theorem 12.2 (Excision). Let U C X be open, Z = X\ U. Write Z = Z; U --- U Z U W, where Z; are
the codimension 1 irreducible components, and W consists of the higher codimension components. Then
we have an exact sequence

Zs — Cl(X) — CLU) —— 0

Apply this to a toric variety X = Xz and U = Tn. Then the codimension 1 irreducible components of
Xz \ Tn, which are the V(p) for p € £(1). We also know that Cl(Tn) = 0, and so we get a surjection

Divr(X) = ZEY — Cl(Xg)

Thus, we have a sequence

M ZE) ClXg) —— 0 (M)

Let us look at the morphism M — Divy(Xz) more closely.

Lemma 12.3.
ordv()(x™) = {vp, m)

where v, is the minimal generator of p.

Proof. We can work locally in U, = A" x (C*)"~", by considering V(p) N U,. Now consider the composite map

m

A X
C— U, —C
This sends x to x/, where d = (v,, m). Now

ordy, (x™) = ordo(x™ 0 A,,) = (v, m)
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Then

divix™) = > {vp,m)- V(p) € Divr(X)
peL(1)

If spang(X(1)) = Ng, or equivalently if Xz has no torus factor, then
div(x") =0 & (v,,m)=0

for all p € (7). In turn, this is true if and only if m = 0. In this case, the sequence (i) is exact on the left. So
we get

0 M ZE CUX) —— 0 (i)

12.1  Examples

Let X be a toric variety, T C X the dense torus. In this case, we have a supply of
e integral closed codimension 1 subschemes, from D,, for p € (1),
e for m € M, we have y" : T — C*.

and from the above, we have
- D,Z-p
imM—>@B,Z p)

LX)
where m— Y (v, m) p.

Example 12.4

Recall that we know CL(P") = Z, where 1 is sent to a hyperplane class. In this case, the rays in the fan
of P are generated by eq, ..., en, €n1 =—e1— -—e, € NZZ" By (ii), we have

n+1
0O—— M — PZ pp—— CP")— 0
i=1

[n this case,

mHZW,e&pi

By choosing the dual basis e} for M, the image of e} is p; — py+1. Thus, the cokernel can be identified
with Z - pp41 (or any Z - py).

A similar computation shows thwt CL(P" x P™") = Z2.

For nice schemes, we know that the class group is a finitely generated abelian group. Can it have torsion?
Yes, say if we take U = P"\ Xy, where Xy is a degree d irreducible hypersurface. In this case, Cl(U) = Z/dZ.
Is there a toric example?

Example 12.5
Let

C, = Spec Cxy.2)
(x* —yz)
62 is toric, and a possible fan is given by

Cone((2, —1), (0, 1))

Choose basis eq, e of N, vi = ey, v, = 2e1 — e,. The exact sequence (i) is as follows

00— Z eY@Z e 25 Z - vidZ v UG 0
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where

AleY) = 2vy
A(eg) =vi—
Thus, in the class group
[D1] — [D2] = [div(x*
2[Dy] = [div(x*©

)
)

v
1

Thus, CU(Cy) = Z[2Z.

Warning: Calculating the cokernel of an integer matrix requires calculating Smith normal form.
End of examinable material

13 *Line bundles®

Let Pic(X) be the group of line bundles on X, up to isomorphism, with group operation ®. Given a line bundle
L, let
LY = HomoX(E,(’)X)

denote the dual, which is the inverse of £, and Ox is the identity element. For toric varieties (or anything
which is integral over a field),
. ~ CaDiv(X)
Pic(X) = CaCl(X) = =——+—
eX) = CaClN) = B
which is the Cartier class group. If X is normal, then the group of Cartier divisors CaDiv(X) is a subgroup of
Div(X), where the image correspond to the Weil divisors which are locally principal. That is, divisors D such

that there exists an open cover U;, such that
D|y, = div(fy)
For X toric, Pic(X) = CaCl(X), we have the following

M —— CaDivy(X) — Pic(X) — 0

| l l

M —— Divy(X) LX) 0

How do we tell when D & Divy(X) is Cartier?

Remark 13.1. If X is smooth, then CaDiv(X) = Divy(X).

In general, to find Pic(X), we need to answer this question.

Lemma 13.2 (Fulton chapter 3, CLS chapter 4). Let U, be affine toric, with cone . Then
CaDivr(Uy) = {div(x™) | m € Sy}

Thus, D ~ 0 for all D € CaDivr(U,), and CaCl(U,) = Pic(U,) = 0.

Example 13.3
Say Xz = V(xy — zw) C A3 C P3. In this case,

Divr (X)) = P Z - pi
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For m € M, then
divix™) =Y _(m,v)D,,

Theorem 13.4. If X; is toric, then

_ {®:|x] = R | continuous and restricts to a linear function on each g € L'}

Pic(X;
Lelxe) M = globally linear function
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affine vartety, [T]
commutative group scheme, |Z|

toric boundary, 3]
toric variety, 3
torus, [2]

variety, [Z]
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