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1 Introduction
Let X, Y be topological spaces, f , g : X → Y be continuous functions. Note we will use the terminology ‘map:= continuous function’. We say that f is homotopic to g, written f ≃ g, if there exists a map F : X × I → Y ,such that

F|X×{0} = f and F|X×{1} = gHere I = [0, 1] carries its Euclidean topology. An exercise (sheet 1) is that this defines an equivalence relationon the set of maps X → Y .
Definition 1.0.1 (homotopy equivalence)We say that f : X → Y is a homotopy equivalence if there exists a function g : Y → X such that
f ◦ g ≃ idY and g ◦ f ≃ idX . We say that g is a homotopy inverse to f .
The same exercise on sheet 1 shows that homotopy equivalence is an equivalence relation on topologicalspaces.

Example 1.0.2 1. If f : X → Y is a homeomorphism, then f is also a homotopy equivalence.2. i : {0} ↪→ Rn is a homotopy equivance.3. The inclusion i : Sn−1 ↪→ Rn \ 0 is a homotopy equivalence.
Definition 1.0.3A space X is contractible if it is homotopy equivalent to a point.
Idea of Algebraic Topology: Study spaces up to homotopy equivalence. Broadly, we are interested in “con-nectivity properties” of topological spaces.

Example 1.0.4 1. We say a space X is path-connected if any two maps {∗} → X are homotopic. Forexample, R is path connected, R \ {0} is not. A corollary of this is the intermediate value theorem.2. We say a path connected space X is simply connected if every map f : S1 → X is homotopic toa constant map. Equivalently, every two maps S1 → X are homotopic. Or equivalently (again)every continuous map S1 → X extends to a continuous map D2 → X . For example, R2 is simplyconnected, by R2 \ {0} is not. If γ : S1 → R2 \ {0} is continuous, it has a winding number, or
degree deg(γ) ∈ Z, such that• It is invariant under homotopy,• If γn(t) = exp(2nπit), then deg(γn) = nIn particular, taking n = 0 gives the constant map. Therefore, a constant map has degree 0. Acorollary of this is the fundamental theorem of algebra.3. We say a path connected space X is k-connected , if for all i ≤ k , every map S i → X is homotopicto a constant map. In this case, Rn is (n − 1)-connected, but Rn \ 0 is not. More precisely, mapsfrom Sn−1 → Rn \ 0 have a degree deg(f ) ∈ Z , such that degree is a homotopy invariant, and thedegree of the inclusion map is 1, and the degree of the constant map is 0. A corollary of this is theBrouwer fixed point theorem.

Lecture 2
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2 (Co)homology
2.1 Co(chain) complexesWe will define invariants of topological spaces in two steps:(a) We associate to X a (co)chain complex,(b) We take the (co)homology of the complexThe topology enters in step (a), whereas (b) is just homological algebra.

Definition 2.1.1 (chain complex)A chain complex (C∗, ∂) consists of a sequence {Ci}i∈Z of abelian groups, along with boundary homomor-
phisms ∂n : Cn → Cn−1 for all n, satisfying ∂n ◦ ∂n+1 = 0. We also write this conditions as ∂2 = 0.
Often we will be lazy and just write ∂. Also, if we have several chain complexes, we might use subscriptsor superscripts to distinguish the boundary homomorphisms.

Definition 2.1.2 (homology group)The i-th homology group of a chain complex (C∗, ∂) is
Hi(C∗, ∂) = ker(∂i : Ci → Ci−1)im(∂i+1 : Ci+1 → Ci)We write H∗(C∗, ∂) =⊕

i∈Z
Hi(C∗, ∂)

Definition 2.1.3 (cochain complex)A cochain complex (C ∗, ∂) consists of a sequence {C i}i∈Z of abelian groups, along with boundary ho-
momorphisms ∂n : Cn → Cn+1 for all n, satisfying ∂n+1 ◦ ∂n = 0. We also write this conditions as
∂2 = 0.
Definition 2.1.4 (cohomology group)The i-th cohomology group of a cochain complex (C ∗, ∂) is

Hi(C ∗, ∂) = ker(∂i : C i → C i+1)im(∂i−1 : C i−1 → C i)We write H∗(C ∗, ∂) =⊕
i∈Z

Hi(C ∗, ∂)
Notation 2.1.5. Elements of ker(∂) are called cycles (in a chain complex), cocycles (in a cochain complex). Elementsof im(∂) are called boundaries (and coboundary resp.).Elements of H∗ are called homology classes, and elements of H∗ are called cohomology classes.We will call ∂ the differential.
Definition 2.1.6 (chain map)Given chain complex (C∗, ∂), (D∗, ∂), a chain map f : C∗ → D∗ comprises group homomorphism fi : Ci → Di,
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such that
Ci Di

Ci−1 Di−1
∂ ∂

fi

fi−1commutes.
Lemma 2.1.7. A chain map f : C∗ → D∗ induces homomorphisms f∗ : Hi(C∗) → Hi(D∗).

Proof. Let a ∈ Hi(C∗), and we can choose a cycle α ∈ Ci(C∗), with ∂α = 0. In this case,
∂fi(α) = fi−1(∂α) = fi−1(0) = 0

So fi(α) ∈ Di is a cycle. We set f∗(a) = [fi(α)] ∈ Hi(D∗). Next, we need to show that this is independent ofchoices. Suppose a = [α ] = [α ′]. Then α − α ′ ∈ im(∂). Therefore, we can write α − α ′ = ∂τ . In this case,
fi(α) − fi(α ′) = fi(∂τ) = ∂fi+1(τ) ∈ im(∂)

So we conclude [fi(α)] = [fi(α ′)] ∈ Hi(D∗). It is clear that f∗ defines a homomorphism.Correspondingly, we can define cochain maps C ∗ → D∗, that is, f i : C i → Di such that
C i+1 Di+1

C i Di

f i+1

f i

∂ ∂

commutes.Exercise: This construction is functorial. That is, (idC∗ )∗ = idH∗ , and if we have f : C∗ → D∗, g : D∗ → E∗,then (g ◦ f )∗ = g∗ ◦ f∗. This is obvious.Goal: To associate to a topological space X (co)chain complex C∗(X ) and C ∗(X ). The definition works forany X , but the theories are better behaved for “nicer” X .
2.2 Singular (co)homologyWe will develop singular (co)homology.

Definition 2.2.1 (standard simplex, face)The standard simplex is
∆n = {(t0, . . . , tn) ∈ Rn+1 | ti ≥ 0,∑

i
ti = 1}

The i-th face ∆n is ∆n
i = ∆n ∩ {ti = 0}and we have a canonical homeomorphism

δi : ∆n−1 → ∆n−1
i(t0, . . . , tn−1) 7→ (t0, . . . , ti−1, 0, ti, . . . , tn−1)
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Definition 2.2.2 (singular simplex, singular chain complex)If X is a topological space, a singular n-simplex in X is a continuous map σ : ∆n → X .The singular chain complex is given by the the free abelian groups
Ci(X ) = ⊕

σ singular n-simplexZσ
We define the boundary map Ci(X ) → Ci−1(X ) via

∂σ = i∑
j=0 (−1)jσ|∆i

j

where
σ|∆i

j
:= σ ◦ δj : ∆n−1 → X

Note if {vi}ni=0 are n + 1 ordered points in Rn+1, and if {vi − v0}ni=1 are linearly independent, then theconvex hull of v0, . . . , vn is an n-simplex, which we will call
[v0, . . . , vn]

is given by the map
∆n → Rn+1
t 7→

∑
i
tivi

We orient the edges of the standard simplex (and thus any simplex [v0, . . . , vn]) by saying that vi < vj if i < j .More concretely, for n = 2, we have the oriented edges v0 → v1, v0 → v2, v1 → v2.
Lemma 2.2.3. ∂2 = 0.

Proof. If σ is an n-simplex, defined on [v0, . . . , vn], then
∂σ =∑

j
(−1)jσ|[v0,...,v̂j ,...,vn ]

and so
∂(∂σ ) =∑

i<j
(−1)i(−1)jσ|[v0,...,v̂i,...,v̂j ,...,vn ] +∑

i>j
(−1)i+1(−1)jσ|[v0,...,v̂j ,...,v̂i,...,vn ] = 0

since the signs cancel.
Definition 2.2.4The singular homology groups of X , Hi(X ), are the homology groups of the singular chain complex.
Remark 2.2.5. Since all we used is the topology on X , Hi(X ) is clearly a topological (read homeomorphism) invariantof X .Moreover, if f : X → Y is continuous, σ : ∆n → X is an n-simplex on X , then f ◦ σ is an n-simplex on Y . Thefact that (f ◦ σ ) ◦ δj = f ◦ (σ ◦ δj )shows that f induces a chain map.

Lecture 3
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Definition 2.2.6 (singular cochain complex)The singular cochain complex of X has
C i(X ) = HomZ(Ci(X ),Z)

and the boundary operator
∂∗ψ(σ ) = ψ(∂σ )for ψ ∈ C i(X ), σ ∈ Ci+1(X ). That is, it is adjoint to ∂ : Ci(X ) → Ci−1(X ).

Since ∂2 = 0, (∂∗)2 = 0. The singular cohomology isH∗(X ) =⊕
i≥0 Hi(C ∗, ∂∗)

If f : X → Y continuous, then f induces a chain map f∗ : C∗(X ) → C∗(Y ) via f∗(σ ) = f ◦ σ , satisfying
∂f∗ = f∗∂. Similarly, f : X → Y defines a pullback map f ∗ : C ∗(Y ) → C ∗(X ), given by

f ∗(ψ)(τ) = ψ(f∗(τ))Again, we have that
∂∗f ∗(ψ)(τ) = f ∗ψ(∂τ) = ψ(f∗∂τ) = ψ(∂f∗τ) = (∂∗ψ)(f∗τ) = f ∗(∂∗ψ)(τ)So f ∗ is a cochain map, i.e. ∂∗f ∗ = f ∗∂∗. Therefore, we have an induced homomorphism on cohomology,

f ∗ : H∗(Y ) → H∗(X )Warning: by definition,
C i(X ) = HomZ(Ci(X ),Z)but it is not true (in general) that Hi(X ) = HomZ(Hi(X ),Z)It’s easy to show that we always have a surjectionHi(X ) = Hom(Hi(X ),Z)But in general, this is not an isomorphism if Hi(X ) has torsion.

2.2.1 Basic computations

Lemma 2.2.7 (homology of a point). Let X = {•}. Then
Hn(X ) = {Z n = 00 otherwise

Proof. By definition, Ci(X ) is the free abelian groups on continuous map ∆i → {•}. But there is only one suchmap, namely the constant map (for i ≥ 0). Hence the chain complex looks like
· · · C2(X ) C1(X ) C0(X ) 0

where each Ci(X ) is Z. Computing the boundary maps,
∂(σn) = {σn−1 if n is even0 if n is oddHence the chain complex is

· · · Z Z Z Z 00id0id
We can then compute the homology groups explicity.
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Lemma 2.2.8. If we write
X = ⊔

α∈A
Xα

as a disjoint union of path components, then
Hi(X ) =⊕

α∈A
Hi(Xα )

Moreover, if X is path connected (and nonempty), then H0(X ) = Z.
Proof. Since ∆i is path connected, the image of a continuous map σ : ∆i → X must lie within some Xα .Moreover, so does the image of all of the boundary faces σ ◦ δj . So in fact

(Ci(X ), ∂) = (⊕
α∈A

Ci(Xα ), ∂)
Note that a general element of Ci(X ) is a finite linear combination of i-simplicies in X . So its image can onlymeet finitely many of the Xα .Now suppose X is path connected. Define a function

ε : C0(X ) → Z∑
niσi 7→

∑
ni

Since X is nonempty, ε is surjective. On the other hand, if τ ∈ C1(X ), then ε(τ(1) − τ(0)) = 0. So bylinearity, im(∂ : C1(X ) → C0(X )) ⊆ ker(ε)Recall H0(X ) = C0(X )im(∂ : C1(X ) → C0(X ))and so ε descends to a map H0(X ) → Z. Now we will use the fact that X is path connected. Suppose∑
niσi ∈ ker(ε)

and fix a base point p ∈ X . Since the σi are 0-simplicies, they correspond to points in X . Moreover, since Xis path connected, we can choose paths
τi : ∆1 → Xsuch that τi(1) = σi and τi(0) = p. In this case,

∂
(∑

niτi
) =∑ni∂τi =∑niσi − (∑ni)p

But we assumed ∑ni = 0, and so ker(ε) ⊆ im(∂ : C1(X ) → C0(X )). This then gives the required result, as theinduced map H0(X ) → Zis then an isomorphism.Informal conjecture: We can’t compute anything else.Therefore, we need to develop some more structure about (co)homology.What are we doing? Consider the case of X being an annulus in R2. We have 1-simplices
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(σ1 null-homotopic, σ2 winds around the origin)In this case, ∂σ1 = ∂σ2 = 0, and so they define homology classes.

Moreover, [∂σ1] = 0, since we have triangles τ0, τ1, τ2 such that
∂(τ0 + τ1 + τ2) = σ1From this intuition, [σ2] ̸= 0. But to show even this, we need some structure theorems. Lecture 4

2.3 Fundamental properties(Co)homology is useful by virtue of various structural properties.
Theorem 2.3.1 (homotopy invariance). If f , g : X → Y are homotopic, then the induced maps f∗, g∗ onhomology, and the induced maps f ∗, g∗ on cohomology agree.
Corollary 2.3.2. If X ≃ Y , then H∗(X ) ∼= H∗(Y ), and if f is a homotopy equivalence, then f∗ induces theisomorphism. For cohomology we have the similar statement, but with f ∗.

Proof of the corollary. X ≃ Y via f is saying that there exists g : Y → X , such that g◦f ≃ idX , and f ◦g ≃ idY .That is,
g∗ ◦ f∗ = id and f∗ ◦ g∗ = id

We think of this as saying that (co)homology is “insensitive to inessential deformations”.
8



Example 2.3.3Recall {0} ↪→ Rn is a homotopy equivalence, and so
H∗(Rn) = {Z ∗ = 00 otherwise

The other key structural property relies on some homological algebra.
Definition 2.3.4 (exact sequence)An exact sequence is a chain complex with H∗(C∗, ∂) = 0. That is,

im(∂ : Cn+1 → Cn) = ker(∂ : Cn → Cn−1)
Similarly, a cochain complex is exact if H∗(C ∗, ∂) = 0.If A, B, C are abelian groups, and we have

A B Cα β

Then this sequence is exact at B if ker(β) = im(α).
Definition 2.3.5 (short exact sequence)A short exact sequence is an exact sequence of the form

0 A B C 0α β

which is exact at all places. That is, α is injective, β is surjective, and im(α) = ker(β).
Example 2.3.6 (i) If 0 A B 0α

is exact, then α is an isomorphism.(ii) If 0 Z G Z/n 0α β

is exact, then we could have G = Z ⊕ Z/n, or we could have G = Z, with α(x) = nx .
Theorem 2.3.7 (Mayer-Vietoris). If X = A ∪ B, with A, B open subsets of X . Then there exists Mayer-
Vietoris boundary homomorphism

∂MV : Hi+!(X ) → Hi(A ∩ B)for all i, so that the sequence
· · · Hi+1(X ) Hi(A ∩ B) Hi(A) ⊕ Hi(B) Hi(X ) · · ·∂MV iA∗⊕iB∗ jA∗−jB∗

is exact, where
A ∩ B A

B X

iB

iA

jA

jB
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Similarly, we have a homomorphism
∂∗
MV : H i(A ∩ B) → H i+1(X )

which makes the sequence
· · · Hi−1(A ∩ B) Hi(X ) Hi(A) ⊕ Hi(B) Hi(A ∩ B) Hi−1(X ) · · ·∂∗

MV ∂∗
MVj∗A⊕−j∗B i∗A+i∗B

exact.
Remark 2.3.8. (i) The Mayer-Vietoris maps are not induced by maps of spaces, but they are constructed alge-braically. Suppose σ ∈ Ci+1(X ) is a cycle, and suppose we can write σ = σA + σB , where σA ∈ Ci+1(A) and

σB ∈ Ci+1(B) are chains, and in general, not cycles. Since ∂σ = 0, ∂σA + ∂σB = 0. We define
∂MV (σ ) = [∂σA ] ∈ Hi(A ∩ B)

Since ∂σA ∈ Ci(A), we must have that ∂σA = −∂σB ∈ Ci(A ∩ B). As ∂2 = 0, ∂σA is closed and so it representsa class in homology.This is (correct) intuition, but not a proof.(ii) The Mayer-Vietoris sequence is natural for maps of pairs. That is, if X = A ∪ B, Y = C ∪ D, and f : X → Yhas f (A) ⊆ C , f (B) ⊆ D, then we have a map of long exact sequences
· · · Hi+1(X ) Hi(A ∩ B) Hi(A) ⊕ Hi(B) Hi(X ) Hi−1(A ∩ B) · · ·

· · · Hi+1(Y ) Hi(C ∩ D) Hi(C ) ⊕ Hi(D) Hi(Y ) Hi−1(C ∩ D) · · ·

f∗ f∗ f∗⊕f∗ f∗ f∗

where all the squares commute.
2.4 Examples of Homology calculationsWe will prove these later when we use them.

Example 2.4.1

H∗(S1) = {Z ∗ = 0, 10 otherwise
Proof. Here, S1 = A ∪ B, where A, B ≃ {∗} and A ∩ B ≃ {p, q}.
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Using this, we know H∗(A),H∗(B),H∗(A ∩ B). For i ≥ 2, we have
· · · Hi(A) ⊕ Hi(B)︸ ︷︷ ︸=0

Hi(X ) Hi−1(A ∩ B)︸ ︷︷ ︸=0
· · ·

and so Hi(X ) = 0 for all i ≥ 2. For lowe degrees, we have
H1(A ∩ B)︸ ︷︷ ︸=0

H1(A) ⊕ H1(B)︸ ︷︷ ︸=0
H1(X )

H0(A ∩ B)︸ ︷︷ ︸
⟨p⟩⊕⟨q⟩

H0(A) ⊕ H0(B)︸ ︷︷ ︸=Z⊕Z

H0(X )︸ ︷︷ ︸=Z

0α

∂MV

where α(n,m) = (n + m, n + m). Moreover, we use that S1 is path connected, and H0 is generated by anypoint. Therefore, H1(X ) sits in an exact sequence
0 H1(X ) Z2 Z2 Z 0∂MV α β

and so, H1(X ) ≃ ker(α) = ⟨(1, −1)⟩ = Z(p − q)

Example 2.4.2

H∗(Sn) = H∗(Sn) = {Z ∗ = 0, n0 otherwise
Lecture 5

Proof. We will compute the cohomology. Define A, B ⊆ Sn by

Then A, B are contractible, and A ∩ B is homotopic to Sn−1. We work inductively in n, using the Mayer-
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Vietoris sequence. The sequence gives
· · · Hi−1(Sn)

Hi(Sn) Hi(∗) ⊕ Hi(∗) Hi−1(Sn−1)

Hi+1(Sn) Hi+1(∗) ⊕ Hi(∗) · · ·

∂∗
MV

∂∗
MV

If i > 0, we have 0 Hi(Sn−1) Hi+1(Sn) 0∂∗
MV

and so Hi(Sn−1) = Hi+1(Sn)This gives us almost everything inductively. We can assume n ≥ 2. At the bottom of the sequence, we have
H0(Sn)︸ ︷︷ ︸=Z

H0(∗) ⊕ H0(∗)︸ ︷︷ ︸=Z⊕Z

H0(Sn−1)︸ ︷︷ ︸=Z

H1(Sn) 0α

We have shown (on examples sheet 1) that H0(X ) = 1, generated by the 0-dimensional cochain, sending p 7→ 1.As
α(p, q) = p+ q

α is surjective. Thus, we have 0 H1(Sn) 0
and so H1(Sn) = 0.

Corollary 2.4.3. Rn is homeomorphic to Rm if and only if m = n.
Proof. Suppose f : Rn → Rm is a homeomorphism. This gives us a homeomorphism

f : Rn \ 0 → Rm \ {f (0)}
But Rn \ {∗} is homotopy equivalent to Sn−1. Thus f induces an isomorphism in homology

Hi(Sn−1) = Hi(Sm−1)
But by our homology computations, this implies that n = m.Note in the below we assume n > 0.

Definition 2.4.4 (degree)Suppose f : Sn → Sn is a continuous map, then f induces a map
f∗ : Hn(Sn) → Hn(Sn)

which is multiplication by some d ∈ Z. We call deg(f ) = d the degree of f .

12



Remark 2.4.5. Since Hn(Sn) = Z which is free, therefore f∗ is determined by f∗(1). Moreover, we will need to usethe same identification of Hn(Sn) = Z, and so deg(f ) is well defined. Note that if we use different isomorphisms, thendeg(f ) is only defined up to a sign.
Note that• if f ≃ g, then deg(f ) = deg(g),• deg(id) = 1.• deg(const) = 0, since the constant map factors through {∗}, and so the induced map on homology factorsthrough Hn(∗) = 0.

Lemma 2.4.6. If A ∈ O(n+ 1), then A acts on Sn, and we have
deg(A) = det(A) ∈ {±1}

Proof. The group O(n + 1) has two path components. By homotopy invariance of degree, any A is homotopicto idSn , or a reflection in an equatorial hyperplane H .

The reflection preserves A, B, A ∩ B, and H intersects A ∩ B = Sn−1 at two points. The Mayer-Vietorissequence gives 0 Hn(Sn) Hn−1(Sn−1) 0
0 Hn(Sn) Hn−1(Sn−1) 0

∼=

∼=
A∗ A∗

The two vertical maps are the same. Therefore it suffices to consider the result on S1.
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Recall our computation of H1(S1) has
0 H1(S1) H0(p ⊔ q) H0(A) ⊕ H0(B) · · ·α

where α(u, v ) = (u+ v, u+ v ). Hence H1(S1) is generated by (1, −1), which we can think of as p − q. But inthis case, reflection in H swaps p and q, and so it acts on H1(S1) by multiplication by −1.
Corollary 2.4.7. The antipodal map an : Sn → Sn has degree (−1)n+1.

Proof. an is orthogonal. Or equivalently, it is a composition of n+ 1 reflections, and we have thatdeg(fg) = deg(f ) deg(g)

Corollary 2.4.8. If f : Sn → Sn has no fixed point, then f is homotopic to the antipodal map.
Proof. In fact, we will see that f (x) ̸= g(x) for all x ∈ Sn, then f ≃ an ◦ g. Taking g = id gives the result.Consider the map

x 7→ tf (x) − (1 − t)g(x)∥∥tf (x) − (1 − t)g(x)∥∥for 0 ≤ t ≤ 1. Note that the denominator never vanishes. This then defines a homotopy from f to −g.Using this, the degree of any map without fixed points is (−1)n+1. Another corollary is that if f (x) ̸= −xfor all x ∈ Sn, then f ≃ a ◦ a = id.
Definition 2.4.9 (vector field on Sn)A vector field on Sn is a map v : Sn → Rn+1, such that for all x ∈ Sn,

⟨x, v (x)⟩ = 0
That is, v (x) is a tangent vector to Sn at x .

Proposition 2.4.10 (Hairy ball theorem). Sn has a nowhere vanishing vector field if and only if n is odd.
Proof. If n = 2k − 1,

v (x1, y1, . . . , xk , yk ) = (−y1, x2, . . . , −yk , xk )works. Lecture 6Now suppose a nowhere vanishing vector field v : Sn → Rn+1 exists. By normalising, i.e. considering
v (x)∥∥v (x)∥∥

we can consider v : Sn → Sn ⊆ Rn+1. Now consider the family
vt (x) = cos(t)x + sin(t)v (x)for 0 ≤ t ≤ π , which has unit length as we assumed v (x) and x are orthogonal. This family has v0 = id, and

vπ = an. Thus, we have that 1 = deg(id) = deg(an) = (−1)n+1

14



Example 2.4.11 (Klein bottle)Recall the Klein bottle is the result if we glue two Möbius strips together along their common boundary
S1. That is, we define K by the gluing pattern

In this case, we can write K = A ∪ B, where A, B are Möbius bands, i.e. A ≃ S1 ≃ B. Moreover,
A ∩ B ≃ S1 as well. The interesting part of the Mayer-Vietoris sequence for homology is as follows:
0 H2(K ) H1(A ∩ B) H1(A) ⊕ H1(B) H1(K ) H0(A ∩ B) H0(A) ⊕ H0(B)ψ α

Recall α(1) = (1, 1), and so α is injective, and the sequence becomes
0 H2(K ) H1(A ∩ B) H1(A) ⊕ H1(B) H1(K ) 0ψ

By exactness, H1(K ) ∼= (Z ⊕ Z)/ im(ψ) = coker(ψ) and H2(K ) ∼= ker(ψ).
Claim 2.4.12. ψ(1) = (2, 2), and so H2(K ) = 0, and H1(K ) = Z ⊕ Z/2.

Proof of claim. We will use the decomposition of K into two Möbius bands.

15



In this case, H1(A ∩B) = Z ⟨v + w⟩, and H1(A) = Z ⟨σ1 + σ2⟩. At chain level, there exists a collectionof 2-simplices in A, with boundary c − (σ1 + σ2). Therefore, v 7→ σ1 + σ2 and w 7→ σ1 + σ2. With this, wehave that (by symmetry),
ψ(1) = (2, 2)

Remark 2.4.13. (i) In cohomology, H2(K ) = Z/2 and H1(K ) = Z. That is, the homology and the cohomology arenot the same.(ii) We defined Ci(X ) = {∑finite ajσj | aj ∈ Z, σj is an i-simplex}. But we can also define
Ci(X ;G) = {∑finite ajσj

∣∣ aj ∈ G, σj is an i-simplex}
for any abelian group G . ∂ is defined as before, and we get a chain complex C∗(X ;G) and homology H∗(X ;G).If we instead computed

H∗(K ;Z/2) =

Z/2 ∗ = 0
Z/2 ⊕ Z/2 ∗ = 1
Z/2 ∗ = 2since ψ = 0 if we used Z/2 coefficients.

Interlude on relative homologySome of the questions on sheet 1 concern relative homology. If A ⊆ X is a subspace, then any simplex
σ : ∆1 → A is a simplex in X . Moreover, if σ is a simplex in A, so are all of its boundary faces. Thus, thenatural map induced by the inclusion map,

Ci(A) ↪→ Ci(X )defines a chain map. Using this, C∗(A) is a subcomplex of C∗(X ). In particular, we can define the quotient
complex,

Ci(X, A) = Ci(X )
Ci(A)and this is a chain complex, with ∂ induced by the boundary operator on Ci(X ). Another way of thinking about

Ci(X, A) is that it is the free abelian group on i-simplices in X not wholly contained in A. The homology of
C∗(X, A), denoted H∗(X, A) is called relative homology.We have a long exact sequence

· · · Hi(A) Hi(X ) Hi(X, A) Hi−1(A) · · ·
∂

If A and X are ‘well behaved’, then Hi(X, A) ∼= Hi(X/A) for i > 0, where X/A is the quotient space wherewe quotient A into a point.
2.5 Homotopy invarianceRecall if f , g : X → Y are homotopic, we would like to show that the induced maps on homology and cohomologyare the same. Recall also that the maps are induced by (co)chain maps on (co)chain complexes.

Definition 2.5.1 (chain homotopic)Let C∗, D∗ be chain complexes. Let f∗, g∗ : C∗ → D∗ be chain maps. We say that they are chain homotopicif there exists maps
Pn : Cn → Dn+1for all n, such that

Pn−1 ◦ ∂+ ∂ ◦ Pn = fn − gn
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for all n.
Cn+1 Cn Cn−1

Dn+1 Dn Dn−1
Pn Pn−1

∂∂

∂ ∂

fn−gn

Lemma 2.5.2. Suppose f∗, g∗ : C∗ → D∗ are chain homotopic. Then they induce the same map onhomology.
Proof. Let α ∈ Ci be a cycle, that is, ∂α = 0. By definition, f∗[α ] = [f (α)]. Consider

fi(α) − gi(α) = (fi − gi)(α) = (∂P + P∂)(α) = ∂(Pα)
But this is in the image of ∂, and so the corresponding homology classes are the same. Lecture 7Exercise: Chain homotopy is an equivalence relation on chain maps C∗ → D∗.

Theorem 2.5.3 (homotopy invariance of homology). If f , g : X → Y are homotopic, then the induced mapson homology are the same.
Proof. Let ij : X ↪→ X × {j} be the natural map, F : X × I → Y the homotopy between f , g. But then

f∗ = (F ◦ i0)∗ = F∗ ◦ i0∗

Therefore, it suffices to show that i0∗ and i1∗ are chain homotopic.Thus, we want
P : Cn(X ) → Cn+1(X × [0, 1])such that ∂P + P∂ = i0∗ − i1∗. P is a prism operator from a universal way of decomposing ∆n × [0, 1] into afinite collection of n+ 1-simplices.

Consider the ordered collections[v0, . . . , vi, wi, . . . , wn], where [v0, . . . , vn] = ∆n × {0} and [w0, . . . , wn] =∆n × {1}. We define P by
P(σ ) = n∑

i=0 (−1)i(σ × I)|[v0,...,vi,wi,...,wn ]
Claim 2.5.4. ∂P + P∂ = ii∗ − i0∗. That is,

∂P = i1∗ − i0∗ − P∂
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i.e. “boundary of prism is the top and bottom faces, as well as the prism of the boundary”.
Proof.

∂P(σ ) =∑
j≤i

(−1)i(−1)j (σ × I)|[v0,...,v̂j ,...,vi,wi,...,wn ] +∑
j≥i

(−1)i(−1)j+1(σ × I)|[v0,...,vi,wi,...,ŵj ,...,wn ]
The terms when j = i cancel, except for

(σ × I)|[w0,...,wn ] − (σ × I)|[v0,...,vn ]which are the top and bottom faces. The terms with i > j and i < j comprise, up to a sign, P(∂σ ). Just compute(in a dark room with some gin).
Remark 2.5.5. If C ∗, D∗ are cochain complexes, cochain maps f ∗, g∗ are cochain homotopic if we have P i : C i → Di−1 ,such that

∂P + P∂ = f ∗ − g∗

It is easy to check that in this case, f ∗ and g∗ induce the saem map H∗(C ∗) → H∗(D∗).With this, our prism operator P : Cn(X ) → Cn+1(X × [0, 1]) has a dual
P∗ : Cn+1(X × [0, 1]) → Cn(X )

P∗(f ) = f ◦ P

Dualising everything, the relation ∂P + P∂ = i1∗ − i0∗ becomes
∂P∗ + P∗∂ = i∗1 − i∗0and thus homotopic maps induce the same map on cohomology.

2.6 Snake lemma

Definition 2.6.1A short exact sequence of chain complexes

0 A∗ B∗ C∗ 0
is a diagram

...
...

...

0 An+1 Bn+1 Cn+1 0
0 An Bn Cn 0
0 An−1 Bn−1 Cn−1 0

...
...

...

α β

α β

α β

such that the squares commute (i.e. α , β are chain maps) and the rows are exact.
Proposition 2.6.2 (Snake lemma). Suppose we have a SES 0 → A∗ → B∗ → C∗ → 0 of chain complexes,
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then we have a long exact sequence of homology
· · · Hn+1(C∗) Hn(A∗) Hn(B∗) Hn(C∗) Hn−1(A∗) · · ·δ α∗ β∗ δ

Proof. We will construct δ , but leave all other details. Suppose cn ∈ Cn is a cycle, representing a homologyclass [cn] ∈ Hn(C ∗). Horizontal exactness means cn = β(bn) for some bn ∈ Bn. But
β(∂bn) = ∂β(bn) = ∂cn = 0Hence ∂bn ∈ ker(β) = im(α), by horizontal exactness. Thus, we have an−1 ∈ An−1 such that α(an−1) = ∂bn.In this case,

α(∂an−1) = ∂α(an−1) = ∂2bn = 0But α is injective, and so ∂an−1 = 0, and this represents a cycle.
An Bn Cn

An−1 Bn−1 Cn−1

An−2 Bn−2 Cn−2

β

∂

α

α

∂∂

∂

β

We define δ([cn]) = [an−1].To complete the proof:1. Check that δ is independent of the choices of cn, bn, an−1.2. δ is a homomorphism.3. Check that the sequence is exact.
Example 2.6.3Recall if G is an abelian group, we introducted C∗(X ;G). If we started with an SES of abelian groups

0 G1 G2 G3 0
then there is an associated SES of chain complexes

0 C∗(X ;G1) C∗(X ;G2) C∗(X ;G3) 0
The homomorphism Hn(X ;G3) → Hn−1(X ;G1)are often called Bockstein homomorphisms.
Example 2.6.4If A ⊆ X is a subspace, then we defined relative homology, using the SES

0 C∗(A) C∗(X ) C∗(X, A) 0
The associated long exact sequence includes a boundary map

δ : Hn(X, A) → Hn−1(A)
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and we have a LES of the pair (X, A).
2.7 Excision

Theorem 2.7.1 (Excision). Let X be a topological space, A ⊆ X a subspace, Z ⊆ X a subspace withCl(Z ) ⊆ Int(A). Then the inclusion
i : (X \ Z, A \ Z ) → (X, A)induces an isomorphism on relative homology

i∗ : Hn(X \ Z, A \ Z ) → Hn(X, A)
Intuitively, relative homology measures the homology of X where we ignore what happens within A. There-fore, excision means that when computing relative homology, we can ignore what happens within Z .

Lemma 2.7.2 (five lemma). Suppose we have a diagram
A B C D E

A′ B′ C ′ D′ E ′

εδγβα

where the rows are exact, α, β, δ, ε are isomorphisms, then so is δ .
Corollary 2.7.3. If f : (X, A) → (Y , B) is a map of pairs, and the maps f∗ : H∗(X ) → H∗(Y ) and
f∗ : H∗(A) → H∗(B) are isomorphisms, then so are the induced maps on relative homology

f∗ : H∗(X, A) → H∗(Y , B)
Proof. Follows from the five lemma and the LES of relative homology. Lecture 8
2.8 Relative homology

Definition 2.8.1 (Reduced homology)If X is a topological space, x0 ∈ X is a base point, then we define the reduced homology of X as
H̃∗(X ) = H∗(X, x0)

It is easy to see that H̃i(X ) = Hi(X ) for i > 0, and H̃i(X ) ⊕ Z = Hi(X ).
Definition 2.8.2 (good pair)A pair (X, A) is good if A ⊆ X is closed, and A a neighbourhood deformation retract. That is, there existsan open neighbourhood A ⊆ U ⊆ X of A, and a homotopy H : U × [0, 1] → U , with• H(u, 0) = u,• H(u, 1) ∈ A for all u ∈ U ,• H(a, t) = a for all a ∈ A, t ∈ [0, 1].
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Example 2.8.3One example would be a loop on Σ2, where we can choose an annular neighbourhood.

On the other hand, consider

There is no neighbourhood retract fixing A.
Proposition 2.8.4. If (X, A) is a good pair, the natural map (X, A) → (X/A, A/A = {•}), induces isomor-phism Hn(X, A) → Hn(X/A, A/A) = H̃∗(X/A)
In this case, the intuition is that we can in fact collapse A down to a point.

Proof. Let A ⊆ U ⊆ X be as in the definition of a good pair, and note that H∗(A) = H∗(U), and as such, wehave an isomorphism on relative homology H∗(X, A) ∼= H∗(X,U)Since the homotopy H : U × [0, 1] → U is fixed on A, it induces a homotopy on U/A, and so
A
A = {•} ↪→ U

Ais also a neighbourhood deformation retract. With this,
H∗(X, A) H∗(X,U) H∗(X/A, U/A)

H∗(X/A, •) H∗(X/A, U/A) H∗((X/A)/•, (U/A)/•)
∼homeomorphism of pairs

∼= ∼

∼∼=
and so the left map is an isomorphism. Note ∼ is an isomorphism by excision, and ∼= is an isomorphism by theabove, from the homotopy.
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Example 2.8.5 (i) Hj (Dn, ∂Dn) = H̃j (Dn/∂Dn) = H̃j (Sn) = {Z j = n0 otherwise
(ii) Hj (S2, S1eq) = H̃j (S2 ∨ S2) = {Z ⊕ Z j = 20 otherwise Since we can think of S2/S1 as S2 ∨ S2 via

(iii) A manifold of dimension n is a Hausdorff topological space which is locally homeomorphic to Rn.If Mn is a manifold, x ∈ M , then
Hj (M,M \ x) =︸︷︷︸by excision Hj (Rn,Rn \ 0) =︸︷︷︸by homotopy invariance Hj (Dn, ∂Dn) = Z when j = n

For excision, we choose an open set U which is homeomorphic to a ball, and remove the complementof U .

2.9 Small simplices theoremBoth the Mayer-Vietoris property and excision will follow from the small simplices theorem.
Definition 2.9.1 (chain complex adapted to a cover)Let X be a topological space,

U = {Uα}α∈Ibe such that {Int(Uα )}α∈I is an open cover of X . Let
CU
j (X ) = {∑finiteajσi

∣∣ ai ∈ Z, σi : ∆i → X, im(σi) ⊆ Uα(σi) for some α(σi) ∈ I
}

This defines a subcomplex of C∗(X ) with the usual boundary map.
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Theorem 2.9.2 (small simplices). The inclusion CU
∗ (X ) ↪→ C∗(X ) induces an isomorphism on homology.

Remark 2.9.3. If X, Y are spaces with covers U, V, and if f : X → Y sends each Uα to some Vf (α) , then f induces amap
f∗ : CU

j (X ) → CV
∗ (Y )But (X, U) 7→ CU

∗ (X ) is not functorial for arbitrary maps.
Intuitively, what we want to do here is to split up the chains, so that it is a sum of chains in the open cover.
We will use small simplices to prove Mayer-Vietoris and excision.

Proof of Mayer-Vietoris, theorem 2.3.7. Let U = {A, B}, where A, B ⊆ X open. Then we have an SES of chaincomplexes 0 C∗(A ∩ B) C∗(A) ⊕ C∗(B) CU
∗ (X ) 0

The last map is surjective because we have taken the subgroup CU
∗ (X ). By the Snake lemma and the smallsimplices theorem, we get the Mayer-Vietoris sequence.

Remark 2.9.4. (i) The boundary map is what we wrote down in the special case earlier.(ii) The naturality of Mayer-Vietoris is the naturality of the map
CU

∗ (X ) → CV
∗ (Y )

where U = {A, B}, V = {C,D} and f (A) ⊆ C, f (B) ⊆ D.
Proof of excision, theorem 2.7.1. Recall we have Z ⊆ A ⊆ X , Cl(Z ) ⊆ Int(A). Let B = X \ Z , U = {A, B}. ThenInt(A) ∪ Int(B) = X , and so we can apply the small simplices theorem.Consider

CU
n (X )
Cn(A) = Cn(B)

Cn(A ∩ B) = free ab. group of simplices in B not wholly contained in A
and so we have the short exact sequences

0 C∗(A) CU
∗ (X ) CU

∗ (X )/C∗(A) 0
0 C∗(A) C∗(A) C∗(X )/C∗(A) 0

where the vertical maps are induced by the inclusion, and all squares commute. Therefore, we have long exactsequences in homology and natural maps between them,
· · · Hi(A) Hi(CU

∗ (X )) Hi(CU
∗ (X )/C∗(A) Hi−1(A) Hi−1(CU

∗ (X )) · · ·

· · · Hi(A) Hi(X ) Hi(X, A) Hi−1(A) Hi−1(X ) · · ·

∼== ∼

where = are identity maps, ∼ is an isomorphism by the small simplices theorem, and so the middle map is anisomorphism by the five lemma. But we have that
Hi(X, A) = Hi(C∗(X )/C∗(A)) = Hi(C∗(B)/C∗(A ∩ B)) = Hi(B, A ∩ B) = H∗(X \ Z, A \ Z )

Small simplices uses barycentric subdivision. It’s important to get intuition for this, which is that we canrepeatedly subdivide a simplex into smaller simplices, and using the Lebesgue covering lemma, if we subdivideenough, we can ensure that each simplex is contained in an open set in the cover.However, the technical details are not very interesting...
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Lecture 9If ∆n is the standard simplex, let bn = 1
n+1 (1, . . . , 1) be its barycentre. Take an i-simplex σ : ∆i → ∆n, wedefine Cone∆n

i (σ ) : ∆i+1 → ∆n

(t0, . . . , ti+1) 7→ t0bn + (1 − t0)σ ((t1, . . . , ti+1)1 − t0
)

We can view Cone∆n

i : Ci(∆n) → Ci+1(∆n) by extending linearly.Exercise:
∂(Cone∆n

i (σ )) = {σ − Cone∆n

i−1(∂σ ) i > 0
σ − ε(σ )bn i = 0where

ε : C0(∆n) → Z∑
niσi 7→

∑
niIf we define c• : C∗(∆n) → C∗(∆n) by

c•(σ ) = {ε(σ )bn ∗ = 00 otherwiseThen
∂Cone∆n + Cone∆n ∂ = id −c•Our aim is to introduce a barycentric subdivision operation φ : C∗(X ) → C∗(X ), which for each simplexdivides the boundary and cones off to the barycentre.

Definition 2.9.5 (natural)A collection of chain maps φX : C∗(X ) → C∗(X ) is natural if for f : X → Y , f∗ ◦ φX = φY ◦ f∗.
If σ : ∆n → X is an n-simplex, and in : ∆n → ∆n denotes the inclusion map, then σ = σ ◦ in, and so

φX (σ ) = φXn (σ∗in) = σ∗(φ∆n

n (σ ))Thus, if we can subdivide the n-simplex, then we can use naturality to extend φX for all X .The formula is
φXn (σ ) = σ∗

(Cone∆n

n−1 (φ∆n

n−1(∂in)))
Lemma 2.9.6. (i) If σ = [v0, . . . , vn] ⊆ Rn+1 is an n-simplex, for example any n-simplex in a subdivisionof ∆N for N ≥ n, then for any simplex τ in its barycentric subdivision,

diam(τ) ≤ n
n+ 1 diam(σ )

(ii) If σ ∈ CU
n (X ), then φXn (σ ) ∈ CU

n (X ).(iii) If σ ∈ Cn(X ), there exists k > 0 such that (φXn )k (σ ) ∈ CU
n (X ).

Proof. (i) is just Euclidean geometry, (ii) is obvious. For (iii), we use the fact that σ is a finite sum of simplices,and so it suffices to prove this for a single simplex, since we can just take the maximum value of k . Then{
σ−1(Int(Uα ))}α∈Ais an open cover of ∆n, which is a compact metric space, and so it has a Lebesgue number ε. That is, everyopen ε-ball in ∆n lies in σ−1(Int(Uα )) for some α . But we can choose k such that( n
n+ 1)k < ε

and so we are done.
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Proposition 2.9.7. There is a natural (with respect to maps of spaces) chain homotopy
P∗
X : C∗(X ) → C∗+1(X )

with
∂PX

n + PX
n−1∂ = φ∗

n − idCn(X )
Proof. As in homotopy invariance, we construct a prism ∆n × [0, 1] by gluing ∆n to its barycentric subdivision.We can subdivide this into n+ 1-simplices. See Hatcher for a formula.

Let U : Hn(CU
∗ (X )) → Hn(C∗(X )) denote the induced map. Choose [σ ] ∈ Hn(X ), and choose k such that(φXn )k (c) ∈ CU

n (X ). Since φXn is homotopic to id, so is (φXn )k , so there exists F such that
∂F + F∂ = (φ∗)k − id

Thus, (φX )k (c) = c + ∂(stuff), and so U is surjective.On the other hand, if U([c]) = 0, then there exists z ∈ Cn+1(X ) with ∂z = c. There exists k such that
(φXn+1)k (z) ∈ CU

n+1(X ) and (φXn+1)k (z) − z = (∂F + F∂)(c)
Then

c = ∂z = ∂(φX )k (z) − ∂F (∂z) ∈ CU
n+1and so [c] = 0 in Hn(CU

∗ (X )) already.
3 Cellular homology
Singular homology is most effective on ‘nice’ spaces. One example would be cell complexes or CW-complexes.We will introduce a more manageable chain complex, for computing the homology or cohomology of a cellcomplex.
3.1 Definitions

Definition 3.1.1 (cell complex)A cell complex is a topological space X obtained inductively as follows:• X0 is a discrete set,•
Xk = Xk−1 ∪

⋃
i∈Ik

Dk
i
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attached via maps φki : ∂Dk
i = Sk−1 → X . More formally, we can write this as a quotient of

Xk−1 ⊔
⊔
i∈Ik

Dk
i

• X = ⋃
k Xk , where we note that Xk−1 ⊆ Xk , equipped with the weak topology. That is, U ⊆ X isopen if and only if U ∩ Xk is open in Xk for all k .We call the Dk

i the k-cells of X , the φki the attaching maps, Xk the k-skeleton of X .
Example 3.1.2 (spheres)
Sn = {∗} ∪ {open disc}, i.e. X0 = {∗} and a unique n-cell.

On the other hand, we can also construct S2 as 2 0-cells, 2 1-cells and 2 2-cells.

Example 3.1.3 (torus)The standard gluing diagram of T 2 gives a cell structure with 1 0-cells, 2 1-cells and 1 2-cell.
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More generally, the surface Σg of genus g has 1 0-cell, 2g 1-cells and 1 2-cells.

The gluing pattern is a1b1a−11 b−11 · · · agbga−1
g b−1

g .
Example 3.1.4If X, Y are cell complexes, x0 ∈ X0, y0 ∈ Y0, then

X ∨ Y = X ⊔ Y
x0 = y0is naturally a cell complex.

Remark 3.1.5. If X is a cell complex, then X is a disjoint union of the open cells Int(Dk
i ).

Definition 3.1.6 (finite dimensional, finite cell complex)If X = Xn for some n, we say X is finite dimensional. If X = Xn and for all k ≤ n, Ik is finite (i.e. X hasfinitely many cells), we say that X is an finite cell complex .
Remark 3.1.7. A finite cell complex is compact.
In fact, the converse is also true. If X is an infinite cell complex, we have an infinite, closed, discrete subsetof X by choosing a point in each cell which is not in the boundary, and so X cannot be compact. Lecture 10
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Definition 3.1.8 (subcomplex)A subcomplex of X is a closed subspace of X which is a union of cells of X .
3.2 Homology of cell complexes

Lemma 3.2.1. (i) A ⊆ X is open (resp. closed) if and only if its preimage in any cell is open (resp.closed), through the composition
φα : Dα ↪→ Xn+1 ⊔

⊔
β
Dβ ↠ Xn ↪→ X

We call φα the characteristic map of the cell Dα . Note its restriction to the boundary is the attachingmap.(ii) Cell complexes are Hausdorff and locally contractible. In particular, connected and path connectedare equivalent.(iii) If Z ⊆ X is compact, then Z ⊆ XN for some N .(iv) If A ⊆ X is a subcomplex, then the pair (X, A) is good.
Proof. Exercises, or see Hatcher.

Corollary 3.2.2. If A ⊆ X is a subcomplex, then H∗(X, A) ∼= H̃∗(X/A). In particular,
Hi(Xk , Xk−1) = {Z⊕Ik i = k0 otherwise

Proof.
Xk
Xk−1 =∨

Ik

Sk

Result follows by Mayer-Vietoris, we note that(⊔
α∈Ik

Skα ,
⊔
α∈Ik

{xα}
)

is a good pair, and the quotient is the wedge sum. Thus, the reduced homology of the wedge sum is given bythe relative homology H∗

(⊔
Sk ,
⊔

{xk}
) =⊕H∗(Sk , xk )

Proposition 3.2.3. Let X be a cell complex.(i) Hk (Xn) = 0 for all k > n,(ii) The inclusion Xn ↪→ X induces an isomorphism of Hk (Xn) ∼= Hk (X ) for k < n.
Proof. For (i), consider the long exact sequence given by (Xn, Xn−1),

· · · Hk+1(Xn, Xn−1) Hk (Xn−1) Hk (Xn) Hk (Xn, Xn−1) · · ·

if k > n, then Hk (Xn, Xn−1) = Hk+1(Xn, Xn−1) as it is a wedge of spheres, and soHk (Xn−1) ∼= Hk (Xn)
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But we can iterate this, since k > n > n − 1, and so
Hk (Xn) ∼= Hk (Xn−1) ∼= · · · ∼= Hk (X0) = 0

since X0 is a discrete set.For (ii), consider the same sequence
· · · Hk+1(Xn, Xn−1) Hk (Xn−1) Hk (Xn) Hk (Xn, Xn−1) · · ·

as above, with k < n − 1. In this case, k + 1 < n and k < n, and so the same logic shows
Hk (Xn−1) ∼= Hk (Xn) ∼= Hk (XN )

for all N ≥ n. If X is finite dimensional, then we are done. In general, if α ∈ Hk (X ), then it is representedby a finite collection of k-simplices. But this is a compact space, and so it lies within XN for some N , and so
α lies in the image of the map Hk (XN ) → Hk (X ). Conversely, if we have α ∈ Hk (X ) bounding a k + 1-chain,then that union of simplices lies in XN ′ for some N ′ ≥ N , and so α = 0 in Hk (XN ′ ).

Corollary 3.2.4. If X is a finite cell complex of dimension N , then Hj (X ) = 0 for all j > N .
Definition 3.2.5 (cellular chain complex)We define the cellular chain complex C cell

∗ (X ) of a cell complex X (with its cell structure) via
C cell
k (X ) := H∗(Xk , Xk−1) = free abelian group on k-cells

with the differential defined as:
Hk (Xk )

Hk+1(Xk+1, Xk ) Hk (Xk , Xk−1) Hk−1(Xk−1, Xk−2)
Hk−1(Xk−1)

∂cell
k+1 ∂cell

k

where the diagonal maps are defined using the long exact sequence of a pair. We will write Hcell
∗ (X ) forthe homology of the chain complex C cell

∗ (X ).
Claim 3.2.6. ∂cell

k ◦ ∂cell
k+1 = 0.

Proof. The composition ∂cell
k ◦ ∂cell

k+1 includes two consecutive maps (the orange ones in the above diagram) inthe long exact sequence of the pair (Xk , Xk−1), which compose to zero. As such, ∂cell
k ◦ ∂cell

k+1 = 0.Note C cell
∗ (X ) depends on the choice of cell structure on X .

Proposition 3.2.7. H∗(X ) ∼= Hcell
∗ (X ).
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Proof. Consider the diagram
0

0 = Hk (Xk−1) Hk (Xk+1) = Hk (X )
Hk (Xk )

Hk+1(Xk+1, Xk ) Hk (Xk , Xk−1) Hk−1(Xk−1, Xk−2)
Hk−1(Xk−1)

0 = Hk−1(Xk−2)

∂k+1 ik

∂k ik−1
∂cell
k+1 ∂cell

k

From this, we have that
Hk (X ) = Hk (Xk )im(∂k+1) = ik (Hk (Xk ))im(ik ◦ ∂k+1) = ker(∂k )im(∂cell

k+1) = ker(ik−1 ◦ ∂k )im(∂cell
k+1) = ker(∂cell

k )im(∂cell
k+1) = Hcell

k (X )

Corollary 3.2.8. Let X be a finite cell complex. Then(i) Hk (X ) is a finitely generated abelian group of rank at most nk = |Ik |,(ii) if Hk (X ) ̸= 0, every cell structure must contain k-cells.(iii) if X admist a cell structure with cells in only even dimension, then H∗(X ) ∼= C cell
∗ (X ).(iv) if F is a field, then H∗(X ;F ) is a finite dimensional F-vector space.

For (iii), we saw that CPn satisfies the requirements on examples sheet 1, and the same is true for theGrassmannian Gr(k,Cn) of k-dimensional linear subspaces of Cn (where Gr(1,Cn) = CPn−1), and various otherspaces in complex algebraic geometry.The same sort of argument as for CPn shows that RPn has a single cell in each degree 0 ≤ i ≤ n, that is,the cellular chain complex is
0 Z Z · · · Z Z 0

But we need new tools to compute the cellular boundary. Lecture 11That is, if eα is a k-cell, then
∂cell
k (eα ) =∑

β
dαβeβ

of k − 1-cells. We would like to find the dαβ ∈ Z.
Lemma 3.2.9. dαβ is the degree of the following map on spheres:

Sk−1
α Xk−1 Xk−1/Xk−2 ∨

β Sk−1
β Sk−1

β
φα ∼ proj
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Remark 3.2.10. For this to be well defined (and not just defined up to a sign), we need to fix isomorphismsHk−1(Sk−1) ∼= Z.
Proof. Consider

Hk (Dk
α , ∂Dk

α ) Hk−1(∂Dk
α ) Hk−1(Sk−1

β )

Hk (Xk , Xk−1) Hk−1(Xk−1)

Hk−1(Xk−1, Xk−2) H̃k−1(Xk−1/Xk−2)

φα

∂LES

∂cell
k

φα |∂Dkα

∂LES

∼=

collapse

∼=

Chasing a generator around this diagram:
1 1 deg(fαβ )
eα

∑
dαβeβ dαβeβ

The result then follows.This is useful if we can compute the degree of maps between spheres. Suppose f : Sn → Sn and y ∈ Snhas finitely many preimages
f−1(y) = {x1, . . . , xm}In this case, we can choose pairwise disjoint discs Ui containing xi, and a disc V containing y such that

f (Ui) ⊆ V . Then f defines a map (Ui, xi) → (V , y)This then defines a map
Z ∼= Hn(Ui, Ui \ x) → Hn(V , V \ y) = ZMoreover, recall that the isomorphisms above are from excision, and so the maps above are between the samecopy of Z. With this, we have a local degree of f at x . We will write

degxi (f ) or degf (xi) ∈ Z

for this. Another way (once we have a bit more machinery) is that Sn is orientable, and so Ui, V inherit anorientation. Once we fix this orientation, the local degree is well defined.
Lemma 3.2.11. Under the assumption that such a y exists,

deg(f ) = m∑
i=1 degxi (f )
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Proof. We have the diagram
Hn(Sn) Hn(Sn)

Hn(Sn, Sn \ {x1, . . . , xn}) Hn(Sn, Sn \ {y})

Hn(⊔i Ui,
⊔
i(Ui \ {xi})) Hn(V , V \ {y})

⊕m
i=1 Hn(Ui, Ui \ xi)

deg(f )

f∗

∼= excision ∼=excision

∼= ⊕degxi (f )

and the result follows from the fact that the diagram commutes.
Example 3.2.12By the same argument as for CPn, RPn has a cell structure of the form

en ∪ RPn−1
That is, there is an i-cell for 0 ≤ i ≤ n. The attaching map ∂en = Sn−1 → RPn−1 is the canonical 2 : 1map. With this, the cellular complex is:

0 Z Z · · · Z Z Z 00Consider
∂cell
k : C cell

k → C cell
k−1This is induced by

∂Dk = Sk−1 RPk−1 RPk−1/RPk−2 = Sk−1
Let η be the composition. At a general point p of the image Sk−1, p has two preimages under η.Moreover, near each of the preimages, η is a homeomorphism. Fix V ⊆ RPk−1 an open disc, under themap SK−1 → RPk−1, V has two (disjoint) preimages, U1, U2, with η|U2 = η|U1 ◦ (antipodal), and so

degx1 (f ) = (−1)k degx2 (f )With this, ∂cell
k is multiplication by 1 + (−1)k (possibly up to a sign). The complex then becomes

Z Z · · · Z Z Z Z 02 00and so the homology is
H∗(RPn) =


Z ∗ = 0
Z/2 0 < ∗ < n, ∗ odd
Z ∗ = n, n odd0 otherwise
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Example 3.2.13 (Exercise)If p(z) is a complex polynomial, then p extends to a continuous map p̂ : C∞ → C∞ of degree deg(p), andif x ∈ C is a root of p, the local degree degx (p̂) is the multiplicity of the root.c.f. the fundamental theorem of algebra. This is essentially local degree in complex analysis orRiemann surfaces.
Remark 3.2.14. If f : Sn → Sn is a smooth map, then f−1(y) is finite if y is a regular value, and by Sard’s theoremthe set of critical values has measure zero, and as such, the set of regular values is dense.Moreover, every continuous map Sn → Sn is homotopic to a smooth map.

3.3 Digression on cohomologySet C ∗cell(X ) = Hom(C cell
∗ (X ),Z), and ∂∗cell for the adjoint of ∂cell

∗ . Consider
Hi(Xi, Xi−1) Hi(Xi) Hi+1(Xi+1, Xi)

candidate for ∂∗cellBut on examples sheet 2, we show that the diagram below
Hi(Xi, Xi−1) Hi(Xi) Hi+1(Xi+1, Xi)

Hom(Hi(Xi, Xi−1),Z) Hom(Hi(Xi),Z) Hom(Hi+1(Xi+1, Xi),Z)
∼= ∼=

adjoint to ∂cell
kcommutes. Thus, we could have defined

C icell(X ) = Hi(Xi, Xi−1)and the boundary operators will have given the same cochain complex. Note however in the diagram above,the middle map need not be an isomorphism.
Proposition 3.3.1. Let X be a finite cell complex. Then we have a (non-canonical) isomorphism

Hi(X ) ∼= Hi(X )Tor(Hi(X )) ⊕ Tor(Hi−1(X ))
where for an abelian group A, Tor(A) is the subgroup of torsion elements.

Lecture 12
Proof. This is pure algebra. Let C∗ be a chain complex, such that the chain groups Ci are finitely generatedand free. Let C ∗ be the corresponding cochain complex, and then corresponding relation holds. That is,

Hj (X ) ∼= Hj (X )Tor(Hj (X )) ⊕ Tor(Hj−1(X ))
and so, all we are using is that for a finite cell complex, C cell

∗ is finitely generated and free,Break the chain complex into a sequence of short exact seqeuences
0 Zn Cn Bn−1 0

and 0 Bn Zn Hn(C∗) 0
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where Zn = ker(∂ : Cn → Cn−1), Bn−1 = im(∂ : Cn → Cn−1). In the top sequence, all of the groups are free.So we can split the top sequence. That is, there exists αn : Bn−1 → Cn such that ∂nαn = id. Then we have a(non-canonical) isomorphism
Cn ∼= Zn ⊕ Bn−1With this, the chain complex looks like

· · · Zn+1 ⊕ Bn Zn ⊕ Bn−1 Zn−1 ⊕ Bn−2 · · ·

In terms of this decomposition, ∂(Bn) ⊆ Zn. That is, C∗ breaks down as a direct sum of length two complexes.We can simplify this further. By choosing helpful bases for Bn and Zn−1 using the Smith normal form, whichsays that using a Z-change of basis, we can write

∂n =


d1
. . .

dk 0
. . . 0


where d1 | d2, d2 | d3 and so on. Then C∗ is broken into a direct sum of two kinds of complex:

0 Z Z 0d

for d ̸= 0, and 0 Z Z 00
For these two very simple complexes, the claim in the proposition is clear.With this, we can see that the natural map H∗(X ) → H∗(X ) is an isomorphism provided X is a finite cellcomplex, with Hi(X ) free abelian for all i.

Remark 3.3.2. For abelian groups H,G , let
Ext1(H,G) = {0 → G → J → H}

∼be extensions of H by G , modulo an equivalence relation where there exists φ : J1 → J2 making
0 G J1 H 0
0 G J2 H 0= =φ

commute. Note by the five lemma, φ is an isomorphism.
Theorem 3.3.3 (universal coefficient). There are exact sequences (for any topological space X ),

0 Ext1(Hn−1(X ), G) Hn(X ;G) Hom(Hn(X );G) 0
which are (non-canonically) split.

Proof. Omitted.Recall if X is a finite cell complex, then Hi(X ) is a finitely generated abelian group, and Hi(X ;F ) is a finitedimensional F-vector space.
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Definition 3.3.4 (Euler characteristic)If X is a finite cell complex, we define its Euler characteristic

χ (X ) =∑
i≥0 (−1)i rankZ(Hi(X ))

and more generally, if F is a field,
χ (X, F ) =∑

i
(−1)i dim(Hi(X ;F ))

Lemma 3.3.5. If X is a finite cell complex, then
χ (X ) =∑

i
(−1)iNi

where X has Ni i-cells in its cell structure.
Proof. Recall our short exact sequences

0 Zn Cn Bn−1 0
and 0 Bn Zn Hn(X ) 0
where C∗ = C cell

∗ (X ). Say Nn = rank(Cn), zn = rank(Zn) and bn = rank(Bn). Then
Nn = zn + bn−1 and rank(Hn(X )) = zn − bnSubstituting, ∑
k

(−1)k rankZ(Hk (X )) =∑
k≥0(−1)k (zk − bk )

= ∑
k ge0 (zk − (Nk+1 − zk+1))

=∑
k≥0(−1)k+1Nk+1 + z0

=∑
k≥0(−1)kNk

since z0 = N0.The same computation shows that χ (X ;F ) = ∑(−1)kNk , and so the Euler characteristic is independent ofour choice of field.
Example 3.3.6
χ (S4) = 2, χ (CP3) = 3 and so S4 is not homotopy equivalent to CP3.
Example 3.3.7If X is a union of two subcomplexes A, B, then

χ (X ) = χ (A) + χ (B) − χ (A ∩ B)
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Example 3.3.8If X, Y are finite cell complexes, then X × Y admits a cell structure, such that the open cells in X × Yare products of open cells in X and open cells in Y . Then
χ (X × Y ) = χ (X )χ (Y )

3.4 Generalised homology theories

Definition 3.4.1 (generalised homology theory)A generalised homology theory is an assignment
(X, A) 7→ h∗(X, A) =⊕

i∈Z
hi(X, A)

of a graded abelian group to a pair (X, A), where X is a topological space and A ⊆ X a subspace. Thisneeds to satisfy:
1. (functoriality) A map f : (X, A) → (Y , B) induces f∗ : h∗(X, A) → h∗(Y , B), with id∗ = id and(f ◦ g)∗ = f∗ ◦ g∗,2. (homotopy invariance) if f ≃ g as maps of pairs, f∗ = g∗,3. (long exact sequence) writing hi(X ) = hi(X,∅), we have a long exact sequence

· · · hi(A) hi(X ) hi(X, A) hi−1(A) · · ·

which is natural. The maps hi(A) → hi(X ) and hi(X ) → hi(X, A) are induced by inclusion.4. (excision) If Cl(Z ) ⊆ Int(A), then
hi(X \ Z, A \ Z ) ∼= h∗(X, A)

via the inclusion map.5. (unions) ⊕
α
h∗(Xα ) ∼= h∗

(⊔
α
Xα

)
via the sum of the inclusion maps.

These are called the Eilenberg-Steenrod axioms, and h∗({pt}) are called the coefficients of the theory.
Example 3.4.2We can build examples of the form (X, A) 7→ H∗(X, A) ⊗Z Rwhere R is an abelian group. A ‘meta-theorem’ says that interesting generalised homology theories arenot from chain complexes.
Proposition 3.4.3. If h∗, k∗ are generalised homology theories on the set of pairs (X, A) of a cell complexand a subcomplex, and if Φ : h∗ → k∗ is a natural transformation, then Φ being an isomorphism on a pointimplies it is an isomorphism on all such pairs.

Lecture 13
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Outline proof where X is finite dimensional. We induct on dim(X ). If X = X0, then X is a discrete set and theunions axiom implies the result.Suppose inductively Φ : h∗(X, A) → k∗(X, A) is an isomorphism whenever dim(X ) ≤ n − 1. Let X be an
n-dimensional cell complex. In this case, we have long exact sequences

hi+1(X, Xn−1) hi(Xn−1) hi(X ) hi(X, Xn−1) hi−1(Xn−1)

ki+1(X, Xn−1) ki(Xn−1) ki(X ) ki(X, Xn−1) ki−1(Xn−1)
Φ Φ Φ Φ Φ∼= ∼=

By the five lemma, if Φ is an isomorphism on hi(X, Xn−1) for all i, then it is an isomorphism on hi(X ). But byexcision,
h∗(X, Xn−1) = h∗(Xn, Xn−1) ∼= h∗

(⊔
α
Dn
α ,
⊔
α
∂Dn

α

)
Here, we are using the fact that Xn−1 has a neighbourhood Nε(Xn−1) ⊆ Xn for all ε sufficiently small, whcihare constructed cell by cell, and retract onto the boundary on each cell. By the unions axiom,

h∗

(⊔
α
Dn
α ,
⊔
α
∂Dn

α

) =⊕
α
h∗(Dn

α , ∂Dn
α )

Now consider the LES of the pair
hi(∂Dn) hi(Dn) hi(Dn, ∂Dn) hi−1(∂Dn) hi−1(Dn)

ki(∂Dn) ki(Dn) ki(Dn, ∂Dn) ki−1(∂Dn) ki−1(Dn)
ΦΦΦ Φ Φ

Using the fact that ∂Dn is (n− 1)-dimensional, and Dn is contractible (and using homotopy invariance), by thefive lemma the middle map is an isomorphism. Hence by induction, we have that
Φ(X,∅) : h∗(X ) → k∗(X )

is an isomorphism when dim(X ) = n. Now the same argument with the LES of the pair and the five lemmashows that Φ(X,A) is an isomorphism if X is a cell complex and A is a subcomplex.
Remark 3.4.4. The result is true for infinite dimensional cell pairs, but it uses the “telescope construction”, see Hatcher.
Remark 3.4.5. There is a corresponding notion of a generalised cohomology theory. We replace the covariant functor
h∗ with a contravariant functor h∗ , reverse the long exact sequence, and replace the direct sum with the direct productin the unions axiom.The analogue of the previous proposition holds with the same proof.

4 Cohomology
4.1 Cup product

Definition 4.1.1 (cup product)Let X be any topological space, φ ∈ C k (X ), ψ ∈ C ℓ (X ), then their cup product φ ⌣ ψ ∈ C k+ℓ (X ) is
(φ ⌣ ψ)(σ : [v0, . . . , vk+ℓ ] → X ) = φ

(
σ|[v0,...,vk ])ψ (σ|[vk ,...,vk+ℓ ])
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Notation 4.1.2. We will write φ · ψ = φ ⌣ ψ .
For the cup product, it’s useful to have the de Rham theory in mind. In this case, α ∈ Ωk (M), β ∈ Ωℓ (M),and the cup product is the wedge product α ∧ β ∈ Ωk+ℓ (M). The lemma below is then the same formula asthe exterior derivative of a wedge product.

Lemma 4.1.3. If ∂∗ : C ∗(X ) → C ∗+!(X ) is the boundary operator, then
∂∗(φ · ψ) = (∂∗φ) · ψ + (−1)kφ · ∂∗ψ

Proof. Let [v0, . . . , vk+ℓ+1] be a (k + ℓ + 1)-simples of X . Then
(∂∗φ)ψ([v0, . . . , vk+ℓ+1]) = k+1∑

i=0 (−1)iφ([v0, . . . , v̂i, . . . , vk+1])ψ([vk+1, . . . , vk+ℓ+1])
On the other hand,

(−1)kφ(∂∗)([v0, . . . , vk+ℓ+1]) = φ([v0, . . . , vk ]) k+ℓ+1∑
i=k (−1)iψ([vk , . . . , v̂i, . . . , vk+ℓ+1])

where the indexing on the right hand side absorbed the sign (−1)k .In the two expressions, there is only one term which appears twice, which are
(−1)k+1φ([v0, . . . , vk ])ψ([vk+1, . . . , vk+ℓ+1]) + (−1)kφ([v0, . . . , vk ])ψ([vk+1, . . . , vk+ℓ+1]) = 0

and cancel. The remaining terms give
(φψ) (k+ℓ+1∑

i=0 (−1)i[v0, . . . , v̂i, . . . , vk+ℓ+1]) = (φψ)(∂σ ) = ∂∗(φψ)(σ )

Corollary 4.1.4. Cup product descends to cohomology, and so it induces a map
Hk (X ) × Hℓ (X ) → Hk+ℓ (X )

which makes H∗(X ) into a graded unital ring.
Proof. Let φ ∈ C k (X ), ψ ∈ C ℓ (X ) be cocycles, The lemma gives that ∂∗(φψ) = 0, and so [φψ ] represents acohomology class in Hk+ℓ (X ). Next, we need to show that this is independent of choices.A general representative of [φ] is φ + ∂∗α , then φψ becomes

(φ + ∂∗α)ψ = φψ + (∂∗α)ψ = φψ + ∂∗(αψ)
With this, the element [φ][ψ ] = [φψ ]is well defined.Recall we have an element 1 ∈ C 0(X ), given by 1(p) = 1 for all p ∈ X . With this,

∂∗1(σ ) = 1(v0) − 1(v1) = 1 − 1 = 0
and so ∂∗1 = 0. With this, we have an associated element 1 = [1] ∈ H0(X ). It is easy to see that 1ψ = ψ and
ψ1 = ψ , and so this is a unit.
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Remark 4.1.5 (on coefficients). Recall for any abelian group G , we have Cj (X ;G) for chains with coefficients in G ,and a corresponding cochain group
C j (X ;G) = HomZ(Cj (X ;Z), G)If G is a commutative (not necessarily unital) ring, then we can define cup product on C ∗(X ;G), which induces a cupproduct on H∗(X ;G), making it into a graded (not necessarily unital) ring. If G is a unital ring, then H∗(X ;G) is aunital ring.

Proposition 4.1.6 (Properties of the cup product). 1. (associativity) (φ · ψ) · τ = φ · (ψ · τ),2. if f : X → Y is a continuous map, then the induced map f ∗ : H∗(Y ) → H∗(X ) is a ring homomorphism.In fact, this is already true at the cochain level.3. The cross product is
Hi(Y ) × Hj (Z ) → Hi+j (Y × Z )(φ, ψ) 7→ pr∗

Y φ · pr∗
Z ψ

Lecture 14
Example 4.1.7If X = {∗}, then

H∗(X ) = {Z ∗ = 00 otherwiseIn this case, H∗(X ) = Z has its usual ring structure.
Example 4.1.8Now consider X = Sn, where n > 1. Then

H∗(Sn) = {Z ∗ = 0, n0 otherwise
If x is a generator of Hn(Sn), then x · x ∈ H2nSn = 0, and so

H∗(Sn) = Z[x ]
⟨x2⟩

where |x| = n.
Notation 4.1.9. We write |x| = k for the degree of x ∈ Hk (X ).
Example 4.1.10If X, Y are cell complexes, x0 ∈ X, y0 ∈ Y , then we have maps

X ∨ Y

X Y
pX pY

iX iY

where pX is given by collapsing Y and iX is the inclusion map. This gives us ring homomorphisms
p∗
X : H∗(X ) → H∗(X ∨ Y )
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Since x0, y0 are neighbourhood deformation retracts, we have an open cover of X ∨ Y and using Mayer-Vietoris, we have that H̃∗(X ) ⊕ H̃∗(Y ) → H̃∗(X ∨ Y )is an isomorphism of abelian groups. Hence we know H∗(X ∨ Y ) in terms of H∗(X ) and H∗(Y ). With this,if α ∈ Hi(X ), β ∈ Hj (Y ), with i, j > 0, then α · β = 0.More simply, H∗(X ⊔ Y ) = H∗(X ) ⊕ H∗(Y )as rings.
Proposition 4.1.11. H∗(X ) is a graded commutative ring, that is, if φ ∈ Hk (X ), ψ ∈ Hℓ (X ), then

φ · ψ = (−1)kℓψ · φ

Remark 4.1.12. If R is a commutative ring, then H∗(X ;R ) is a graded-commutative ring. Moreover, unlike associativity,this is not true at the cochain level.
Example 4.1.13Suppose X has

H∗(X ) = {Z ∗ = 0, 3, 60 otherwiseFor degree reasons, the only possible non-trivial cup product is
H3(X ) × H3(X ) → H6(X )

But if θ ∈ H3(X ) is a generator, then by graded commutativity,
θ · θ = −θ · θ

and so θ · θ = 0 since H6(X ) is torsion free.
Theorem 4.1.14 (Künneth). Let Y be a space be such that Hi(Y ) is free and finitely generated for all i.Then the cross product Hk (X ) × Hℓ (Y ) → Hk+ℓ (X × Y )induces an isomorphism of graded rings⊕

k+ℓ=nHk (X ) ⊗ Hℓ (Y ) → Hk+ℓ (X × Y )
whenever X is a finite cell complex.
Remark 4.1.15. In general, cross product induces a homomorphism

H∗(X ;R ) ⊗R H∗(Y ;R ) → H∗(X × Y ;R )
of abelian groups, and if we declare the left hand side is a (graded) ring via

(a ⊗ b)(c ⊗ d) = (−1)|b||c|(ac) ⊗ (bd)
and so the map from the cross product is a ring homomorphism. In the case of the Künneth formula, we then obtainan isomorphism of rings.
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Example 4.1.16Recall H∗(S1) = Z[x ]
x2with |x| = 1. Equivalently, this is Λ(x), exterior algebra on one generator (i.e Λ∗Z).Recall additively,

H∗(T 2) =

Z ∗ = 0, 2
Z2 ∗ = 10 otherwiseIn terms of the Künneth formula,

H0(T 2) = H0(S1) ⊗ H0(S1)H1(T 2) = H0(S1) ⊗ H1(S1) ⊕ H1(S1) ⊗ H0(S1)H2(T 2) = H1(S1) ⊗ H1(S1)
if xi ∈ H1(S1) is a generator for the i-th factor, then the map H1(T 2) × H1(T 2) → H2(T 2) will be

(1 ⊗ x2)(x1 ⊗ 1) = −x2x1
This is isomorphic to the exterior algebra Λ(x1, x2). Iteratively,

H∗(T n) = Λ(x1, . . . , xn)
where H1(Tn) ∼= Zn has generators x1, . . . , xn.
Example 4.1.17By Mayer-Vietoris, we know that

H∗(Σg) = {Z ∗ = 0, 2
Z2g ∗ = 1

Let 1 ∈ H0(Σg) and u ∈ H2(Σg) be generators.
Claim 4.1.18. H∗(Σg) = Z

〈
x1, y1, . . . , xg, yg〉〈

xixj = yiyj = 0, xiyj = δiju
〉

(and with the relations from skew-commutativity).
Proof. By collapsing the purple subspace

we have a projection map π : Σg →
∨g
i=1 T 2

i . We also have a natural inclusion map p : ⊔i T 2
i →

∨g
i=1 T 2

i .The maps π∗ and p∗ are ring homomorphisms on cohomology, and they define isomorphism on H1. In
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particular, Hi(⊔
i
T 2) ∼= n⊕

i=1 Λ(xi, yi)
where |xi| = |yi| = 1, and generate H1(T 2

i ). Since p∗, π∗ are ring homomorphisms on H1, we can usethese to define classes in H1(Σg).On H2, we have
Z = Hi(Σg) H2(∨g

i=1 T 2
i ) = Zg

H2(⊔i T 2
i ) = Zg

π∗

p∗

and if ui = xiyi ∈ H2(T 2
i ) are generators, we need to show that the map Zg → Z sends ui to u. To seethis, we need to consider the map H2(T 2) → H2(Σg)when Σg → T 2 is the map to one factor. Recall from out computation of degree of maps between spheresthat if we have a point with finite preimage, we can express

deg(f ) =∑
i

degxi (f )
as a sum of the local degree. The same argument works in this case, and so the degree is well defined.Thus, up to changing the sign of yj , we get the result we want, since the degree of the map Σg → T 2is 1.
Corollary 4.1.19. Let f : Sn → T n be any map, and n > 1. Then f has degree zero, where deg(f ) :Hn(T n) → Hn(Sn).

Proof. f induces a ring homomorphism from
H∗(T n) = Λ(x1, . . . , xn)to H∗(Sn) = Z[u]

u2Since n > 1, H1(Sn) = 0, and so f ∗(xi) = 0. Hence
f ∗(x1 · · · xn) = f ∗(x1) · · · f ∗(xn) = 0

Lecture 15
Proof of theorem 4.1.14. Recall that

C ∗(X, A) = {f ∈ C ∗(X ) | C∗(A) ⊆ ker(f )}
If φ ∈ C k (X, A), ψ ∈ C ℓ (X ), then for σ : ∆k + ℓ → A a simplex in A,

φ · ψ(σ ) = φ(front of σ )ψ(back of sigma)
and so φ · ψ ∈ C k+ℓ (X, A). From this, we have a relative cup product

Hk (X, A) × Hℓ (X ) → Hk+ℓ (X, A)
In particular, H∗(X, A) is a graded ring, but it is typically not unital. We also have a relative cross product,

C k (X, A) ⊗ C ℓ (Y ) → C k+ℓ (X × Y , A × Y )
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and this induces a map on cohomoloogy
Hk (X, A) ⊗ Hℓ (Y ) → Hk+ℓ (X × Y , A × Y )

Now consider the associations for fixed Y , with cellular pairs (X, A),
h∗(X, A) := H∗(X, A) ⊗ H∗(Y )
k∗(X, A) := H∗(X × Y , A × Y )

and the relative cup product defines a map Φ : h∗(X, A) → k∗(X, A). If (X, A) = (pt,∅), then
Φ : h∗(pt) = Z ⊗ H∗(Y ) ∼= H∗(pt × Y ) = H∗(Y )

By our discussion of generalised cohomology theories, if Φ is a natural transformation, and if h∗, k∗ aregeneralised cohomology theories, then Φ will be an isomorphism for all cellular pairs (X, A).
h∗, k∗ are generalised cohomology theories: For k∗, all the axioms follow by our known properties ofsingular cohomology. For h∗, naturality, homotopy invariance and excision are immediate. The long exactsequence and unions axioms hold as we are assuming that Hi(Y ) is finitely generated and free. That is, if Mis finitely generated and free, then(i) the functor TM (N) = M ⊗N is exact (i.e. it preserves exact sequences),(ii) M ⊗

∏
α Nα = ∏α (M ⊗Nα ),Φ is a natural transformationWe know the cup product and cross products are natural for maps of spaces. So naturality, homotopyinvariance and excision axioms are fine. Consider

Hk (A) ⊗ Hℓ (Y ) Hk+1(X, A) ⊗ Hℓ (Y )

Hk+ℓ (A × Y ) Hk+ℓ+1(X × Y , A × Y )
ΦΦ

∂LES⊗id

∂LES
We need the square to commute and then Φ will be compatible with the long exact sequences.Recall given φ ∈ C k (A) with ∂∗φ = 0, we extend it to φ̂ ∈ C k (X ), and set

∂LES[φ] = ∂∗[φ̂]
Thus, if φ ∈ C ℓ (Y ) is any cocyle, then φ̂ ×ψ is an extension of φ×ψ from A×Y to X ×Y . Hence the squarecommutes.
Sketch proof of proposition 4.1.11. Let εn = (−1)n(n+1)/2, and

ρ : Cn(X ) → Cn(X )[v0, . . . , vn] 7→ εn[v0, . . . , vn]
Claim 4.1.20. ρ is a chain map, which is chain homotopic to the identity.
Given the claim,

(ρ∗φ) · (ρ∗(ψ))([v0, . . . , vk+ℓ ]) = φ(εk [vk , . . . , vn])ψ(εℓ [vk+ℓ , . . . , vk ])
whereas

ρ∗(ψ · φ) = εk+ℓψ([vk+ℓ , . . . , vk ])φ([vk , . . . , v0])and we also have that
εkεℓ = (−1)kℓεk+ℓand ρ being chain homotopic to id shows that ρ∗ = id on H∗, and the result then follows.
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To see that ρ is a chain map, we can just compute. We would like the diagram to commute
Cn(X ) Cn−1(X )

Cn(X ) Cn−1(X )
ρ ρ

∂

∂

But
∂(ρσ ) = εn

∑(−1)iσ|[vn,...,v̂n−i,...,v0 ]and
ρ(∂σ ) = εn−1∑(−1)n−iσ|[vn,...,v̂n−i,...,v0 ]Since εn = (−1)nεn−1, we are done.For the homotopy, we will need a twisted prism operator. We want P : Cn(X ) → Cn+1(X ) such that

∂P + P∂ = ρ − id
If π : ∆n × [0, 1]n → ∆n is the projection map, define

Pσ =∑
i

(−1)iεn−iπ([v0, . . . , vi, wn, . . . , wi])
Lecture 16

4.2 Projective spaceWe will go through an extended example. Recall CPn has a cell structure with one cell in each even dimension0, 2, . . . , 2n. In particular, ∂∗cell = 0. Hence H∗(CPn) ∼= C ∗cell(CPn).As a ring, we will show that H∗(CPn) = Z[x ]
xn+1where |x| = 2. Thus, x i ̸= 0 and generates Hi(CPn) ∼= Z for 0 ≤ i ≤ n.

Lemma 4.2.1. There is a natural map
π : CP1 × · · · × CP1︸ ︷︷ ︸

n copies → CPn

which is invariant under permutation, and so it induces a homeomorphism
π : (CP1)n

Sn
∼= CPn

Proof. For (a : b) ∈ CP1, we associate the linear homogeneous polynomial (bx −ay) which vanishes at (a : b).If we have (a1 : b1), . . . , (an, bn) ∈ P1, consider
n∏
i=1(bix − aiy) = α0xn + α1xn−1y+ · · · + αn−1xyn−1 + αnyn

and define
π((a1 : b1), . . . , (an : bn)) = (α0 : · · · : αn)Clearly(i) π is continuous,(ii) it descends to a map (CP1)n/Sn → CPn,
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(iii) from the fundamental theorem of algebra, the map is surjective (consider roots),(iv) the induced map π is a bijection, as a polynomial, up to scaling, is determined by its roots. So π is ahomeomorphism by the topological inverse function theorem.
We’ve seen H2n(CPn) = Z, and that H∗(CP1) = Z[x ]

x2where |x| = 2. Since H∗(CP1) is finitely generated and free in each degree, and so we can use Künneth to getthat
H∗(CP1 × · · · × CP1) ∼= n⊗

i=1 Hi(CPn)
= Z[u1, . . . , un]〈

u21, . . . , u2
n
〉

where |ui| = 2. In particular, H2n((CP1)n) ∼= Zgenerated by u1 · · · un. Hence it makes sense to compute the degree of π . That is, what is the induced map
π∗ : H∗(CPn) → H∗((CP1)n)

Choose a generic point q = (α0 : · · · : αn) representing a polynomial with distinct roots, then naturally
π−1(q) = {pσ | σ ∈ Sn}

is a finite set of n! elements. By our considerations of local degree, we can fix a small disc q ⊆ V , Vhomeomorphic to R2n, with q not intersecting the locus of polynomials with repeated roots, such that
π−1(V ) = ⊔

σ∈Sn

Uσ

where π : Uσ → V is a homeomorphism. That is, away from the locus of polynomials with repeated roots, the
Sn action is free. With this, by local degree computations,

deg(σ ) = ∑
σ∈Sn

degpσ (π)
where each degpσ (π) = ±1 since π is a local homeomorphism. But the maps

πσ : Uσ → V and πτ : Uτ → V

differ by the homeomorphism of (CP1)n given by the elmeent στ−1 ∈ Sn.But if we fix an isomorphism H2(P1) ∼= Z, where ui = 1, then the Sn action on (CP1)n induces an actionon H2((CP1)n) = Zu1 ⊕ · · · ⊕ Zun, by permuting the ui (for example, thinking about cellular maps). Hence theaction preserves u1 · · · un ∈ H2n((CP1)n). Thus, all of the local degrees are the same. Hence (up to a sign)deg(π) = n!. Now consider the pullback map
H∗(CPn) → H∗((CP1)n) = Z[u1, . . . , un]〈

u21, . . . , u2
n
〉

Let x be a generator of H2(CPn). In fact, from the cell structure of CPn, the 2-skeleton is a copy of CP1. Theinclusion CP1 → CPn induces an isomorphism
H2(CPn) → H2(CP1)

Now consider
CP1 × some generic, i.e. pairwise distinct points ⊆ (CP1)n
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The image under π is a line in CPn. Hence we can choose x so that it restricts to u1. By symmetry (i.e.
Sn-equivariance), π∗(x) = u1 + · · · + un.In this case, π∗(xn) = deg(π)u1 · · · un. But then the right hand side is non-zero, and so xn ̸= 0. In fact,(u1 + · · · + un)n = n!u1 · · · un. Hence x i ̸= 0 for all 1 ≤ i ≤ n. Moreover, x i is the generator of H2i(CPn)1.We can think about this in terms of algebraic geometry (assuming some more machinery). The generatorin H2(CPn) is the Poincaré dual to the fundamental class of a hyperplane [H ] ∈ H2n−2(CPn). That is, it is theclass of a linear form. What the homeomorphism π represents is that a point in CPn can be represented bythe intersection of n (generic) hyperplanes, and cup product is Poincaré dual to intersection.

Corollary 4.2.2. A map f : CP2 → CP2 cannot have degree −1.
Proof. deg(f ) is defined by f ∗(x2) = (deg f )x2 where |x| = 2, but f ∗(x) = λx , for some λ ∈ Z, and so
f ∗(x2) = λ2x2, and λ2 ̸= −1.In fact, we see that the degree of f has to be a square.A consequence of our computations is that for M = (CP1)n,CPn, and a non-zero class α ∈ H∗(M), thereexists β ∈ H∗(M) such that |α · β| = dim(M)2. In fact, this is a general fact of the cohomology classes ofcompact oriented manifolds. This is called Poincaré duality, and it is our next goal. But we would like tounderstand the cohomology of a manifold.Locally, M is a disc, and the cohomology of a disc is not very interesting.
4.3 Cohomology with compact supportLet X be any space, K1, K2 ⊆ X be compact subsets. If K1 ⊆ K2, then X \ K1 ⊇ X \ K2, and so we have aninclusion of pairs (X, X \ K2) ⊆ (X, X \ K1). This defines a pullback map on cohomology

H∗(X, X \ K1) → H∗(X, X \ K2)
Definition 4.3.1 (cohomology with compact support)The cohomology of X with compact supports is H∗ct(X ), given by

lim−→
K⊆X compact H∗(X, X \ K )

4.3.1 Crash course on direct limitsLet A be a poset, such that for any a, b ∈ A, there exists c ∈ A with a ≤ c, b ≤ c.A direct limit of abelian groups on A: Given the data• abelian groups {Ga}a∈A ,• a homomorphism ρab : Ga → Gb if a ≤ b, such that1. ρaa = idGa ,2. ρbcρab = ρac if a ≤ b ≤ c.The direct limit is lim−→
a∈A

Ga = ⊕
a∈A Ga

⟨x − ρab(x)⟩If x ∈ Ga, y ∈ Gb, choose c with a ≤ c, b ≤ c, then x ∼ ρac(x) ∈ Gc, y ∼ ρbc(x) ∈ Gc , and so we can set
[x ] + [y] = [ρac(x) + ρbc(y)]

1To see this, note that the inclusion CPn−1 ↪→ CPn induces isomorphismsHi(CPn−1) ∼= Hi(CPn)for 0 ≤ i ≤ 2n − 2, and so if we show that xn generates H2n(CPn), then under the above isomorphism, xn also generates H2n(CPn+k ) forany k ≥ 0. The result then follows by induction.2Dimension of M as a real manifold.
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This makes lim−→a Ga into an abelian group.If Γ ⊆ A is cofinal, that is, for all a ∈ A, there exists γ ∈ Γ, with a ≤ γ , then
lim−→
a∈A

Ga = lim−→
γ∈ΓGγ Lecture 17

Example 4.3.2Let A = N with its usual order, Ga = Z/pa for a fixed prime p. The maps are
Z
pa → Z

pa+1
x 7→ px

The direct limit is
lim−→
A
Ga = Z(p∞) = {z ∈ S1 | z is a pn root of unity for some n ∈ N

}
The result is called the Prüfer group

Example 4.3.3Let A = N again, with n ≤ m ⇐⇒ m | n, and groups Ga = Z, and ρab is multiplication by b/a. In thiscase, lim−→
A
Ga = Q

Note that the elements (n!) form a cofinal family, and so we have that the limit is
Z Z Z Z · · ··2 ·3·1

Equivalently,
Z 12!Z 13!Z · · ·id id id

and so the limit is ⋃
n∈N

1
n!Z = Q

Example 4.3.4If X is a compact set, then the poset K of compact subsets of X ordered by inclusion has a final element,namely X , and so H∗ct(X ) = lim−→
K

H∗(X, X \ K ) = H∗(X, X \ X ) = H∗(X )

Example 4.3.5

H∗ct(Rn) = {Z ∗ = n0 otherwise
By Heine-Borel, every compact K ⊆ Rn lies in B(0, N) for some N , and so

lim−→
K

H∗(Rn,Rn \ K ) = lim−→
N

H∗(Rn,Rn \ B(0, 1))
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But via the long exact sequence of the pair, and homotopy invariance,
H∗(Rn,Rn \ B(0, N)) → Hi−1(Sn−1)

Moreover, this is compatible with the inclusion B(0, N) ⊆ B(0, N + 1), and so the direct limit is just
Z Z Z · · ·id id

which is Z, where the only non-zero degree is when ∗ = n.
Note that H∗ct({pt}) = {Z ∗ = 00 otherwise H∗ct(Rn) = {Z ∗ = n0 otherwiseand so it is not homotopy invariant. Moreover, it is not functorial either. On the other hand, if f : X → Y iscontinuous, closed and proper, then it induces a map

H∗ct(Y ) → H∗ct(X )
Again in this case it is helpful to keep in mind the case of de Rham theory. The corresponding idea is toconsider the space of compactly supported differential forms, i.e. α ∈ Ωk (M) which is zero outside of a compactset K ⊆ M .On the other hand, if i : U → X is the inclusion of an open set in a Hausdorff space X , then we have an

extension by zero map i∗ : H∗ct(U) → H∗ct(X ), using the fact that if K ⊆ U is compact, then K ⊆ X is compact.This gives a map from compact sets on U to compact sets on X , which gives an induced map on cohomology.In particular, we are interested in the case when X is a manifold and U ⊆ X is a disc.
5 Cohomology of manifolds
Recall in this course, an n-manifold is a Hausdorff space locally homeomorphic to Rn.
5.1 Orientation

Definition 5.1.1 (local orientation)Let R be a unital commuative ring (most importantly Z and Z/2). A local R-orientation for a manifold Mat x ∈ M is a choice of generator
εx ∈ Hn(M,M \ x ;R ) ∼= R

Recall by excision, Hn(M,M \ x ;R ) ∼= Hn(U,U \ x), where U is an open ball.
Definition 5.1.2 (oriented)A manifold M is R-oriented if we have chosen local orientations εx for all x ∈ M , such that if φ : U → Rnis a chart on M in a preferred atlas, such that for all pi ∈ U ⊆ M ,

Hn(M,M \ pi) ∼= Hn(Rn,Rn \ φ(pi))
by excision above, and we can define a map of pairs (Rn,Rn \ φ(p1)) → (Rn,Rn \ φ(p2)) by translation,which induces an isomorphism on the right hand side. This induces an isomorphism

ψ : Hn(M,M \ p1) → Hn(M,M \ p2)
we require ψ(εp1 ) = εp2 .
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Diagramatically, ψ is given by
Hn(M,M \ p) Hn(U,U \ p) Hn(Rn,Rn \ φ(p))
Hn(M,M \ q) Hn(U,U \ p) Hn(Rn,Rn \ φ(q))ψ

excision

excision

chart

chart
translation

Remark 5.1.3. If U, V ⊆ Rn are open, f : U → V is a homeomorphism is orientation preserving if for all x ∈ U, f (x) ∈
V , Hn(Rn,Rn \ 0) Hn(Rn,Rn \ x) Hn(U,U \ x)

Hn(Rn,Rn \ 0) Hn(Rn,Rn \ y) Hn(V , V \ x)
translation

translation

excision

excision
f∗id

commutes. Then M is orientable if it admits an atlas {Uα , φα} of charts where the transition maps are orientationpreserving.
Remark 5.1.4. If R = Z/2, then Z/2 has only one generator, and so all manifolds are Z/2 orientable.
Theorem 5.1.5 (Poincaré duality). Let R be an R-oriented manifold of dimension n, then there is adistinguised isomorphism

D : Hict(M ;R ) → Hn−i(M ;R )In particular, if M is compact, then
D : Hi(M ;R ) → Hn−i(M ;R )

Remark 5.1.6. By considering R = Z and M being RP2 or the Klein bottle, we see that we need the orientabilityrequirement.
The isomorphism D is obtained from the cap product.

5.2 Cap product

Definition 5.2.1 (cap product)Let X be any topological space, the cap product is
⌢: Ck (X ) ⊗ C ℓ (X ) → Ck−ℓ (X )[v0, . . . , vk ] ⊗ ψ 7→ ψ([v0, . . . , vℓ ])[vℓ , . . . , vk ]

for ℓ ≤ k , and 0 if ℓ > k .
Lemma 5.2.2. For any space X ,(i) ∂(σ ⌢ φ) = (−1)ℓ (∂σ ⌢ φ − σ ⌢ ∂∗φ) for σ ∈ Ck (X ), φ ∈ C ℓ (X ). Indeed, ⌢ induces a pairing(for ℓ ≤ k ) Hk (X ) ⊗ Hℓ (X ) → Hk−ℓ (X )

(ii) Given a map f : X → Y ,
f∗(α) ⌢ ψ = f∗(α ⌢ f ∗(ψ))for α ∈ Hk (X ), ψ ∈ Hℓ (Y ).
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(iii)
ψ(σ ⌢ φ) = (φ ⌣ ψ)(σ ) ∈ ZFor σ ∈ Ck+ℓ (X ), φ ∈ C k (X ), ψ ∈ C ℓ (X ),(iv) for a pair (X, A), there is a relative cap product

Ck (X, A) ⊗ C ℓ (X, A) → Ck−ℓ (X )
which descends to coohomology.

Lecture 18
Proof. For (i),

∂σ ⌢ φ = ℓ∑
i=0 φ([v0, . . . , v̂i, . . . , vℓ+1])[vℓ+1, . . . , vk ] + k∑

i=ℓ+1(−1)iφ([v0, . . . , vℓ ])[vℓ , . . . , v̂i, . . . , vk ]
σ ⌢ ∂∗φ = ℓ+1∑

i=0 (−1)iφ([v0, . . . , v̂i, . . . , vℓ+1])[vℓ+1, . . . , vk ]
∂(σ ⌢ φ) = k∑

i=ℓ (−1)i+ℓφ([v0, . . . , vℓ ])[vℓ , . . . , v̂i, . . . , vk ]
Rearrange/compare terms to get the result.For (ii), and (iii), they hold at chain lebel from definitions. Say at the level of (co)homology we have for (ii)

Hk (X ) ⊗ Hℓ (Y ) Hk (Y ) ⊗ Hℓ (Y ) Hk−ℓ (Y )

Hk (X ) ⊗ Hℓ (Y ) Hk (X ) ⊗ Hℓ (X ) Hk−ℓ (X )

f∗⊗id ⌢

id ⊗f ∗ ⌢

f∗

and for (iii) Hℓ (X ) Hom(Hℓ (X ),Z)

Hk+ℓ (X ) Hom(Hk+ℓ (X ),Z)
φ⌣· (·⌢φ)∗

Note that the horizontal maps in (iii) don’t need to be isomorphism, but if we worked over a field, then theywould be.
Ivan lost (iv) somewhere...We want to define the map D from the statment of Poincaré duality.

Proposition 5.2.3. Let M be an oriented n-manifold, and so we have ωx ∈ Hn(M,M \ x) which arecoherent. Then for each K ⊆ M compact, there exists a unique ωK ∈ Hn(M,M \ K ) such that the mapon pairs (M,M \ K ) → (M,M \ x)sends ωK to ωx for all x ∈ K . Note that Hi(M,M \ K ) = 0 for i > n.
Given the proposition, then M be oriented, K ⊆ L ⊆ M be compact. We can consider

Hi(M,M \ L) ⊗ Hk (M,M \ L) Hi−k (M)

Hi(M,M \ K ) ⊗ Hk (M,M \ K ) Hi−k (M)

⌢

⌢
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where the vertical maps are induced from the inclusion i (of pairs). Now
ωK ⌢ φ = i∗ωL ⌢ φ = ωL ⌢ i∗φsince by uniqueness, i∗ωL = ωK .The map φ 7→ ωk ⌢ φ is compatible with the maps in the directed system definining H∗ct via invlusions

K ↪→ L. So there exists an induced map Hkct(M) → Hn−k (M).Moreover, if M is compact, then we have ωM ∈ Hn(M), and D(φ) = ωM ⌢ φ is called the fundamental
class, denoted by [M ].
Proof of proposition 5.2.3. We will prove this for more and more general classes of K . We say that K ⊆ Mcompact is good if it satisfies the conclusions of the proposition.

Step 1: If A, B, A ∩ B are good, then so is A ∪ B. In this case, we have
· · · Hn+1(M,M \ A ∩ B) Hn(M,M \ A ∪ B) Hn(M,M \ A) ⊕ Hn(M,M \ B) Hn(M,M \ A ∩ B) · · ·

By uniqueness, ωA 7→ ωA∩B and ωB 7→ ωA∩B under relative inclusions. Hence the mapHn(M,M \ A) ⊕ Hn(M,M \ B) → Hn(M,M \ A ∩ B)is zero. Hence we have a class ωA∪B mapping to ωA and ωB . By assumption, Hn+1(M,M \ A ∩ B) is zero, andso ωA∪B is unique. Moreover, for all x ∈ A∪B, by construction ωA∪B 7→ ωx . Finally, Hi(M,M \A∪B) = 0 for
i > n by exactness of the Mayer-Vietoris sequence.

Step 2: If K ⊆ Rn is convex, then K is good. If so, then H∗(Rn,Rn \ K ) = H∗(Rn,Rn \ 0). But this caseis easy, since we can use translations. Using step 1, finite unions of convex sets is good.
Step 3: Every compact set K ⊆ Rn is good. If K ⊆ Rn is compact, then K ⊆ B = B(0, R ) for some R > 0.Define ωK to be the restriction of ωB to K , via(Rn,Rn \ B) → (Rn,Rn \ K )We will write ωK = ωB|K . Since ωB 7→ ωx under restriction, so does ωK . So what we need is uniqueness.That is, we need to know that no other element of Hn(Rn,Rn \ K ) also satisfies the requirement that it pushesforward to ωx for all x ∈ K .That is, we want to know if that if λ ∈ Hn(Rn,Rn \ K ), with λ|x = 0 for all x ∈ K , then λ = 0. Supposewe have such a λ. So λ is represented by a chain, and ∂λ is a finite union of simplices in Rn \ K . Thus thereexists a finite union of balls Bj such that
• K ⊆ K̃ = ⋃j Bj• ∂λ ∩ K̃ = ∅That is,

λ ∈ im(Hn(Rn,Rn \ K̃ ) → Hn(Rn,Rn \ K ))But K̃ is a finite union of convex sets, so it is good. Hence λ = 0 by the uniqueness for K̃ .
Step 4: If K ⊆ M is compact, it is good. We can write K as a finite union of Ki, where each Ki is acompact subset of the coordinate neighbourhoods. Each Ki is good, and so their union is good by step 1. Lecture 19

5.3 Consequences of Poincaré dualityTake coefficients in a field F . Recall that
ψ(σ ⌢ φ) = (φψ)(σ )and we have an isomorphism Hk (M ;F ) → Hom(Hk (X ;F ), F ) = Hk (X ;F )∗a and so we get a pairing Hkct(M ;F ) ⊗ Hn−k (M ;F ) → F(φ, ψ) = ψ(Dφ)
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and Poincaré dueality says that this pairing is non-degenerate. In particular, if M is compact, then the map isHk (M ;F ) ⊗ Hn−k (M ;F ) → F(φ, ψ) 7→ ⟨φ · ψ, [M ]⟩In the de Rham theory, the pairing is given byHkct(M) ⊗ Hn−k (M) → R

(α, β) 7→
∫
M
α ∧ β

Corollary 5.3.1. Let M,N be oriented connected compact n-manifolds, and so Hn(M) ∼= H0(M) ∼= Z, andthe orientation gives us a preferred generator. Thus, a map f : M → N has a degree deg(f ) ∈ Z. If thisdegree is non-zero, then over a field, the pullback map
f ∗ : H∗(N;F ) → H∗(M ;F )

is injective in each degree.
Proof. If α ∈ Hi(N;F ) is a non-zero class, the non-degeneracy of cup product as a pairing implies there exists
β ∈ Hn−i(N;F ) such that αβ ̸= 0 ∈ Hn(N;F ). Since deg(f ) ̸= 0, f ∗ : Hn(N;F ) → Hn(M ;F ) is non-zero, andso it is an isomorphism. Hence f ∗(αβ) ̸= 0. But then f ∗(α)f ∗(β) ̸= 0, and so f ∗(α) ̸= 0.

Corollary 5.3.2. Let M be a compact manifold of odd dimension n = 2k+1. Then the Euler characteristicof M is zero.
Proof. First of all, note that in this case, Hi(M ;Z) is finitely generated for all i, and non-zero only if i ≤ n.Hence the alternating sum

χ (M) =∑
i

(−1)i rank(Hi(M ;Z))
is well defined. Moreover, we saw that we could compute χ (M) by working over a field F . Suppose M isoriented. Then

χ (M) = 2k+1∑
i=0 (−1)i dimF (Hi(M ;F ))

Let bi = dimF (Hi(M ;F )) be the Betti numbers. Then
χ (M) = b0 − b1 + · · · + b2k − b2k+1But the non-degenerate pairing implies that bi = bn−1, and so b0 = b2k+1 and so on. Hence χ (M) = 0. Nowif we take F = Z/2, then M is F-oriented.An alternative proof is to use the existence of an oriented double cover. For this, we first note that theuniversal coefficient theorem and Poincaré duality proves the result for any compact orientable manifold (herewe can use Z-coefficients). Now if M̃ → M is a double cover, then χ (M̃) = 2χ (M), which gives the result.

Definition 5.3.3 (manifold with boundary)A manifold with boundary is a Hausdorff space M , locally homeomorphic to
Rn

≥0 {(x1, . . . , xn) | x1 ≥ 0}

We define the boundary ∂M of M to be the points x which under some chart, φ(x) ∈ {x1 = 0}.
∂M is well defined by some point set topology. Now given a compact manifold Mn, is there a compactmanifold with boundary W n+1, with ∂W ∼= M? If so, we say M is null-cobordant .

52



Lemma 5.3.4. If M = ∂W as above, then χ (M) is even. In particular, CP2 is not the boundary of anycompact 5-manifold.
Proof. Without loss of generality, dim(M) is even. Suppose M = ∂W , and we form the double Z of W , whichis two copies of W glued along their common boundary M . That is,

Z = Wleft ∪M WrightIn this case, Z is a compact manifold without boundary, with dim(Z ) odd, and so χ (Z ) = 0.But we can compute χ (Z ) using Mayer-Vietors. Z = U ∪ V , with U, V homotopy equvialent to W , and
U ∩V homotopy equivalent to M . Note we use the fact that a neighbourhood of ∂W ⊆ W is homeomorphic to
∂W × [0, ε). That is, we have a collar neighbourhood. Using this, we have an exact sequence

· · · Hi(Z ) Hi(W ) ⊕ Hi(W ) Hi(M) Hi+1(Z ) · · ·

We know all the groups in the above are finitely generated. But the Mayer-Vietoris sequence is a chain complexwith homology zero, and so the Euler characteristic of the chain complex is zero. But taking the alternatingsum of the ranks, we get
χ (Z ) − 2χ (W ) + χ (M)But χ (Z ) = 0, and so χ (M) = 2χ (W ).

5.4 Proof of Poincaré duality

Lemma 5.4.1. Let X be a locally compact Hausdorff space. If X = U ∪ V , with U, V ⊆ X open, thenthere exists a Mayer-Vietoris type sequence
· · · Hi−1ct (X ) Hict(U ∩ V ) Hict(U) ⊕ Hict(V ) Hict(X ) · · ·

Lemma 5.4.2. Suppose M is a oriented n-manifold. We will say U ⊆ M open is good if Poincaré dualityholds on U . That is, DU : Hkct(U) → Hn−k (U) is an isomorphism. Note in this case, U is also an orientedmanifold.Suppose U, V , U ∩ V are good. Then U ∪ V is good.
Proof. Assume without loss of generality that M = U ∪ V . From lemma 5.4.1, we have

Hkct(U ∩ V ) Hkct(U) ⊕ Hkct(V ) Hkct(M) Hk+1ct (U ∩ V ) Hk+1ct (U) ⊕ Hk+1(V )
Hn−k (U ∩ V ) Hn−k (U) ⊕ Hn−k (V ) Hk (M) Hn−(k+1)(U ∩ V ) Hn−(k+1)(U) ⊕ Hn−(k+1)(U ∩ V )D D D D D

The horizontal sequences are exact, and the vertical maps are isomorphisms except the centre one. We wouldlike to apply the five lemma. The fact that the squares commute when the square does not involve the boundarymaps is clear. For the square Hkct(M) Hk+1ct (U ∩ V )
Hk (M) Hn−(k+1)(U ∩ V )D D

it does not commute as is. Hpwever it does commute up to a sign, and we can use the five lemma in this case.We will omit the proof of this fact. See Hatcher/Spanier for details. Lecture 20Now suppose M = ⋃
i Ui, with U1 ⊆ U2 ⊆ · · · are all good, then so is M since any compact subset iscontained in some Ui, and so lim−→ H∗ct(Ui) → H∗ct(M)
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is an isomorphism. On the other hand, any homology class is represented by a finite union of simplices, whichhas compact image, we have natural maps H∗(Ui) → H∗(M)and taking the direct limit, lim−→ H∗(Ui) → H∗(M)is also an isomorphism.Using this, and that any open subset of Rn is a counable union of open balls, we see that any open subsetof Rn is good. Thus, if the manifold M is second countable, then it is covered by countably many discs, andwe are done.In general, use Zorn’s lemma for the collection of all good open subsets of M ,
Proof of lemma 5.4.1. If (X, Y ) = (A ∪ B, C ∪ D) is a union of pairs, then we have a relative Mayer-Vietorisseqeuence

Hi(X, Y ) Hi(A, C ) ⊕ Hi(B,D) Hi(A ∩ B, C ∩ D) Hi+1(X, Y )
using the small-simplices theorem (see Sheet 4). If X = U ∪ V , K ⊆ U, L ⊆ V compact, set A = B = X ,
C = X \ K ,D = X \ Y , Y = X \ (K ∩ L), C ∩ D = X \ (K ∪ L). We then get an exact sequence
Hi(X, X \ (K ∩ L)) Hi(X, X \ K ) ⊕ Hi(X, X \ L) Hi(X, X \ (K ∪ L)) Hi+1(X, X \ (K ∩ L))

Excise X \ U ∩ V , X \ U, X \ V from the first three terms, we get
Hi(U ∩ V , (U ∩ V ) \ (K ∩ L)) Hi(U,U \ K ) ⊕ Hi(V , V \ L) Hi(X, X \ (K ∪ L)) Hi+1(U ∩ V , (U ∩ V ) \ (K ∩ L))

But every compact subset Q ⊆ U∩V is of the form K ∩L, where K ⊆ U compact, L ⊆ V compact. For example,
U = V = Q.Thus, if we range over all K, L, in the first three terms we get all possible compact subsets. Since X islocally compact, any compact subset of X is contained in K ∪ L, for some compact K ⊆ U, L ⊆ V . Thus, thecompact subsets of the form K ∪ L form a cofinal family. Taking the direct limit over K ⊆ U, L ⊆ V compact,and using that the direct limit of exact sequences is exact, we get the Mayer-Vietoris seqeunce for H∗ct.
6 Vector bundles

Definition 6.0.1 (vector bundle)Let B be a topological space. A vector bundle of rank d E → B is:• A family of d-dimensional vector spaces {Eb}b∈B ,• with a topology on E = ⊔Eb, such that(i) the natural projection p : E → B is continuous(ii) and locally trivial. That is, for all b ∈ B, there exists a neighbourhood U of b, and a local
trivialisation, which is a homeomorphism ψ making the diagram

p−1(U) = E|U U × Rd

U

p

ψ

pr1

commute, and such that the map
ψ : Eb → {b} × Rd

is a linear isomorphism for all y ∈ U .
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(iii) The subspace topology on Eb from E is the same as the topology on Eb as a Euclidean space.We call E the total space, B the base space, Eb the fibres.
Definition 6.0.2 (section)A map s : B → E is called a section of E if p ◦ s = idB .
The map

B → E
b 7→ 0 ∈ Ebis called the zero section.

Example 6.0.3The trivial vector bundle of rank d is E = B × Rd with the product topology and the projection map.
Definition 6.0.4 (pullback)If p : E → X is a vector bundle, f : Y → X is any map, we define the pullback as f ∗E → Y , with

f ∗E = {(e, y) ∈ E × Y | p(e) = f (y)}
This has a natural projection map to Y . Then f ∗Ey = Ef (y).
Definition 6.0.5 (Whitney sum)Let p : E → X, q : F → X be vector bundles, then we define their Whitney sum has

E ⊕ F = {(x, y) ∈ E × F | p(e) = q(f )}
This has a natural map to X × X , which lands in the diagonal, that we identify with X .
Remark 6.0.6. Both of these operations have1. it takes trivial bundles to trivial bundles,2. they commute with retriction to open subsets U ⊆ B. In other words,

f ∗(E|U ) = (f ∗E )|f−1U and (E ⊕ F )|U = E|U ⊕ F|U

and so they are locally trivial.
Other operations include tensor product, dual, exterior powers etc.If p : E → X is a vector bundle, we say F ⊆ E is a subbundle if for all x ∈ X , Fx = p−1(Ex ) is a linearsubspace, and we have an open neighbourhood of U with a trivalisation of F making

E|U U × Rd

F|U U × Rk

ψ

ψ̃commute.If F ⊆ E is a subbundle, then we can define E/F → X , with fibre Ex /Fx .
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Definition 6.0.7 (isomorphism)We say that vector bundles E → X, F → X are isomorphic if there exists homeomorphisms α : E →
F, g : X → X , making the diagram

E F

X Xg

α

commute, such that α : Ex → Fg(x) is a linear isomorphism.
The most important case is when g = id. Lecture 21Define Gr(k,Rn) = {k-dimensional linear subspaces in Rn} = O(n)

O(k ) ×O(n − k )for the Grassmannian. The tautological bundle

E → Gr(k,Rn)
has fibre at x ∈ Gr(k,Rn) the linear subspace ⟨x⟩ corresponding to x . Concretely, we can define

E = {(x, e) ∈ Gr(k,Rn) × Rn | e ∈ ⟨x⟩ ⊆ Rn}

This is a vector bundle, with the natural projection map p : E → Gr(k,Rn).
Proof. Choose an inner product on Rn, given x ∈ Gr(k,Rn), let

U = {y ∈ Gr(k,Rn) | ⟨y⟩ ∩ ⟨x⟩⊥ = 0}
On this, we have a trivialisation

Ψ : E|U → U × ⟨x⟩(y, ξ) 7→ (y, pr⟨x⟩(ξ))where pr⟨x⟩ : Rn → ⟨x⟩is the orthogonal projection. The definition for ψ shows that we have a local trivialisation.
Remark 6.0.8. There is an obvious notion of a complex vector bundle, with fibres being complex vector bundles, andwe have an associated tautological bundle E → Gr(k,Cn) as well.
Example 6.0.9Gr(1,Rn) = RPn−1, has a tautological (real) line bundle, whereas the Gr(1,Cn) = CPn−1, we have atautological (complex) line bundle.Note a complex line bundle as real dimension 2.
Lemma 6.0.10 (partition of unity). Let X be (para)compact Hausdorff, if {Uα} is an open cover of X , thenwe have a subordinate partition of unity. That is, we have maps {λα : X → [0, 1]}, such that• supp(λα ) ⊆ Uα ,• at each x ∈ X , the number of non-zero λα is finite,• ∑ λα (x) = 1 for all x ∈ X .
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Proof. Omitted.
Definition 6.0.11 (inner product)An inner product on a vector bundle E is a continuous map ⟨·, ·⟩ : E ⊗ E → R, such that on each fibrethe map is an inner product.
Lemma 6.0.12. A vector bundle p : E → X over a (para)compact Hausdorff space has an inner product.Moreover, E is globally generated. For all x ∈ X , ξ ∈ Ex , there exists s ∈ Γ(E ) such that s(x) = ξ .

Proof. Fix a trivialising open cover {Uα} for E , and an inner product on Rd , where d = rankR(E ). If Ψα :
E|Uα → Uα × Rd is a trivialisation, then we can use Ψα to define an inner product ⟨·, ·⟩α on E|Uα .Let {λα} is a subordinate partition of unity, then for u ⊗ v ∈ E ⊗ E , define

⟨u, v⟩ =∑
α
λα ⟨u, v⟩α

Note that ⟨u, v⟩α is only defined if p(u ⊗ v ) ∈ Uα , but if this wasn’t true, then λα (p(u ⊗ v )) = 0. By definition,this is a finite sum, and that this defines an inner product.Now if x ∈ Uα , ξ ∈ Ex , choose a section sα ∈ Γ(E|Uα ) with sα (x) = ξ . We can do this as we can takesomething which is constant in a trivialisation. Let s = ∑α λαsα . Then s(x) = ξ .
Corollary 6.0.13. If X is compact Hausdorff, E → X is a rank d vector bundle, then there exists N ∈ Nand f : X → Gr(d,RN ) such that E ∼= f ∗Etaut.

Proof. Since X is compact, we have a finite set {s1, . . . , sN} ⊆ Γ(E ), such that on each Ex the si(x) span. Fixan inner product ⟨·, ·⟩ on E , and now consider the map
α : E → X × RN(x, ξ) 7→ (x, ⟨s1(x), ξ⟩ , . . . , ⟨sN (x), ξ⟩)

Since the sections si span, we see that α embeds Ex into RN for all x . That is, it embeds E as a sub-bundleof a trivial bundle. But then we can just define
f : X → Gr(d,RN )

x 7→ α(Ex ) ⊆ RN

By construction, the pullback of the tautological bundle is E .
Remark 6.0.14. Our proof actually shows that if E is a vector bundle over a compact Hausdorff space, then thereexists another vector bundle F → X such that E ⊕ F is the trivial bundle, since we can just take Fx = α(Ex )⊥ .
Remark 6.0.15. In fact, for this class of X ,

{vector bundles of rank d}isomorphism ↔ homotopy classes of mapsX → Gr(k,R∞) = [X,Gr(k,R∞)]
where Gr(k,R∞) = ⋃

n≥0 Gr(k,Rn)
is the infinite Grassmannian.
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6.1 CohomologyFirst note that if E has rank d, then Hd(Ex , Ex \ 0) = Z.
Definition 6.1.1 (oriented)We say that a rank d vector bundle E is oriented if for all x ∈ X , we have a generator εx of Hd(Ex , Ex \0),which vary locally trivially. That is, if x ∈ U and E is trivialised over U , say

Ψ : E|U ∼= U × Rd

is a trivialisation, then this induces an isomorphism Ey → {y} ×Rd . Using this, we have an isomorphism
Ey → Ex , which should send εy to εx .
Notation 6.1.2. We will write E♯ for the complement of the zero section in E .
Remark 6.1.3. If we have a coefficient ring R , then we have a natural definition of R-orientation. In particular, everyvector bundle is Z/2-orientable.
Theorem 6.1.4 (Thom isomorphism). Let π : E → X be an oriented vector bundle of rank n, then(i) Hk (E, E♯) = 0 for k < n,(ii) there exists a unique element uE ∈ Hn(E, E♯) such that restricting, uE |x = εx ∈ Hn(Ex , Ex \ 0).(iii) The map

Hk (X ) → Hk+n(E, E#)
α 7→ π∗α ⌣ uE

is an isomorphism.The class uE is called the Thom class of E .
In the case of a smooth oriented manifold Mn, TM → M is a vector bundle of rank n, and so what thisis saying is that the cohomology of TM relative to the zero section is just the cohomology of M , shifted by n.Moreover, the isomorphism is given by wedge product with a fixed n-form.Moreover, the zero section is a smooth manifold, of dimension n, and so it has a canonical class [E0]. Weclaim that the Poincaré dual of this class is the Thom class (Bott-Tu 6.24 (b)).Finally, since a vector bundle is locally trivial, we can study the topology of it by studying the gluing oflocal trivialisations, c.f. cocycle condition. The zero section has to be glued to the zero section, and so we studythe (co)homology relative to it.

Definition 6.1.5 (Euler class)Consider the long exact seqeunce of the pair (E, E♯). Then we have a natural map Hn(E, E#) → Hn(E ).Now Hn(E ) is homotopy equivalent to Hn(X ). The image of the Thom class under this map is the Euler
class

eE ∈ Hn(X )
Remark 6.1.6. A characteristic class for vector bundles (perhaps satisfying some conditions, such as orientability) isan assignment

E 7→ c(E ) ∈ H∗(X )
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such that for all f : Y → X ,
c(f ∗E ) = f ∗c(E )The uniqueness in the Thom isomorphism implies that the Euler class eE is a characteristic class.

Lecture 22
Definition 6.1.7 (sphere bundle)Let E → X be a vector bundle, with an inner product on E . We define the sphere bundle

S(E ) = {e ∈ E | ⟨e, e⟩ = 1}

Up to homotopy, this is independent of the choice of ⟨·, ·⟩, as the inclusion into E♯ is a homotopy equivalence.Assume E is oriented and of rank d, then we have the long exact sequence of the pair (E, E♯) and usingthe Thom isomorphism, we have
· · · Hi(E, E♯) Hi(E ) Hi(E♯) Hi+1(E, E♯) · · ·

· · · Hi−d(X ) Hi(X ) Hi(S(E )) Hi−d+1(X ) · · ·

∼ ∼ ∼ ∼

and so we obtain the Gysin sequence

· · · Hi(X ) Hi+d(X ) Hi+d(S(E )) Hi+1(X ) · · ·φ

The map φ is the cup product with the Euler class eE , basically by definition. In de Rham theory, the mapHi+d(S(E )) → Hi+1(X ) is given by integration over the Sd−1-fibre.
Example 6.1.8Let L → CPn be the tautological complex line bundle. Recall that a complex vector bundle is canonicallyoriented, since GL(d,C) ⊆ GL+(2d,R). Hence L has a Thom class and an Euler class. But

L = {(x, v ) ∈ CPn × Cn+1 | v ∈ ⟨x⟩
}

using the usual inner product on Cn+1, we see that
S(L) = S2n+1 ⊆ Cn+1

since any v ∈ Cn+1 with ∥v∥ = 1 is in a unique line through the origin, and the intersection of a linewith S2n+1 is an S1. The Gysin sequence becomes
· · · Hi+1(S2n+1) Hi(CPn) Hi+2(CPn) Hi+1(S2n+1) · · ·

If i ≤ 2n − 2, then we have
0 Hi(CPn) Hi+2(CPn) 0

and so setting x = eL ∈ H2(CPn), we see that H2k (CPn) is generated by xk , and so we recover the resultthat H∗(CPn) = Z[x ]
⟨xn+1⟩

Remark 6.1.9. Clearly if E is trivial, then S(E ) = X ×Sd−1 , and so we can compute H∗(S(E )) using Künneth. So thefact that the Gysin sequence is interesting here is detecting the fact that L is non-trivial.
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Lemma 6.1.10. If a(n oriented) vector bundle E → X has a nowhere vanishing section, then eE = 0.
Proof. Suppose s ∈ Γ(E ) is a section, which has image in E♯. Then

eE ∈ Im(Hk (E♯) → Hk (X ))
where k = rank(E ). To see this,

Hk (E, E♯) Hk (E ) Hk (E♯)

Hk (X )
(zero)∗=s∗

s∗

note that any two sections are homotopic, and so the Euler class must be zero, as mapping the Thom class toHk (E♯) gives zero by exactness.
Remark 6.1.11. If E is an oriented vector bundle of odd rank, the necessarily

2eE = 0 ∈ Hrank(E )(X )
and so if Hrank(E )(X ) has no 2-torsion, eE = 0. To see this, consider the map

α : E → E
v 7→ −v

which reverses orientation, i.e. it acts by −1 on Hrank(E )(Ex , Ex \ 0). Hence α∗uE = −uE . But on the zero section,
α = id. Thus, pulling back to the zero section, eE = −eE .

Proof of the Thom isomorphism. We will prove the Thom isomorphism by inducting on the number of trivialisingneighbourhoods for E . That is, we will assume this number is finite, for example if X is compact. Zorn’s lemmashows the general case.For the base case E = X × Rd is a trivial bundle.
Lemma 6.1.12 (Relative Künneth). Suppose H∗(Y ),H∗(B),H∗(Y , B) are all finitely generated and free fora good pair (Y , B). Then for X which has the homotopy type of a cell complex, the map

H∗(X ) ⊗ H∗(Y , B) → H∗(X × Y , X × B)
given by the cross product is an isomorphism.

Proof. We have the diagram
H∗(X ) ⊗ H∗(Y , B) H∗(X × Y , X × B)

H∗(X ) ⊗ H∗(Y /B, pt) H∗(X × Y /B, X × pt)

×

id ⊗p∗ q∗

which commutes, it suffices to prove this for B = pt. In the above, p, q are the quotient maps, and p∗, q∗ areisomorphisms on homology. But
H∗(Y , pt) H∗(Y ) H∗(pt)

splits if we choose a point in Y . We know the result for Y and for the point by the Künneth theorem. Usingthe five lemma gives the result.
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Thus, we have that E = X × Rd, E♯ = X × (Rd \ 0), and so by the lemma,
H∗(E, E♯) = H∗(X ) ⊗ H∗(Rd,Rd \ 0)

Fix a generator εd for H∗(Rd,Rd \ 0), and so we can just define the Thom class to be 1 ⊗ εd . Everything elseis clear.For the inductive step, assume the result is known for all oriented vector bundles with trivialising opencovers with at most N open sets. Assume E → X has a cover by N + 1 open sets. In this case, we can write
X = A ∪ B

such that the result holds for E|A, E|B, E|A∩B . By Mayer-Vietoris, we have a sequence
· · · Hi−1(E|A∩B, E♯|A∩B) Hi(E, E♯) Hi(E|A, E♯|A) ⊕ Hi(E|B, E♯|B) Hi(E|A∩B, E♯|A∩B) · · ·

By this, if i < d = rank(E ), then Hi(E, E♯) = 0. When i = d, we get
0 Hd(E, E♯) Hd(E|A, E♯|A) ⊕ Hd(E|B, E♯|B) Hd(E|A∩B, E♯|A∩B) · · ·

In this case, we have Thom classes uE|A , uE|B , uE|A∩B . By uniqueness, uE|A |A∩B = uE|A∩B = uE|B |A∩B , hence(uE|A , uE|B ) 7→ 0. With this, we must have a (unique by injectivity) class uE such that uE |A = uE|A and
uE |B = uE|B .By construction, uE |Ex = εx is the orientation generator. Thus, all we need to show is that the map

Hk (X ) → Hk+d(E, E♯)
α 7→ π∗α ⌣ uE

is an isomorphism. The Thom map
α 7→ π∗α ⌣ ·maps the Mayer-Vietoris sequence for X = A∪B to a Mayer-Vietoris map for E = E|A∪E|B . The result followsby the five lemma, once we show that the squares commute. The non-obvious case involves the boundary map. Lecture 23That is, Hi(E|A∩B, E♯|A∩B) Hi+1(E, E♯)

Hi−d(A ∩ B) Hi−d+1(X )
Let φ ∈ Cd(E, E♯) be a cocycle representing the Thom class uE . Then φ|E|A represents uE|A .If α ∈ Hi−d(A ∩ B) is a class, then we can write α = ψA − ψB , where ψA ∈ C i−d(A) and ψB ∈ C i−d(B).Then

∂∗[α ] = [d∗ψA]Hence along the bottom right, we get
α 7→ π∗(∂∗ψA) · φFor the top left, note

π∗ψA · φE|A − π∗ψB · φE|Bis a difference of chains in
C i(E|A, E♯|A) and C i(E|B, E♯|B)and so the top left sends

α 7→ ∂∗(π∗ψA · φE|A ) = ∂∗(π∗ψA) · φ|E|AThese the agree.
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6.2 Cup products on smooth manifoldsRecall if M is a smooth manifold, it has a tangent bundle TM → M of rank dim(M). If Y ⊆ M is a (smooth)submanifold, then TY ⊆ TM|Y is a subbundle. We define the normal bundle

νY /M = TM|YTYThis is a vector bundle of rank dim(M) − dim(Y ) on Y . We’ll write νY = νY /M when M is clear from context.
Notation 6.2.1. We say that Y is co-oriented in M if νY /M is an oriented vector bundle.
Exercise: If M is a smooth manifold, then an orientation on M as in this course, as

εx ∈ Hn(M,M \ x)
is equivalent to an orientation of TM as a vector bundle. One way of seeing this is using the exponential mapof a Riemannian metric.

Definition 6.2.2 (transverse)Let M be a smooth manifold, Y , Z ⊆ M are smooth submanifolds, then we say that Y and Z intersect
transversely if for all p ∈ Y ∩ Z , TpY + TpZ = TpM
Theorem 6.2.3 (tubular neighbourhood). Let M be a smooth manifold,1. if Y ⊆ M a compact smooth submanifold, Then there exists an open neighbourhood UY of Y ⊆ M ,and a diffeomorphism α : UY → νY /M , taking Y to the zero section. Moreover, both UY and α areunique up to isotopy.2. if Y , Z ⊆ M are compact smooth manifolds which intersect transversally, then Y ∩ Z is a smoothsubmanifold, with codim(Y ∩ Z ) = codim(Y ) + codim(Z )and we have an isomorphism of bundles

νY∩Z
∼= νY |Y∩Z ⊕ νZ |Y∩Z

and there are tubular neighbourhoods UY , UZ of Y , Z respectively, with UY∩Z = UY ∩UZ compatiblewith the above isomorphism.
Proof. Omitted.Suppose Md is a smooth oriented manifold, Y k ⊆ M a smooth compact submanifold. Note that if V = V1⊕V2is a direct sum of vector spaces, oriented two of the three gives an orientation on the third. Thus, for Y , orienting
Y is the same as co-orienting Y . Assume Y is oriented.

Y is a compact topological manifold, and so it has a fundamental class [Y ] ∈ Hk (Y ) under the inclusionmap i : Y ↪→ M , we have a class
i∗[Y ] = Hk (M) ∼= Hd−kct (M)by Poincaré duality.Alternatively, we can take the Thom class

νY ∈ Hd−k (ν, ν♯) tubular neighbourhood∼= Hd−k (UY , UY \ Y ) ∼= Hd−k (M,M \ Y ) → Hd−kct (M) ∼= Hk (M)
Lemma 6.2.4. These two constructions agree.
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Notation 6.2.5. We will write εY for the cohomology class dual to an oriented compact submanifold Y .
Proposition 6.2.6. If Y , Z are oriented compact smooth submanifolds of M , which meet transversely, then

εY∩Z = εY · εZ

Remark 6.2.7. εY · εZ = (−1)codim(Y ) codim(Z )εZ · εY . Recall
νY∩Z = νY ⊕ νZand so co-orientations of Y , Z and the ordering of Y and Z induce an orientation on Y ∩ Z . This makes the abovean oriented isomorphism of vector bundles. Thus the proposition fits with skew-commutativity.

Example 6.2.8If M is oriented, a point p ∈ M is co-oriented. Thus, it has a well defined class εp ∈ Hdct(M) which isthe orientation generator.Thus, if Y ∩ Z is a transverse intersection, then εY∩Z is non-zero. Hence εY , εZ is non-zero. Oneexample of this for Σ2,
pictureIn particular, we can use the loops to compute the cohomology ring structure.

Proof of proposition 6.2.6. If E → X, F → X are oriented vector bundles, then the relative cross product definesa map Hi(E, E♯) ⊗ Hj (F, F ♯) → Hi+j (E ⊕ F, (E ⊕ F )♯)Noting that (E × F )|∆X = E ⊕ F . Moreover, we have that
uE⊕F = uE × uFunder this map, since we have an isomorphismHi(Ri,Ri \ 0) ⊗ Hj (Rj ,Rj \ 0) ∼= Hi+j (Ri+j ,Ri+j \ 0)Now

εY∩Z = uνY∩Z = uνY · uνZ = εY · εZ

Lecture 24
Proof of lemma 6.2.4. We have that the diagram

Hn−k (Y ) Hn−k (UY ) Hkct(UY )

Hn−k (Y ) Hn−k (M) Hkct(M)
=

inclusion

i

PD

PD
extension by zero

commutes by out construction of D. So i∗([Y ]) has the property that D(i∗[Y ]) is in the image of Hk (UY ) ∼=Hk (νY , ν♯Y ) ∼= Z. Where for the last isomorphism we use the Thom isomorphism. Thus, i∗[Y ] and D(εY ) mustagree up to a sign. In fact, using our conventions for orientations, they agree.
Corollary 6.2.9. If i : Y n−k ↪→ Mn are as above, given α ∈ Hn−k (M), then we can compute

⟨i∗α, [Y ]⟩ = ⟨εY · α, [M ]⟩
where ⟨·, ·⟩ denotes the natural pairing between homology and cohomology.
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So εY behaves like a Dirac delta along Y .
Proof. 〈

εy · α, [M ]〉 = α([M ] ∩ εY ) = α = α(D(εY )) = α(i∗[Y ]) = i∗α([Y ])
Take coefficients in a field F , which we will omit from the notation. Then Poincaré duality for a compact

F-oriented manifold M says that we have a non-degenerate pairing
Hk (M) ⊗ Hn−k (M) → F(α, β) 7→ α · β = ⟨α · β, [M ]⟩

Let {ai} be a basis of H∗(M), {bj} the corresponding dual basis, so ai · bj = δij . Note by Künneth that
H∗(M ×M) ∼= H∗(M) ⊗F H∗(M)

Let ∆ ⊆ M ×M be the diagonal. Then we have
ε∆ ∈ H∗(M) ⊗ H∗(M)

Lemma 6.2.10.
ε∆ =∑

i
(−1)|bi|ai ⊗ bi

Proof. Note that by non-degeneracy of the cup product, it suffices to show both sides evaluaed agains bk ⊗aℓgives the same result. We can write
ε∆ =∑

i,j
cijai ⊗ bj

for some coefficients cij . So
⟨ε∆ · (bk ⊗ aℓ ), [M ×M ]⟩ =∑ cij

〈(ai ⊗ bj ) · (bk ⊗ aℓ ), [M ×M ]〉
=∑(−1)|bj ||bk |cij

〈
aibk ⊗ bjaℓ , [M ×M ]〉

=∑ cik (−1)|bj ||bℓ |δikδjℓ (−1)|aℓ ||bj |= (−1)|bℓ |(|bk |+|aℓ |)ckℓOn the other hand,
⟨ε∆ · (bk ⊗ aℓ ), [M ×M ]⟩ = ⟨bk ⊗ aℓ , [∆]⟩= (−1)|ak ||bℓ |δkℓHence

ckℓ = (−1)|bk ||bℓ |δkℓ = (−1)|bk |δℓkas required.
Warning: Many books (e.g. Milnor Characteristic Classes) gives

ε∆ =∑
i

(−1)|ai|ai ⊗ bi

which is (−1)dim(M) times what we said. They define cap product so that
⟨a, δ ⌢ b⟩ = ⟨a · b, δ⟩

That is, the define
σ ⌢ φby feeding the back face of σ into φ, whereas we fed the front face. This changes the isomorphism D.
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6.3 Fixed pointsLet M be a closed smooth manifold, oriented over F .
Definition 6.3.1 (non-degenerate fixed points)If f : M → M is smooth, we say f has nondegenerate fixed points if Γf and ∆ intersect transversely in
M ×M .
In this case, Γf ∩ ∆ is a finite set. The sign of a non-degenerate fixed point is

sign(x) = sign(det(id −dfx ))Then at (x, x), T(x,x)Γf ⊕ T(x,x)∆ = T(x,x)(M ×M)The sum is direct by dimension counting. Now consider the map
F + ∆ : TM ⊕ TM → TM ⊕ TM

where F (x, x) = (x, f (x)). This has
D(F + ∆) = (I df

I I

)
and so the sign of the fixed point says whether F + ∆ has orientation preserving determinant at (x, x) or not.I’m not sure what the above is even supposed to mean. In any case, the sign represents whether dfx − id :TxM → TxM is orientation preserving or not. Intuitively what we are interested in is the intersection number(of submanifolds) of Γf and ∆, and so the sign tells us the orientation of the intersection.In this case,

εΓ∩∆ = ∑
x∈Fix(f ) sign(x)εx

Definition 6.3.2 (Lefschetz number)The Lefschetz number of f : M → M is
STr(f ) = L(f ) =∑

k≥0(−1)k tr(f ∗ : Hk (M) → Hk (M))

Theorem 6.3.3 (Lefschetz fixed point). If f has non-degenerate fixed points, then
L(f ) = ∑

x∈Fix(f ) sign(x)
Proof. We’ve observed ∑

x∈Fix(f ) sign(x) = εΓ(f )∩∆
= ⟨εΓf · εδ , [M ×M ]⟩= 〈i∗Γf ε∆, [Γf ]〉= ⟨(id ×f )∗ε∆,M⟩=∑

i
(−1)|bi| ⟨ai ⊗ f ∗bi, [M ]⟩

Write f ∗bi = ∑qijbj . Then ⟨ai · f ∗bi, [M ]⟩ = qii since the ai, bi are dual bases. So this qii is the ii-th entryof f in the bj basis.
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Example 6.3.4Any map f : CP2k → CP2k has a fixed point. In particular, no non-trivial group can act freely on CP2k .Suppose f is is smooth with non-degenerate fixed points. Then
H∗(CP2k ) = Z[x ]

x2k+1
Suppose f ∗(x) = ℓx for some ℓ ∈ Z. But then f ∗(x) = ℓ ix i for all i. These all live in even degree, and sothe Lefschetz number is

L(f ) = 1 + ℓ + ℓ2 + · · · + ℓ2k
which is non-zero for any ℓ .Now suppose f : CP2k → CP2k is continuous and has no fixed points. Then we have a nearby smooth
f̃ which still has no fixed points. Contradiction.
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