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1 Basics
Let U/ C R" be an open set. A PDE of order k is an expression of the following form
F(x,u,Du, ..., Dfu) = (1)

where v : U — R is the unknown, F U x Rx R" x --- x R" is a general function. We say that v is a
classical solution of eq. () if u satisfies eq. (1) in U.
We may also consider the case where u(x) € R” and F € RY, and we call this a system of PDEs.

1.1 Examples of PDEs

Example 1.1.1 (ODE system)

One example of a model used in mathematical biology is the ODE system

((jj—l: = f(u,v)
& glum

Example 1.1.2 (Laplace’s equation)

Au = ia,?u =0
i=1

The Laplacian is an averaging operator.

Example 1.1.3 (Heat equation)

u; = DAu

This is also called the diffusion equation, D is called the diffusion constant.

Example 1.1.4 (Navier-Stokes)

The Navier-Stokes equations in fluid dynamics is

us = vAu — u - gradu — gradp + f
diviu) =0

Example 1.1.5 (Transport equation)

The transport equation is
ur+vu, =0

where v is a constant, corresponding to the velocity. A modification is the advection-diffusion equation,

ut+v-gradu = DAu + f

Example 1.1.6 (Poisson equation)




Describes electric field due to some charge, or Newtonian gravity.

Example 1.1.7 (Wave equation)

Ou = —ust + AAu=0

This models sound waves, seismic waves, ...

Example 1.1.8 (KdV equation)
This equation admits soliton solution.

uy + Oiu —6bud,u=0

Example 1.1.9 (Maxwell equations)

div(E)=0p

div(B) =0
GE=VxB=/J
0/B=—-V x F

Example 1.1.10 (Einstein’s equations)

Riclg) ~ 3gRlg) = 0

1.2 Data and Well-Posedness

All of the examples from above need additional information to solve, which we call the data. For example,
we might need u|ay and so on. A guiding principle to this process is called well-posedness (in the sense of

Hadamard).
We say that a PDE problem (equation and the data) is well-posed if we have

1. A solution exists (in some function space).
2. Given some data, the solution should be unique (depends on the function space of choice).
3. The solution depends continuously on the data.

The aim is to find the largest space for which a solution exists, but small enough so that it is unique. (For
example, strong cosmic censorship in GR?)

Notation 1.2.1 (Multi-index notation). We will use multi-index notation,
N={0,1,...}
a=(m,..., a,) € N" is called a multi-index, and we define the order of a
laj=an+ o+ +a

and the a-th derivative is
D%f(x) = 6;” ol f




Ifx=(x,..., Xa), then x@ = x{" -~ x, and
al =l ap!

1.3 Classifying PDEs (of order k)

We say eq. @ ts linear if F is a linear function of x, u and its derivative. That is, we can write it as

Z ag(X)D%u = f(x)

[a|<k

Moreover, we say that a linear PDE is homogeneous if f = 0. We say eq. (T) is semilinear if the highest
order derivatives appear linearly with coefficients depending only on x. That is, we have

Y aa()D°u(x) + F(x,u,Du,. .., D1u)y =0
|a|=k

One example would be Au = u?. Finally, we say eq. is quasilinear if the highest order derivatives

appear linearly, but the coefficients depending on lower order derivatives. That is, we have

For example, we can have vt + uyy — u? = 0. Finally, we say eq. is fully non-linear if it is non of
the above.

2 Cauchy-Kovalevskaya theorem

2.1 ODE theory
Fix Y C R" open, and suppose f : U — R" is given. We would like to consider the ODE

Theorem 2.1.1 (Picard-Lindeldf). Suppose we have r, K > 0 such that B(ug) € U and
1760 = il < Klx = o]

for all x, y € B,(ug). Then there exists € > 0, depending on K, r and a unique C' solution v : (—¢, &) — U
solving eq. ().
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Sketch proof, see examples sheet 1. If u € C' solves eq. , then by the fundamental theorem of calculus, u
satisfies the weak formulation

u(t) = ug +/0 f(u(s))ds 3)

Moreover, if u € C° is a solution to eq. (3), then it is a C' solution to eq. [2). Moreover, if u exists, then it is a
fixed point of

G(w) = ug + /O f(w(s))ds

Let S = {W (—e €)= B,/z(uo)} continuous. We want to show that S is a complete metric space, G : S — S
is a contraction for € sufficiently small, and by the contraction mapping theorem G has a fixed point. O

Remark 2.1.2. 1. The solution (in general) can't be global. Consider for example

a(t) = u(t?  with  u(0) = ug >0



Solutions to this equation blow up in finite time.

2. This does not apply to
u(t) =~/u(t) with u(0)=0

There are two solutions. Note we can apply the Peano existence theorem.
Now suppose f is smooth, and we have ¢(t) = f(u(t)) is C'. By the chain rule,
i(t) = Df(u(t)) - a(t) = f(u(t), a(t))

which is continuous. Hence ii is continuous, and so u € C?. Repeating this, we get that u € C* for all k. That
is, u is smooth.
In principle, given ug = u(0), we can determine

u(0) = Fi (u, oy u ) |

and so we can write

We call this a formal power series solution. Does our solution u(t) agree with this? That is, do we have

lM:Zm%W

k>0

in a neighbourhood of 07?

Theorem 2.1.3 (Cauchy-Kovalevskaya for simple ODEs). If f(u) is real analytic in a neighbourhood of

ug, then the series
u0) ¢
Z k!

k>0

converges in a neighbourhood of 0 to the unique solution of eq. (2) given by Picard-Lindelof.

2.2 Real analyticity and majorants

Suppose f : (—¢, €) — R is a smooth function. Therefore, f")(0) exists for all n > 0. Does the partial sums

> [0)|nix"

n>0

for some |x| < 87 No, consider the function

This is a smooth function, with f(”)(O) = 0 for all n.

Definition 2.2.1 (real analytic)
Let Y C R" be open and f :U — R is real analytic (at xo) if there exists r > 0, f, € R such that

0 =5 fulx—0)°

when |x — xg| < r.




Remark 2.2.2. 1. That is, f can be written as a convergent power series and

D“f(xo)
n!

f, =

Real analyticity is a local property.
f is real analytic on an open set U if it is real analytic at each xo € U.
We will denote the set of real analytic functions on U by C*U).

If fis C¥ then f is smooth (e.g. Weierstrass M-test).

o Ok~ W N

If f is real analytic, and U is connected, then f is uniquely determined in U by its derivatives D“f(x) at some
point x € U.

7. In particular, f is real analytic if and only if for any compact K C U, there exists C, r such that
sup |[D7f(x)| < Cl|a|!|r!“!
xek
Exercise: Show f(x) = 1/x and f(x) = y/x are real analytic for x > 0.

Example 2.2.3
Recall

for [x| < 1. Let r > 0, and consider

r X1+ Xy
- - e - ()
(X) P (X1 T +Xn) 1 — at—4% +x,7 kZ>0

12
provided |x1 + -+ + x,| < /n (ZI ’xj‘z) = /nlixIl < r. By the multinomial theorem (sheet 1),

-sw 2 (2

k>0 la|=k

where
o) _ [af!
a al
and so,
x) = Z fox®
a
where
ol 1
« al r‘a‘

This series is absolutely convergent near zero, since

k
|la!] x Pal+ -+ [l
Z ol el =) r < @9

k>0

Definition 2.2.4 (majorise)

Let f =) fox¥and g =) _ gox® we say that g majorises f, or g is a mojorant of f, written g > f, if
Go > |fo] for all a.

For vector valued functions, we require each component to be a majorant.



Lemma 2.2.5 (properties of majorants). 1. If g > f, and g converges for |IxIl < r, then f converges for
IxI <r.

2. If f =3 fux% converges for IIxIl < r, then for any s € (0, r/\/n), there exists a majorant of f which
converges for IIx1l < s/y/n.

Proof. 1. Looking at the partial sums

S Uax =5 alal® bl <Y lgalbal® bl <Y Il = g(®)
o

la|<k la|<k o] <k

where (x) = (|x1],..., [xa]). So HS(H = |Ixll, and so if IIxIl < r, then g converges at . That is, g(¥) < oc.
Therefore, we have a uniform bound on the partial sum.
2. Llets € (0,r/v/n), andset y = (s, ..., s). Then ||y|| = s\/n, and by assumption,

fly)=> foy®

converges, as Hg” = sy/n < r. So there exists a constant ¢ such that |f,y%| < c. Hence
C C C C Jal!
el < o = i @ = e S e ol
el yal™ -+ lyn Is| |s|'“! a
So we define
() = Cs
g s—(x+-+x)
From the above, g majorises f. O
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2.3 Proof of Cauchy-Kovalevskaya for ODEs

Proof of theorem[Z73 We will use the method of majorants. Without loss of generality ug = 0, and for
simplicity, we can assume n = 1. We need to find the series coefficients. So

i = f(u)

and so (0) = f(u(0)) = f(0), that is, uq = f(0). Next,

and so 1(0) = f/(0)f(0), that is, u, = f/(0)f(0) = %f’(O)f(O)A Repeating,
u(0) = "(0)f(0)* + £(0)*£(0)

and so

1

3 (f"(0)f(0)° + 1'(0)*/(0))

us =

Iterating this procedure,

where Py is a polynomial in k-variables, with nonnegative coefficients. For example,
Pi(x) = x
1
Palxy) = 5pxy

1
Ps(x,y,z) = §(X22 + Xyz)

flv) =) ik

k>0

Since f is real analytic, we have that



where fy = £;f(0). Hence we have that
fR(0) = k! - £,

Substituting, we have that
up = Qclfo, ..., fi)

which again is a polynomial in k-variables and nonnegative coefficients. This polynomial is “universal”.
Aim: We would like to show that the power series

Z uktk
k
converges in a neighbourhood of t = 0, and solves the ODE, eq. (2). Since f is analytic, we know that
fluy=) hut
k
on |u] < k. Fixing some s < r, there exists a majorant

glu) =) gru*
k

of f, from lemma [229] (ii). Consider the auxilliary differential equation

and w(0) = 0. Using the definition of g, we that
dw Cs

dt s —w(t)

We get that
w=s=+1s2—2Cst
Due to the initial data, we take the — solution. That is,

w=s—1s2—2Cst

This is real analytic, for [t| < s/2C. This tells us that
w(t) =Y wit*

converges for |t| < s/2C. Moreover,

since O is “universal

Claim 2.3.1. w majorises u.

By construction, g majorises f, te. gr > |fi| for all k. Moreover, since Qk has nonnegative coefficients,

wi = Ok(go, - . .. Gr—1) > Oc(lfol. -, [fi-1l) > |Oclfo, . . ., fia)| = |ul
Hence by lemma [Z25] (i), we know that the series

Z uktk
k

converges for |t| < s/2C.
To conclude, set
u(t) == Z gtk
k>0

and we need to check that it solves eq. @ Both sides are analytic, so suffices to check the derivatives on each
side agree to all orders at t = 0. O



Remark 2.3.2. 1. We can extend to systems, where we replace u; with
up = QLD | o] < )

q

For w, we can replace w/ = w' as before.

2. For the non-autonomous case,

Consider v(t) = (u(t), t), then v(t) = (a(t), 1) = (f(u, 1), 1) = (f(v),1) = F(v) with v(0) = 0, and we can apply
the system version.

For the PDE version, see the handout.

2.4 Cauchy-Kovalevskaya for PDEs

Let v : R” — R™, and choose r > 0. Consider the following problem
n
up= Z Bj(u, x)uy, + C(u, x)
j=1

on lIxII? + t2 < r?, with
u=20

on IIxII> + t* < r? and t = 0. The B; are matrices, B; and C are real analytic.

Theorem 2.4.1 (Cauchy-Kovalevskaya for first order systems). Suppose B5;, C are real analytic, for small
r > 0. Then there exists a unique real analytic function

u= > Ugx®
a

solving the above PDE.

Idea. Compute

D%u
Ug =
al
in terms of B}, C, and show that the power series converges for small r. We use the PDE to find all derivatives.
O
Example 2.4.2
Consider the system
ur=vy,—f
Vi = —Uy

with v = v =0o0n t = 0. The boundary conditions give us that
u(0,0) =v(0,0) =0
We would like to determine u, for all a. By differentiating the boudary conditions,
dyu(x,0) =07v(x,0)=0
for all n. That is, for the case a = (n,0). From the PDE,

ux,0)=0—f =—f ve(x,0) =0




This then means that
070:u(x,0) = —0a}f(x,0)

and
070:v(x,0) =0

for all n > 1.
Next, if @ = (n, 2) use the PDE and we get

uw(x, 0) = fi(x, 0)

and
vee(x, 0) = f(x, 0)

The same method as above gives us that
970%u(x, 0) = —(0x)"d,f(x, 0)
970%v(x,0) = (9,)"'f(x, 0)

Repeating this, we can compute all of the derivatives.
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2.5 Reduction to first order systems

Example 2.5.1

Consider v : R? — R satisfying
Utp = Ulyy — Uxx + Uy

with conditions
Ulimo = uo(x,y) and  u¢|=our(x, y)

where ug, uy are real analytic near 0 € R3. Note
f(t, x,y) = uo + tuy
is real analytic near 0 € R>. Note
flico = ug and  0f|i—o = uy
Set w(t, x,y) = u —f. Then we find that
Wit = WWyy — Wi + W + fwyy + fuw + F

where
R="ffy—fu+T1

where
W|r:0 = alW|t:0 =0

Observe F is real analytic, and independent of w and its derivatives. Let x = (x,y, t) = (x1,x2,x3)

set

,and

V= (w, wy, wy, W) = ' V23 v

Then

vi=w = v
_ _ A
Vi = Wyt = Yy,

3 _ _ A
thwgtfv)q

vl = v1vX22—vX21 —i—v“—i—fvxzz—i-fxyv1 +F

10



More generally, consider the scalar quasilinear problem

la|=k
where o
du 0 B
u:B(0) >R and I = .= (axn ) u=20
for HX’H <r x,=0.
Define .
du du du J0 \" ]
= —_— = .. | = = v eR”
Y ”’am’ "0x, Ox10x1' '(axn) u) Vo) e

We would like to get a first order system in v. That is, express

ov/
0xp
in terms of v/ andg—xv/forj:1 ..... m—"1.1f j =1, then
o' du ¢
= =v
ox, 0x,
for some ¢. If 2< j < m—1, then ‘
vl = D%
for some |a| < k —1, such that a, < k —1. So
o _ e 0u _ 9

V_pel Y,
0xj, 0xj, a;ﬁ.‘.agn”

If |o| < k—2, then |a| +1 < k—1,.a nd so 9 = v/ for some £.

If |a| = k—1, and a, < k —1, then there exists p # n such that a, > 1. So we have that

L T olu o
0Xy oxp a;ﬁ 0 (_:)Xp a%” .. .ag"i1 o g”_1 aXp
for some ¢. Finally, to compute

avfﬂ

0x,

we will use the PDE. Recall the coefficients are aq(v, x) for v € R”, x € R". We assume a,
real analytic, and suppose

ac=ap, 00 F0

i

Define
0
B, — ! B,
e 0 2= 1
0 -1 0 0 vVi4f 0 0 0
and
A
o 0
- 0
vi 4+ fxgv1 + F
We can see then P
a—)@v = Biv,, + Bovy, + ¢
In this case, By, By, ¢ are real analytic functions of x, v, and so we can apply Cauchy-Kovalevskaya.

L B,(0) - R is



Since a, are real analytic near zero, they are continuous. Therefore, a.(z, w) # 0 for all 11zII + 1wl < 67,
where 0 < p. Then

oku
GCW = — E CIC(DC(U + agp
X
n la|=k,an<k

Dividing by a., we get

oku 1

ST =—— > aeD% + ag
oxX dc

la|=k,a,<k

The right hand side can be written in terms of

vt
Ay
axp

for p < n. Therefore, if a. # 0, we have turned the scalar quasilinear PDE into a first order PDE system, on
which we can apply Cauchy-Kovalevskaya.

Definition 2.5.2

[x" =0}

is non-characteristic. Otherwise, it is characteristic.

2.6 Exotic boundary conditions

Definition 2.6.1 (real analytic hypersurface)
We say L C R" is a real analytic hypersurface near xg € L if there exists € > 0, and a real analytic

function
& Be(xo) > UCR”

where U is an open neighbourhood of 0 € R”, and defining y = ®(x), with ®(xo) = 0. Moreover, we
require

(i) @ is a bijection,
(i) @' : U — Be(xp) is real analytic,
(ii) ST N Belxo)) = {yn = 0} N U,

We can think of ¢ as “straightening out” ¥.

Example 2.6.2
Spheres, planes, tori, etc. are real analytic (hyper)surfaces.

Let y be unit normal to ¥, and consider

where

Define



for y € U. That is, u(x) = v(P(x)) for x € Be(xo). Using the chain rule,

du du 0P/
ax ~ 23y, ox

where & = (¢', .., ") € R". So the PDE becomes

Y baD + by =0

|| =k
where bg, b, dependis on v and D%u for |a| < k —1, and also ¢ (which is given). The boundary conditions
becomes

9 9 \ &
— - = -0
g Yy Y ( ay, ) Y

on {y, = 0}. Since ® is real analytic, so are by, b,.

We would like to apply Cauchy-Kovalevskaya, therefore we need to check that whether the hypersurface
{yn» = 0} is non-characteristic. That is,

bo,.onD V=0, Dv=0,y=0)+0
Note if |a| = 2, we can compute

ok o
ag‘,k:(DCD”)“ + terms not 'anolvlnga :

n

D% =

For example, if k =2,n =2, a = (0, 2), then
D%u = uy,n, = Vi, (bez)(q)fz) +terms not involvingv,,,
——
(D)

Thus,
bo,..ok = Z a, (DPM

o=k

Definition 2.6.3

We say that & is non-characteristic at xg € L if

b, .04(0) = Y a,(0, ..., 0,x0) (DP"(x0))" # O
la|=k

Otherwise, L is characteristic at xg.

Remark 2.6.4. Note that L = {x € R" | ®()(x) = y, = 0}. This tells us that
D" (x) = c(x)y(x)
where y is the unit normal of ¥. In particular,

D" (x0) = c(x0)y(x0)

and so the non-characteristic condition is equivalent to

Z a.y’(x) #0

|al=k

13
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Theorem 2.6.5 (Cauchy-Kovalevskaya for non-characteristic hypersurfaces). Suppose £ C R" is a hy-
persurface, with normal y, and consider the PDE eq. () as above. Suppose a., ag are real analytic
near xp € ¥, and ¥ is non-characteristic near xp. Then there exists a unique real analytic solution in a
neighbourhood of xp.

2.7 Characteristic surfaces

Consider the linear operator

n 62
| = S
Z UL/ 6)([6)(/

ij=1

where a;; € R. Without loss of generality, we can assume a;; = aj;. Consider the PDE problem

Lu=f 6)
u=you=0 onll,={x|x-y=0}

That is, the boundary conditions are on the plane with unit normal y. In particular, ', is non-characteristic for

eq. () if
Y apy'y 40

i,j=1

We would like to find non-characteristic I1,. Note that the left hand side is just (Ay, y), where A = (a;) is
a symmetric matrix, with the usual Euclidean inner product. In particular, A is diagonalisable, say A = PTAP,
where P is orthogonal and A is diagonal. Then

(Av,v) = (PTAPy,y) = (Av,v)

where v = Py. If {A;} are the eigenvalues for A, then the non-characteristic condition becomes

i)\i(v[)z +0
i=1

Example 2.7.1 (Laplacian)
gives

The Laplacian is an elliptic operator.

Example 2.7.2 (Wave equation)

gives

14



Case 1: All eigenvalues have the same sign (and are all non-zero). Since v is a unit vector, the
characteristic condition is impossible. That is, there are no characteristic hyperplanes I1,. In this case, we call
L an elliptic operator.

Case 2: Say 4, < 0 and A; > 0 for j # n (or vice versa). In this case, we call L an hyperbolic operator.
In particular, the characteristic condition becomes

n
Y AV =0 = nvi+) v =0
j=2

Considering the wave equation again, we have the condition that

1

n

subject to the condition

Note that these cases are not exhaustive.
Now we want to different features of elliptic and hyperbolic operators. We will forget about boundary

conditions, and look for solutions of the form

U(X) _ eik-x

for k € R". We are looking for wave-like solutions. Substituting,

L((:‘”(.X) _ eik»x _ Z G/gkj/(g
il

We would like to consider Lu = 0. Taking k = cy, HyH =1, then the condition is equivalent to

c? Z AjeVjYe = 0

If L is elliptic, then the only solution is when k = 0. That is, there are no wave-like solutions. On the other
hand, if L is hyperbolic, then we can have wave like solutions, that is,

Z ayviyj =0
has a solution with Hy” = 1. In this case, we have
iAy-x

ulx)=e

gives an infinite family of solutions, indexed by A € R.
As we take |A| — oo, we see that u’(x) can grow large. In particular, solutions can be rough.

15
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By contrast, we will see that solutions to elliptic equations are smooth.
Lecture 6

Example 2.7.3
Consider the IVP for Laplace's equation

Uy + Uy =0
u(x, 0) = ¢(x)
dyu(x,0)=0

Is this problem well-posed? If ¢(x) = 0, then O is a solution. On the other hand, we don't have Cauchy

stability. Consider
urlx, y) = e’ﬁcos(kx) cosh(ky)

See typed notes for more details.

3 Sobolev spaces

3.1 Hélder spaces C*
Let U C R" be open, k € N.

Definition 3.1.1 (C* spaces)

Define
CK(U) = {f: U >R | uis k times continuously differentiable}

and define

C*(U) = {u € C(U) | u and its derivatives are bounded and uniformly continuous on U}

We will define the norm
‘chk(u) Z sup |Da

a|<kXEU

The idea is that CK(U) is the space of functions which can be extended continuously to dU. Note that this
is is contained in, but not equal to

u: U = R such that v and its derivatives are continuous

On examples sheet 2, we will show that C¥(U) is a Banach space.

Definition 3.1.2 (Hélder continuous)
We say u : U — R is Hélder continuous of index y with 0 < y < 1 if there exists a constant C > 0, such
that

u(x) = u(y)] < Clx =y’

for all x,y € U.
If y =1, then we say that v is Lipschitz continuous.

16



Remark 3.1.3. If y > 1, and u is Hélder continuous of index y, then v is constant.

Definition 3.1.4 (0-Holder space)
For y € (0, 1], we define the 0-Halder space:

CO(U) = {u € C°(U) | u is y-Holder continuous}
Define the y-Hdélder seminorm by

|u(x) — u(y)|
U)oy = su
[ }CO (U) X,ngU |X - y|

That is, the smallest C such that v is y-Holder continuous. Since constant functions vanish, we add the
C° norm, and define

lull cowgy = lull oy + [U]conm)

The space CO%Y, with the Holder norm 111 cov() is a Banach space. We can extend this to higher order, that

Definition 3.1.5 (k-th Hoélder space)
Define the k-th Hdélder space

CkY(U) = {u € C*(U) | D*u € CO¥(U) for all |a| = k}
with norm

lull vy = Nl exy + Y [DUlconm)
|a|=k

As above, C* is a Banach space with the Holder norm.

3.2 The Lebesque spaces

Definition 3.2.1 (L” space)
Let U C R" be open, and suppose 1 < p < oo, define

- {f - U — R | f measurable, and withllulley < ooiL

LP(U)

where 1
Lo = | Uy lub)Pdx) ™ 1<p<oo
' esssup,cy |u(x)] =inf{C >0 |u(x)] < Cae} p=oo

and u ~ v if u = v almost everywhere.

LP(U) with the II-1l;» norm is a Banach space. We also define local versions,

Definition 3.2.2 (L space)
We say that u € L (U) if f € LP(V) for every V @ U (V C K C U, where K is compact). Equivalently,

Lh (U) = () LP(V)

Veu

Note that Lf) (U) is not Banach, on the other hand, it is a Fréchet space.
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Remark 3.2.3. If K C U is compact, U is open, then
dK,oU)=inf{|x —y| | x e K,y e R"\ U} >0

We will use the space outside K as a “buffer zone".
3.3  Weak derivatives
That is, a notion of derivative for L.

Definition 3.3.1 (weak derivative)

Suppose u,v € L} (U), a a multi-index. We say v is the a-th weak derivative of U if

]Uqudx:(—w)\a'/dex

for all ¢ € C°(U). We will also call the space C°(U) the space of test functions.

Remark 3.3.2. 1. since supp(D?¢) and supp(¢) are compact, the integrals are finite,

2. u,v obey the correct integration by parts formula

Example 3.3.3

u(x) = |x| is not differentiable at x = 0, but it is weakly differentiable with v(x) = sign(x).

1

Lemma 3.3.4 (uniqueness of weak derivative). Suppose v,V € L.

of u € L] _(U), then v = i almost everywhere.

/Uvgi)dx:(—1)‘“‘/UuDa¢dx=/UV¢dx

/(va)qﬁdx =0
U

for all ¢ € C°(U). Taking ¢ to be a smooth approximation to an indicator, we get the required result.

Proof. For all ¢ € C°(U),

Thus,

Suppose u is smooth, then the weak derivative agrees with the usual derivative almost everywhere.

Notation 3.3.5. We will write v = D%u.

Definition 3.3.6 (Sobolev space)
Define the Sobolev space

Wkp(U) = {ue LL (U) | u € LP(U), the weak derivatives D?u exists for |a| < k, D%u € ()}
with the Sobolev norm

1lp
(Z\a\:k fu|DaU\de) p < oo

Hullwery =
Z‘a‘gkesssupuwau\ p =00

When p = 2, we write H* = Wk?2,

18
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Definition 3.3.7 (W, )

We denote by Wok’p(U) the completion of C°(U) with respect to the W*? norm. Analogously, we define

HE = Wy 2(U).

The ¢ denotes that the function vanishes on the boundary.

Example 3.3.8
Let n > 2,4 >0, and take U = B4(0) C R” the open ball. Consider

_ x|~ for x £ 0
~ |anything x=0

ulx

When is u € WP (U)?
First of all, we compute

1 1
/—Adx = C/ 1 Adr
U x| 0

which is finite if and only if A < n. Moreover, u € [P(U) if and only if Ap < n.
Let ¢ € C°(B1(0) \ {0}), if u has a weak derivative v, then

)\X,‘
= D,‘U = _‘X|/\+2
on B1(0)\ 0. Thus,
Al
|DU| = |X|)\+1

Hence v; € L'loc(U) if and only if A+ 1 < n. Suppose A+ 1 < n, then we claim that

o —# x#+0
]
anything x =0

is a weak derivative of v on U.
For ¢ € C(U), by Stokes' theorem,

(—1)/ upydx = / Diugdx — / ugn -dS
U\B:(0) U\Be(0) 9B,(0)

Therefore, we can estimate

[ uon-as| = ol
0B

as A — 0. Thus, by the dominated convergence theorem,
—/ Uy dx = / vipdx
U U

Remark 3.3.9. 1. Weak derivatives can exist even when the function is not continuous.

[ en- dS’ < Ce" 50
3B,

2. Since Diu € [P(U) if and only if p(A + 1) < n, we see that

ue W) e A<g—1

and if p > n, we see that A must be negative, and so it is continuous.
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| Heuristically, larger p gives us nicer functions.

| Theorem 3.3.10. W*P(U) is a Banach space for k € N,1 < p < co.

Proof. First, we need to show that it is a normed vector space. This is straightforward, and for the triangle
inequality we will need to use Minkowski's inequality

< (iaf
i=1

For completeness, we will use the completeness of LP. Let (u;) be a Cauchy sequence on WXP(U).

Note that ||D”\/HLP(U) < IWVllwepy for [a| < k. Setting v = u;, we see that (D?u;); is a Cauchy sequence
in LP. But we know that L” is complete, and so there exists a function u® € LP(U), with Du; — u“ in LP for
all |a| < k. We will set u = 00,

1p 1p

n 1ip
+ be’)

i=1

4
(Z(a,. + by

i=1

| Claim 3.3.11. u? is the a-th weak derivative of u. That is, D%u exists and D% = u®.

Proof. Choose a test function ¢ € C°(U). Since u; € WkP, we know that D%u; exists, and

(—1)"’|/Uu/-D"¢>dx:/U(Dau/)¢>dx

for all j. Taking j — oo, using the fact that D%u; — u® (using Holder, or the dominated convergence theorem),

we get that
(=1l / uDpdx = / u%pdx
U U
and so D% = u® € LP(U). O
Thus, u € WEP(U). O

3.4 Approximations of Sobolev spaces

Convolution and mollifiers

Definition 3.4.1 (standard mollifier)

Let
—1
n(x) = Cop(ip) <
0 x| > 1

where C is chosen such that

For € > 0, we denote

We call n, to be the standard mollifer.

Remark 3.4.2. o n. € CX(R"),
® supp(n:) = B(0),
o [on Ne(x)dx =1
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Definition 3.4.3

Given U C R" open, define
={xe U]|dx al)> ¢}

Definition 3.4.4 (mollification)
Given f € L] (U), the mollification of f is

fe:U— R

) = e ) = jU nelx — y)f(y)dy = [B | P gy

where * denotes the convolution.

We can think of f.(x) as the average of f in an e-ball, weighted by n.

Theorem 3.4.5 (properties of mollification). Let f € L (U), then

loc.
1. fo € C(Ue),
fe - fae onUase—0,

if f € C°U), then f. — f locally uniformly (i.e. uniformly on K C U compact).

.-’>.W!\>

if 1<p<ooandfel] (U)thenf, — fin L] (U). Thatis,

loc.

||f5 - fHLP(\/) -0

for all V& U.

Proof See handout on moodle.

In particular, there is a big improvement going from f € L} to f, € C*.

Lemma 3.4.6 (local smooth approximation of Sobolev functions away from dU). Let u € W*P(U) for some
1< p<oo Setue=ne*uin U Then

1. u. € C2(U,) for all € > 0,

2. Us— U in Vl/lOC

(U). Note that for V € U, V C U, for ¢ sufficiently small.

Proof. (i) follows from the theorem. For (ii),

Claim 3.4.7.

D% = Dne* u) = ne x Du
Proof. Since u. € C*, we can compute the classical derivative as follows:
Diug(x) = Dy //76 (x—y )dy

- ]U (D0l — y)uly)dy

= (=1)°" [ (gnctx = oty

_ [ elx — 4)Du(y)dy
U

= (ne * u)(x)
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See handout for justification of swapping the integral and derivative. O
Note for V € U, by (iv) of the theorem, since D%u & LP(U), then

D% = nex D% — D%
in LP(V) as € = 0. Thus, for all V € U, and 0 > 0, there exists gg = (0, V) such that

||u§7u||Wkp(\/) Z ||Dau57Dau||LP(\/)
|a|<k

for 0 < € < gp. O

In conclusion, u € W*P(U) can be approximated by C> functions away from oU.
Lecture 8

Theorem 3.4.8 (global Sobolev approximation globally away from dU). Suppose U C R" open bounded,
and suppose u € WXP(U), for 1 < p < oo. Then there exists a sequence (u;) € C* N WXP(U), such that
uj— uin Wk (U).

Exercise: Drop the assumption that U is bounded.
Remark 3.4.9. Note that we don't assume u € C®(U).

Proof Step 1: We have

-
I
(e

—~
Il
N

where
U= {x € Ul d(x,oU) > 1/}

and define V; = U3\ Ujy1 €@ U. Choose Vy @ U such that U = U}io Vi. Note in particular only the
consecutive \/] intersect.
Let & be a partition of unity subordinate to V;. That is,

o0 g Ej é /I,
o & & (V)
° Zfio &i(x) =1 for all x € U. Note at any point at most two <; are non-zero.

Given u € W*P(U), then we see that Sju € WkP(U), and supp(&ju) € V
Step 2: We would like to smooth out the split up function. Let W; = U, 4 \Uj D V. Let

Uj = g, * (&u)

Fix & > 0, for each j > 1, we can choose ¢; sufficiently small such that supp(u;) € W,
By lemma we have that u; — &u in W5P(W)). With this, we can make

0
Ju; - q_(/'UHV\/W(U) = lu; - E/UHWW(U,) < 21

Summing everything together, let v = Z?io uj. Note that each u; is non-zero on finitely many W, and so
at each point it is a finite sum. With this, v is smooth. Also note that u =} ; &u on U, and so for any V € U,

oo oo ,I
v = ullwioy < 3 [l = &t yaoyy < Z 51 =
j=1 j=1

where we applied the triangle inequality. Since 0 is independent of V/, taking the sup over all V &€ U, we get
that
IV — uHWk‘p(U) < 0

Question: Can we approximate u € WKP(U) by u € C*=(U)?
The issue here is that dU could be a problem. For example, we can consider dU to be the Cantor set.
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Definition 3.4.10 (C*-domain)

Suppose U C R”" is bounded and open. Then we say that dU is a C*°-domain if for every p € dU, there
exists r > 0, and a function y : R™" — R, with y € CK9(R"™"), such that (after relabelling axes),

unB:(p) = {(X/rxn) € Bp) | X0 > V(X/)}

Theorem 3.4.11 (smooth approximation of Sobolev functions up to dU). Let U C R" be open, bounded and
oU a C%" domain. Let u € WKP(U), for some 1 < p < co. Then there exists a sequence (uj) € C=(U),
such that u; — u in W*P(U).

Proof Step 1: Fix xo € dU. Since dU is Lipschitz, there exists r > 0 and a Lipschitz function y : R"™" — R,
such that
UN B (xo) = {x € B:(xo) | xo > v(x)}

Llet V=UnN Br/Z(XO)-
Step 2: Define the shifted point x* = x + Aee,, for x € V, e > 0.

Claim 3.4.12. For A > 0 large enough, B.(x®) € U N B,(xp) for all € > 0.

tjv'ﬂd:‘L

That is, we need to show that for y € B.(x%), y, > v(y’). As y is Lipschitz, there exists a constant L > 0
such that
V(x) = vly)| < Lx' = /|
So we have that
Y = (Y[ =]y =x]<e
and so,
V() < v(X)+ Le < x, + Le

by rearranging y, > x5 — € = x, + Ae — € = x, + (A — 1)g, we see that

Yn > YY)

fA>L+1.
Define uc(x) = u(x?) for x € V. Set
Ve = Ilg * Uge

for 0 < & < e Then vs, € C®(V). Fix g > 0, then we note
[v.e = UHWW(\/) <|Jvs.e = USHWW(V) + Jue — UHWW(\/)

—— ——

translation is continuous on W*»

We can choose € > 0 such that the second term is at most . Fix € > 0, we can choose 0 < € such that the
first term is at most y, using the same proof as in lemma [3:4.6]
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Step 3: Let xp vary over the boundary, then the Vs which we get will cover the boundary, which is compact,
and so we have a finite subcover. That is, finitely many points xq, ..., xn € dU and radit r;, where

Vi=Brpx)nU

Choose Vy € U such that
U=VUWU- - -UVy

By step 2, we have v; € C*(V;), such that ||v; — “Hwkw(\/) < p. By lemma there exists vy € C*(Vp) such

that [Jvo — ”vak‘p(vo) <H
Step 4: Summing everything together, using a partition of unity &, ..., &y subordinate to the open cover

Vo, ..., V. Define
n
V= Z Sivi
i=0

This sum is finite, and so v € C'nfty(U), and for |a| < k,

N
107y = Dy < 1D (Gitvi = |
=0

N

<G Z [Jvi - UHWW(\/,)
=0

= G(1+ N)u

But ¢ was arbitrary, and so we are done. O

To conclude, we consider some examples of functions:

o |x| & C®°(—1,1), but it is in W11(—=1,1).

e 1/xis C*® and L on (0, 1), but not C>°((—1,1)) or W',
and so, C®(U), C=(U) ¢ WkP(U).

3.5 Extensions and traces
Suppose U C R” is open and bounded, u € W*P(U). We would like to extend v to 7 : R” — R. What

happens if we set
_ u onU
u =
0 onU*

This is okay for LP, but not for W*P as the derivatives become an issue. Moreover, we can expect at most
T e WkPR").

Theorem 3.5.1 (Calderon, Stein). Suppose U C R” is open and bounded, and dU is C'. Choose V
bounded in R", with U € V. Let 1 < p < oo. Then there exists a bounded linear operator
E: W' (U) > W'P(R")
u—u

such that for all v € WP(U),

L) Ty = u ae.

(i) supp(E(u)) €V,

(i) There exists a constant C depending only on U, V, p, such that

HE(U

Miroge < Cllullwio,
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We call Eu the extension of U to R".

Proof. Step 1: Fix p € dU, and suppose dU is flat near p. We may assume there exists r > 0 such that

BY = B,(p)N{x, >0} C U
B~ = B,(p)N{x, <0} CR"\ U

ou
Suppose also that u € C'(U).Denote x' = (xi, .. ., Xp—1). We define

) = u(x) if x e Bt
| SBul, —x) 4+ du(x, —x,2)  ifx € B”

which is called a higher order reflection of u from Bt to B~
Claim 3.5.2. 7 € C'(B,(p))

Proof. Clearly U is continuous. Computing the derivatives:

0. T = dy, u(x) x € BF
30, u(x, —x,) — 20, u(x, —x,[2) x € B”

Similarly,

07— 0y, (u) x € BT
T =30 U, —xa) + 40, u(x, —x,[2) x € B”

and so the derivative is continuous.

We can also check that the inequality holds in this case.
Step 2: Suppose dU is not flat near p. Since dU is C', there exists r > 0 and y : R"™" — R, such that

UNB(p) = {x|x > y(x)}

Define

d(x) = (x1,. .., Xn—1, Xn — y(X))
We can see that ® maps dU to {y, = 0}, and it is invertible with C" inverse
Yiy)=(yr, ..., Yn-1.Yn + ¥(Y))
with
e (UNB(p)) € {y, > 0}
e det(D®) = det(D¥) =1
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Moreover, there exists a neighbourhood W of p, with ®(W) = B(p) for some s > 0. In this case,
SUNW) = Bs(p) N {y, >0} = B

Define v(y) = u(W(y)) for y € B,. Then v is C', and so by step 1 there exists an extension Vv € C'(By(p))
with V|g+ = v and

HVHWW(BS(ﬁ)) < Cliviwesst)

Define T(x) = v(®(x)), then T € C'(W), and
||U||WWJ(W) < C||U|\w1,p(u)

which we will see on examples sheet 1.
Step 3: Now we have local extensions near all p € dU. We assume U is bounded, and so we have an
open cover {W, ..., Wi}, with

where Ty = u. Then |y = u ae, and

7 e CHR")

with
HUHWW(R”) < Cllullwis
We may assume supp(u) C V, since U € V, for example by using a cutoff function.
Step 4: Given u € W'P(U), by theorem [3.4.11] there exists a sequence (u;) € C*°(U) with u; — u in
WP ().
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Claim 3.5.3. (E(u;)); is a Cauchy sequence in WP (R").

Proof. By the previous steps, we have that £(u;) € WP (R"). By linearity,
|Eu)) = E(“k)HWw(RN) = [|Ew; = ”k)HWw(RH) < Cllu; = ukHWW(U)

But we know that (u;) is convergent, and thus Cauchy in Whr(U).

Since W'P(R") is complete, the sequence converges and we define

E(u) = l'ij E(uj)

Remark 3.5.4. If U is C*, then we have the extension operators
E: WrP(U) -» WP R")

Given u € C*(U), we set
T — u(x) x € By
Zj; qu(x', =xylj) x € B_

To match at the boundary, we need

Traces

If we have u € CO(U), then ulsy makes sense. But for u € W*P(U), then ulgy does not make sense, as U

has measure zero.

Theorem 3.5.5. Let U be open bounded and dU is C'. Then there exists a bounded linear operator
T WP (U) — LP(AU)
called the trace of u on U, such that
() T(u)=ulou f u € W'P(U)n COU),
(i [[T(w)

IU)(@U) < Cllullyrp for all v € WKP(U), where C depends only on U, p.

| Remark 3.5.6. We have u, Du € P, which is giving us the control of u on the boundary.

Sketch proof See examples sheet 2. Suppose u € C'(U), and dU is flat near p. Let

BY = B/(p)N{x, >0} C U
B~ =B, (p)N{x, <0} CR"\ U

as before, and let [ be the portion of dU within B,(p). Choose & € C°(B,(p)) such that 0 < & <1 on B,(p),
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and & =1 on B,;(p). Then

/ lu(x’, 0)|"dx" < / Elux', 0)| dx’
r B (p)n{x,=0}

= (— P !

\/( 1)/3+ 0x, (& |u)”)dx,dx

FTC

— (1) / [07]0,, & + plul" sign(u)a, u&dx
B+

< Cp/ lul” + |Du|Pdx
~~ B

Young's inequality

= Gollullfyin
In Sheet 2, we will extend to general dU using a partition unity, and the fact that it is compact. Then define

T(U) = u|aU

forue C (U) and we have that
||T(U)||Lp(au> < CHUHWW(U)

Using density of C°(U) in W'P(U), we are done.

Remark 3.5.7. e The map T above is not surjective, however in the case of T : H® — H*='2 it is surjective.
e Recall Wok’p(U) is the closure of C°(U) in WKP(U). If u € Wok’p(U), then there exists (u;) € C°(U), such that
u; — u in WP (U). In particular,
T(u) = T(limu;) =lim T(u;) =0
j j
In fact, the converse is true also. If T(u) =0, then u € WJ"’(U)A

-----

o if u € WKP(U), then we can define trace operators for Du

3.6 Sobolev inqualities
In this case, the basic idea is that we can trade differentiability (measured by k) for integrability (measured by

p). Note it does not work the other way. For example, if " € L'(R) then f € L*(R), but the converse is not
true.
The idea is that we will prove estimates of the form

Ul < CllDu| g (+11UllioEn)

We have three cases:

1. 1<p<n,

2. p=n,

3. n<p<oo.
Case 1: 1< p<n

Lemma 3.6.1. Let n > 2, and fq, ...,

and
flx) = [ ]fi(%) : R" > R
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Then f € L'(R"), with

n
||f||U(R”) < |_| HfiHLn—W(Rn—W)
i=1

Proof. We induct on n. The case n = 2 gives
fix1,x2) = fi(x)f2(x2)
But

HfHU(]RZ) = /Rz | 0|12 0x) [dxqdxa

:/R|f1()(1)|d)(1/|f2(X2)|dX2

- Hf1||U(R)||f2||N(R)

Suppose the result is true for n. Write
Flx) = hHita)- - fa(x)

and so f(x) = F(x)fp41(X41). Fix x,41 and integrate over xq, ..., Xp:

[an(& ,,,,, fn,xn+1)|dé1~~dxn:/R”\F<5,xn+1)|\fn+1<s>|ds

= H’E("X”“)HMM)(R”)Hf”“HLN(RH)
Holder

By the induction hypothesis, if g = n/(n — 1), then

1/q
X 1) HU (R")

< |_| Hf X/7+1 n/” Y ||Ln 11(/17

- |_| Hf( X”“)HL"(RH—U
i=1

1FC 00} |ty = [IFCx

Integrating over x,41,

n
(1 j PLERI
1/n
<l e ( J A e

n+1

= |_| H’[iHLrv(Rn)
i=1

Where we used the generalised Holder inequality with p = n, that is,

n
e <10l
i Al i=1

where Zpl =1.

Theorem 3.6.2 (Gagliado-Nirenberg-Sobolev inequality). Suppose 1 < p < n, set

. _ np
P=n;
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for the Sobolev conjugate of p. Then we have a continuous embedding
WIP(R?) C 17 (R")

That is, there exists a constant C depending only on n, p, such that
1]l oy < CllDY o

Lp* (Rn

Remark 3.6.3. 1. p*>p.
2. Nothing is said about HDU}

e

Intuition
Consider f : R? — R. [P measures the width and the height of the function. For example, if we have

fi =Alw

then
1]l = |Alvol(W)'"P = |AJV1P

Now consider ¢ € CX(R") with ¢(x) < 1, and let

fox) = ¢lx)e™™

Then we know |f](x) < 1, and supp(f;) C C is uniformly bounded in w. With this,
a1 fZ _ /eiw-x + i¢wW elwvx

Thus, Df, is not uniformly bounded in w.
Next, consider . ‘
) = w7 p(x)e™™

and so, we have a uniform bound in w of D’fs for ¢ < k.
f4(x) = Ag(x/R)e™™

Finally, let
Then )
lly = [ ager s [ Ao s ague| - ACH
<R w<r | R
Now recall the uncertainty principle:
h
0,0p > 5 >0

volume X frequency > ¢ > 0

Thus,
Thus, a function with frequency w must be spread out on a ball of radius > 1/w. Thus, the support must have

Lp*

measure > w~". With this, w > V™", and so
HfHWWz\AWW*W = |A|\/p* = Hf}

See "Tery Tao uncertainty principle” for more details.

e If u =1, then it wouldn't satisfy eq. @ and so it is essential that we are in W'».

Remark 3.6.4.
e Proof follows from density of C°(R") in Wok'p(]R”) = WkP(R").
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Proof. Step 1: We can assume u € C*(R"), and first consider the case p = 1. By FTC and compact support,

which means that

=fi(%)dy;

Thus,
lu)[" < (%) - fo(%)

Integrating over x € R”,

nl(n—1)

(1] e = [[00ie

Al ]Rn =

<|—|Hf1/n 1)

L[TRP i=1

ﬁ ()"

=

[n— 1(]Rn 1)

With this,

Ul ooy gy < HD”HU (R7)

and in this case, p* = n/(n —1). Since C‘X’(]R”) is dense in W1 (R"), result follows by density.
Step 2: Now suppose p > 1, consider v(x) = |u(x)|". Then

Dv = ysign(u)|u]’"'Du

and

ynl(n—1) (=i _ y
- |ul dx = H|U| HLn/(n—W)(Rn)

< ||D(‘U|Y)HU(R”)

<y [ |u"|Duldx
Rﬂ

1-1 1ip
< y(‘u|(vf1)p/(pf1)dx) , (/ |DU|P)
N ’

Halder

Choose y to match the exponents of u in the integrals, ie.

n—1
)= p(n —1)
n—p
In particular,
yn.
n_1 P
and so we have that
(n=")/n (p—1)p
: p(n 1) :
A = AT M
n n p R
Which then implies that
pn—1)
||U||Lp*(Rn) g ni HDUHLP ) < C||U||W1,p(Rn)
H/—/
=C
We can then conclude by density. O

Note in particular C — co as p — n.
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Corollary 3.6.5 (GNS for U C R"). Suppose U C R”" is open and bounded, with C' boundary. Let

1<p<n. |fp*:%,then
Whe(U) € 17 (U)

and the embedding is continuous. That is, there exists C = C(U, p, n) such that

HUHLP*(U) < CHUHWLP(U)

for all v € W'P(U).

Proof. Exercise. Use the extension theorem and the GNS inequality for R". O

Corollary 3.6.6 (Poincaré inequality). Let U C R" be open and bounded. Suppose u & WOW(U), for
some 1 < p < n. Then there exists a constant C = C(p, g, n, U) such that

ullza) < Cf|Dull,
for each 1 < g < p*. In particular, as 1 < p < p*, we get

ull ey < CHDUHLP(U)

Remark 3.6.7. (i) On W'P(U) with U bounded, the W' norm is equivalent to HDUHLP(U)‘

(it) We do need that v € WS"J, to kill off constant functions, which have derivative zero.

Proof. We will use that W(;'p(U) is the closure of C>°(U) under the W'P(U) norm. That is, given u € WS'D(U),
there exists u, € C°(U) such that H“” — ”Hwtp(u) — 0. Since u, is smooth, and vanishes near dU, we can

extend T, = 0 on R"\ U, with T, € C*(R").
Applying theorem [3.6.2]

1721y < ClOT]|

Sending n — oo and noting that @ vanishes on R\ U, we get the result for g = p*. In general, we use Holder:
since |U] < o0,
Hullisw) < Cliulle ) < C'f[Dul[

Case 2: p=n

In this case, p* — oo, and so we may expect
Hullpeoy < Cliullyin
But this is false for n > 1. One dimensional PDEs are boring, so we won't continue with this case.

Case 3: n<p< o

We might expect in this case that it is "better than L*°", L.e. continuous.

Theorem 3.6.8 (Morrey’s inequality). Let n < p < oo, then there exists C = C(p, n) such that for
u e CX(R"),
”U”CO'V(R”) g CHUHW1,p(RH) fOI' y = 1 7% < 1

That is, we have an embedding
WP (R") — C*(R")
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Proof. Let Q be an open cube of side length r, containing 0, and set

_ 1
U= |Q|/Ou(x)dx

for the average of u over Q. Then
1
7 w0l < 57 [ Jut) ~ )

101 Jo

Since u € CZ(R"), by the fundamental theorem of calculus and the chain rule,
1

u(x) —u(0) = /0 %(u(tx))dt
n /1
i=1 70

n 1
—u(0 Oy d
() — uf )<r;/0| (e

Sdu
X ox!

Thus,

This then gives us that

1 n
17— u(0)| < L// 10,, u(tx)|dtdx
101 Jo Jo ;

r 1 n
=— [ ¢ d,,u(y)dy | dt
o fpom
r 17
), o [Tt o
1

r _
Tn 0 fn||DU||Lp(Rn)fn/qr”/th

I\

I\

rﬁfn/p
= WHDUHU’(R”)
That s,

%
[T —u(0) < 7’|DUHLP(RH)
By translation invariance,
[0 —ulx)| < L;HDUHLP(R”)
for all x € Q. Thus, by the triangle inequality,

- rv
lu(x) — u(y)] < ulx) =T[ + [0 —u(y)] < 27||DU||U>(R”)
for all x, y € Q. But for x, y € Q, there exists a cube Q of side length r = 2|x — y| such that x, y € Q, which
means that
lu(x) — U(VU)| < CHD”H
x =y
Note the left hand side is independent of r, and so the inequality is true for all x, y € R". Thus,

[u}co‘y(Rn) < CH Du || LP(R")

LP(R")

Finally, we would like to control sup,p. |t(x)], note that any x € R” belongs to a cube with side length 1. In
particular,

o) < [@] + |ux) — Tl
< /Q|u(x)dx + C||Dul|,,

< Mull ey |1 ||H(Q) + CHDUHLP(R”)
< CHUIlww(Rn)
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Note the constant is independent of the choice of x. That s,

Hull coymay < Cllullpyromn

O

Corollary 3.6.9. For n < p < oo, and u € W'P(R"), then there exists a unique u* with u* = u ae, and
u* is continuous with
< Cliull Wp(R")

Corollary 3.6.10. Suppose n < p < oo, u € W'P(U) for U C R" open bounded, with dU being C".
Then there exists a unique u* € CO'(R"), y =1 — %, u=u*ae on U, and

HU ||C0v < CHUHWW;;( U)

where C depends only on U, p, n.

Proof By the extension theorem, there exists & € W'P(R"), with supp(u) compact, @ = v a.e. on U. Thus,
there exists a sequence (u;) € C°(R") with u; — @ in W'P(R"). Note by Morrey's inequality,

[um — U/'HCO‘V(]R”) < Cljum - ufHW“’(]R”)

and so (u;) is Cauchy in the Banach space CO7(R"), and so there exists a limit 7* € C%¥(R"). Then u* = T*|y
satisfies the requirements. O

In summary, if U C R” is open, bounded and has C' boundary, then:
e if 1 < p < n, then we have a continuous embedding
WP (U) — LP"(U)

where

and so p* > p.

o If n < p < oo then

where

Example 3.6.11

let n =3, u € W?? Then u,Du € W'?. p =2 < 3, and we have p* = 6, hence u, Du € L° Thus,
ue W' and 6 >3 =nsouec CO12

4 Second order elliptic boundary value problems

In this section, let U be an open bounded subset of R”, with C’ boundary.

For u € C?(U), define
Lu Z i uM+Zb X)uy, + c(x)u 7)
i,j=1
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where a¥, b, ¢ are functions on U. We assume a¥, b’, c are L, and a¥ = a/'. This form is called divergence
form, since it looks like

grad - (Agradu)
If a/ € C'(U), then we can rewrite L in non-divergence form

n n

Lu=— Z a¥(X)uy + Z b'(x)uy, + cu
i=

i,j=1

We will study the divergence form, since it is adapted to Hilbert space methods. The non-divergence form
is better for maximum principles, and Dirichlet energies. The second form is the topic of the Part Ill Elliptic
PDEs course.

Definition 4.0.1
We say L is elliptic if
Z a;;&&; >0

]

for all x € U, & € R"\ 0. We say that L is uniformly elliptic if there exists a constant 6 > 0, such that
> al)& > 0]|¢]|
0.

forall x € U, & € R".

Note some references call uniformly elliptic: strongly or strictly elliptic.

4.1 Weak formulation and Lax-Milgram
We will consider the boundary value problem

{Lu—f on U )

U|au=0

with f € [(U), a¥, b', c e [*(U). B
Suppose u € C?(U) solves eq. pointwise a.e. Take any v € C?(U) with v|sy = 0, we get (using
summation convention

)
/ fvdx = / —V(GUUXL)X, + vb/uX/ + cuvdx
U U

= f/ VGijUXIdeS+/ a"fuxk Vy, + buy,v + cuvdx
U U

=0
and so,

/ vfdx = Blu, V] 9)
U

for all v € C?(U) with v|sy = 0, where
Blu,v] = / auy vy, + blugv + cuvdx
U

With this, if u € C2(T) solves eq. (8), then eq. () holds. Conversely, if u € C2(U) with u|gy = 0 and satisfying
eq. (9. then by integration by parts, we get that

/(f — Lujvdx =0
U

for all v e CX(U). Thus, Lu = f pointwise a.e. on U.

In conclusion, if u € C?(U), with u|sy = 0, then u satisfies eq. (8) if and only if it satisfies eq. @b

But we note that eq. @b makes sesne for v € H}(U) and u € H'. To encode the boundary conditions, we
can assume u € HJ(U).
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Definition 4.1.1 (weak solution)
We say that u € HJ(U) is a weak solution of eq. (8) for given f € L*(U) if

Blu, v] = (f, V>L2(U)

for all v € H}(V).

Theorem 4.1.2 (Lax-Milgram). Let H be a real Hilbert space, with inner product (-, -). Suppose B :
H x H — R is bilinear, such that there exists constants a, B > 0 such that

(i) (Boundedness) |Blu,v] < allulllivl for all u,v € H,
(it) (Coercivity) Bllull? < Blu, u] for all u € H.
Then if f € H*, there exists a unique u € H such that
B(u,v) = {f,v)

forall v e H.

We will defer the proof to the next lecture.

Example 4.1.3
Recall that H* = W is a Hilbert space. Consider the boundary value problem

lu=—-Au+cu="f onU
u=20 on oU

where ¢ >0, f € L?(U). In this case,
Blu,v] = / gradu - gradv + cuvdx
U

For boundedness, by Holder (or Cauchy-Schwarz),
|Blu, V]| < (14 )llull Vil

For coercivity,
Blu, u] = ngadu“fz(u) + C||u|\%z(u) > ||graduHiz(U) > C\Iu\l,sz(u)

where for the last inequality, we used the Poincare inequality. Thus, we can apply Lax-Milgram with
H = Hj.

Corollary 4.1.4 (of Lax-Milgram, stability). With the assumptions of Lax-Milgram, let u; be the unique

solution to
Blu;, v] = (f;,v)

for all v € H. Then ’
lur = w2l < Bl = Lol .

Proof. Since Blu;, v] = (f;, v), by bilinearity,
Bluy — uz, vl = {f1 — 5, v)
Choosing v = u1 — uy, then

BIVIIZ < Bluy — up, v = (fH — b, v) < ||fi = & ivil
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where we use Cauchy-Schwarz for the last inequality. O

Proof of theorem[12 Step 1: For each fixed u € H, define ¢,(v) = Blu,v] This is a bounded linear
functional on H, t.e. ¢, € H*. Applying the Riesz representation theorem, there exists a unique w, € H such
that

®u(v) = (wy,v) = Blu, V|

for all v € H. In particular, we have a map

A H—-H
U w,
and we have that Blu, v] = (Au, v) for all v € H.
Step 2: Ais bounded. If A1, A2 € R, vy, uz € H, then for each v € H, we have the following:
(A(A1U1 + )QUQ), v) = B[)\q uy + Aus, V]
= M Bluy, v]+ A2Bluz, v
=M (AU1, V) + Ay (AUz, V)
= (/\1AU1 + AHAu, \/)
and so A is linear. Moreover,

[Au]|* = (Au, Au) = Blu, Au] < allull|[Aul|

Hence HAUH < allull. Thus A is bounded, with HAH < a.
Step 3: We will show that A is injective and A(H) is closed.

Bllull? < Blu, u] = (Au, u) < HAUHHUII

With this, Bllull < ||Au|| That is, A is bounded below, hence A is injective and the image is close
Step 4: We will show that A is surjective. Since A(H) is a closed subspace of H, which is a Hilbert space,
and so we can write
H = A(H) ® A(H)*

With this, it suffices to show A(H)* = 0. For w € A(H)*,
Biwll? < Blw, w] = (Aw, w) =0

llwll = 0, and so A(H)* = 0. With this, A is bijective with bounded inverse.

Step 5: We would like to solve the following problem: Given f € H*, we would like to find u such that
Blu,v] = (f,v) for all v € H. By the Riesz representation theorem, there exists a unique wy € H such that
(f,v) = (wy,v) for all v € H. Now let u = A w,. Then

Blu,v] = (Au,v) = (wy,v) = {f,v)

te. Blu, |="'.
Step 6: For uniqueness, if uq, uy satisfy Bluj, -] = f, then
Blui =uy,v]=0
for all v € H. Setting v = u1 — uy, and using coercivity we are done. O

Theorem 4.1.5 (energy estimates for B). Suppose
Lu = f(a"juxk)xl + biux, + cu

where @Y = a/t, b%, c € [°°(U), and suppose L is uniformly elliptic. If

Blu, v] = /a"f'uxl Vy + b"uxkv + cuvdx

MIf (Auj) is Cauchy, then so is (u;)
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is the associated bilinear form. Then there exists a, 8 > 0,y > 0, such that for all u,v € H}(U).
(© |Blu. V]l < allullg Vil

(ii) (Garding's inequality) Bllulli@(u) < Blu, u]+ Vllull%z(u)

Remark 4.1.6. In PDE theory, “energy” refers to [2.

Proof. For (i),

|BhuvH5;Z:HaUmNW%[ﬂDuHDva+—Z:Hbﬂtht[ADuHﬂdx+IMHMMAA;WHMdX
if i

< allullg vily

where in the last step we used Cauchy-Schwarz, and collecting terms.
For (i), we will use uniform ellipticity.

9/|Du\2dx§/a"/uxluxldx
U U

= Blu, u]— /(b[uxtu + cu?)dx
U
=< B[u,u]+Z||b£||Lm/ |Du\|u|dx+IICHLm(U)/ude
- U U

By Young's inequality with

b|
abl = v2ela ‘—
jab| = V2elal -2
we get that
1
/ﬁowwmxgg/ﬁow%x+gfjjw%x
U u 2e Jy

Choose € such that 0

5Z_ ||/81||LM(U) < 5

This then gives us that

Q/ |Dul?dx < B[u,u]+c/ |u?dx
2 Ju U

Adding to this the Poincaré inequality, we get that

Bllullyy < Blu, u]+ viluligy,

Remark 4.1.7. If B is a bilinear form for the operator L with b = ¢ =0, then y = 0. In this case, we get
9/ |Dul’dx < Blu, u]
]

and if we add the Poincaré inequality, we get
2
Null ) < cBlu, u]

which is Garding's inequality with y = 0. In this case, we can apply Lax-Milgram directly.

On the other hand, if y > 0, we can't apply Lax-Milgram.
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Theorem 4.1.8. Let L be as above, then there exists a y > 0 such that for any ¢ > y, and any f € LZ(U),
there exists a unique solution u € HJ(U) to the boundary value problem

(10)

Lyuy=Llu+pu=1f inU
u=20 on dU

Moreover, there exists C > 0 such that

Hutp < ClJffl 2

Proof. Let y be from Garding's inequality, t.e.
Bllullyy < Blu, u]+ yllullfyy,

Let g >y, and set
Bulu,v] = Blu, v+ p(u, V)2

which is the bilinear form for the operator L, in eq. (T0). In this case, By, satisfies the conditions of Lax-Milgram.

Given f € [%(U), and set (f,v) = (f, V)2 This is a bounded linear functional on L2(U), e fs(f,) €

L2(U))*. In particular, this is a bounded linear functional on Hj. We can apply Lax-Milgtam to find a unique
u € HI(U) with
Bylu, vl = (1, v) = (V)2

for all v € HJ. Finally,

Bllullyyy < Bulu, u] = (F, 1)z < J|F[] oo 1utlizey < 11l ey

So far, the solutions only live in Hg, and we need to pay a price for the 1.

4.2 Compactness results in PDEs

Recall the following results:

e Bolzano-Weierstrak- closed unit ball in R” is sequentially compact.
e Recall for a metric space, the following are equivalent:

(i) compactness,
(it) sequential compactness,

(iii) completeness and totally boundedness

e If H is an infinite dimensional Hilbert space, then {x € H | IIxIl < 1} is not compact.

We will consider a weaker topology to recover compactness, since the topology induced by the norm is too
strong.

Definition 4.2.1 (weak convergence)

Suppose H is a Hilbert space, (u;) € H a sequence, then we say that u; converges weakly to u € H if
forall w € H,
(u/, W) — (u, w)

and we write u; — u.
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Remark 4.2.2. If the weak limit exists, then it is unique.

Proposition 4.2.3 (Banach-Alaoglu for a separable Hilbert space). Let H be a separable Hilbert space,
and suppose we have a bounded sequence (u,) € H. Then (u,) has a weakly convergent subsequence.
That is, the closed unit ball in H is weakly sequentially compact.

Proof. Diagonal argument, see AoF. Or deduce from the below, since any Hilbert space is reflexive, and so the
weak and weak-x topologies agree. O

Theorem 4.2.4 (Banach Alaoglu). Let X be a Banach space, then the closed unit ball in X* is compact
in the weak-* topology on X*.

Lemma 4.2.5 (Poincaré again). Suppose u € H'(R"), and Q = (&, & + L) x --- x (&,, & + L) be a cube
with side lengths L. Then

(V) 2
1 nl? 2
2 i
HUHLZ(Q) < ‘ | (/QUdX) + ) HDUHLZ(Q)

(i)

_ nl?
[Ju— “HLZ(Q) < THDUHiZ(Q)
where ]
u= 0l Ou(x)dx

In particular, if ot = 0 we recover the previous Poincaré inequality.

Proof. For (i), since dQ is Lipschitz, we apply the approximation theorem, to get C*°(Q) are dense in H'(Q).

Consider u € C*(Q). For x,y € O, we use the fundamental theorem of calculus to get

X1 d X1 d Xn
u(x) — u(y) :/ au(t,xz,-»- ,xn)dt—i-/ EU(W' t,x3, -, xp)dt + +/ —u(yq, ..., Yn—1, t)dt
y

1 Y2

Squaring, to get

s g 2 s g 2
u()()2 + u(g)2 —2u(x)uly) < n (/ au(t,xz ,,,,, x,,)dt) +--4n (/ dtu(g1 ,,,,, Yn—1, t)dt
y Y1

where we use Cauchy-Schwarz to get that

(014 +an)* <n(ai + -+ a7)
2
//(LHS)dxdg = 2|0f1ulifg) =2 (/ u(x)dx)
070 Q
For the right hand side,

X1 d 2 X1 X1 d 2
lh = (/ —u(t, xz, - ,X,,)dt) < (/ dt) / (u(t,xz ..... x,,)) dt
Al dt Al Al dt

$+L d 2
<L —u(t, x, ..., a) | dt
<tf, (@oen )
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Hence combining the terms,

2
21011l — 2 ([u(x)dx) < 120]0][| Du] . 0,

Rearranging gives the result.
For (ii), consider n € C°, with n =1 on Q. Then

/Q(U—un)dx ~0

and we can then use (i). O

Recall if 1 < p < n, we have an embedding Wwhe s [P"

Theorem 4.2.6 (Rellich-Kondrachov). Suppose U C R” be open with C' boundary. Let (u,) be a bounded
sequence in H'(U). Then there exists u € H'(U), and a subsequence (uy ) such that u,, — v in H'(U),

and v, — u in L2(V).

Proof By the extension theorem, we have an extension @, € H'(R"), with supp(7,) € Q for some cube Q.
Moreover, the extension operator £ : H'(U) — HJ(Q) is bounded. In particular,

< C||un < CK

(Cpime iy

for some K. Now HJ(Q) is a separable Hilbert space, so by Banach-Alaoglu there exists u € HJ(0Q), with
T, — uin Hj(Q), and
||U||/-/1(Q) S C
We claim that w; =T,  — u in L?(Q).
To see this, fix 0 > 0 and divide Q into k subcubes {Q,}*_;, of side lengths 0 < ¢ < 4, intersecting only
on their faces. Then

ij—u||22 <iHWj—uH2Z <i 1(/(W/-—u)dx)2
Lo = 12(0) = 10, \ o,

a=1 a=1

n?o?
HDW/’ - D“Hiz((g)

T3

Fix € > 0, since wj,u € HS(Q), then HDW/ — DUH;(Q) < C for some C. Fix 0 > 0 such that

1>

n? o2
| 3

|DW/ — D”Hiz(o) <

This then fixes k. Note that the map

fH/Qf(x)dX

is a bounded linear functional on HJ(Q), and so by weak convergence,

w; — u)dx — 0
J R

This is true for all a. Since k is fixed and finite, choose j large enough so that

2 (|o10| (/ofwf”)dx)z

a=1

<

N ™

Using this, ij — u||i2(0) < e O

4.3 Fredholm alternative and spectra of elliptic PDEs

4
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Definition 4.3.1 (adjoint, compact)
Let H be a Hilbert space, and consider K & B(H).

1. the adjoint of K, denoted K7 is the unique operator, such that
(X, KTg) = (Kx, y)

forall x,y € H.
We say that K is self-adjoint if KT = K.

2. K is compact if for each bounded sequence (u;) € H, there exists a subsequence (u;) such that
K(uj,) converges strongly in H.

Example 4.3.2 (Key example)
Let K : [2(U) — H'(U) be a bounded linear operator. Since H' < [?, we can think of K &€ B(L%(U)).

Claim 4.3.3. K € B(L*(U)) is compact.

Proof. Let (uj) C L?(U) is a bounded sequence, then

1K@l < 1Kl 20

and so (K(u;)) is a bounded sequence in H'. By Rellich-Kondrachov, there exists a subsequence (uj,),
such that K(uj,) converges strongly in L2(U). O

The idea is that if we are looking at the equation
Au=f
we can view this as a map
H'(U) — (V)
u—f

Finding a solution is the inverse map K : [?(U) — H'(U), with K(f) = u. This map will be compact.
Theorem 4.3.4 (Fredholm alternative for compact operators). Let H be a Hilbert space, K € B(H) compact.
Then
(i) ker(/ — K) is finite dimensional,
(it) im(/ — K) is closed,
(i) im(/ — K) = ker(/ — KT)*,
(iv) ker(/ = K) =0 if and only if im(/ — K) = H,
(v) dim(ker(/ — K)) = dim(ker(/ — KT))

Proof. Appendix D.5 of Evans. O

Note (iii) and (iv) are referred to as the Fredholm alternative. Applied to linear algebra, we would like to

consider the equation
Ax =D

We have the alternative:

(a) A s invertible, A=" exists, and so the inhomogeneous problem has a unique solution,
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(b) ker(A) is non-trivial. The homogeneous equation Ax = 0 admits non-trivial solutions. Moreover, from (iii),
im(A) = ker(AT)*, and so the inhomogeneous equation has a solution if and only if b € ker(A")*, and so

y'b=0
for all y € ker(A"), ie. ATy = 0.
Restating (iti) and (iv), we have
(I) for each f € H, (I — K)u = f has a unique solution,

or the homogeneous equation (/ — K)u = 0 has a non-trivial solution. In this case, the space of solutions
I he homog I—K Oh l sol In th h fsol
(I — K)u is finite dimensional, and (/ — K)u = f has a solution if and only if f € ker(/ — KT)*.

Definition 4.3.5 (resolvent and spectrum)
Let H be a real Hilbert space, A € B(H). The resolvent (set) of A is

p(A)={AeR|A—Alis invertible}

The real spectrum of A is
0(A) =R\ p(A)

We also define the point spectrum
0p(A) = {1 € alA) | ker(A — nl) 0}

If Aw = nw, we call w an eigenvector.

Remark 4.3.6. p(A) is open, and d(A) is closed.

Theorem 4.3.7 (spectrum of compact operator). Suppose H is a separable infinite dimensional Hilbert
space, with K € B(H) compact. Then

(i) 0 € a(K),
(i) o(K)\ {0} = g,(K)\ {0},
(it) a(K)\ {0} is countable. Say o(K)\ {0} = {A;}ien, then (up to reordering) A; — 0,

(iv) if K is in addition self-adjoint, then there exists a countable orthonormal basis for H consisting of
eigenvectors for K.

Proof. Il Linear Analysis. O

4.3.1 Application to elliptic PDEs

Consider eq. (7) as before, with L uniformly elliptic on U C R". The bilinear form associated to L is

Blu,v] = / auyv; + b'uyv + cuvdx
U

Definition 4.3.8 (formal adjoint, adjoint bilinear form)

We define the formal adjoint to L as

LTy =— Z(aifvxi)x/ — Z b"uxk +
i

Ly

chi{) v
i
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and the adjoint bilinear form is given by

BT|v, u] = Blu, V]

We say v € HJ(U) is a weak solution of the adjoint problem

[fv=f iU
v=20 on dU

Bflw, v] = (f, w),2
for all w € H}(U).
Note if b' € C'(U), then BT is the same bilinear form as B.

Theorem 4.3.9 (Fredholm alternative for elliptic boundary value problem). Consider for bounded U with
C' boundary,
Lu=f inU
u in ()
u=0 ondU
Then
() for each f € [?(U), eq. (11) admits a unique weak solution, or

(1) there exists a non-trivial weak solution to the homogeneous problem (i.e. f = 0), and dim(N) =
dim(NT), where

N = {weak solutions to homogeneous equation} C Hg(U)

and
NT = {weak solutions to the homogenous adjoint equation}

With this, eq. (TT) has a unique solution if and only if
(f,v)2=0

for all v & NT.

Proof. By theorem m there exists y > 0 such that for every f € [?(U), there exists a unique weal solution
u e H(U) to

Lu=f inU
u=20 on oU

where L,u = Lu + yu. We also have an associated bilinear form

Bylu, v = Blu, v+ v (0, V)

and we have that
Bylu, v = (f,v),:

for all v e Hy, and l1ully < C||f]] ..
Write Ly’1(f) = u for the solution operator. This is well defined as the solution exists and is unique. We
can check that this is linear. The inequality above shows that

1L Oy < €l

and so
LT — Hy

is bounded, hence L' : [? — [ is compact.

44



Observe that for g € L2, then L, "(g) = w if and only if B,[w, v] = (g, v) for all v € HJ(U). Now suppose
ue H& is a weak solution to eq. , that s,

Blu, vl = (f,v)

for all v € HJ, and so
Bylu,v]={f + yu,v)

for all v € HJ. Thus, u solves eq. weakly if and only if
-1 -1 -1
u=L,(f+yu)=L,(f)+vyL, (uv)
which is true if and only if (/ — K)u = h, where

K=vyL,' and h=L"(1)

Observe the map K : [? — [? is also compact, and so we can apply the Fredholm theorem for compact
operators, and either:

(I) for all h € L%, u — Ku = h has a unique solution v € [?,
(I) there exists 0 # u € [? with u — Ku = 0.
Suppose (I) holds. Set h = L '(f), then there exists a unique u € L* with
u=yL, (u)+L,"(u)

Since L' 1 L, — Hj, u € Hj and by the above, u is a weak solution of eq. .
Now suppose (II) holds. Then there exists u € L? non-zero, with u = Ku = yL;W(u). As above, u € Hj.
Use the definition of Ly‘1 to see that

Blu, v+ vy (u,v); = (vu,v)p
for all v € L2 Hence Blu,v] = 0 for all v € H}. That is, u € N. Moreover, dim(N) = dim(ker(/ — K)) =
dim(ker(/ — KT)).
Claim 4.3.10. Let v € [?, then (/ — KT)v =0 if and only if BT[v, w] =0 for all w € H].

Proof.
(| —K'Ww=0 < (v,w) = (v, Kw), forall w € [
= (v,w)p: = (v, yL;W(W))L2 for all w € [?

But note that any weak solution to

obeys

Hence the above is true if and only if

> BIL, (W) v+ v (L (w)v), = (v.vL, (W), forallw e L?

12
= BIL,'(w),v]=0forall w € [’
= B[v,L,'(w)]=0forall w e L

On examples sheet 3, 'Lm(Lf) is dense, and so we have that

v=Kv < Bfv,w]=0
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It remains to prove that eq. has a weak solution if and only if (f,v),. = 0 for all v € N7. Now note
eq. has a solution <= (I — K)u =L,'f <= L,'(f) € Im(/ — K) = ker(/ — KT)*

That is, we need (v, Lf(f))L2 =0 for all v € ker(/ — KT). But for all v € ker(/ — KT),

_ 1 1 1
0=(v..;'(h), = (v, VKf) . ;(KTV, f) = " (v, )2

and so (v, f);2 = 0 for all v € ker(/ — KT). O

Remark 4.3.11. In this proof, given L, we see that for y large, L, is a bounded inverible linear map, the map
Lf = (L4 y/)7" is called the resolvent of L. The fact that Lf 12 — [? is compact is expressed as L has compact
resolvent.

Theorem 4.3.12. Under the same assumptions as in theorem [£.3.9]

(i) there exists a countable set ¥ C R such that the boundary value problem

(12)

Llu=Au+1f inU
u=20 on oU

has a weak solution for all f € L?(U) if and only if A & L.
(it) if  is infinite, then ¥ = {A¢ }ren. After reordering, then
M <A<
with Ay — o0 as k — oo.
(iit) for each A € L, there exists a finite dimensional space

EN={ue H' | u is a weak solution to the homog. problem Lu = Au}

We call A € L an eigenvalue of L, and elements of £(A) are the corresponding eigenfunctions.

Proof. Choose y > 0 as in eq. (T1). Choose i >y, then L, = L 4 pl is invertible, and
) 2
)
is compact. If A < —y, then the problem

lu—Au=1f inU
u=20 on dU

Thus, £ C (—y, 00). If A > —y, then solving eq. (T2) is equivalent to solving

(13)

(L—Au=1Ff nU
u=20 on U

Applying theorem to L — Al eq. has a unique weak solution for all f € L? if and only if u = 0 is the
unique solution to

(L=Au=0 inU
u=20 on dU

That is, case (Il) in theorem [A3:9] does not occur. This is true if and only if u = 0 is the only solution to

Lu+yu=A+yju inU
u=0 on oU
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which is true if and only if u = 0 is the only solution to
A
w= 1 ) = K )

which is saying u = 0 is the only solution to

That is, y/(y + A) is not an eigenvalue of K. So

AEY & u= 4 is an eigenvalue of K
14

+A

But recall theorem [£37] the set of eigenvalues of K is either finite, or countably infinite and converging to
zero. In the second case, if
e — 0 then Ay — o0

The fact that £(A) is finite dimensional follows from the Fredholm alternative. O

Remark 4.3.13. If A ¢ L, then there exists C(A) > 0 such that
lutlz < CA7][,2

As A approaches an eigenvalue, C(A) — oo.

4.4 Self-adjoint positive operators

Definition 4.4.1 (formally self adjoint)
The operator L is formally self-adjoint if L = LT. Equivalently, b' = 0 for all i.
If L is self adjoint, then Blu,v] = Blv, u].
Definition 4.4.2 (positive)
We say L is positive if there exists B > 0 such that
Bllullz, < Blu, u]

for all v € H3~

That is, B is coercive.
Lecture 17

Theorem 4.4.3 (eigenvalues of symmetric elliptic operators). Let L be uniformly elliptic, formally self-
adjoint, positive operator on U. Then we can represent the eigenvalues of L as a sequence

O<AH <h <

with multiplicity, i.e A appears dim(€(A)) times. Moreover, there exists an orthonormal basis of L2, consisting
of eigenfunctions {wy}, with

Lwy = Awg  on U
wy =0 on U

and each wy € HJ(U).

Proof. By positivity, Lax-Milgram implies that L is invertible. Moreover, L=' : [?(U) — HJ(U) is bounded.
Denote S = L~": [?(U) — [%(U). Then S is compact.
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Claim 4.4.4. S is self-adjoint.

Proof. Choose f, g € L?(U), then Sf = u means u € H}(U) is the unique weak solution to

Lu=f inU
u=0 onaU
The same statement applies to Sg = v. That is,
Blu, w] = (f,w)
for all w € HJ, and
By, ¢l = (9. ¢)
for all ¢ € HS. With this,
(5f,9)i2 = (U, g)2
= Blv, u]
= Blu, v|
= (f, V)LZ
= (f,59);2
O

Now by theorem [437] (spectrum of compact self-adjoint operators), there exists a sequence of eigenvalues
(LK) € R, such that e — 0, and there exists wy € LZ(U), such that {wy} is an orthonormal basis of 12, with
Swi = ewk. Equivalently, L'wy = mewy € /—/8, and so Lwy = Aewy, where Ay = 1/, Positivity of Ay
follows from positivity of L, and so the positivity of S. O

4.5 Elliptic reqularity

In this section, we will assume U C R" is an open bounded domain, V' @ U. Our goal is to improve the
regulaity of the weak solutions u € HJ(U), to say u € C*(U).

Example 4.5.1 (motivating examples)

Let u € CZ°(R") be a solution to
—Au=f

/ fzdx:/ (Au)’dx

= Z/ (DiDyu)(D;Dju)dx
fff Y

Then

Integrating by parts twice,

= Z/ (D,D/U)(D,D/U)d)(
g ¥

2
= HDZUHLZ(R”)

That is, we have that

I DzuHLZ(R”) < HAUHLZ(R”)

and so all second derivatives are controlled in L% by Au.

However, if u € H', then D?u may not exist (even weakly). Thus, we will approximate the derivatives.
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Definition 4.5.2 (difference quotient)
For 0 < |h] < d(V, dU) (required so we stay awy from the boundary), define the difference quotient

u(x + hey) — u(x)

AD =
fulx) :

forxeV,i=1,..., n. Write

Remark 4.5.3. Suppose v € [?, then A"u € [?(V/), and
D(AMu) = A"(Du)

Hence if u € H'(U), then Afu € H'(V).

Lemma 4.5.4. Suppose u € [?(U), then u € H'(V) if and only if there exists C > 0, such that for all h
with 0 < |h| < 3d(V, 0U), with
||AhuHLZ(\/) <C

Moreover, there exists C such that
1 .
EHDUHLZ(V) < HAh“HLZ(\/) < CHDUHLZ(V)

That is, the difference quotient is equivalent to the derivative, sometimes written

HDUHLZ(V) = HAh”HLZ(\/)

Proof. Examples sheet 3. O

Theorem 4.5.5 (interior regularity). Suppose L is uniformly elliptic on U, and assume @ € C'(U) and
bt, c € [(U), f € [*(U). Suppose u € H'(U) satisfies

Blu,v] = (f, V)2 (14)
for all v € HJ(U), then u € HZ_(U), and for each V € U,
Nullpegy) < C (||f||Lz(U) + llullz)

with C = C(a, b, ¢, V, U, n), but not on f or u.

Remark 4.5.6. The result says that we gain two weak derivatives by solving the equation. We can also write the
inequality as

Ul < C (HLUHLZ(U) + HuHLz(U))

Proof. Step 1: Fix V &€ U, and choose W such that V@ W € U. Let & € CX(W), such that 0 < & < 1,
Ely =1, &ow = 0. We can rewrite the weak equation as

/a[/DiuDjvdx=/)~‘vdx
U U

f=f—bDu—cue l?U)

where
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Let v = —A(&EALu) for k fixed, 0 < |h| < d(W,dU). Note by previous comments, v € HJ(W), and

approximates D?u. Set

A:/a"/’uxlvx/dx
U

B=/?vdx
U

Observe for ¢, ¢ € L?(U) supported in W, then

[ o (@5 000) ax = = [ @it
which is integration by parts for the difference quotient. Moreover,

A (p)(x) = L E e E hen) = WP _ (onygaD ging + (AL x) bix)

where

is the translation operator.
Step 2 (Bounding A): Using the above,

A= f/ a'lu A (E2AL )y, )dx
U
_ / Al (a0, (&0 u), dx
U

— [ (o, + e, )) (00, + 268, 5u) o
U

=A+ A
where

A = / E(rla) (AL u )ALy, )dx
0]
By uniform ellipticity, B
ttanin; > 6|n|’

Applying with n; = Allu,., we get that

Ay > 9/ &|ALDu)| dx
U

Next,
A, = / (ALa)uy ENJuy + 280 ag)u AU + 2&(1) a) (AL uy ) &AL udx
U

Since a¥ € C2(U), and <& is bounded,
|Aa| < c/ &|Dul[AY(Du)| + &[Dul|Afu| + E|AY(Du)||Afu]dx
w
We are interested in Al(Du). We can use Young's inequality
2| b 2 c 2 hol?
<e | &E|ANDu)| dx+ = | |Dul”+ |Afu| dx

w € Jw

By lemma [#5:4]

C
<e [ @toafon+ < [ 1Dubas
W € Jw
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Set € = 6/2, and use A; > —|A;|, we find that
A=A+ A > 9/ 52|AQ(Du)|2dx — C/ |Dul?dx
2 w w
Step 3 (Bounding B):
B1< € [ {11+ 1Dul + Jul | (@) dx
w
Applying lemma again, and (a + b)? < 2a’ + 2b°,
/ ANE@AD)[Fdx < C/ |D(E A u)| dx
w w
< c/ |g|2|Ds|2)AQu|2dx+c/ &|aNDu)|*
w w
< C/ |Du\2+c/ &|Al(Du)| dx
w w

By Young’s inequality on |B],
C

|B| ée/52|AQ(DU)|de+—/(|f|2+u2+\Du|2)dx
U € Jw

Set € = 0/4.
Step 4: Since A = B, we have that |A] = |B|. Using the bounds that we have:

9/ &|ANDu)| dx — C/ |Dul*dx < |A] = |B| < 9 / &|ANDu)| dx + C/ (f? + u? + |Du|)dx
2 Jy w 4 Ju w
Rearranging,
/ 52}AQ(DU)|2dX < c] f2 + u? + |Dul*dx
U w
Since &|y = 1, we get that if u € H'(V) solves eq. , then
/ |AQ(DU)|de < (:/ 2 + u? + |Dul*dx
v 1%

Since C is independent of h (track every step), we can apply lemma Du € H*(V) and so u € leocv(U),
with

Ul < € (HfHLZ(W) + ”U”HWW))

Let & € C°(U) (be a different test function) with

Step 5: Removing the dependency on HDUHLZ(W)'

Ew =1 Set v =& in eq. (14), to get
/a[/'uxl(ézu)xl +blu, + cu’&dx = / Efudx
] ]
By the same proof as in Garding's inequality, we can rearrange to get
2 2
HD”HLZ(W) <C (B[u, ul+ yllul\%z(w)) <C (HfHL?(W) + Hullfz(w)

Hence we have that

iy < C (1] gny + 10209
and so we have the expression

ey < C (1]l oy + 1001209
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Remark 4.5.7. 1. This is a local result. To have u € I—IZ(\/), for V € U, it is enough to have f € LZ(W), where
V.e@W € U. Thatis, if f & L? near the boundary, we don't see this in our estimates.

2. We can now show that the equation Lu = f holds pointwise a.e. To see this, u € HZ_(U), and so Lu € LE_(U).
Take V € U. For v € C°(U), then from eq. (T4),

(LU — f, V)LZ(U) = O

Since Lu — f € [?(V), it holds pointwise a.e. on V.

Theorem 4.5.8 (higher order interior reqularity). If ¥, b', c € C™(U), and f € H™(U), then u € H™?(U)
and forall Ve W e U,
HU||Hm+2(\/) < C (||f|

Hm(U) aF HUIlLZ(U))

Remark 4.5.9. We also have a Hélder theory of elliptic regularity, Le. if f € CKY(U) then u € C*+2¥(U).

Lecture 19

Remark 4.5.10. Recall if m is large enough, t.e. m > n/2, then
Had2(U) = G (U)

loc.

and so if a¥, b, c, f € C*(U), then u is also smooth.

Theorem 4.5.11 (boundary H? regularity). Suppose a’/ € C'(U), b',c € [*(U), f € [*(U), and 9U is
C?. Suppose u € H}(U) is a weak solution to

(15)

lu=f inU
u=0 ondU

Then u € H?(U), and
Hull ey < C (HfHLZ(U) + llullzy)

Sketch proof. We focus on the case
U= B0)n{x, > 0}

Let V = Bi;2(0)N{x, > 0} and & € C°(B4(0)) with & =1 0n V,0 < & < 1. Since u € H} is a weak solution,

/GUUX,VX/:/ICV
U U

for all v € H}(U). Choose 0 < |h| < ;d(supp(&), 0B4(0)). Consider

v A
fork=1,..., n — 1 fixed.
Claim. v € H} (V).
Proof.
vix) = %Alh(fz(x)(u(x + hey) = ux))
1

=5 (& (x = heg)(ulx) — u(x — hey)) — E(x)ulx + hey — u(x)))
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The translation is horizontal, and Tu

x,—0 = 0, and so
T(u(x £ heg))|s,—o
for all |[x] <1 —h. When x, =0, |x] > 1 — h, we have that {(x) =0 and &(x — hey) = 0.
Repeating the proof of theorem [f55] to conclude
/ Al(Du)|dx < C/ 2+ v + | Dul*dx
% U
where C does not depend on h. Hence

Dyu € H'(V)

fork=1,..., n —1, with
HDkDiUHU(V) < C(HfHLZ(U) + Ul )

where i =1,..., n.
Hence it suffices to consider uy,,,. We will use the equation for this. Write the PDE as

a"uy,y, =F =— E auyy, — > bluy, —cu+f
i+j<2n i

By uniform ellipticity,
0" =) a"&& 2 l|E = 6>0

where £ = (0, ..., 0,1).
By the bound above, we can bound all of the terms of F, and so F € [?(V), and

Fel’V)

u —
XnXn n
a

and
ey < CU|| ) + 1l e)

From the proof of Garding's inequality, we can replace Ilully ) with llull;z) in the above.

To finish, we cover the boundary with a finite union of V;s, and sum using a partition of unity. See Evans

for details.

boundary value problem eq. (T5), then we have that

Il < Cl|f]| 2 = CllLull 20

()

i.e. we can drop the [lull;2) terms.

That is, the llull2(y) measures the kernel of L, and so if the solution is unique, the kernel is zero.

solution, then v € H™*?(U) and
Ntz < C(IF]| gy + Nl 2)

and
(L—Au=0€gC*™

and so the eigenfunctions are smooth.
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Corollary 4.5.12. Under the assumptions of theorem A5.11] if u is the unique weak solution to the

Remark 4.5.13. We can get higher reqularity. If a¥, b’,c € C"'(U),f € H™(U), dU is C"*?, and u € H} a weak

Remark 4.5.14. If everything is smooth, then u is smooth. For example, if Lu = Au, then L — Al is uniformly elliptic,
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5 Hyperbolic PDEs

We will consider second order linear PDE of the form

n+1 n+1

> (auy)y, +) 'y, + aly)u =f (16)
i=1

i=1
with y € R™1, a¥ = df', a¥, a', a € C®(R"*"). This equation is hyperbolic if the quadratic form

n+1
g8 =) a'ly)&s;

i,j=1

has signature (+, —, ..., —) for all y € R"*". That is, at each y € R"*", after a change of basis, we can write
q as

n

2 2 272

)\n+1 gn+1 - E /\i c?i
i=1

where each A; > 0.
We call g the principal symbol of the PDE. By a coordinate transformation, locally we can put eq. (T6) in

the form
n n+1

Ut — Z(gi/(x, Hux)y, + Z b'(x, tyu,, + c(x, thu (17)

i,j=1 i=1

where (y1, ..., Yns1) = (X1, ..., Xp, t).
Note if we assume

a5 > 0]
i
then since the coefficient of us ts 1, which is non-zero, then we see that

{(c.) |t =0}

is a non-characteristic surface of the PDE. In principle, we can solve the PDE with analytic data u, u; at t = 0.

5.1 Hyperbolic initial boundary value problems
Suppose U C R” is open bounded with C' boundary. Define
Ur=(0T)xU L={t} xU 0*Ur =[0,T] x U
Using this,
oUr =XgULyUd" Ur
Let u € C?(Ur), which satisfies the initial boundary value problem
uy =Au in Ur
u= Lllo on Zo
up =y on Lo
u=20 on 0*Ur
We will perform an energy estimate. Multiply the PDE by uy, integrating by parts over Uy = (0, t) x U for
t e (0, 7T), we get
0= / Uty — uAudxdt
Uy

In what follows, D will denote the derivative with respect to the space variables only. Recall grad - (ggradh) =
gradg - gradh 4+ gAh, and so we get

J,

t

1
/(u,2+|Du\2)dx—f/ (ur)? + |Dul’dx
T 2 Lo

1
2

0:(u?) — div,(uDu) + Du,Du) dxdt

N —  —m——

0, ((ut)2 + |Du\2) — divy(us Du)dxdt

<

N —

54



where we use the divergence theorem, and the fact that v vanishes on 0*U;. Hence we have that
/ u? + [Dul’dx = / G+ [Difo|*dx
h Lo

Ww call this an energy estimate as the energy is conserved, where u; is kinetic energy and |Du\2 is potential

energy.
9 Lecture 20

We call ths estimate above an a priori estimate. These are very useful. o o
Let v, v € C?(Ur) be two solutions with initial data ¢;, ¢;. Let u = v —7, ¢y = ¢ — ¢o and ¢ = ¢1 — ¢1.
Then there exists C > 0 such that

2 2 2 2
é;’Pﬂ (H”(" t)HH“(L) + ||”f(" t)HLZ(L)) <C (H%Hw(z,) + HL/” HLZ()ZO))

Thus, in this case, we have uniqueness and continuous dependence on initial conditions.
Define

n

Lu=— Z(GU(X, Huy)x; + Z b'(x, t)uy, + b(x, hu; + c(x, t)u

=1 =1
with a = a/, b', b, c € C'(Ur). Suppose there exists 8 > 0 such that

n

Z a’(x, & > 9‘5‘2

ij=1

for all (x,t) € Ur, £ € R".
We will consider the initial boundary value problem

uit+Llu="f in Ur

u=1tp,u=1yy onky (18)
u=20 on 0*Ur

We would like to find the weak formulation.

Suppose u € C*(Ur) is a solution to eq. (18). Multiply by v € C?(Ur), such that v = 0 on 0*Ur U L 7.
Integrating over Ur,

/ fvdxdt:/ (ugrv + Luv)dxdt
U/ Ul

T T
= / (—ueve + a[/uxlvx/ + b"uxlv + buv + cuv)dxdt + [/ ufvdx] —/ / a‘/uxlvdet
Ur L t=0 0 0z,

— / (—uve + au,, Vi, + b'u, v+ buev + cuv)dxdt — / yn(x)v(x, 0)dx
Ur Lo

Thus, we have the equation

/ fvdxdt = / (—uve + a'u,, Vy, + b'uy v + buyv 4 cuv)dxdt — | ¢ (x)v(x, 0)dx (19)
Ur Ur ZO

Now suppose eq. holds for all v € C?(Ur) with v = 0 on 0*Ur UZ7. If v € C*(Ur), then we can undo
the integration by parts, and we get that

/ Wty + Lu — f)dxdt = 0
Ur

Since v is arbitrary, us + Lu = f on Ur.
Now if v € C*(Ur), then we get that

/U (Ug + Lu — f)dxdt = / (n — ugvdx

Yo
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Hence

/ (Y —ug)vdx =0

Zo
for all v € C(Ur) with v =0 on 0*Ur ULZ7. Now let v(x, t) = x(t)p(x), with x € C=([0, T)) and ¢ € C(Lg).
We require that ¥ = 1 near t =0 and y = 0 near t = T, hence

V‘fo =@
Hence

/z (¢ (x) — ue(x, 0)p(x)dx =0

and so ¢y = u; on Xo.

Definition 5.1.1 (weak solution)

Suppose f € L?(Ur), ¢o € H}(Zo), 1 € L%(To), a¥ = d’', b', b, c € C'(Ur). We say that u € H'(Ur) is
a weak solution to the hyperbolic initial boundary value problem eq. if ulg, = ¢o, ule=y, =0 in the
trace sense, and eq. (19) for all v € H'(Ur), with v = 0 on 9*Ur U L7 in the trace sense.

Theorem 5.1.2 (uniqueness). A weak solution, if it exists, is unique.

Proof. If v,v are two weak solutions with the same initial data, then we can use the linearity of the PDE
problem, u = v —V is a weak solution with f =0, ¢y = 0 and ¢ = 0.

The idea is to use an energy to show that Ilull = 0 to show that u = 0. We would like to pick v = uy, as
we did for the wave equation, but

1. v may not be in H'(Ur), since we only know that u € H'.
2. v may not vanish on Z7.
We set
.
v(x, t) :/ e u(x, s)dt
t
where we will choose A later. We can see that v is in H'(Ur), and v = 0 on 0*Ur U Z7. Moreover,
v = —e Mu(x, t)

We will take this v as the test function. This gives us
At At i At _
/ upue™ " — e alvig v, + b'uyv + buv + (¢ — Nuv — e"vvdxdt = 0
Ur
Integrating by parts,

] uue M — eMa"/v[X/vX( + (b'uv),, + (buv); —(biLUV + b'uvy, + buv + buvy) + (c — Nuv —
Ur ~—— ——

a b

2

The terms a and b vanish by boundary conditions. Hence we have that

10 y A y
/ —— (uze’“ =a'v, v, e — vze“) dxdt + f/ (w?e™ + aVev, v, + vZe)dxdt
v 20t / o ,

= ] Ea}/vxl VX]eM + (b5, + bt + 1 — c)uv + b'v,u + buvidxdt
Ur
Call the first line A and the second B. For A,

1 1 . A y
A = e”/ —uldx + = / alv vy, + vidx + = / e 4 etally, Vs, + vZeldxdt
Ir 2 2 Lo 2 Ur
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Hence we have that
A> f/ w?e ™ 4 6|Dul’ e + vZettdxdt
2 )y,
Also,
B < C(aﬁf')/ e"|Dv|*dx + C(b, b, ¢) | |ullv|dx + C(bi)/ lu||Dv|dx + C(b)/ u?eMdx
Ur Ur Ur Ur

<= [ eMo|Dv)* + C/ e u?| + e(|v[’| Dv|*)dxdt
6 Ur Ur

< C/ 6|Dv[? e’ + u?e M + vie'ldxdt
Ur
Now using that |A] = |B],

(; — C) / (u?e™ + 0|Dv|* + vZe ) dxdt < 0
Ur

<0

Taking A > 2C, the integral must be zero, and so

/ u’eMdxdt = 0
Ur

Hence u =0 a.e. O

Theorem 5.1.3 (existence of solutions). Given ¢y € H}(U), yn € L2(U), f € L[*(Ur), then there exists a
unique weak solution of eq. u € H'(Ur), with

Nullpun < € (H%Hw(w + HLL” ||H1(U) + ||f||LZ(UT))

Proof (Galerkin's method). We will project everything onto the finite dimensional subspace of L?, given by the
first N eigenfunctions of the Dirichlet Laplacian. Taking N — oo gives the result.

Step 1: Recall the eigenfunctions {¢y}%2, of L = —A with Dirichlet boundary conditions form an orthonor-
mal basis of L2(U). We have that ¢, € HJ(U), and by elliptic reqgularity ¢, € C°°(U) privided dU is C*°. With
this,

(QD/« (Pé)LZ(U) = Oks

and if u € [?(U) then

u= (U, i) 2y Pr

0
k=1

with convergence in [%(U).
Step 2: First consider i, ¢ € C=(U), f € C=(Ur). These spaces are dense in H}(U), L?(U) and [*(Ur)
respectively. Define

uNx, ) = > uilt)ge(x)
k=1

Assume ui(t) € C?((0, 7)), and that u™ is a weak solution to eq. . Take v(x, t) = p(t)pe(x) for the test
function, with p € C2°((0, T)) arbitrary. Substituting into eq. (T9), we get

| ~pgn+ oMutga)p + bupgs + bul pis + cupgs — fpgildxdt = 0
Ur

Note
/—ufvpgogdxdt:/ uﬁp(pgdxdt
U/ U!
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and so our identity looks like

/0[/[ G(x, t)p(t)dxdt = 0

But p is arbitrary, and so

G(x, t)dx =0
L
for all t. With this,
T R N T N A e (20)

But eq. (20) holds for all t, and £ =1, ..., N. By orthogonality,

M

(uf @e) ey = D (U()pr, o) gz, = iielt)
k=1

With this, we get that for £ =1,.. ., N, then

N
0+ (avilt)urlt) + Borlt)ine(t) = Folt)
k=1

where
) = | (g0l (el + Do+ g
Bustt) = | bl e
fo(t) = /):, f(x, t)pe(x)dx
and

This is a system of N second order ODEs, linear in uy, with coefficients which are bounded uniformly in C'
for t €0, T]. By Picard-Lindeldf, there exists a unique solution uy € CZ(0, T]). Moreover,

NouN e H'(Ur)
Step 3: We would like a uniform estimates

HUNHH1(UT) <C

which are independent of N. Multiply eq. by e=i,(t), sum over 1, .. ., n, and integrate over [0, 7] C [0, T].

For example,
N
Z/ [Jg(t)/ uﬁq)gdxdt:/ e MuNuNdx ddt
= -t £ Us

/ (uft/utN+a’/u utX + bl u[ + b(ulM)? +cuNu[N)e*“dxdt:/ fuNe *dxdt
Us Us

We find that

Similar to the proof of uniqueness, we can rearrange this as

y it -y
A= /2dr(Q” )dxdf+ /Qa dxdt

. 1 B
B:/U (Za/uNuN blufuy = bu}) + (1= cuuY + fu) ) e dxdt

A=B
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where )
Q, = (uﬁ\/)2 + a’/uQuQ/ + (uN)Z

Let 5
Qg = (up)* + 6| Du™|" + (M)

Using uniform ellipticity, Young's inequality, e < 1, and so on, we get that

Bg/ Qge_“dxdt—i—Hinz(U)
Ur ’

. 1 A
A> e”/ Qpdx — i/ Qpdx + 5/ Ope M dxdt
T, . Us

Note ‘A‘ = ‘B‘ for Aj2—C >1/2, we get

**T/ dix—i-/ Qge’“dxdtg/ Qadx—i—CHfoz(UT)
T, 0 Jg, Lo

2 A 2
<C (H”N(" O)HHW(ZO) + H“N("O)HLZ(ZO) + HinZ(UT))

for all T €10, T} Taking sup,

2 2 T P
Sgp(||UN(',T)||H«(L>+H'UN(-,T)HU(L,) +/0 (||uN(»,t)||H1(L>+H N = ))d
2 X 2 2
< €T (o™ Oy + 10N Oy + 1911
Since
N
= (o, p)px — o
k=1
as N — oo, if Yp + 0, then for large N, then

HUN(O)H/—F(ZU) < ZH‘l’OHH%HHW(zO)
Similarly,
6™ 2y < 2l ],
The right hand sides are independent of N, and so
H”NHM (Ur) = <G=C (H%HHW(ZO) + HLL” HHW(ZO) + HfHLZ(UT))

The right hand side is the uniform estimate which we want. Now
Lecture 22

Ne HjUn) ={¢e H (U | ¢

o*Ur — 0}

which is a closed subspace of H'(Ur), and so it is weakly sequentially compact. Hence there exists a subse-
quence (u™) such that
N — v e Hy(Ur)

Moreover,

<G

Hallgury = [E@g‘f H”N’HHWUT) =

Step 4: We want to show that v is the desired weak solution. We can relabel the uNias uN. Fix m < N,

and consider
m

V=2 wlt)eklx)
k=1

where v, € H'((0, T)) with vi(T) = 0. Then v is a test function for the weak formulation. From eq. (replace
¢ with k), multiply the equation by vi(t), and sum from k =1,..., m, we get that

(uﬁ,v)mm +/z a“ullvy + byl + bullv + cuvdx = () 2z,

59



Now integrating over [0, T}, integrating by parts, and using the fact that v(T) = 0, we get that
—/ u{\/vdx + / —ulve + a[/uXN(vX/ + b[uglv + bupv 4 cuNvdxdt = fvdxdt
%o Ur Ur
But for the first term, since N > m,

/ uNvdx = Prvdx
Yo Yo

Passing to the weak limit,

—/ gmvdx—i-/ (—u[vt+aiquLvX/+b[uxlv+butv+cuv)dxdt=/ fvdxdt (21)
Yo Ur Ur

But this is precisely the weak formulation. We leave as an exercise that the space of such v is dense in H1(Ur),
and so eq. holds for all v € H}(Ur).
Step 5: It remains to show that ulg, = (. For each fixed k, define

o H'(Ur) > R

W wpedx
Lo

This is a bounded linear map. To see this,

[Pr(w)] < / lwe| < ||W||L2(20)H<Pk||Lz(;O) < Hwllzeuy) < Cltwliy
Lo

where in the last step we use the trace theorem. By weak convergence,

Dp(u™) = ()

Thus,
Yoprdx :/ uN(x, 0)gy (x)dx — u(x, 0)er(x)dx
o o Lo
Hence
/z (Yo —u(x,0) gedx =0
0
for all k. Hence u = ¢y on . O

Remark 5.1.4. This proof fails when T = oo, or U is unbounded. See Hille-Yosida, in Brezis' book.

Definition 5.1.5 (Bochner space)
If X is a Banach space, the Bochner space LP((0, T); X) is

LP((O, T); X) = {u: (0, T) = X | llullgeo,ryx) < 00}

- Tl
Hullero,7y:x) = (/ Iulf(dt)
0

Ul oo, 7yx) = esssup ||u(t)]]
t€(0.7)

where

for 1 < p < o0, and

Remark 5.1.6. In step 3, we showed that
ol < G

In fact, the weak solution satisfies

Hu[HU’O((O,T),LZ(U)) + Ul ooo, sy < G
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Thus, instead of H'(Ur), we can consider
u € L%((0, T); H'(U))
5.2 Finite speed of propagation

A crucial feature of hyperbolic equation is that there is a finite speed of propagation.

Definition 5.2.1 (spacelike, timelike)
Let © C R"*" be a hypersurface, given by

L={(x1)eR™|F(x,t)=0}

Define B
w(Fy., Ft) = (Fe)* — aF, Fy,

We say that ¥
e spacelike if w >0,
o timelike if w < 0,

e characteristic (in PDE theory) or null (in GR) if w = 0.

Example 5.2.2
The plane t = 0 is spacelike.

Example 5.2.3

The cylinder
[F = |)(fxo|zf/?2

is timelike

Let Sy € U be an open set with smooth boundary. Let 7 : Sy — (0, T) be a smooth function such that

T‘aso = 0. Let
S" = Graph(1) = {(x, T(x)) | x € So}

IfF(x, ..., xp, t) = t = 1(x), then we see that S’ is spacelike if
17— (ZIUTX‘TX/ >0

Equivalently,
| ’ a’(x)t, 7, <1

Let
D={(x,t)eUr|xe S 0<t<t(x)}

Exercise: if a/&& < u\cﬂz, for some > 0, then we can show that such Sy, S’ exists.

Theorem 5.2.4 (domain of dependence). If S’ is spacelike, u a weak solution to eq. , then u|p depends
On[g on ¢0|50' i |50' f|D

Proof. The proof is similar to the proof of uniquness. By linearity, it suffices to show that u|p = 0 if ¢p|s, =

0,¢nls, =0 and f|p = 0. Take a test function

ox, ) = [ e ulx,s)ds (x,t) € D
o otherwise
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We leave the proof that v € H'(Ur), with v = 0 on 0*Ur U L7, and

(x)

v, = e ™u(x, T(x)) +/ e u,(x,s)ds
t

Vi = fe*Mu(x, t)

on D. These vanish outside of D. Inserting this into the definition of the weak solution, we find that

_ 1 i
A= / iat (uze’M —a'v, leeM - vzeM) dxdt
D

2 -
A= 5 /(uzefﬂ + a'v, lee“ + v2e’)dxdt
D

1 . .
B = / EGUVX’ \/X]e“ + (b}, + bt + c)uv + b'v,,u + buudxdt
D
A+A=8B
By Fubini,

T(x)
/dxdt:/ dx/ dt
D So 0

At(

Using vl = 0, and vy |s = T u(x;, T(X))e™ Y, we get that

-1 - 1 .
A= f/ u?(x, T(x))e'™(1 — aYt, T, )dx + f/ (av vy, + v?)|—odx
2 Js, / 2 Js, /

Continuing as in the proof of uniqueness,

A
(2 — c) / w?e 4+ 0|Dul’eM + vZelldxdt < 0
D

If A is large, this forces u|p = 0. O

Remark 5.2.5. No signal can travel faster than a fixed speed. Let xp € U and Sy some ball about xo. If (xo,t) € D,
then any data outside Sy does not influence u(xo, t). Only after t > 7(xp) will the function be determined by data
outside sg.

Therefore, everything is local in hyperbolic PDEs.

5.3 Hyperbolic reqularity

So far, we have shown existence to and uniqueness of weak solutions to
U + Lu=f

with given initial and boundary conditions. Given ¢y € H}(U), yn € L*(U), f € L?(Ur), we have shown

Wull ey + H”meg + Ul < C (HLL'OHH*(U) + i ||L2(U) + ||f||L2(U))

where [°H! = [°°((0, T), H'(U)). In this case, we did not manage to improve the requlaity when compared to
the initial conditions.

Example 5.3.1
Suppose u € C*®(Ur) which solves

uy —Au =0 in Ur
U=, u=1yn onklky
u=2~0 on 0*Ur
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Let w = u;. Then

wit —Aw =0 in Ur
w=un, wy=Ap onky
w=>0 on d*Ur

Using the above estimate, we have that
IWHljgopy + HWfHL?OLg Wil oy < € (H% ey + ||A¢'0HLZ(U))

Hence we have control over uy, ty; in Lz(U) in terms of initial data. To control Uyyx; We use elliptic

reqularity. In particular,
Hull ) < CHAUHLZ(U) = CH”“HLZ(U)

All together,
: < C([l4olle + [lénll,)

Theorem 5.3.2 (hyperbolic reqularity). Suppose a¥,b’,b,c € C?(Ur), with dU being C?. Then for
Yo € HX(U) N HY(U), ¢ € HY(U), f, f € L2(Ur), then the unique weak solution u € H'(Ur) satisfies
u e HX(Ur)n [2°H?
u; € 12°H]
s € L?OL)Z(

Proof. By approximation, we can assume f, (o, 1 are smooth. As in the Galerkin method, use

N
uNx, t) = Z U (t)pr(x)
k=1

Consider the ODE for ug(t). The coefficients are C?, and so uy is C°.
Since uN is C3, we can differentiate eq. with respect to ¢, to get

(uft/t, <pk)L2(XO) + /z g"/ug(gok)xj + b’u[X o + bul o + cul prdx

t

= (ft, @u)pr,) — / Gi/ N(Ql’k)x, + bf“g‘Pk + beuY o + i prdx
L

At

Multiply the above by i e™, sum from kK =1 to N, integrating fOTdt, we get that

£ (1ol + No¥ ) + el
< e ([l + 198y 1Ny + 1 Wiy + il + Wil )

First, note that
HUHHHW ) S CHLL”HH‘(ZO)

and using eq. (20) again,

_ ij, N, N i
||u”||L2(ZO) /z aluug, + +b u u“ +but u“ +cu u”dx+ (f Uff)LZ(ZO)
0

=/(a"“ ) U + stuff

Yo

By Cauchy-Schwarz,
HUHHLZ(ZO <C (HUNHHZ o) T )], o)+ 1712 (Zo) )
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We would like to control H“NHHZ(ZO) uniformly in N.

(A”N'A”N)LZ(XO) = (”N'AzuN)LZ(zo) = (4’0'A2”N)L2(zo) = (A%'A”N)LZ(XO)

In particular,
HAUNHLZ(ZO) < HA%HLZ(ZO) < H%HHZ(ZO)
Using elliptic reqularity,
H“NHHZ(ZO) < HwOHHZ(ZO)

In summary, we have

N
||“r

|L?QH; + HUM|L$GL2 + HUWHW(UT) <G
where C, is independent of n. By Banach Alaoglu, we have that

ur € H'(Uy)
up € L°H]

Uy € 1012
For the spacial derivatives, use the fact that

Lu=1f—uy
by elliptic regularity on ¥, then

Nullye < ||Lu

<l

2t HU”HL; <0G

and so u € [9°H? as required. O

Lecture 24

6 Heat equation
Consider u:R — R, h > 0, and consider the average value T of u on (—h, h), i.e.

1 h
% —h

U= u(x)dx

Taylor expanding,
0% u(0)h*
u(x) = > 7( )

Substituting,

4 2
%—F(’)(hﬂdx

Au(0)h?

= u(0) + )

+0(h")

That is, the Laplacian measures how much the function varies from its average in a neighbourhood of 0. More
generally, we have the mean value property for the Laplacian. That is,

Au(p) = lim C(n, r) /;( )u(x) — u(p)dx
H(p

r—0

where S,(p) is the sphere of radius r about p.
Consider the heat equation
ur = Au
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If the average in a neighbourhood of p is hotter than at p, then the temperature will increase at p.
Consider the initial boundary value parabolic equation

ui—Au=1*f onUr
u=1y on Xo
u=20 on 0*Ur

Multiply the PDE by u, we get

%af(uz) — divy(uDu) + |Du\2 = fu

Integrating over [0, t] x U, we get

1/Zf}u2dx+ \Du|2dxdt=/ ufdxdt + 1 e
[ U U 2 )5,

2
2 4 2
/ufﬁa/ dedt+*/ fedxdt
U/ U[ € Ur
/uzdx+/(u2+\ou|2)dxdtg C (/ fzdxdt+/ wde)
5 U, Uy Lo

Here, we see that energy is not conserved, but it is decreasing in time. Taking the sup over t € [0, T], we have
that

By Young's inequality,

All together,

Ul e o) + ”UHEM(U) <C (HfHLZ(UT) + H¢||L2(Zo))

For regularity, assume that we have a smooth solution to the heat equation. Multiply the equation by uy,
to get

1
uf + divy(u¢Du) + 50[|Du|2 = uf

Apply Young's inequality to get
1 1 1 ,
Euf + ia,\Du|2 < EfZ + divy(u; Du)

Again, integrate on U x [0, t] to get

1 / 2 1 2 1 / 2 1 2
= usdxdt + = Dul” < = fedxdt + = Dul"dx
2 U t 2 5, | ‘ 2 U 2 T | |

Taking sup over t € [0, T}, we find that

HUZHLZ(UT) + HDUHL?OLZ(U) <C (HfHLZ(UT) + H‘l’Hszo))

Using the PDE, at each time ¢,
—A=f— Ut

and u =0 on dU. Hence by elliptic estimates,
ull ) < HAUHLZ(U) < HfHLZ(U) + H“fHLZ(U)

Integrating over time,

e < € ([l + 19y < € (Moo, )

Again, we have a gain in reqularity.
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Index

CH(U), 16

CH(0),
Ck°® domain,

adjoint, A7)

Banach-Alaoglu, [40]
Bochner space, [60]
boundary H? regularitg,

Cauchy-Kovalevskaya Theorem
for first order systems, El
for simple ODEs, [f

classical solution, 7]

compact operator,@

data, [3]

difference quotient, [49]
divergence form, 35]
domain of dependence, @

eigenvector, [43]

elliptic, [35]

elliptic operator, [T5]

Energy estimates, [37]

existence of solutions to hyperbolic initial boundary
value problems, 7]

extension, [29]

formally self-adjoint, [7]
Fredholm alternative

for compact operators, @

for elliptive boundary value problems, [44]
fully non-linear PDE, [4]

Gagliado-Nirenberg-Sobolev inequality, 29
for U CR",[3Z
Garding's inequality, [38]

Hélder continuous, [T6]
Holder space

cor,[i7]

ckr 7]
higher order reflection, [25]
hyperbolic operator, [T5]
hyperbolic reqularity, [o3]

interior reqgularity, [49
higher order, [52]

Lebesgue space

10 7

loc.’
Lebsque space

Lr.[T7]
linear PDE, [4]
homogeneous,
Lipschitz continuous, [T6]
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majorise, [f]
mollification, 2]
properties of, [27]
Morrey’s inequality, 32
multi-index notation, 3]

non-characteristic

equation, [T7]
hypersurface, [T3]
non-divergence form, [39]

PDE of order k,[2
Picard-Lindelsf, [4]
Poincaré inequality, 32} [40]
point spectrum, 43|
positive, [47]

principal symbol,
quasilinear PDE, [4]

real analytic, ]

real analytic hypersurface, [1Z]
Rellich-Kondrachov, [41]
resolvent, [43]

self-adjoint, [4Z]

semilinear PDE, [

Sobolev approximation
global Sobolev approximation globally away from

ou, 22

local smooth approximation away from dU, [27]
smooth approximation up to U, [23]

Sobolev conjugate, 30]

Sobolev space

H* 18]

spectrum,

spectum
of ellipic differential operators, [46]

standard mollifier, 20]

system of PDEs, [2]

iE

test function, [Tg]

trace, 27]
uniformly elliptic, [35]

wave-like solutions, [T9]
weak convergence, 39
weak derivative, [T
weak solution
to elliptic boundary value problem, [36]
weak solution to hyperbolic initial boundary value prob-

lem, 56]
well-posed, 3]
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