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Lecture 1

0.1 Plan
1. Basics of sheaves of topological spaces
Definitions of schemes and of morphisms

Properties of schemes (the algebraic geometry analogues of compactness)

>~ W N

Rapid introduction to the cohomology of sheaves

0.2 Resources
1. Course webpage - Google Dhruv
2. Books:

e Hartshorne - Algebraic Geometry, Chapter 2 and exChapter 3
e Vakil - Rising Sea, good online (free) alternative

e Eisenbud-Harris - Geometry of schemes
3. Four examples sheets on webpage

4. SAGES - Look on Dhruv's webpage

0.3 Why scheme theory?

Moduli theory — It is better to study families of varieties than one at a time. Or better, all varieties of a given
type at the same time.
Examples of moduli: The set of all lines in P2. A line in P? is

{aXo + bXi + cXo =0}
In particular, as lines are paramterised by the triple (a, b, ¢), we have a correspondence
P4 . = lines in P? & P?
The same logic applies for degree d hypersurface in P?, and we get
degree d hypersufaces in P" « PN
where N = (”;d) — 1. However, there is something wrong with this picture. Some polynomials are of the form
f=1ih

But in this case,
V(f) = V(h1)

and f1f, is (in general) not of degree d.
A solution Take Uy C PN, where

[fl€e Uy <= f has no repeated factors

But Uy is not compact.
Output of scheme theory for a fixed projective space P”, we obtain a space

subvarieties of P” < Var(P") C Hilb(P") «» subschemes of P”



where Hilb(P") is the Hilbert scheme of P", which is compact in the Euclidean topology. That is, the limit of
varieties need not be a variety, but limits of schemes are always schemes.
In scheme theory,
V(Xo + Xi + X5) and V((Xo + Xi + X2)?)

are not isomorphic as schemes.
Weil conjectures Fix f € Z[Xo, ..., Xy+1] homogeneous. We have

X = V(f) CPgH

We will assume that X is smooth. That is, X is a (complex) manifold. In particular, X is a compact topological
space, and so we have numbers by(X), .. ., b2,(X) called the Betti numbers, where

bi(X) = rank(H(X, Z))

In particular, we have the Euler characteristic y(X).
On the other hand, fix a prime number p, and let

Ny = number of solutions to f in Fyn = |X(Iﬁ‘pm)

Define the Weil ¢ function

X t) = exp(Z/\ljjtm)

m

Theorem 0.3.1 (Weil conjectures, Grothendieck). 1. {(X;t) is a rational function in t
2. Moreover,
Po(l’)P

. o 2
50 = Ay

(t) - Pan(t)
t) - Pana(t)
where deg(P;(t)) = b;(X).

Upshot: The proof is (fundamentally) via scheme theory. We need a space X which interpolates geometry
over C and geometry over finite fields.
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1 Beyond varieties

1.1 Summary of classical algebraic geometry

Let k = k be an algebraically closed field. Define the affine space

Al = k"
as a set.
An affine variety is a subset

V=V(S) C A]
for some S C k[x, ..., xp). Note that V(S) = V((S)), where (S) is the ideal generated by S. By the
Hilbert basis theorem, or equivalently, k[xq, ..., xp] s Noetherian, (S) is generated by finitely many elements.
Moreover,

V() =V ( W)

where [ is the radical of I, given by
VI={f|f" e Ifor some m € N}

Given varieties V C A}, W C A, a morphism ¢ : V. — W is a function V — W, such that if we write
o =(fH..., fm), each f; is a restriction of a polynomial in k[x, ..., Xp]. An isomorphism ¢ : V. — W is a
morphism, such that ¢y : W — V also a morphism, (o ¢ = idy, p o ¢ = idy.



The basic correspondence is

affine varieties over k

_ : > finitely generated k-algebras A without nilpotent elements
isomorphism

How? Given a variety V (representing an isomorphism class of such), then we can write V' = V(/). Moreover,
we can assume that / is a radical ideal. We map

where J is a radical ideal.
Note that we need to check that both maps are well-defined.

Notation 1.1.1. The algebra associated to V' is (classically) denoted k[V/], and called the coordinate ring of V.

Compatibility of morphisms

Note that we have a correspondence
{morphisms V' — W} < {k-algebra homomorphisms k[W] — k[V]}
Zariski topology
Suppose V' = V(/) C A} is an affine variety, with coordinate ring k[V/]. The Zariski topology has closed sets
VNv(s)

where S C k[x, ..., Xp).
If V= W as varieties, then the topological spaces with the Zariski topology are also homeomorphic.

Nullstellensatz

Fix a variety V, and let k[V] be its coordinate ring. Given a point p € V, we can produce a homomorphism

ev,  k[V] — k
evp(f) = 1(p)

Moreover, ev, is surjective, for example, by taking the constant functions. With this,
m, = ker(ev,) < k[V]
is a maximal ideal. So we get a map
{points p € V} — {maximal ideals in k[V]}

Hilbert's Nullstellensatz = the above map is a bijection.
Therefore, points of V' and maximal ideals in k[V] are “the same thing".

1.2 Limitations
What is an abstract variety?

That is, what is a topological space X, such that we have an open cover {U;}, where each U; is an affine
variety, which is compatible on overlaps? For example, we have projective space P".



Example 1.2.1 (non-algebraically closed fields)

Take the ideal
I={(x*+y*+1) <Rlx,y]

Observe V(/) = @ C R?, but / is prime, so radical. Hence the Nullstellensatz fails in this case.

On what topological space is R[x, y]/ (x* + y”> + 1) “naturally” the set of functions?

Or more generally, Z, Z|x] and so on.

Example 1.2.2 (why restrict to radical ideals, or nilpotent free algebras)
Let C =V(y —x?) C A?, and D = V(y) C A7. Then

CnD=V(xy) ={00)}

If we set Ds = V(y — 9), then C N D5 is two points, for all 0 # 0.

In this case, what happens is that C N Dy is one point, but it has multiplicity 2. Variety theory cannot tell

the two apart, which is why we need scheme theory. Lecture 3
ecture

1.3 Spectrum of a ring

Let A be a (commutative, unital) ring.

Definition 1.3.1 (Zariski spectrum)

The Zariski spectrum of A is
SpecA={p <A|pis a prime ideal}

Given a ring homomorphism ¢ : A — B, we have a induced map (of sets)
@' Spec(B) — SpecA
¢ (a)

Warning: This would fail if we considered maximal ideals instead. That is, the preimage of a maximal ideal
need not be maximal. For example, consider the inclusion map Z — Q. The maximal ideal (0) in @ has
preimage (0) in Z, which is not maximal.

Given f € A and p € Spec A, we have an induced

feAp

by taking the quotient. Informally, we can evaluate any f € A at points p € Spec(A), with the caviat that the
codomain of the evaluation map depends on p.

Example 1.3.2

Let A= Z, then
Spec(Z) = {p | p a prime number} U {0}

Choose an element, say 132 € Z. Given a prime p, we can look at 132 mod p € Z/p.



Takeaway:

132 € Z ~~rmmnnnmnnnny @ function

132 mod p -~~~y value of the function at p

Example 1.3.3

A = Rx], then
C

complex conjugation

SpecR[x] = U {0}

Exercise: Draw SpecZ[x| and Spec k[x] for any field k.

Example 1.3.4 (for sanity)

If A= C|x], then
SpecA = CU {0}

Given a € C, we have the maximal ideal (z — a).

1.4 Topology

Fix f € A, then define
V(f) = {p € Spec(A) | f =0 (mod p)} C Spec(A)

or equivalently, f +p =0 & Alp, or f € p. Similarly, for / < A an ideal,

V) = {p € Spec(A) [ J C p}

Proposition 1.4.1. The sets V(J) C SpecA ranging over all ideals / < A, form the closed sets of a
topology on Spec A. This topology is called the Zariski topology.

Proof. Easy facts that @ = V(1) and Spec A = V(0) are closed. Since

Z /a) = ﬂV(/a)

the intersections of closed sets is closed. Finally,

A\

V(h vh) =V(h) UV(h)

D is clear, conversely, 1h € h Nk C p, then by primality of p, Hh CTpor /L Cp.

Example 1.4.2

Consider SpecC|x, y]. A few observations:

e 0 € SpecClx, y] is dense in the Zariski topology. That is,

{{0)} = SpecClx, y]

since every prime ideal contains 0. This is true in Spec(A) for any integral domain A.




e Consider the prime ideal (y? — x*). Consider a maximal ideal
myp =(x—a,y—>b)

When is m,, € {(y2 — x3)}? This holds if and only if b?> = a>. See examples sheet 1.

Remark 1.4.3. Points are not closed in general. In fact, we have that the closure of the point p is V(p), which
is {p} if and only if p is maximal. That is, closed points correspond to maximal ideals.

1.5 Functions on opens

Let f € A Define the distinguished open corresponding to f to be
Ur = Spec(A)\ V(f)
Hartshorne uses the notation D(f), which seems to be a bit more common?
Example 1.5.1
If A= Clx] then by the fundamental theorem of algebra,
SpecA = CU {(0)}
Take f = x. We have a bijection

Spec(A) «> C U {(0)}
(x—a)«—aeC
0«0

Then V(x) = {p € SpecA | x € p} = {{x)}. So
Uy = Spec(A) \ {(0)}

As a picture, Spec(C|x]) is a line (corresponding to C) with a “generic point” {0}.
More generally, suppose we fix ay, .. ., a, € C, with

U = Spec(A)\ {{x — a)}iy

then U = Uy where f = []_;(x — a;).

Lemma 1.5.2. The distinquished opens Ur for all f € A form a basis for the Zariski topology on Spec A.

Proof Examples sheet 1. Given any open set U C Spec(A), write Z = Spec(A)\ U. Since Z is closed, we must
have that Z = V(J) for some ideal /. But then we have that

U:UM

A bit of commutative algebra: Given f € A, the localisation of A at f is



Lemma 1.5.3. The distinguished open U; C Spec(A) is naturally homeomorphic to Spec(Ay), via the ring
homomorphism

ji A=A

which induces
j~' Spec(Ar) — SpecA

Proof. Primes in Ay are in bijection with primes of A, which miss f, via j='. To see this, the preimage of a prime
ideal is prime, and so if ¢ < Ay is prime, then j~'(a) < A is prime. For the converse, given p <I A, define

pr = j(p)Ar = (j(p))
Claim 1.5.4. ps is a prime exactly when f & p.

Proof of claim. To see this, f is a unit in Ay, and so if f € p, then ps contains a unit, and so pr = 1.
But if £ & p, then

A~ [A
w5,
where f = f +p. So
(Alp)r < Frac(A/p)
and so it is an integral domain. O
Finally, we can check that this defines a bijection, but this is just basic properties of ideals. O

This is also done in Commutative Algebra, although some work is needed to specialise to this case.

Facts about distinguised opens
o UrN Uy = Upg. To see this, note that for any prime p, fg € p ifand only if f € p or g € p.
o Up = Ur for all n > 1. This follows by repeated application of the above.
e The rings Ar and Ap (for n > 1) are isomorphic. To see this,

A
A[ = m and A[h =

Aly]
(yfm—1)

The isomorphism is given by
y—x" and x— "y

which define inverse maps. Informally, inverting 7 and inverting " are the same, since we can write
f—n — (f*1)” and f71 _ fan(fn)fW_

e Containment: Uy C Uy, if and only if /" is a multiple of g for some n > 1. (Recall if f = gf’, then
certainly Uy C Uy)

Proof. The “if" direction is clear. Conversely, if Uy C Uy. That is,
V(f) 2 V(g)

The set V(f), by definition, is the set of all primes, containing f.

Claim 1.5.5. \/(f) € /{g).

To see this, the radical of an ideal / is the intersection of all primes containing /, which we will see in
Commutative Algebra. O
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Foreshadowing
Fix A, we've made an assignment

distinguised opens in Spec A — rings
U[ = Af

The association is functorial, that is, if Uy, C Uy, then we can assume f{' = f,f3, so Uy, = Uy = Upy, C Uy,

and so there is a homomorphism
Afz — A{1

which is the restriction map.
Can we extend this association to all open sets? See notes.

2 Sheaves

2.1 Presheaves

Let X be a topological space.

Definition 2.1.1 (presheaf)

A presheaf of abelian groups is an association

{Open set in X} <> Abelian Groups
Uw— F(U)

and for U C V opens, we have a homomorphism
resn CF(V) — F(U)
called the restriction map, such that

1. resp = id,

2. res)jres\! =res{Y for UC V C W.

Example 2.1.2

For any space X, take
F(U)y={f:U—R|f continuous}

with resy)(f) = f]u.

We can make an analogous definition for presheaves of rings, sets, R-modules, and so on.

Definition 2.1.3 (morphism of presheaves)
A morphism ¢ : F — G of presheaves on X s, for each U C X open, a homomorphism

e(U) : F(U) = G(U)

compatible with restrictions, that is, the diagram

Fv) —2 s gy
F(U) —5— G(U)




commutes, for all U C V.

In terms of category theory, the opens in X form a category, with morphisms given by inclusions. In this
case, a presheaf is a contravariant functor Opens(X) — Ab, and a morphism is a natural transformation.

A morphism of presheaves ¢ : F — G is injective (resp. surjective) if @(U) : F(U) — G(U) is injective (resp.
surjective) for all U C XEI

2.2  Sheaves

Definition 2.2.1 (sheaf)
A sheaf is a presheaf F on X, such that

S1. Supppose U C X open, {U;} an open cover of U, then for s € F(U), with
slu, = resﬂ, s=0
for all i, then s = 0. Intuitively, we can tell whether two sections are the same by looking locally.

S2. Suppose U C X is open, {U;} an open cover of U, given s; € F(U;), with

5[|UmU, = Sjluny;

then there exists s € F(U) with s|y, = s;. That is, we can glue “coherent” sections together.

Remark 2.2.2. These axioms imply that F (@) = 0.

Definition 2.2.3 (morphism of sheaves)

A morphisms of sheaves ¢ : F — G is just a morphism of the underlying presheaves.

Example 2.2.4

If X is a topological space, and
F(U) = {f: U — R continuous}

Then F is a sheaf. This is also true for smooth functions on a manifold, and in fact if M is a mantfold,
the sheaf C*°(M) determines the smooth structure on M.

Example 2.2.5 (non-example)
Let X = C with the usual Euclidean topology. Let

F(U) = {f : U — C holomorphic and bounded}

The issue here is that function being bounded is not a local property. That is, we can glue bounded
functions together and get an unbounded function.

Example 2.2.6 (non-example)

Fix an abelian group G, and set
FU)==a

"Note that the definition of injectivity is the same for sheaves and presheaves, but the definition of surjectivity will be different. Once
we mention the definition of injectivity/surjectivity of morphisms between sheaves, we will forget this definition.

10
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This is called the constant presheaf. If Uy, U, are disjoint, then
Fbhhul)=FU)eFl)=0Ga G+ G

(unless G = 0 that is).

Example 2.2.7 (constant sheaf)
Let G be an abelian group, with the discrete topology. Then define

F(U)={f:U— G continuous} = {f : U — G locally constant}

This is called the constant sheaf.

Example 2.2.8

If V is an irreducible variety, define
Oy(U) = {f € k(V) | f is reqular at all p € U}

Here, reqular at p means f = g/h, g, h € k[V] with h(p) # 0. Ox is called the structure sheaf of V.
This is a sheaf as being reqular is a local condition.

2.3 Basic constructions

Definition 2.3.1 (section)
Let F be a sheaf, a section s of F on U is an element s € F(U).

Definition 2.3.2 (stalks)
Fix p € X, and F a presheaf on X. The stalk of F at p is

{(U, s) | U open neighbourhood of p, s € F(U)}

~

Fp =
where (U, s) ~ (V, t) if there exists W C U N V an open neighbourhood of p, such that
S|W = t|W

Elements of F, are called germs.

Example 2.3.3
Consider the affine line A, then

_ 1y
ono= {20 ] g00) # 0} < ko

Equivalently, we can consider this as the localisation k[t]y.

Proposition 2.3.4. Suppose f : F — G is a morphism of sheaves on X, such that for all p € X, the
induced map
fp:Fp— Gy

i



is an isomorphism. Then f is an isomorphism.

Note that
(U, s)) = (U, fu(s))

which is well defined by definition of a morphism of sheaves. That is, if we have that (U, s) ~ (V/, t), then there
exists W C U NV an open neighbourhood of p, such that s|yy = t|w. But then fw(s|lw) = fu(s)|w, and so
fU(S)‘W = f\/(f)‘w, and (U, f(;(S)) ~ (\/, fy(f))

Proof We will show that
fu: F(U) = G(U)

is an isomorphism for all U. Once we know this, we will define 1 by
(") = £

fu is injective. Suppose s € F(U) is such that fy(s) = 0. By injectivity of f,, (U,s) = 0in F, forall p € U.
This means that for all p € U, there exists an open neighbourhood U, of p such that s[y, = 0. This defines a
cover of U on which s vanishes. Hence by S1, s = 0.

fu is surjective. Given t € G(U), for each p € U, we have (U,, s,) € Fp, with f,(U,,s,) = (U, t) € QPEI
By shrinking U, if necessary, we can assume fy, (s,) = t[y,. For points p,q € U,

fu,nu, (splu,nu, — Sqlu,nu,) = tunu, — tlu,nu, =0

Thus by injectivity of fy,ny,,
5p|UpﬂUq = 5q|UpﬂUq

Thus by S2, there exists s € F(U), with 5|U,, = sp. Now
fuls)u, = fulsly,) = flu,(sp) = tlu,
Thus, fy(s) =t by S1. O
Remark 2.3.5. There is an asymmetry in the proof here, we need to show injectivity before surjectivity. That is, we

needed to show uniqueness before existence. Looking at the proof, we used gluing to construct the section, and so
we needed to check compatibility, which is the uniqueness condition.

Exercises:

1. There is an injective map

FU) -1
peU

s = (U, s))peu

This is essentially the proof of injectivity above, where we can check that the section is zero at stalk
level.

2. Given morphisms @, ¢ : F — G, with ¢, = ¢, for all p € X, we have that ¢ = (. Let U C X
be open, s € F(U) a section. Then for all p € U, there exists a neighbourhood U, of p, on which
ou,(s|u,) = tu,(s|u,). Then by ST we are done.

Definition 2.3.6 (sheafification)

Suppose F is a presheaf on X, then a morphism sh : F — F*" where F*" is a sheaf, is a shedfiifcation if
for any morphism ¢ : F — G, where G is a sheaf, there exists a unique morphism f*" : F*" — G, making

2There is a slight abuse of notation here. Strictly speaking this should be ~, but we don't distinguish between a germ and a
representative.

12
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the diagram

F— e

sh

commute.

Remark 2.3.7. (i) We have defined sheafification by a universal property, and so as usual, it is unique up to
unigue isomorphism. Suppose (i, G), (', G') are sheafifications of F. Consider the diagram

By uniqueness, the vertical composition has to be id, and so gof = id. Similarly, we must have that fog = id,
and so f is an isomorphism.
(i) A morphism on presheaves F — G induces a morphism of sheaves F*" — G*". Basically, apply the universal
property to shog : F — G* to get
F—L s F

|
|
i
|
¢ I
|
|

2

sh
g sh g

Proposition 2.3.8. Sheafification exists.

Construction. Given a presheaf F on X, define

FUN) =3 U=|]|F|®
peU

where the condition (%) is that: f(p) € F, and for every p € U there exists an open neighbourhood V,, C U of
p, and s € F(V,) such that (V,,s) = f(q) € F, forall g € V,,.

It is clear that this is a sheaf, and we leave as an exercise to check that this satisfies the universal property.

Perhaps a better way to think about this is to consider f € [ ], Fp, and write f, for the p-th coordinate.
The condition becomes for every p € U, there exists an open neighbourhood V,, C U of p, and s € F(V},) such
that (V,,s) =1, € Fyforall g € V.

We will check that F" is a sheaf. First, we check that it is a presheaf. For U C V, the projection map

|_|fpﬂ|_|fﬂ

peV peU

defines the restriction map F*"(V) — F*"(U). The only non-trivial part follows by taking V; =V,nU
Next, we need to check the sheaf axioms. If we have an open cover of U by U, and s € F*"(U) such that
sly, = 0 for all i. But the restriction map is the projection, and so the result is clear. Similarly, gluing is clear.
Finally, we check the universal property. Let G be a sheaf, ¢ : F — G a morphism. Let U C X be open,
s € F*"(U) a section. For p € U, define

ty = @p(sp) € Gp

13



We need to show that the t, glue together to a section t € G(U). For each p € U, we have an open set V,,
and a section s, € F(V}), such that (V,, s) = s, for all g € V,,. We need to show that

/ /
S/)|\//’m\/f7 - Sf] ‘ VenVy

This will show the result as t, = <pw(5;)p. But we can check this statement locally.

The fact that ¢ factors is clear, and so all that remains is uniqueness. But working at stalk level, the above
is the only way to define ¢,. O

Corollary 2.3.9. The stalks of F and F*" coincide.

Proof. From the definition of sheafification. More formally, we have

F sh —— ]:m
pr
\
A
where pr denotes the projection map to the p-th coordinate, and the bottom map is an isomorphism. O

Exercise: Find a non-zero presheaf F with F*" = 0. One rather trivial example is to let X = &, with
F (@) = G for some non-zero abelian group G. Any sheaf on X must have G = 0.

2.4 Kernels, Cokernels, etc.

Let ¢ : F — G be a morphism of presheaves. Then we can define presheaves ker(¢), im(¢), coker(¢), where on
an open set U, we define

ker(@)(U) = ker(qy : F(U) — G(U))
coker(¢g)(U) = coker(¢y)
tm(¢)(U) = im(pu)

These are all presheaves.

Exercise: The presheaf kernel for a morphism ¢ : F — G between sheaves is a sheaf. We will verify the
sheaf axioms. Using the fact that F is a sheaf, ST is clear. Now suppose U C X open, U; an open cover, with
si € ker(¢)(U;), such that

siluny, = sjluny,
for all ¢, /. Using S2 for F, we obtain s € F(U) such that s|y, = s;. It suffices to show that s € ker(¢y). Let
t = @u(s). Then t|y, = @u(si) =0, and so t =0 by ST for G.
However, in general, coker(¢) is not a sheaf.

Example 2.4.1
Let X = C with the usual Euclidean topology, and let
Ox(U) = {f : U — C holomorphic}
with addition, and set
Oy (U) = {f : U — C holomorphic nowhere vanishing}
with multiplication. We have a morphism of sheaves exp : Ox — O, given by
exp(f)(2) = exp(f(2))

The kernel of exp is 271iZ, where Z is the constant sheaf. But the cokernel is not a sheaf. Let Uy = C\[0, o0)
and U, = C\ (—00,0]. Let U= U; U U, =C\0.

14



Let f(z) = z. Then f € O}(U), and is not in the image of exp : Ox(U) — Ox(U), since log(z) is not
defined on U. Thus f defines a non-zero section of coker(exp)(U). But if we restrict to U;, then f is in the
image of exp. With this, f|y, =1 & coker(exp)(U;). Hence coker(exp) does not satisfy S1.

Definition 2.4.2 (sheaf image, sheaf cokernel)

Let ¢ : F — G be a morphism of sheaves. We define the sheaf cokernel and the sheaf image of ¢ to be
coker(¢)*" and im(g)*" respectively.

We say that a morphism f : F — G is injective if ker(f) = 0, and surjective if im(f) = G.
Warning: f : F — G being surjective does not imply that the map fy : F(U) — G(U) is surjective for all L/El
Remark 2.4.3. A crucial fact is that there exists an exact sequence

exp

0 27iZ, Ox

0% 1
That is, 27iZ is the kernel of exp, and coker(exp) = 1.
Remark 2.4.4. ker(¢) and coker(¢) satisfies the category theoretic definitions (i.e. in abelian categories).

Suppose ¢ : F — G is a morphism, then ker(¢) is the object such that given ¢y : £ — F, with ¢ oy = 0, then
factors through ker(¢).

ker(g) \_f/s g
0

It is easy to check this by working locally, that is, in open sets. There is an analogous definition for the cokernel.
With this, we see that the sheaf of abelian groups is an abelian category.

Remark 2.4.5. 1. We can also define subsheaves, F C G if there exists inclusions F(U) C G(U) compatible with
restrictions. For example, ker(¢ : F — G) is a subsheaf of F.

2. If F C G is a sub-presheaf, then we can define the quotient presheaf G/F by
(GIF)(U) = G(U)IF(U)
We need to verify that this is a presheaf. If U C V open, define
resy(s + F(V)) = sy + F(U)

This is well defined, since any element of F(V/), restricted to U, will be in F(U). The quotient sheaf is the
sheafification of this.

Lecture 7

2.5 Moving between spaces

Given f: X — Y continuous, with sheaves F on X and G on Y.

Definition 2.5.1 (pushforward, direct image)
Define the presheaf pushforward f.JF by

3ie. a surjective morphism of sheaves need not be surjective as a morphism of presheaves..

15



| for an open U C V.

| Proposition 2.5.2. The presheaf pushforward of a sheaf is a sheaf.

Proof Trivial. The fact that it is a presheaf is clear by definition. The sheaf axioms follow from the fact that if
U; is an open cover of U, then f~1(U;) is an open cover of f~'(U). O

Definition 2.5.3 (inverse image)

The inverse image presheaf (f~'G)P"® is defined by
{(su. U) | (V) € U, sy € G(U)}

~

(F'GP(V) =

where ~ denotes sections which agree on a smaller open set containing (V).

X Y

The inverse image sheaf is defined by

f71g _ ((f71 g)pre)sh

Example 2.5.4 (was sheafification necessary?)
Let Y be any topological space, X = Y L Y. Let G = Z be the consatnt sheaf, and F = (f~'G)P"e.

Fix U C Y open, and V = f~1(U). By definition, F(U) = G(V) = Z assuming U is connected. But
V =UUU, and so
Fh(V) =G(U) x G(U) = Z*

16



Note in this case f is an open map, so the reason for requiring sheafification was not because f does
not have to be open.

Example 2.5.5

Let F be a sheaf on X, 7 : X — {*}. Then n.F is a sheaf on a point. But a sheaf on a point is just an
abelian group, in particular, specifically

Notation 2.5.6. For a sheaf F on X, write
F(X)=T(X,F) = HYX, F)

for the global sections, or the zeroth cohomology with coefficients in F.

Forpe X, i:{p} = X, G a sheaf on p, i.e. an abelian group A. Consider i.(G). The sheaf on X is

0 U
LGN = {A e

We call this the skyscraper at p with value A.

3  Schemes

tl;dr: Spec(A) with a sheaf Ospec(a), With Ospeca)(Ur) = Ar. Globalise to get a scheme.

Definition 3.0.1 (localisation)
Let A be a ring, S C A closed under multiplication. The localisation of A at S is

{la,s)|aeAse S}

~

STTA=

where (a,s) ~ (@, s') if and only if there exists s” € S such that

s"(as’'—d's) =0

For example, consider S = {1,f,f?,...}, or S = A\ p where p is a prime ideal.
Remark 3.0.2. Note that the natural map A — S~"A need not be injective.

What is going to happen? We will define a sheaf Ospeca) on Spec(A), such that

e The stalk at a prime p is the localisation (A\ p)~'A,
o if Ur is a distinguised open, then Ospeca)(Ur) = Ar.

3.1 Sheaf on a base
Fix a topological space X, and B a basis for the topology.

Definition 3.1.1 (sheaf on a base)

A sheaf I on the base B consists of assignments B; + F(B;), with restriction maps F(B)) — F(5;)
whenever B; C B;, satisfying the usual relations when B; C B5; C B and B; = B;. Moreover, we have
the additional axioms:

SB1. If B =, B, with B, B € B, f, g € F(B), with f|g = g|s, for all i, then f = g.

17



SB2. If B =, Bi, with B, B; € B, with f; € F(B;), such that for all B’ C BN B}, fi|s' = fj|p then there
exists f € F(B) with f|g = f..

Proposition 3.1.2. Let F be a sheaf on a base B of X. Then this uniquely determines a sheaf F, by
F(B;) = F(B;)., agreeing with restriction maps.

Proof. We will define the stalks of F first. Set
{(sg,B) | p € Be B,sg € F(B)}

~

Fp =

where (sg, B) ~ (sg, B) if there exists B” C BN B’ such that sg
We can then use the trick from sheafification, that is,

F(U) = A{(fy € Folpeu | ()}

where the condition (x) is such that: for every p € U, there exists a basic open B containing p, and s € F(B),
with sq = f; for all ¢ € B. This is clearly a sheaf. As before, the projection maps define the restriction maps,
making it into a presheaf. Checking the sheaf axioms is the same as sheafification.

By the sheaf axioms, the natural maps F(B) — F(B) are isomorphisms. O

B = SB/|B//,

Recall Spec(A) is a topological space, with distinguised open sets {U}sca. Moreover, Ur = U, if and
only if f" = ga and g™ = fb for some m,n € N,a,b € A Thus, if Uy = Uy, then Ay = Ag. Therefore, the
assignment

Uf — Af

is well-defined.

Proposition 3.1.3. The assignment Uy — A defines a sheaf of rings on the base {Us} of Spec(A).

An immediate consequence is that Spec(A) inherits a sheaf of rings, denoted Ospec(a), called the structure
sheaf.

Prelude. Suppose {Uy }iej covers Spec(A), then there exists a finite subcover. That is, Spec(A) is quasicompact.
This is on examples sheet 1, but also:
Since the Uy, cover, there is no prime ideal p < A containing all f;. Equivalently,

> (=)

But we can write 1 as a finite sum 1 =Y a;f;. But then if / C [ are the indices with a; # 0, then {Us }ie)
cover. O

Proof of proposition[3.1.3] We need to check SB1 and SB2. We will check these for the basis open B = Spec(A).
The general case is similar (replace A with Ay).
SB1: Suppose we have a cover

Spec(A) = | JU;
i=1

By the prelude, it suffices to consider the finite case. Given s € A such that s[y, = 0 for all i, then by the
definition of localisation, we have that s = 0 for some m large enough. But (1) = (f/")!_; for any m > 0, as
the Uy, cover, which then implies the U cover.

With this,
s=s-1 =S~Zr,-f[” = Zris[f[’” =0
i=1 i=1
SB2: Say
Spec(A) = U Uy,

il
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and choose elements in each Ay, which agree on Agy. That is, we have s; € Ay, with the images of s;, s; in
Arr, agreeing. We need to build s € A with these localisations.
First suppose [ is finite. On Ay, we have the element

We will write g; = ff‘, and note that Uy, = Uj,.
On overlaps, restrict to Ag[g]. Then we have that
(9i9,)""(aig; — a;g:) =0

Rewriting this using algebra and the fact that Ur = Uy for all k. By taking the largest, we can assume m = m;.

We write
m+1

bi=awg!  hi=g

Using this, the element we chose in Ay, becomes b;/h;. But now Uy, = Uj, cover Spec(A), and so we can write
1 = Z f[h[
i

Now we construct
r = E I"[b[

with r; as above. This restricts correctly to b;/h; on Uy, (i.e. in the localisation Ap).

When [ is infinite, choose a finite subcover, or equivalently, (f;, ..., fa) = A, and use the above to build
r € A Butgiven (f1, ..., fa, foa) = A the same construction gives a new element /. But ' = r by SBT1. O

Definition 3.1.4 (structure sheaf)

The structure sheaf on Spec(A) is the sheaf associated to the sheaf on the base sending

U,' — Af
The sheaf is denoted Ospec(a)-
Remark 3.1.5.
Ospecianp = Ap

Proof. To see this, we wll define an isomorphism ¢ : Ospeca)p — Ap. A general element of the stalk is of the
form (Uy, s), where f € A, with p € Uy, and s € Ar. Note that p € Uy is equivalent to f & p. In this case, we
have a natural map Ar — A,, which we will write as s+ s,

Define

@p - Ospeciyp = Ap
(Ur,s) > sy

The fact that this is independent of the choice of representative follows from properties of localisation. For an
element x = s/f, where f € A\ p, we have that x = @p(Ur, s), essentially by definition. Thus it remains to
check injectivity.

Say ¢p(Ur,s) = 0, with s = a/f". Then s, is given by a/f" € A,. If this is zero, then there exists t € A\ p
such that ta = 0. Now tf € A\ p, and so

as required. O

19



Definition 3.1.6 (ringed space)
A ringed space (X, Ox) is a topological space X, with a sheaf of rings Ox on X.

We note that any open subset of a ringed space is naturally a ringed space, with
Ou(V) = Ox(V)
forall V C U C X open.

Definition 3.1.7 (isomorphism of ringed spaces)

An isomorphism of ringed spaces (X,Ox) — (Y, Oy) is
e a homeomorphism 7 : X — Y,

e an isomorphism of sheaves on Y, Oy — m1,0x.

Remark 3.1.8. We could have also chosen 77 'Oy — Oy.

Definition 3.1.9 (affine scheme)
An affine scheme is a ringed space (X, Ox) which is isomorphic to (Spec(A), Ospeca))-

Definition 3.1.10 (scheme)

A scheme is a ringed space (X, Oy), that is locally isomorphic to an affine scheme. That is, for every
x € X, there exists x € U C X open, with (U, Oy) being an affine scheme.

Another way to say this is that we have an open cover of X by affine schemes, and this is the way which
we will often think about it.

3.2 Examples of schemes

Example 3.2.1
Spec(A) is a scheme.

Example 3.2.2 (Open subschemes)

Let X be a scheme, U C X an open subset. We write i : U < X for the inclusion map. Using this, we

can define
Oy = OX|U = [710)(

Proposition 3.2.3. The ringed space (U, Oy) is a scheme.

A simple case of this is to take X = Spec(A), and the distinguished open U = Uy. Then
(U, OU) = (SpeC(Af), OSPGC(A[))

Proof. Let p € U C X. Since X is a scheme, we can find V, such that V, is isomorphic to an affine scheme.
Take V, N U with structure sheaf via restriction. Note however V,, N U may not be affine.

Since V), is affine, say V, = Spec(B). The distinguished opens form a basis for the Zariski topology on
Spec(B). So we've reduced to the simple case as above.

20
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We define affine space
A} = Spec(k[x, ..., Xp))

Example 3.2.4
Take U = AZZ \ {det(x;) = 0}. That is, “U is GL(n, k)" roughly speaking. Eventually we will show
multiplication U x U — U is a morphism of schemes.

Example 3.2.5 (a non-affine scheme)
Let X = A7, U = X\ {(x, y)}. Roughly speaking, we have k*\ 0.

Claim 3.2.6. U is not affine.

Proof. Suppose it was. We can compute Oy(U). Write U, = A7 \ V(x), and define U, = A2\ V(y).
Observe U = U, U U,, and
U N Uy = AZ\ V(xy)

With this,

Ou(Uy) = kx,x7", y]
Ou(Uy) = Kix, g,y ]
Ou(Uy N U,) = Kx, x ", g,y "]

and the restriction maps Oy(Uy) — Oy(U,,) are the obvious ones. By the sheaf axioms,
Ou(U) = Kx, x~ ! yInkx, y,y ]
where we compute the intersection in l<[x,)(’1 Y, g’1]. This means that
OulU) = Kx, y]

Contradiction. One way to see this is that in U, there exists a maximal ideal in the global section ring
with empty vanishing locus, namely the maximal ideal (x, y). O

We will show the “by sheaf axioms” part of the above. There is a natural map from O(U) to the intersection,
given by restriction. Thus, all we need to show is that this is an isomorphism.

First of all, note that the restriction maps Oy(Uy) — Oy(U,,) and Oy(U,) — Oy(Uy,) are injective. hence
if s vanishes when restricted to U,,, then it vanishes on U, and U,. Thus, the map Oy(U) — Oy(Uyy) is
injective by S1. Surjectivity follows essentially immediately from S2, as compatibility is true by definition.

For general topological spaces and sheaves, the surjectivity part is always true, but injectivity does not have
to be true. One example would be the sheaf of continuous functions on R.

Example 3.2.7

More generally, let X be a scheme, f € ['(X,Ox) = Ox(X). Fix p € X, then we can consider the stalk
Ox p. This is of the form Ay, where A'is a ring and p < A is a prime ideal. In particular, A, has a unique
maximal ideal, namely pA,. We say that f vanishes at p if its image in Ay /pAy is zero. Equivalently, if f
is in pA,.

Here, we're using an isomorphism V), open to Spec(A). For f € ['(X, Ox), the set V(f) C X which is
the vanishing locus of f is well defined.

3.3 Interlude - gluing sheaves

Let X be a topological space, with a cover {U,}. Suppose we have sheaves F, on U,, and isomorphisms of
sheaves
Pap : Falu.nus = Feluanug
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Such that @4 = id, ¢ap = @g,., and the cocycle condition
Bpy © Bup = bay on Uy N Ug N1 U

Proposition 3.3.1. We can build a sheaf F on X. Given V C X open, define
F(V) ={(sa)a | 5« € FalUa N V) such that ¢ag(sa|vau,nue) = sglvavenus }

Moreover, F|y, = Fq on U.

F is a presheatf. Given (s,) € Fy, W C V open, we can take

(salw = (resii (sa))

We need to check that this lies in F(W). But this follows from the sheaf axioms.
F is a sheaf. The sheaf axioms are clear. This is basically just using the sheaf axtoms on the s,
Restriction. We need to build an isomorphism F|y, = F,. Define a morphism F, — F|y,, where for
V C U, s & F,(V) define the image to be

(Dyalslvau,)),
We need to check that this is in F|y, (V) = F(V). But this follows from the cocycle condition, as

Bap © Pyalslvau,nus) = Pva(slvau.nus)

It is easy to see that this is an isomorphism. O

3.4 More schemes
Let (X, Ox), (Y, Oy) be schemes, with opens U C X,V C Y and an isomorphism (U, Ox|y) = (V,Oy|y) as

ringed spaces. We can glue both topological spaces and schemes, that is,
Xuy

° U~V

By definition of the quotient topology, the images of X and Y in S form an open cover, with intersection
being the image of U (or V). We can then glue the structure sheafs of these open sets as before.
Note that in this case, there is no cocycle condition to check.

Example 3.4.1 (bug-eyed line, line with two origin)
Let k be a fieodl, and X = Spec(k[t]), Y = Spec(k[u]). Set

U = Spec(k[t, t')) = Spec(k[t];) V = Spec(k[ul,)
These are distinguised opens. We have natural isomorphism

U—V

t—u

of rings, which is formally, induced by the above map k[u], — k[v],, then apply the contravariant functor.
On the level of topological spaces, X = Y = A], U = A} \ {(t)}, which is A} with a point removed.

In this case,
XUy

looks like a line with two origins.
The open sets in the scheme are:

1. Suppose W C X C Sor WC Y CS, these are 'nice’ open sets.

22

Lecture 10



2. fW=5S\{p1. ..., pr}, where p; € UU V. The simplest case is when W = S.

What is Os(S)? We can use the sheaf axioms to show that Os(S) = k[t] as above. With this, we
see that S is not an affine scheme.

Example 3.4.2 (projective line)
Let X = Spec(k[t]), Y = Spec(k[s]), U = Spec(k[t, t~")) and V = Spec(k[s, s™']) as above. We now glue
along s t~', and we call the result P} for the resulting scheme (for now).

Proposition 3.4.3. Op (P') = k

Proof The only elements of k[t, t~"] which are polynomials in t and t~' are the constants. Note here we used
the same trick as before, which is that the global sections can be computed as the intersection in nice cases.

O

In particular, P! is not affine.

Example 3.4.4
We can similarly build S = A with a doubled origin. This has the property where there exists affine
open subschemes Uy, U, C S, such that Uy N U is not affine.

Proposition 3.4.5 (gluing schemes). Given schemes (Xj)ic;, open subschemes X;; C X;, with X; = X
isomorphisms f;; : X;; — Xj;, such that f;; = id, satisfying the cocycle conditions

—1
fiy =1
fik Xy, = Tiklxanxie © Tijlxnx

Then there exists a unique scheme X, with an open cover by X, glued along Xj; ~ Xj;.

This is on examples sheet 1. On the other hand, it's basically one big tautology, where everything is true

by definitions.

Example 3.4.6 (projective space)

Let A be any ring,

Xi = Spec (A[@X—n])

Xi Xi

and
5

Xy =X\ V(=
Xi

with isomorphisms

Xij = Xji

—1
Xk Xk Xi
MLV S
Xooo X (Xj )

The resulting scheme is called projective n-space P}

Exercise: (P}, Op;) = A This is essentially the same idea as for P'. That is, we can compute it as an

n

ﬂA[XO ,,,,, ]
X X

i=0 [ L

intersection
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in A, xE'] But by considering say the degree in x;, we can see that this is just A.

3.5 The Proj construction

Definition 3.5.1 (Z-grading)
A Z-grading on a ring A is a decomposition of

A=PA
i€Z

as abelian groups, such that multiplication respects the grading, that is:

AA; C Ay
Example 3.5.2
Let A= kxp, ..., xp), we write Ay for the set of degree d-homogeneous polynomials (and 0).
If I C kxo, ..., xn] is @ homogeneous ideal (i.e. generated by homogeneous elements, of possibly
different degrees). Then k[xo, . . ., xp)/l is also naturally graded.

Note by definition Ap is always a subring. Throughout, we will make the assumption that the degree 1
elements generate A as an Ag-algebra. That is,

A= AA]

as Ap algebras.

Moreover, we will assume A; = 0 for i < 0. Define
A= JACA
i>0
for the irrelevant ideal. Strictly speaking we want the ideal generated by the positive degree elements, since
in the case when A = Ay, we would want this to be the zero ideal, and not the empty set.

Definition 3.5.3 (homogeneous element, homogeneous ideal)

A homogeneous element is f € Ay for some d. An ideal / C A is called homogeneous if it is generated
by homogeneous elements.

Definition 3.5.4 (Proj(A))

The set Proj(A) is the set of all homogeneous primes in A, which do not contain A,.
If I < A s homogeneous, then we can define

V(l) = {p € Proj(A) [ / € p}

We can define the Zariski topology on Proj(A) to have closed sets V(/) where [ is homogeneous.

Let f € Ay and Ur = Proj(A) \ V(f). Then observe that {Us}rea, covers Proj(A), since by assumption,
elements of Ay C A generate (1) < A.
The ring A[1/f] = Ay is naturally Z-graded, by saying deg(f~") = — deg(f).

Example 3.5.5

Let A = k[xo, x1], f = xo, then in
AN = Kxo, x1, x5 !
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we have degree zero elements A € k, but also

d

A foralld>0
x§

Proposition 3.5.6. There is a natural bijection

({homog. primes in As} «<») {homog. primes in A which miss f} <> {primes in (Af)deg—0}

Proof|Construction. First, observe that homogeneous primes in A missing f are naturally in bijection with
homogeneous primes in Ay, where we use the fact that f is homogeneous. Suppose q C (Af)deg=0 IS @ prime.
Then let W(q) be the ideal generated by

U‘[GEAd

d>0

a
7 UI]’ CA
W(q) is a prime. Conversely, let p C A be a homogeneous prime missing f, take

(P(p) =p A“ /ﬂ N (A“ /ﬂ)degzo

Note that the first part is the contraction, and the second part is the extension of ideals with respect to
localisation (almost).

In particular, po W =id. For W o ¢ = id, we will prove p = W(¢p(p)) by showing both containments.

Suppose p € Ur C Proj(A), if a € p N Ay, then (we can assume without loss of generalltﬂ

a
Iz € ¢(p)

and so @ € W(e(p)). Conversely, if a € W(¢p(p)), then

a

7d € ¢(p)
for some d. So there exists b € p, such that

a

fe  fd

But then
(b —fea) = 0

By primality, f**K ¢ p, and so a € p. O

Remark 3.5.7. The bijection we constructed above is order preserving. That is, it defines a homeomorphism
U/ — Spec ((A/)deg:O)

That is, Proj(A) is covered by open sets, each homeomorphic to Spec((Af)deq—0) for some f. If f, g € Ay, then
Ur N Uy is naturally homeomorphic to

Spec ((A[1/f)aeg-olf1g]) = Spec((Af ", g~ Daeg—0)
Take the open cover { Uy}, withj structure sheaf O(spec(a/).,_o On €ach U, and we have isomorphisms on Ur N Uy

given by the above. The cocycle condition follows from the properties of localisation, and so Proj(A) is a scheme.

Definition 3.5.8 (projective space)
Let A= kixo, ..., xn] with the standard grading, then we denote

P} = Proj(A)

4We can write a as a sum of such elements.
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for the projective space.

We will see that this is the same as the gluing construction of projective space, but we don’t have a notion
of “same” yet.

4 Morphisms

We have seen some maps, which should be morphisms. For example, for U C X an open subscheme, U — X.
Orif f: A— B is a ring homomorphism, then we should have a morphism of schemes Spec(B) — Spec(A).

4.1  Morphisms of schemes and locally ringed spaces

Given a scheme (X, Ox), the stalks Oy, are local rings, that is there is a unique maximal ideal my ,. Given a
function f € Ox(U), p € U, we can ask: Does f vanish at p. That is, is f, € my,?

Definition 4.1.1 (morphism of ringed spaces)
A morphism f: (X, O0x) — (Y, Oy) is

1. a continuous map f: X — Y,

2. a morphism of sheaves of rings on Y, 1.0y > .0y

Intuitively, if s € Oy(U) is a function on U C Y, then f#(s) € £,Ox is the function so f.

Warning: It is possible to find (f, %) a morphism between schemes (X, Ox), (Y, Oy), with U C Y open,
g € U, h € Oy(U), such that h vanishes at g, and

fi(h) € Ox(I (L))

which does not vanish at p € X with f(p) = g.
Observe that: given a morphism f : X' — Y of ringed spaces, for p € X, we have an induced map

l[tf . Oy’f(p) — O)(yp

That is, given s € Oy (), we can represent it as (U, s) where U C Y open, f(p) € U and s € Oy(U). With
this, f#(s) € Ox(f~'(U)), and so the pair (f~1(U), f¥(s)) defines an element of Ox .

Definition 4.1.2 (locally ringed space)

Let (X, Ox) be a ringed space. It is locally ringed if for all p € X, Ox, is a local ring. A morphism of
locally ringed spaces

(f, %) 1 (X, Ox) = (Y, Oy)

is a morphism of ringed spaces, such that if m, denotes the maximal ideal in Ox , and my ) is the maximal
ideal of OY’f(p), then
Fi(my) € my

This is true for functions, since if s vanishes at g, then for any p with f(p) = g, we would like sof to vanish
at p. That is, f¥(s) vanishing.

Definition 4.1.3 (morphism of schemes)

A morphism of schemes X — Y is a morphism between the locally ringed spaces (X, Ox) — (Y, Oy).
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Theorem 4.1.4. There is a natural bijection

{morphisms of schemes Spec(B) — Spec(A)} < {ring homomorphisms A — B}

Recall that a section s € F(U) is a coherent collection of elements s(p) € F, for all p € U.

Proof. We'll show that every ring homomorphism induce a morphism of schemes, and every morphism between
schemes arises via this construction.
Given a ring homomorphism ¢ : A — B, we have an associated continuous map

@ = @ Spec(B) — Spec(A)

We will now build f# : Ospecia) = @«Ospec(B)
At stalk level, take the map

Ayip) = By
9 pla)
s (o)

induced by ¢. Note that if s & @~ '(p), then ¢(s) & p. This is automatically local, ie. it sends the maximal
ideal my1(,) <Ay to the maximal ideal m;, < By,
Given U C Spec(A), we need to define

@' - Ospecia)(U) = Ospeqay (@' (U)

where @~ '(U) means take the preimage of U under ¢~'. An element s € Ospea(U) is a collection of
assignments (p — s(p))pcv, where p € U, s, € A,. We define

#

¢ (s s(p))pey = (a7 @als@ (@) yep )

We can check that this glues.

Conversely, suppose (f, f¥) : Spec(B) — Spec(A) is a morphism of schemes. Using the fact that we have a
ring homomorphism

A= OSpec(A)(SpeC(A)) - OSpec(B)(SpeC(B)) =B

we get a ring homomorphism g : A — B. We need to check that § = f : Spec(B) — Spec(A), and the
construction from the first part gives the correct map on strcture sheaves.
The maps on stalks are compatible with restriction. That is, the diagram

[ (Ospeca), Spec(A)) ————— [(Ospec(s), Spec(B))

Ospec() f(p) Ospec(B).p

commutes. Equivalently, the diagram

A—2 B

Atlp) — By
commutes. Since the morphism is local, (%)~ (pB,) = f(p)Ap. By commutativity of the diagram, g~' = f, and
the structure sheaf maps agree at stalk level by construction. O

4.2 Housekeeping
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Definition 4.2.1 (open immersion, closed immersion)

Let X, Y be schemes. A morphism of schemes f : X — Y is an open immersion if f induces an isomorphism
of X onto an open subscheme of Y, (U, Oy|y) where U C Y is open.

A morphism g : X — Y is a closed immersion if the map on topological space is a homeomorphism
onto a closed subset of Y, and g* : Oy — g.Ox is surjective.

Intuitively, if we think about X C Y as a closed subset, then the surjectivity condition says that every
function on X is given by the restriction of a function on Y. Equivalently, every function on X extends to a

function on a neighbourhood of X.

Example 4.2.2
Consider the ring homomorphism

Taking spectra, we have a closed immersion.

Definition 4.2.3 (closed subscheme)

Let Y be a scheme. Then a closed subscheme of Y is an equivalence class of closed immersions X — Y,
where (X — Y) ~ (X’ — Y) are equivalent if there is an isomorphism making the triangle

X —= X

N/

commute.

Example 4.2.4 (typical example of closed immersion)

If Ais aring, I < Ais an ideal, then the natural map
Spec(All) — Spec(A)

is a closed immersion.

To see this, note that the image of the natural map is V(/) € Spec(A), which is a closed subset, and by the

correspondence theorem, it is a homeomorphism onto its image.

For surjectivity, we note that it suffices to check at stalk level, since a sequence of sheaves is exact if and
only if it is exact at stalk level. Let f : Spec(A) — Spec(A/l) be the map, p € Spec(A). Let (U, s) € (£.Ospeciam)p-
That is, p € U C Spec(A), s € £.Ospecian(U) = Ospecian(f~"(U)). By shrinking U, we may assume U = U,,

for some a € A, is a distinguished open.

In this case, I~'(U,) = U, essentially by definition, and so s € (A/l),1s. Thus, this reduces to the fact

that the natural map
Ag = (All)a1

is surjective, which is a fact in commutative algebra.

4.3 Fibre products
A fibre product will simultaneuously capture/generalise

e product of schemes,

28

Lecture 13



e if Xi, X5 C Y are closed subschemes, then X; N X5 is also a closed subscheme,

e given a morphism f : X — Y, and a subscheme Z C Y, the preimage f6—1(Z) is a subscheme of X. One
special case would be the preimage of a point.

Definition 4.3.1 (fibre product)
Consider a diagram

Y ——— S

The fibre product is a scheme X xs Y filling in the diagram

Xxsy — P 4 x

Y ——— S
such that for any other scheme Z, with commuting diagram

Z — X

Y —— S

there exists a unique morphisms of schemes Z — X xs Y, making

V4

O\

X xs Y P X
Y ——mM8M ' S
commute.

As usual, if X x5 Y exists, then it is unique up to unique isomorphism.

Remark 4.3.2. We can similarly define the fibre product for sets. If we have

X
f)(l
y — ¥ s

Then
X xsY={(xy) €XxY]|rx=r(y}

In particular, if S is a single point, then X xs Y is X x Y.
The fibre product also makes sense for topological spaces, with the same definition as above, and with the
subspace topology.



Say ry : X — Sis a map of sets, Y = {*}, with ry(x) = s. Then X xy S is just ry'(s).
Finally, if rx, ry are inclusion of subsets, then the fibre product is the intersection.

Theorem 4.3.3. Fibre product of schemes exist.

For full details, see Hartshorne Chapter 2 Theorem 3.3.

Proof Step 1: Let X, Y, S be affine schemes. Say X = Spec(A), Y = Spec(B), S = Spec(R). Then the fibre
product X xs Y exists, and it is isomorphic to

Spec(A®r B)
That is, we will check that the universal property is satisfied. That is, given any scheme Z with morphisms

/ — X

Y ——— S

there exists a unique morphism Z — Spec(A ®g B). If Z is affine, then it is clear, using the corresponding
morphisms of rings, and the universal property of tensor products.

Fact (Examples sheet 2): A scheme theoretic map Z — Spec(A®rB) is the same data as AQrB — (£, O7).
In fact, if X is a scheme, then a morphism X — Spec(A) is the same as a ring homomorphism A — B = Ox(X).
To see this, one direction is clear by taking global sections. Now given a ring homomorphism f : A — B, for
each open affine U = Spec(C) C X, we get a ring homomorphism A — C, which is the same as a morphism
U — Spec(A). It suffices to show that these glue together to give a morphism X — Spec(A). But this is clear,
since UNV is covered by distinguised opens in both U and V/, and then it follows by properties of localisation.

Step 2: Now let X, Y, S be any schemes. If X x5 Y exists, U C X is an open subscheme, then U xs Y
also exists. To see this, take the inverse image of U under the projection X xy S — X, with the open subscheme
structure.

If X is covered by opens X, if X; xs Y exists for all i, then X xs Y exists. This is because the schemes
will glue together. Note that in this case there are no cocycle conditions.

Step 3: Let X be any scheme, S, Y are affine, then by steps 1 and 2, X xs Y exists.

Step 4: Let X, Y be any scheme, S is affine. This is because we can exchange X and Y in the above.

Step 5: Let X, Y, S be any schemes. Say S is covered by affines S;. Let X;, Y; be the preimages of S; in
X and Y respectively. Since the S; are affine, X; x5, i exists. By the universal property, X; xs, Y; = X; x5 V.
Finally, we glue these together to get X xs Y. O

Example 4.3.4
P& = P7 X speciz) Spec(C), where Spec(C) — Spec(Z) is induced by Z — C, and P; — Spec(Z) is induced
locally by the inclusion Z — Zixi/xo, - . ., XnlX0)-

For this, recall from commutative algebra that

7X@z C = C[x]

Example 4.3.5

Let C = Spec ((S[:(yz]>)v L = Spec (%) We have natural maps C — A% and L — AZ. In fact, the

morphisms are closed immersions. By some algebra:

C g1 5y )

X
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In this case, we have one 'point’ at the intersection, but it keeps track of the multiplicity.

For the definitions which are omitted from lectures, see Examples Sheet 2 or Hartshorne.

Definition 4.3.6 (base scheme, scheme over)

In scheme theory, we often fix a scheme S, and we refer to it as the base scheme. We then work over a
fixed base, and consider schemes X with a fixed morphism X — S, called schemes over S. These form a
category Sch/S, with morphisms being commuting triples

A typical example would be S = Spec(k), or S = Spec(Z). The product of X, Y in Sch/S is the fibre product
X Xs Y.

4.4 Separated morphisms

For motivation, recall that a topological space X is Hausdorff if and only if the diagonal Ax C X x X is closed.

Definition 4.4.1 (diagonal)

Let X — S be a morphism of schemes. Then the diagonal is the morphism
Ax/S X - X Xs X

induced by the following diagram

If X, S are clear, we will just write A.

Example 4.4.2
If U,V C X are open subschemes, where S = Spec(k), k a field, then

A UxsV)=UnV
For some abstract nonsense, the diagrams
Axe B — A AxcB— Ax B

|

B—mm c—2% sCxC

Lecture 14



are “the same”.

Definition 4.4.3 (separated)
A morphism X — S is separated if Ay;s : X — X x5 X is a closed immersion.

That is, the algebraic geometer’s version of Hausdorff.

Example 4.4.4
Say X = Spec(C[t]) and S = Spec(C), X — S induced by C — C][t], then

X x5 X = Spec(C[t] ®c Clu]) = Spec(C[t, u])
The diagonal map A is induced by taking Spec of

Clt]®c C[t] — C[t]
f®@g—fg

To see that A is closed, the map above is clearly surjectivg] More generally,

A} — Spec(k)

is separated.

“and a surjective ring homomorphism is “the same” as a quotient.

Proposition 4.4.5. Let X — S be a morphism of schemes. Then there exists a factorisation of Axs, with

i open imm.
X closed imm. U p X xe X
\_/ S
Axys

That is, it is a locally closed immersion.

Proof. Let g : X — S be the morphism of schemes. Say S is covered by open affines {V;}, and suppose X is

covered by affine opens {U;;}, where for fixed i,

971(\/1) = U Uy
;

We have morphisms U;; — V; induced by
Uj ——— g '(Vi)) ———

|

Now observe Uj; xy, U;; is an affine open in X x5 X, and their union over i, j contains the image of Ay/s, and

[ SN

_

AUy xv Uy) = Uy € X

Take
U= UU,‘/' X, U(’j

)
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The second map is clearly an open immersion. Now observe that to check a morphism 7 — T’ is a closed
immersion, it suffices to check this locally on the codomain. That is, for Uj;; affine, the diagonal gives a map
Uiy — Uy xv, Uy, which is clearlﬂa closed immersion. O

Proposition 4.4.6. If X — S is a morphism of affine schemes, then Ax;s is a closed immersion.

Proof. For X = Spec(A), S = Spec(B), X — S = Spec(B — A), then the map
AQpA— A

is surjective. O

Example 4.4.7
Recall the bug-eyed line from example B:41] That is,
S Al UA]

where we glued along U = A} \ {0}, using

Ku, u™"] — K[t t7]

u—t

We claim that this is not separated over S = Spec(k). We can compute X x s X using a gluing construction
of the fibre product, giving a plane with doubled axes and 4 origins. But the diagonal only contains two
out of the four origins, and this is not a closed subset.

Example 4.4.8 (to check/wait for)

Open and closed immersions are always separated. In the closed immersion case, the key observation is

that
D S B
F5AT 041

and so the diagonal map is just the identity.

An easy consequence of proposition [£4.0] is that if X — S is a morphism of schemes, if im(Ax/s) is closed
as a topological subspace, then X — S is separated.
To see this, a locally closed immersion where the image is closed is a closed immersion.

Proposition 4.4.9. Let k be a field, X — Spec(k) is morphism of schemes, and U, V' C X be affine opens.
If X — Spec(k) is separated, then U N V is also affine.

Proposition 4.4.10. Composition of separated morphisms is separated.

Example 4.4.11 (base change)
Composition of separated morphisms is separated. Suppose X — S is separated, S’ — S arbitrary, then

5See example the idea is the same once we unfold the definitions.
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XxsS — 5 X

S —— S

This will be on examples sheet 3.

Intuitively, “a morphism is separated if each fibre is Hausdorff".

the map X xs S’ — S’ coming from the fibre product is also separated.

Proposition 4.4.12. Let A be a ring, then the morphism P% — Spec(R) is separated.

Proof. We would like to show that in the following diagram

A

n n n n
_ _—
HDR ]P)R XR PR ]PR

P, — 5 Spec(R)

the map A is closed. By abuse of notation, we write A xg B for A Xspeqr) B. It suffices to check this on an
open cover of P} xg P%. Let A= Rlx, ..., Xp] with the usual grading, and let U; = Spec((A[1/xi])deg—0). From

our discussion of Proj, the U;'s cover P%. Now

UixRUj—Spec(R[X(_) ,,,,, 7@

Observe the restriction of A to A~ (U; x Uj) is precisely
U[DU/-—>U[><RU/-

given on rings by

)

R[Xo ,,,,, XHX]HR[XO ,,,,, Yo Yo Un
Xi Xi Xj Xi Xi yj yj
by sending yx to xi. This is clearly a surjection, and the U; xz U; cover, and so the map is closed. O

Let k = k be an algebraically closed field, X — Spec(k) be a scheme over Spec(k). We say X is of finite
type if there exists an open cover {U,} of affines covering X, with each Ox(U,) being a finitely generated

k-algebra.

We say X' is reduced if for all opens U C X, Ox(U) has no non-zero nilpotents (i.e. it is a reduced ring).

Definition 4.4.13 (variety)

Example 4.4.14
Part Il AG.

4.5 Properness
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Definition 4.5.1 (finite type)

Let f : X — S be a morphism of schemes, then f is of finite type if there exists an affine open cover of
S by {V,}, where V, = Spec(A,), and corresponding covers {U,g} of f=(V,) by open affines, with each
Uqap = Spec(Byg), such that B,g is a finitely generated A,-algebra, and for each @, we can cover f~'(V,)
by finitely many Ugg.

Definition 4.5.2 (universally closed)

Suppose f: X — S is a closed map (topologically). It is universally closed if for any S" — S, the induced
map X x5S — S’ s also closed.

Definition 4.5.3 (proper)
We say that f is proper if it is separated, finite type and universally closed.

Example 4.5.4 (check/wait)

Closed immersions are proper.

Example 4.5.5 (non-example)

The obvious map A} — Spec(k) is not proper. It is clearly separated and finite type, and so it suffices to
show that it is not univerally closed. The map A} — Spec(k) is closed. Now consider the base extension

A2 — s A}

A] ———— Spec(k)

Intuitively, the map A7 — A] is the projection map. But this is not necessarily a closed map. For
“example’, consider xy = 1. The projection onto the x-axis is A} \ {0}.
More precisely, let Z = V(xy — 1), then the projection of Z is not Zariski closed.

Observe if X — S is proper, then any base extension X xs S" — S’ is also proper.
Lecture 16

Notation 4.5.6. If the morphism is X — Spec(k), often we say “X is proper”, or "X is separated".

Example 4.5.7
Line with two origins is neither separated nor universally closed.

Proposition 4.5.8. Let R be any ring, then the map P% — Spec(R) is proper.

Observe that a morphism X — S being universally closed is stable under base extension. Since we already
saw P} — Spec(R) is separated, and finite type is clear. Hence all we need to check is the case R = Z, since

k =Pz Xspecz) Spec(R)
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Proof. We must show that for any Y — Spec(Z), the base extension P} xspezy ¥ — Y is closed. But Y
is covered by affine schemes of the form Spec(R), and closedness is local on the target, it suffices to show
P}, — Spec(R) is closed. Let Z C P}, be Zariski closed. That is, Z = V(g1,...) of homogeneous polynomials
gi. If m: Pl — Spec(R) is the map, then we would like to show that 7(Z) is a closed set in Spec(R).

That is, we need equations for (Z). Equvialently, we need to characterise those primes p < R such that
7~ (p) N Z is non-empty.

Let K(p) = Frac(R/p), and then we have a morphism Spec(K(p)) — Spec(R). We would like to know for
which p is Z, = Z Xspec(r) Spec(K(p)) non-empty.

What is Z,?7 We take the equations g1, g2, ..., which are homogeneous polynomials with coefficients in R.
Reducing mod p, we get G7, Gz, . . ., which has coefficients in K(p).

So Z, is non-empty if and only if g1,G2, ... cut out more than origin in A”KJ(“;>. Thus,

Zy is non-empty <= /(G1,G2,...) 2 (X0, ..., Xn)

where P, = Spec(R[xo, . . ., Xp))-
Equivalently, for all positive integers d,

Write A= Rlxp, . .., xp| with the usual grading. Non-containment is equivalent to the map
@Adfdeg(gl) — Ag
i

given by
(fi)i Z figi
being non-surjective modp (equivalently in K(p)), for all d. The condition is given by vanishing of maximal

minors of the matrix associated to the above map, which is infinitely many polynomials in the g;. O

From now on, all schemes will be assumed to be Noetherian. That is, it has a finite cover by open
subschemes of the form Spec(R), where R is a Noetherian ring.

4.6 Valuative criteria (for separatedness and properness)

Recall a discete valuation ring is a local Pl[ﬁ

Example 4.6.1
C[t] is a DVR, and so is

A
Onio = {g(t) ‘ 9(0) %0}

Moreover, so are Z, (localisation) and Z, (p-adic integers).

Let A be a discrete valuation ring, then Spec(A) consists of two points, 0 < A and the maximal ideal m < A.
The topology on Spec(A) has:

e {0} is dense,
e m is closed.

Any generator st of m is called a uniformiser or a uniformising parameter.

In C[t], (t) is a maximal ideal, and the units are power series with non-zero constant coefficient. Intuitively,
CJt] is the line, C[[t] is the “germ of the curve at 0"

Any element a € A can be written as urr¥, where u € A is a unit, k is unique. The integer k is called the

valuation of a. This gives a map
val: A\0 - N

bAs we are assuming the ring is Noetherian.

36

Lecture 17



K = Frac(A) is a valued field and val extends to a map
val : K* - Z

with val(a/b) = val(a) — val(b).
If we take A = k[t], then K = k(t), and the valuation of

thg + dp4q ¢+ + -

with ap # 0 is €.

In this case, we have an open immersion Spec(K) — Spec(A). As an analogy, we can think of Spec(K) as
the punctured unit disc, and Spec(A) as the unit disc. Intuitively, if we map Spec(K) to a “compact” space, we
can extend it to Spec(A) by "filling in the origin”

Fianlly, recall (sequential) compactness and Hausdorff can be stated in terms of sequences. Spec(K) will
be out version of sequences.

Theorem 4.6.2 (valuative criterion). If f : X — Y is a morphism of schemes, then f is separated if and
only if for any discrete valuating ring A, with fraction field K, given the following diagram

Spec(K) ——— X
P

Spec(A) ——— Y

with the solid arrows, there exists at most one choice of g. Similarly, f is universally closed if and only
if there exists at least one choice of g.

Proof. Omitted, therefore non-examinable. O

Corollary 4.6.3. (i) P} — Spec(R) is proper,
(it) Al — Spec(R) is not proper, but it is separated,

(iit) closed immersions are proper, and so if we have f : Z — P}, is closed, then the induced map
Z — Spec(R) is proper,

(iv) composition of proper (resp. separated) morphisms is proper (resp. separated),

(v) if f: X — Y is proper, Y — Y arbitrary, then the map X xy Y’ — Y’ is also proper.

Proof. For (i) and (iv), see Dhruv's notes. For (v) see Hartshorne. Otherwise omitted. However we will verify
some of the statements in some examples.
A] — Spec(k) is not proper (i.e. not universally closed). Say A] = Spec(k[x]), A = k[t], K = k().

Spec(K) ——— A]

Spec(A) ———— Spec(k)
Let ¢ : Spec(K) — A} be induced by the map on rings,

kx| — k(1)
1

X = —
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This doesn't factor through k[t], and so it does not extend.
Exercise: Use valuative criteria to show that if Spec(A) — Spec(k) is proper, then Spec(A) is finite.
Observe if A} is replaced by P}, then there is always an an affine chart in P}, such that the map above
looks like x +— t. O

5 Modules over Oy

5.1 Motivation

Example 5.1.1 (please forget all scheme theory)

Consider the variety

On this, we have a structure sheaf O¢ps, and if U C CP" is Zariski open, then

Pi)
Q(x)

For any integer d, we can consider the sheaf of abelian groups Ocp»(d), given by

Ocpn(U) = { ‘ P, Q homogenous of the same degree, P/Q regular on U]»

Ocpn (d)(U) = {gg; ‘ P, O homogenous with deg(P) — deg(Q) = d, P/Q reqular on U}

In fact, Ocpn(d)(U) is an Ocpnr(U) module in the natural way.

Example 5.1.2 (please remember all of scheme theory)

Let A be a ring, M an A-module. Define a sheaf Fus on Spec(A) of abelian groups, if Ur C Spec(A) is a
distinguished open, then we can set
Fu(U) = My

which is the localisation. On general opens, use sheaf on a base construction.

Another way to think about this as the Algebraic Geometry analogue of vector bundles.

5.2 Definitions
Fix a ringed space (X, Ox).

Definition 5.2.1 (sheaf of Ox-modules)

A sheaf of Ox-modules is a sheaf F of groups, along with a map Ox(U) — F(U) making F(U) into an
Ox(U)-module. Moreover, we require this to be compatible with restrictions, i.e.

(r-m)ly=rlv-mly

Similarly, we can define a sheaf of Ox-algebras. A morphism between sheaves of O x-modules is defined in

the usual way, that is, a morphism between sheaves of abelian groups compatible with the O x-module structure. Lecture 18
ecture

Example 5.2.2 (sheaf associated to a module)
If X = Spec(A), M an A-module, then we have a sheaf M*" on X, such that
M (Ur) = My

and we extend it to all opens.
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This is essentially the same as the construction of the structure sheaf from a sheaf on a base. Also note
Hartshorne uses M for this sheaf.
We have basic operations:

e give a morphism f : F — G of (sheaves of) Ox-modules, we have ker(f), coker(f), im(f),
e we can take direct sums, direct products, tensor product, Homs,

which extend in the “natural way". Note coker, im and tensor product and Homs requires sheafification.
The sheaf tensor product F ®¢, G has

(F ®o, 9)(U) = F(U) ®o ) G(U)

and we can then sheafify this.
If f: X — Y is a morphism of ringed spaces (or schemes), and given an Ox-module F, the pushforward
f.F is a sheaf of abelian groups, but we have a map f* : Oy — £.Ox. This gives f,F and Oy-module structure.
Given U C Y open, a € Oy(U), m € f,F(U) = F(f1(U)), we define

am = f*(a)m

where we note that f#(a) € Ox(f~'(U)). Conversely, if G is a sheaf of Oy-modules, then we define the pullback
sheaf

f'G=f"'G®r0, Ox

where the f~'Oy-module structure on Oy is defined via the adjoint to f#. See examples sheet 1 Q14. That
is, if X, Y are spaces, f : X — Y a continuous map, F a sheaf on X, G a sheaf on Y, then we have a natural
bijection

Homx(f'G, F) < Homy(G, f.F)
Using this, @ homomorphism 10y — f*G is the same as a homomorphism Oy — f.f*G, which we defined
above.

5.3 Ox-modules on schemes and quasi-coherence

Definition 5.3.1 ((quasi-)coherent sheaf)

A quasi-coherent sheaf F (on a scheme X) of Ox-modules is a sheaf of Ox-modules F, such that there
exists a cover of X by affines U}, such that F|, is the sheaf associated to a module over the ring Ox(U}).
If the module over the Ox(U;) can be taken to be finitely generated, we say that F is coherenf]

“Recall we assumed our schemes are Noetherian.

Example 5.3.2

On any scheme, Ox is quasi-coherent (in fact coherent). More generally, O%" is coherent. On the other
hand, OY' is quasi-coherent but not coherent if / is infinite.

Example 5.3.3

If i : X — Y is a closed module, then i.Ox is a quasi-coherent Oy-module. Say U = Spec(A) C Y
is affine, then X N U — U gives an ideal | < A, which is the kernel of the map on structure sheafs
Oy (U) -» Ox(X N U). On U, i.Ox|y is the sheaf associated to the A-module A//.

Proposition 5.3.4. An Ox-module F is quasi-coherent if and only if for any open affine U = Spec(A) C X,
Flu is the sheaf associated to a module over A.
Similarly, F is coherent if and only if each F|y is finitely generated as an A-module.
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Lemma 5.3.5. Let X = Spec(A) be a scheme, f € A F a quasi-coherent Ox-module. Let s € (X, F).
Then

(i) if s restricts to zero on Uy, then f"s = 0 for some n.

(it) if t € F(Uy), then for some n, "t is the restriction of a global section of F.

Proof. There exists some cover of X by affine opens V' = Spec(B), such that
f\/ _ Msh

for a B-module M. But we can cover V by distinguished affines of the form U, for some g € A. In this case,

‘7:|U9 = (M ®s AQ)Sh

since F|y is already quasi-coherent. But recall that Spec(A) is quasi-compact, i.e. every open cover has a
finite subcover, and so finitely many g;, Uy, and M; will suffice to cover X by open such that

Fly, = M?"
Result then follows from formal properties of localisation. See Hartshorne for details. O

Proof of proposition[p34) Let F be a quasicoherent sheaf on X. Given U C X open, F|y is also quasi-
coherent. Hence we can reduce to the case when X = Spec(A). Take M = F(X), and M*" the associated sheaf
We claim that M*" = F.

Let @ : M*" — F be the map given by restricting global sections (e.g. via stalks). Moreover, a is an
isomorphism at stalk level. But this is just the lemma. O

Facts (proofs omitted and so non-examinable):

e images, kernels and cokernels of maps of quasi-coherent (resp. coherent) sheaves remain quasi-coherent
(resp. coherent).

e if f : X — S is a morphism of schemes, F on S is quasi-coherent (resp. coherent). Then f*F is
quasi-coherent (resp. coherent).

e if f: X — S is a morphism of schemes, G a quasi-coherent sheaf on X, then f.G is quasi-coherent
on S. In general, if G is coherent, then f.F need not be coherent. For example, take the natural map
A} — Spec(k), then £.Oy; is a quasi-coherent sheaf on Spec(k), Le. a k-vector space. In particular, it is
k{x], which is not a finite dimensional k-vector space.

Observe if we took P' — Spec(k) instead, then f,Opi is just the sheaf associated to k.
More generally, if G is a coherent sheaf on X, f : X — S is proper, then f.F is cohereent. We will prove

this for closed immersions on examples sheet 3.

Source of examples: Let A be an N-graded ring (with the usual assumptions), we built Proj(A) which is a
scheme. This was covered by Spec(A[1/f]) for f € Ay.

Definition 5.3.6
Let M be a graded A-module, that s,

M = @/\//d
deZ

where My is an abelian group. M is an A-module, and AiM; C My;. Consider the sheaf determined by
the association

That is, the degree zero part of localisation of M at f. This gives a quasi-coherent sheaf on Proj(A), by
the same arguments as in the construction of Proj(A).
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Notation 5.3.7. Let X be a scheme, F a quasi-coherent Ox-module. We say
o Fisfreeif F = (’);e/ for some indexing set /. Note these are coherent if and only if the indexing set / is finite.

e F is called a (algebraic) vector bundle if there exists an open cover {U;}, such that F|, is free. This is also
known as locally free.

o A line bundle or an invertible sheaf is a vector bundle which is locally isomorphic to Ox.

5.4 Coherent sheaves on projective space

Definition 5.4.1

Let A be a graded ring, M a graded A-module. Let d be an integer, and define the twisting M(d) for the
module such that
M(d)x = Mitq

Let X = Proj(A), then the sheaf Ox(d) is the sheaf associated to the graded module A(d) for d € Z.
We will call Ox(1) the twisting sheaf.

Remark 5.4.2. Ox(d) = Ox(1)®?. This follows from the fact that tensor product on graded modules acts additively on
the grading. In particular, if A is a graded ring, M, N graded A-modules, then M ® N is a graded module, with

M N) = P MeN,
i+j=k

Moreover, by definition,
Msh ® Nsh _ (M ® N)sh

and so it suffices to show that A(d) = A(1)®?. We show this by induction on d. The case d = 1 is clear. Now

(A ® Ald)) = D Al ® Ald); = €D At ® Ajig

i+j=k i+j=k

But the right hand side is precisely Agqx+1.

Let X = Proj(k[x1, ..., xp]) = PJ. Then global sections of Ops(d) are naturally identified with homogeneous
degree d polynomials in the x;. In particular, if d < O, then there are no non-zero global sections of Opn(d).

Definition 5.4.3 (globally generated)

An Ox-module F is called globally generated or generated by global sections if it is a quotient of O
for some r. That is, if there exists a surjective map O — F.
Equivalently, there exists sq, ..., s, € F(X), such that the s; generate the stalks F, over Ox for all

p.

Let i : X — [P} be a closed immersion. Ox(1) be the restriction of Opn(1) to X. That is, Ox(1) = *Op-(1).

Theorem 5.4.4 (Serre). Let F be a coherent sheaf on X. Then there exists dy € Z, such that for all
d > dp, the sheaf
F(d) = F ®o, Ox(d)

is globally generated.

In particular, every F as above is a quotient of a vector bundle.

Proof. By formal properties, it is equivalent to show the statement for i.F. That is, i.F(d) is globally generated
on IP%. More precisely, i.F is a coherent sheaf on P}, and i.F(d) = i.(F(d)). Moreover, the global sections of
both are the same.

Strategy: First we will cover by affines U; = Spec(R[xo/xi, . . .., xplxi)). Then 0. F|y, is a sheaf associated
to a module M;. Choose generators {s;} for M;. Finally, we will clear denominators by multiplying by x? for
some large d, and extend them to generators of global sections of F(d).
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Write P} = Proj(Rxo, - . ., xp)), and cover P% by U;, where

Now F|y. = /\/Ifh, where M; is a finitely generated R-module.
Choose generators {s;;} for M;.

Claim 5.4.5. The sections {xIs;;}; of F(d)(U;) = (F ® O(d))(U;) are restrictions of global sections ;; €
[(P", F(d)) for all sufficiently large d.

Proof. Left as an exercise. Say s;; € M; = F;(U;), and let x; € O(1). We claim that x’s;; € (F ® O(d))|y, is
the restriction of a global section.

In the case when X = Py, we can cover U; = P'\ {0} and U, = P?\ {oo}. Restrict s1; to Uy N Us. By
lemma B35 this is a restriction after multiplying by a high power of x;. O

On U, si; gobally generate MM, but we have a morphism of sheaves
X! F - Fl(d)
S SQ® x[d = X[-ds

On each U, this restricts to an isomorphism for F|y, — F(d)|u, since x; is invertible on U;. Since the s;;
generate F|y, the xids,-j generate F(d)|y,. With this, the t; globally generate. O

Corollary 5.4.6. With the notation as above, F is a quotient of O(—d)®N for some sufficiently large N,
deZ.

Proof. In the theorem, we have O?N — F(d). Now tensor with O(—d). O

6 Divisors

In rings, we have two classes of special ideals. Principal (prime) ideals and height 1 prime ideals. Recall if
p € Spec(R), the height of p, ht(p) is the largest n such that there exists a chain of inclusions

POCP G Ch=p
In particular, if R is an integral domain, p € Spec(R) has height 1 if and only if there is no non-zero prime

strictly contained in p.

Example 6.0.1
In Clx, y], then (0) has height 0, (x) has height 1, (xy) has height 2.

Remark 6.0.2. In a UFD, height 1 prime and principal prime ideals are the same.

We will now globalise both notions.
e height 1 primes correspond to Weil divisors.

e principal ideals correspond to Cartier divisors.

Definition 6.0.3 (generic point)

If X is an integral scheme, U = Spec(A) is an open affine in X, then the ideal 0 € Spec(A) is called the
generic point of X. This is true for any U open affine. We denote this as n or nx.
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This is well defined since any two affine opens intersect, by irreducibility (integral schemes are irreducible).
In this case, Ox ,, = Frac(A) is a field, and this is independent of the choice of A. We denote this as k(X),
the function field of X.

6.1 Topological facts

Definition 6.1.1 (dimension, codimension)

For a topological space X, the dimension of X is the length of the longest chain of nonempty closed
irreducible subsets
LHChG G

in X.
Let Z C X be closed and irreducible. The codimension of Z in X is the longest chain

Z=2C4 ¢ - SZ

Lemma 6.1.2. If X is a Noetherian topological space, then every closed Z C X has a decomposition into
finitely many irreducible closed subsets.

Proof. Essentially the same as the proof in Part Il AG which says that a variety is a union of finitely many
irreducible components. Moreover, the decomposition is unique. O

Definition 6.1.3 (reqular in codimension 1)

Let X be a Noetherian integral separated scheme, then X is regular in codimension 1 if for all ¥ C X
closed irreducible codimension 1, let ny denote the generic point of Y, then Oy, is a discrete valuation
ring (Le. a local PID).

6.2 Welil divisors

Assume X is a (Noetherian) integral separated and reqular in codimension 1 scheme.

Definition 6.2.1 (prime divisor, Weil divisor)

A prime divisor on X is an integral closed subscheme of codimension 1. A Weil divisor is an element of
the free abelian group Div(X) generated by the prime divisors.

We will write D € Div(X) as

D=> nylY]

where Y; are prime. A Weil divisor D is effective if all ny, > 0.

Proposition 6.2.2. Let f € O% | = k(X)*. For every Y C X a prime divisor, the ring Ox,, is a D\/Iﬂ
and we can calculate the valuation vy (f) of f in the DVR. We define the divisor

div(f) = > vy(NY]

YCX prime Weil divisor

Then div(f) is a Weil divisor.

%as X is regular in codimension 1
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First, if X is integral, choose U C X, U = Spec(A), then Ox , = Frac(A). Since n is contained in every
open affine, Ox , allows arbitraty denominators.

Proof. We just need to check that the sum is finite. Let f € k(X)*, and choose A such that U = Spec(A)
is an affine open (so k(X) = Frac(A)), and f € A We can assume this by localising at the denominators.
Geometrically, f is regular on U. For this, note that the poles of f are the zeroes of 1/f, which is a closed
subset.

In this case, X'\ U is closed of codimension at least 1, and so we have only finitely many prime divisors of
X, which are contained in X\ U. On U, f is reqular, te. vy(f) > 0. But vy(f) > 0 ifand only if Y C V(f) C U.
By the same argument, only finitely many Y are contained in V(f). O

Definition 6.2.3 (principal divisor)

A Weil divisor of the form div(f) is called principal. In Div(X), the set of principal divisors form a subgroup
Prin(f).

Definition 6.2.4 ((Weil divisor) class group)
The (Weil divisor) class group of X is

Proposition 6.2.5. Some basic facts

(i) IfAis a Noetherian domain, then Ais a UFD if and only if A is integrally closed, and Cl(Spec(A)) = 0.
Moreover, there exists A such that Spec(A) has non-trivial class group.

In particular, CL{A}) = 0.
(i) CLPY) =12,
(it) if Z C X is closed, with U = X'\ Z, then there exists a surjective map

Cl(X) — CL(V)
[Y]—[Y NnU

where on the right hand side, we set [@] = 0.
(iv) if Z has codimension at least two, then the map Cl(X) — Cl(U) is an isomorphism.

(v) if Z C X is integral, closed, codimension 1, then there exists an exact sequence

Z —— CUX) L) 0

where the map from Z to Cl(X) sends 1 to [Z].

We call (iii), (iv), (v) excision.

Proof of (ii). Let D C P" be integral closed codimension 1. Then D = V(f) where f is homogeneous, of degree
d. Define deg(D) = d.

Now extend linearly to get a homomorphism deg : Div(P}) — Z. We claim that this is an isomorphism
CUD) — Z. First, if f = g/h is a rational function on [P}, L.e. a ratio of homogeneous polynomials of the same
degree, then

deg(div(f)) =0

For surjectivity, take H = V(Xp), where Xp. For injectivity, say

D=3 nylv]
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If > ny deg(Y;) = 0, write Y; = V(g;), where g; is homoegrnous. Set
F=["1g"

Then f is a homoegenous rational function of degree zero. O

Proof of excision. For (iii), k(X) and k(U) are naturally isomorphic, and so principal divisors are sent to principal
divisors, and the map is well defined. For surjectivity, for D C U a prime Weil divisor, its closure D in X is a
prime Weil divisor on X, with DN U = D.

For (iv), Z does not even enter into the definitions. Equivalently, there isn't even a prime divisor contained
in Z.

For (v), the kernel of the restriction CL(X) — CL(U), is just divisors in X contained in Z. O

6.3 Cartier divisors

We would like to study things locally looking like a principal ideals. Recall a height 1 prime in a UFD is
principal.

Definition 6.3.1 (Cartier divisor)
A Cartier divisor is a global section of the sheaf K% /Oy

Let X be a scheme, take the presheaf
U = Spec(A) — S7'A

where S is the set of all non-zero divlsorsEl Sheafify this, and call the result KCx. This is a sheaf of rings, and
take KCy C Kx for the subsheaf of invertible elements. This is a sheaf of abelian groups. Similarly, O% is the
subsheaf of Oy, consisting of invertible elements.

Practically, every section of K} /O% can be described by data

{(Ui. )}
where the U is a cover of X, f; is a section of K} (U;), such that on U; N U}, we have that

fi
LeoyUnU)
fj

This is how we should think about Cartier divisors, which is something which locally looks like the divisor
of a rational function. With this in mind, the condition above becomes that on overlaps, the choice does not
matter as their ratio is a unit, which has divisor zero.

If X is integral, then ICx is a constant sheaf with Ox ,, = Frac(A), where Spec(A) C X is open.
We have a surjective sheaf homomorphism IC* — IC*/O*, but a global section of K*/O* need not be the
image of a global section of KC*.

Definition 6.3.2 (principal Cartier divisors, Cartier class group)

The tmage of (X, K%) in ['(X, K% /O%) is called the set of principal Cartier divisors. The quotient

(X, K*/0¥)
im(C(X, K*) — (X, K*]0*))

is called the Cartier class group of X.

"non-(zero divisors).
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Proposition 6.3.3. Let X be an integral, Noetherian, separated, regular in codimension 1 scheme. Given
a Cartier divisor D & I'(X, K*/O*), we get a Weil divisor by the rule: If Y C X is prime Weil, it has a
generic point ny. Now represent D by {U,, f;}, set

ny = vy(f;)
for some U; containing ny. We then have a divisor

ny[Y}

Y CX codimension 1 integral

Proof. If ny is contained in U; and U, then the valuations of f; and f; differ by vy(fi/f;), but fi/f; is a unit, so
it has valuation 0. Thus, this also tells us that it is independent of the choice of representative. O

Proposition 6.3.4. If X is Noetherian, integral, separated, and all local rings Ox , are UFDsﬂ then the
association
{Cartier divisors} — {Weil divisors}

constructed above is a bijection, and respects principal divisors. That is, it defines an isomorphism of class
groups.

“This is called locally factorial. Note this implies that X is reqular at codimension 1

Sketch proof. All height 1 primes in a UFD are principal. For x € X, Ox is a UFD, and so given a Weil
divisor D, we can restrict it to Spec(Ox ) — X. That is, we take a fibre product. On Spec(Ox ), D is given by
V(fy) as Ox x is a UFD, and prime Weil corresponds to height one primes, which are principal. Now f, extends
to a neighbourhood Uy of x. Now glue these f, to form a Cartier divisor. O

Definition 6.3.5

Given a Cartier divisor D on X, with representatives {U;, i}, let L(D) C Kx be the sub Ox-module
generated on U; by £,

Note that this is well defined, as on overlaps f;/f; is a unit.
Keep in mind if A is an integral domain, X = Spec(A), D = {(X, f)} where f € A, then A C Frac(A) is an
A-module, generated by 1/f.

Proposition 6.3.6. The sheaf L(D) is a line bundle, Le. it is locally free of rank 1]

“locally (free of rank 1)

Proof. On U;, we have an isomorphism

O

Important exercise: If X = P}, D to be the Weil divisor given by V(xq). Say D is the correspoding Cartier
divisor. Now show that

Op:(1) = L(D)

Proof. We have an open cover of P} by U, ..., U, the standard opens. We claim that the representatives for
D are (U, f; = xo/x;). On overlaps,

fl Xj *
2 =T eopunu)

j Xi
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and so this is a well defined Cartier divisor. Hence it suffices to show that it corresponds to the hyperplane
H = V(xp).
Now on

U; = Spec(A') where A" =k [XO ..... X”]

we can compute the stalks, which are just given by localisation. In particular, if i is the generic point of some
Y C P} prime Weil divisor, then

() 0 xo/x;iisaunitin Oy, = Aj]
vylli) = ) o .
[ 1 xo/xi is nota unitin Ox , = A;

In particular, this is zero if n & H, since xg/x; is non-vanishing. Now vy(f;) = 1 only if Y is contained in H,
and so by irreducibility, Y = H.

With this in mind, the sheaf L(D) is then generated on U; by 1/f; = x;/xo, i.e. f;A". On the other hand,
Opn (1) is generated on U; by x;, Le. we get x;A". The isomorphism is then given by multiplication by xp. [

Remark 6.3.7. A line bundle L on X has a inverse under tensor product, namely
L™ = Homo, (L, Oy)

Moreover, tensor product of line bundles are line bundles. If all Weil divisors are Cartier, then L(D+E) = L(D)Q L(E).

Proof. For the inverse part, it suffices to note that
[7'® L =Hom(L,Ox)® L = Hom(L, ) = O

For the last equality, it suffices to note that L is a locally free rank T Ox-module. O

Definition 6.3.8 (Picard group)

The Picard group on X, denoted by Pic(X), is the group of line bundles on X up to isomorphism, with
group operation being tensor product.

Proposition 6.3.9. Under mild assumptions, for example X — Spec(k) being projective, or X is integral,
then the map

Cartier divisors on X — Pic(X)
D L(D)

is surjective, and the kernel is exactly the principal Cartier divisors.

Proof Omitted. See Abelian Varieties for more details. O

7 Sheaf cohomology - a survival guide

We have seen that if X = A7\ {(0,0)}, then Ox(X) = k[x, y, and so it cannot be affine.
As an overview, given X a topological space, F a sheaf of abelian groups on X, we will build groups
H'(X, F) for i € N, known as the sheaf cohomology of F, such that

1. HYX, F) =T(X, F),
2. (functoriality) if f . ¥ — X is continuous, then we have an induced map

2 HY(X, F) — HY(Y, ' F)
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3. Given a short exact sequence of sheaves on X,

0 F F F" 0

We get a long exact sequence
0 —— HOYX, F) —— HYX, F) —— HYX, F") —— HI(X,F) —— -
Lecture 23

We will omit the definition, see Hartshorne Chapter 3. For our purposes, two key aspects of the definition:

1. if X is an affine scheme, F is a quasi-coherent sheaf, then

HI(X,F) =0 for i >0

2. if X is a Noetherian separated scheme, then H{(X, F) can be computed from the sections of F on an
open affine cover {U;} and from the data of the restrictions to the intersections.

The second part is called Cech cohomology.
See Dhruv's notes for §7.1, 7.2.

7.3 Cech cohomology

Let X be a topological space, F a sheaf on X. Fix an open cover U = {U;};e/, indexed by a well-ordered set
I In this case, Cech cohomology is attached to the triple (X, F,U).
We will write U = U, N --NU, The group of Cech p-cochains is

io++ip

U F) =[] FlUys)

o< <lip
We have the differential
d: CPU,F)— CPU, F)

where
k+1

k
O Y Gt TR IV

k=0

Easy exercise to see that d> = 0. This makes (CP(4, F), d) into a cochain complex.

Definition 7.3.1 (Cech cohomology)
The Cech cohomology of (X, F,U) is the cohomology of the cochain complex CP(U, F). We will write

H* U, F) = H*(C*(U, F))

Example 7.3.2
Let X = S'. Let F be the constant sheaf Z. Let U = {U, V'}, where U, V are the upper and lower halves

of S™.
In this case, the cochain groups are
CU.Z) = Z(V) ® Z(V) = Z°
C'U.2) =ZUnV)=12°

and the boundary map is
d(a,b) = (b—a,b—a)
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Hence

H*(L{Z)— Z *x=01
=10 otherwise

Observe that this is the same as the singular cohomology groups of ST On the other hand, for a poorly chosen
U, then H* will not behave well. That is, H* depends on U in a crucial way.
Exercise: Take X =P}, U=P'\ 0,V =P'\ co. Then U, V cover. Show that

Z *x=0
0 otherwise

H* U, Ox) = {

Proposition 7.3.3. Let X be a Noetherian separated scheme, U = {U;} be an affine cover, and so all
Ui, are all affine. Let F be a quasi-coherent sheaf of F, then

HPU, F) = HP(X, F)

Proposition 7.3.4. Let X = P, and
F = P Opi(d)
d

Then we have an isomorphism of graded k-vector spaces

e H'(X, F) =

X0+ Xn

o HP(X, F) =0 for all other p.

/<[)<O_1 ..... X7 ]

In particular, H(B", O(d)) has dimension ("%9), and H"(P",O(d)) has dimension (~?~') (when these
things make sense, zero otherwise).

Lecture 24

Proof The claim for HO(X, F) follows from prior description, as

HOX, F) = F = DT (P", 0(d)
d

For H”, choose the standard cover U by affine opens U; = P" \ V(x;). Observe
F(U[OH.[p) = k[XO ,,,,, )(,7])%...)(l

This k-module is spanned over k by monomials

Xgo . <x,f”
where ki, ..., /<,vp € Z, the rest are in Z>p. The vector spaces in the associated Cech complex is:
n
é\n71 = @ k[X() ,,,,, Xn}xovv-?,---x,,
i=1
CM = KXo, Xnhgoo,

Since U contains only n + 1 elements, ¢+ vanishes. So we can conclude that
H"(P", F) = H"(U, F)
cn
span, {xgo coxk | ke Z}

= .

spany {Xo “- ~X,/7<”

k; > 0 for some i]»
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Finally, for the intermediate cohomology groups, we will use the LES associated to a SES of sheaves. Moreover,
we will induct on the dimension n > 2.

First, we have that P~ is isomorphic to the closed subscheme V(xg) C P”. Say i : P"~! — P” is the
inclusion map. There is an associated “ideal sheaf sequence”

0 _— OPM(*’I) _— O]}Dn —_—> [*O]}DH—W _— O

Recall we have the identification Opi(—1) = L(—H), where H = V(xg). See examples sheet 4 for more details.
By formal properties of cohomology which we have asserted, we get an associated long exact sequence. Assume
the result holds for n — 1. We get three associated exact sequences:

0 —— HOP", F) —%s HOP", F) —— HOP", Fpor)

HI(P", F) — H'(P", F) ———— 0

0 —— HP(P", F) —— HP(P", F) —— 0 (b)

and
0 anﬂ (Pn, ]:) X0 anﬁ (]Pm’ ]:) anﬁ (Pn’ ]:IP’””)

HY (P", F) —— H(P", F) ————— 0

Using (a) and (c), we can observe that the sequence (b) is also exact for p = 1 and p = n — 1, by writing
out the Cech cohomology. Multiplication by xg makes HP(P", F) into a k[xo]-module. Next, we calculate the
localisation of this module at xy. That is, we would like to find

HP (P", F),,

Since localisation ie exact,
HP(P", F)y, = HP (U, Flu,) = 0

since Up is affine. Thus, for any a € HP(P", F), xfa = 0 for some k > 0. But multiplication by x is an
isomorphism on cohomology. So in fact @ = 0, and so HP(P", F) = 0. O

Given the exact sequence
0 — Opo(—1) —— Opp —— i,.Op1 —— 0
we can tensor with Opn(d), and we get an exact sequence
0 —— Opi(d = 1) —— Opo(d) —— i.O0pr1(d) —— O

Since Opn(d) is locally free, we can just check the above of stalks, there is no need to check that it is flat.
On Sheet 4, there are two more computations of sheaf cohomology. The first is that if

X =A7\0

then
dimg (H'(X, Ox)) = o0

and so X is not affine. .
Next, let f4 be a degree d homogeneous polynomial in k[x, y,z]. Let X4 = V(fy) C P2. The Cech complex
gives that

dimg (H(Xy, Ox,)) =1

dimg (H'(Xy, 0x,)) = (d;)
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The second is just the degree-genus formula if Xy is a smooth curve, but the above computation works in
general. We call this the arithmetic genus.

Let X be proper over Spec(k), and F a coherent sheaf on X. We've seen that H’(X, ) is a finite dimensional
k-vector space. In fact, the same is true for all H?(X, F).

Under the same hypotheses, if X has dimension n, then H?(X, F) = 0 for p > n. Thus, in this setup, given
(X, F) there are finitely many numbers

WP (X, F) = dimy (HP(X, F))

Definition 7.3.5 (Euler characteristic)

The Euler characteristic of F is

d
X(F) = x(X.F) =) (=1)Ph(X,F)

Now suppose

0 F F F 0
is an exact sequence of coherent sheaves on X, then the associated long exact sequence gives

X(F') = x(F) + x(F")

7.4 Choice of cover

So far, given a Noetherian separated scheme X, a quasi-coherent sheaf F on X, and U = {U;} a finite open
affine cover, we've been using H{U, F) to be equal to the sheaf cohomology groups H!{(X, F). We will prove
that H{(U, F) is independent of the choice of cover U.

Theorem 7.4.1. Let X be affine and F quasi-coherent. Then for any cover U = {U;} by affine opens, the
groups H'(U, F) are zero for i > 0.

Proof Define the shedfified Cech complex as follows:

CF) =[] iFlis,

ip<-<ip

where i : Uj,..;, = Xis the inclusion. By what we have done previously, the C?(F) are quasi-coherent sheaves.
BY taking global sections, 5
F(X,CP(F)) = CP(F)

The same formula used to build the Cech complex gives differentials
d:CP(F) — CPH(F)
which is a morphism of sheaves. Our goal is to show that the usual Cech complex
CUF) —— CYF) —— -

is exact. From examples sheet 4 question 10, on affines, taking global sections preserves exactness. Thus, it
suffices to prove instead exactness of

CO(F) —— C'(F) — -
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But the exactness of this can be check at the level of stalks. Let ¢ € X, and suppose g € U;. We now define
K CH(F) — Cb7\(F)
where Cj(F) is the stalk of CP(F) at g. This is defined by
K(Q)igiy = Qg
where by convention if jig---i,_1 is not in increasing order, but o € Sp;4 makes it into increasing order, then
Qjig--i, = SIGN(0) Ao io)--o(iy)

By direct calculation,
dk + kd = id

on CP for all p. This is a chain homotopy between id and 0. Hence the cochain complex CP(F) is contractible.
More concretely, for o € ker(CP — CP“), then

a = dk(a) € im(CP~" — CP)

Lemma 7.4.2. Let X be a scheme and F a quasi-coherent sheaf on X, Fix U = {U, -, U}, and
U={Up, -, U} Then H{U, F) and H{(U, F) are naturally isomorphic.

Sketch proof. Let CP(F) and Ep(]-") be the respective cochain groups. There are maps
CP(F) — CP(F)

given by dropping the terms with Up. To make this precise, observe that a € EP(}') can be considered as a
pair (a, ap) where a € CP(F) and ap € CP~'({Us N Uy, - - Ux N o}, Fli,)- The map is given by projection.
This defines a chain map, and so we get an induced map on cohomology

HY(U, F) — B, F)

We leave as an exercise: By reducing to a calculation on Uy which is affine, deduce from theorem [7:4] that
these are isomorphism. O

Corollary 7.4.3. Hi(u,]-') is independent of the choice of U.

Proof 1f U and U are two covers, then so is U UU. Use the above lemma. O

7.5 *Further topics in cohomology*

Concrete consequences of sheaf cohomology: Let Xy C P} be the vanishing locus of f4, where 4 is a degree
d homogeneous polynomial, with d # 2. Then Xy is not isomorphic to a product (over Spec(k)) of schemes of
dimension 1.
Note we can have X; = P' ®@spec(r) P! by the Segre embedding. This is a consequence of the sheaf Kiinneth
formula. In particular,
h'(Xy, Ox,) =0

Moreover, the different Xy for distinct d are non-isomorphic as schemes. This follows from calculating the
Euler characteristic of Xj.

Finally, the next topic in sheaf cohomology would be duality theory. Given i:Z < X a closed immersion,
we have the ideal sheaf Z; = ker(i* : Ox — i,07), which is a coherent sheaf on X.
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Definition 7.5.1 (conormal sheaf)

The conormal sheaf to the closed immersion i : Z — X is given by

(I
i | =
I;

where Z2 is the sheaf given by the sheafification of the presheaf U +— Z,(U)?. We denote this as Nx-

Definition 7.5.2 (cotangent sheaf)
If X — S is separated, then define the cotangent sheaf

Vv
Qxis = Naye

For X — Spec(k), we say that X is nonsingular if Qx is locally free. The dualising sheaf, denoted wy, is
the sheafification of
U — A0 ()

Theorem 7.5.3 (Serre duality). If X is nonsingular of dimension n, and if F is a locally free Ox-module,
then there exists an isomorphism
H(X, F) = H (X, (FY ® wx)”)

where FY = Homg, (F, Ox).
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