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1 Basics
Let U ⊆ Rn be an open set. A PDE of order k is an expression of the following form

F (x, u, Du, . . . , Dku) = 0 (1)
where u : U → R is the unknown, F : U × R × Rn × · · · × Rnk is a general function. We say that u is a
classical solution of eq. (1) if u satisfies eq. (1) in U .We may also consider the case where u(x) ∈ Rp and F ∈ Rq, and we call this a system of PDEs.
1.1 Examples of PDEs

Example 1.1.1 (ODE system)One example of a model used in mathematical biology is the ODE systemdudt = f (u, v )dvdt = g(u, v )
Example 1.1.2 (Laplace’s equation)

∆u = n∑
i=1 ∂

2
i u = 0

The Laplacian is an averaging operator.
Example 1.1.3 (Heat equation)

ut = D∆uThis is also called the diffusion equation, D is called the diffusion constant.
Example 1.1.4 (Navier-Stokes)The Navier-Stokes equations in fluid dynamics is

ut = ν∆u − u · gradu − gradρ + fdiv(u) = 0
Example 1.1.5 (Transport equation)The transport equation is

ut + vux = 0where v is a constant, corresponding to the velocity. A modification is the advection-diffusion equation,
ut + v · gradu = D∆u+ f

Example 1.1.6 (Poisson equation)
∆u = f
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Describes electric field due to some charge, or Newtonian gravity.
Example 1.1.7 (Wave equation)

□u = −utt + c2∆u = 0This models sound waves, seismic waves, ...
Example 1.1.8 (KdV equation)This equation admits soliton solution.

ut + ∂3
xu − 6u∂xu = 0

Example 1.1.9 (Maxwell equations)
div(E ) = ρdiv(B) = 0
∂tE = ∇ × B = J
∂tB = −∇ × F

Example 1.1.10 (Einstein’s equations)
Ric(g) − 12gR (g) = 0

1.2 Data and Well-PosednessAll of the examples from above need additional information to solve, which we call the data. For example,we might need u|∂U and so on. A guiding principle to this process is called well-posedness (in the sense of
Hadamard).We say that a PDE problem (equation and the data) is well-posed if we have

1. A solution exists (in some function space).2. Given some data, the solution should be unique (depends on the function space of choice).3. The solution depends continuously on the data.
The aim is to find the largest space for which a solution exists, but small enough so that it is unique. (Forexample, strong cosmic censorship in GR?)

Notation 1.2.1 (Multi-index notation). We will use multi-index notation,
N = {0, 1, . . . }

α = (α1, . . . , αn) ∈ Nn is called a multi-index, and we define the order of α
|α| = α1 + α2 + · · · + αnand the α-th derivative is
Dα f (x) = ∂α11 · · · ∂αnn f

3



If x = (x1, . . . , xn), then xα = xα11 · · · xαnn , and
α! = α1! · · · αn!

1.3 Classifying PDEs (of order k)We say eq. (1) is linear if F is a linear function of x, u and its derivative. That is, we can write it as∑
|α|≤k

aα (x)Dαu = f (x)
Moreover, we say that a linear PDE is homogeneous if f = 0. We say eq. (1) is semilinear if the highestorder derivatives appear linearly with coefficients depending only on x . That is, we have∑

|α|=k aα (x)Dαu(x) + F (x, u, Du, . . . , Dk−1u) = 0
One example would be ∆u = u2

x . Finally, we say eq. (1) is quasilinear if the highest order derivativesappear linearly, but the coefficients depending on lower order derivatives. That is, we have∑
|α|=k aα (x, u, . . . , Dk−1u)Dku+ F (x, u, . . . , Dk−1u) = 0

For example, we can have uuxx + uyy − u2
x = 0. Finally, we say eq. (1) is fully non-linear if it is non ofthe above.

2 Cauchy-Kovalevskaya theorem
2.1 ODE theoryFix U ⊆ Rn open, and suppose f : U → Rn is given. We would like to consider the ODE{

u̇(t) = f (u(t))
u(0) = u0 (2)

Theorem 2.1.1 (Picard-Lindelöf). Suppose we have r, K > 0 such that Br (u0) ⊆ U and∥∥f (x) − f (y)∥∥ ≤ K
∥∥x − y

∥∥
for all x, y ∈ Br (u0). Then there exists ε > 0, depending on K, r and a unique C 1 solution u : (−ε, ε) → Usolving eq. (2).

Lecture 2
Sketch proof, see examples sheet 1. If u ∈ C1 solves eq. (2), then by the fundamental theorem of calculus, usatisfies the weak formulation

u(t) = u0 + ∫ t

0 f (u(s))ds (3)
Moreover, if u ∈ C 0 is a solution to eq. (3), then it is a C 1 solution to eq. (2). Moreover, if u exists, then it is afixed point of

G(w) = u0 + ∫ t

0 f (w(s))ds
Let S = {w : (−ε, ε) → Br/2(u0)} continuous. We want to show that S is a complete metric space, G : S → Sis a contraction for ε sufficiently small, and by the contraction mapping theorem G has a fixed point.

Remark 2.1.2. 1. The solution (in general) can’t be global. Consider for example
u̇(t) = u(t)2 with u(0) = u0 > 0
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Solutions to this equation blow up in finite time.2. This does not apply to
u̇(t) = √u(t) with u(0) = 0There are two solutions. Note we can apply the Peano existence theorem.

Now suppose f is smooth, and we have u̇(t) = f (u(t)) is C 1. By the chain rule,
ü(t) = Df (u(t)) · u̇(t) = f2(u(t), u̇(t))

which is continuous. Hence ü is continuous, and so u ∈ C 2. Repeating this, we get that u ∈ C k for all k . Thatis, u is smooth.In principle, given u0 = u(0), we can determine
u(k )(0) = Fk

(
u, u′, . . . , u(k−1)) ∣∣

t=0and so we can write ∑
k≥0

u(k )(0)
k ! tk

We call this a formal power series solution. Does our solution u(t) agree with this? That is, do we have
u(t) =∑

k≥0
u(k )(0)
k ! tk

in a neighbourhood of 0?
Theorem 2.1.3 (Cauchy-Kovalevskaya for simple ODEs). If f (u) is real analytic in a neighbourhood of
u0, then the series ∑

k≥0
u(k )(0)
k ! tk

converges in a neighbourhood of 0 to the unique solution of eq. (2) given by Picard-Lindelöf.
2.2 Real analyticity and majorantsSuppose f : (−ε, ε) → R is a smooth function. Therefore, f (n)(0) exists for all n ≥ 0. Does the partial sums∑

n≥0
∣∣f (n)(0)∣∣n!xn

for some |x| ≤ δ? No, consider the function
f (x) = {exp(− 1

x
)

x > 00 x ≤ 0
This is a smooth function, with f (n)(0) = 0 for all n.

Definition 2.2.1 (real analytic)Let U ⊆ Rn be open and f : U → R is real analytic (at x0) if there exists r > 0, fα ∈ R such that
f (x) =∑

α
fα (x − x0)α

when |x − x0| < r .
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Remark 2.2.2. 1. That is, f can be written as a convergent power series and
fα = Dα f (x0)

n!2. Real analyticity is a local property.3. f is real analytic on an open set U if it is real analytic at each x0 ∈ U .4. We will denote the set of real analytic functions on U by Cω(U).5. If f is Cω , then f is smooth (e.g. Weierstrass M-test).6. If f is real analytic, and U is connected, then f is uniquely determined in U by its derivatives Dα f (x) at somepoint x ∈ U .7. In particular, f is real analytic if and only if for any compact K ⊆ U , there exists C, r such that
sup
x∈K

|Dα f (x)| ≤ C||α|!|r|α|

Exercise: Show f (x) = 1/x and f (x) = √
x are real analytic for x > 0.

Example 2.2.3Recall 11 − x =∑
k≥0 x

k

for |x| < 1. Let r > 0, and consider
f (x) = r

r − (x1 + · · · + xn) = 11 − x1+···+xn
r

=∑
k≥0
(x1 + · · · + xn

r

)k
provided |x1 + · · · + xn| ≤

√
n
(∑

j
∣∣xj ∣∣2)1/2 = √

n∥x∥ < r . By the multinomial theorem (sheet 1),
f (x) =∑

k≥0
1
rk
∑
|α|=k

(
|α|
α

)
xα =∑

α

|α|!
α!r|α| x

α

where (
|α|
α

) = |α|!
α!and so,

f (x) =∑
α
fαxα

where
fα = |α|!

α! 1
r|α|This series is absolutely convergent near zero, since

∑
α

|α!|
α! xα

r|α| =∑
k≥0
(

|x1| + · · · + |xn|
r

)k
< ∞

Definition 2.2.4 (majorise)Let f = ∑α fαxα and g = ∑α gαxα , we say that g majorises f , or g is a mojorant of f , written g ≫ f , if
gα ≥ |fα | for all α .
For vector valued functions, we require each component to be a majorant.
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Lemma 2.2.5 (properties of majorants). 1. If g ≫ f , and g converges for ∥x∥ < r , then f converges for∥x∥ < r .2. If f = ∑ fαxα converges for ∥x∥ < r , then for any s ∈ (0, r/√n), there exists a majorant of f whichconverges for ∥x∥ < s/
√
n.

Proof. 1. Looking at the partial sums∑
|α|≤k

|fαxα | = ∑
|α|≤k

|fα ||x1|α1 · · · |xn|αn ≤
∑
|α|≤k

|gα ||x1|α1 · · · |xn|αn ≤
∑
α

|x1|α1 · · · |xn|αn = g(x̃)
where (̃x) = (|x1|, . . . , |xn|). So ∥∥x̃∥∥ = ∥x∥, and so if ∥x∥ < r , then g converges at x̃ . That is, g(x̃) < ∞.Therefore, we have a uniform bound on the partial sum.2. Let s ∈ (0, r/√n), and set y = (s, . . . , s). Then ∥∥y∥∥ = s

√
n, and by assumption,

f (y) =∑
α
fαyα

converges, as ∥∥y∥∥ = s
√
n < r. So there exists a constant c such that |fαyα | ≤ c. Hence

|fα | ≤ C
|yα | = C

|y1|α1 · · · |yn|αn
= C

|s||α| ≤ C
|s||α|

|α|!
α!

So we define
g(x) = Cs

s − (x1 + · · · + xn)From the above, g majorises f . Lecture 3
2.3 Proof of Cauchy-Kovalevskaya for ODEs
Proof of theorem 2.1.3. We will use the method of majorants. Without loss of generality u0 = 0, and forsimplicity, we can assume n = 1. We need to find the series coefficients. So

u̇ = f (u)
and so u̇(0) = f (u(0)) = f (0), that is, u1 = f (0). Next,

ü(t) = f ′(u(t))u̇(t)
and so ü(0) = f ′(0)f (0), that is, u2 = f ′(0)f (0) = 12! f ′(0)f (0). Repeating,

u(3)(0) = f ′′(0)f (0)2 + f ′(0)2f (0)
and so

u3 = 13! (f ′′(0)f (0)2 + f ′(0)2f (0))Iterating this procedure,
uk = Pk

(
f (0), . . . , f (k−1)(0))where Pk is a polynomial in k-variables, with nonnegative coefficients. For example,

P1(x) = x

P2(x, y) = 12!xy
P3(x, y, z) = 13! (x2z + xy2)

Since f is real analytic, we have that
f (v ) =∑

k≥0 fkv
k
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where fk = 1
k ! f (k )(0). Hence we have that

f (k )(0) = k ! · fkSubstituting, we have that
uk = Qk (f0, . . . , fk−1)which again is a polynomial in k-variables and nonnegative coefficients. This polynomial is “universal”.Aim: We would like to show that the power series∑

k
uk tk

converges in a neighbourhood of t = 0, and solves the ODE, eq. (2). Since f is analytic, we know that
f (u) =∑

k
fkuk

on |u| < k . Fixing some s < r, there exists a majorant
g(u) =∑

k
gkuk

of f , from lemma 2.2.5 (ii). Consider the auxilliary differential equation
ẇ(t) = g(w(t))and w(0) = 0. Using the definition of g, we thatdwdt = Cs

s − w(t)We get that
w = s ±

√
s2 − 2CstDue to the initial data, we take the − solution. That is,

w = s −
√
s2 − 2CstThis is real analytic, for |t| < s/2C . This tells us that

w(t) =∑
k
wk tk

converges for |t| < s/2C . Moreover,
wk = Qk (g0, . . . , gk−1)since Qk is “universal”.

Claim 2.3.1. w majorises u.
By construction, g majorises f , i.e. gk ≥ |fk | for all k . Moreover, since Qk has nonnegative coefficients,

wk = Qk (g0, . . . , gk−1) ≥ Qk (|f0|, . . . , |fk−1|) ≥ |Qk (f0, . . . , fk−1)| = |uk |Hence by lemma 2.2.5 (i), we know that the series ∑
k
uk tk

converges for |t| < s/2C .To conclude, set
u(t) :=∑

k≥0 uk t
k

and we need to check that it solves eq. (2). Both sides are analytic, so suffices to check the derivatives on eachside agree to all orders at t = 0.
8



Remark 2.3.2. 1. We can extend to systems, where we replace uk with
ujk = Qj

k (D|α| | |α| ≤ k )
For w , we can replace w j = w1 as before.2. For the non-autonomous case,

u(t) = f (u, t)
u(0) = 0

Consider v (t) = (u(t), t), then v̇ (t) = (u̇(t), 1) = (f (u, 1), 1) = (f (v ), 1) = F (v ) with v (0) = 0, and we can applythe system version.
For the PDE version, see the handout.

2.4 Cauchy-Kovalevskaya for PDEsLet u : Rn → Rm, and choose r > 0. Consider the following problem
ut = n∑

j=1 Bj (u, x)uxj + C (u, x)
on ∥x∥2 + t2 < r2, with

u = 0on ∥x∥2 + t2 < r2 and t = 0. The Bj are matrices, Bj and C are real analytic.
Theorem 2.4.1 (Cauchy-Kovalevskaya for first order systems). Suppose Bj , C are real analytic, for small
r > 0. Then there exists a unique real analytic function

u =∑
α
uαxα

solving the above PDE.
Idea. Compute

uα = Dαu
α!in terms of Bj , C , and show that the power series converges for small r . We use the PDE to find all derivatives.

Example 2.4.2Consider the system
ut = vx − f
vt = −ux

with u = v = 0 on t = 0. The boundary conditions give us that
u(0, 0) = v (0, 0) = 0

We would like to determine uα for all α . By differentiating the boudary conditions,
∂nxu(x, 0) = ∂nx v (x, 0) = 0

for all n. That is, for the case α = (n, 0). From the PDE,
ut (x, 0) = 0 − f = −f vt (x, 0) = 0

9



This then means that
∂nx∂tu(x, 0) = −∂nx f (x, 0)and

∂nx∂tv (x, 0) = 0for all n ≥ 1.Next, if α = (n, 2) use the PDE and we get
utt (x, 0) = ft (x, 0)

and
vtt (x, 0) = fx (x, 0)The same method as above gives us that

∂nx∂2
t u(x, 0) = −(∂x)n∂tf (x, 0)

∂nx∂2
t v (x, 0) = (∂x )n+1f (x, 0)

Repeating this, we can compute all of the derivatives.
Lecture 4

2.5 Reduction to first order systems

Example 2.5.1Consider u : R3 → R satisfying
utt = uuxy − uxx + utwith conditions

u|t=0 = u0(x, y) and ut |t=0u1(x, y)where u0, u1 are real analytic near 0 ∈ R3. Note
f (t, x, y) = u0 + tu1

is real analytic near 0 ∈ R3. Note
f |t=0 = u0 and ∂tf |t=0 = u1

Set w(t, x, y) = u − f . Then we find that
wtt = wwxy − wxx + wt + fwxy + fxyw + F

where
R = f fxy − fxx + ftwhere
w|t=0 = ∂tw|t=0 = 0Observe F is real analytic, and independent of w and its derivatives. Let x = (x, y, t) = (x1, x2, x3), andset

v = (w,wx , wy, wz ) = (v1, v2, v3, v4)Then
v1
t = wt = v4
v2
t = wxt = v4

x1
v3
t = wyt = v4

x2
v4
t = v1v2

x2 − v2
x1 + v4 + f v2

x2 + fxyv1 + F
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Define
B1 =


0100 −1 0 0
 B2 =

 1
v1 + f 0 0 0


and

c =


v400
v4 + fxyv1 + F


We can see then

∂
∂x3 v = B1vx1 + B2vx2 + c

In this case, B1, B2, c are real analytic functions of x, v , and so we can apply Cauchy-Kovalevskaya.
More generally, consider the scalar quasilinear problem∑

|α|=k aα (Dk−1u, . . . , u, x)Dαu+ a0(Dk−1u, . . . , u, x) = 0
where

u : Br (0) → R and ∂u
∂xn

= · · · = ( ∂
∂xn

)k−1
u = 0

for ∥∥x ′∥∥ < r, xn = 0.Define
v = (u, ∂u∂x1 , . . . , ∂u∂xn , ∂2u

∂x1∂x1 , . . . ,
(

∂
∂xn

)k−1
u
) = (v1, . . . , vm) ∈ Rm

We would like to get a first order system in v . That is, express
∂v j
∂xnin terms of v j and ∂v

∂xj for j = 1, . . . , m − 1. If j = 1, then
∂v1
∂xn

= ∂u
∂xn

= v ℓ

for some ℓ . If 2 ≤ j ≤ m− 1, then
v j = Dαufor some |α| ≤ k − 1, such that αn < k − 1. So

∂v j
∂xn

= Dα ∂u
∂xn

= ∂|α|+1
∂α11 · · · ∂αn+1

n
u

If |α| ≤ k − 2, then |α| + 1 ≤ k − 1,a nd so ∂v j
∂xn = v ℓ for some ℓ .If |α| = k − 1, and αn < k − 1, then there exists p ̸= n such that αp ≥ 1. So we have that

∂v j
∂xn

= ∂
∂xn

(
∂|α|u

∂α11 · · · ∂αnn

) = ∂
∂xp

(
∂|α|u

∂α11 · · · ∂αp−1
p · · · ∂αn−1

n

) = ∂v ℓ
∂xp

for some ℓ . Finally, to compute
∂vm
∂xnwe will use the PDE. Recall the coefficients are aα (v, x) for v ∈ Rm, x ∈ Rn. We assume aα : Bρ(0) → R isreal analytic, and suppose

ac = a(0,...,0,k )(0) ̸= 0
11



Since aα are real analytic near zero, they are continuous. Therefore, ac(z, w) ̸= 0 for all ∥z∥2 + ∥w∥2 ≤ δ2,where δ < ρ. Then
ac
∂ku
∂xkn

= −

 ∑
|α|=k,αn<k aαD

αu+ a0


Dividing by ac , we get
∂ku
∂xkn

= − 1
ac

 ∑
|α|=k,αn<k aαD

αu+ a0


The right hand side can be written in terms of
∂v ℓ
∂xp

, v

for p < n. Therefore, if ac ̸= 0, we have turned the scalar quasilinear PDE into a first order PDE system, onwhich we can apply Cauchy-Kovalevskaya.
Definition 2.5.2If ac = a(0,...,0,k )(0) is non-zero, then we say the plane

{xn = 0}

is non-characteristic . Otherwise, it is characteristic.
2.6 Exotic boundary conditions

Definition 2.6.1 (real analytic hypersurface)We say Σ ⊆ Rn is a real analytic hypersurface near x0 ∈ Σ if there exists ε > 0, and a real analyticfunction Φ : Bε(x0) → U ⊆ Rn

where U is an open neighbourhood of 0 ∈ Rn, and defining y = Φ(x), with Φ(x0) = 0. Moreover, werequire(i) Φ is a bijection,(ii) Φ−1 : U → Bε(x0) is real analytic,(iii) Φ(Σ ∩ Bε(x0)) = {yn = 0} ∩ U .We can think of Φ as “straightening out” Σ.
Example 2.6.2Spheres, planes, tori, etc. are real analytic (hyper)surfaces.
Let γ be unit normal to Σ, and consider∑

|α|=k aα (Dk−1u, . . . , u, x)Dαu+ a0(Dk−1u, . . . , u, x)
where

u =∑
i
γi∂iu = (γi∂i)k−1u = 0 on Σ (4)

Define
v (y) = u(Φ−1(y))

12



for y ∈ U . That is, u(x) = v (Φ(x)) for x ∈ Bε(x0). Using the chain rule,
∂u
∂xi

=∑ ∂u
∂yj

∂Φj

∂xi

where Φ = (Φ1, . . . ,Φn) ∈ Rn. So the PDE becomes∑
|α|=k bαD

αv + b0 = 0
where b0, bα dependis on u and Dαu for |α| ≤ k − 1, and also Φ (which is given). The boundary conditionsbecomes

v = ∂
∂yn

v = · · · = ( ∂
∂yn

)k−1
v = 0

on {yn = 0}. Since Φ is real analytic, so are b0, bα . Lecture 5We would like to apply Cauchy-Kovalevskaya, therefore we need to check that whether the hypersurface
{yn = 0} is non-characteristic. That is,

b(0,...,0,k )(Dk−1v = 0, . . . , Dv = 0, y = 0) ̸= 0
Note if |α| = 2, we can compute

Dαu = ∂kv
∂ykn

(DΦn)α + terms not involving ∂kv∂yknFor example, if k = 2, n = 2, α = (0, 2), then
Dαu = ux2x2 = vy2y2 (Φ2

x2 )(Φ2
x2 )︸ ︷︷ ︸=(DΦ2)α

+terms not involvingvy2y2

Thus,
b(0,...,0,k ) = ∑

|α|=k aα (DΦn)α

Definition 2.6.3We say that Σ is non-characteristic at x0 ∈ Σ if
b(0,...,0,k )(0) = ∑

|α|=k aα (0, . . . , 0, x0) (DΦn(x0))α ̸= 0
Otherwise, Σ is characteristic at x0.

Remark 2.6.4. Note that Σ = {x ∈ Rn | Φ(n)(x) = yn = 0}. This tells us that
DΦn(x) = c(x)γ(x)

where γ is the unit normal of Σ. In particular,
DΦn(x0) = c(x0)γ(x0)and so the non-characteristic condition is equivalent to∑

|α|=k aαγ
α (x) ̸= 0

13



Theorem 2.6.5 (Cauchy-Kovalevskaya for non-characteristic hypersurfaces). Suppose Σ ⊆ Rn is a hy-persurface, with normal γ , and consider the PDE eq. (4) as above. Suppose aα , a0 are real analyticnear x0 ∈ Σ, and Σ is non-characteristic near x0. Then there exists a unique real analytic solution in aneighbourhood of x0.
2.7 Characteristic surfacesConsider the linear operator

L = n∑
i,j=1aij

∂2
∂xi∂xjwhere aij ∈ R. Without loss of generality, we can assume aij = aji. Consider the PDE problem{

Lu = f
u = γi∂iu = 0 on Πγ = {x | x · γ = 0}

(5)
That is, the boundary conditions are on the plane with unit normal γ . In particular, Πγ is non-characteristic foreq. (5) if

n∑
i,j=1aijγ

iγ j ̸= 0
We would like to find non-characteristic Πγ . Note that the left hand side is just ⟨Aγ, γ⟩, where A = (aij ) isa symmetric matrix, with the usual Euclidean inner product. In particular, A is diagonalisable, say A = PTΛP ,where P is orthogonal and Λ is diagonal. Then

⟨Aγ, γ⟩ = 〈PTΛPγ, γ〉 = ⟨Λv, v⟩
where v = Pγ . If {λi} are the eigenvalues for A, then the non-characteristic condition becomes

n∑
i=1 λi(vi)2 ̸= 0

Example 2.7.1 (Laplacian)
L = ∆ = n∑

i=1 ∂
21,1

gives
A =

1
. . . 1


The Laplacian is an elliptic operator.
Example 2.7.2 (Wave equation)

L = ∂2
t + ∆gives

A =


1
. . . 1

−1

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Case 1: All eigenvalues have the same sign (and are all non-zero). Since v is a unit vector, thecharacteristic condition is impossible. That is, there are no characteristic hyperplanes Πγ . In this case, we call
L an elliptic operator .

Case 2: Say λn < 0 and λj > 0 for j ̸= n (or vice versa). In this case, we call L an hyperbolic operator .In particular, the characteristic condition becomes
∑

λiv2
i = 0 ⇐⇒ λ1v21 + n∑

j=2 λjv
2
j = 0

Considering the wave equation again, we have the condition that
v2
n = n−1∑

j=1 v
2
j

subject to the condition ∥v∥ = 1

Note that these cases are not exhaustive.Now we want to different features of elliptic and hyperbolic operators. We will forget about boundaryconditions, and look for solutions of the form
u(x) = eik ·x

for k ∈ Rn. We are looking for wave-like solutions. Substituting,
L(eik ·x ) = eik ·x =∑

j ,ℓ
ajℓkjkℓ

We would like to consider Lu = 0. Taking k = cγ , ∥∥γ∥∥ = 1, then the condition is equivalent to
c2∑ajℓγjγℓ = 0

If L is elliptic, then the only solution is when k = 0. That is, there are no wave-like solutions. On the otherhand, if L is hyperbolic, then we can have wave like solutions, that is,∑
aijγiγj = 0

has a solution with ∥∥γ∥∥ = 1. In this case, we have
u(x) = eiλγ·x

gives an infinite family of solutions, indexed by λ ∈ R.As we take |λ| → ∞, we see that u′(x) can grow large. In particular, solutions can be rough.

15



By contrast, we will see that solutions to elliptic equations are smooth. Lecture 6
Example 2.7.3Consider the IVP for Laplace’s equation 

uxx + uyy = 0
u(x, 0) = φ(x)
∂yu(x, 0) = 0

Is this problem well-posed? If φ(x) = 0, then 0 is a solution. On the other hand, we don’t have Cauchystability. Consider
uk (x, y) = e−

√
k cos(kx) cosh(ky)See typed notes for more details.

3 Sobolev spaces
3.1 Hölder spaces C k,γ

Let U ⊆ Rn be open, k ∈ N.
Definition 3.1.1 (C k spaces)Define

C k (U) = {f : U → R | u is k times continuously differentiable}and define
C k (U) = {u ∈ C k (U) | u and its derivatives are bounded and uniformly continuous on U}

We will define the norm ∥u∥C k (U) = ∑
|α|≤k

sup
x∈U

|Dαu(x)|
The idea is that C k (U) is the space of functions which can be extended continuously to ∂U . Note that thisis is contained in, but not equal to

u : U → R such that u and its derivatives are continuous
On examples sheet 2, we will show that C k (U) is a Banach space.

Definition 3.1.2 (Hölder continuous)We say u : U → R is Hölder continuous of index γ with 0 < γ ≤ 1 if there exists a constant C > 0, suchthat
|u(x) − u(y)| ≤ C|x − y|γfor all x, y ∈ U .If γ = 1, then we say that u is Lipschitz continuous.
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Remark 3.1.3. If γ > 1, and u is Hölder continuous of index γ , then u is constant.
Definition 3.1.4 (0-Hölder space)For γ ∈ (0, 1], we define the 0-Hölder space:

C 0,γ (U) = {u ∈ C 0(U) ∣∣ u is γ-Hölder continuous}
Define the γ-Hölder seminorm by

[u]C 0,γ (U) = sup
x,y∈U

|u(x) − u(y)|
|x − y|

That is, the smallest C such that u is γ-Hölder continuous. Since constant functions vanish, we add the
C 0 norm, and define ∥u∥C 0,γ (U) = ∥u∥C 0(U) + [u]C 0,γ (U)
The space C 0,γ , with the Hölder norm ∥·∥C 0,γ (U) is a Banach space. We can extend this to higher order, thatis,

Definition 3.1.5 (k-th Hölder space)Define the k-th Hölder space

C k,γ (U) = {u ∈ C k (U) | Dαu ∈ C 0,γ (U) for all |α| = k
}

with norm ∥u∥C k,γ (U) = ∥u∥C k (U) + ∑
|α|=k [Dαu]C 0,γ (U)

As above, C k,γ is a Banach space with the Hölder norm.
3.2 The Lebesgue spaces

Definition 3.2.1 (Lp space)Let U ⊆ Rn be open, and suppose 1 ≤ p ≤ ∞, define
Lp(U) = {

f : U → R | f measurable, and with∥u∥Lp(U) < ∞
}

∼where ∥u∥Lp = {(∫U |u(x)|pdx)1/p 1 ≤ p < ∞ess supx∈U |u(x)| = inf {C > 0 | |u(x)| ≤ C a.e.} p = ∞and u ∼ v if u = v almost everywhere.
Lp(U) with the ∥·∥Lp norm is a Banach space. We also define local versions,

Definition 3.2.2 (Lploc. space)We say that u ∈ Lploc.(U) if f ∈ Lp(V ) for every V ⋐ U (V ⊆ K ⊆ U , where K is compact). Equivalently,
Lploc.(U) = ⋂

V⋐U
Lp(V )

Note that Lploc.(U) is not Banach, on the other hand, it is a Fréchet space.
17



Remark 3.2.3. If K ⊆ U is compact, U is open, then
d(K, ∂U) = inf{|x − y| | x ∈ K , y ∈ Rn \ U} > 0

We will use the space outside K as a “buffer zone”.
3.3 Weak derivativesThat is, a notion of derivative for Lp.

Definition 3.3.1 (weak derivative)Suppose u, v ∈ L1loc.(U), α a multi-index. We say v is the α-th weak derivative of U if∫
U
uDαφdx = (−1)|α|

∫
U
vφdx

for all φ ∈ C∞
c (U). We will also call the space C∞

c (U) the space of test functions.
Remark 3.3.2. 1. since supp(Dαφ) and supp(φ) are compact, the integrals are finite,2. u, v obey the correct integration by parts formula
Example 3.3.3
u(x) = |x| is not differentiable at x = 0, but it is weakly differentiable with v (x) = sign(x).
Lemma 3.3.4 (uniqueness of weak derivative). Suppose v, ṽ ∈ L1loc.(U) are both the α-th weak derivativeof u ∈ L1loc.(U), then v = ṽ almost everywhere.

Proof. For all φ ∈ C∞
c (U), ∫

U
vφdx = (−1)|α|

∫
U
uDαφdx = ∫

U
vφdx

Thus, ∫
U
(v − v )φdx = 0

for all φ ∈ C∞
c (U). Taking φ to be a smooth approximation to an indicator, we get the required result.Suppose u is smooth, then the weak derivative agrees with the usual derivative almost everywhere.

Notation 3.3.5. We will write v = Dαu.
Definition 3.3.6 (Sobolev space)Define the Sobolev space

W k,p(U) = {u ∈ L1loc.(U) | u ∈ Lp(U), the weak derivatives Dαu exists for |α| ≤ k , Dαu ∈ Lp(U)}
with the Sobolev norm

∥u∥W k,p(U) =

(∑

|α|=k ∫U |Dαu|pdx)1/p
p < ∞∑

|α|≤k ess supU |Dαu| p = ∞

When p = 2, we write Hk = W k,2.
18



Definition 3.3.7 (W k,p0 )We denote by W k,p0 (U) the completion of C∞
c (U) with respect to the W k,p norm. Analogously, we define

Hk0 = W k,20 (U).
The 0 denotes that the function vanishes on the boundary. Lecture 7

Example 3.3.8Let n > 2, λ > 0, and take U = B1(0) ⊆ Rn the open ball. Consider
u(x) = {|x|−λ for x ̸= 0anything x = 0

When is u ∈ W p,1(U)?First of all, we compute ∫
U

1
|x|λ

dx = C
∫ 1

0 rn−1−λdr
which is finite if and only if λ < n. Moreover, u ∈ Lp(U) if and only if λp < n.Let φ ∈ C∞

c (B1(0) \ {0}), if u has a weak derivative v , then
vi = Diu = − λxi

|x|λ+2
on B1(0) \ 0. Thus,

|Du| = |λ|
|x|λ+1

Hence vi ∈ L1loc.(U) if and only if λ+ 1 < n. Suppose λ+ 1 < n, then we claim that
vi = {− λxi

|x|λ+1 x ̸= 0anything x = 0
is a weak derivative of u on U .For φ ∈ C∞

c (U), by Stokes’ theorem,
(−1) ∫

U\Bε (0) uφxidx = ∫
U\Bε (0)Diuφdx −

∫
∂Bε (0) uφn · dS

Therefore, we can estimate∣∣∣∣∫
∂Bε

uφn · dS∣∣∣∣ = |φ|L∞

∣∣∣∣∫
∂Bε

ε−λn · dS∣∣∣∣ ≤ Cεn−1−λ → 0
as λ → 0. Thus, by the dominated convergence theorem,

−
∫
U
uφxidx = ∫

U
viφdx

Remark 3.3.9. 1. Weak derivatives can exist even when the function is not continuous.2. Since Diu ∈ Lp(U) if and only if p(λ+ 1) < n, we see that
u ∈ W 1,p(U) ⇐⇒ λ < n

p − 1
and if p > n, we see that λ must be negative, and so it is continuous.
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Heuristically, larger p gives us nicer functions.
Theorem 3.3.10. W k,p(U) is a Banach space for k ∈ N, 1 ≤ p ≤ ∞.

Proof. First, we need to show that it is a normed vector space. This is straightforward, and for the triangleinequality we will need to use Minkowski’s inequality( ℓ∑
i=1 (ai + bi)p)1/p

≤
( n∑

i=1 a
p
i

)1/p +( n∑
i=1 b

p
i

)1/p

For completeness, we will use the completeness of Lp. Let (uj ) be a Cauchy sequence on W k,p(U).Note that ∥∥Dαv
∥∥
Lp(U) ≤ ∥v∥W k,p(U) for |α| ≤ k . Setting v = uj , we see that (Dαuj )j is a Cauchy sequencein Lp. But we know that Lp is complete, and so there exists a function uα ∈ Lp(U), with Dαuj → uα in Lp forall |α| ≤ k . We will set u = u(0,...,0).

Claim 3.3.11. uα is the α-th weak derivative of u. That is, Dαu exists and Dαu = uα .
Proof. Choose a test function φ ∈ C∞

c (U). Since uj ∈ W k,p, we know that Dαuj exists, and
(−1)|α|

∫
U
ujDαφdx = ∫

U
(Dαuj )φdx

for all j . Taking j → ∞, using the fact that Dαuj → uα (using Hölder, or the dominated convergence theorem),we get that (−1)|α|
∫
U
uDαφdx = ∫

U
uαφdx

and so Dαu = uα ∈ Lp(U).Thus, u ∈ W k,p(U).
3.4 Approximations of Sobolev spaces
Convolution and mollifiers

Definition 3.4.1 (standard mollifier)Let
η(x) = {C exp( −11−|x|2

)
|x| < 10 |x| ≥ 1where C is chosen such that ∫

Rn
η(x)dx = 1

For ε > 0, we denote
ηε(x) = 1

εn η(x/ε)We call ηε to be the standard mollifer .
Remark 3.4.2. • ηε ∈ C∞

c (Rn),• supp(ηε) = Bε(0),• ∫Rn ηε(x)dx = 1
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Definition 3.4.3Given U ⊆ Rn open, define
Uε = {x ∈ U | d(x, ∂U) > ε}

Definition 3.4.4 (mollification)Given f ∈ L1loc.(U), the mollification of f is
fε : Uε → R

fε(x) = ηε ∗ f (x) = ∫
U
ηε(x − y)f (y)dy = ∫

Bε (0) ηε(y)f (x − y)dy
where ∗ denotes the convolution.
We can think of fε(x) as the average of f in an ε-ball, weighted by η.

Theorem 3.4.5 (properties of mollification). Let f ∈ L1loc.(U), then1. fε ∈ C∞(Uε),2. fε → f a.e. on U as ε → 0,3. if f ∈ C 0(U), then fε → f locally uniformly (i.e. uniformly on K ⊆ U compact).4. if 1 ≤ p < ∞, and f ∈ Lploc.(U), then fε → f in Lploc.(U). That is,∥∥fε − f
∥∥
Lp(V ) → 0

for all V ⋐ U .
Proof. See handout on moodle.In particular, there is a big improvement going from f ∈ L1loc. to fε ∈ C∞.

Lemma 3.4.6 (local smooth approximation of Sobolev functions away from ∂U). Let u ∈ W k,p(U) for some1 ≤ p < ∞. Set uε = ηε ∗ u in Uε . Then1. uε ∈ C∞(Uε) for all ε > 0,
2. uε → u in W k,ploc. (U). Note that for V ⋐ U , V ⊆ Uε for ε sufficiently small.

Proof. (i) follows from the theorem. For (ii),
Claim 3.4.7.

Dαuε = Dα (ηε ∗ u) = ηε ∗ Dαu

Proof. Since uε ∈ C∞, we can compute the classical derivative as follows:
Dα
x uε(x) = Dα

x

∫
U
ηε(x − y)u(y)dy

= ∫
U
(Dα

x ηε(x − y))u(y)dy
= (−1)|α|

∫
U
(Dα

uηε(x − y))u(y)dy
= ∫

U
ηε(x − y)Dαu(y)dy

= (ηε ∗ u)(x)
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See handout for justification of swapping the integral and derivative.Note for V ⋐ U , by (iv) of the theorem, since Dαu ∈ Lp(U), then
Dαuε = ηε ∗ Dαu → Dαuin Lp(V ) as ε → 0. Thus, for all V ⋐ U , and δ > 0, there exists ε0 = ε0(δ, V ) such that∥∥uε − u

∥∥p
W k,p(V ) = ∑

|α|≤k

∥∥Dαuε −Dαu
∥∥p
Lp(V ) ≤ δ

for 0 < ε ≤ ε0.In conclusion, u ∈ W k,p(U) can be approximated by C∞ functions away from ∂U . Lecture 8
Theorem 3.4.8 (global Sobolev approximation globally away from ∂U). Suppose U ⊆ Rn open bounded,and suppose u ∈ W k,p(U), for 1 ≤ p < ∞. Then there exists a sequence (uj ) ∈ C∞ ∩W k,p(U), such that
uj → u in W k,p(U).
Exercise: Drop the assumption that U is bounded.

Remark 3.4.9. Note that we don’t assume u ∈ C∞(U).
Proof. Step 1: We have

U = ∞⋃
j=1where

Uj = {x ∈ U | d(x, ∂U) > 1/j}and define Vj = Uj+3 \ Uj+1 ⋐ U . Choose V0 ⋐ U such that U = ⋃∞
j=0 Vj . Note in particular only theconsecutive Vj intersect.Let ξj be a partition of unity subordinate to Vj . That is,• 0 ≤ ξj ≤ 1,• ξj ∈ C∞

c (Vj ),• ∑∞
j=0 ξj (x) = 1 for all x ∈ U . Note at any point at most two ξj are non-zero.Given u ∈ W k,p(U), then we see that ξju ∈ W k,p(U), and supp(ξju) ∈ Vj .

Step 2: We would like to smooth out the split up function. Let Wj = Uj+4 \ Uj ⊇ Vj . Let
uj = ηεj ∗ (ξju)Fix δ > 0, for each j ≥ 1, we can choose εj sufficiently small such that supp(uj ) ⊆ Wj .By lemma 3.4.6, we have that uj → ξju in W k,p(Wj ). With this, we can make∥∥uj − ξju

∥∥
W k,p(U) = ∥∥uj − ξju

∥∥
W k,p(Uj ) ≤ δ2j+1Summing everything together, let v = ∑∞

j=0 uj . Note that each uj is non-zero on finitely many Wj , and soat each point it is a finite sum. With this, v is smooth. Also note that u = ∑j ξju on U , and so for any V ⋐ U ,
∥v − u∥W k,p(V ) ≤

∞∑
j=1
∥∥uj − ξju

∥∥
W k,p(V ) ≤ δ

∞∑
j=1

12j+1 = δ

where we applied the triangle inequality. Since δ is independent of V , taking the sup over all V ⋐ U , we getthat ∥v − u∥W k,p(U) ≤ δ

Question: Can we approximate u ∈ W k,p(U) by u ∈ C∞(U)?The issue here is that ∂U could be a problem. For example, we can consider ∂U to be the Cantor set.
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Definition 3.4.10 (C k,δ-domain)Suppose U ⊆ Rn is bounded and open. Then we say that ∂U is a Ck,δ-domain if for every p ∈ ∂U , thereexists r > 0, and a function γ : Rn−1 → R, with γ ∈ C k,δ (Rn−1), such that (after relabelling axes),
U ∩ Br (p) = {(x ′, xn) ∈ B(p) | xn > γ(x ′)}

Theorem 3.4.11 (smooth approximation of Sobolev functions up to ∂U). Let U ⊆ Rn be open, bounded and
∂U a C 0,1 domain. Let u ∈ W k,p(U), for some 1 ≤ p < ∞. Then there exists a sequence (uj ) ∈ C∞(U),such that uj → u in W k,p(U).

Proof. Step 1: Fix x0 ∈ ∂U . Since ∂U is Lipschitz, there exists r > 0 and a Lipschitz function γ : Rn−1 → R,such that
U ∩ Br (x0) = {x ∈ Br (x0) | xn > γ(x ′)}Let V = U ∩ Br/2(x0).

Step 2: Define the shifted point xε = x + λεen, for x ∈ V , ε > 0.
Claim 3.4.12. For λ > 0 large enough, Bε(xε) ⊆ U ∩ Br (x0) for all ε > 0.

That is, we need to show that for y ∈ Bε(xε), yn > γ(y′). As γ is Lipschitz, there exists a constant L > 0such that ∣∣γ(x ′) − γ(y′)∣∣ ≤ L
∣∣x ′ − y′∣∣So we have that ∣∣y′ − (xε)′∣∣ = ∣∣y′ − x ′∣∣ < εand so,

γ(y′) ≤ γ(x ′) + Lε < xn + Lεby rearranging yn > xεn − ε = xn + λε − ε = xn + (λ − 1)ε, we see that
yn > γ(y′)

if λ ≥ L+ 1.Define uε(x) = u(xε) for x ∈ V . Set
vδ,ε = ηδ ∗ uεfor 0 < δ < ε. Then vδ,ε ∈ C∞(V ). Fix µ ≥ 0, then we note∥∥vδ,ε − u

∥∥
W k,p(V ) ≤

∥∥vδ,ε − uε
∥∥
W k,p(V ) + ∥∥uε − u

∥∥
W k,p(V )︸ ︷︷ ︸translation is continuous on W k,pWe can choose ε > 0 such that the second term is at most µ. Fix ε > 0, we can choose δ < ε such that thefirst term is at most µ, using the same proof as in lemma 3.4.6.
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Step 3: Let x0 vary over the boundary, then the V s which we get will cover the boundary, which is compact,and so we have a finite subcover. That is, finitely many points x1, . . . , xN ∈ ∂U and radii ri, where
Vi = Bri/2(xi) ∩ UChoose V0 ⋐ U such that

U = V0 ∪ V0 ∪ · · · ∪ VNBy step 2, we have vi ∈ C∞(Vi), such that ∥∥vi − u
∥∥
W k,p(Vi) ≤ µ. By lemma 3.4.6 there exists v0 ∈ C∞(V0) suchthat ∥∥v0 − u

∥∥
W k,p(V0) ≤ µ.

Step 4: Summing everything together, using a partition of unity ξ0, . . . , ξN subordinate to the open cover
V0, . . . , VN . Define

v = n∑
i=0 ξiviThis sum is finite, and so v ∈ C inf ty(U), and for |α| ≤ k ,

∥∥Dαv − Dαu
∥∥
Lp(U) ≤

N∑
i=0
∥∥Dα (ξi(vi − u))∥∥Lp(Vi)

≤ Ck
N∑
i=0
∥∥vi − u

∥∥
W k,p(Vi)

= Ck (1 +N)µBut µ was arbitrary, and so we are done. Lecture 9To conclude, we consider some examples of functions:• |x| /∈ C∞(−1, 1), but it is in W 1,1(−1, 1).• 1/x is C∞ and L1loc. on (0, 1), but not C∞((−1, 1)) or W 1,1.and so, C∞(U), C∞(U) ̸⊆ W k,p(U).
3.5 Extensions and tracesSuppose U ⊆ Rn is open and bounded, u ∈ W k,p(U). We would like to extend u to u : Rn → R. Whathappens if we set

u = {u on U0 on Uc

This is okay for Lp, but not for W k,p as the derivatives become an issue. Moreover, we can expect at most
u ∈ W k,p(Rn).

Theorem 3.5.1 (Calderon, Stein). Suppose U ⊆ Rn is open and bounded, and ∂U is C 1. Choose Vbounded in Rn, with U ⋐ V . Let 1 ≤ p < ∞. Then there exists a bounded linear operator
E : W 1,p(U) → W 1,p(Rn)

u 7→ u

such that for all u ∈ W 1,p(U),(i) u|U = u a.e.(i) supp(E (u)) ⊆ V ,(i) There exists a constant C depending only on U, V , p, such that∥∥E (u)∥∥W 1,p(Rn) ≤ C∥u∥W 1,p(U)
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We call Eu the extension of U to Rn.
Proof. Step 1: Fix p ∈ ∂U , and suppose ∂U is flat near p. We may assume there exists r > 0 such that

B+ = Br (p) ∩ {xn ≥ 0} ⊆ U
B− = Br (p) ∩ {xn < 0} ⊆ Rn \ U

Suppose also that u ∈ C 1(U).Denote x ′ = (x1, . . . , xn−1). We define
u(x) = {u(x) if x ∈ B+

−3u(x ′, −xn) + 4u(x ′, −xn/2) if x ∈ B−

which is called a higher order reflection of u from B+ to B−

Claim 3.5.2. u ∈ C 1(Br (p))
Proof. Clearly u is continuous. Computing the derivatives:

∂xnu = {∂xnu(x) x ∈ B+3∂xnu(x ′, −xn) − 2∂xnu(x ′, −xn/2) x ∈ B−

Similarly,
∂xiu = {∂xi (u) x ∈ B+

−3∂xiu(x ′, −xn) + 4∂xiu(x ′, −xn/2) x ∈ B−

and so the derivative is continuous.We can also check that the inequality holds in this case.
Step 2: Suppose ∂U is not flat near p. Since ∂U is C 1, there exists r > 0 and γ : Rn−1 → R, such that

U ∩ Br (p) = {x | xn > γ(x ′)}
Define

Φ : Rn → RnΦ(x) = (x1, . . . , xn−1, xn − γ(x ′))
We can see that Φ maps ∂U to {yn = 0}, and it is invertible with C 1 inverse

Ψ(y) = (y1, . . . , yn−1, yn + γ(y′))
with• Φ(U ∩ Br (p)) ⊆ {yn > 0}• det(DΦ) = det(DΨ) = 1
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Moreover, there exists a neighbourhood W of p, with Φ(W ) = Bs(p̃) for some s > 0. In this case,
Φ(U ∩W ) = Bs(p̃) ∩ {yn > 0} = B+

Define v (y) = u(Ψ(y)) for y ∈ B+. Then v is C 1, and so by step 1 there exists an extension v ∈ C 1(Bs(p̃))with v|B+ = v and ∥∥v∥∥W 1,p(Bs(p̃)) ≤ C∥v∥W 1,p(B+)Define u(x) = v (Φ(x)), then u ∈ C 1(W ), and∥∥u∥∥W 1,p(W ) ≤ C∥u∥W 1,p(U)
which we will see on examples sheet 1.

Step 3: Now we have local extensions near all p ∈ ∂U . We assume U is bounded, and so we have anopen cover {W0, . . . ,WN}, with
U ⊆

N⋃
i=0Wi

and we have extensions ui ∈ C 1(Wi). Let (ξi)Ni=0 be a partition of unity subordinate to {Wi}. Let
u = N∑

i=0 ξiuiwhere u0 = u. Then u|U = u ae., and
u ∈ C 1

c (Rn)with ∥∥u∥∥W 1,p(Rn) ≤ C∥u∥W 1,p(U)We may assume supp(u) ⊆ V , since U ⋐ V , for example by using a cutoff function.
Step 4: Given u ∈ W 1,p(U), by theorem 3.4.11, there exists a sequence (uj ) ∈ C∞(U) with uj → u in

W 1,p(U).
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Claim 3.5.3. (E (uj ))j is a Cauchy sequence in W 1,p(Rn).
Proof. By the previous steps, we have that E (uj ) ∈ W 1,p(Rn). By linearity,∥∥E (uj ) − E (uk )∥∥W 1,p(Rn) = ∥∥E (uj − uk )∥∥W 1,p(Rn) ≤ C

∥∥uj − uk
∥∥
W 1,p(U)

But we know that (uj ) is convergent, and thus Cauchy in W 1,p(U).Since W 1,p(Rn) is complete, the sequence converges and we define
E (u) = lim

j
E (uj )

Remark 3.5.4. If ∂U is C k , then we have the extension operators
E : W k,p(U) → W k,p(Rn)

Given u ∈ C k (U), we set
u = {u(x) x ∈ B+∑k

j=1 cju(x ′, −xn/j) x ∈ B−To match at the boundary, we need
k∑
j=1 cj

(
−1
j

)m = 1
for all m = 0, . . . , k − 1. Lecture 10

TracesIf we have u ∈ C 0(U), then u|∂U makes sense. But for u ∈ W k,p(U), then u|∂U does not make sense, as ∂Uhas measure zero.
Theorem 3.5.5. Let U be open bounded and ∂U is C 1. Then there exists a bounded linear operator

T : W 1,p(U) → Lp(∂U)
called the trace of u on ∂U , such that(i) T (u) = u|∂U if u ∈ W 1,p(U) ∩ C 0(U),(ii) ∥∥T (u)∥∥Lp(∂U) ≤ C∥u∥W 1,p(U) for all u ∈ W k,p(U), where C depends only on U, p.
Remark 3.5.6. We have u,Du ∈ Lp , which is giving us the control of u on the boundary.

Sketch proof. See examples sheet 2. Suppose u ∈ C 1(U), and ∂U is flat near p. Let
B+ = Br (p) ∩ {xn ≥ 0} ⊆ U
B− = Br (p) ∩ {xn < 0} ⊆ Rn \ U

as before, and let Γ be the portion of ∂U within Br (p). Choose ξ ∈ C∞
c (Br (p)) such that 0 ≤ ξ ≤ 1 on Br (p),
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and ξ = 1 on Br/2(p). Then∫
Γ
∣∣u(x ′, 0)∣∣pdx ′ ≤

∫
Br (p)∩{xn=0}

ξ
∣∣u(x ′, 0)∣∣pdx ′

=︸︷︷︸FTC (−1) ∫
B+ ∂xn(ξ|u|p)dxndx ′

= (−1) ∫
B+ |up|∂xnξ + p|u|p−1 sign(u)∂xnuξdx

≤︸︷︷︸Young’s inequality
Cp
∫
B+ |u|p + |Du|pdx

= Cp∥u∥pW 1,p(U)In Sheet 2, we will extend to general ∂U using a partition unity, and the fact that it is compact. Then define
T (u) = u|∂U

for u ∈ C 1(U), and we have that ∥∥T (u)∥∥Lp(∂U) ≤ C∥u∥W 1,p(U)Using density of C∞(U) in W 1,p(U), we are done.
Remark 3.5.7. • The map T above is not surjective, however in the case of T : Hs → Hs−1/2 , it is surjective.• Recall W k,p0 (U) is the closure of C∞

c (U) in W k,p(U). If u ∈ W k,p0 (U), then there exists (uj ) ⊆ C∞
c (U), such that

uj → u in W k,p(U). In particular,
T (u) = T (lim

j
uj ) = lim

j
T (uj ) = 0

In fact, the converse is true also. If T (u) = 0, then u ∈ W 1,p0 (U).• if u ∈ W k,p(U), then we can define trace operators for Du, . . . , Dk−1(U).
3.6 Sobolev inqualitiesIn this case, the basic idea is that we can trade differentiability (measured by k ) for integrability (measured by
p). Note it does not work the other way. For example, if f ′ ∈ L1(R) then f ∈ L∞(R), but the converse is nottrue.The idea is that we will prove estimates of the form∥u∥Lq(Rn) ≤ C

∥∥Du∥∥Lp(Rn) (+∥u∥Lp(Rn))
We have three cases:1. 1 ≤ p < n,2. p = n,3. n < p ≤ ∞.

Case 1: 1 ≤ p < n

Lemma 3.6.1. Let n ≥ 2, and f1, . . . , fn ∈ Ln−1(Rn−1). Then for 1 ≤ i ≤ n, define
x̃i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1

and
f (x) = n∏

i=1 fi(x̃i) : Rn → R
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Then f ∈ L1(Rn), with ∥∥f∥∥L1(Rn) ≤
n∏
i=1
∥∥fi∥∥Ln−1(Rn−1)

Proof. We induct on n. The case n = 2 gives
f (x1, x2) = f1(x1)f2(x2)But ∥∥f∥∥L1(R2) = ∫

R2 |f1(x1)||f2(x2)|dx1dx2
= ∫

R
|f1(x1)|dx1 ∫ |f2(x2)|dx2= ∥∥f1∥∥L1(R)∥∥f2∥∥L1(R)Suppose the result is true for n. Write

F (x) = f1(x̃1) · · · fn(x̃n)and so f (x) = F (x)fn+1(x̃n+1). Fix xn+1 and integrate over x1, . . . , xn:∫
Rn

|f (ξ1, . . . , ξn, xn+1)|dξ1 · · · dxn = ∫
Rn

|F (ξ, xn+1)||fn+1(ξ)|dξ=︸︷︷︸Hölder
∥∥F (·, xn+1)∥∥Ln/(n−1)(Rn)∥∥fn+1∥∥Ln(Rn)

By the induction hypothesis, if q = n/(n − 1), then∥∥F (·, xn+1)∥∥Ln/(n−1)(Rn) = ∥∥F (·, xqn+1)∥∥1/q
L1(Rn)

≤
n∏
i=1
∥∥fi(·, xn+1)n/(n−1)∥∥(n−1)/n

Ln−1(Rn)
= n∏

i=1
∥∥f (·, xn+1)∥∥Ln(Rn−1)

Integrating over xn+1, ∥∥f∥∥L1(Rn+1) ≤
∥∥fn+1∥∥Ln(Rn)

∫
R

n∏
i=1
∥∥fi(·, xn+1)∥∥Ln(Rn−1)dxn+1

≤
∥∥fn+1∥∥Ln(Rn)

n∏
i=1
(∫

R

∥∥fi(·, xn+1)∥∥nLn(Rn−1)dxn+1
)1/n

= n+1∏
i=1
∥∥fi∥∥Ln(Rn)

Where we used the generalised Hölder inequality with p = n, that is,∥∥∥∥∥∏
i
fi

∥∥∥∥∥
L1

≤
n∏
i=1
∥∥fi∥∥Lpi

where ∑ 1
pi = 1.

Theorem 3.6.2 (Gagliado-Nirenberg-Sobolev inequality). Suppose 1 ≤ p < n, set
p∗ = np

n − p
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for the Sobolev conjugate of p. Then we have a continuous embedding
W 1,p(Rn) ⊆ Lp∗ (Rn)

That is, there exists a constant C depending only on n, p, such that∥∥f∥∥Lp∗ (Rn) ≤ C
∥∥Du∥∥Lq(Rn) (6)

Remark 3.6.3. 1. p∗ > p.2. Nothing is said about ∥∥Du∥∥Lp∗ .
IntuitionConsider f : R2 → R. Lp measures the width and the height of the function. For example, if we have

f1 = A1W
then ∥∥f1∥∥Lp = |A| vol(W )1/p = |A|V 1/p
Now consider φ ∈ C∞

c (Rn) with φ(x) ≤ 1, and let
f2(x) = φ(x)eiω·x

Then we know |f2|(x) ≤ 1, and supp(f2) ⊆ C is uniformly bounded in ω. With this,
∂1f2 = φ′eiω·x + iφω1eiω·x

Thus, Df2 is not uniformly bounded in ω.Next, consider
f3(x) = |ω|−kφ(x)eiω·x

and so, we have a uniform bound in ω of Dℓ f3 for ℓ ≤ k .Finally, let
f4(x) = Aφ(x/R )eiω·x

Then ∥∥f4∥∥pW 1,p ∼
∫

|x|≤R

∣∣Aφeiω·x∣∣p + ∫
|x|≤R

∣∣∣∣ AR φ′eiω·x + Aφωeiω·x
∣∣∣∣p ∼ |A|C 1/p|ω|

Now recall the uncertainty principle:
δxδp ≥ h̄2 > 0

Thus, volume × frequency ≥ c > 0Thus, a function with frequency ω must be spread out on a ball of radius ≥ 1/ω. Thus, the support must havemeasure ≥ ω−n. With this, ω ≥ V−n, and so∥∥f∥∥W 1,p≥|A|V 1/p−1/n = |A|V p∗ = ∥∥f∥∥Lp∗

See “Tery Tao uncertainty principle” for more details. Lecture 11
Remark 3.6.4. • If u ≡ 1, then it wouldn’t satisfy eq. (6), and so it is essential that we are in W 1,p .• Proof follows from density of C∞

c (Rn) in W k,p0 (Rn) = W k,p(Rn).
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Proof. Step 1: We can assume u ∈ C∞
c (Rn), and first consider the case p = 1. By FTC and compact support,

u(x) = ∫ xi

−∞
∂xiu(x1, . . . , xi−1, yi, xi+1, . . . , xn)dyi

which means that
|u(x)| ≤

∫ ∞

−∞
|Du(x1, . . . , xi−1, yi, xi+1, . . . , xn)|︸ ︷︷ ︸=fi(x̃i)dyiThus,

|u(x)|n ≤ f1(x̃1) · · · fn(x̃n)Integrating over x ∈ Rn,
∥∥|u|

∥∥n/(n−1)
L1(Rn) ≤

∥∥∥∥∥ n∏
i=1 (fi(x̃i))1/(n−1)∥∥∥∥∥

L1Rn

≤
n∏
i=1
∥∥∥f 1/(n−1)
i

∥∥∥
Ln−1(Rn−1) = ∥∥Du∥∥n/(n−1)

L1(Rn)
With this, ∥u∥Ln/(n−1)(Rn) ≤

∥∥Du∥∥L1(Rn)and in this case, p∗ = n/(n − 1). Since C∞
c (Rn) is dense in W 1,1(Rn), result follows by density.

Step 2: Now suppose p > 1, consider v (x) = |u(x)|γ . Then
Dv = γ sign(u)|u|γ−1Du

and (∫
Rn

|u|γn/(n−1)dx)(n−1)/n = ∥∥|u|γ
∥∥
Ln/(n−1)(Rn)

≤
∥∥D(|u|γ )∥∥L1(Rn)

≤ γ
∫
Rn

|u|γ−1|Du|dx
≤︸︷︷︸Hölder

γ
(

|u|(γ−1)p/(p−1)dx)1− 1
p
(∫

Rn
|Du|p

)1/p

Choose γ to match the exponents of u in the integrals, i.e.
γ = p(n − 1)

n − pIn particular,
γn
n − 1 = p∗

and so we have that (∫
Rn

|u|p
∗
)(n−1)/n

≤ p(n − 1)
n − p

(∫
Rn

|u|p
∗
)(p−1)/p ∥∥Du∥∥Lp(Rn)

Which then implies that ∥u∥Lp∗ (Rn) ≤ p(n − 1)
n − p︸ ︷︷ ︸=:C

∥∥Du∥∥Lp(Rn) ≤ C∥u∥W 1,p(Rn)

We can then conclude by density.Note in particular C → ∞ as p → n.
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Corollary 3.6.5 (GNS for U ⊆ Rn). Suppose U ⊆ Rn is open and bounded, with C 1 boundary. Let1 ≤ p < n. If p∗ = np
n−p , then

W 1,p(U) ⊆ Lp∗ (U)and the embedding is continuous. That is, there exists C = C (U, p, n) such that∥u∥Lp∗ (U) ≤ C∥u∥W 1,p(U)
for all u ∈ W 1,p(U).

Proof. Exercise. Use the extension theorem and the GNS inequality for Rn.
Corollary 3.6.6 (Poincaré inequality). Let U ⊆ Rn be open and bounded. Suppose u ∈ W 1,p0 (U), forsome 1 ≤ p < n. Then there exists a constant C = C (p, q, n, U) such that∥u∥Lq(U) ≤ C

∥∥Du∥∥Lp(U)for each 1 ≤ q ≤ p∗. In particular, as 1 ≤ p ≤ p∗, we get∥u∥Lp(U) ≤ C
∥∥Du∥∥Lp(U)

Remark 3.6.7. (i) On W 1,p(U) with U bounded, the W 1,p norm is equivalent to ∥∥Du∥∥Lp(U) .(ii) We do need that u ∈ W 1,p0 , to kill off constant functions, which have derivative zero.
Proof. We will use that W 1,p0 (U) is the closure of C∞

c (U) under the W 1,p(U) norm. That is, given u ∈ W 1,p0 (U),there exists un ∈ C∞
c (U) such that ∥∥un − u

∥∥
W 1,p(U) → 0. Since un is smooth, and vanishes near ∂U , we canextend un = 0 on Rn \ U , with un ∈ C∞

c (Rn).Applying theorem 3.6.2, ∥∥un∥∥Lp∗ (Rn) ≤ C
∥∥Dun∥∥Lp(Rn)Sending n → ∞ and noting that u vanishes on Rn \U , we get the result for q = p∗. In general, we use Hölder:since |U| < ∞, ∥u∥Lq(U) ≤ C∥u∥Lp∗ (U) ≤ C ′∥∥Du∥∥Lp(U)

Case 2: p = nIn this case, p∗ → ∞, and so we may expect∥u∥L∞(U) ≤ C∥u∥W 1,n
But this is false for n > 1. One dimensional PDEs are boring, so we won’t continue with this case.
Case 3: n < p < ∞We might expect in this case that it is “better than L∞”, i.e. continuous.

Theorem 3.6.8 (Morrey’s inequality). Let n < p < ∞, then there exists C = C (p, n) such that for
u ∈ C∞

c (Rn), ∥u∥C 0,γ (Rn) ≤ C∥u∥W 1,p(Rn) for γ = 1 − n
p < 1

That is, we have an embedding
W 1,p(Rn) ↪→ C 0,γ (Rn)
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Proof. Let Q be an open cube of side length r , containing 0, and set
u = 1

|Q|

∫
Q
u(x)dx

for the average of u over Q. Then
|u − u(0)| ≤ 1

|Q|

∫
Q

|u(x) − u(0)|dx
Since u ∈ C∞

c (Rn), by the fundamental theorem of calculus and the chain rule,
u(x) − u(0) = ∫ 1

0
ddt (u(tx))dt

= n∑
i=1
∫ 1

0 x i ∂u∂x i dtThus,
|u(x) − u(0)| ≤ r

n∑
i=1
∫ 1

0 |∂xiu(tx)|dt
This then gives us that

|u − u(0)| ≤ r
|Q|

∫
Q

∫ 1
0

n∑
i=1 |∂xiu(tx)|dtdx

= r
|Q|

∫ 1
0 t−n

( n∑
i=1
∫
tQ
∂xnu(y)dy)dt

≤ r
|Q|

∫ 1
0 t−n

(∑
i

∥∥∂xiu∥∥Lp(tQ)|tQ|1/q
)dt

≤ r
rn
∫ 1

0 t−n
∥∥Du∥∥Lp(Rn)tn/qrn/qdt

= r1−n/p1 − n/p
∥∥Du∥∥Lp(Rn)That is,

|u − u(0)| ≤ rγ
γ
∥∥Du∥∥Lp(Rn)By translation invariance,

|u − u(x)| ≤ rγ
γ
∥∥Du∥∥Lp(Rn)for all x ∈ Q. Thus, by the triangle inequality,

|u(x) − u(y)| ≤ |u(x) − u| + |u − u(y)| ≤ 2 rγγ ∥∥Du∥∥Lp(Rn)for all x, y ∈ Q. But for x, y ∈ Q, there exists a cube Q of side length r = 2|x − y| such that x, y ∈ Q, whichmeans that
|u(x) − u(y)|

|x − y|γ ≤ C
∥∥Du∥∥Lp(Rn)Note the left hand side is independent of r , and so the inequality is true for all x, y ∈ Rn. Thus,[u]C 0,γ (Rn) ≤ C

∥∥Du∥∥Lp(Rn)Finally, we would like to control supx∈Rn |u(x)|, note that any x ∈ Rn belongs to a cube with side length 1. Inparticular,
|u(x)| ≤ |u| + |u(x) − u|

≤
∫
Q

|u(x)|dx + C
∥∥Du∥∥Lp

≤ ∥u∥Lp(Rn)∥∥1∥∥Lq(Q) + C
∥∥Du∥∥Lp(Rn)

≤ C∥u∥W 1,p(Rn)
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Note the constant is independent of the choice of x . That is,∥u∥C 0,γ (Rn) ≤ C∥u∥W 1,p(Rn)
Lecture 12

Corollary 3.6.9. For n < p < ∞, and u ∈ W 1,p(Rn), then there exists a unique u∗ with u∗ = u a.e., and
u∗ is continuous with ∥∥u∗∥∥

C 0,γ (Rn) ≤ C∥u∥W 1,p(Rn)

Corollary 3.6.10. Suppose n < p < ∞, u ∈ W 1,p(U) for U ⊆ Rn open bounded, with ∂U being C 1.Then there exists a unique u∗ ∈ C 0,γ (Rn), γ = 1 − n
p , u = u∗ a.e. on U , and∥∥u∗∥∥

C 0,γ (U) ≤ C∥u∥W 1,p(U)
where C depends only on U, p, n.

Proof. By the extension theorem, there exists u ∈ W 1,p(Rn), with supp(u) compact, u = u a.e. on U . Thus,there exists a sequence (uj ) ∈ C∞
c (Rn) with uj → u in W 1,p(Rn). Note by Morrey’s inequality,∥∥um − uj

∥∥
C 0,γ (Rn) ≤ C

∥∥um − uj
∥∥
W 1,p(Rn)

and so (uj ) is Cauchy in the Banach space C 0,γ (Rn), and so there exists a limit u∗ ∈ C 0,γ (Rn). Then u∗ = u∗|Usatisfies the requirements.In summary, if U ⊆ Rn is open, bounded and has C 1 boundary, then:
• if 1 ≤ p < n, then we have a continuous embedding

W 1,p(U) ↪→ Lp∗ (U)
where 1

p∗
= 1
p − 1

nand so p∗ > p.• If n < p < ∞, then
W 1,p(U) ↪→ C 0,γ (U)where

γ = 1 − n
p

Example 3.6.11Let n = 3, u ∈ W 2,2. Then u,Du ∈ W 1,2. p = 2 < 3, and we have p∗ = 6, hence u,Du ∈ L6. Thus,
u ∈ W 1,6, and 6 > 3 = n so u ∈ C 0,1/2.

4 Second order elliptic boundary value problems
In this section, let U be an open bounded subset of Rn, with C 1 boundary.For u ∈ C 2(U), define

Lu = −
n∑

i,j=1(aij (x)uxi )xj + n∑
i=1 b

i(x)uxi + c(x)u (7)
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where aij , bi, c are functions on U . We assume aij , bi, c are L∞, and aij = aji. This form is called divergence
form, since it looks like grad · (Agradu)If aij ∈ C 1(U), then we can rewrite L in non-divergence form

Lu = −
n∑

i,j=1a
ij (x)uxixj + n∑

i=1 b̃
i(x)uxi + cu

We will study the divergence form, since it is adapted to Hilbert space methods. The non-divergence formis better for maximum principles, and Dirichlet energies. The second form is the topic of the Part III EllipticPDEs course.
Definition 4.0.1We say L is elliptic if ∑

i,j
aijξiξj > 0

for all x ∈ U, ξ ∈ Rn \ 0. We say that L is uniformly elliptic if there exists a constant θ > 0, such that∑
i,j
aij (x)ξiξj ≥ θ

∥∥ξ∥∥2

for all x ∈ U, ξ ∈ Rn.
Note some references call uniformly elliptic: strongly or strictly elliptic.

4.1 Weak formulation and Lax-MilgramWe will consider the boundary value problem{
Lu = f on U
u|∂U = 0 (8)

with f ∈ L2(U), aij , bi, c ∈ L∞(U).Suppose u ∈ C 2(U) solves eq. (8) pointwise a.e.. Take any v ∈ C 2(U) with v|∂U = 0, we get (usingsummation convention) ∫
U
f vdx = ∫

U
−v (aijuxi )xj + vbjuxj + cuvdx

= −
∫
∂U
vaijuxinjdS︸ ︷︷ ︸=0

+∫
U
aijuxivxj + buxiv + cuvdx

and so, ∫
U
vfdx = B[u, v ] (9)

for all v ∈ C 2(U) with v|∂U = 0, where
B[u, v ] = ∫

U
aijuxivxj + biuxiv + cuvdx

With this, if u ∈ C 2(U) solves eq. (8), then eq. (9) holds. Conversely, if u ∈ C 2(U) with u|∂U = 0 and satisfyingeq. (9), then by integration by parts, we get that∫
U
(f − Lu)vdx = 0

for all v ∈ C∞
c (U). Thus, Lu = f pointwise a.e. on U .In conclusion, if u ∈ C 2(U), with u|∂U = 0, then u satisfies eq. (8) if and only if it satisfies eq. (9).But we note that eq. (9) makes sesne for v ∈ H10 (U) and u ∈ H1. To encode the boundary conditions, wecan assume u ∈ H10 (U).
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Definition 4.1.1 (weak solution)We say that u ∈ H10 (U) is a weak solution of eq. (8) for given f ∈ L2(U) if
B[u, v ] = ⟨f , v⟩L2(U)

for all v ∈ H10 (U).
Theorem 4.1.2 (Lax-Milgram). Let H be a real Hilbert space, with inner product ⟨·, ·⟩. Suppose B :
H × H → R is bilinear, such that there exists constants α, β > 0 such that(i) (Boundedness) |B[u, v ]| ≤ α∥u∥∥v∥ for all u, v ∈ H ,(ii) (Coercivity) β∥u∥2 ≤ B[u, u] for all u ∈ H .Then if f ∈ H∗, there exists a unique u ∈ H such that

B(u, v ) = ⟨f , v⟩

for all v ∈ H .
We will defer the proof to the next lecture.

Example 4.1.3Recall that Hk = W k,2 is a Hilbert space. Consider the boundary value problem{
Lu = −∆u+ cu = f on U
u = 0 on ∂U

where c ≥ 0, f ∈ L2(U). In this case,
B[u, v ] = ∫

U
gradu · gradv + cuvdx

For boundedness, by Hölder (or Cauchy-Schwarz),
|B[u, v ]| ≤ (1 + c)∥u∥H1∥v∥H1

For coercivity,
B[u, u] = ∥∥gradu∥∥2

L2(U) + c∥u∥2
L2(U) ≥

∥∥gradu∥∥2
L2(U) ≥ C̃∥u∥2

H1(U)where for the last inequality, we used the Poincare inequality. Thus, we can apply Lax-Milgram with
H = H10 .
Corollary 4.1.4 (of Lax-Milgram, stability). With the assumptions of Lax-Milgram, let ui be the uniquesolution to

B[ui, v ] = ⟨fi, v⟩for all v ∈ H . Then ∥∥u1 − u2∥∥H ≤ 1
β
∥∥f1 − f2∥∥H∗

Proof. Since B[ui, v ] = ⟨fi, v⟩, by bilinearity,
B[u1 − u2, v ] = ⟨f1 − f2, v⟩Choosing v = u1 − u2, then

β∥v∥2 ≤ B[u1 − u2, v ] = ⟨f1 − f2, v⟩ ≤
∥∥f1 − f2∥∥∥v∥
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where we use Cauchy-Schwarz for the last inequality. Lecture 13
Proof of theorem 4.1.2. Step 1: For each fixed u ∈ H , define φu(v ) = B[u, v ]. This is a bounded linearfunctional on H , i.e. φu ∈ H∗. Applying the Riesz representation theorem, there exists a unique wu ∈ H suchthat

φu(v ) = (wu, v ) = B[u, v ]for all v ∈ H . In particular, we have a map
A : H → H

u 7→ wuand we have that B[u, v ] = (Au, v ) for all v ∈ H .
Step 2: A is bounded. If λ1, λ2 ∈ R, u1, u2 ∈ H , then for each v ∈ H , we have the following:(A(λ1u1 + λ2u2), v ) = B[λ1u1 + λ2u2, v ]= λ1B[u1, v ] + λ2B[u2, v ]= λ1 (Au1, v ) + λ2 (Au2, v )= (λ1Au1 + λ2Au2, v )and so A is linear. Moreover, ∥∥Au∥∥2 = (Au, Au) = B[u, Au] ≤ α∥u∥∥∥Au∥∥Hence ∥∥Au∥∥ ≤ α∥u∥. Thus A is bounded, with ∥∥A∥∥ ≤ α .
Step 3: We will show that A is injective and A(H) is closed.

β∥u∥2 ≤ B[u, u] = (Au, u) ≤
∥∥Au∥∥∥u∥

With this, β∥u∥ ≤
∥∥Au∥∥. That is, A is bounded below, hence A is injective and the image is closed1.

Step 4: We will show that A is surjective. Since A(H) is a closed subspace of H , which is a Hilbert space,and so we can write
H = A(H) ⊕ A(H)⊥With this, it suffices to show A(H)⊥ = 0. For w ∈ A(H)⊥,

β∥w∥2 ≤ B[w,w ] = (Aw,w) = 0∥w∥ = 0, and so A(H)⊥ = 0. With this, A is bijective with bounded inverse.
Step 5: We would like to solve the following problem: Given f ∈ H∗, we would like to find u such that

B[u, v ] = ⟨f , v⟩ for all v ∈ H . By the Riesz representation theorem, there exists a unique wf ∈ H such that
⟨f , v⟩ = (wf , v ) for all v ∈ H . Now let u = A−1wf . Then

B[u, v ] = (Au, v ) = (wf , v ) = ⟨f , v⟩i.e. B[u, ·] = f .
Step 6: For uniqueness, if u1, u2 satisfy B[uj , ·] = f , then

B[u1 = u2, v ] = 0for all v ∈ H . Setting v = u1 − u2, and using coercivity we are done.
Theorem 4.1.5 (energy estimates for B). Suppose

Lu = −(aijuxi )xj + biuxi + cu

where aij = aji, bi, c ∈ L∞(U), and suppose L is uniformly elliptic. If
B[u, v ] = ∫ aijuxivxj + biuxiv + cuvdx

1If (Auj ) is Cauchy, then so is (uj )
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is the associated bilinear form. Then there exists α, β > 0, γ ≥ 0, such that for all u, v ∈ H10 (U).(i) |B[u, v ]| ≤ α∥u∥H10 (U)∥v∥H10 (U),(ii) (Garding’s inequality) β∥u∥2
H10 (U) ≤ B[u, u] + γ∥u∥2

L2(U)

Remark 4.1.6. In PDE theory, “energy” refers to L2 .
Proof. For (i),

|B[u, v ]| ≤
∑
i,j

∥∥aij∥∥L∞(U)
∫
U

|Du||Dv|dx +∑
i

∥∥bi∥∥L∞(U)
∫
U

|Du||v|dx + ∥c∥L∞(U)
∫
U

|u||v|dx
≤ α∥u∥H10∥v∥H10where in the last step we used Cauchy-Schwarz, and collecting terms.For (ii), we will use uniform ellipticity.
θ
∫
U

|Du|2dx ≤
∫
U
aijuxiuxjdx

= B[u, u] − ∫
U
(biuxiu+ cu2)dx

=≤ B[u, u] +∑
i

∥∥bi∥∥L∞

∫
U

|Du||u|dx + ∥c∥L∞(U)
∫
U
u2dx

By Young’s inequality with
|ab| = √2ε|a| |b|√2εwe get that ∫

U
|Du||u|dx ≤ ε

∫
U

|Du|2dx + 12ε
∫
U

|u|2dx
Choose ε such that

ε
∑
i

∥∥βi∥∥L∞(U) ≤ θ2This then gives us that
θ2
∫
U

|Du|2dx ≤ B[u, u] + c
∫
U

|u|2dx
Adding to this the Poincaré inequality, we get that

β∥u∥2
H10 (U) ≤ B[u, u] + γ∥u∥2

L2(U)

Remark 4.1.7. If B is a bilinear form for the operator L with bi = c = 0, then γ = 0. In this case, we get
θ
∫
U

|Du|2dx ≤ B[u, u]
and if we add the Poincaré inequality, we get ∥u∥2

H10 (U) ≤ cB[u, u]
which is Garding’s inequality with γ = 0. In this case, we can apply Lax-Milgram directly.
On the other hand, if γ > 0, we can’t apply Lax-Milgram.
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Theorem 4.1.8. Let L be as above, then there exists a γ ≥ 0 such that for any µ ≥ γ , and any f ∈ L2(U),there exists a unique solution u ∈ H10 (U) to the boundary value problem{
Lµu = Lu+ µu = f in U
u = 0 on ∂U (10)

Moreover, there exists C > 0 such that ∥u∥H1(U) ≤ C
∥∥f∥∥L2(U)

Proof. Let γ be from Garding’s inequality, i.e.
β∥u∥2

H10 ≤ B[u, u] + γ∥u∥2
L2(U)

Let µ ≥ γ , and set
Bµ [u, v ] = B[u, v ] + µ (u, v )L2which is the bilinear form for the operator Lµ in eq. (10). In this case, Bµ satisfies the conditions of Lax-Milgram. Lecture 14Given f ∈ L2(U), and set ⟨f , v⟩ = (f , v )L2(U). This is a bounded linear functional on L2(U), i.e. f 7→ (f , ·) ∈(L2(U))∗. In particular, this is a bounded linear functional on H10 . We can apply Lax-Milgtam to find a unique

u ∈ H10 (U) with
Bµ [u, v ] = ⟨f , v⟩ = (f , v )L2(U)for all v ∈ H10 . Finally,

β∥u∥2
H10 (U) ≤ Bµ [u, u] = (f , u)L2(U) ≤

∥∥f∥∥L2(U)∥u∥L2(U) ≤
∥∥f∥∥L2(U)∥u∥H10 (U)

So far, the solutions only live in H10 , and we need to pay a price for the µ.
4.2 Compactness results in PDEsRecall the following results:

• Bolzano-Weierstraß- closed unit ball in Rn is sequentially compact.• Recall for a metric space, the following are equivalent:(i) compactness,(ii) sequential compactness,(iii) completeness and totally boundedness• If H is an infinite dimensional Hilbert space, then {x ∈ H | ∥x∥ ≤ 1} is not compact.
We will consider a weaker topology to recover compactness, since the topology induced by the norm is toostrong.

Definition 4.2.1 (weak convergence)Suppose H is a Hilbert space, (uj ) ⊆ H a sequence, then we say that uj converges weakly to u ∈ H iffor all w ∈ H , (
uj , w

)
→ (u,w)and we write uj ⇁ u.
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Remark 4.2.2. If the weak limit exists, then it is unique.
Proposition 4.2.3 (Banach-Alaoglu for a separable Hilbert space). Let H be a separable Hilbert space,and suppose we have a bounded sequence (un) ⊆ H . Then (un) has a weakly convergent subsequence.That is, the closed unit ball in H is weakly sequentially compact.

Proof. Diagonal argument, see AoF. Or deduce from the below, since any Hilbert space is reflexive, and so theweak and weak-∗ topologies agree.
Theorem 4.2.4 (Banach Alaoglu). Let X be a Banach space, then the closed unit ball in X ∗ is compactin the weak-∗ topology on X ∗.
Lemma 4.2.5 (Poincaré again). Suppose u ∈ H1(Rn), and Q = (ξ1, ξ1 + L) × · · · × (ξn, ξn + L) be a cubewith side lengths L. Then(i) ∥u∥2

L2(Q) ≤ 1
|Q|

(∫
Q
udx)2 + nL22 ∥∥Du∥∥2

L2(Q)
(ii) ∥∥u − u

∥∥
L2(Q) ≤ nL22 ∥∥Du∥∥2

L2(Q)where
u = 1

|Q|

∫
Q
u(x)dx

In particular, if u = 0 we recover the previous Poincaré inequality.
Proof. For (i), since ∂Q is Lipschitz, we apply the approximation theorem, to get C∞(Q) are dense in H1(Q).Consider u ∈ C∞(Q). For x, y ∈ Q, we use the fundamental theorem of calculus to get
u(x) − u(y) = ∫ x1

y1
ddt u(t, x2, · · · , xn)dt + ∫ x1

y2
ddt u(y1, t, x3, · · · , xn)dt + · · · + ∫ xn

yn

ddt u(y1, . . . , yn−1, t)dt
Squaring, to get

u(x)2 + u(y)2 − 2u(x)u(y) ≤ n
(∫ x1

y1
ddt u(t, x2, . . . , xn)dt)2 + · · · + n

(∫ x1
y1

ddt u(y1, . . . , yn−1, t)dt)2

where we use Cauchy-Schwarz to get that
(a1 + · · · + an)2 ≤ n(a21 + · · · + a2

n)Integrating over x, y ∈ Q, ∫
Q

∫
Q
(LHS)dxdy = 2|Q|∥u∥2

L2(Q) = 2(∫
Q
u(x)dx)2

For the right hand side,
I1 = (∫ x1

y1
ddt u(t, x2, · · · , xn)dt)2

≤
(∫ x1

y1 dt)(∫ x1
y1
( ddt u(t, x2, . . . , xn))2 dt)

≤ L
∫ ξ1+L
ξ1

( ddt u(t, x2, . . . , xn))2 dt
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Hence combining the terms,
2|Q|∥u∥2

L2(Q) − 2(∫ u(x)dx)2
≤ L2n|Q|

∥∥Du∥∥2
L2(Q)

Rearranging gives the result.For (ii), consider η ∈ C∞
c , with η = 1 on Q. Then∫

Q
(U − uη)dx = 0

and we can then use (i).Recall if 1 ≤ p < n, we have an embedding W 1,p ↪→ Lp∗ .
Theorem 4.2.6 (Rellich-Kondrachov). Suppose U ⊆ Rn be open with C 1 boundary. Let (un) be a boundedsequence in H1(U). Then there exists u ∈ H1(U), and a subsequence (unj ) such that unj ⇁ u in H1(U),and unj → u in L2(U).

Proof. By the extension theorem, we have an extension un ∈ H1(Rn), with supp(un) ⊆ Q for some cube Q.Moreover, the extension operator E : H1(U) → H10 (Q) is bounded. In particular,∥∥un∥∥H1(Q) ≤ C
∥∥un∥∥H1(U) ≤ CK

for some K . Now H10 (Q) is a separable Hilbert space, so by Banach-Alaoglu there exists u ∈ H10 (Q), with
unj ⇁ u in H10 (Q), and ∥u∥H1(Q) ≤ cWe claim that wj = unj → u in L2(Q).To see this, fix δ > 0 and divide Q into k subcubes {Qa}ka=1, of side lengths 0 < ℓ < δ , intersecting onlyon their faces. Then∥∥wj − u

∥∥2
L2(Q) ≤

k∑
a=1
∥∥wj − u

∥∥2
L2(Q) ≤

k∑
a=1
( 1

|Qa|

(∫
Qa

(wj − u)dx)2)+ n2δ22 ∥∥Dwj −Du
∥∥2
L2(Q)

Fix ε > 0, since wj , u ∈ H10 (Q), then ∥∥Dwj −Du
∥∥2
L2(Q) ≤ C for some C . Fix δ > 0 such that

n2δ22 ∥∥Dwj −Du
∥∥2
L2(Q) < ε2This then fixes k . Note that the map

f 7→
∫
Q
f (x)dx

is a bounded linear functional on H10 (Q), and so by weak convergence,∫
Qa

(wj − u)dx → 0
This is true for all a. Since k is fixed and finite, choose j large enough so that

k∑
a=1
( 1

|Qa|

(∫
Qa

(wj − u)dx)2)
< ε2

Using this, ∥∥wj − u
∥∥2
L2(Q) < ε. Lecture 15

4.3 Fredholm alternative and spectra of elliptic PDEs
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Definition 4.3.1 (adjoint, compact)Let H be a Hilbert space, and consider K ∈ B (H).1. the adjoint of K , denoted K † is the unique operator, such that(
x, K †y

) = (Kx, y)
for all x, y ∈ H .We say that K is self-adjoint if K † = K .2. K is compact if for each bounded sequence (uj ) ⊆ H , there exists a subsequence (ujk ) such that
K (ujk ) converges strongly in H .

Example 4.3.2 (Key example)Let K : L2(U) → H1(U) be a bounded linear operator. SInce H1 ↪→ L2, we can think of K ∈ B (L2(U)).
Claim 4.3.3. K ∈ B (L2(U)) is compact.

Proof. Let (uj ) ⊆ L2(U) is a bounded sequence, then∥∥K (uj )∥∥H1 ≤
∥∥K∥∥∥∥uj∥∥L2(U)

and so (K (uj )) is a bounded sequence in H1. By Rellich-Kondrachov, there exists a subsequence (ujk ),such that K (ujk ) converges strongly in L2(U).
The idea is that if we are looking at the equation

∆u = f

we can view this as a map
H1(U) → L2(U)

u 7→ f

Finding a solution is the inverse map K : L2(U) → H1(U), with K (f ) = u. This map will be compact.
Theorem 4.3.4 (Fredholm alternative for compact operators). Let H be a Hilbert space, K ∈ B (H) compact.Then(i) ker(I − K ) is finite dimensional,(ii) im(I − K ) is closed,(iii) im(I − K ) = ker(I − K † )⊥,(iv) ker(I − K ) = 0 if and only if im(I − K ) = H ,(v) dim(ker(I − K )) = dim(ker(I − K † ))

Proof. Appendix D.5 of Evans.Note (iii) and (iv) are referred to as the Fredholm alternative. Applied to linear algebra, we would like toconsider the equation
Ax = bWe have the alternative:(a) A is invertible, A−1 exists, and so the inhomogeneous problem has a unique solution,
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(b) ker(A) is non-trivial. The homogeneous equation Ax = 0 admits non-trivial solutions. Moreover, from (iii),im(A) = ker(AT)⊥, and so the inhomogeneous equation has a solution if and only if b ∈ ker(AT)⊥, and so
yTb = 0

for all y ∈ ker(AT), i.e. ATy = 0.Restating (iii) and (iv), we have(I) for each f ∈ H , (I − K )u = f has a unique solution,(II) or the homogeneous equation (I −K )u = 0 has a non-trivial solution. In this case, the space of solutions(I − K )u is finite dimensional, and (I − K )u = f has a solution if and only if f ∈ ker(I − K † )⊥.
Definition 4.3.5 (resolvent and spectrum)Let H be a real Hilbert space, A ∈ B (H). The resolvent (set) of A is

ρ(A) = {λ ∈ R | A − λI is invertible}

The real spectrum of A is
σ (A) = R \ ρ(A)We also define the point spectrum

σp(A) = {η ∈ σ (A) | ker(A − ηI) ̸= 0}

If Aw = ηw , we call w an eigenvector .
Remark 4.3.6. ρ(A) is open, and σ (A) is closed.
Theorem 4.3.7 (spectrum of compact operator). Suppose H is a separable infinite dimensional Hilbertspace, with K ∈ B (H) compact. Then(i) 0 ∈ σ (K ),(ii) σ (K ) \ {0} = σp(K ) \ {0},(iii) σ (K ) \ {0} is countable. Say σ (K ) \ {0} = {λi}i∈N, then (up to reordering) λi → 0,(iv) if K is in addition self-adjoint, then there exists a countable orthonormal basis for H consisting ofeigenvectors for K .

Proof. II Linear Analysis.
4.3.1 Application to elliptic PDEsConsider eq. (7) as before, with L uniformly elliptic on U ⊆ Rn. The bilinear form associated to L is

B[u, v ] = ∫
U
aijuxivj + biuxiv + cuvdx

Definition 4.3.8 (formal adjoint, adjoint bilinear form)We define the formal adjoint to L as
L†v = −

∑
i,j

(aijvxi )xj −
∑
i
biuxi +(c −

∑
i
bixi

)
v
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and the adjoint bilinear form is given by
B† [v, u] = B[u, v ]

We say v ∈ H10 (U) is a weak solution of the adjoint problem{
L†v = f in U
v = 0 on ∂U

if
B† [w, v ] = (f , w)L2for all w ∈ H10 (U).Note if bi ∈ C 1(U), then B† is the same bilinear form as B.

Theorem 4.3.9 (Fredholm alternative for elliptic boundary value problem). Consider for bounded U with
C 1 boundary, {

Lu = f in U
u = 0 on ∂U (11)

Then(I) for each f ∈ L2(U), eq. (11) admits a unique weak solution, or(II) there exists a non-trivial weak solution to the homogeneous problem (i.e. f = 0), and dim(N) =dim(N† ), where
N = {weak solutions to homogeneous equation} ⊆ H10 (U)

and
N† = {weak solutions to the homogenous adjoint equation}With this, eq. (11) has a unique solution if and only if

(f , v )L2 = 0
for all v ∈ N† .

Proof. By theorem 4.1.8, there exists γ > 0 such that for every f ∈ L2(U), there exists a unique weal solution
u ∈ H10 (U) to {

Lγu = f in U
u = 0 on ∂Uwhere Lγu = Lu+ γu. We also have an associated bilinear form

Bγ [u, v ] = B[u, v ] + γ (u, v )L2
and we have that

Bγ [u, v ] = (f , v )L2for all v ∈ H10 , and ∥u∥H1 ≤ C
∥∥f∥∥L2 .Write L−1

γ (f ) = u for the solution operator. This is well defined as the solution exists and is unique. Wecan check that this is linear. The inequality above shows that∥∥L−1
γ (f )∥∥H1 ≤ C

∥∥f∥∥L2and so
L−1
γ : L2 → H10is bounded, hence L−1

γ : L2 → L2 is compact.
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Observe that for g ∈ L2, then L−1
γ (g) = w if and only if Bγ [w, v ] = (g, v ) for all v ∈ H10 (U). Now suppose

u ∈ H10 is a weak solution to eq. (11), that is,
B[u, v ] = (f , v )for all v ∈ H10 , and so

Bγ [u, v ] = ⟨f + γu, v⟩for all v ∈ H10 . Thus, u solves eq. (11) weakly if and only if
u = L−1

γ (f + γu) = L−1
γ (f ) + γL−1

γ (u)which is true if and only if (I − K )u = h, where
K = γL−1

γ and h = L−1
γ (f )

Lecture 16Observe the map K : L2 → L2 is also compact, and so we can apply the Fredholm theorem for compactoperators, and either:(I) for all h ∈ L2, u − Ku = h has a unique solution u ∈ L2,(II) there exists 0 ̸= u ∈ L2 with u − Ku = 0.Suppose (I) holds. Set h = L−1
γ (f ), then there exists a unique u ∈ L2 with

u = γL−1
γ (u) + L−1

γ (u)Since L−1
γ : L2 → H10 , u ∈ H10 and by the above, u is a weak solution of eq. (11).Now suppose (II) holds. Then there exists u ∈ L2 non-zero, with u = Ku = γL−1

γ (u). As above, u ∈ H10 .Use the definition of L−1
γ to see that

B[u, v ] + γ (u, v )L2 = (γu, v )L2for all v ∈ L2. Hence B[u, v ] = 0 for all v ∈ H10 . That is, u ∈ N . Moreover, dim(N) = dim(ker(I − K )) =dim(ker(I − K † )).
Claim 4.3.10. Let v ∈ L2, then (I − K † )v = 0 if and only if B† [v, w ] = 0 for all w ∈ H10 .

Proof. (I − K † )v = 0 ⇐⇒ (v, w)L2 = (v, Kw)L2 for all w ∈ L2
⇐⇒ (v, w)L2 = (v, γL−1

γ (w))L2 for all w ∈ L2
But note that any weak solution to {

Lγw = f on U
w = 0 on ∂Uobeys

B[w, φ] + γ (w, φ)L2 = (f , φ)L2So if we take f = w , then we have w = L−1
γ (w). Hence

B[L−1
γ (w), v ] + γ

(
L−1
γ (w), v) = (w, v )L2Hence the above is true if and only if

⇐⇒ B[L−1
γ (w), v ] + γ

(
L−1
γ (w), v)L2 = (v, γL−1

γ (w))L2 for all w ∈ L2
⇐⇒ B[L−1

γ (w), v ] = 0 for all w ∈ L2
⇐⇒ B† [v, L−1

γ (w)] = 0 for all w ∈ L2
On examples sheet 3, im(L−1

γ ) is dense, and so we have that
v = K †v ⇐⇒ B† [v, w ] = 0
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It remains to prove that eq. (11) has a weak solution if and only if (f , v )L2 = 0 for all v ∈ N† . Now note
eq. (11) has a solution ⇐⇒ (I − K )u = L−1

γ f ⇐⇒ L−1
γ (f ) ∈ Im(I − K ) = ker(I − K † )⊥

That is, we need (v, L−1
γ (f ))L2 = 0 for all v ∈ ker(I − K † ). But for all v ∈ ker(I − K † ),

0 = (v, L−1
γ (f ))L2 = (v, 1

γ K f
)
L2 − 1

γ (K †v, f ) = 1
γ (v, f )L2

and so (v, f )L2 = 0 for all v ∈ ker(I − K † ).
Remark 4.3.11. In this proof, given L, we see that for γ large, Lγ is a bounded inverible linear map, the map
L−1
γ = (L + γI)−1 is called the resolvent of L. The fact that L−1

γ : L2 → L2 is compact is expressed as L has compact
resolvent.
Theorem 4.3.12. Under the same assumptions as in theorem 4.3.9,(i) there exists a countable set Σ ⊆ R such that the boundary value problem{

Lu = λu+ f in U
u = 0 on ∂U (12)

has a weak solution for all f ∈ L2(U) if and only if λ /∈ Σ.(ii) if Σ is infinite, then Σ = {λk}k∈N. After reordering, then
λ1 < λ2 < · · ·

with λk → ∞ as k → ∞.(iii) for each λ ∈ Σ, there exists a finite dimensional space
E (λ) = {u ∈ H1 | u is a weak solution to the homog. problem Lu = λu

}
We call λ ∈ Σ an eigenvalue of L, and elements of E (λ) are the corresponding eigenfunctions.

Proof. Choose γ > 0 as in eq. (11). Choose µ ≥ γ , then Lµ = L+ µI is invertible, and
L−1
µ : L2 → L2

is compact. If λ ≤ −γ , then the problem {
Lu − λu = f in U
u = 0 on ∂U

Thus, Σ ⊆ (−γ,∞). If λ > −γ , then solving eq. (12) is equivalent to solving{(L − λI)u = f in U
u = 0 on ∂U (13)

Applying theorem 4.3.9 to L − λI , eq. (13) has a unique weak solution for all f ∈ L2 if and only if u = 0 is theunique solution to {(L − λI)u = 0 in U
u = 0 on ∂UThat is, case (II) in theorem 4.3.9 does not occur. This is true if and only if u = 0 is the only solution to{

Lu+ γu = (λ+ γ)u in U
u = 0 on ∂U
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which is true if and only if u = 0 is the only solution to
u = L−1

γ ((λ+ γ)u) = γ + λ
γ K (u)

which is saying u = 0 is the only solution to
K (u) = γ

γ + λuThat is, γ/(γ + λ) is not an eigenvalue of K . So
λ ∈ Σ ⇐⇒ µ = γ

γ + λ is an eigenvalue of K
But recall theorem 4.3.7, the set of eigenvalues of K is either finite, or countably infinite and converging tozero. In the second case, if

µk → 0 then λk → ∞The fact that E (λ) is finite dimensional follows from the Fredholm alternative.
Remark 4.3.13. If λ /∈ Σ, then there exists C (λ) > 0 such that∥u∥L2 ≤ C (λ)∥∥f∥∥L2As λ approaches an eigenvalue, C (λ) → ∞.

4.4 Self-adjoint positive operators

Definition 4.4.1 (formally self adjoint)The operator L is formally self-adjoint if L = L† . Equivalently, bi = 0 for all i.
If L is self adjoint, then B[u, v ] = B[v, u].

Definition 4.4.2 (positive)We say L is positive if there exists β > 0 such that
β∥u∥2

H1 ≤ B[u, u]
for all u ∈ H10 .

That is, B is coercive. Lecture 17
Theorem 4.4.3 (eigenvalues of symmetric elliptic operators). Let L be uniformly elliptic, formally self-adjoint, positive operator on U . Then we can represent the eigenvalues of L as a sequence

0 < λ1 ≤ λ2 ≤ · · ·

with multiplicity, i.e λ appears dim(E (λ)) times. Moreover, there exists an orthonormal basis of L2, consistingof eigenfunctions {wk}, with {
Lwk = λwk on U
wk = 0 on ∂U

and each wk ∈ H10 (U).
Proof. By positivity, Lax-Milgram implies that L is invertible. Moreover, L−1 : L2(U) → H10 (U) is bounded.Denote S = L−1 : L2(U) → L2(U). Then S is compact.
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Claim 4.4.4. S is self-adjoint.
Proof. Choose f , g ∈ L2(U), then Sf = u means u ∈ H10 (U) is the unique weak solution to{

Lu = f in U
u = 0 on ∂U

The same statement applies to Sg = v . That is,
B[u,w ] = (f , w)L2for all w ∈ H10 , and
B[v, φ] = (g, φ)L2for all φ ∈ H10 . With this,

(Sf , g)L2 = (u, g)L2= B[v, u]= B[u, v ]= (f , v )L2= (f , Sg)L2

Now by theorem 4.3.7 (spectrum of compact self-adjoint operators), there exists a sequence of eigenvalues(µk )k ⊆ R, such that µk → 0, and there exists wk ∈ L2(U), such that {wk} is an orthonormal basis of L2, with
Swk = µkwk . Equivalently, L−1wk = µkwk ∈ H10 , and so Lwk = λkwk , where λk = 1/µk . Positivity of λkfollows from positivity of L, and so the positivity of S .
4.5 Elliptic regularityIn this section, we will assume U ⊆ Rn is an open bounded domain, V ⋐ U . Our goal is to improve theregulaity of the weak solutions u ∈ H10 (U), to say u ∈ C 2(U).

Example 4.5.1 (motivating examples)Let u ∈ C∞
c (Rn) be a solution to

−∆u = fThen ∫
Rn
f 2dx = ∫

Rn
(∆u)2dx

=∑
i,j

∫
Rn

(DiDiu)(DjDju)dx
Integrating by parts twice,

=∑
i,j

∫
Rn

(DiDju)(DiDju)dx
= ∥∥D2u∥∥2

L2(Rn)That is, we have that ∥∥D2u∥∥L2(Rn) ≤
∥∥∆u∥∥L2(Rn)and so all second derivatives are controlled in L2 by ∆u.

However, if u ∈ H1, then D2u may not exist (even weakly). Thus, we will approximate the derivatives.
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Definition 4.5.2 (difference quotient)For 0 < |h| < d(V , ∂U) (required so we stay awy from the boundary), define the difference quotient

∆h
i u(x) = u(x + hei) − u(x)

hfor x ∈ V , i = 1, . . . , n. Write ∆hu = (∆h1u, . . . ,∆h
nu)

Remark 4.5.3. Suppose u ∈ L2 , then ∆hu ∈ L2(V ), and
D(∆hu) = ∆h(Du)

Hence if u ∈ H1(U), then ∆hu ∈ H1(V ).
Lemma 4.5.4. Suppose u ∈ L2(U), then u ∈ H1(V ) if and only if there exists C > 0, such that for all hwith 0 < |h| < 12d(V , ∂U), with ∥∥∆hu

∥∥
L2(V ) ≤ C

Moreover, there exists C̃ such that1̃
C
∥∥Du∥∥L2(V ) ≤

∥∥∆hu
∥∥
L2(V ) ≤ C̃

∥∥Du∥∥L2(V )
That is, the difference quotient is equivalent to the derivative, sometimes written∥∥Du∥∥L2(V ) ≃

∥∥∆hu
∥∥
L2(V )

Proof. Examples sheet 3.
Theorem 4.5.5 (interior regularity). Suppose L is uniformly elliptic on U , and assume aij ∈ C 1(U) and
bi, c ∈ L∞(U), f ∈ L2(U). Suppose u ∈ H1(U) satisfies

B[u, v ] = (f , v )L2 (14)
for all v ∈ H10 (U), then u ∈ H2loc.(U), and for each V ⋐ U ,∥u∥H2(V ) ≤ C

(∥∥f∥∥L2(U) + ∥u∥L2(U))
with C = C (a, b, c, V , U, n), but not on f or u.
Remark 4.5.6. The result says that we gain two weak derivatives by solving the equation. We can also write theinequality as ∥u∥H2(V ) ≤ C

(∥∥Lu∥∥L2(U) + ∥u∥L2(U))
Proof. Step 1: Fix V ⋐ U , and choose W such that V ⋐ W ⋐ U . Let ξ ∈ C∞

c (W ), such that 0 ≤ ξ ≤ 1,
ξ|V = 1, ξ|∂W = 0. We can rewrite the weak equation as∫

U
aijDiuDjvdx = ∫

U
f̃ vdx

where
f̃ = f − biDiu − cu ∈ L2(U)
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Let v = −∆−h
k (ξ2∆h

ku) for k fixed, 0 < |h| < d(W,∂U). Note by previous comments, v ∈ H10 (W ), andapproximates D2u. Set
A = ∫

U
aijuxivxjdx

B = ∫
U
f̃ vdx

Observe for ψ, φ ∈ L2(U) supported in W , then Lecture 18∫
U
ψ(x) (∆−h

k φ(x)) dx = −
∫
U
(∆h

kψ(x))φ(x)dx
which is integration by parts for the difference quotient. Moreover,

∆h
j (ψφ)(x) = ψ(x + hek )φ(x + hek ) − ψ(x)φ(x)

h = (τhk ψ)(x)∆h
kφ(x) + (∆h

kψ)(x)φ(x)
where

τhk ψ(x) = ψ(x + hek )is the translation operator.
Step 2 (Bounding A): Using the above,

A = −
∫
U
aijuxi∆−h

k ((ξ2∆h
ku)xj )dx

= ∫
U

∆h
k (aijuxi )(ξ2∆h

ku)xjdx
= ∫

U

((τhk aij )∆h
kuxi + (∆h

kaijuxi )) (ξ2∆h
kuxj + 2ξξxj∆h

ku
) dx

= A1 + A2
where

A1 = ∫
U
ξ2(τhk aij )(∆h

kuxi )(∆h
kuxj )dx

By uniform ellipticity,
τhk aijηiηj ≥ θ|η|2Applying with ηi = ∆h

kuxi , we get that
A1 ≥ θ

∫
U
ξ2∣∣∆h

k (Du)∣∣2dx
Next,

A2 = ∫
U
(∆h

kaij )uxiξ2∆h
kuxj + 2ξ(∆h

kaij )uxiξj∆h
ku+ 2ξ(τhk aij )(∆h

kuxi )ξxi∆h
kudx

Since aij ∈ C 2(U), and ξ is bounded,
|A2| ≤ C

∫
W
ξ|Du|

∣∣∆h
k (Du)∣∣ + ξ|Du|

∣∣∆h
ku
∣∣ + ξ

∣∣∆h
k (Du)∣∣∣∣∆h

ku
∣∣dx

We are interested in ∆h
k (Du). We can use Young’s inequality

≤ ε
∫
W
ξ2∣∣∆h

k (Du)∣∣2dx + C
ε

∫
W

|Du|2 + ∣∣∆h
ku
∣∣2dx

By lemma 4.5.4,
≤ ε

∫
W
ξ2∣∣∆h

k (Du)∣∣2dx + C
ε

∫
W

|Du|2dx
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Set ε = θ/2, and use A2 ≥ −|A2|, we find that
A = A1 + A2 ≥ θ2

∫
W
ξ2∣∣∆h

k (Du)∣∣2dx − C
∫
W

|Du|2dx
Step 3 (Bounding B):

|B| ≤ C
∫
W

(|f | + |Du| + |u|) ∣∣∆−h
k (ξ2∆h

ku)∣∣dx
Applying lemma 4.5.4 again, and (a+ b)2 ≤ 2a2 + 2b2,∫

W

∣∣∆h
k (ξ2∆h

k )∣∣2dx ≤ C
∫
W

∣∣D(ξ2∆h
ku)∣∣2dx

≤ C
∫
W

|ξ|2|Dξ|2∣∣∆h
ku
∣∣2dx + C

∫
W
ξ2∣∣∆h

k (Du)∣∣2
≤ C

∫
W

|Du|2 + C
∫
W
ξ2∣∣∆h

k (Du)∣∣2dx
By Young’s inequality on |B|,

|B| ≤ ε
∫
U
ξ2∣∣∆h

k (Du)∣∣2dx + C
ε

∫
W

(|f |2 + u2 + |Du|2)dx
Set ε = θ/4.

Step 4: Since A = B, we have that |A| = |B|. Using the bounds that we have:
θ2
∫
U
ξ2∣∣∆h

k (Du)∣∣2dx − C
∫
W

|Du|2dx ≤ |A| = |B| ≤ θ4
∫
U
ξ2∣∣∆h

k (Du)∣∣2dx + C
∫
W

(f 2 + u2 + |Du|2)dx
Rearranging, ∫

U
ξ2∣∣∆h

k (Du)∣∣2dx ≤ C
∫
W
f 2 + u2 + |Du|2dx

Since ξ|V = 1, we get that if u ∈ H1(V ) solves eq. (14), then∫
V

∣∣∆h
k (Du)∣∣2dx ≤ C

∫
W
f 2 + u2 + |Du|2dx

Since C is independent of h (track every step), we can apply lemma 4.5.4, Du ∈ H2(V ) and so u ∈ H2loc.(U),with ∥u∥H2(V ) ≤ C
(∥∥f∥∥L2(W ) + ∥u∥H1(W ))

Step 5: Removing the dependency on
∥∥Du∥∥L2(W ). Let ξ ∈ C∞

c (U) (be a different test function) with
ξ|W = 1. Set v = ξ2u in eq. (14), to get∫

U
aijuxi (ξ2u)xj + biuxi + cu2ξ2dx = ∫

U
ξ2fudx

By the same proof as in Garding’s inequality, we can rearrange to get∥∥Du∥∥2
L2(W ) ≤ C

(
B[u, u] + γ∥u∥2

L2(W )) ≤ C
(∥∥f∥∥2

L2(W ) + ∥u∥2
L2(W ))

Hence we have that ∥u∥H1(W ) ≤ C
(∥∥f∥∥L2(W ) + ∥u∥L2(W ))and so we have the expression ∥u∥H2(V ) ≤ C
(∥∥f∥∥L2(W ) + ∥u∥L2(W ))
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Remark 4.5.7. 1. This is a local result. To have u ∈ H2(V ), for V ⋐ U , it is enough to have f ∈ L2(W ), where
V ⋐ W ⋐ U . That is, if f /∈ L2 near the boundary, we don’t see this in our estimates.2. We can now show that the equation Lu = f holds pointwise a.e. To see this, u ∈ H2loc.(U), and so Lu ∈ L2loc.(U).Take V ⋐ U . For v ∈ C∞

c (U), then from eq. (14),
(Lu − f , v )L2(U) = 0

Since Lu − f ∈ L2(V ), it holds pointwise a.e. on V .
Theorem 4.5.8 (higher order interior regularity). If aij , bi, c ∈ Cm(U), and f ∈ Hm(U), then u ∈ Hm+2(U)and for all V ⋐ W ⋐ U , ∥u∥Hm+2(V ) ≤ C

(∥∥f∥∥Hm(U) + ∥u∥L2(U))

Remark 4.5.9. We also have a Hölder theory of elliptic regularity, i.e. if f ∈ C k,γ (U) then u ∈ C k+2,γ (U).
Lecture 19

Remark 4.5.10. Recall if m is large enough, i.e. m > n/2, then
Hm+2loc. (U) ↪→ C 2loc.(U)

and so if aij , bi, c, f ∈ C∞(U), then u is also smooth.
Theorem 4.5.11 (boundary H2 regularity). Suppose aij ∈ C 1(U), bi, c ∈ L∞(U), f ∈ L2(U), and ∂U is
C 2. Suppose u ∈ H10 (U) is a weak solution to{

Lu = f in U
u = 0 on ∂U (15)

Then u ∈ H2(U), and ∥u∥H2(U) ≤ C
(∥∥f∥∥L2(U) + ∥u∥L2(U))

Sketch proof. We focus on the case
U = B1(0) ∩ {xn > 0}Let V = B1/2(0) ∩ {xn > 0} and ξ ∈ C∞

x (B1(0)) with ξ = 1 on V , 0 ≤ ξ ≤ 1. Since u ∈ H10 is a weak solution,∫
U
aijuxivxj = ∫

U
f̃ v

for all v ∈ H10 (U). Choose 0 < |h| < 14d(supp(ξ), ∂B1(0)). Consider
v = −∆−h(ξ2∆h

ku)
kfor k = 1, . . . , n − 1 fixed.

Claim. v ∈ H10 (U).
Proof.

v (x) = −1
h ∆−h

k (ξ2(x)(u(x + hek ) − u(x)))
= 1
h2 (ξ2(x − hek )(u(x) − u(x − hek )) − ξ2(x)u(x + hek − u(x)))
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The translation is horizontal, and Tu|xn=0 = 0, and so
T (u(x ± hek ))|xn=0

for all |x| < 1 − h. When xn = 0, |x| ≥ 1 − h, we have that ξ(x) = 0 and ξ(x − hek ) = 0.Repeating the proof of theorem 4.5.5 to conclude∫
V

∣∣∆h
k (Du)∣∣2dx ≤ C

∫
U
f 2 + u2 + |Du|2dx

where C does not depend on h. Hence
Dku ∈ H1(V )for k = 1, . . . , n − 1, with ∥∥DkDiu

∥∥
L2(V ) ≤ C (∥∥f∥∥L2(U) + ∥u∥H1(U))where i = 1, . . . , n.Hence it suffices to consider uxnxn . We will use the equation for this. Write the PDE as

annuxnxn = F = −
∑
i+j<2na

ijuxixj −
∑
i
biuxi − cu+ f

By uniform ellipticity,
ann =∑aijξiξj ≥ θ

∥∥ξ∥∥2 = θ > 0where ξ = (0, . . . , 0, 1).By the bound above, we can bound all of the terms of F , and so F ∈ L2(V ), and
uxnxn = 1

annF ∈ L2(V )
and ∥u∥H2(V ) ≤ C (∥∥f∥∥L2(U) + ∥u∥H1(U))From the proof of Garding’s inequality, we can replace ∥u∥H1(U) with ∥u∥L2(U) in the above.To finish, we cover the boundary with a finite union of Vis, and sum using a partition of unity. See Evansfor details.

Corollary 4.5.12. Under the assumptions of theorem 4.5.11, if u is the unique weak solution to theboundary value problem eq. (15), then we have that∥u∥H2(U) ≤ C
∥∥f∥∥L2(U) = C

∥∥Lu∥∥L2(U)i.e. we can drop the ∥u∥L2(U) terms.
That is, the ∥u∥L2(U) measures the kernel of L, and so if the solution is unique, the kernel is zero.

Remark 4.5.13. We can get higher regularity. If aij , bi, c ∈ Cm+1(U), f ∈ Hm(U), ∂U is Cm+2 , and u ∈ H10 a weaksolution, then u ∈ Hm+2(U) and ∥u∥Hm+2(U) ≤ C (∥∥f∥∥Hm(U) + ∥u∥L2(U))
Remark 4.5.14. If everything is smooth, then u is smooth. For example, if Lu = λu, then L − λI is uniformly elliptic,and (L − λI)u = 0 ∈ C∞

and so the eigenfunctions are smooth.
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5 Hyperbolic PDEs
We will consider second order linear PDE of the form

n+1∑
i=1 (aijuyi )yj + n+1∑

i=1 a
i(u)uyi + a(y)u = f (16)

with y ∈ Rn+1, aij = aji, aij , ai, a ∈ C∞(Rn+1). This equation is hyperbolic if the quadratic form
q(ξ) = n+1∑

i,j=1a
ij (y)ξiξj

has signature (+, −, . . . , −) for all y ∈ Rn+1. That is, at each y ∈ Rn+1, after a change of basis, we can write
q as

λ2
n+1ξ2

n+1 −
n∑
i=1 λ

2
i ξ2
i

where each λi > 0.We call q the principal symbol of the PDE. By a coordinate transformation, locally we can put eq. (16) inthe form
utt −

n∑
i,j=1(aij (x, t)uxi )xj + n+1∑

i=1 b
i(x, t)uxi + c(x, t)u (17)

where (y1, . . . , yn+1) = (x1, . . . , xn, t).Note if we assume ∑
i,j
aijξiξj ≥ θ

∥∥ξ2∥∥
then since the coefficient of utt is 1, which is non-zero, then we see that

{(x, t) | t = 0}is a non-characteristic surface of the PDE. In principle, we can solve the PDE with analytic data u, ut at t = 0.
5.1 Hyperbolic initial boundary value problemsSuppose U ⊆ Rn is open bounded with C 1 boundary. Define

UT = (0, T ) × U Σt = {t} × U ∂∗UT = [0, T ] × ∂UUsing this,
∂UT = Σ0 ∪ Σ1 ∪ ∂∗UTLet u ∈ C 2(UT ), which satisfies the initial boundary value problem
utt = ∆u in UT
u = ψ0 on Σ0
ut = ψ1 on Σ0
u = 0 on ∂∗UTWe will perform an energy estimate. Multiply the PDE by ut , integrating by parts over Ut = (0, t) ×U for

t ∈ (0, T ), we get 0 = ∫
Ut
uttut − ut∆udxdt

In what follows, D will denote the derivative with respect to the space variables only. Recall grad · (ggradh) =gradg · gradh+ g∆h, and so we get
= ∫

Ut

(12∂t (u2
t ) − divx (utDu) + DutDu

)dxdt
= ∫

Ut

12∂t ((ut )2 + |Du|2)− divx (utDu)dxdt
= 12

∫
Σt (u2

t + |Du|2)dx − 12
∫

Σ0 (ut )2 + |Du|2dx
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where we use the divergence theorem, and the fact that u vanishes on ∂∗Ut . Hence we have that∫
Σt u2

t + |Du|2dx = ∫Σ0 ψ
21 + |Dψ0|2dx

Ww call this an energy estimate as the energy is conserved, where ut is kinetic energy and |Du|2 is potentialenergy. Lecture 20We call ths estimate above an a priori estimate. These are very useful.Let v, v ∈ C 2(UT ) be two solutions with initial data φi, φi. Let u = v − v , ψ0 = φ0 −φ0 and ψ1 = φ1 −φ1.Then there exists C > 0 such that
sup
t∈[0,T ]

(∥∥u(·, t)∥∥2
H1(Σt ) + ∥∥ut (·, t)∥∥2

L2(Σt )
)

≤ C
(∥∥ψ0∥∥2

H1(Σt ) + ∥∥ψ1∥∥2
L2(Σ0)

)
Thus, in this case, we have uniqueness and continuous dependence on initial conditions.Define

Lu = −
n∑

i,j=1(aij (x, t)uxi )xj +
n∑
i=1 b

i(x, t)uxi + b(x, t)ut + c(x, t)u
with aij = aji, bi, b, c ∈ C 1(UT ). Suppose there exists θ > 0 such that

n∑
i,j=1a

ij (x, t)ξiξj ≥ θ|ξ|2

for all (x, t) ∈ UT , ξ ∈ Rn.We will consider the initial boundary value problem
utt + Lu = f in UT
u = ψ0, ut = ψ1 on Σ0
u = 0 on ∂∗UT

(18)
We would like to find the weak formulation.Suppose u ∈ C 2(UT ) is a solution to eq. (18). Multiply by v ∈ C 2(UT ), such that v = 0 on ∂∗UT ∪ ΣT .Integrating over UT ,∫

UT
f vdxdt = ∫

UT
(uttv + Luv )dxdt

= ∫
UT

(−utvt + aijuxivxj + biuxiv + butv + cuv )dxdt + [∫Σt utvdx
]T
t=0 −

∫ T

0
∫
∂Σt aijuxivdSdt

= ∫
UT

(−utvt + aijuxivxj + biuxiv + butv + cuv )dxdt −
∫

Σ0 ψ1(x)v (x, 0)dx
Thus, we have the equation∫

UT
f vdxdt = ∫

UT
(−utvt + aijuxivxj + biuxiv + butv + cuv )dxdt −

∫
Σ0 ψ1(x)v (x, 0)dx (19)

Now suppose eq. (19) holds for all v ∈ C 2(UT ) with v = 0 on ∂∗UT ∪ ΣT . If v ∈ C∞
c (UT ), then we can undothe integration by parts, and we get that∫

UT
v (utt + Lu − f )dxdt = 0

Since v is arbitrary, utt + Lu = f on UT .Now if v ∈ C∞(UT ), then we get that∫
UT

(utt + Lu − f )dxdt = ∫Σ0 (ψ1 − ut )vdx
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Hence ∫
Σ0 (ψ1 − ut )vdx = 0

for all v ∈ C∞(UT ) with v = 0 on ∂∗UT ∪ΣT . Now let v (x, t) = χ (t)φ(x), with χ ∈ C∞([0, T ]) and φ ∈ C∞
c (Σ0).We require that χ = 1 near t = 0 and χ = 0 near t = T , hence

v|Σ0 = φ

Hence ∫
Σ0 (ψ1(x) − ut (x, 0))φ(x)dx = 0

and so ψ1 = ut on Σ0.
Definition 5.1.1 (weak solution)Suppose f ∈ L2(UT ), ψ0 ∈ H10 (Σ0), ψ1 ∈ L2(Σ0), aij = aji, bi, b, c ∈ C 1(UT ). We say that u ∈ H1(UT ) isa weak solution to the hyperbolic initial boundary value problem eq. (18) if u|Σ0 = ψ0, u|∂∗UT = 0 in thetrace sense, and eq. (19) for all v ∈ H1(UT ), with v = 0 on ∂∗UT ∪ ΣT in the trace sense.
Theorem 5.1.2 (uniqueness). A weak solution, if it exists, is unique.

Proof. If v, v are two weak solutions with the same initial data, then we can use the linearity of the PDEproblem, u = v − v is a weak solution with f = 0, ψ0 = 0 and ψ1 = 0.The idea is to use an energy to show that ∥u∥ = 0 to show that u = 0. We would like to pick v = ut , aswe did for the wave equation, but1. v may not be in H1(UT ), since we only know that u ∈ H1.2. v may not vanish on ΣT .We set
v (x, t) = ∫ T

t
e−λsu(x, s)dt

where we will choose λ later. We can see that v is in H1(UT ), and v = 0 on ∂∗UT ∪ ΣT . Moreover,
vt = −e−λtu(x, t)

We will take this v as the test function. This gives us∫
UT
utue−λt − eλtaijvtxivxj + biuxiv + butv + (c − 1)uv − eλtvvtdxdt = 0

Integrating by parts,∫
UT
utue−λt − eλtaijvtxj vxi + (biuv )xi︸ ︷︷ ︸

a

+ (buv )t︸ ︷︷ ︸
b

−(bixiuv + biuvxi + btuv + buvt ) + (c − 1)uv − 12∂t (v2eλt ) + 12λv2eλtdxdt
The terms a and b vanish by boundary conditions. Hence we have that∫

UT

12 ∂
∂t
(
u2e−λt = aijvxivxjeλt − v2eλt) dxdt + λ2

∫
UT

(u2e−λt + aijeλtvxivxj + v2eλt )dxdt
= ∫

UT

12aijj vxivxjeλt + (bixi + bt + 1 − c)uv + bivxiu+ buvtdxdt
Call the first line A and the second B. For A,

A = eλT
∫

ΣT
12u2dx + 12

∫
Σ0 a

ijvxivxj + v2dx + λ2
∫
UT
u2e−λt + eλtaijvxivxj + v2eλtdxdt

56



Hence we have that
A ≥ λ2

∫
UT
u2e−λt + θ|Du|2eλt + v2eλtdxdt

Also,
B ≤ C (aijt ) ∫

UT
eλt |Dv|2dx + C (b, bi, c) ∫

UT
|u||v|dx + C (bi) ∫

UT
|u||Dv|dx + C (b) ∫

UT
u2e−λtdx

≤ C
θ

∫
UT
eλtθ|Dv|2 + C

∫
UT
e−λt∣∣u2∣∣ + eλt (|v |2|Dv|2)dxdt

≤ C
∫
UT
θ|Dv|2eλt + u2e−λt + v2eλtdxdt

Now using that |A| = |B|, (
λ2 − C

)∫
UT

(u2e−λt + θ|Dv|2 + v2e−λt )︸ ︷︷ ︸
≤0

dxdt ≤ 0
Taking λ > 2C , the integral must be zero, and so∫

UT
u2e−λtdxdt = 0

Hence u = 0 a.e. Lecture 21
Theorem 5.1.3 (existence of solutions). Given ψ0 ∈ H10 (U), ψ1 ∈ L2(U), f ∈ L2(UT ), then there exists aunique weak solution of eq. (19) u ∈ H1(UT ), with∥u∥H1(UT ) ≤ C

(∥∥ψ0∥∥H1(U) + ∥∥ψ1∥∥H1(U) + ∥∥f∥∥L2(UT )
)

Proof (Galerkin’s method). We will project everything onto the finite dimensional subspace of L2, given by thefirst N eigenfunctions of the Dirichlet Laplacian. Taking N → ∞ gives the result.
Step 1: Recall the eigenfunctions {φk}∞

k=1 of L = −∆ with Dirichlet boundary conditions form an orthonor-mal basis of L2(U). We have that φk ∈ H10 (U), and by elliptic regularity φk ∈ C∞(U) privided ∂U is C∞. Withthis, (φk , φℓ )L2(U) = δkℓand if u ∈ L2(U) then
u = ∞∑

k=1(u, φk )L2(U)φk
with convergence in L2(U).

Step 2: First consider ψ0, ψ1 ∈ C∞
c (U), f ∈ C∞

c (UT ). These spaces are dense in H10(U), L2(U) and L2(UT )respectively. Define
uN (x, t) = N∑

k=1 uk (t)φk (x)Assume uk (t) ∈ C 2((0, T )), and that uN is a weak solution to eq. (19). Take v (x, t) = ρ(t)φℓ (x) for the testfunction, with ρ ∈ C∞
c ((0, T )) arbitrary. Substituting into eq. (19), we get∫

UT
−(uNt ρ̇φℓ + aijuNxj (φℓ )xiρ + biuNxi ρφℓ + buNt ρφℓ + cuρφℓ − fρφℓ )dxdt = 0

Note ∫
UT

−uNt ρ̇φℓdxdt = ∫
UT
uNttρφℓdxdt
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and so our identity looks like ∫ t

0
∫

Σt G(x, t)ρ(t)dxdt = 0
But ρ is arbitrary, and so ∫

Σt G(x, t)dx = 0
for all t . With this,(

uNtt , φℓ
)
L2(Σt ) + ∫Σt aijuNxj (φℓ )xi + bi(uN )xiφℓ + buNt φℓ + cuNφℓdx = (f , φℓ )L2(Σt ) (20)

But eq. (20) holds for all t , and ℓ = 1, . . . , N . By orthogonality,
(
uNtt , φℓ

)
L2(Σt ) = M∑

k=1 (ük (t)φk , φℓ )L2(Σt ) = üℓ (t)
With this, we get that for ℓ = 1, . . . , N , then

üℓ (t) + N∑
k=1(αℓ,k (t)uk (t) + βℓ,k (t)u̇k (t)) = fℓ (t)

where
αℓ,k (t) = ∫Σt aij (φℓ )xj (φk )(xi) + bi(φℓ )xiφk + cφℓφkdx
βℓ,k (t) = ∫Σt b(x, t)φkφℓdx
fℓ (t) = ∫Σt f (x, t)φℓ (x)dxand

uℓ (0) = (ψ0, φℓ )L2(Σ0)
u̇ℓ (0) = (ψ1, φℓ )L2(Σ0)

This is a system of N second order ODEs, linear in uk , with coefficients which are bounded uniformly in C 1for t ∈ [0, T ]. By Picard-Lindelöf, there exists a unique solution uk ∈ C 2([0, T ]). Moreover,
uN , uNt ∈ H1(UT )

Step 3: We would like a uniform estimates∥∥uN∥∥H1(UT ) ≤ C

which are independent of N . Multiply eq. (20) by e−λt u̇ℓ (t), sum over 1, . . . , n, and integrate over [0, τ ] ⊆ [0, T ].For example,
N∑
ℓ=1
∫

−λt
u̇ℓ (t) ∫Σt uNttφℓdxdt = ∫

Uτ
e−λtuNttuNt dx ddt

We find that ∫
Uτ

(
uNttuNt + aijuNxiu

N
txj + biuNxiu

N
t + b(uNt )2 + cuNuNt

)
e−λtdxdt = ∫

Uτ
fuNt e−λtdxdt

Similar to the proof of uniqueness, we can rearrange this as
Ã = ∫

Uτ

12 ddt (Qae−λt)dxdt + λ2
∫
Uτ
Qae−λtdxdt

B̃ = ∫
Uτ

(12aijt uNxiuNxj − biuNxiu
N
t = b(uNt )2 + (1 − c)uNuNt + fuNt

)
e−λtdxdt

Ã = B̃

58



where
Qa = (uNt )2 + aijuNxiu

N
xj + (uN )2Let

Qθ = (uNt )2 + θ
∣∣DuN∣∣2 + (uN )2Using uniform ellipticity, Young’s inequality, e−λt ≤ 1, and so on, we get that

B̃ ≤
∫
Uτ
Qθe−λtdxdt + ∥∥f∥∥2

L2(Uτ )
Ã ≥ eλτ

∫
Στ Qθdx − 12

∫
Στ Qθdx + λ2

∫
Uτ
Qθe−λtdxdt

Note ∣∣∣Ã∣∣∣ = ∣∣∣B̃∣∣∣, for λ/2 − C ≥ 1/2, we get
e−λτ

∫
Στ Qθdx + ∫ τ

0
∫

Σt Qθe−λtdxdt ≤
∫

Σ0 Qadx + C
∥∥f∥∥2

L2(Uτ )
≤ C

(∥∥uN (·, 0)∥∥2
H1(Σ0) + ∥∥u̇N (·, 0)∥∥2

L2(Σ0) + ∥∥f∥∥2
L2(UT )

)
for all τ ∈ [0, T ]. Taking sup,

sup
τ

(∥∥uN (·, τ)∥∥2
H1(Σt ) + ∥∥·uN (·, τ)∥∥2

L2(Στ )
) + ∫ T

0
(∥∥uN (·, t)∥∥2

H1(Σt ) + ∥∥·uN (·, t)∥∥2 − L2(Σt )) dt
≤ CeλT

(∥∥uN (·, 0)∥∥2
H1(Σ0) + ∥∥u̇N (·, 0)∥∥2

L2(Σ0) + ∥∥f∥∥2
L2(UT )

)
Since

uN (0) = N∑
k=1(ψ0, φk )φk → ψ0

as N → ∞, if ψ0 ̸= 0, then for large N , then∥∥uN (0)∥∥H1(Σ0) ≤ 2∥∥ψ0∥∥∥∥ψ0∥∥H1(Σ0)Similarly, ∥∥u̇N∥∥L2(Σ0) ≤ 2∥∥ψ1∥∥L2(Σ0)The right hand sides are independent of N , and so∥∥uN∥∥H1(UT ) ≤ C1 = C
(∥∥ψ0∥∥H1(Σ0) + ∥∥ψ1∥∥H1(Σ0) + ∥∥f∥∥L2(UT )

)
The right hand side is the uniform estimate which we want. Now Lecture 22

uN ∈ H1
∂ (UT ) = {φ ∈ H1(UT ) | φ|∂∗UT = 0}

which is a closed subspace of H1(UT ), and so it is weakly sequentially compact. Hence there exists a subse-quence (uNi ) such that
uNi ⇁ u ∈ H1

∂ (UT )Moreover, ∥u∥H1(UT ) = lim inf
i→∞

∥∥uNi
∥∥
H1(UT ) ≤ C1

Step 4: We want to show that u is the desired weak solution. We can relabel the uNi as uN . Fix m ≤ N ,and consider
v = m∑

k=1 vk (t)φk (x)where vk ∈ H1((0, T )) with vk (T ) = 0. Then v is a test function for the weak formulation. From eq. (20) (replace
ℓ with k ), multiply the equation by vk (t), and sum from k = 1, . . . , m, we get that(

uNtt , v
)
L2(Σt ) + ∫Σt aijuNxi vxj + biuMxi v + buNt v + cuNvdx = (f , v )L2(Σt )
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Now integrating over [0, T ], integrating by parts, and using the fact that v (T ) = 0, we get that
−
∫

Σ0 u
N
t vdx + ∫

UT
−utNvt + aijuNxi vxj + biuNxi v + butv + cuNvdxdt = ∫

UT
f vdxdt

But for the first term, since N > m, ∫
Σ0 u

N
t vdx = ∫Σ0 ψ1vdx

Passing to the weak limit,
−
∫

Σ0 ψ1vdx + ∫
UT

(−utvt + aijuxivxj + biuxiv + butv + cuv )dxdt = ∫
UT
f vdxdt (21)

But this is precisely the weak formulation. We leave as an exercise that the space of such v is dense in H1
∂ (UT ),and so eq. (21) holds for all v ∈ H1

∂ (UT ).
Step 5: It remains to show that u|Σ0 = ψ0. For each fixed k , defineΦk : H1(UT ) → R

w 7→
∫

Σ0 wφkdxThis is a bounded linear map. To see this,
|Φk (w)| ≤

∫
Σ0 |wφk | ≤ ∥w∥L2(Σ0)∥∥φk∥∥L2(Σ0) ≤ ∥w∥L2(∂UT ) ≤ C∥w∥H1(UT )

where in the last step we use the trace theorem. By weak convergence,Φk (uN ) → Φk (u)Thus, ∫
Σ0 ψ0φkdx = ∫Σ0 u

N (x, 0)φk (x)dx →
∫

Σ0 u(x, 0)φk (x)dx
Hence ∫

Σ0 (ψ0 − u(x, 0))φkdx = 0
for all k . Hence u = ψ0 on Σ0.

Remark 5.1.4. This proof fails when T = ∞, or U is unbounded. See Hille-Yosida, in Brezis’ book.
Definition 5.1.5 (Bochner space)If X is a Banach space, the Bochner space Lp((0, T );X ) is

Lp((0, T );X ) = {u : (0, T ) → X | ∥u∥Lp((0,T );X ) < ∞
}

where ∥u∥Lp((0,T );X ) = (∫ T

0
∥u∥pXdt)1/p

for 1 ≤ p < ∞, and ∥u∥L∞((0,T );X ) = ess sup
t∈(0,T )

∥∥u(t)∥∥X
Remark 5.1.6. In step 3, we showed that ∥u∥H1(UT ) ≤ C1In fact, the weak solution satisfies ∥∥ut∥∥L∞((0,T );L2(U)) + ∥u∥L∞((0,T );H1(U)) ≤ C1
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Thus, instead of H1(UT ), we can consider
u ∈ L∞((0, T );H1(U))

5.2 Finite speed of propagationA crucial feature of hyperbolic equation is that there is a finite speed of propagation.
Definition 5.2.1 (spacelike, timelike)Let Σ ⊆ Rn+1 be a hypersurface, given by

Σ = {(x, t) ∈ Rn+1 | F (x, t) = 0}
Define

w(Fxi , Ft ) = (Ft )2 − aijFxiFxjWe say that Σ• spacelike if w > 0,• timelike if w < 0,• characteristic (in PDE theory) or null (in GR) if w = 0.
Example 5.2.2The plane t = 0 is spacelike.
Example 5.2.3The cylinder

F = |x − x0|2 − R2
is timelike
Let S0 ⊆ U be an open set with smooth boundary. Let τ : S0 → (0, T ) be a smooth function such that

τ|∂S0 = 0. Let
S ′ = Graph(τ) = {(x, τ(x)) | x ∈ S0}If F (x1, . . . , xn, t) = t = τ(x), then we see that S ′ is spacelike if1 − aijτxiτxj > 0Equivalently,

aij (x)τxiτxj < 1Let
D = {(x, t) ∈ UT | x ∈ S0, 0 ≤ t ≤ τ(x)}Exercise: if aijξiξj ≤ µ|ξ|2, for some µ > 0, then we can show that such S0, S ′ exists.

Theorem 5.2.4 (domain of dependence). If S ′ is spacelike, u a weak solution to eq. (19), then u|D dependsonly on ψ0|S0 , ψ1|S0 , f |D .
Lecture 23

Proof. The proof is similar to the proof of uniquness. By linearity, it suffices to show that u|D = 0 if ψ0|S0 =0, ψ1|S0 = 0 and f |D = 0. Take a test function
v (x, t) = {∫ τt e−λsu(x, s)ds (x, t) ∈ D0 otherwise
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We leave the proof that v ∈ H1(UT ), with v = 0 on ∂∗UT ∪ ΣT , and
vxi = τxie−λτ(x)u(x, τ(x)) + ∫ τ(x)

t
e−λsuxi (x, s)ds

vt = −e−λtu(x, t)
on D. These vanish outside of D. Inserting this into the definition of the weak solution, we find that

A = ∫
D

12∂t (u2e−λt − aijvxivxjeλt − v2eλt) dxdt
A = λ2

∫
D
(u2e−λt + aijvxivxjeλt + v2eλt )dxdt

B = ∫
D

12aijvxivxjeλt + (bixi + bt + c)uv + bivxiu+ buutdxdt
A+ A = B

By Fubini, ∫
D

dxdt = ∫
S0 dx ∫ τ(x)

0 dt
Using v|S ′ = 0, and vxi |S ′ = τxiu(xi, τ(x))e−λτ(x), we get that

A = 12
∫
S0 u

2(x, τ(x))eλτ(x)(1 − aijτxiτxj )dx + 12
∫
S0 (aijvxivxj + v2)|t=0dx

Continuing as in the proof of uniqueness,(
λ2 − c

)∫
D
u2e−λt + θ|Du|2eλt + v2eλtdxdt ≤ 0

If λ is large, this forces u|D = 0.
Remark 5.2.5. No signal can travel faster than a fixed speed. Let x0 ∈ U and S0 some ball about x0 . If (x0, t) ∈ D,then any data outside S0 does not influence u(x0, t). Only after t > τ(x0) will the function be determined by dataoutside s0 .Therefore, everything is local in hyperbolic PDEs.

5.3 Hyperbolic regularitySo far, we have shown existence to and uniqueness of weak solutions to
utt + Lu = f

with given initial and boundary conditions. Given ψ0 ∈ H10 (U), ψ1 ∈ L2(U), f ∈ L2(UT ), we have shown∥u∥L∞
t H1

x
+ ∥∥ut∥∥L∞

t L2
x
+ ∥u∥H1(UT ) ≤ C

(∥∥ψ0∥∥H1(U) + ∥∥ψ1∥∥L2(U) + ∥∥f∥∥L2(U)
)

where L∞
t H1

x = L∞((0, T ), H1(U)). In this case, we did not manage to improve the regulaity when compared tothe initial conditions.
Example 5.3.1Suppose u ∈ C∞(UT ) which solves 

utt − ∆u = 0 in UT
u = ψ0, ut = ψ1 on Σ0
u = 0 on ∂∗UT
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Let w = ut . Then 
wtt − ∆w = 0 in UT
w = ψ1, wt = ∆ψ0 on Σ0
w = 0 on ∂∗UTUsing the above estimate, we have that∥w∥L∞

t H10 + ∥∥wt∥∥L∞
t L2

x
+ ∥w∥H1(UT ) ≤ C

(∥∥ψ1∥∥H1(U) + ∥∥∆ψ0∥∥L2(U)
)

Hence we have control over utt , uxit in L2(U) in terms of initial data. To control uxixj , we use ellipticregularity. In particular, ∥u∥H2(U) ≤ C
∥∥∆u∥∥L2(U) = C

∥∥utt∥∥L2(U)All together, ∥u∥L∞
t H2

x
+ ∥∥ut∥∥L∞

t H1
x
+ ∥∥utt∥∥L∞

t L2
x

≤ C
(∥∥ψ0∥∥H2 + ∥∥ψ1∥∥H1)

Theorem 5.3.2 (hyperbolic regularity). Suppose aij , bi, b, c ∈ C 2(UT ), with ∂U being C 2. Then for
ψ0 ∈ H2(U) ∩ H10 (U), ψ1 ∈ H10 (U), f , ft ∈ L2(UT ), then the unique weak solution u ∈ H1(UT ) satisfies

u ∈ H2(UT ) ∩ L∞
t H2

x

ut ∈ L∞
t H10

utt ∈ L∞
t L2

x

Proof. By approximation, we can assume f , ψ0, ψ1 are smooth. As in the Galerkin method, use
uN (x, t) = N∑

k=1 uk (t)φk (x)
Consider the ODE for uk (t). The coefficients are C 2, and so uk is C 3.Since uN is C 3, we can differentiate eq. (20) with respect to t , to get(

uNttt , φk
)
L2(Σ0) + ∫Σt aijuNtxi (φk )xj + biuNtxiφk + buNttφk + cuNt φkdx

= (ft , φu)L2(Σt ) −
∫

Σt a
ij
t uNxi (φk )xj + bituNxiφk + btuNt φk + ctuNφkdx

Multiply the above by üke−λt , sum from k = 1 to N , integrating ∫ τ0 dt , we get that
sup
t∈[0,T ]

(∥∥uNt ∥∥2
H1(Σt ) + ∥∥uNtt∥∥2

L2(Σt )
) + ∥∥ut∥∥2

H1(Ut )
≤ eλtC

(∥∥ψ0∥∥2
H1(Σt ) + ∥∥ψ1∥∥2

L2(Σ0) + ∥∥f∥∥2
L2(UT ) + ∥∥uNt ∥∥2

H1(Σ0) + ∥∥uNtt∥∥2
L2(Σ0) + ∥∥ft∥∥2

L2(UT )
)

First, note that ∥∥uNtt∥∥H1(Σ0) ≤ C
∥∥ψ1∥∥H1(Σ0)and using eq. (20) again,∥∥uNtt∥∥2

L2(Σ0) = −
∫

Σ0 a
ijuNxiu

N
ttxj + biuNxiu

N
tt + buNt uNtt + cuNuNttdx + (f , uNtt )L2(Σ0)

= ∫Σ0 (aijuNxj )xiuNtt + stuff
By Cauchy-Schwarz, ∥∥uNtt∥∥L2(Σ0) ≤ C

(∥∥uN∥∥H2(Σ0) + ∥∥uNt ∥∥L2(Σ0) + ∥∥f∥∥L2(Σ0)
)
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We would like to control ∥∥uN∥∥H2(Σ0) uniformly in N .(∆uN ,∆uN)L2(Σ0) = (uN ,∆2uN)L2(Σ0) = (ψ0,∆2uN)L2(Σ0) = (∆Ψ0,∆uN)L2(Σ0)In particular, ∥∥∆uN∥∥L2(Σ0) ≤
∥∥∆ψ0∥∥L2(Σ0) ≤

∥∥ψ0∥∥H2(Σ0)Using elliptic regularity, ∥∥uN∥∥H2(Σ0) ≤
∥∥ψ0∥∥H2(Σ0)In summary, we have ∥∥uNt ∥∥L∞

t H1
x
+ ∥∥uNtt∥∥L∞

t L2 + ∥∥uNtt∥∥H1(UT ) ≤ C2
where C2 is independent of n. By Banach Alaoglu, we have that

ut ∈ H1(UT )
ut ∈ L∞

t H10
utt ∈ L∞

t L2
xFor the spacial derivatives, use the fact that

Lu = f − uttby elliptic regularity on Σt , then ∥u∥H2
x

≤
∥∥Lu∥∥L2

x
≤
∥∥f∥∥L2

x
+ ∥∥utt∥∥L2

x
≤ CC2

and so u ∈ L∞
t H2

x as required. Lecture 24
6 Heat equation
Consider u : R → R, h > 0, and consider the average value u of u on (−h, h), i.e.

u = 12h
∫ h

−h
u(x)dx

Taylor expanding,
u(x) =∑

k

∂ku(0)hk
k !Substituting,

u = 12h
∫
u(0) + u′(0)h+ u′′(0)h22 + O

(
h3)dx

= u(0) + u′′(0)h212 + O
(
h4)

= u(0) + ∆u(0)h212 + O
(
h4)

That is, the Laplacian measures how much the function varies from its average in a neighbourhood of 0. Moregenerally, we have the mean value property for the Laplacian. That is,
∆u(p) = lim

r→0C (n, r) ∫
Sr (p) u(x) − u(p)dx

where Sr (p) is the sphere of radius r about p.Consider the heat equation
ut = ∆u
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If the average in a neighbourhood of p is hotter than at p, then the temperature will increase at p.Consider the initial boundary value parabolic equation
ut − ∆u = f on UT
u = ψ on Σ0
u = 0 on ∂∗UT

Multiply the PDE by u, we get 12∂t (u2) − divx (uDu) + |Du|2 = fu

Integrating over [0, t] × U , we get
12
∫

[ Σt ]u2dx + ∫
Ut

|Du|2dxdt = ∫
Ut
ufdxdt + 12

∫
Σ0 ψ

2
By Young’s inequality, ∫

Ut
uf ≤ ε

∫
Ut
U2dxdt + 4

ε

∫
Ut
f 2dxdt

All together, ∫
Σt u2dx + ∫

Ut
(u2 + |Du|2)dxdt ≤ C

(∫
Ut
f 2dxdt + ∫Σ0 ψ

2dx)
Here, we see that energy is not conserved, but it is decreasing in time. Taking the sup over t ∈ [0, T ], we havethat ∥u∥2

L∞
t L2(U) + ∥u∥2

L2
tH1(U) ≤ C

(∥∥f∥∥L2(UT ) + ∥∥ψ∥∥L2(Σ0)
)

For regularity, assume that we have a smooth solution to the heat equation. Multiply the equation by ut ,to get
u2
t + divx (utDu) + 12∂t |Du|2 = utfApply Young’s inequality to get 12u2
t + 12∂t |Du|2 ≤ 12 f 2 + divx (utDu)

Again, integrate on U × [0, t] to get
12
∫
Ut
u2
t dxdt + 12

∫
Σt |Du|2 ≤ 12

∫
Ut
f 2dxdt + 12

∫
Σ0 |Du|2dx

Taking sup over t ∈ [0, T ], we find that∥∥ut∥∥L2(UT ) + ∥∥Du∥∥L∞
t L2(U) ≤ C

(∥∥f∥∥L2(UT ) + ∥∥ψ∥∥H1(Σ0)
)

Using the PDE, at each time t ,
−∆ = f − utand u = 0 on ∂U . Hence by elliptic estimates,∥u∥H2(U) ≤

∥∥∆u∥∥L2(U) ≤
∥∥f∥∥L2(U) + ∥∥ut∥∥L2(U)Integrating over time,

∥u∥L2
tH2(U) ≤ C

(∥∥f∥∥L2(UT ) + ∥∥ut∥∥L2(UT ) ≤ C
(∥∥f∥∥L2(UT )+∥∥ψ∥∥H1(Σ0)

))
Again, we have a gain in regularity.
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