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1 Introduction

Let X, Y be topological spaces, f, g : X — Y be continuous functions. Note we will use the terminology ‘map
:= continuous function’. We say that f is homotopic to g, written f =~ g, if there exists a map F : X x [ = Y,
such that

F|X><{O} =f and F|X><{1} =4

Here / = [0, 1] carries its Euclidean topology. An exercise (sheet 1) is that this defines an equivalence relation
on the set of maps X — VY.

Definition 1.0.1 (homotopy equivalence)

We say that f : X — Y is a homotopy equivalence if there exists a function g : ¥ — X such that
fog~idy and gof ~ idy. We say that g is a homotopy inverse to f.

The same exercise on sheet 1 shows that homotopy equivalence is an equivalence relation on topological
spaces.
Example 1.0.2 1. If f: X — Y is a homeomorphism, then f is also a homotopy equivalence.

2. i:{0} = R” is a homotopy equivance.

3. The inclusion i : S"~" < R”\ 0 is a homotopy equivalence.

Definition 1.0.3

A space X is contractible if it is homotopy equivalent to a point.

Idea of Algebraic Topology: Study spaces up to homotopy equivalence. Broadly, we are interested in “con-
nectivity properties” of topological spaces.

Example 1.0.4 1. We say a space X is path-connected if any two maps {*} — X are homotopic. For
example, R is path connected, R\ {0} is not. A corollary of this is the intermediate value theorem.

2. We say a path connected space X is simply connected if every map f : ST — X is homotopic to
a constant map. Equivalently, every two maps S' — X are homotopic. Or equivalently (again)
every continuous map S’ — X extends to a continuous map D’ — X. For example, R’ is simply
connected, by R? \ {0} is not. If y : ST — R?\ {0} is continuous, it has a winding number, or
degree deg(y) € Z, such that

e |t is invariant under homotopy,

o If y,(t) = exp(2nit), then deqg(y,) = n

In particular, taking n = O gives the constant map. Therefore, a constant map has degree 0. A
corollary of this is the fundamental theorem of algebra.

3. We say a path connected space X is k-connected, if for all i < k, every map S' — X is homotopic
to a constant map. In this case, R” is (n — 1)-connected, but R" \ 0 is not. More precisely, maps
from S"~1 — R”\ 0 have a degree deq(f) € Z, such that degree is a homotopy invariant, and the
degree of the inclusion map is 1, and the degree of the constant map is 0. A corollary of this is the
Brouwer fixed point theorem.

Lecture 2



2 (Co)homology

2.1 Co(chain) complexes

We will define invariants of topological spaces in two steps:
(a) We associate to X a (co)chain complex,
(b) We take the (co)homology of the complex

The topology enters in step (a), whereas (b) is just homological algebra.

Definition 2.1.1 (chain complex)

A chain complex (Cy, 9) consists of a sequence {C;};ez of abelian groups, along with boundary homomor-
phisms 0, : G, — C,_4 for all n, satisfying d, 0 d,11 = 0. We also write this conditions as 0% =0.

Often we will be lazy and just write d. Also, if we have several chain complexes, we might use subscripts

or superscripts to distinguish the boundary homomorphisms.

=

Definition 2.1.2 (homology group)
The i-th homology group of a chain complex (G, d) is

ker(d; : G; = Ci—1)

HA(Cur ) = -
GO = o = G

We write

H,(C.,d) = @H[(C*,a)

i€Z

Definition 2.1.3 (cochain complex)

A cochain complex (C*,d) consists of a sequence {C'};cz of abelian groups, along with boundary ho-
momorphisms 0" : C" — C"1 for all n, satisfying 0"*' 0 0" = 0. We also write this conditions as
2?=0.

Definition 2.1.4 (cohomology group)
The i-th cohomology group of a cochain complex (C*, ) is
ker(d': C! — C™*1)

H(E9) = me a5 6y

We write
H*(C*, 0) = B Hi(C". 0)

i€Z

Notation 2.1.5. Elements of ker(d) are called cycles (in a chain complex), cocycles (in a cochain complex). Elements
of im(d) are called boundaries (and coboundary resp.).

Elements of H, are called homology classes, and elements of H* are called cohomology classes.

We will call 0 the differential.

Definition 2.1.6 (chain map)

Given chain complex (G, ), (D, ), a chain map f : C, — D, comprises group homomorphism f; : C; — D;,




such that

commutes.

Lemma 2.1.7. A chain map f : C. — D, induces homomorphisms f, : H;(C.) — H(D.).

Proof. Let a € H;(C,), and we can choose a cycle a € C;(C,), with da = 0. In this case,
ofi(a) = fi_1(0a) = fi_1(0) =0

So fi(a) € D; is a cycle. We set f.(a) = [fi(a)] € Hi(D.). Next, we need to show that this is independent of
choices. Suppose a =[a] =[d]. Then a — o’ € im(0). Therefore, we can write @ — o’ = d7. In this case,

fila) — fi(a') = fi(01) = Of;11(T) € Im(0)
So we conclude [fi{@)] = [fi(e’)] € Hi(D.). It is clear that f, defines a homomorphism. O

Correspondingly, we can define cochain maps C* — D*, that is, f': C' — D' such that

Ci+ i Di+1
Ct T — D!

commutes.

Exercise: This construction is functorial. That is, (id¢, )« = idy,, and if we have f : G, — D, g : D, — E,,
then (g o f). = g, o f.. This is obvious.

Goal: To associate to a topological space X (co)chain complex C.(X) and C*(X). The definition works for
any X, but the theories are better behaved for "nicer” X.

2.2 Sinqular (co)homology

We will develop singular (co)homology.

Definition 2.2.1 (standard simplex, face)

The standard simplex is

The i-th face A" is
A= A"n{t; =0}

and we have a canonical homeomorphism

& A - AT
(to, ..., th—1) — (to, ..., ti—1,0, 8, ..., th—1)




Definition 2.2.2 (singular simplex, singular chain complex)

If X is a topological space, a singular n-simplex in X is a continuous map o : A" — X.
The singular chain complex is given by the the free abelian groups

Ci(X) = b Zo

o singular n-simplex

We define the boundary map G(X) — Ci—1(X) via

where
o

Al ::Uoél-:A”*1 - X
J

Note if {v;}7, are n + 1 ordered points in R"*", and if {v; — v}/, are linearly independent, then the
convex hull of vy, ..., vy, is an n-simplex, which we will call

is given by the map
AT = Rn+1

t— Zt,'V,'
i

We orient the edges of the standard simplex (and thus any simplex [vy, . . ., v,)) by saying that v; < v; if i < .
More concretely, for n = 2, we have the oriented edges vp — vi, vy — v2, Vi — 2.

Lemma 2.2.3. 9% = 0.

Proof. If ¢ is an n-simplex, defined on [v, ..., v, then

and so

9(00) = > (=1"(=10luy, it + Y (=D (=0l ) = O

i<j i>]

since the signs cancel. O

Definition 2.2.4
The singular homology groups of X, H;(X), are the homology groups of the sinqular chain complex.

Remark 2.2.5. Since all we used is the topology on X, H;(X) is clearly a topological (read homeomorphism) invariant
of X.
Moreover, if f : X — Y is continuous, 0 : A” — X is an n-simplex on X, then f o g is an n-simplex on Y. The
fact that
(foo)od;=fo(o00)

shows that f induces a chain map.
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Definition 2.2.6 (singular cochain complex)

The singular cochain complex of X has
C'(X) = Homgz(G(X), Z)

and the boundary operator
9*Y(0) = ¢(do)
for ¢y € CY{(X), 0 € Ciy1(X). That is, it is adjoint to 9 : Ci(X) — G_1(X).

Since 0° = 0, (0*)? = 0. The singular cohomology is
H*(X) = EPH(C", 0"
i>0

If f: X — Y continuous, then f induces a chain map f. : Ci(X) — C.(Y) via fi(0) = f o 0, satisfying
of, = f,0. Similarly, f : X — Y defines a pullback map f*: C*(Y) — C*(X), given by

Again, we have that
I (Y)(r) = FP(aT) = Y(f.07) = P(of.1) = (O"Y)(f.1) = F(0"Y)(7)
So f* is a cochain map, i.e. d*f* = f*0*. Therefore, we have an induced homomorphism on cohomology,
¥ HY(Y) = HY(X)

Warning: by definition,
C'(X) = Homgz(C(X), Z)

but it is not true (in general) that _
H'(X) = Homgz(H;(X), Z)

It's easy to show that we always have a surjection
H'(X) = Hom(H,(X), Z)

But in general, this is not an isomorphism if H;(X) has torsion.

2.2.1 Basic computations

Lemma 2.2.7 (homology of a point). Let X = {e}. Then

H, (X) = Z n=0
" 10 otherwise

Proof. By definition, G;(X) is the free abelian groups on continuous map A’ — {e}. But there is only one such
map, namely the constant map (for i > 0). Hence the chain complex looks like

G(X) G(X) — G(X) — 0

where each G;(X) is Z. Computing the boundary maps,

i
3(0,) = Op_1 L n ‘LS even
0 if n is odd

Hence the chain complex is

7 id 7 0 7 id 7 0 0

We can then compute the homology groups explicity. O



Lemma 2.2.8. If we write

X=||X

acA
as a disjoint union of path components, then
Hi(X) = 5 Hi(Xa)
acA

Moreover, if X is path connected (and nonempty), then Ho(X) = Z.

Proof. Since A' is path connected, the image of a continuous map ¢ : A" — X must lie within some Xj.
Moreover, so does the image of all of the boundary faces ¢ o ¢;. So in fact

(Gi(X), 9) = (@G(Xa)ﬁ

aeA

Note that a general element of G;(X) is a finite linear combination of i-simplicies in X. So its image can only
meet finitely many of the Xj.
Now suppose X is path connected. Define a function

e: G(X)—> 2
Zn10i|—> Zﬂ[

Since X is nonempty, € is surjective. On the other hand, if T € G(X), then g(t(1) — 7(0)) = 0. So by
linearity,
im(0 : G (X) — Go(X)) C ker(e)

Recall
Co(X)

im(@: G (X) = Co(X))

and so € descends to a map Ho(X) — Z. Now we will use the fact that X is path connected. Suppose

Z n;io; € ker(e)

and fix a base point p € X. Since the ¢; are O-simplicies, they correspond to points in X. Moreover, since X
is path connected, we can choose paths

Ho(X) =

T[IA1—>X

such that 7;(1) = 0; and 7;(0) = p. In this case,

0 (Z nm) = Zmaﬂ = Z”zUi - (Z nip

But we assumed ) n; =0, and so ker(e) C im(d : G(X) — Gy(X)). This then gives the required result, as the

induced map
Ho(X) = Z

is then an isomorphism. O

Informal conjecture: We can’t compute anything else.
Therefore, we need to develop some more structure about (co)homology.
What are we doing? Consider the case of X being an annulus in R?. We have 1-simplices




9

(o1 null-homotopic, o, winds around the origin)
In this case, doy = do, = 0, and so they define homology classes.

S

4/

A

Moreover, [001] = 0, since we have triangles g, 71, T2 such that
a(‘l’o + 171+ Tz) = 04

From this intuition, [03] # 0. But to show even this, we need some structure theorems.
Lecture 4

2.3 Fundamental properties

(Co)homology is useful by virtue of various structural properties.
Theorem 2.3.1 (homotopy invariance). If f,g : X — Y are homotopic, then the induced maps f, g, on

homology, and the induced maps f*, g* on cohomology agree.

Corollary 2.3.2. If X =~ Y, then H,(X) = H.(Y), and if f is a homotopy equivalence, then f, induces the
isomorphism. For cohomology we have the similar statement, but with f*.

Proof of the corollary. X =~ Y via f is saying that there exists g : ¥ — X, such that gof ~ idx, and fog ~ idy.
That s,
g.of,=1id and f.og,=id

We think of this as saying that (co)homology is “insensitive to inessential deformations”.



Example 2.3.3
Recall {0} — R” is a homotopy equivalence, and so

HL(R") Z *x=0
) 0 otherwise

The other key structural property relies on some homological algebra.
Definition 2.3.4 (exact sequence)
An exact sequence is a chain complex with H,(C, d) = 0. That s,

im0 : Cyp1 — G,) =ker(0: G, — C,1)

Similarly, a cochain complex is exact if H*(C*,0) = 0.
If A, B, C are abelian groups, and we have

A—2,B_P,¢

Then this sequence is exact at B if ker(B) = im(a).

Definition 2.3.5 (short exact sequence)

A short exact sequence is an exact sequence of the form

0—sA—"3B-Fic_ 0

which is exact at all places. That is, a is injective, B is surjective, and im(a) = ker(B).

Example 2.3.6 (i) If

0 A—> B 0
is exact, then a is an isomorphism.
(i) If
3

0 Z——G ZIn 0

is exact, then we could have G = Z @ Z/n, or we could have G = Z, with a(x) = nx.

Theorem 2.3.7 (Mayer-Vietoris). If X = AU B, with A, B open subsets of X. Then there exists Mayer-
Vietoris boundary homomorphism
Omy : Hip(X) = Hi(AN B)

for all i, so that the sequence
D Hi(X) —2% HyAN B) 225 H,(4) @ Hi(B) 25 Hy(X)

is exact, where



Similarly, we have a homomorphism
Ay - H(AN B) —» HT(X)
which makes the sequence

i a

—— AN B) -5 HiX) 25 W4 @ Hi(B) S HiAN B) T HITX) —

exact.

Remark 2.3.8. (i) The Mayer-Vietoris maps are not induced by maps of spaces, but they are constructed alge-
braically. Suppose o € Ci41(X) is a cycle, and suppose we can write 0 = g4 + 0g, where g4 € C1(A) and
og € Ci41(B) are chains, and in general, not cycles. Since do = 0, dos + dog = 0. We define

O (0) = [004] € Hi(AN B)

Since dgy € G(A), we must have that doy = —dog € G(AN B). As 0> = 0, doy is closed and so it represents
a class in homology.

This is (correct) intuition, but not a proof.

(it) The Mayer-Vietoris sequence is natural for maps of pairs. That is, f X =AUB,Y=CUD,and f: X - Y
has f(A) C C, f(B) C D, then we have a map of long exact sequences

. —— Hia(X) —— Hi(AN B) —— HifA) @ H(B) —— Hi(X) —— H4(ANB) — ---
A " rof. A A
V- V- V- V- V-

- —— Hipq(Y) —— Hi(CN D) —— H(C)® H(D) —— Hi(Y) —— Hi4(CND) —— ---

where all the squares commute.

2.4 Examples of Homology calculations

We will prove these later when we use them.

Example 2.4.1

H.(S") = Z *=0,1
* |0 otherwise

Proof. Here, S' = AU B, where A, B ~ {x} and AN B ~ {p, q}.
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Using this, we know H.(A), H.(B), Hi(AN B). For i > 2, we have

- — Hi(A)® Hi(B) —— Hi{(X) —— Hi4(ANB) —— -
N—_—— —_——
-0 =0

and so H;(X) =0 for all i > 2. For lowe degrees, we have

Hi(AN B) —— Hy(A) @ H1(B) —— Hy(X)
~—————

Ho(AN B) —— Ho(A) ® Ho(B) —— Ho(X) —— 0

——— —_———— N——
(p)®(q) =ZoZ =z
where a(n, m) = (n + m, n 4+ m). Moreover, we use that S' is path connected, and Hy is generated by any

point. Therefore, Hy(X) sits in an exact sequence

AN/ 0

0 — s Hy(X) 0y 72 @y 72

and so,
H1(X) =~ ker(a) = ((1, 1)) = Z(p — q)

Example 2.4.2

0 otherwise

H*(S") = H.(S") = {Z F=0n

Lecture 5

Proof. We will compute the cohomology. Define A, B C S” by

Then A, B are contractible, and AN B is homotopic to S"~'. We work inductively in n, using the Mayer-

i



Vietoris sequence. The sequence gives

H[71(Sn)

Hi(Sn) Hl(*) @ Hl(*) H[71(5'771)

Iy
Hi+1(5n) Hi+1(*) ® Hl(*) N
If i >0, we have
0 Hi(snfﬁ) Iy Hi+1(5n) 0

and so _ v
HI(S/771) _ HL+1(SH)

This gives us almost everything inductively. We can assume n > 2. At the bottom of the sequence, we have

HO(SH) HO(*)GBHO(*) a HO(Sn71) H1(5n) 0
N—— N————— N—_——
=7 =797 =7

We have shown (on examples sheet 1) that HY(X) = 1, generated by the O-dimensional cochain, sending p > 1.
As

alp.q)=p+q
a is surjective. Thus, we have

0 —— H'(S") —— 0

and so H'(S") = 0. O

Corollary 2.4.3. R” is homeomorphic to R™ if and only if m = n.

Proof. Suppose f : R" — R" is a homeomorphism. This gives us a homeomorphism
f-R"\ 00— R"\ {f(0)}
But R”\ {*} is homotopy equivalent to S"~'. Thus f induces an isomorphism in homology
Hi(S"") = Hy(S"™ )
But by our homology computations, this implies that n = m. O

Note in the below we assume n > 0.

Definition 2.4.4 (degree)

Suppose f : S” — S" is a continuous map, then f induces a map
fe t Hp(S") = Ha(S")

which is multiplication by some d € Z. We call deg(f) = d the degree of f.

12



Remark 2.4.5. Since H,(S") = Z which is free, therefore f. is determined by f,(1). Moreover, we will need to use
the same identification of H,(S") = Z, and so deg(f) is well defined. Note that if we use different isomorphisms, then
deg(f) is only defined up to a sign.

Note that
e if f ~ g, then deg(f) = deg(qg),
e deg(id) = 1.

e deg(const) = 0, since the constant map factors through {*}, and so the induced map on homology factors
through H"(x) = 0.

Lemma 2.4.6. If A€ O(n + 1), then A acts on S”, and we have

deg(A) = det(A) € {£1}

Proof. The group O(n + 1) has two path components. By homotopy invariance of degree, any A is homotopic
to ids», or a reflection in an equatorial hyperplane H.

1

.

The reflection preserves A, B, AN B, and H intersects AN B = S"~" at two points. The Mayer-Vietoris
sequence gives

0 —— Hp(S") —— H,4(S"™) —— 0

N I

0 —— H,(5") — H, 1(S"") —— 0

The two vertical maps are the same. Therefore it suffices to consider the result on S'.

13



Recall our computation of H;(S') has
0 —— Hy(S") —— Ho(p U q) —%— Ho(A) @& Ho(B) —— -

where a(u,v) = (u+ v, u + v). Hence H;(S') is generated by (1, —1), which we can think of as p — g. But in
this case, reflection in H swaps p and g, and so it acts on H'(S") by multiplication by —1. O

| Corollary 2.4.7. The antipodal map a, : S” — S" has degree (—1)"+'.

Proof. a, is orthogonal. Or equivalently, it is a composition of n + 1 reflections, and we have that

deg(fg) = deg(f) deg(g)

Corollary 2.4.8. If f : S" — S" has no fixed point, then f is homotopic to the antipodal map.

Proof. In fact, we will see that f(x) # g(x) for all x € S”, then f =~ a, o g. Taking g = id gives the result.
Consider the map

o ) — (1~ t)gx)
[t£(x) = (1 = )g(x)]|
for 0 < t < 1. Note that the denominator never vanishes. This then defines a homotopy from f to —g. O

Using this, the degree of any map without fixed points is (—1)"*". Another corollary is that if f(x) # —x
forall x € S, then f ¥~ aoa =id

Definition 2.4.9 (vector field on S")
A vector field on S" is a map v : S” — R"*!, such that for all x € S”,

(x, v{x)) = 0
That is, v(x) is a tangent vector to S” at x.

Proposition 2.4.10 (Hairy ball theorem). S” has a nowhere vanishing vector field if and only if n is odd.

Proof If n =2k — 1,

works. Lecture 6

Now suppose a nowhere vanishing vector field v : S” — R™*" exists. By normalising, i.e. considering

we can consider v : S” — S" C R"". Now consider the family
vi(x) = cos(t)x + sin(t)v(x)

for 0 < t < 7, which has unit length as we assumed v(x) and x are orthogonal. This family has v = id, and
vz = d,. Thus, we have that
1 = deg(id) = deg(a,) = (—1)"*"

14



Example 2.4.11 (Klein bottle)

Recall the Klein bottle is the result if we glue two Mdbius strips together along their common boundary
S'. That is, we define K by the gluing pattern

In this case, we can write K = AU B, where A, B are Mobius bands, ie. A~ S' ~ B. Moreover,
AN B~ S" as well. The interesting part of the Mayer-Vietoris sequence for homology is as follows:

0 —— Hy(K) —— Hi(ANnB) LN H1(A) @ Hy(B) —— H1(K) —— Ho(AN B) —— Ho(A) @& Ho(B)
Recall a(1) = (1,1), and so « is injective, and the sequence becomes

0 —— H2(K) —— Hi(ANn B) LN Hi(A)® Hy(B) —— H1(K) —— 0
By exactness, H1(K) = (Z & Z)/ im(¢) = coker(¢) and Hy(K) = ker(4).

Claim 2.4.12. (1) = (2,2), and so H>(K) =0, and H1(K) = Z & Z/2.

Proof of claim. We will use the decomposition of K into two Maébius bands.

q'\\? 4

]-’r

S .




In this case, H1(AN B) = Z (v + w), and Hy(A) = Z (01 + 02). At chain level, there exists a collection
of 2-simplices in A, with boundary ¢ — (g1 + o). Therefore, v +— 01 + 0> and w +— g1 + 0,. With this, we
have that (by symmetry),

¢(1) = (2.2)

Remark 2.4.13. (i) In cohomology, H*(K) = Z/2 and H'(K) = Z. That is, the homology and the cohomology are
not the same.

it) We defined G(X) = . a;0; | a; € Z, 0; is an i-simplex }. But we can also define
finite 905 | 0} j P

G(X; G) = {Z a;0; { a; € G, gjisan isimplex}
finite

for any abelian group G. 0 is defined as before, and we get a chain complex C.(X; G) and homology H.(X; G).
If we instead computed

A, *=0
HoK ZI2) = {ZR®Z2 =1
72 % =2

since ¢y = 0 if we used Z/2 coefficients.

Interlude on relative homology

Some of the questions on sheet 1 concern relative homology. If A C X is a subspace, then any simplex
g AN -5 Ais a simplex in X. Moreover, if ¢ is a simplex in A, so are all of its boundary faces. Thus, the
natural map induced by the inclusion map,

Gi(A) = G(X)

defines a chain map. Using this, C.(A) is a subcomplex of C.(X). In particular, we can define the quotient
complex,

Gi(X)

Gi(A)

and this is a chain complex, with 0 induced by the boundary operator on C;(X). Another way of thinking about
Gi(X, A) is that it is the free abelian group on i-simplices in X not wholly contained in A. The homology of
C.(X, A), denoted H.(X, A) is called relative homology.

We have a long exact sequence

CX,A) =

- Hi(A) —— Hi(X) — Hi(X, A) —— Hia(A) —— -

If Aand X are ‘well behaved' then H;(X, A) = H;(X/A) for i > 0, where X/A is the quotient space where
we quotient A into a point.

2.5 Homotopy invariance

Recallif f, g : X — Y are homotopic, we would like to show that the induced maps on homology and cohomology
are the same. Recall also that the maps are induced by (co)chain maps on (co)chain complexes.

Definition 2.5.1 (chain homotopic)

Let C., D, be chain complexes. Let f,, g, : C. — D, be chain maps. We say that they are chain homotopic
if there exists maps
’Dn . Cn - Dn+1

for all n, such that
Py,_100+4+0d0P,=1,—g,

16



for all n.

P
Py

Dn+1

Lemma 2.5.2. Suppose f,, g« : CG. — D, are chain homotopic. Then they induce the same map on
homology.

Proof. Let @ € C; be a cycle, that is, da = 0. By definition, f.Ja] = [f(a)]. Consider
fila) = gila) = (fi = gi)(a) = (0P + Pd)(a) = d(Pa)

But this is in the image of 0, and so the corresponding homology classes are the same. O
Lecture 7

Exercise: Chain homotopy is an equivalence relation on chain maps C. — D..

Theorem 2.5.3 (homotopy invariance of homology). If f, g : X — Y are homotopic, then the induced maps
on homology are the same.

Proof. Let i; : X < X x {j} be the natural map, F : X x | — Y the homotopy between f, g. But then

fo = (F olip)s = Fi 0 ips

Therefore, it suffices to show that ig. and i1, are chain homotopic.

Thus, we want
P Cy(X) = Coa(X x[0,1)

such that 9P + Pd = ipx — i1.. P is a prism operator from a universal way of decomposing A" x [0, 1] into a
finite collection of n + T-simplices.

o )

Vi
Vo

Consider the ordered collections|v, .. ., Vi,
A" x {1}. We define P by

Plo) = (=140 % Np. .o,

i=0

Claim 2.5.4. 9P + Pd = i;. — ig.. That is,
OP = i1, — ig. — PO

17



I ie. “boundary of prism is the top and bottom faces, as well as the prism of the boundary".

Proof

j<i j2i

The terms when j = i cancel, except for

which are the top and bottom faces. The terms with i > j and i < j comprise, up to a sign, P(do). Just compute
(in a dark room with some gin). O

O

Remark 2.5.5. If C*, D* are cochain complexes, cochain maps f*, g* are cochain homotopic if we have P*: C! — D',
such that
0P+ Po=f" —g*

It is easy to check that in this case, f* and g* induce the saem map H*(C*) — H*(D*).
With this, our prism operator P : C,(X) — C,1(X x [0, 1]) has a dual

P*: (X x [0,1]) = C™(X)
P(f)="foP

Dualising everything, the relation 0P + Pd = iy, — i, becomes

P + PO =i — i

and thus homotopic maps induce the same map on cohomology.

2.6 Snake lemma

Definition 2.6.1

A short exact sequence of chain complexes

0 A B, G 0

is a diagram

L1

0 — Appt —a= Byyt —B= Gy —— 0

| | |

0 — A —e— B, —8— (C, —— 0

| | |

0 —— A4 —ae— B,y —8> C_1 —— 0

! ! !

such that the squares commute (i.e. a, B are chain maps) and the rows are exact.

Proposition 2.6.2 (Snake lemma). Suppose we have a SES 0 — A, — B, — G, — 0 of chain complexes,

18



then we have a long exact sequence of homology

e Hps1(G) =2 HalA) =5 Ho(By) —2 Ha(C) —2 Hyq(A) —— -

Proof. We will construct 9, but leave all other details. Suppose ¢, € C, is a cycle, representing a homology
class [cy] € Ha(C*). Horizontal exactness means ¢, = B(b,) for some b, € B,. But

B(abn) = aB(bn) = aCn =0

Hence db, € ker(B) = im(a), by horizontal exactness. Thus, we have a,_1 € A,_1 such that a(a,—1) = db,.
In this case,
01(60”71) = aa(0n71) = aZb” =0

But « is injective, and so da,—1 = 0, and this represents a cycle.

An Bn % Cn

B
An71 (% Bn71 e C/HW

a
Anfz — anZ Cn72

We define 0([c,]) = [a,—1].
To complete the proof:

1. Check that 9 is independent of the choices of ¢,, b, a,_1.
2. 0 is a homomorphism.

3. Check that the sequence is exact.

Example 2.6.3
Recall if G is an abelian group, we introducted C,(X; G). If we started with an SES of abelian groups

0 G G G 0

then there is an associated SES of chain complexes
0 —— G(X;G) — G(X, G)) —— C(X;G3) —— 0

The homomorphism
Hy (X G3) — Hypa (X5 Gr)

are often called Bockstein homomorphisms.

Example 2.6.4
If AC X is a subspace, then we defined relative homology, using the SES

0 —— GJ(A C.(X) C.(X,A) — 0
The associated long exact sequence includes a boundary map

0 : Hy(X, A) = Hp_1(A)
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and we have a LES of the pair (X, A).

2.7 Excision

Theorem 2.7.1 (Excision). Let X be a topological space, A C X a subspace, Z C X a subspace with
Cl(Z) C Int(A). Then the inclusion
i (X\Z,A\2Z) = (X, A

induces an isomorphism on relative homology

v tHa(X\ Z, A\ Z2) = H, (X, A)

Intuitively, relative homology measures the homology of X where we ignore what happens within A. There-
fore, excision means that when computing relative homology, we can ignore what happens within Z.

Lemma 2.7.2 (five lemma). Suppose we have a diagram

A B C D E
b g v ) :
4 v + + 4
A B’ C’ D’ [E

where the rows are exact, a, B, 0, € are isomorphisms, then so is 0.

Corollary 2.7.3. If f : (X,A) — (Y, B) is a map of pairs, and the maps f. : H.(X) — H.(Y) and
f. - Hi(A) — H.(B) are isomorphisms, then so are the induced maps on relative homology

f. - Hy(X, A) = H.(Y, B)

Proof. Follows from the five lemma and the LES of relative homology. O

2.8 Relative homology

Definition 2.8.1 (Reduced homology)

If X is a topological space, xo € X is a base point, then we define the reduced homology of X as

H..(X) = H.(X, x0)

It is easy to see that H(X) = H(X) for i > 0, and H,(X) ® Z = H,(X).

Definition 2.8.2 (good pair)

A pair (X, A) is good if A C X is closed, and A a neighbourhood deformation retract. That is, there exists
an open neighbourhood A C U C X of A and a homotopy H : U x [0, 1] — U, with

o H(u,0)=u,
o Hu 1) e Aforall u e U,
e H(a, t)=aforalla e At €]0,1]

20
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One example would be a loop on ¥,, where we can choose an annular neighbourhood.

Example 2.8.3
A
A
On the other hand, consider
e
7
/ — —’//

A

There is no neighbourhood retract fixing A.
Proposition 2.8.4. If (X, A) is a good pair, the natural map (X, A) — (X/A, AJA = {e}), induces isomor-

Ha (X, A) — H,(XJA, AJA) = HL(X/A)

phism

In this case, the intuition is that we can in fact collapse A down to a point.
Proof. Let A C U C X be as in the definition of a good pair, and note that H.(A) = H.(U), and as such, we
H. (X, A) = H.(X, U)

have an isomorphism on relative homology

A:{o}%%

Since the homotopy H : U x [0,1] — U is fixed on A, it induces a homotopy on U/A, and so
A

is also a neighbourhood deformation retract. With this,
H (X, A) —=— H. (X, U) —~—— H.(X/A U/A)

‘/Nhomeomorphlsm of pairs

H (XA, o) —=— H.(X/A UIA) <~— H.((X[A)]e, (U/A)]e)
and so the left map is an isomorphism. Note ~ is an isomorphism by excision, and = is an isomorphism by the
O

above, from the homotopy.
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Z j=n

Example 2.8.5 (i) H;(D",aD") = H;(D"/oD") = H,(S") = ‘
0 otherwise

ZOL j=2

~ Since we can think of S?/S" as S? Vv S? via
0 otherwise

(i) Hi{(S% Sly) = Hi(S* v §%) = {

(iit) A manifold of dimension n is a Hausdorff topological space which is locally homeomorphic to R”".
If M" is a manifold, x € M, then

HiM M\ x) = HR"R"\0) = H,(D", aD") = Z when j = n

by excision by homotopy invariance

For excision, we choose an open set U which is homeomorphic to a ball, and remove the complement
of U.

2.9 Small simplices theorem

Both the Mayer-Vietoris property and excision will follow from the small simplices theorem.

Definition 2.9.1 (chain complex adapted to a cover)

Let X be a topological space,
U= {UG}O(E/
be such that {Int(Uy)}se/ s an open cover of X. Let

CJM(X) = {Z a;0; | ai € Z,0; : A — X, im(0;) € Ug(g, for some a(q;) € /}

finite

This defines a subcomplex of C.(X) with the usual boundary map.
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Theorem 2.9.2 (small simplices). The inclusion C¥(X) < C,(X) induces an isomorphism on homology.

Remark 2.9.3. If X, Y are spaces with covers U, V, and if f : X — Y sends each U, to some Vj, then f induces a

map
.U Y
.2 C4X) — C(Y)

But (X,U) — CY(X) is not functorial for arbitrary maps.
Intuitively, what we want to do here is to split up the chains, so that it is a sum of chains in the open cover.

We will use small simplices to prove Mayer-Vietoris and excision.
Proof of Mayer-Vietoris, theorem[23.7] LetU = {A, B}, where A, B C X open. Then we have an SES of chain

complexes
O

0 —— GANB) —— C(A) @ C(B) —— CY4X) —— 0
The last map is surjective because we have taken the subgroup CY(X). By the Snake lemma and the small

simplices theorem, we get the Mayer-Vietoris sequence.
(i) The boundary map is what we wrote down in the special case earlier.

Remark 2.9.4.
(it) The naturality of Mayer-Vietoris is the naturality of the map

CAX) = C(Y)
where U = {A, B},V = {C, D} and f(A) C C, f(B) C D.
Proof of excision, theorem[271] Recall we have Z C A C X, Cl(Z) C Int(A). Let B= X\ Z, U = {A B}. Then
Int(A) U Int(B) = X, and so we can apply the small simplices theorem.
Consider
= free ab. group of simplices in B not wholly contained in A

G/X) _ G(B)
G GANB)

and so we have the short exact sequences

0 —— G(A) —— CYUX) —— CY(X)IC.(A) —— 0

0 — G(A) —— G(A) —— CGX)ICA) —— 0
where the vertical maps are induced by the inclusion, and all squares commute. Therefore, we have long exact

sequences in homology and natural maps between them,
(X)) —— H(CHX)/CA) —— Hima(A) —— Hiq (CH(X)) ——
\

Hi(A) —— Hi(CY
|
| : ;
A ——— Hq(X) ——— -

\
IA) — H{(X) ———— Hi(X,A) ——— H;

where = are identity maps, ~ is an isomorphism by the small simplices theorem, and so the middle map is an

isomorphism by the five lemma. But we have that
Hi(X, A) = Hi(C(X)/C(A)) = Hi(C(B)IG(AN B)) = Hi(B,AN B) = H (X \ Z,A\ Z)
O

Small simplices uses barycentric subdivision. It's important to get intuition for this, which is that we can
repeatedly subdivide a simplex into smaller simplices, and using the Lebesgue covering lemma, if we subdivide

enough, we can ensure that each simplex is contained in an open set in the cover.

However, the technical details are not very interesting..
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If A" is the standard simplex, let b, = —15(1,.. ., 1) be its barycentre. Take an i-simplex ¢ : A" — A", we
define
Cone{N(a) : A[‘H S A"
t, ..., t;
(fo.... tf+1)Hf0bn+(1—fo)U((11—to+1))

We can view Cone[N : G(A™) — Cip1(A") by extending linearly.

_ A ,
d(Cone*' (0)) = o — Cone;Z4(do) l >0
0— S(U)bn i=0
where
e: G(A")—> 2

E nio; — E n;

If we define c, : C.(A") — C.(A") by

0 otherwise

{5(0)[7” % =0

Then
9 Cone™ + Cone™ 9 = id —c.

Our aim is to introduce a barycentric subdivision operation ¢ : C.(X) — C.(X), which for each simplex
divides the boundary and cones off to the barycentre.

Definition 2.9.5 (natural)
A collection of chain maps ¢* : C.(X) — C.(X) is natural if for f: X — Y, f,o X = ¢" of,.

If 0: A" — X is an n-simplex, and i, : A" — A" denotes the inclusion map, then ¢ = o 0 i,, and so

¢*(0) = ¢, (0vin) = 0:(¢" (0))

Thus, if we can subdivide the n-simplex, then we can use naturality to extend ¢~ for all X
The formula is

#)(0) = 0. Conel’ (¢ (01)))

Lemma 29.6. () Ifo=[w,..., vo] € R" 1 is an n-simplex, for example any n-simplex in a subdivision
of AN for N > n, then for any simplex T in its barycentric subdivision,

. n .
diam(71) < P diam(o)

(i) If o € CY(X), then ¢X(0) € CH(X).

(ii) If o € G,(X), there exists k > 0 such that (¢)*(0) € CY(X).

Proof. (i) is just Euclidean geometry, (il) is obvious. For (iii), we use the fact that o is a finite sum of simplices,
and so it suffices to prove this for a single simplex, since we can just take the maximum value of k. Then

{o7Int(Ua))}, .

is an open cover of A", which is a compact metric space, and so it has a Lebesque number €. That is, every
open e-ball in A" lies in o~ (Int(U,)) for some a. But we can choose k such that

no\k

( ) <e€
n+1

and so we are done. O
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Proposition 2.9.7. There is a natural (with respect to maps of spaces) chain homotopy
P - C(X) = Coa(X)

with
0P + Py 40 = ¢} — ide,x)

Proof. As in homotopy invariance, we construct a prism A" x [0, 1] by gluing A" to its barycentric subdivision.
We can subdivide this into n 4+ 1-simplices. See Hatcher for a formula.

Let U : H,(CY(X)) — H,(C.(X)) denote the induced map. Choose [0] € H,(X), and choose k such that
(@)K (c) € CY(X). Since ¢, is homotopic to id, so is (¢)¥, so there exists F such that

OF + Fo = (¢")" —id

Thus, (¢*)*(c) = c + d(stuff), and so U is surjective.
On the other hand, if U([c]) = 0, then there exists z € C,41(X) with 0z = ¢. There exists k such that

(@r ) (2) € CHq(X) and (@),1)"(2) — 2z = (OF + Fo)(c)

Then
c=0z=0(¢")(z) — 0F(0z) € CH

n+1

and so [c] = 0 in H,(CY(X)) already. O

3 Cellular homology

Singular homology is most effective on ‘nice’ spaces. One example would be cell complexes or CW-complexes.
We will introduce a more manageable chain complex, for computing the homology or cohomology of a cell
complex.

3.1 Definitions

Definition 3.1.1 (cell complex)
A cell complex is a topological space X obtained inductively as follows:

e Xj is a discrete set,

[ ]
Xe = X4 U U le

S
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attached via maps ¢f : dDf = Sk~ — X_ More formally, we can write this as a quotient of

Xe_1 U LI le

i€l

o X = |J, Xk, where we note that Xi_1 C X, equipped with the weak topology. That is, U C X is
open if and only if U N X is open in Xi for all k.

We call the D¥ the k-cells of X, the ¢F the attaching maps, Xy the k-skeleton of X.

Example 3.1.2 (spheres)
S™ = {x} U {open disc}, ie. Xo = {*} and a unique n-cell.

On the other hand, we can also construct S? as 2 0-cells, 2 1-cells and 2 2-cells.

Example 3.1.3 (torus)
The standard gluing diagram of T2 gives a cell structure with 1 O-cells, 2 1-cells and 1 2-cell.
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% /
—

More generally, the surface L, of genus g has 1 O-cell, 2g 1-cells and 1 2-cells.

The gluing pattern is a1bray 'b; -‘-agbga?b?.

)

Example 3.1.4
If X, Y are cell complexes, xo € Xo, yo € Yo, then

Xuy
Xo = Yo

XVY =

is naturally a cell complex.

Remark 3.1.5. If X is a cell complex, then X is a disjoint union of the open cells Int(D¥).

Definition 3.1.6 (finite dimensional, finite cell complex)

If X = X, for some n, we say X is finite dimensional. If X = X, and for all K < n, I is finite (i.e. X has
finitely many cells), we say that X is an finite cell complex.

Remark 3.1.7. A finite cell complex is compact.

In fact, the converse is also true. If X is an infinite cell complex, we have an infinite, closed, discrete subset

of X by choosing a point in each cell which is not in the boundary, and so X cannot be compact.
Lecture 10



Definition 3.1.8 (subcomplex)

A subcomplex of X is a closed subspace of X which is a union of cells of X.

3.2 Homology of cell complexes

Lemma 3.2.1. (i) A C X is open (resp. closed) if and only if its preimage in any cell is open (resp.
closed), through the composition

(Pa:Da(HXn-HUuDB—»Xn;’X
B

We call ¢, the characteristic map of the cell D,. Note its restriction to the boundary is the attaching
map.

(i) Cell complexes are Hausdorff and locally contractible. In particular, connected and path connected
are equivalent.

(iit) If Z C X is compact, then Z C Xy for some N.

(iv) If AC X is a subcomplex, then the pair (X, A) is good.

Proof Exercises, or see Hatcher. O

Corollary 3.2.2. If A C X is a subcomplex, then H.(X, A) = It/*(X/A). In particular,

Z%% =k

0 otherwise

Hi(Xk, Xk—1) = ‘[

Proof. X
k k
—=1\/S
X1 \lk/

Result follows by Mayer-Vietoris, we note that

) st {xa})

06/;( O’E/k

is a good pair, and the quotient is the wedge sum. Thus, the reduced homology of the wedge sum is given by

the relative homology
Ho (LSt Lot ) = D HAs* 0

Proposition 3.2.3. Let X be a cell complex.
() He(X,) =0 for all k > n,

(it) The inclusion X, < X induces an isomorphism of Hy(X,) = H(X) for k < n.

Proof. For (i), consider the long exact sequence given by (X,, X,_1),
- — Hia (X, Xo1) —— Hi(Xo—1) —— Hi(Xn) —— Hi(Xp, Xog) —— -+
if kK > n, then He (X, Xo—1) = Her (Xn, Xo—1) as it is a wedge of spheres, and so
Hi(Xo—1) = He(X;)

28



But we can iterate this, since k > n > n—1, and so
He(Xn) = He(Xo—1) = - = He(Xo) =0

since Xp is a discrete set.
For (ii), consider the same sequence

- Hi1 (X, Xn1) —— Hie(Xooq) —— Hil(Xy)) —— He(Xo, Xpo) —— -
as above, with k < n — 1. In this case, k + 1 < n and k < n, and so the same logic shows
Hi(Xo-1) = Hi(Xo) = He(Xn)
for all N > n. If X is finite dimensional, then we are done. In general, if a € H(X), then it is represented
by a finite collection of k-simplices. But this is a compact space, and so it lies within Xy for some N, and so

a lies in the image of the map Hg(Xn) — Hg(X). Conversely, if we have a € H(X) bounding a k + 1-chain,
then that union of simplices lies in Xps for some N > N, and so a = 0 in Hg(Xn). O

Corollary 3.2.4. If X is a finite cell complex of dimension N, then H;(X) = 0 for all j > N.

Definition 3.2.5 (cellular chain complex)

We define the cellular chain complex C<(X) of a cell complex X (with its cell structure) via
CEY(X) := H,(Xk, Xi_1) = free abelian group on k-cells

with the differential defined as:

/

Hir1 (Xes1, Xk)

He(Xk)

Hie(Xie, Xk—1)

Hie—1 (Xk—1, Xk—2)

/

Hi1(Xk—1)

cell cell
akﬂ ak

where the diagonal maps are defined using the long exact sequence of a pair. We will write He(X) for
the homology of the chain complex C!(X).

Claim 3.2.6. 9 0 3%l — 0.

4L

Proof. The composition o o 6cke+“1 includes two consecutive maps (the orange ones in the above diagram) in
the long exact sequence of the pair (X, Xik—1), which compose to zero. As such, 6?“ o 0?1“1 =0. O

Note C(X) depends on the choice of cell structure on X.

Proposition 3.2.7. H,(X) = HeY(X).
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Proof. Consider the diagram

/ 0
0 = Hi(Xk21) Hi(Xeg1) = Hie(X)
Hie(Xe
V \
Hi1 (X, Xi) pey Hie(Xi, Xi—1) poy Hi—1(Xk—1, Xe—2)
k+1 k
Ok (k-1
Hi—1(Xk—1)
0 =Hi—1(Xk—2)
From this, we have that
He (X i (He (X ker(0 ker(ix—1 00 ker(a<elt
H (X) = KXe)  (He(X))  ker(d) _ ker(ix—100k) _ ker(d} ):Hf“(X)

im(0k+1)  im(ix 0 Fgy1)  im(OEY) im(0) im(0¢l)

Corollary 3.2.8. Let X be a finite cell complex. Then
(1) Hi(X) is a finitely generated abelian group of rank at most ny = | /|,
(it) if Hg(X) # 0, every cell structure must contain k-cells.
(iii) if X admist a cell structure with cells in only even dimension, then H.(X) = C=(X).

(iv) if F is a field, then H.(X; F) is a finite dimensional F-vector space.

For (iii), we saw that CP" satisfies the requirements on examples sheet 1, and the same is true for the
Grassmannian Gr(k, C") of k-dimensional linear subspaces of C" (where Gr(1, C") = CP"~"), and various other
spaces in complex algebraic geometry.

The same sort of argument as for CP" shows that RIP” has a single cell in each degree 0 < i < n, that s,
the cellular chain complex is

0 Z Z e Z Z 0
But we need new tools to compute the cellular boundary.

That is, if e, is a k-cell, then

ace Z d aB€B
of k — 1-cells. We would like to find the dog € Z.
Lemma 3.2.9. dy4 is the degree of the following map on spheres:

S X 3 XXy ———— Vg SET — 2y S

30
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Remark 3.2.10. For this to be well defined (and not just defined up to a sign), we need to fix isomorphisms
Hi 1 (Sk71) =7

Proof Consider

Hi(D5, 0DE) ————— Hi1(9Dh) —————— Heoa(S)
¥a Palopk
He(Xe Xeo1) ——22 s He i (X) collapse
agel

He1(Xeor, Xeea) —————— Feoa (X1 /Xe—2)
Chasing a generator around this diagram:

10 10 deg(fqp)

Z daBeB —_— dageg

The result then follows. O
This is useful if we can compute the degree of maps between spheres. Suppose f : S" — S" and y € S”

has finitely many preimages

In this case, we can choose pairwise disjoint discs U; containing x;, and a disc V' containing y such that
f(U;) C V. Then f defines a map
(Ui xi) = (V. y)

This then defines a map
7= Hn(U[: U[\X) - Hn(\/l \/\g) =7

Moreover, recall that the isomorphisms above are from excision, and so the maps above are between the same
copy of Z. With this, we have a local degree of f at x. We will write

deg, (f) or deg,(x;) € Z

for this. Another way (once we have a bit more machinery) is that S" is orientable, and so U;, V' inherit an
orientation. Once we fix this orientation, the local degree is well defined.

Lemma 3.2.11. Under the assumption that such a y exists,

deg(f) = ) deg, (f)
i=1
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Proof. We have the diagram

deg(/)

H,(S") H,(S™)

H”(S/7IS/7\{X1 ::::: Xn}) T E— Hn(Sn'Sn\{y})

= | excision excision | =

Ho (L Ve LU\ AxiH) —————= Ha(V. VA {y})

[

D deg, (1)

@?7:1 Hn (Ui, Ui \ Xi)

and the result follows from the fact that the diagram commutes.

Example 3.2.12
By the same argument as for CP", RP” has a cell structure of the form

e U RP”71

That is, there is an i-cell for 0 < i < n. The attaching map de” = S 5 RP" is the canonical 2 : 1
map. With this, the cellular complex is:

0 Z Z VA Z Z 0

Consider
cell . ~cell cell
ak : Ck k—1

This is induced by

oDk = Sk—1 RPk—1 RPk71/RPk72 — Gk—1

Let n be the composition. At a general point p of the image S*~', p has two preimages under n.
Moreover, near each of the preimages, 1 is a homeomorphism. Fix V C RP*~" an open disc, under the
map SK~1T — RP*=1, V has two (disjoint) preimages, Uy, Us, with n|y, = n|y, o (antipodal), and so

deg, (f) = (1) deg,, ()
With this, 9% is multiplication by 1+ (—1)¢ (possibly up to a sign). The complex then becomes

ZZ--»ZOZZZOZO

and so the homology is

7 *=0
712 0 < %< n,x odd
Z * = n,n odd

0 otherwise
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Example 3.2.13 (Exercise)

If p(z) is a complex polynomial, then p extends to a continuous map p : Co, — Cy, of degree deg(p), and
if x € C is a root of p, the local degree deg,(p) is the multiplicity of the root.

cf. the fundamental theorem of algebra. This is essentially local degree in complex analysis or
Riemann surfaces.

Remark 3.2.14. If f : S" — S" is a smooth map, then f~'(y) is finite if y is a reqgular value, and by Sard's theorem
the set of critical values has measure zero, and as such, the set of regular values is dense.
Moreover, every continuous map S” — S” is homotopic to a smooth map.

3.3 Digression on cohomology

Set C*, (X) = Hom(C=Y(X), Z), and 97, for the adjoint of 0. Consider

HY(Xi, Xizq) H(X) HF (X1, X))
\—/

candidate for d7,

But on examples sheet 2, we show that the diagram below

HI(X,, Xi1) H(X;) HH (X1, X))

Hom(H;(X:, Xi_1), Z) ——— Hom(H;(X}), Z) ———— Hom(H; 1 (X1, Xi), Z)
\—/
adjoint to 95!
commutes. Thus, we could have defined

Clou(X) = H(Xi, Xi1)

and the boundary operators will have given the same cochain complex. Note however in the diagram above,
the middle map need not be an isomorphism.

Proposition 3.3.1. Let X be a finite cell complex. Then we have a (non-canonical) isomorphism

= WI(X)) 57 TOI’(H[,1 (X))

where for an abelian group A, Tor(A) is the subgroup of torsion elements.

Proof. This is pure algebra. Let C, be a chain complex, such that the chain groups C; are finitely generated
and free. Let C* be the corresponding cochain complex, and then corresponding relation holds. That is,

oo~ Hi(X)
H/(X) = — L=~ @ Tor(H, ¢(X
and so, all we are using is that for a finite cell complex, C*" is finitely generated and free,
Break the chain complex into a sequence of short exact seqeuences

and
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where Z, = ker(0 : G, — C,—1), Bp_1 = im(@ : G, — C,_1). In the top sequence, all of the groups are free.
So we can split the top sequence. That is, there exists a, : B,_1 — C, such that d,a, = id. Then we have a

(non-canonical) isomorphism
Cn = Zn (&) Bn—1

With this, the chain complex looks like
s Zn+1 &) Bn — Zn @Bn—1 — Zn—1 @Bn—Z —_—
In terms of this decomposition, 0(B,,) C Z,. That is, C, breaks down as a direct sum of length two complexes.

We can simplify this further. By choosing helpful bases for B, and Z,_1 using the Smith normal form, which
says that using a Z-change of basis, we can write

ds

dk

0

where dy | d», d> | d3 and so on. Then G, is broken into a direct sum of two kinds of complex:

0 AR/ 0
for d + 0, and
0 z -z 0
For these two very simple complexes, the claim in the proposition is clear. O

With this, we can see that the natural map H*(X) — H.(X) is an isomorphism provided X is a finite cell
complex, with H;(X) free abelian for all i.
Remark 3.3.2. For abelian groups H, G, let
{0-GC—J—-H}

Ext'(H, G) =

be extensions of H by G, modulo an equivalence relation where there exists ¢ : ; — J/, making

0 G e H 0
I I
! ; !
4 ~ 4

0 G ) H 0

commute. Note by the five lemma, ¢ is an isomorphism.

Theorem 3.3.3 (universal coefficient). There are exact sequences (for any topological space X),
0 —— Ext'(H,_1(X), G) —— H"(X; G) —— Hom(H,(X); G) —— 0

which are (non-canonically) split.

Proof. Omitted. ]

Recall if X is a finite cell complex, then H;(X) is a finitely generated abelian group, and H;(X; F) is a finite
dimensional F-vector space.
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Definition 3.3.4 (Euler characteristic)

If X is a finite cell complex, we define its Euler characteristic

X(X) = (1) rankz(Hi(X))

>0

and more generally, if F is a field,

where X has N; i-cells in its cell structure.

Proof. Recall our short exact sequences

and

where C, = Cje“(X) Say N, = rank(C,), z, = rank(Z,) and b, = rank(B,). Then

N, =2z,+bp1 and rank(H,(X)) =z, — b,

Substituting,
> (=1 rankz(He(X)) = > (=1)"(zx — bi)
k k>0
= (zk = (Nky1 = Zk41))
k ge0
= Z(—1)k+1/\/k+1 + 20
k>0
=) (=1)"Ni
k>0
since zg = Np. O

The same computation shows that x(X; F) = Y_(—1)Nj, and so the Euler characteristic is independent of
our choice of field.

Example 3.3.6
x(S%) =2, x(CP?) = 3 and so S* is not homotopy equivalent to CIP>.

Example 3.3.7

If X is a union of two subcomplexes A, B, then

x(X) = x(A) + x(B) =x(AN B)
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Example 3.3.8

If X, Y are finite cell complexes, then X x Y admits a cell structure, such that the open cells in X x Y
are products of open cells in X and open cells in Y. Then

XXX Y) = x(X)x(Y)

3.4 Generalised homology theories

1.

Definition 3.4.1 (generalised homology theory)

A generalised homology theory is an assignment

(X, A) > (X, A) = D hi(X, A

i€Z

of a graded abelian group to a pair (X, A), where X is a topological space and A C X a subspace. This
needs to satisfy:

(functoriality) A map f : (X, A) — (Y, B) induces f. : h.(X,A) — h.(Y,B), with id, = id and
(fog)="fog.

(homotopy invariance) if f ~ g as maps of pairs, f. = g,

(long exact sequence) writing h;(X) = h;(X, @), we have a long exact sequence

hi(A) hi(X) —— hi(X,A) —— hi41(A) —— ---
which is natural. The maps h;(A) — h;(X) and h;(X) — h;(X, A) are induced by inclusion.
(excision) If Cl(Z) C Int(A), then
X\ Z, A\ 2) = h.(X, A)
via the inclusion map.

(unions)

D hi(Xe) = h

a

X

via the sum of the inclusion maps.

These are called the Eilenberg-Steenrod axioms, and h,({pt}) are called the coefficients of the theory.

Example 3.4.2

We can build examples of the form

(X, A) = H. (X, A) &z R

where R is an abelian group. A 'meta-theorem’ says that interesting generalised homology theories are
not from chain complexes.

Proposition 3.4.3. If h., k. are generalised homology theories on the set of pairs (X, A) of a cell complex
and a subcomplex, and if ¢ : h, — k. is a natural transformation, then ® being an isomorphism on a point
implies it is an isomorphism on all such pairs.
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Outline proof where X is finite dimensional. We induct on dim(X). If X = Xg, then X is a discrete set and the
unions axiom implies the result.

Suppose inductively @ : h. (X, A) = kX, A) is an isomorphism whenever dim(X) < n — 1. Let X be an
n-dimensional cell complex. In this case, we have long exact sequences

hi+1(X,an1) — hi(Xn—1) — hi(X) — hi(XanJ) — hi71(Xf74)

| |
! l l

ki1(X, Xpo1) —— k(X)) ——— k(X)) ———— k(X Xooq) ——— ki (Xo1)

<
[N
©
[N

By the five lemma, if ® is an isomorphism on h;(X, X,—_1) for all i, then it is an isomorphism on h;(X). But by

excision,
n n
L]0z [ ]oDg
a a

Here, we are using the fact that X,,_1 has a neighbourhood N¢(X,—1) C X, for all € sufficiently small, whcih
are constructed cell by cell, and retract onto the boundary on each cell. By the unions axiom,

| |Dz.| |oD;

Po(X, Xoo1) = ho(Xo, Xot) = h,

h.

=P h.(Dy, 0Dy

Now consider the LES of the pair

hi(0D") ————— hy(D") ————— hy(D",0D") ———— h;_4(dD") ———— h,_(D")

| | | | |
I I I ] I

k(0D") ——— k(D") ———— k(D",0D") ——— k_1(dD") ——— ki_1(D")

Using the fact that dD" is (n — 1)-dimensional, and D" is contractible (and using homotopy invariance), by the
five lemma the middle map is an isomorphism. Hence by induction, we have that

Do) ha(X) = k(X)

is an isomorphism when dim(X) = n. Now the same argument with the LES of the pair and the five lemma
shows that ®x 4 is an isomorphism if X is a cell complex and A is a subcomplex. O

Remark 3.4.4. The result is true for infinite dimensional cell pairs, but it uses the “telescope construction’, see Hatcher.

Remark 3.4.5. There is a corresponding notion of a generalised cohomology theory. We replace the covariant functor
h, with a contravariant functor h*, reverse the long exact sequence, and replace the direct sum with the direct product
in the unions axiom.

The analogue of the previous proposition holds with the same proof.

4 Cohomology

4.1 Cup product

Definition 4.1.1 (cup product)
Let X be any topological space, ¢ € CX(X), ¢ € C*(X), then their cup product ¢ — ¢y € CK+¥(X) is

(¢ ~ L[})(U : [VO ~~~~~ Vk+€] = X) = (:b (O‘M ,,,,, Vk]) (lj (U|[Vk »»»»» Vk+€])
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Notation 4.1.2. We will write ¢ - ¢y = ¢ — .

For the cup product, it's useful to have the de Rham theory in mind. In this case, @ € Q*(M), B € Q(M),
and the cup product is the wedge product a A B € Q**(M). The lemma below is then the same formula as
the exterior derivative of a wedge product.

Lemma 4.1.3. If 9% : C*(X) — C**'(X) is the boundary operator, then
0 (p-¢h) = (0°¢) -+ (=1)"- 0"y

Proof. Let [w, ..., Vkro+1] be a (k 4+ € + 1)-simples of X. Then

k+1
@ (o - vksrsr) = Y (1 $Vo0r- o T Vi DV - Vi)
i=0
On the other hand,
k+0+1 _
(=1 (") (v, - . Viros1)) = ¢, - - -, vic) Z (=D'dlve -, Vi Veto41))
i=k

where the indexing on the right hand side absorbed the sign (—1)*.
In the two expressions, there is only one term which appears twice, which are

(=)o, ..., vie)((ves, - - - Vires) + (1) @(w, .., i) g(vesa, - Virer1]) =0

and cancel. The remaining terms give

k+0+1

(@) | > (=N, T vies] | = (9)(00) = 07 (¢4)(0)

i=0

Corollary 4.1.4. Cup product descends to cohomology, and so it induces a map
HA(X) x HY(X) — HH(X)

which makes H*(X) into a graded unital ring.

Proof Let ¢ € CK(X), ¢ € C’(X) be cocycles, The lemma gives that 9*(¢y) = 0, and so [¢y] represents a
cohomology class in H*(X). Next, we need to show that this is independent of choices.
A general representative of [¢] is ¢ + d*a, then ¢ becomes

(¢ +0"a)y = ¢Y + (0" a) = ¢t + 0" (ay))

With this, the element

[Ply] = [¢y]

is well defined.
Recall we have an element 1 € CY(X), given by 1(p) = 1 for all p € X. With this,

(o) = 1) — 1) =1—1=0

and so 9*1 = 0. With this, we have an associated element 1 =[1] € H%(X). It is easy to see that 1¢) = ¢ and
Y1 = ¢, and so this is a unit. O
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Remark 4.1.5 (on coefficients). Recall for any abelian group G, we have C;(X; G) for chains with coefficients in G,
and a corresponding cochain group
Cl(X; G) = Homz(C,(X; Z), G)

If G is a commutative (not necessarily unital) ring, then we can define cup product on C*(X; G), which induces a cup
product on H*(X; G), making it into a graded (not necessarily unital) ring. If G is a unital ring, then H*(X; G) is a
unital ring.

Proposition 4.1.6 (Properties of the cup product). 1. (associativity) (¢ - ¢) - T = ¢ - (Y - 1),

2. iff: X = Y is a continuous map, then the induced map f* : H*(Y) — H*(X) is a ring homomorphism.
In fact, this is already true at the cochain level.

3. The cross product is
H(Y) x H/(Z) — H(Y x 2)
(@ )= pry ¢ prz ¢

Lecture 14

Example 4.1.7
If X = {x}, then

H (X) = Z x=0
10 otherwise

In this case, H*(X) = Z has its usual ring structure.

Example 4.1.8
Now consider X = S", where n > 1. Then

H*(S”)z{z *=0,n

0 otherwise

If x is a generator of H"(S"), then x - x € H?"S" = 0, and so

zx

where |x| = n.
Notation 4.1.9. We write |x| = k for the degree of x € H¥(X).

Example 4.1.10
If X, Y are cell complexes, xo € X, yp € Y, then we have maps

| XV Y |
/ \
X(/ NY

where py is given by collapsing Y and ix is the inclusion map. This gives us ring homomorphisms

pyx tH(X) = H*(X VYY)
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Since xg, Yo are neighbourhood deformation retracts, we have an open cover of X vV Y and using Mayer-
Vietoris, we have that B _ _
H*(X) @ H*(Y) = H*(X V Y)

is an isomorphism of abelian groups. Hence we know H*(X V Y) in terms of H*(X) and H*(Y). With this,
if @ € H{(X), B € H/(Y), with i,j > 0, then a - B = 0.
More simply,
H*(X U Y) = H"(X) ® H*(Y)

as rings.

Proposition 4.1.11. H*(X) is a graded commutative ring, that is, if ¢ € H*(X), ¢ € H(X), then

¢ 4=y ¢

Remark 4.1.12. If R is a commutative ring, then H*(X; R) is a graded-commutative ring. Moreover, unlike associativity,
this is not true at the cochain level.

Example 4.1.13
Suppose X has

HE(X) = Z %=0,3,6
|0 otherwise

For degree reasons, the only possible non-trivial cup product is
H3(X) x H3(X) = H°(X)
But if 8 € H3(X) is a generator, then by graded commutativity,
6-6=-90-6

and so 8- 6 = 0 since H°(X) is torsion free.

Theorem 4.1.14 (Kiinneth). Let Y be a space be such that H(Y) is free and finitely generated for all i.

Then the cross product
H5(X) x HY(Y) — H(X x Y)

induces an isomorphism of graded rings

P HEX) @ H(Y) - HEF (X x Y)
k+0=n

whenever X is a finite cell complex.

Remark 4.1.15. In general, cross product induces a homomorphism
H*(X; R) @ H*(Y; R) = H'(X x Y, R)
of abelian groups, and if we declare the left hand side is a (graded) ring via
(a® b)(c® d) = (=)l (ac) ® (bd)

and so the map from the cross product is a ring homomorphism. In the case of the Kiinneth formula, we then obtain
an isomorphism of rings.
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Example 4.1.16

Recall Zix]
* 1l X

with |x| = 1. Equivalently, this is A(x), exterior algebra on one generator (L.e A*Z).
Recall additively,
Z x=0,2
HYT%) =172 x=1
0  otherwise

In terms of the Kinneth formula,
HO(T?) = HO(S") @ H(S")
HY(T?) = H(Sh) @ H'(S") @ H'(S") @ H(ST)
HY(T?) = H'(SY) @ H'(S")

if x; € H'(S") is a generator for the i-th factor, then the map H'(T?) x H'(T?) — H?(T?) will be
(T®x)x®1) =—xx

This is isomorphic to the exterior algebra A(x1, x2). lteratively,
where H'(T") = Z" has generators xi, .. ., e

Example 4.1.17
By Mayer-Vietoris, we know that

Let 1 € HYE,) and u € H?(L,) be generators.

Claim 4.1.18.

(xixj = yiy; = 0, xiy; = d;u)

(and with the relations from skew-commutativity).

Proof. By collapsing the purple subspace

[\

we have a projection map 7 : L4 — \/?_, T2. We also have a natural inclusion map p : | |, T? — \/?_, T2
The maps 7* and p* are ring homomorphisms on cohomology, and they define isomorphism on H'. In
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particular,
HY(| | 7% = P AX. i)
i =1

where |x;| = |y;| = 1, and generate H'(T?). Since p*, 7* are ring homomorphisms on H', we can use
these to define classes in H'(Z,).
On H?2, we have

Z = H{(Zy) «—"—— HA(\/L, T?) = Z9
B
H( |, T) = ¢

and if u; = x;y; € H(T?) are generators, we need to show that the map Z9 — Z sends u; to u. To see
this, we need to consider the map
H?(T?%) — H?(Z,)

when L, — T2 is the map to one factor. Recall from out computation of degree of maps between spheres
that if we have a point with finite preimage, we can express

deg(f) = )_deg, (/)

as a sum of the local degree. The same argument works in this case, and so the degree is well defined.
Thus, up to changing the sign of y;, we get the result we want, since the degree of the map £, — T?
is 1. O

Corollary 4.1.19. Let f : S” — T" be any map, and n > 1. Then f has degree zero, where deg(f) :
HY(T") — H"(S™).

Proof. f induces a ring homomorphism from
H*(T") = A(x, ..., Xn)
to
H*(S") = —=
Since n > 1, H'(S") = 0, and so f*(x;) = 0. Hence
Pt ) = () () = 0

O
Lecture 15

Proof of theorem|41.14 Recall that
C(X,A) = {1 € C(X) | C.A) C ker(N)}
If o € CK(X, A), g € CYX), then for o : Ak + ¢ — A a simplex in A,
@ - Y(o) = e(front of o)y(back of sigma)
and so @ -y € C**(X, A). From this, we have a relative cup product
HE (X, A) x HY(X) = HEH9(X A)
In particular, H*(X, A) is a graded ring, but it is typically not unital. We also have a relative cross product,

CKIX,A) @ COY) = CK9X x Y, Ax Y)
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and this induces a map on cohomoloogy
HA (X, A) @ H(Y) = HHYX x YV A x Y)
Now consider the associations for fixed Y, with cellular pairs (X, A),

B (X, A) == H* (X, A) @ H*(Y)
KX, A) = H' (X x YV, Ax Y)

and the relative cup product defines a map @ : h*(X, A) — k*(X, A). If (X, A) = (pt, @), then
& h*(pt) =Z @ H*(Y) = H*(pt x Y) = H*(Y)

By our discussion of generalised cohomology theories, if ® is a natural transformation, and if h*, k* are
generalised cohomology theories, then ® will be an isomorphism for all cellular pairs (X, A).

h*, k* are generalised cohomology theories: For k*, all the axioms follow by our known properties of
singular cohomology. For h* naturality, homotopy invariance and excision are immediate. The long exact
sequence and unions axioms hold as we are assuming that H(Y) is finitely generated and free. That is, if M
is finitely generated and free, then

(i) the functor Ty(N) = M ® N is exact (ie. it preserves exact sequences),
(lL) M ® Ha Na = |_|a(M ® NO{)'

® is a natural transformation
We know the cup product and cross products are natural for maps of spaces. So naturality, homotopy
invartance and excision axioms are fine. Consider

HK(A) ® HE(Y) — aesoid — HEH (X, A) @ HY(Y)

b ®

| |

HE(A x V) —— aies — HEFEH(X x Y A x Y)

We need the square to commute and then ¢ will be compatible with the long exact sequences.
Recall given ¢ € CX(A) with "¢ = 0, we extend it to ¢ € C*(X), and set

Oes|@] = 97[¢]
Thus, if ¢ € C(Y) is any cocyle, then g?) x  is an extension of ¢ x ¢ from A x Y to X x Y. Hence the square
commutes. O
Sketch proof of proposition[#1.17) Let €, = (—1)""*12 and

Claim 4.1.20. p is a chain map, which is chain homotopic to the identity.

Given the claim,

whereas
P P) = exroth(vire, - -, vie(ve, - - -, vo))

and we also have that
EEp = (—1)M€k+€

and p being chain homotopic to id shows that p* = id on H*, and the result then follows.
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To see that p is a chain map, we can just compute. We would like the diagram to commute

T P
Co(X) —oa—— C,—1(X)
But
(po) = €0y (=10l ]
and

Since €, = (—1)"€,_1, we are done.
For the homotopy, we will need a twisted prism operator. We want P : C,(X) — C,41(X) such that

0P+ Pd=p—id
If 1: A" x[0,1]" — A” is the projection map, define

Po = Z(—T)Ksn,iﬂ([vo ,,,,, Vi, W, . wi)

i
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4.2 Projective space

We will go through an extended example. Recall CP” has a cell structure with one cell in each even dimension
0,2,..., 2n. In particular, 9%, = 0. Hence H*(CP") = C%, (CP").

As a ring, we will show that
Zl|

xn+1

where |x| = 2. Thus, x' # 0 and generates H(CP") = Z for 0 < i < n.

H*(CP") =

Lemma 4.2.1. There is a natural map

7:CP' x .- x CP' — CP”
—_————

n copies
which is invariant under permutation, and so it induces a homeomorphism

(CIPH )n
Sy

7T =CP”

Proof For (a : b) € CP', we associate the linear homogeneous polynomial (bx — ay) which vanishes at (a : b).
If we have (a1 : by), ..., (a,, b,) € P, consider

n
|_|(b[x —awy) = aoxX"+ ax" Ty + -+ apxy™ !+ ay”
i=1

and define

Clearly
(i) 7 is continuous,

(ii) it descends to a map (CP")"/S, — CP”,
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(iit) from the fundamental theorem of algebra, the map is surjective (consider roots),

(iv) the induced map 7 is a bijection, as a polynomial, up to scaling, is determined by its roots. So 7 is a
homeomorphism by the topological inverse function theorem.

O

We've seen H?"(CP") = Z, and that
Z|x]
2

H*(CP') = =

where |x| = 2. Since H*(CP') is finitely generated and free in each degree, and so we can use Kiinneth to get
that

H*(CP' x -+ x CP") = (X) H'(CP")
i=1

where |u;| = 2. In particular,
Hz”(((C]P”)”) =7

generated by uq - - - u,. Hence it makes sense to compute the degree of x. That is, what is the induced map
7 H*(CP") — H*((CP")")
Choose a generic point g = (ag : - - - : a,) representing a polynomial with distinct roots, then naturally
77 q) = {ps | 0 € S,}

is a finite set of n! elements. By our considerations of local degree, we can fix a small disc ¢ C V, V
homeomorphic to R?", with g not intersecting the locus of polynomials with repeated roots, such that

W= U
geS,

where 7 : U, — V is a homeomorphism. That is, away from the locus of polynomials with repeated roots, the
S, action is free. With this, by local degree computations,

deg(o) = ) deg, (m)

0€S,
where each deg, () = £1 since 7 is a local homeomorphism. But the maps
7Ty Uy —V and 7. U; -V

differ by the homeomorphism of (CP')" given by the elmeent 077" € S,

But if we fix an isomorphism H?(P') = Z, where u; = 1, then the S, action on (CP")" induces an action
on H?((CP"") = Zuy @ - - - @ Zu,, by permuting the u; (for example, thinking about cellular maps). Hence the
action preserves uq---u, € H*((CP")"). Thus, all of the local degrees are the same. Hence (up to a sign)
deg(sr) = n!. Now consider the pullback map

H*(CP") — H*((CP")") =

Let x be a generator of H?(CP"). In fact, from the cell structure of CP”, the 2-skeleton is a copy of CP'. The
inclusion CP' — CP" induces an isomorphism

H?(CP") — H(CP")

Now consider
CP' x some generic, ie. pairwise distinct points C (CP')"
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The image under 7 is a line in CP”. Hence we can choose x so that it restricts to uq. By symmetry (ie.
S,-equivariance), 75(x) = uq + - + u,,.

In this case, 7*(x") = deg(m)uy - - - u,. But then the right hand side is non-zero, and so x" = 0. In fact,
(ur + - +up)" = nluy - u, Hence x' # 0 for all 1 < i < n. Moreover, x' is the generator of HZ[(CIP’”E

We can think about this in terms of algebraic geometry (assuming some more machinery). The generator
in H?(CP") is the Poincaré dual to the fundamental class of a hyperplane [H] € H?"=?(CP"). That is, it is the
class of a linear form. What the homeomorphism s represents is that a point in CP” can be represented by
the intersection of n (generic) hyperplanes, and cup product is Poincaré dual to intersection.

Corollary 4.2.2. A map f : CP? — CP? cannot have degree —1.

Proof deq(f) is defined by f*(x?) = (degf)x? where |x| = 2, but f*(x) = Ax, for some A € Z, and so
f*(x?) = A°x%, and A2 # —1. O
In fact, we see that the degree of f has to be a square.
A consequence of our computations is that for M = (CP')”, CP”, and a non-zero class a € H*(M), there
exists B € H*(M) such that |a - B| = d'Lm(MEl In fact, this is a general fact of the cohomology classes of
compact oriented manifolds. This is called Poincaré duality, and it is our next goal. But we would like to

understand the cohomology of a manifold.
Locally, M is a disc, and the cohomology of a disc is not very interesting.

4.3 Cohomology with compact support

Let X be any space, K7, K, € X be compact subsets. If Ky C K5, then X'\ K7 2 X'\ K5, and so we have an
inclusion of pairs (X, X'\ K3) C (X, X'\ Kj). This defines a pullback map on cohomology

H (X, X\ K1) = H (X, X\ Ko)

Definition 4.3.1 (cohomology with compact support)

The cohomology of X with compact supports is H?,(X), given by
i H*(X, X'\ K)

—>
KCX compact

4.3.1 Crash course on direct limits

Let A be a poset, such that for any a, b € A, there exists c € Awith a < ¢, b < c.
A direct limit of abelian groups on A: Given the data

e abelian groups {Gg}aea,
e a homomorphism pgp : Gy — Gy if a < b, such that

1. Paa = -ldCDy
2. PocPab = Pac fa < b < e
The direct limit is C
lim G, = M
JeA (X = pab(x))

If x € Gg,y € Gp, choose ¢ with a < ¢,b < ¢, then x ~ pac(X) € G, y ~ ppe(x) € Ge, and so we can set

[X] + [g} = [pac(x) + pbc(g)]
1o see this, note that the inclusion CP"~1 < CP" induces isomorphisms

Hi((C]P)n71 ) ~ Hi(C]P)n)

for 0 < i < 2n — 2, and so if we show that x” generates H2"(CP"), then under the above isomorphism, x” also generates H"(CP"*+*) for
any k > 0. The result then follows by induction.
2Dimension of M as a real manifold.
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This makes U_)m Gg into an abelian group.
fIrCAlis coﬁnal that is, for all a € A, there exists y € [, with a < y, then

lim Gg = lim G,
— —

aeA yel

Lecture 17

Example 4.3.2
Let A = N with its usual order, G, = Z/p? for a fixed prime p. The maps are

Z Z

EEAH pu+1

X = px
The direct limit is

lim Gy = Z(p™) = {z € S| zis a p" root of unity for some n € N}

—
A

The result is called the Priifer group

Example 4.3.3

Let A= N again, with n < m <= m | n, and groups G, = Z, and pg, is multiplication by b/a. In this
case,

Q@(17==Q

A

Note that the elements (n!) form a cofinal family, and so we have that the limit is

Equivalently,

and so the limit is

1
Unz=@

neN

Example 4.3.4

If X is a compact set, then the poset K of compact subsets of X ordered by inclusion has a final element,
namely X, and so
HE(X) = lim H (X, X'\ K) = H*(X, X\ X) = H*(X)

ct N
K

Example 4.3.5

*=n
H* Rn )
otherwise

By Heine-Borel, every compact K C R” lies in B(0, N) for some N, and so

lim H*(R”, R” \ K) = lim H*(R", R" \ B(0, 1))

— —
K N




But via the long exact sequence of the pair, and homotopy invariance,
H*(R", R"\ B(0, N)) — H="(S")

Moreover, this is compatible with the inclusion B(0, N) € B(0, N + 1), and so the direct limit is just

7 id 7 id 7

which is Z, where the only non-zero degree is when * = n.

Note that

otherwise 0 otherwise

Hallpth) = {f L HARY = {Z -

and so it is not homotopy invariant. Moreover, it is not functorial either. On the other hand, if f : X — Y is
continuous, closed and proper, then it induces a map

He(Y) = Ha(X)

Again in this case it is helpful to keep in mind the case of de Rham theory. The corresponding idea is to
consider the space of compactly supported differential forms, i.e. @ € QF(M) which is zero outside of a compact
set K C M.

On the other hand, if i : U — X is the inclusion of an open set in a Hausdorff space X, then we have an
extension by zero map i, : H(U) — HX(X), using the fact that if K C U is compact, then K C X is compact.
This gives a map from compact sets on U to compact sets on X, which gives an induced map on cohomology.
In particular, we are interested in the case when X is a manifold and U C X is a disc.

5 Cohomology of manifolds

Recall in this course, an n-manifold is a Hausdorff space locally homeomorphic to R".

5.1 Orientation

Definition 5.1.1 (local orientation)

Let R be a unital commuative ring (most importantly Z and Z/2). A local R-orientation for a manifold M
at x € M is a choice of generator
e € H,M, M\ x;R) =R

Recall by excision, H,(M, M\ x; R) = H,(U, U\ x), where U is an open ball.

Definition 5.1.2 (oriented)

A manifold M is R-oriented if we have chosen local orientations €, for all x € M, such that if ¢ : U — R”
is a chart on M in a preferred atlas, such that for all p; € U C M,

Hﬂ(Mr M\P:) — HH(RHV R” \ (p(pl))

by excision above, and we can define a map of pairs (R”,R” \ ¢(p1)) — (R",R" \ ¢(p,)) by translation,
which induces an isomorphism on the right hand side. This induces an isomorphism

g Ho(M, M\ p1) — Hy (M, M\ p)

we require (gp,) = &p,.
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Diagramatically, ¢ is given by

Ha(M, M\ p) —280 1 (U, U\ p) — 20— H,(R”, R”\ ¢(p))

Lﬁl l‘rranslatlon

Ha(M, M\ q) Ho(U, U\ p) —o— Ha(R". R"\ ¢(q))

excision chart

Remark 5.1.3. If U, V C R” are open, f : U — V' is a homeomorphism is orientation preserving if for all x € U, f(x) €
v,
H”(R”, R \ O) translation HH(RH, R \ X) excision H,,(U, U \ X)

q I

H,(R", R\ 0) Ho(R", R\ y) Ho(V, V\ x)

translation excision

commutes. Then M is orientable if it admits an atlas {U,, ¢,} of charts where the transition maps are orientation
preserving.

Remark 5.1.4. If R = Z/2, then Z/2 has only one generator, and so all manifolds are Z/2 orientable.

Theorem 5.1.5 (Poincaré duality). Let R be an R-oriented manifold of dimension n, then there is a
distinguised isomorphism '
D HLM;R) = H,—i(M; R)

In particular, if M is compact, then

D : H(M; R) — H,_(M; R)

Remark 5.1.6. By considering R = Z and M being RP? or the Klein bottle, we see that we need the orientability
requirement.

The isomorphism D is obtained from the cap product.

5.2 Cap product

Definition 5.2.1 (cap product)
Let X be any topological space, the cap product is

—~: Ge(X) ® CO(X) — Cre(X)
Vo, v ®d— Plw, - vellve, - v

for ¢ < k,and 0 if ¢ > k.

Lemma 5.2.2. For any space X,

(i) d(c —~ @) = (—1)’ (00 —~ ¢ — 0 — 9*¢) for 0 € C(X), ¢ € C’(X). Indeed, —~ induces a pairing
(for € < k)
Hi(X) ® HY(X) — He_o(X)

(i) Givenamap f: X = Y,
fola) ~ ¢ = fula ~ (¢))
for a € He(X), ¢ € HA(Y).
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(iii)

Yo~ ¢) = (¢ — ¢)(0) € Z
For 0 € Geyeo(X), ¢ € CK(X), ¢ € CYUX),
(iv) for a pair (X, A), there is a relative cap product

Ce(X, A) ® CUX, A) = Ceo(X)

which descends to coohomology.

Proof. For (i),

do —~ ¢) = Z(—1)i+€¢)([vo ,,,,, velve, . ... Viooo, Vi ]

i=0

Rearrange/compare terms to get the result.
For (it), and (iii), they hold at chain lebel from definitions. Say at the level of (co)homology we have for (ii)

He(X) @ HA(Y) — 24 s 1 (V) @ H(Y) ————— Heo(Y)

He(X) @ H(Y) —— o HelX) @ HY(X) ——=—— Hio(X)

and for (iii)
HY(X) —— Hom(H,(X), Z)

asv-l (—e)

H (X)) ————— Hom(Hy1e(X), Z)
Note that the horizontal maps in (iii) don't need to be isomorphism, but if we worked over a field, then they

would be.
Ivan lost (iv) somewhere... O

We want to define the map D from the statment of Poincaré duality.

Proposition 5.2.3. Let M be an oriented n-manifold, and so we have w, € H,(M, M\ x) which are
coherent. Then for each K C M compact, there exists a unique wg € H,(M, M\ K) such that the map

on patrs

(M, M\ K) — (M, M\ x)
sends wk to wy for all x € K. Note that H;(M, M\ K) =0 for i > n.

Given the proposition, then M be oriented, K C L C M be compact. We can consider

HM M\L)  ® H{M M\ L) — H_(M)

|

H(M M\ K) ® HM M\ K) = Hi_(M)
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where the vertical maps are induced from the inclusion i (of pairs). Now
wKA¢:[*wLA¢:wLAi*¢

since by uniqueness, i,w; = wk.

The map ¢ — wy — ¢ is compatible with the maps in the directed system definining H
K < L. So there exists an induced map HX (M) — H,_¢(M).

Moreover, if M is compact, then we have wy € H,(M), and D(¢) = wp — ¢ is called the fundamental
class, denoted by [M].

*

* via invlusions

Proof of proposition[5:23] We will prove this for more and more general classes of K. We say that K € M
compact is good if it satisfies the conclusions of the proposition.
Step 1: If A, B, AN B are good, then so is AU B. In this case, we have

c 5 Hpet (MM AN B) 5 Hy(M, M\ AU B) + H,y(M, M\ A) @ Ha(M, M\ B) + H,(M,M\ ANB) + - -

By uniqueness, wa +— wang and wp — wanp under relative inclusions. Hence the map
HH(M, M\A) (&) HH(M, M\ B) — Hn(/\/’, M\A N B)

is zero. Hence we have a class wayg mapping to wa and wg. By assumption, H, 11 (M, M\ AN B) s zero, and
S0 waug is unique. Moreover, for all x € AU B, by construction wayg — wy. Finally, H{(M, M\ AU B) = 0 for
i > n by exactness of the Mayer-Vietoris sequence.

Step 2: If K C R" is convex, then K is good. If so, then H.(R", R"\ K) = H,(R",R" \ 0). But this case
is easy, since we can use translations. Using step 1, finite unions of convex sets is good.

Step 3: Every compact set K C R” is good. If K C R” is compact, then K C B = B(0, R) for some R > 0.
Define wg to be the restriction of wg to K, via

(Rﬂ , Rl? \ B) — (Rﬂ’ Rn \ K)

We will write wg = wg|k. Since wp — wy under restriction, so does wk. So what we need is uniqueness.
That is, we need to know that no other element of H,(R", R" \ K) also satisfies the requirement that it pushes
forward to w, for all x € K.

That is, we want to know if that if A € H,(R",R” \ K), with A|, = 0 for all x € K, then A = 0. Suppose
we have such a A. So A is represented by a chain, and 94 is a finite union of simplices in R” \ K. Thus there
exists a finite union of balls 5; such that

.KQE:U/B/
e IANK =0

That is, B
A€ imH,(R”, R\ K) = H,([R",R"\ K))

But K is a finite union of convex sets, so it is good. Hence A = 0 by the uniqueness for K.
Step 4: If K C M is compact, it is good. We can write K as a finite union of Kj, where each K; is a
compact subset of the coordinate neighbourhoods. Each K; is good, and so their union is good by step 1. O

5.3 Consequences of Poincaré duality
Take coefficients in a field F. Recall that
Plo— ¢) = (¢¢)(o)
and we have an isomorphism
HY(M; F) — Hom(Hy(X; F), F) = Hi(X; F)*
a and so we get a pairing
H&(M; F) @ H'™K(M; F) — F
(@, ) = P(DP)
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and Poincaré dueality says that this pairing is non-degenerate. In particular, if M is compact, then the map is
HYM; FY @ HY MM, F) — F
(@, ) = (¢ ¢, [M])
In the de Rham theory, the pairing is given by

HE (M) @ H'K(M) - R

(a, B) — alPB

M

Corollary 5.3.1. Let M, N be oriented connected compact n-manifolds, and so H"(M) = Ho(M) = Z, and
the orientation gives us a preferred generator. Thus, a map f : M — N has a degree deq(f) € Z. If this
degree is non-zero, then over a field, the pullback map

£ - H*(N; F) = H*(M; F)

is injective in each degree.

Proof If a € H(N; F) is a non-zero class, the non-degeneracy of cup product as a pairing implies there exists
B € H"(N; F) such that aB # 0 € H"(N; F). Since deg(f) # 0, * : H"(N; F) — H"(M; F) is non-zero, and
so it is an isomorphism. Hence f*(ap) #+ 0. But then f*(a)f*(B) # 0, and so f*(a) # 0. O

Corollary 5.3.2. Let M be a compact manifold of odd dimension n = 2k+1. Then the Euler characteristic
of M is zero.

Proof First of all, note that in this case, H/(M; Z) is finitely generated for all i, and non-zero only if i < n.
Hence the alternating sum

X(M) =" (—1) rank(H'(M; Z))
is well defined. Moreover, we saw that we could compute x(M) by working over a field F. Suppose M is

oriented. Then
2k+1

X(M) = (=1) dimg(H'(M; F))
i=0

Let b' = dimp(H{(M; F)) be the Betti numbers. Then
X(M) = bo— b1+ -+ ba — baxs

But the non-degenerate pairing implies that b; = b,_1, and so bg = by+1 and so on. Hence x(M) = 0. Now
if we take F = 7Z/2, then M is F-oriented. O

An alternative proof is to use the existence of an oriented double cover. For this, we first note that the
universal coefficient theorem and Poincaré duality proves the result for any compact orientable manifold (here
we can use Z-coefficients). Now if M — M is a double cover, then (M) = 2x(M), which gives the result.

Definition 5.3.3 (manifold with boundary)

A manifold with boundary is a Hausdorff space M, locally homeomorphic to

We define the boundary OM of M to be the points x which under some chart, ¢(x) € {x; = 0}.

OM is well defined by some point set topology. Now given a compact manifold M", is there a compact
manifold with boundary W"*, with 9W = M? If so, we say M is null-cobordant.
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Lemma 5.3.4. If M = 0W as above, then x(M) is even. In particular, CP? is not the boundary of any
compact 5-manifold.

Proof. Without loss of generality, dim(M) is even. Suppose M = dW, and we form the double Z of W, which
is two copies of W glued along their common boundary M. That is,

Z = Wiett Um V\/rlght

In this case, Z is a compact manifold without boundary, with dim(Z) odd, and so x(Z) = 0.

But we can compute x(Z) using Mayer-Vietors. Z = U U V, with U, V homotopy equvialent to W, and
U NV homotopy equivalent to M. Note we use the fact that a neighbourhood of dW C W is homeomorphic to
oW x [0, €). That is, we have a collar neighbourhood. Using this, we have an exact sequence

- —— H(Z) —— H(W) @ H(W) H{(M) HH(Z) —

We know all the groups in the above are finitely generated. But the Mayer-Vietoris sequence is a chain complex
with homology zero, and so the Euler characteristic of the chain complex is zero. But taking the alternating
sum of the ranks, we get

X(Z) = 2x (W) + x(M)
But x(£) =0, and so x(M) = 2x(W). O

5.4 Proof of Poincaré duality

Lemma 5.4.1. Let X be a locally compact Hausdorff space. If X = UU V, with U,V C X open, then
there exists a Mayer-Vietoris type sequence

— Héﬁ(X) E— Hét(Uﬂ \/) E— Hét(U)GBHét(\/) E— Hét(X) —

Lemma 5.4.2. Suppose M is a oriented n-manifold. We will say U C M open is good if Poincaré duality
holds on U. That is, Dy : HX(U) — H,_«(U) is an isomorphism. Note in this case, U is also an oriented
manifold.

Suppose U, V, UN V are good. Then U U V' is good.

Proof. Assume without loss of generality that M = U U V. From lemma 5:47] we have

HL(U N V) — HY(U) @ H (V) — HE (M) — HEF (U N V) ——— HEPY(U) @ HE (V)

l | l l |

Ho ok (UNV) > Hy i (U) @ Hy i (V) = HieM) = Ho—peny(UN V) > Hiyp ey (U) @ Hyp— ey (U N V)

The horizontal sequences are exact, and the vertical maps are isomorphisms except the centre one. We would
like to apply the five lemma. The fact that the squares commute when the square does not involve the boundary
maps is clear. For the square

Ha(M) —— HH (U V)

o o
Hie(M) —— Ho—wep(UNV)

it does not commute as is. Hpwever it does commute up to a sign, and we can use the five lemma in this case.
We will omit the proof of this fact. See Hatcher/Spanier for details.

Now suppose M = |, U;, with Uy C U, C --- are all good, then so is M since any compact subset is
contained in some U;, and so
lim H*ct(U;) — HY (M)

—
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is an isomorphism. On the other hand, any homology class is represented by a finite union of simplices, which
has compact image, we have natural maps

H.(Ui) — H (M)
and taking the direct limit,
lim H, (U;) = H.(M)

il
is also an isomorphism.

Using this, and that any open subset of R” is a counable union of open balls, we see that any open subset
of R" is good. Thus, if the manifold M is second countable, then it is covered by countably many discs, and
we are done.

In general, use Zorn's lemma for the collection of all good open subsets of M, O

Proof of lemma 241l If (X,Y) = (AU B, CUD) is a union of pairs, then we have a relative Mayer-Vietoris
seqeuence

HI(X, Y) —— Hi(A, C) @ H(B, D) —— HI(AN B, C N D) — HH(X, )

using the small-simplices theorem (see Sheet 4). If X = UU V, K C U,L C V compact, set A =B = X,
C=X\K,D=X\Y,Y=X\(KNL),CnD=X\(KUL). We then get an exact sequence

HIX, X\ (KN L)) —— H(X, X\ K) @ HI(X, X\ L) —— H(X, X\ (KU L) —— HFY(X, X\ (KN L)
Excise X\ UNV, X\ U, X\ V from the first three terms, we get
H(UNV (UNV)\(KNL) > HU U\K)@H(V, V\L) > HX, X\ (KUL) - H*(UNV,(UNV)\(KNL)

But every compact subset Q C UN V' is of the form KN L, where K C U compact, L C V compact. For example,
U=Vv=20.

Thus, if we range over all K, L, in the first three terms we get all possible compact subsets. Since X is
locally compact, any compact subset of X is contained in K U L, for some compact K C U, L C V. Thus, the
compact subsets of the form K U L form a cofinal family. Taking the direct limit over K C U, L C V' compact,
and using that the direct limit of exact sequences is exact, we get the Mayer-Vietoris seqgeunce for H. O

6 Vector bundles

Definition 6.0.1 (vector bundle)
Let B be a topological space. A vector bundle of rank d E — B is:

e A family of d-dimensional vector spaces {Ep}pes,
e with a topology on E = | | £, such that

(i) the natural projection p : E — B is continuous
(it) and locally trivial. That is, for all b € B, there exists a neighbourhood U of b, and a local
trivialisation, which is a homeomorphism ¢y making the diagram

—Ely —% UxR

\/

Y Ep — {b} xRY

commute, and such that the map

is a linear isomorphism for all y € U.
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(iit) The subspace topology on £, from E is the same as the topology on £, as a Euclidean space.

We call E the total space, B the base space, E, the fibres.

Definition 6.0.2 (section)
A map s: B — E is called a section of E if pos =idg.

The map

B— E
b—0e€Ep

is called the zero section.

Example 6.0.3
The trivial vector bundle of rank d is E = B x R? with the product topology and the projection map.

Definition 6.0.4 (pullback)
If p: E — X is a vector bundle, f: Y — X is any map, we define the pullback as f*E — Y, with

fPE ={(e.y) € E x Y [ple) = 1f(y)}

This has a natural projection map to Y. Then f*E£, = Ey).

Definition 6.0.5 (Whitney sum)
Let p: £ — X, q: F — X be vector bundles, then we define their Whitney sum has

EoF ={(xy) € ExF|ple)=q(h}

This has a natural map to X x X, which lands in the diagonal, that we identify with X.

Remark 6.0.6. Both of these operations have
1. it takes trivial bundles to trivial bundles,

2. they commute with retriction to open subsets U C B. In other words,

FEly)=(FE);~y and (E®F)|lu=Elu® Flu

and so they are locally trivial.

Other operations include tensor product, dual, exterior powers etc.
If p: E — X is a vector bundle, we say F C E is a subbundle if for all x € X, F, = p~'(E,) is a linear
subspace, and we have an open neighbourhood of U with a trivalisation of F making

Ely — % 5 UxRY
Flo ——s— U xR*

commute.
If F C E is a subbundle, then we can define £/F — X, with fibre E,/F,.
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Definition 6.0.7 (isomorphism)

We say that vector bundles £ — X, F — X are isomorphic if there exists homeomorphisms a : E —

F,g: X — X, making the diagram
E F
X X

commute, such that a : £, — Fgy is a linear isomorphism.

a
_
_

9

The most important case is when g = id.

Define
O(n)

Gr(k,R") = {k-dimensional linear subspaces in R"} = Ol % O =K
n—

for the Grassmannian. The tautological bundle
E — Gr(k,R")
has fibre at x € Gr(k, R") the linear subspace (x) corresponding to x. Concretely, we can define
E={(x,e) € CGr(k, R") xR" | e € (x) CR"}
This is a vector bundle, with the natural projection map p : £ — Gr(k, R").

Proof. Choose an inner product on R”, given x € Gr(k, R"), let

U={y e GrikR) | (y)n (0" =0}
On this, we have a trivialisation
Y. Ely - Ux(x)
(U, S) = (Y. priy(<))

where
pl’<X> :Rn — <X>

is the orthogonal projection. The definition for ¢y shows that we have a local trivialisation.

Remark 6.0.8. There is an obvious notion of a complex vector bundle, with fibres being complex vector bundles, and
we have an associated tautological bundle £ — Gr(k, C") as well.

Example 6.0.9

Gr(1,R") = RP"", has a tautological (real) line bundle, whereas the Gr(1,C") = CP"~!, we have a
tautological (complex) line bundle.
Note a complex line bundle as real dimension 2.

Lemma 6.0.10 (partition of unity). Let X be (para)compact Hausdorff, if {U,} is an open cover of X, then
we have a subordinate partition of unity. That is, we have maps {A, : X — [0, 1]}, such that

e supp(Aq) C U,
e at each x € X, the number of non-zero A, is finite,

e > Au(x)=1forall x € X.
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|
Proof. Omitted. ]

Definition 6.0.11 (inner product)

An inner product on a vector bundle E is a continuous map (-, ) : E ® E — R, such that on each fibre
the map is an inner product.

Lemma 6.0.12. A vector bundle p : E — X over a (para)compact Hausdorff space has an inner product.
Moreover, E is globally generated. For all x € X, & € E,, there exists s € [ (E) such that s(x) = &

Proof Fix a trivialising open cover {U,} for E, and an inner product on R? where d = rankg(F). If W, :
Ely, — Uy x R? is a trivialisation, then we can use W, to define an inner product (-, ), on E|, .
Let {As} is a subordinate partition of unity, then for u ® v € £ ® E, define

W)=Y Ao fuv),

Note that (u, v), is only defined if p(u ® v) € U, but if this wasn't true, then A4(p(v ® v)) = 0. By definition,
this is a finite sum, and that this defines an inner product.

Now if x € U,, & € E,, choose a section s, € I'(E|y,) with sq(x) = & We can do this as we can take
something which is constant in a trivialisation. Let s = Za AaSq. Then s(x) = & O

Corollary 6.0.13. If X is compact Hausdorff, £ — X is a rank d vector bundle, then there exists N € N
and f : X — Gr(d, RN) such that E = f*Eqy.

Proof. Since X is compact, we have a finite set {sy, ..., sy} C IT(E), such that on each E, the s;(x) span. Fix
an inner product (-, ) on E, and now consider the map

aE— X xRN

(X, §) = (X, (s1(x). ¢) .- - (sn(x). §))
Since the sections s; span, we see that a embeds £, into RN for all x. That is, it embeds £ as a sub-bundle
of a trivial bundle. But then we can just define

f:X — Gr(d,RV)
x— a(Ey) C RN

By construction, the pullback of the tautological bundle is E. O

Remark 6.0.14. Our proof actually shows that if £ is a vector bundle over a compact Hausdorff space, then there

exists another vector bundle F — X such that £ @ F is the trivial bundle, since we can just take F, = a(E,)*.

Remark 6.0.15. In fact, for this class of X,

{vector bundles of rank d}

isomorphism < homotopy classes of mapsX — Gr(k, R*) = [X, Gr(k, R*)]

where

is the infinite Grassmannian.
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6.1 Cohomology
First note that if £ has rank d, then HY(E,, E, \ 0) = Z.

Definition 6.1.1 (oriented)

We say that a rank d vector bundle E is oriented if for all x € X, we have a generator €, of Hd(EX, Ex\0),
which vary locally trivially. That is, if x € U and E is trivialised over U, say

Y ElyZUxR]

is a trivialisation, then this induces an isomorphism E, — {y} x R?. Using this, we have an isomorphism
E, — E,, which should send ¢, to €.

Notation 6.1.2. We will write £ for the complement of the zero section in E.

Remark 6.1.3. If we have a coefficient ring R, then we have a natural definition of R-orientation. In particular, every
vector bundle is Z/2-orientable.

Theorem 6.1.4 (Thom isomorphism). Let ;7 : £ — X be an oriented vector bundle of rank n, then
(i) HY(E, E¥) =0 for k < n,
(ii) there exists a unique element ug € H"(E, E*) such that restricting, ug|, = &, € H(E,, E, \ 0).
(iit) The map
H (X) — H(E, E7)
avrs ta — ug
is an isomorphism.

The class ug is called the Thom class of E.

In the case of a smooth oriented manifold M", TM — M is a vector bundle of rank n, and so what this
is saying is that the cohomology of TM relative to the zero section is just the cohomology of M, shifted by n.
Moreover, the isomorphism is given by wedge product with a fixed n-form.

Moreover, the zero section is a smooth manifold, of dimension n, and so it has a canonical class [F°] We
claim that the Poincaré dual of this class is the Thom class (Bott-Tu 6.24 (b)).

Finally, since a vector bundle is locally trivial, we can study the topology of it by studying the gluing of
local trivialisations, cf. cocycle condition. The zero section has to be glued to the zero section, and so we study
the (co)homology relative to it.

Definition 6.1.5 (Euler class)
Consider the long exact seqeunce of the pair (£, £#). Then we have a natural map H"(E, E¥) — H"(E).
Now H"(E) is homotopy equivalent to H"(X). The image of the Thom class under this map is the Euler

class
er € H'(X)

Remark 6.1.6. A characteristic class for vector bundles (perhaps satisfying some conditions, such as orientability) is

an assignment
E — c(E) € H*(X)
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such that forall f: Y — X,
c(fE) = f*c(E)

The uniqueness in the Thom isomorphism implies that the Euler class er is a characteristic class.

Definition 6.1.7 (sphere bundle)
Let E — X be a vector bundle, with an inner product on £. We define the sphere bundle

S(E)={e€ E|(ee)=1}
Up to homotopy, this is independent of the choice of (-, -), as the inclusion into £¥ is a homotopy equivalence.

Assume E is oriented and of rank d, then we have the long exact sequence of the pair (£, E%) and using
the Thom isomorphism, we have

. y H(E, E¥) —— HY{(E) —— HY(E¥) —— HHYE EY —— -
t t T T
+ + + +

- ——— HEI(X) —— H{(X) —— H{(S(E)) —— HEHF(X) —— -

and so we obtain the Gysin sequence

¢

H(X) HEH(X) —— HIF(S(E)) —— HIFT(X) —— -

The map ¢ is the cup product with the Euler class eg, basically by definition. In de Rham theory, the map
HFI(S(E)) — H*(X) is given by integration over the S?'—fibre.

Example 6.1.8

Let L — CP" be the tautological complex line bundle. Recall that a complex vector bundle is canonically
oriented, since GL(d, C) C GL4(2d,R). Hence L has a Thom class and an Euler class. But

L={(x,v) €CP"x C""" | v € (x)}
using the usual inner product on C"*1 we see that
S(L) _ 52n+1 g (Cn+‘|

since any v € C™" with [lvil = 1 is in a unique line through the origin, and the intersection of a line
with S?7*1is an S The Gysin sequence becomes

. Hi+1 (52n+1) Hi((c]pn) Hi+2((CIP>n) H(+1 (52n+1) .
If i <2n — 2, then we have
0 —— H{(CP") —— H*2(CP") — 0

and so setting x = e; € H?(CP"), we see that H**(CP") is generated by x*, and so we recover the result
that 2]
X
H(CP") = X0
( ) <Xn+1>

Remark 6.1.9. Clearly if £ is trivial, then S(£) = X x S?~1, and so we can compute H*(S(E)) using Kiinneth. So the
fact that the Gusin sequence is interesting here is detecting the fact that L is non-trivial.
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Lemma 6.1.10. If a(n oriented) vector bundle £ — X has a nowhere vanishing section, then e = 0.

Proof Suppose s € ['(E) is a section, which has image in £%. Then
er € Im(H (EF) = H5 (X))
where k = rank(E). To see this,
HNE, EF) ————— HNE) ———— HNEF)
(zero)*=s*
H (X)

note that any two sections are homotopic, and so the Euler class must be zero, as mapping the Thom class to
HK(E*) gives zero by exactness. O

Remark 6.1.11. If E is an oriented vector bundle of odd rank, the necessarily
2ep =0 € H*™E)(x)

and so if H®"XE)(X) has no 2-torsion, e = 0. To see this, consider the map

a:E—E
Vi —Vv
which reverses orientation, i.e. it acts by —1 on H*™E/(E  E \ 0). Hence a*ug = —ug. But on the zero section,
a = id. Thus, pulling back to the zero section, ex = —er.

Proof of the Thom isomorphism. We will prove the Thom isomorphism by inducting on the number of trivialising
neighbourhoods for £. That is, we will assume this number is finite, for example if X is compact. Zorn's lemma
shows the general case.

For the base case £ = X x R? is a trivial bundle.

Lemma 6.1.12 (Relative Kiinneth). Suppose H*(Y), H*(B), H*(Y, B) are all finitely generated and free for
a good pair (Y, B). Then for X which has the homotopy type of a cell complex, the map

H*(X) ® H*(Y, B) = H*(X x Y, X x B)

given by the cross product is an isomorphism.

Proof. We have the diagram

H*(X) ® H¥(Y, B) ——>—— H*(X x ¥, X x B)
id®p* q*

|
H*(X) ® H*(Y/B, pt) ——— H*(X x Y/B, X x pt)

which commutes, it suffices to prove this for B = pt. In the above, p, g are the quotient maps, and p*, g* are
isomorphisms on homology. But

H*(Y, pt) ———— H*(Y) ——— H*(pt)

splits if we choose a point in Y. We know the result for Y and for the point by the Kiinneth theorem. Using
the five lemma gives the result. O
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Thus, we have that £ = X x RY, E# = X x (R?\ 0), and so by the lemma,
H*(E, E*) = H*(X) ® H*(R’, R\ 0)

Fix a generator €4 for H*(RY,R?\ 0), and so we can just define the Thom class to be 1 ® e,4. Everything else
is clear.

For the inductive step, assume the result is known for all oriented vector bundles with trivialising open
covers with at most N open sets. Assume £ — X has a cover by N + 1 open sets. In this case, we can write

X=AUB

such that the result holds for E|a, E |, E|ans. By Mayer-Vietoris, we have a sequence
= HTYE|ans, E*ans) — HYE, E¥) — HY(E|a, E*|a) @ H'(E|, E¥|8) — H'(E|ans, E*|ang) — -
By this, if i < d = rank(E), then H{(E, £¥) = 0. When i = d, we get
0 —— HYE, E%) —— HYE|a, E¥|a) ® HY(E|g, E*|g) —— HYE|ans, E*|[ang) —— -

In this case, we have Thom classes ug|,, Ug|,, UE|,,,- BY uniqueness, ue|ans = Ug|,,; = Ug|s|lans, hence
(ug),, ug,) = 0. With this, we must have a (unique by injectivity) class ug such that ug|sa = ug), and
UE|B = UE|p-
By construction, ug|g, = €y is the orientation generator. Thus, all we need to show is that the map
HK(X) — HY(E, EF)

o T'a — ug
is an isomorphism. The Thom map

a e — -

maps the Mayer-Vietoris sequence for X = AUB to a Mayer-Vietoris map for £ = E|4UE|g. The result follows
by the five lemma, once we show that the squares commute. The non-obvious case involves the boundary map.

That s,
HU(E | an, E¥|ang) ————— HT(E, EF)

H=(AN B) ——————— H9(X)

Let @ € CY(E, E*) be a cocycle representing the Thom class ug. Then ®lg|, represents ugj,.
If @ € H=9(AN B) is a class, then we can write a = 4 — Y, where s € C79(A) and g € CI(B).
Then
d"la] = [d"¢n]
Hence along the bottom right, we get
a = (0 ) - @
For the top left, note
YA - @e — T8 - Pl

is a difference of chains in _ _
CYE|a E*|4) and CUE|, E*|p)

and so the top left sends
a = 0" (" Ya - @) = 07 (1" Pa) - @ley,
These the agree. O
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6.2 Cup products on smooth manifolds

Recall if M is a smooth manifold, it has a tangent bundle TM — M of rank dim(M). If ¥ C M is a (smooth)
submanifold, then TY C TM|y is a subbundle. We define the normal bundle

M|y
TY

Vyim =
This is a vector bundle of rank dim(M) — dim(Y) on Y. We'll write vy = vy when M is clear from context.

Notation 6.2.1. We say that Y is co-oriented in M if vy is an oriented vector bundle.

Exercise: If M is a smooth manifold, then an orientation on M as in this course, as
& € Hyo(M, M\ x)

is equivalent to an orientation of TM as a vector bundle. One way of seeing this is using the exponential map
of a Riemannian metric.

Definition 6.2.2 (transverse)

Let M be a smooth manifold, Y,Z C M are smooth submanifolds, then we say that Y and Z intersect

transversely if for all p € Y N Z,
T,Y+T,Z2=T,M

Theorem 6.2.3 (tubular neighbourhood). Let M be a smooth manifold,

1. if Y € M a compact smooth submanifold, Then there exists an open neighbourhood Uy of Y C M,
and a diffeomorphism o : Uy — vy, taking Y to the zero section. Moreover, both Uy and « are
unique up to isotopy.

2. it Y,Z C M are compact smooth manifolds which intersect transversally, then Y N Z is a smooth
submanifold, with
codim(Y N Z) = codim(Y) + codim(Z)

and we have an isomorphism of bundles
Vynz = Vylynz ® vzlynz

and there are tubular neighbourhoods Uy, U7 of Y, Z respectively, with Uynz = Uy N Uz compatible
with the above isomorphism.

Proof. Omitted. ]

Suppose MY is a smooth oriented manifold, Y* C M a smooth compact submanifold. Note thatif V = V;@ V5
is a direct sum of vector spaces, oriented two of the three gives an orientation on the third. Thus, for Y, orienting
Y is the same as co-orienting Y. Assume Y is oriented.

Y is a compact topological manifold, and so it has a fundamental class [Y] € H(Y) under the inclusion
map (: Y — M, we have a class

LY] = HM) = HE V)

by Poincaré duality.
Alternatively, we can take the Thom class

tubular neighbourhood

vy € HI7k (v, vh) = HI=k(Uy, Uy \ Y) Z HTK M, M\ Y) — HEK (M) Z H (M)

Lemma 6.2.4. These two constructions agree.
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Notation 6.2.5. We will write ey for the cohomology class dual to an oriented compact submanifold Y.

Proposition 6.2.6. If Y, Z are oriented compact smooth submanifolds of M, which meet transversely, then

Eynz = &y - &7

Remark 6.2.7. ey - 7 = (—1)cdm(McdinZ) o, o) Recall
Vynz = Vy © vz

and so co-orientations of Y, Z and the ordering of Y and Z induce an orientation on Y N Z. This makes the above
an oriented isomorphism of vector bundles. Thus the proposition fits with skew-commutativity.

Example 6.2.8

If M is oriented, a point p € M is co-oriented. Thus, it has a well defined class ¢, € Hg(/\/l) which is
the orientation generator.

Thus, if Y N Z is a transverse intersection, then eyn7 is non-zero. Hence gy, €7 is non-zero. One
example of this for ¥,

picture

In particular, we can use the loops to compute the cohomology ring structure.

Proof of proposition[626] If E — X, F — X are oriented vector bundles, then the relative cross product defines

a map ) ‘ o
HU(E, EY) @ HI(F, F¥) > HY(E @ F, (E & F)f)

Noting that (E x F)|a, = E @ F. Moreover, we have that
UEgF = UE X UF
under this map, since we have an isomorphism

HY(R!, R\ 0) @ H/(R/, R/ \ 0) Z HH(RH RFN 0)

Now
Eynz = uVymZ = uVy : UVZ =&y &7
O

Proof of lemmal6Z4 We have that the diagram

Hn,k(Y) — inclusion —> H”,k(Uy) —PD—— H/gt(Uy)

i extension by zero

Hy—«(Y) i— Hp k(M) ——pPD— HA(M)
commutes by out construction of D. So i.([Y]) has the property that D(i,[Y)) is in the image of H*(Uy) =
HX(vy, vg) = Z. Where for the last isomorphism we use the Thom isomorphism. Thus, i,[Y] and D(ey) must
agree up to a sign. In fact, using our conventions for orientations, they agree. O

Corollary 6.2.9. If i : Y"=K < M" are as above, given a € H"“%(M), then we can compute
(Fa,[Y]) = (ev - a.[M])

where (-, -) denotes the natural pairing between homology and cohomology.
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So ey behaves like a Dirac delta along Y.

Proof.
(e, a,[M]) = a(M]Ney) = a=a(D(ey)) = a(i[Y) = ia([Y))

O

Take coefficients in a field £, which we will omit from the notation. Then Poincaré duality for a compact
F-oriented manifold M says that we have a non-degenerate pairing

H (M) @ H"* (M) — F
(a,B)— a-B=(a-B[M)
Let {a;} be a basis of H*(M), {b,} the corresponding dual basis, so a; - b; = 0;;. Note by Kiinneth that
H* (M x M) = H*(M) @ H*(M)
Let A C M x M be the diagonal. Then we have

er € H (M) ® H* (M)

Lemma 6.2.10.
=Y (~Pla @b

i

Proof. Note that by non-degeneracy of the cup product, it suffices to show both sides evaluaed agains by ® ay
gives the same result. We can write
EN = Z Cija; @ b;
0f

for some coefficients ¢;;. So

(en - (bk®ag), M x M)y =) ¢ {(a: ® b)) - (b ® ap),[M x M])
=5 (1 Yol e, (a,by @ bjag,[M x M)
=5 - f|‘bf‘6,-k5/g(—1>'”f‘|b/‘
= (—1)lbellbul+lach ¢, ,
On the other hand,
(en - (bk ® ag), [M x M) = (bx ® ap,[A])
= (_1)|0k||b€\5k€

Hence
ko = (=N)Pelbel g — (1)l 5y

as required. O

Warning: Many books (e.g. Milnor Characteristic Classes) gives

en=> (-1)"a;®b;

i
which is (—1)%"M) times what we said. They define cap product so that
(a,0 ~b)={a-b,0)

That is, the define
g~ ¢

by feeding the back face of o into ¢, whereas we fed the front face. This changes the isomorphism D.
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6.3 Fixed points

Let M be a closed smooth manifold, oriented over F.

Definition 6.3.1 (non-degenerate fixed points)

If f: M — M is smooth, we say f has nondegenerate fixed points if 'y and A intersect transversely in
M x M.

In this case, [f N'A is a finite set. The sign of a non-degenerate fixed point is
sign(x) = sign(det(id —df,))
Then at (x, x),
T(X,X,Ff (&) T(X,X)A = T(x,x)(/\/’ x M)

The sum is direct by dimension counting. Now consider the map
F+A:TM®TM - TM e TM
where F(x, x) = (x, f(x)). This has

D(F +A) = (; d/f)

and so the sign of the fixed point says whether F 4+ A has orientation preserving determinant at (x, x) or not.
I'm not sure what the above is even supposed to mean. In any case, the sign represents whether df, —id :
T.M — T,M is orientation preserving or not. Intuitively what we are interested in is the intersection number
(of submanifolds) of 'y and A, and so the sign tells us the orientation of the intersection.

In this case,

£ron = Z sign(x)ey

xeFix(f)

Definition 6.3.2 (Lefschetz number)
The Lefschetz number of f : M — M is

STr(f) = L(f) = Z(—Uktr(f* HE M) — HE (M)
k>0

Theorem 6.3.3 (Lefschetz fixed point). If f has non-degenerate fixed points, then

L(fy= ) sign(x)

xeFix(f)

Proof. We've observed

Z S[gn(X) = Sr(,’)nA

xeFix(f)
= (er, - €5, [M x M))

= (if,en[lr])
= ((id xf)" en, M)

=Y (=N a; @ by, (M)

Write f*b; = ) _qjb;. Then (a; - f*b;,[M]) = qi since the a;, b; are dual bases. So this g;; is the ii-th entry
of f in the b; basis. L]
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Example 6.3.4

Any map f : CP?* — CP? has a fixed point. In particular, no non-trivial group can act freely on CP?*.
Suppose f is is smooth with non-degenerate fixed points. Then

Zlx]
Y 2k+1

H*(CP**) =

Suppose f*(x) = €x for some ¢ € Z. But then f*(x) = ¢'x’ for all i. These all live in even degree, and so

the Lefschetz number is
Lf)=1+€+0+- 0%

which is non-zero for any #.
_ Now suppose 1 : CP** — CP? is continuous and has no fixed points. Then we have a nearby smooth
f which still has no fixed points. Contradiction.
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