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Definition 0.0.1 (module)

An R-module M is an abelian group M with an fixed ring homomorphism p : R — End(M). We will write
r-m:= p(r)(m).

Remark 0.0.2. By definition, this implies that (1 +r2)-m =r-m+r,-m, r-(my +my) =r-my +r-m, and
ry-(rp-m)={(rr)-m.

Example 0.0.3 (Examples of modules) e Let k be a field. Then a k-module is the same as a k-vector
space.

e Every abelian group is a Z-module in a unique way, since we must have that p(1) = idys. Therefore,
abelian groups and Z-modules are the same thing.

e Every ring R is (trivially) an R-module.

e More generally, R®N (direct sum) and RY (direct product) are R-modules.

Another useful example to keep in mind is that if / is an ideal in R, then R/ is an R-module.

1 Chain conditions
Definition 1.0.1 (Noetherian, Artinian module)
An R-module M is Noetherian if one of the following (equivalent) conditions hold:

1. Every ascending chain of submodules My € M; C M, C --- stabilises. That s, it is eventually
constant.

2. Every non-empty set = of submodules of M has a maximal element.

M is Artinian if we replace in the above: ascending with descending, maximal with minimal.

Lemma 1.0.2. An R-module M is Noetherian if and only if every submodule of M is finitely generated.

In particular, every Noetherian module is finitely generated. If R = Z[T1, T5,...], with M = R as an
R-module. Then M is finitely generated. On the other hand, M’ = (T, T,, T3, .. ), is not finitely generated.

Definition 1.0.3 (Noetherian, Artinian ring)

A ring R is Noetherian (resp. Artinian) if it is Noetherian (resp. Artinian) as an R-module.

Example 1.0.4 1. Z is Noetherian (as it is a PID), but not Artinian (e.q. (2) 2 (4) 2 (8) D --).
2. Z[1/2)|Z is Artinian, but not Noetherian as a Z-module.

3. Aring R is Artinian if and only if R is Noetherian and R has Krull dimension O.

Definition 1.0.5 (Exact sequence)




A sequence
fip

fi
—— Mg —— M —— My —— -

of R-modules and R-module homomorphisms is exact if im(f;) = ker(f;1) for all i.

Definition 1.0.6 (Short exact sequence)
A short exact sequence (SES) is an exact sequence of the form

0 N —— M L 0

That is, we have an embedding ¢ : N < M, and an isomorphism L = M/(N).

Lemma 1.0.7. Let
0 N M L 0

be an SES of R-modules. Then M is Noetherian (resp. Artinian) if and only if N and L are Noetherian
(resp. Artinian).

Proof. We may assume without loss of generality that N is a submodule of M. Let P, C P, C ... be an
increasing (resp. decreasing) sequence of submodules of M. In this case,

NNnP,CNNPC---

is an increasing (resp. decreasing) sequence of submodules of N, hence eventually constant. Similarly,

N + P; CN+P2C-~-
N = N =

is an increasing (resp. decreasing) sequence of submodules of L = M/N, hence eventually constant. For large
n, we will have
PrCPyir NNP,=NNP,1r N4+P,=N+ Py

Hence P, = P41 for large enough n. O

Corollary 1.0.8. If My, ..., M, are Noetherian (resp. Artinian) R-modules, then My & --- & M, is
Noetherian (resp. Artinian).

Proof. By the lemma and induction. O

Recall a module homomorphism
Mo - eM,—-L

is the same as a collection of module homomorphism ¢; : M; — L. This is also true for infinite direct sums (but
not products!).

Proposition 1.0.9. For a Noetherian (resp. Artinian) ring R, every finitely generated R-module is
Noetherian (resp. Artinian).

Proof. M is finitely generated if and only if there exists a surjection R” — M for some n € N. The fact that
R"™ is Noetherian (resp. Artinian) implies that M is Noetherian (resp. Artinian), as quotients of Noetherian
(resp. Artinian) modules are Noetherian (resp. Artinian). This follows by the correspondence theorem. O



Definition 1.0.10 (algebra)
An R-algebra A is a ring A with a fixed ring homomorphism p: R — A. We will write r - a := p(r)a.

Definition 1.0.11 (noetherian algebra)

An R-algebra A is Noetherian if it is Noetherian as a ring.

Remark 1.0.12. Every R-algebra is an R-module.

Example 1.0.13

The polynomial ring k[T4, .. ., T,] is a k-algebra. Do note however that it is a finitely generated by
T, ..., T, as a k-algebra, but it is infinite dimensional as a k-vector space.

Definition 1.0.14 (algebra homomorphism)

¢ :A— Bis an R-algebra homomorphism if ¢ is a ring homomorphism and ¢(r-14) =r - 15.

Equivalently, it is a ring homomorphisms which is also an R-linear map.

Definition 1.0.15 (finitely generated algebra)

An R-algebra A is finitely generated if there exists a surjective R-algebra homomorphism R[Ty, ..., T, —
A for some n € N.

Theorem 1.0.16 (Hilbert basis theorem). Every finitely generated algebra A over a Noetherian ring R is
Noetherian (as a ring).

For example, if k is a field, then k[T, ..., T,] is Noetherian.

Proof It suffices to prove for A = R[Ty,..., T, since every finitely generated algebra is a quotient of
R, ..., T,] Moreover, by induction, suffices to prove the result for A = R[T].
Let a be an ideal of A= R[T]. For every i > 0, define
a(i) = {co | cot' + -+ ¢t° € a}
for the set of all leading coeffients of elements of degree i in a (and containing 0). In this case, a(i) C R is an
ideal, and we have an ascending chain of ideals

a(i) Ca(i+1)C---

Since R is Noetherian, each a is finitely generated (as an ideal), and the ascending sequence of ideal stabilises.
That s,

a(m’) = a(m)
for all m" > m. We write a(i) = (b;1, ..., bim.). where b;; € R. Let f;; € a be a polynomial of degree i, with
leading coefficient b; ;. Define the new ideal

b=(f,[i<m1<j<m)<RT|

In this case, b(i) = a(i) for all i. By construction, b C a.

Suppose for contradiction that a € b. Take f € a\ b of minimal degree i. But b(i) = a(i), and so there
exists g € b, of degree i, and with the same leading coefficient as f. That is, deg(f — g) < i. By minimality,
f—geb andsof=(f—g)+ g < b Contradiction. O

Therefore, if we have a subset S C R[T, .. ., Ta)ll, then (S) = (Sp), where Sp C S is finite.

Lecture 2



2 Tensor products

Let M, N be R-modules. An informal definition of their tensor product is

4

M@RN=‘|ZTTI,‘®D(

i=1

m[e/\/l,n,-E/\/]»

where we have the relations (m1 +m)@n=m&n+my®@n, m® (N1 + nz2) = m ny + m ® ny, and that
forre R (rm)®@n=r(m®n)=m® (rn).

For example, consider Z/2 ®z Z/3. Then

XQU=03X®y=x®3y)=x®0=0
and so, Z[2 @z Z/3 = 0. On the other hand, if we have vector spaces, then
R" ®]R Rf =~ Rm@

Recall f : Mx N — L is R-bilinear if n — f(mg, n) and m — f(m, ng) are R-linear for all my € M, ny € N.
Definition 2.0.1 (tensor product of modules)
Let M, N be R-modules, let

F = R¥MN = spang {emn | m € m,ne N}

be the free module indexed by m x n, and define K C F for the submodule generated by the relations
(where we write (m, n) for ey n)

(m, nq) 4+ (m, n2) = (m, n1 + ny)
(m1, n) + (m2, n) = (my + mg, n)
r(m,n) = (rm,n)
r(m,n)=(m,rn)
The tensor product is
]:
M®R N = E

We have an R-bilinear map

imon - Mx N —=>MerN

(m,n)— m®n

Proposition 2.0.2 (universal property of tensor product). For every R-module L and any R-bilinear map
f:Mx N — L there exists a unique R-linear h: M ® N — L, making the diagram

Mx N —YN s Mep N

commute.

Proof. Uniqueness is clear, since we must have that

h(m & n) = f(m,n)



since the pure tensors generate, h must be unique, if it exists. Therefore, suffices to show the above extends to
an R-linear map M ®@r N — L. This follows from the map

R@(MX/\/) — L

e(m,n) +> f(m, n)

extending to a linear map (by the universal property of the direct sum), and that this map vanishes on K.
Therefore, h extends to M ®@g N from the pure tensors. O

Proposition 2.0.3. Let M, N be R-modules, T an R-module, j : M x N — T an R-bilinear map,
(T, ) satisfying the universal property of tensors. Then there exists a unique R-linear isomorphism
@¢: M®N — T, such that

M x N

M®r N T

commutes.

Proof. By the universal property of tensor product, such a map ¢ exists, with ¢@(m ® n) = j(m, n). Similarly, we
have a homomorphism ¢y : T — M ®g N. In particular,

Yo@oiven = iven = Wyen OlveN

In particular, by uniqueness in the universal property, we must have that ¢y o ¢ = idugn- O

Proposition 2.0.4. Suppose M, N are R-modules, then

Zm[®ni=0€/\/f®RN

if and only if for all R-modules L, and every R-bilinear map f : M x N — L has

> f(mi,n) =0

Proof. Suppose > m; ® n; =0, let f : M x N — L be bilinear. Then f factors through M x N - M ®g N,
and we can write

Mx N —2N s M@ N

h

In this case, we have that

Y fmin) =Y hli(m,n) =) him;®n)=h (Zmi ®

= h(0) =0

Conversly, if
Z m; ® n; 7& 0
then by definition,
Z {men(mi, ni) 0

Lecture 3



Example 2.0.5

Let k be a field, and consider the tensor product
k™ ® kf
Suppose k™ has basis {e1, ..., em}, and k? has basis {fi,..., fo}, then

K" ® k' = spany{vew|v e k", w ek} =span, {e; ®f;}

Claim 2.0.6. {e; ® f;} is a basis.

Proof. Suppose we have
Y ay(ei®f) =0
i
For every 1 <a < m,1 < b <&, define a bilinear map
Tab : k™ x k¥ — k
Tab((vi), (Wj)) = vaws

This is a k-bilinear map. By proposition [20.4]

0= Z aij Tap(ei, f;) = Z 0;j0iqOjb = Qb
ij ij

Example 2.0.7

More concretely, let us consider R? ® R?. We have a basis of size 4, given by
e1®h,e1®hH e2®f,e2®h
What do pure tensors look like?
(ae + Bex) ® (vhi + 0h) = ay(e1 ® fi) + ad(er ® ) + By(ex ® f1) + Bo(e; @ f)
These are not generic elements of R? ® R?, since the vectors
(ay,@0) and (By,B9)
are linearly dependent. In particular,
er®h+21hHL+3e,0H +4e,Q 1)

is not a pure tensor.

Example 2.0.8 (warning)
First consider
7 ®7, 7.2

In this case,
21=192=10=0

Now consider
27 @z, 7|2



But in this case,
201+0

since we can define a bilinear map

B :2Z x Z]2 — 72

B(2m, x) = mx

In this case,
B(2,1)=1-1=1%+0

However, if M’ < M, N’ < N are submodules, and
Z m®n; = 0

in M @ N/, then

Zmi®ni=0

in M® N.

Proposition 2.0.9. If
ZITI,‘@H,':OEM(X)RN

then there are finitely generated R-submodules M’ < M, N < N, such that

Zm[®n1:0€/\/l/®;?/\/’

Intuitively, a proof that the sum is zero is finite, and so it can only involve finitely many expressions. We
can take them to be the generators.

Proof
ROMxN)

(®n=0EMaN =
§:m®n eEM® 5

Z €(mi,n) = 0e K
i

This means that we can write the left hand side as a finite sum of the generators of K. Taking all the elements
of M and N which appear, gives the result. O

then

Corollary 2.0.10. Let A, B be torsion-free abelian groups, then A ®z B is torsion free.

Proof. Suppose
=0c€A®B

n- (Z(J,’(@b,‘

for some n > 1. By proposition there exists finitely generated subgroups A’ < A, B’ < B, such that

n- (ZG[@[),‘
i

By the structure theorem of finitely generated abelian groups, A’ = Z", B’ = Z°, and so we have that

=0cA®B

A/®B/;Zr5

which is torsion free. Contradiction. O



Example 2.0.11

(CZ ®(C (C3 =~ (C6

as C-vector spaces, and we also have that Cb Z R'™ as R-vector spaces. On the other hand,

CZ ®]R (C3 ; R4 ®]R Rﬁ ; R24

Proposition 2.0.12. 1. MNZ=N®N

2 MAN)®P=M®(N®P)=M®®N® P, where we define M ® N ® P using trilinear maps.
3 (M) ®P =@M ®P)

4. RrM=M,

Proof. See examples sheet 1.

Example 2.0.13
Using proposition we can compute

R"® R’ = (@L1R) ® (&/_R)
= @R
~ Rm€

2.1 Tensor product of R-linear maps

Proposition 2.1.1. For R-linear maps f : M — M’, g : N — N, then there exists a unique R-linear map

feg MN—-MeN
with

(f®g)(m ®n) = f(m) ® g(n)
Proof. Uniqueness is clear since the pure tensors generate. For existence, we can use the universal property
on the R-bilinear map

T-MxN—->MeN
T(m, n) = 1(m)®g(n)

O

Lecture 4
Exercise: (f ® g)o(h® i) = (foh)® (hoi). We can check this in pure tensors, since they generate. But
the statement is clear in that case.

Example 2.1.2
Let T: k% = k and S: k? — k7 be linear. Then

(T®S)e:®e)) = T(e) ®S(ej) = Y [TalShylfe ® f,)
ot



where [T] is the matrix representation of T. If we order the basis of k? ® k” by

and a similar ordering for the range, then

[ThiS -+ [TheS
[T®S]= T
[7}615 [T}cas

is the Kronecker product of [T] and [S].

Proposition 2.1.3. Let f : M — M’, g : N — N’ be R-linear.
(i) If f, g are isomorphisms, then so is f ® g,

(ii) if f and g are surjective, so is f ® g.

Proof. For (i), (' ® g~") = (f ® g)~", since we have that (f® g)o (h® i) = (foh)® (hoi).
For (ii), notice that im(f ® g) contains all pure tensors in M’ @ N". O

Example 2.1.4
If f:7Z — Z, f(n) = pn, then we have

(feid):ZRZp > ZRZlp

is the zero map, as
(feid)(c®b)=(pa)®@b=0a® (ph)=a®0=0

But Z ® Z/p = Z[p which is nonzero.

2.2 Tensor product of algebras

Let B, C be R-algebras. Then we have B®g C as an R-module. We would like to define the multiplication by
(b®c)(b'® )= (bb) ® (cC)

This is well-defined. Fix (b, c) € B x C, then we have a bilinear map

BxC—-B®C
(b', ) = (bb') ® (cc)

which gives us a map B® C — B'® ', with
b & — (bb') ® (cc)

It is easy to show that this then satisfies the ring axioms. Hence B® C is a ring. The R-algebra structure will
be given by

R—-B®C
r—(rg)®@1c=r(13®@1c) =13 (rl¢)

Example 2.2.1

There is an isomorphism

10



Proof. We have an R-basis for the left hand side, which is
Xk @t
and we also have a R-basis for the right hand side,

xkt?

Define
p(x* ® tf) = x*t!

which gives us a R-module isomorphism. Moreover,
p(rel)=r1=1
and by distributivity, suffices to show
O((x* ® t)(x™ @ 7)) = xk¢lxm "
which is clear by definition. O

More generally,

R[X1 ..... Xn} R[l’1 ,,,,, tr] ~ /‘_\)[X1 ..... Xn, By, ..., l’,} ~ R[X1 ,,,,, Xn, t1, ..., l’,]
/ J - L e+ Je
where ¢ = () < R[x, ..., Xn b1, ..., t;] denotes the extension of /.

Example 2.2.2

CE;:Z';] ® C[V;'”] is isomorphic as C-algebras to

Clx,y,z, w, u]
(f.g.h)

Proposition 2.2.3 (universal property of tensor product of algebras). Let A, B be R-algebras, for every
R-algebra C, and R-algebra homomorphisms f1 : A — C and f; : B — C, there exists a unique R-algebra
map

such that

(A

h:A®B — C
A——— A

B+*-B
x /
commutes, where ia(a) = a® 1, ig(b) = 1 ® b. Moreover, this characterises (A® B, ia, ig) uniquely (up
to isomorphism).

O4=-®

Proof. A® B is generated, as an R-algebra, by

{a®1|aceAAU{1®b|be B}

This then implies the uniqueness of h, as it defines h on the generators. For the existence, define the bilinear
map A x B — C, given by

f(a, b) = fi(a)f2(b)

Using the universal property of tensor product of modules, there exists h : A® B — C which is R-linear, with

h(a ® b) = f(a)f2(b)

It is then easy to show that h is an algebra homomorphism. O

i



Consider R[xy, . . ., X b, t;] from above. We have natural embeddings from R[xy, . . ., xp)and Rty, .. ., t).
Given f1, f, as above, we see that the image of the x; is determined by fy, and the image of ¢; is determined by
f>. Therefore,

as it satisfies the universal property. Lecture 5
ecture

If we have f : A — A', g : B — B’ which are algebra homomorphisms, then the tensor product of R-linear
maps,
feg: AB—->A®FB

is an R-algebra homomorphism. Moreover, we have R-algebra isomorphisms
o (RIN®(RI) = RII+))
e A B=BQ®A,
e ARBI®@ C=A® (B® (),
e AR B" = (A® B)",

2.3 Restriction and extension of scalars
Restriction of scalars

We will have a ring homomorphisms f : R — S, let M be an S-module, so M is also an R-module,
r-m:=f(r)m
for r € R, m € M. The fact that this is a module is clear by our definition, since it is just the composition

R ! S End(M)

Example 2.3.1

If we consider the embedding R — C, then C" is a C-vector space, but also an R-vector space, of
dimension 2n.

Extension of scalars

Let f : R — S be a ring homomorphism, M be an S-module (thus an R-module by restriction of scalars), N is

an R-module. From this, we can form
M®r N

which is an R-module. In fact, M ®% N is also an S-module, with
s-(m®n):=(sm®n
Is this well defined? We have an R-bilinear map

MxN-—->MerN

(m,n)— (sm)®n
By the universal property, we have a map
he t M@r N = M@r N
which is R-linear, and hs(m ® n) = (sm) ® n. Now define
@: S — EndM®r N)
p(s) = hs

Which is a ring homomorphism, and so, we have an S-module structure on M ®z N.

12



Example 2.3.2
We know from before that S®r R = S as R-module, with

sQr—s-f(r)
But in fact, this is also S-linear, since
S (s®@r)=(s's)®@rs's f(r)

For example, this implies that
CerR=C

as C-vector spaces.

Example 2.3.3
If M is an S-module, N; are R-modules, then

Mer [P N | =PMer N)
i i
as S-modules.
In this case,
CerR"=C"
as C-vector spaces.
Example 2.3.4
Consider C" as a C-module. Restricting to R,
cn = RZn

as R-vector spaces. Now extending scalars,
(C ®R RZn =~ (CZn

as C-vector spaces.

Example 2.3.5

Now consider R” as an R-vector space. Extending scalars,
R"®@g C = C"

over C. Restricting to R,
(Cn =~ RZn

Example 2.3.6
Consider Z" as an Z-module, and let f : Z — Z/2 be the quotient map. Extending scalars,

(Z12) @7 Z" = (Z2)"

13



Example 2.3.7

Consider
(Cn ®R R?

One way to compute this:
cn ®r Ré ;R Rzn ® Ré ;R R2n€ ;]R (Cn?

where =g denotes isomorphism as R-vector spaces. Another way to do this:
C"®@r R’ =¢ C" ®c (C@®rR’) ¢ C" @ C/ =¢ C™

The first isomorphism is given by
vu— v (1u)

Combining these, the isomorphism C" ®g R’ — C" ® C’ sends
VU VR U

where we use the inclusion R? — C¥.

Proposition 2.3.8. Let M be an S-module, N be an R-module, then
M@r N=M®gs (S ®r N)
as S-modules. In particular, the isomorphism is given by

mn— m® (1®n)
(sm)@n«—m® (s n)

Intuitively, what this is saying is that we only need to consider the special case of extension by scalars,
which is N®g S.
Proposition 2.3.9. Let M, M’ be S-modules, N, N’ be R-modules, then we have S-module isomorphisms
() MIENZ=N®rMviam®@n—n®m
(i) M®r N)®r N'=M®r (N®r N
(it) MRrN)@s M =MQs (N g M)
(v) M®r (B Ni) = Di(M®r N)

Proof. We will prove (iii). Using proposition [23:8] we have

MerN)@s M = (M®s (N®rS)) ®s M
= M®s ((N®r S)®@s M)
= M®s (N g M)

Example 2.3.10
As C-vector spaces,

C®r (R°®rR") = (C®rRY) ®c (CRrRY) = C'@Ck=C*

14



Corollary 2.3.11. If N, N" are R-modules, then

SARIN®N)Zs (S® N)®s (S® N

Proof. By proposition [2.3:8] and proposition 239 (ii):
SRR (IN®R N)Z (S®: N)®r N Z(S®r N) ®s (S ®r N

O
Lecture 6
By induction, we have that
SOR(N1®r - Qr No) = (S®r Ni) ®s - ®s (S ®r N1)
Extension of scalars for morphisms
Let f : N — N’ be R-linear, where N, N" are R-modules, M is an S-module. Then we have a map
df - Mer N —->Mep N
In particular, it is S-linear, as
(id®f)(s(m @ n)) = (IdF)((sm) @ n) = (sm) @ f(n) = s(m ® f(n)) = s(id ®F)(m & n)
Given T : R" — R? which is an R-linear map, R" with basis e, ..., e, and R? with basis fi, ..., fo. In

this case, consider
d®T:C®R" > CQR’

Note that C ® R” has basis 1® eq, ..., 1® e,. In particular,
¢ ¢
(deT)(1ee)=10T(e)=10) Tifi=) Ti(1&f)
=1 =1
Thus, T and id®T have the same matrix representation.

Extension of scalars of algebras

Let A, B be R-algebras. Recall that in this case, AQgr B is also an R-algebra. In fact, A®g B is an A-algebra
(and by symmetry a B-algebra). For example, we have

A— AQRrB
a—a®
Example 2.3.12
S®rRX,. .., Xp) =s S, ..., Xp] (where =5 denotes isomorphism of S-algebras).

and that ¢ preserves multiplication. O

More generally, we have that

15



where /¢ = (f(/)) is the ideal generated by / under the ring homomorphism f : R — S.

Proposition 2.3.13. Suppose A is an R-algebra, B is an S-algebra, then A ®z B is an S-algebra.

Moreover,
A ®r B ;S—alg (A ®r S) ® B

Proof. A®r B is a B-algebra, and we can then restrict scalats to S. The isomorphism is clear from the module
case, as all we need to check is it preserves multiplication. O

Proposition 2.3.14. Suppose A, B are R-algebras, then

S ®r (A®R B) =s.4iq (S ®r A) ®s (S ®r B)

2.4 Exactness properties of the tensor product

Let M be a fixed R-module. Define
Tu(N) =M®®r N

where N is an R-module. If f : N — N’ is R-linear, then we have an induced map
Tm(f) = dy &F - Tiy(N) — Ty(N)

Suppose we have an exact sequence

A-tLsB 25 0
of R-modules. We will show that we have an exact sequence

Tu(f T
w(f) vlg)

Tam(A) Tm(B) Tm(C) —— 0

That is, Tas is a right exact functor from R-modules to R-modules.
Definition 2.4.1 (Hom)
Suppose Q, P are R-modules, then we can define

Homgp(Q, P) = {f: Q — P | fis R-linear}

This is an R-module itself, with
(r-)g)=r-¢lq)

Definition 2.4.2 (Hom functors)

We have two functors,
1. Homg(Q, ), where Q is a fixed R-module,
2. Homg(-, P), where P is a fixed R-module.
Suppose we have f : N — N’ which is R-linear, then the action on morphisms are

Homg(Q, ) : Homg(Q, N) — Homg(Q, N')
pr— foe=: f(p)

16



On the other hand, Homg(-, P) is contravariant. That is,

Homg(f, P) : Homg(N', P) — Homg(N, P)
pr— pof =g

Proposition 2.4.3 (left exactness of the Hom-functors). 1. 1f

0—s ATl -9,

is exact, then so is

00— Homg(Q, A) — 20N o tyome(0, B) — @9y Homg(0, €)
2. If
A—-LsB—2sc 0
is exact, then so is
0 — % Homg(C, P) —™@P)  ome(B, P) — 2P Home(A, P)
In both cases, we say that the respective Hom functor is left exact.
Proof. Omitted. O

Lemma 2.4.4. Consider a (not necessarily exact) sequence
A-LlsB2scC
and suppose for all R-module P, the sequence
Homg(C, P) —— Homg(B, P) —— Homg(A, P)

is exact, then the original sequence is exact.

Proof. Step 1: let P = C. Then we get the sequence
Homg(C, C) —— Homg(B, C) —— Homg(A, C)

which is exact by assumption. Under this,
ide — idcog=g—gof

Thus, we have that g o f =0, and so im(f) C ker(g).

Step 2: Let P = coker f = .lm[ff). In this case, we have

Hom(C, coker(f)) —— Hom(B, coker(f)) —— Hom(A, coker(f))

Let h : B — coker(f) denote the quotient map. Then hof = 0, and so by exactness, there exists e : C — coker(f),
with
Hom(g, coker(f))(e) =eog=h

In particular, ker(g) C ker(h) = im(f). O

Recall that we have a bijection Homg(M®g N, L) = Bil(M x N, L) from the universal property of the tensor
product. But
Bil(M x N, L) = Homg(N, Homg(M, L))

17



and so we have an isomorphism
Homp(M ® N, L) = Homg(N, Homg(M, L))
sending ¢ to n+— (m— @(m ® n))

Proposition 2.4.5. Let M be an R-module. Then Ty is a right exact functor.

Proof. Given an exact sequence

AlsB s 0
Fix an R-module P. We will apply the functors Homg(:, P), then the functor Homg(M, -), to get the sequence
0 —— Homg(M, Homg(C, P)) —— Homg(M, Homg(B, P)) —— Homg(M, Homg(A, P))

which is exact as the Hom functors are left exact. Using the isomorphism above, and noting that the square

Homg(M, Homg(C, P)) —— Homg(M, Homg(B, P))

HompM ® C, P) ———— Homgp(M ® B, P)
commutes, we have an exact sequence
0 —— HompM® C,P) —— Hom(M ® B, P) —— Hom(M ® A, P)
Since P is arbitrary, using lemma we see that

Tm(A) —— Tm(B) —— Tu(C) —— 0

is exact, as required. O

Remark 2.4.6. Note on the other hand that
A—s B—— C

being exact does not imply that
Tu(A) —— Tu(B) —— Tu(C)

is exact.
For example, consider the exact sequence

0——7Z 257

This is exact, but
0 — ZQZR —25 ZRZL2

s not.

2.5 Flat modules - a first encounter

Definition 2.5.1 (flat module)

An R-module M is flat if for any injective R-module homomorphism N — N’, the map Tpy(f) : Tu(N) —
Tm(N') is injective.

18
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Example 2.5.2
Z/[2 is not a flat Z-module, as seen in the remark above.

Example 2.5.3

commuting square

ROl N — 98T, pol g N/

! !

(R® N)®! (R® N)®!

! !

NEB/ ;ﬁl) (N/)EB/
where the vertical maps are isomorphisms, and
r¥((n)ier) = (Fnd)ies

It is clear that £/ is injective.

as it is free.

Definition 2.5.5 (torsion free)

An R-module is torsion free if for any r € R, m € M, rm = 0 implies that m = 0 or r is a zero divisor.

Proposition 2.5.6. Flat modules are torsion free.

Free modules are flat. To see this, suppose f : N — N’ is an injective R-linear map. Then we have the

Remark 2.5.4. With this, we see that the base ring matters. Z/2 is not a flat Z-module, but it is a flat Z/2-module

Proof. Suppose M was not torsion free. Then there exists ry € R, my € M with ry not a zero divisor, mg = 0,

such that rymg = 0. We can define a map
fR—R
f(x) = rox
f is injective as rp is not a zero divisor. Thus, we have the square

MoR —9% L MeR

! !

0
But the bottom map is not injective, as it sends mg to zero.

For a specical case of the above:
Proposition 2.5.7. Let R be an integral domain, / a non-zero, non-unit ideal. Then R// is not flat.

Proof. Since | #+ R, R/I is non-zero. Choose x € [\ 0, and consider the map
fR->R

f(r) = xr

This is an injective map. But the induced map on R ® (R//) = R/I is multiplication by x, which is the zero

map.

19
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Proposition 2.5.8 (criterion for flatness). Let M be an R-module. Then teh following are equivalent:

(i) Tas preserves exactness of all exact sequences,
(ii) Tas preserves exactness of short exact sequences,
(iit) Ty is flat,

(v) if f: N — N'is R-linear and injective, N, N’ are finitely generated R-modules, then idy ®f is
injective.

Proof () = (i) = (iii) = (iv) is clear.
For (i) = (i), suppose
A-lsB s

is exact, then we have a short exact sequence

-
@
«Q

A
0 * Ker(l)

im(qg) 0
Thus, we have a short exact sequence
0 —— /\/I®ﬁm —— M®B —— M®im(g) — 0

That is, ker(idy ®¢) = im(idy ®f) = im(idys ®f). Thus the sequence

MRA — MRB —— M®C

is exact.
We will omit the proof of (iv) = (iii), it can be found in the lecturer’s notes.
For (iii) = (ii), we note that this follows from Ty, being right exact. O

Proposition 2.5.9. Let f : R — S be a ring homomorphism, M is a flat R-module. Then S ®g M is a flat
S-module.

Proof Let g : N — N’ be an injective S-linear map. Then the square

(SORM@s N ——— (S®rM)®@s N

| !

M®&r N M@r N’

commutes. But the bottom map is injective as M s flat. O

Lecture 8

2.6 Further examples of tensor products

Example 2.6.1
First consider x ® y € Q ®7 (Z/n). We can write

X X
x®g=ng®y=g®ny=0

and so, Q ®z (Z/n) = 0. We used the fact that Q is a divisible group, that is, for all x € Q, n € N, there
exists y € Q such that ny = x. Moreover, we also used the fact that Z/n is torsion.
More generally,
divisible ® torsion = 0

and so

(Q/Z) ®z (Q/Z)

20



But for an R-module M which is non-zero, if M s finitely generated, then M ®z M + 0.

Example 2.6.2

Let V be a Q vector space, then
Q®qV =V

But in this case, we also have that
QezV =V

with x @ v — xv.

Proof. Every tensor in Q ®z V is pure, since we can write

: 1 1 g i i
%{®VL=ZE®(GLVI)=ZE®%[VI:Z1®%¢Vl=1®z%

Clearly this map is surjective, and it is easy to see that if xv = 0 then either x =0 or v = 0. O

Example 2.6.3
Recall that

M ®pr

D

iel

;@W®m

iel

On the other hand, if we consider the direct product, we have a map

Me[ INi—[ MeN)

m® (ni) = (m @ ny)

which is in general, not an isomorphism. For example, consider
Z Z
Q®z |_| an = |_| Q® ?

n>1 n>1
But from above, Q ® (Z/2") = 0, and so the right hand side is zero. For the left hand side, take
Z
g=wy¢eﬂ?
n>1

Note that g has infinite order, and so it generates a subgroup isomorphic to Z. But recall that

Q®zZ=Q
With this, we have an injective map
Z
Q@ (9)—Qe |_1| >

We will see later that Q is a flat Z-module.

Example 2.6.4

Consider C ®r C as an C-algebra, where we first restrict scalars on the right copy of C, and extend
scalars using the left copy.
Recall that as a C-vector space,

CQrC=CrR>Z=C?
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and we have a basis C ®g C, whichis 1® 1,1 ® i as a C-vector space.
To consider this as a C-algebra, then

Rit] ~ C[t Clt] ~ [t Clt]

CerC=Cor o i =y~ =0+ (-0 G+ =€

where we used the Chinese remainder theorem. On a pure tensor, we have
(@4 bi)@(c+di)— (a+ bi))® [c+dt] — (a+ bi)c+ dt]
N——
coset of c+dt

We can compute this, to get
P = (ac + bdit) + (ibc + tad)

and we then have
P (ac — bd + i(bc+ ad),ac + bd + i(bc — ad))

If we set x = a + bi,y = c + di, then the result is just (xy, xgy).

3 Localisation

Definition 3.0.1 (multiplicative subset)

A multiplicative(ly closed) subset S C R such that
1.1e€5,
2. ifa,be S, thenab e S.

If UC R is any set, then the multiplicative closure S of U is the set of

[ u
i=1
where u; € U, n > 0.
Example 3.0.2

If R is an integral domain, then S = R\ {0} is multiplicative. More generally, if p < R is a prime ideal
(of any ring R), then S = R\ p is multiplicative.

Example 3.0.3
If x € R, then S = {1,x,x2, ...} is multiplicative.

Example 3.0.4

Q is obtained from Z by adding inverses for the elements of the multiplicative subset Z \ {0}, and we
have a ring homomorphism Z — Q.

We will generalise this example to general rings R, and with arbitrary multiplicative subsets S C R. But

in general, we will lose injectivity. Lecture 9
ecture

3.1 Construction
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Definition 3.1.1 (localisation)
Let S C R be a multiplicative set, M is an R-module. Consider the set M x S, with the relation

(m1,s1) ~ (m2, sp) if there exists u € S, such that
u(somy —s1my) =0

This is an equivalence relation, and we S™'M for the set of equivalence classes. We write

= =[(m.9)

for the equivalence class. Finally, we write

my n my  MmiSy + M3sy
51 52 S152

r-

and
m rm
s s

The above makes S~™'M into an R-module. We call S~"M the localisation of M at S.
If M = R, we can make S™'R into a ring by

n o n
S1052

Next, we note that we have an S~'R-module structure on S~'M, via

rom_rm
s t st
We have localisation maps:
R—S'R
s -
1
which is a ring homomorphism, and
M — SL—1Mm
i
s —
1

which is an R-linear map.

We check that ~ above defines an equivalence relation: Reflexivity and symmetry are clear. Say (mq, s1) ~
(m2,s2) and (m2, s2) ~ (m3, s3). That is, there exists u, v € S such that

u(somy — symy) = v(szmy — sym3) =0
Multiplying the first term by vs3 and the second by usq, we get

uvsys3mq = uvs3s1my

uvs1s3my = uvs1s,ms

and so, we have that
uvsy(szmqy —sym3) =0

Since S is multiplicatively closed, we are done.
Proposition 3.1.2 (universal property of S™'R). Let U C R be any subset, and let S C R be the

multiplicative closure of U. Let f : R — B be a ring homomorphism, such that f(u) is a unit for all v € U.
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Then there exists a unique ring homomorphism h : S™'R — B, such that the diagram
R—"T 4 sR
) h
B
commutes. That s, .
=5[]

Another way of thinking about this is that we have a bijection
Homging(S™'R, B) <> {¢ : R — B ring hom.,, with ¢(U) C B*}
given by sending f to r f ().

Proof. Let f : R — B be a ring homomorphism, with f(U) C B*. In this case, f(S) C B* as well. We want
h:S™'R — B, with

First, such h must satisfy:

Thus, we must have that h(1/s) = f(s)~'. With this, we have

r r 1
h(f):h(f)h ) = (s
H=n(5)n (1) =
But we need to check if h is well defined. That is, if ri/sy = r2/sy, then there exists t € S such that

t(sor — s1r2) = 0, or equivalently,
tsory = tsyr

Applying f, we get
{8 (s2)f(r1) = T(O)f (s1)(r2)

But every element in the above equality are in B>, and so we are done. It is easy to check that h is a ring
homomorphism. O

Proposition 3.1.3. If (A, j) satisfies the same universal property of (S™'R, 1), where (r) = r/1, then there
exists an isomorphism S™'R — A, sending

<= Jnils)™

Facts

1. Take r/s € S7'R, then

0
=7 & there exists u € S with ur=20

L
s
2. S 'TR=0ifandonlyif 0 € S.

3.
ker(t: R — ST'R) = {r € R| there exists u € S with ur = 0}

4. In particular, ¢ is injective if and only if S does not contain any zero divisors.

5. tis always an eplmorphisnﬂ but usually not surjective. For example, ¢ : Z — Q is an epimorphism. If
we have f, g : Q — A ring homomorphisms, with fot= goy then f = g.

TA morphism f : X — Y (in some category) is called an epimorphism if for all g1, g2 : Y — Z, with g1 o f = g2 o f, we have g1 = g>.
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Example 3.1.4
For f € R, let S={f"|n >0} Then we define R, = S7'R.

If R=727,f =2 then
Ri={3loczn20}-z5]

Notation 3.1.5. In this course, we will write:
e 7/n for the finite ring,
e 7, for the 2-adic integers,

e Z[1/2] for the above ring.

Example 3.1.6

For a ring R, let Spec(R) denote its prime spectrum. For p € Spec(R), we can let S = R\ p, and we
write Ry = (R\ p)~'R.
If R =7, p=(3), then

Ze={7 | a.b € Z.31b}

Proposition 3.1.7. If M is an R-module, S C R a multiplicative subset, then we have an isomorphism:

STTR@rM — S™'M

Proof. We can define a bilinear map

and thus, by the universal property we haev ¢ : STTR ®r M — S™'M. This is R-linear, and it is easy to see
that ¢ is also S™'R-linear. It is clear that ¢ is surjective, since

1 ® m
~—oml ==
P15 s
We want to show that every tensor

t=ZQ®m[eS—1R®RM

- i
i

is prime. Define s =[];s;, and t; = |_|i%/. s;. In this case,

Zg—ig)m,-:Z%@(rim,-)

L

= Z%@(nmi)

1 )
=-0® ritim;
5 ,
L
Using this, if
- ®m _E_O_Q
¢ s T
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That is, there exists u € S, such that um = 0. In this case,

u 1
- @m=—Q@m=—®Q (um)=0
s us us

With this, STTR ® (- - -) acts on R-modules. But in fact, it also acts on R-linear maps.
Lecture 10

Proposition 3.1.8 (localisation is a functor). Let M be an R-module, S C R a multiplicative subset. Let
f: N — N’ be an R-linear map. Then the following square commutes:

idg—1, ®f

STTR@N STTRe N

STIN——— SNV
s

In particular,
g () 2 f0)
s (5) -

S

With this, the functors STTR ® (1) and S~'(-) are naturally isomorphic.

Remark 3.1.9. Let A be an R-algebra, STTR®A — S~'Ais S~'R-linear, and also an isomorphism of S~'R-algebras.

Lemma 3.1.10. If M is an S~ "R-module, then, we can restrict scalars on M from S™'R to R, then apply
S7(). Then

STTMZEM
as S~'R-modules. Equivalently,
MZSTReM
as S~'R-modules.
Proof. We can see that the map
M— ST'M
s M
N
1
is ST'R-linear. Surjectivity and injectivity are clear. O

Proposition 3.1.11. Let M be an R-module, L an S~ "R-module, f : M — L is R-linear. Then there exists
a unique h : S'M — L which is S™'R-linear, such that

o=n(2)

Proof We know that S7'()® ST'R® (), and so it suffices to prove the result for the tensor product. With this,
the localisation map is

M= ST'TReM

1
m|—>?®m
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Let f : M — L be R-linear. We then have that
h:idsip®f :STTRRrM — ST'R®R L
But the previous lemma shows that ST'TR ®z L = L as S~'R-modules. In particular,
h (5 ®m) = Lt(m)
s s

For the uniqueness of h, it follows from the fact that elements of the form % ® m generate ST'R ®p M as an
S~'R-module. O
Proposition 3.1.12 (the functor S™'R is exact). If

A—LsB—2,¢C
is an exact sequence of R-modules, then

SA—SL L, sg 29, sC

is an exact sequence of S™'R-modules.

Proof
(S'g)o(SM)=5STgof)=5"(0)=0

and so im(S7'f) C ker(S7'g). Let
g € ker(S7'g)

Then

That is, there exists u € S, such that u - g(b) = 0. But g is R-linear, u € R, and so g(ub) = 0, which means
that ub &€ ker(g) = im(f). Thus, there exists a € A such that f(a) = ub. Now

b b f
_ub_fla) _ oy (i) e (S
s us us us
Equivalently, S™'R is a flat R-module. Suppose (: N — M is the inclusion map, then
STH:STIN=ST'M

is injective, and so the expression

[ ]

makes sense in ST'N and S~ (M).

Proposition 3.1.13. Let M be an R-module, N, P submodules of M. Then
i) SN+ P)=STIN+STP.
ity SIINNP)=STITNNSTP,
(i) (STTM)/(STTN) = ST (MN) as ST'R modules via

m+ N
s

EJr571N<—>
s
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L2 and the right hand side consists of

Proof. For (i), the left hand side consists of elements of the form
elements of the form & + %. The result is then clear.

For (ii), C is clear. Given x € STITN N STTP, that is,

forne N,p € P,sy,5, € S. But then there exists u € S, such that us,n = usip = w € NN P. With this,

n uson w
x——=—2 = e ST NN P)
51 us1s) us1s)

For (iit), consider the exact sequence

0 N M MIN 0
Applying the exact functor S~
0 —— SN —3 S'™M —— STTMIN) —— 0

But this immediately gives that

S™'™™M
1 ~
ST MIN) = <IN
as S~'R-modules. Computing the respective maps gives the result. O

Proposition 3.1.14. If M, N are R-modules, then

STM®s1r STINE ST M®r N)

Proof. We have the isomorphism from extension of scalars:

(STTR@r M) Rs-12 (STTR@r N) Z STTR®g (M ®r N)

A special case of this is that if p is a prime ideal of R, then

/\/’p ®Rp /\/p = (M ®R /\/)P

3.2 Extension and contraction of ideals

Recall if f: A— B is a ring homomorphism, we define the contraction of b < B as
b=f"b) <A

and the extension of a < A as

In examples sheet 1, we have a bijection
{contracted ideals of A} < {extended ideals of B}

To see this, we have that an ideal a is contracted if and only if @ = a®, and an ideal b is extended if and only
if b = b, and so the bijection is given by extension/contraction.

Let S be a multiplicative subset of R, and we will consider the ring homomorphism R — S™'R, given by
r— r/1. For an ideal a of R, we have the extension

a®*=S"a< SR

and for an ideal b of ST'R, we have the contraction b¢ < R.
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Proposition 3.2.1.

aea,seS]»

Proof. a® is the ideal generated by a/1 for ¢ € a, and so D holds. But the right hand side is already an ideal,
and so by minimality, equality holds. O

Proposition 3.2.2. a° = | J,_s(a:s) where (a:s) = {r e R|rs € a}.

Proof. Take r € | J..g(a:s). Thatis, rs =a € a, and so in S7'R,

- = —=-€ca
1 1 1
and so r € a®“. Conversly, if r € a®¢, then
roa
1 s
for some a € a,s € S. But this means that there exists u € S, such that urs = ua. With this, r € (a : us),
us € S as S is multiplicative. O

Now suppose b is an ideal of ST'R. Then
bf—{reR“eb}

Proposition 3.2.3. b® = b.

Proof. C always holds. Take r/s &€ b, then r/1 € b. Thus, r € b€, and so r/1 € b, which means that
rls € bee. O

Proposition 3.2.4. Consider the localisation map R — S™'R, then
(i) Every ideal of S™'R is extended.
(i) An ideal a of R is contracted if and only if the image of S in R/a contains no zero divisors of R/a.
(i) a®* =S'"Rifandonly if aN'S + @.
(iv) We have a bijection:
{p €Spec(R) |pN'S = &} < Spec(ST'R)

pp°
q°«iq

Proof. (i) Follows from proposition 23] For (ii), a is contracted if and only if a® C a. But
a® = U(a 0 s)
seS

Thus, a®“ Caif and only if: for all r € R, if SrNa # &, then r € a. But SrNa+ is true if and only if 0+ a
is in the image of S, and r € a is the same as r+a = 0. Thus, a is contracted if and only if the image of S in
R/a contains no zero divisors.
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For (iil), suppose anN'S # @. Choose x € aN S, then
1=-¢€af

Conversely, if a® = ST'R. Then 1 € a®, and so

for some a € a,s € S, and so there exists u € S such that us = va. But us € S as it is multiplicative,
ua € a as it is an ideal.

For (iv), first consider the contraction map Spec(S™'R) — {p € Spec(R) | pN S = @}. This makes sense
as the contraction of a prime ideal is prime, and if p € Spec(R) is contracted, by (ii), we see that SN p is
empty, since R/p is an integral domain, and so the only zero divisor is zero.

Moreover, this map is injective, since it has a left inverse, as all ideals in ST'R are extended ideals, and
so q°° = q. In the other direction, for a prime ideal p &€ Spec(R), with pN'S = &, we have seen that p is
contracted, and so p° = p. With this, all we need to show is that p® is prime.

We would like to show that (ST'R)/p® is an integral domain. We know that p¢ is not all of ST'R, and so
(ST'R)/p¢ is not the zero ring. So we need to show that (S~'R)/p¢ has no zero divisors. We will do this by
embedding (S7'R)/p¢ into Frac(R/p).

Now consider the composition map

R Rlp Frac(R/p)

This has the property that the elements of S are sent to units, since S Np = @. Using the universal property
of ST'R, we hava an induced map

R Rp Frac(R/p)
2
SR
In particular,
([) _r+p
sl s+ p

It suffices to show that ker(¢) = p°. First, we see that im(¢) C S (R/p), where S is the image of S in S~'R.
With this, we cam consider ¢ : ST'R — 371(/?/]3). Take r/s € ker(¢). That is,
r+p 0

——1
sep 150 W

Then there exists u +p € S, such that
(U+p)r+p) =(ur)+p=0

That is, ur € p. Then we have that

= pe
s us
Conversely, take x € p°. Then x = p/s, and
ptp
X) = =0
o=
and so x € ker(¢p). O
In the special case where S = {1,f,---}, we can view this in terms of algebraic geometry. There, we have

a natural identification of Spec(Ry) with D(f), which is the complement of the zero set of f. The left hand side
is precisely D(f), essentially by definition.



An application

If | < R is an ideal, then the radical of I is

VI={re R|3m > 1 such that r" & [}

Proposition 3.2.5.
Vi— (] »

I<peSpec(R)

Proof. Take x € VI, then x" € I, and so for every p € Spec(R), if I C p, then x" € p, and so x € p. That is,
C holds. For the other inclusion, take x € R, x & V1. We know that / # R, and R/l is not the zero ring. Let

X € R/l be the image of x. Consider
(RIlx = {x"} (R

This is not the zero ring, since we did not invert zero. Therefore, (R//}x has a prime ideal, which corresponds
to a prime ideal of R/I which avoids X, which in turn, corresponds to a prime ideal of R, which contains /, and
avoids x. O

3.3 Local properties

Definition 3.3.1 (local ring)

Aring R is local if it has a unique maximal ideal. We write (R, m) for the local ring R with maximal ideal
m.

Example 3.3.2
Let p € Spec(R). Then recall that we have a bijection

{9 € Spec(R) | g C p} <> Spec(Ry)

given by extension and contraction. With this, all prime ideals of R, are contained in pRy,. Thus, (R, pRy)
is a local ring.
In particular, Zy) is a local ring, and the unique maximal ideal is

a,beZ,Zfb]»

Proposition 3.3.3. Let M be an R-module. Then the following are equivalent:
() M=0,
(it) My =0 for all p € Spec(R),
(iit) M = 0 for all m € maxSpec(R).

That is, being zero is a local property (i.e. it is localisable and local to global).

Proof. The implications (i) = (ii) = (iii) is clear. Suppose (iil) holds, and suppose for contradiction there
exists m € M non-zero. Consider

Anng(m)={re R|rm =0} <R
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Since m # 0, 1 & Anng(m). Take a maximal ideal m containing Anng(m). In this case,
T =0EMn
That is, um = 0 for some v € R\ m. But in this case, u ¢ Anng(m). Contradiction. O

Proposition 3.3.4. Lte f : M — N be an R-linear map. Then the following are equivalent:
(i) f is injective,
(i) fp: My — N, is injective for every p € Spec(R),
(iit) fm : My — N is injective for every m € maxSpec(R),

The same statements holds for surjectivity.

Recall

o(2) -

Proof. Suppose (i) holds. Since localising at p is an exact functor, (ii) follows. (ii) implies (iil) is by definition.
Suppose (iit) holds. We have the exact sequence

0 — ker(f) — > M —L5 N

Localising at m, we get
0 — ker(flm —— Mn —=5 Na ()
which is exact as localisation is an exact functor. But () shows that
ker(fm) = ker(f)m

But we assumed ker(fy) = 0, and so ker(f)m = O for all maximal ideals m. Thus, by proposition 333
ker(f) = 0. 0

Proposition 3.3.5. Let M be an R-module. Then the following are equivalent:
(i) M is a flat R-module,
(it) My is a flat Ry,-module for all p € Spec(R),

(iit) My is a flat Ry-module for all m € maxSpec(R).

Proof. For (i) = (ii), since M, = R, ®z M as R,-modules, and we have shown that extension of scalars
preserves flatness. As usual, (i) = (iil) is trivial.

Suppose (iit) holds. Suppose f : N — P is R-linear and injective. Fix a maximal ideal m € maxSpec(R).
Then fin : Niw — Py is injective by proposition 334] Then

fn ®id

Nm®Mm Pm®/\/’m

is injective by (iii). But we have isomorphisms (N @ M) = Ny ®r,, M, and using this,

frn @
Nep @ Min 8 P @M

(N ®r M) — 29 4 (P @g M)

the bottom map must be injective. But then (f ® id)y is injective for all m, and so f ® id is injective by

proposition B34 O
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Example 3.3.6

An R-module M is locally free if M, is a free R, module for every p € Spec(R).
Take R = C x C. The set of prime ideals of R is just

{Cx0,0xC}

But then we have a ring homomorphism

CxC—-C
(a,b)=b

This sends C x C\ C x 0 to units, and so we have a ring homomorphism

((C X (C)([;Xo — C
(a.b) b

(c.d) d

This is a bijection. With this, (C x C)cxo = (C x C)oxc are fields, and so every C x C-module M is

locally free.
Now consider M = C x {0} as an C x C-module. This is not free (it is not zero, and it is not free of

rank > 1). Thus, M is locally free but not free.

3.4 Localisation as a quotient

Let U C R be a subset, S C R be its multiplicative closure. Define

_ R{T,:ue U]
Ru = (uT, |u e U)

Denote the ideal Iy = (uT, | u € U). Let G, T, denote the images of u, T, respectively.

Claim 3.4.1. Ry is isomorphic to S™'R as rings, and also as R-algebras. The isomorphism is given by

R, < SR
Tom s
u
Pl Ty et —
uq---Up

Proof. We will show that Ry satisfies the universal property of localisation. Let A be any ring, f : R — A any
ring homomorphism, sending U to units.

R———— Ru

‘/3!/7
f

A

Since A is an R-algebra via f, the diagram commutes if and only if h is an R-algebra as well. But we have

the bijection
Homealg(RUrA) - {‘P U—A | f(u)(p(u) = 1}

But the set on the right hand side has one elmeent. O
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Example 3.4.2
For x € R, we can invert x, and we have that

R(¢]
(tx = 1)

1

Ry

The intuition here is that 7, = 1/u.

4 Nakayama's lemma

Proposition 4.0.1 (Cayley-Hamilton). Let M be a finitely generated R-module, f : M — M an R-linear
map, a < R an ideal, with f(M) C aM. Then

M+ af" " +a,id=0

where a; € a.

Proof. Say M = spang{my, ..., my}, then aM = span {m1, ..., m,}. Therefore,
f(m1) m1
f(mp) m,
where P € Mat,(a). Take p: R — End(M) to be the structure ring homomorphism of M as an R-module, then
we can define
R[t] — Endg(M)
t— I

which makes M into an R[t}-module. Using this,

m m
t =P
m, m,
and so
my
Q
m, =20

where Q =t - [, — P = 0. Multiplying by adj(Q), we get that

my
det(@ | : | =0

mﬂ

Hence det(Q)m = 0 for all m € M, and so m — det(Q)m is the zero map. But then det(Q) gives the polynomial
as required. O

Corollary 4.0.2. Let M be a finitely generated R-module. a < R an ideal, if aM = M, then there exists
a € a such that am = m for every m € M.

Proof. Apply Cayley-Hamilton with f = idy, we get that
MT+a1+ - +a,)idy=0

and so we can take @ = —(a1 + - + a,). O
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Definition 4.0.3 (Jacobson radical)

The Jacobson radical of a ring R is

JR) = () m

m<IR maximal

Example 4.0.4
If (R, m) is a local ring, then J(R) = m. On the other hand, J(Z) = 0.

Proposition 4.0.5. For x € R, x € J(R) if and only if T — xy is a unit in R for every y € R.

Proof. Suppose that x € J(R), and suppose for contradiction that 1 — xy is not a unit, for some y € R. With
this, T — xy is contained in a maximal ideal m. Since x € J(R), x € m. Thus,

T=(1T—xy)+xyem

Contradiction. On the other hand, if x €& J(R), then there exists a maximal ideal m such that x ¢ m. Then
m+ (x) = R. In particular, there exists t € m, y € R such that t + xy = 1. In this case, 1 —xy = t € m, and
so it is not a unit. O

Proposition 4.0.6 (Nakayama's lemma). Let M be a finitely generated R-module, a < J(R) is an ideal of
R, with aM = M. Then M = 0.

Proof. By corollary [£0.2] there exists a € a such that am = m for all m € M. By proposition [f05] 1 = a is
a unit, and so we can multiply by (1 — a)~", to get that

m=01—-a '1—am=(1-a)"-0=0

Corollary 4.0.7. Let M be a finitely generated R-module, N < M an R-submodule, a < J(R) an ideal,
such that

N+aM =M
then N = M.
Proof.
M B aM + N _ M
C“\NJTTN TN
Therefore, by Nakayama, M/N =0, and so N = M. O

5 Integral and finite extensions
Definition 5.0.1 (integral)

Let A be an R-algebra, x € A is integral over R if there exists f € R[t] monic, such that f(x) = 0.

Example 5.0.2
If K is a field, A is a K-algebra, x € A, then x is integral over K if and only if it is algebraic over K.
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Example 5.0.3
We will see later

1. the elements of Q which are integral over Z is just Z,

2. the Z integral elements of Q(v/2) is Z[V/2)]
3. the Z integral elements of Q(/5) is Z [”T‘@]

To see this, we can also recall Part Il Number Fields and the ring of integers of a number field.

Definition 5.0.4 (faithful)

An R-module M is faithful if the structure ring homomorphism R — Endg(M) is injective.
That is, for every non-zero r € R, there exists m € M such that rm = 0.

Example 5.0.5

Let R C A be rings, and so A is an R-module in a natural way. It must be faithful, since we have r1 =r.

Proposition 5.0.6. Let R C A be rings, x € A. Then R[x] C A is a subring, which makes A into an
R[x]-algebra (and thus an R[x]-module). Then x is R|x]-integral if and only if there exists M C A such
that

1. M is a faithful R[x}-module, that is, M is an R-submodule of A, xM C M, and R[x] — Endg(M)
is injective,

2. M is finitely generated as an R-module.

Proof. Suppose such an M exists. With this, we have an R-linear map f: M — M,
f(m) =xm
Since M is a finitely generated R-module, we can apply Cayley-Hamilton (proposition [£.07), to get
" +nf"™ +- 4+, =0
where r; € R. Evaluating at m € M, we get that
X"+ rx" ) (m) =0

Since M is a faithful R[x]-module, x™ + fix"~' + .- 4+ r, = 0 That is, x is integral over R. Now suppose x is
integral over R. Then
XX, =0

for some r; € R. Take
M = spang{1,x,--- ,x" '}

satisfles xM = M, and as 1 € M, it is faithful. The fact that it is finitely generated is clear by definition. [

Definition 5.0.7 (integral)
Let A be an R-algebra. Then A is integral over R if every x € A is integral over R.
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Definition 5.0.8 (finite over)
Let A be an R-algebra, then A is finite over A if it is finitely generated as an R-module.

Proposition 5.0.9. Let A be an R-algebra. Then the following are equivalent:
(i) Als a finitely generated integral R-algebra,
(ii) A is generated as an R-algebra by a finite set of integral elements,

(iit) A is finite over R,

Proof (i) == (i) is trivial. Suppose (ii) holds. Then A is generated by a1, .. ., ap as an R-algebra. But o
being integral implies that

al' +riaa 4, =0
That is,

a" € spanp{1, a;, ..., "}

But this means that for all eq,...e, >0,

af' - afr e spanglal - alr [0 < £ < np—1}

m

Hence A is a finitely generated R-module.

Finally, suppose (iii) holds. If A is finitely generated as an R-module, then it is necessarily finitely generated
as an R-algebra. Choose a € A, we would like to show that « is integral over R. Let p; R — A be the structure
ring homomorphism of A as an R-algebra. Then p(R) is a subring of A. With this, it then makes sense to
consider p(R)[a] as a subring of A.

Next, A is a p(R)[al-module, and it must be faithful as 1 € A. Using this, and the fact that A is a finitely
generated p(R)[a}-module, so by proposition a is integral over p(R). Equivalently, o is integral over
R. O

Proposition 5.0.10. If A is an R-algebra, O is the integral elements of A, then O is an R-subalgebra of
A

Proof. Take x,y € O. Then this is a finite set of R-integral elements, and so must generate an integral
R-subalgebra of A. But this contains x =+ y, xy, which must then be integral. Hence O is a ring. The fact that
it is an R-subalgebra is clear. O

Proposition 5.0.11. If A C B C C are rings,
(i) if C is finite over B, and B is finite over A, then C is finite over A.
(ii) if C is integral over B, B is integral over A, then C is integral over A.
Proof. For (i), if C = spang{w, ..., vob B =spans{Bi. ..., Be}, then C = span,{Biv;}.
For (ii), let ¢ € C. We would like to show that ¢ is A-integral. We know that ¢ is B-integral, and so

f(c) = 0 for some
A(T)=T"+bT" "+ +b, € BT]

Hence f € Ab,.. ., b T) Set A\ =Abq, ..., b,]. Then we have inclusions
ACA C Al

Both inclusions are integral, as they are generated by finitely many integral elements. But this tells us that
both extensions are finite by proposition 5.0.9 By (i), A C Alc| is finite, and so A C Ac] is integral, and so ¢
is integral over A O
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Definition 5.0.12
Let A C B be rings. The integral closure of Ain B is

A= {b € B/ b integral over A}

We say that A is integrally closed if A= A.
If Ais an integral domain, then its integral closure is its integral closure in Frac(A), and it is integrally
closed if it is integrally closed in Frac(A).

Example 5.0.13
Consider A = Z[\/5]. This is not integrally closed, since Frac(A) = Q(/5). In this case,

1+V5
a7

€ Frac(A)\ A

But a is integral over A, since @’ —a —1=0.

Example 5.0.14
Z and k[ty, - -+, t,] are integrally closed.

Proposition 5.0.15. If Ais a UFD, then A is integrally closed.

Proof. Take x € Frac(A)\ A say x = a/b, a, b € A, with some p € A prime, p | b but p t a. If x is A-integral,
then

a\n a\n—1
(5) ~or(5) + o ra=o
Multiply through by b”, we get
a" = —b(ay +ab+ - +a,b"")
Since p | b, p divides the right hand side, and so p € a”. Thus, p | a. O

Lemma 5.0.16. If A C B are rings, A the integral closure of A in B, then A is integrally closed over A.

Proof If x € B is integral over A, then we have integral extensions
ACACAY

By transitivity, A C Alx] is integral, and so x is integral over A, that is, x € A O

Proposition 5.0.17. Let A C B be rings,
(i) If B is integral over A,

(a) for every ideal b of B,

5 is integral over
b g Y

(b) if S C Ais a multiplicative set, then S™'B is integral over S™'A

(ii) If A is the integral closure of A in B, then then S™'A is the integral closure of S™'Ain S~'B. That
is, SSTA=S"TA
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|
Proof See notes. O

Lemma 5.0.18. Suppose A C B is an integral extension of rings,
i) AnB* = A%,
(ii) if A, B are domains, then A is a field if and only if B is a field.
Proof. For (i), 2 is clear. Conversely, take @ € AN B*. Then there exists b € B such that ab = 1. We need
to show that b € A. We know that b is integral over A, that is,
b" +arh" "+ +a,=0

Multiply this by a"~", we get
b+a+aa+- - +a,a” ' =0

But a1+ aya+---+a,a" ' € A andso b € A
For (ii), suppose that B is a field. Then

A*=ANB*=An(B\ {0}) = A\ {0}
and so A is a field. Now suppose A is a field. Let b € B be non-zero. Since b is integral over A,
" +ah" "+ 4a,=0

where n is minimal. With this,

b(p" '+ aib" 4+ a, 1) = —a,
)
By minimality, 0 # 0. Therefore, a, # 0 as it is a domain. But a, € A is a unit, so
Lecture 15
b(a, ') =1
and so b is a unit. O

Corollary 5.0.19. Let A C B be an integral extension of rings, q a prime ideal of B. Then g is a maximal
ideal of B if and only if g N A is a maximal ideal of A.

Proof. We have a ring embedding
A B

AN )
qgnA q

and these are integral domains as q is prime. Moreover, this is an integral extension, and so we are done. [

6 Noether normalisation and Hilbert's Nullstellensatz

6.1 Noether normalisation
Throughout, let k be a field.

Definition 6.1.1 (algebraically independent)

If Ais a k-algebra, and x1, ..., x, € A then xq,..., xp are k-algebraically independent if for every
pEKT, ..., To] non-zero, p(x1, ..., xp) # 0. That is, the k-algebra homomorphism [Ty, ..., T — A
given by sending T; to x; is injective.
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Theorem 6.1.2 (Noether normalisation). If A # 0 is a finitely generated k-algebra, then there exists
X1, .., X, € A, which are k-algebraically independent, such that A is finite over

Example 6.1.3 (of the method of proof)

Let A = k[t, t"]. First of all, note that k[t] C k[t, t™'] is not a finite extension. To see this, suppose it
was, then t~1 is integral over k[t]. That s,

t7" € spanyy{1. o ==}

Multiply through by t", we get

which is a contradiction. However, let ¢ € k (which we will choose later). Then

A=Kt t7 =Kt t7" = ct]

Claim 6.1.4. k[T~ — cT] C Ais a finite extension for “most” c.

Proof Since tt7' — 1 =0, we have that
(t"=ct)+ct)t—1=0

Expanding,
’ ’ ct?+(t —ct)t—1=0

Thus, if ¢ # 0, then we can divide by ¢ to show that ¢ is integral over k[t — ct™"]. O

Proof of theorem [6.1.2 assuming k is infinite. We will induct on the minimal number m of generators of A as
an k-algebra.

Base case: m = 0 is trivial since A = k. We can take A" = A.

Inducive step: Suppose A is generated by xq, ..., Xm € A as an k-algebra. If xq,..., xn are algebraically
independent, then we can take A = A’. Otherwise,

Claim 6.1.5. There exists ¢y, ..., Cm—1 € k such that x,, is integral over

B= k[)ﬂ — G Xm, .-y Xm—1 — Cm71Xm]

Assuming the claim, then A = Blx,], and so A is finite over B. But B is generated by m — 1 elements, and

so by induction, B contains z, . . ., z, € B, with B finite over A" = k[zy, .. ., z,]. Then A is finite over A’ by
transitivity.
Proof of claim[613 Since x1, ..., x, are not algebraically independent over k, there exists a non-zero f &
Kltr, ..., tm], with

flx1,..., xm) =0

We would like to prove that x,, is integral over B, where ¢; € k we will choose later. Write

=2 fi
=0
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where each term in h has degree of t,, less than r. Note

Q(X1 — Q1 Xm0 X1 — CmeerXm) = f(X1 rrrrr Xrn) =0
and that g as a polynomial in t, over k[t;, ..., tm—1] has degree at most r, and the coefficient of ¢, is
Flar, ..., ¢m—1,1), Since F(t1,..., tn) s a non-zero homogeneous polynomial, and so F(t,..., tm—1,1) is
not zero. Therefore, there are ¢q, ..., Cm—1, with

since we are working over an infinite field (Schwartz-Zippel). O

Remark 6.1.6. Noether normalisation is true for any field.

From the example
~ kx,
k[t, t%] =~ [X y]
gy —=1)
Geometrically, xy — 1 is a hyperbola. The projection onto the x-axis is not surjective, but the projection onto
y = cx is surjective for ¢ + 0.

6.2 Hilbert Nullstellensatz

Proposition 6.2.1 (Zariski's lemma). Let k C L be fields, with L finitely generated as a k-algebra. Then
dimg(L) < oo.

Proof. By Noether normalisation, we have a finite extension k[xq, ..., xp] < L where the x; are algebraically
independent. Moreover, this is an integral extension, and so k[xq, ..., xp] is a field. So ¢ =0. Hence k < L is
a finite extension. O

From now on, fix a field extension Q/k, where Q is algebraically closed.

Definition 6.2.2 (vanishing locus, algebraic set)
For S CK[Ty,..., T, define
V(S)={xe Q" |f(x)=0forall f € S}

we call such sets k-algebraic sets

Definition 6.2.3 (ideal of a subset)
For X C )", define

IX)={feKTr,....T,]| fx) =0forall x € X} < K[Tq,..., T,]

Remark 6.2.4. Note V(S) = V((5)).

Recall from field theory that if L/k is a finite field extension, then there exists a k-homomorphism L — Q.

Theorem 6.2.5. Let a < k[Ty, ..., T,] be an ideal. Then
(i) (Weak Nullstellensatz) V(a) = @ if and only if 1 € q,

4
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(ii) (Strong Nullstellensatz) /(V(a)) = V/a.

Proof. For (i), <= s clear. Now suppose 1 & a. Hence there exists a maximal ideal m of [Ty, ..., N
containing a, and so L = k[T, ..., Tp]im is a field, and it is also finitely generated as a k-algebra. By Zariski's
lemma, dimg(L) < oco. Hence there exists a k-homomorphism L — Q.

Consider the composition ¢ : k[ T4, ..., To] = L — Q. In this case, ker(p) = m. Define

Then for f € kK[ T4, .. ., 7ol

Hence for all f € a C m,
fx) = ¢(f) =0
For (ii), let f € \/a. Then then f’ € a for some ¢, and thus f/(x) = O for all x € V(a). But we are working
in a field, and so f(x) = 0 for all x € V(a), Le. f € /(V(a)).

Conversely, take f € /(V(a)). We want to show that f € \/a. Equivalently, f is nilpotent in R =
KTy, ..., To)la. In turn, this is equivalent to

R;=0
But recall that
R — R[Th, ..., Th, U]
7 ae - (UF - 1)

Let b = a® + (UF —1). Hence we need to show that 1 € b. By the Weak Nullstellensatz, it suffices to show
Vb =0.

Take x = (x1, ..., Xp, u) € V(D) C Q" Let X' = (xq,..., Xp), then
x" € V(a)
Hence f(x'), since f € /(V(a)). Considering the canonical embedding k[ T4, .. ., Tol— KT, ..., T,, U], f(x)=0.
Now (Uf — 1)(x) = —1 # 0, contradiction, as Uf —1 € b. O

Recall \/W = \ﬂ and we have that

1. # X CY CQ" then I(Y) C I(X),

fSCTCKT,. .., Tp) then V(T) C V(S),

S CKh,. .., Tp) then S = [(V(S)),

if X € Q7 then X C V(/(X)).

if X C Q" is an algebraic set, then X = V(/(X)). This follows from writing X = V(a).

o Lok~ W N

if X C Q" then /(X) is a radical ideal.

Proposition 6.2.6. We have a bijection
{k-alg. subsets of Q"} < {radical ideals in k[ T4, ..., A
X = 1(X)
V(a) < a

Proof. We know /(X) is radical, and X = V(/(X)). Now take a € k[Ty, ..., T,] a radical ideal, then by the
strong Nullstellensatz

(Vi) =Va=a
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Remark 6.2.7. Note that we defined algebraic subsets with respect to kK C Q.

Corollary 6.2.8. Under the above correspondence, maximal ideals correspond to minimal non-empty
algebraic sets. In particular, let kK = Q be an algebraically closed field. Then we have a bijection

Q" < {maximal ideals of Q[T4, ..., Tol}

Proof. The first part is just the fact that V and / are order reversing.
Since Q[T ..., To)lm, = Q, m, is a maximal ideal. Moreover, m, is the ideal of polynomials which vanish
on x. To see this,

m, C /({x})
But m, is maximal, and /({x}) is a proper ideal, and so equality holds. Moreover, V(m,) = {x}. The claim
follows from the inclusion reversing bijection from before. O

Note that the requirement that k = Q above is necessary. Consider the field extension C/R. In RJt],
<t2 + 1> is a maximal ideal, but it corresponds to the points {i, —i} C C. In general, for Q/k as above, each
point x € k" is a minimal k-algebraic subsets of Q", but there can be more. If char(k) = 0, then x € Q" is
k-algebraic if and only if the coordinates are in k. More generally, if Q/k is separable.

On the other hand, if kK = F,(x) is the field of rational functions over IF,, QO = k, n = 1. Consider the
polynomial
TP —x € K[T]

By Frobenius and that k is algebraically closed, TP — x = (T — x"P)? over Q. Hence
V(TP —x) = {x'"}

Finally, note that every prime ideal is radical.

Definition 6.2.9 (irreducible)
X C Q" is irreducible if X is not the union X = X3 U X5, X1, X5 algebraic and X #+ Xj, X:.

Proposition 6.2.10. Let X C Q" be an algebraic set. Then X is irreducible if and only if /(X) is prime.

Proof. See notes, or Part Il Algebraic Geometry. O

7 Integral and finite extensions again
Definition 7.0.1 (integral over an ideal)
IfAC B a<A x € Bis integral over a if

X"+ ax" "+ 4a,=0

where a; € a.

Definition 7.0.2 (integral closure over an ideal)
If AC B rings, a < A, then the integral closure of a in B is

{x € B | x is a-integral}
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Proposition 7.0.3. If A C B are rings, A the integral closure of A C B, a C A is an ideal. Then the
integral closure of a in B is

aA

where we take the radical in A.

Proof. Suppose b € B is a-integral, then
b"+a1b" " +a, =0
with a; € a. In particular, b is integral over A, and therefore, by, .. ., b,_1 €A Using the above,
b" € aA

and so b € VA _ B
Now suppose b € VaA. Then b" € aA for some n, and so

m

where a; € a, x; € A Define the algebra

Since each x; is integral over A, M is a finite A-algebra. Moreover, from (x), b"M C aM. Now define
f-M—M,
f(m)=b"m

This satisfies f(M) C aM, and f is A-linear. Therefore, by Cayley-Hamilton,
o4 o'+ 4 ap = 0 € Endp(M)
where each ¢; € a. Evaluating this at 1 € A, we get that
b +ab" V. 4y =0€B

and so b is a-integral. O

Corollary 7.0.4. Suppose A C B are rings, a < A b € B, then b is a-integral if and only if b is
a-integral.

Proof. By the proposition, it suffices to show

VaA =1/VaA
C is clear. For D, note that in general, VIEC Ve Applying this to the above, we have that

VaAc VA

\/VaAcC VaA

and so
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Proposition 7.0.5. Let A be an integrally closed”] integral domain, and A C B rings, B is an integral
domain, and an ideal a < A Let b € B, We have a field extension Frac(B)/Frac(A), and the following
are equivalent:

(i) b is integral over a
(i) b is algebraic over Frac(A), with minimal polynomial over Frac(A) of the form
T"4+aiT" '+ 4 ag

where a; € /a.

“in Frac(A)

Proof. Suppose (ii) holds, then b is integral over v/a by definition. By the corollary, b is integral over a.
Now suppose (i) holds. Let F = Frac(A). Then we have that

b" +arh" '+ +a,=0

where a; € a. Set
NT)=T"4+a 7"+ 4 a, € F[T]

Then h(b) = 0, and so b is algebraic over Frac(A). Now let f be the minimial polynomial of b over F. Let Q/F
be an algebraically closed field. In this case,

14
f=[1]7-a (%)
i=1

where each a; € Q. We would like to show that the coefficient of f are in \/a. Since A is integrally closed, the
integral closure of a in F is \/a < A Thus, it suffices to show that the coefficients of f are a-integral. Note
that by definition, the coefficient of f are in F.

Expanding (%), we see the coefficients of f are sums of products of the o;. By the proposition, the integral
closure of a in Q is closed under sums and products (as it is an ideal). Therefore, we need to show that each
q; is integral over A.

In this case, ¢; and b have the same minimal polynomial over Frac(A), and therefore, there exists ¢; : F(b) —
F (), which is a F-homomorphism, with ¢;(b) = ;. Since h has coefficients in F,

h(a;) = h(@i(b)) = ¢(hi(b)) = 0

7.1 Cohen-Seidenberg theorems

Let ¢ : A — B be the inclusion map. Then we have a pullback

* - Spec(B) — Spec(A)
g—qnNA

We are interested in studying *, in particular its fibres.

Proposition 7.1.1 (incomparability). If A C B is an integral extension, q,q" € Spec(B), ¢ C ¢/, and
qgNA=qg'NA Thenq=4¢q"

That is, the elements of the fibres are pairwise incomparable.

Proof Letp=qnNA=q'NA and S=A\p. qand g are prime ideals of B not intersecting S, So

q9=(5"a)
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where by S™'q, we mean the extension of q to S~'B. Note this is not the localisation of B at p, since p need
not be a prime in B. Similarly, ¢’ = (S~ "q'). We would like to show that

571C| _ 571q/
To see this,
STqNA, =SqNnSTA=ST([qNA) = STp = pA,

Similarly, S7'q' N Ay = pA,, which is the unique maximal ideal of A,.
Since A C B is an integral extension, so is A, C S~'B. Therefore, the contractions S~'q, S~'q" are
maximal ideals of S™'B. But q C ¢/, and so they are equal. O

Proposition 7.1.2 (lying over). Let A C B be an integral extension, p € Spec(A). Then there exists
q € Spec(B) with gNA =1p.
Equivalently, the natural map Spec(B) — Spec(A) is surjective.

We can think about this geometrically, if p : Spec(B) — Spec(A) denotes the natural map, then we can
think of Spec(B) as a "bundle” over Spec(A). Surjectivity means that each fibre is non-empty.

Proof Let S = A\ p, then we have the commutative diagram

A B

Ap=ST"TA—— S'B
Take m € maxSpec(S~'B). Since S™'A C S7'Bis an integral extension, and so mNS~TA € maxSpec(S~'A) =

{pAp}. Hence m N S™'A = pA,. Under the localisation map, pA, contracts to p. Thus, m contracts to p, and
soq=pF""(m)has qNA=rp. O

Proposition 7.1.3 (going up). Let A C B be an integral extension of rings, let p1,p> € Spec(A), q1 €
Spec(B), with p1 C p2, q = p1. That is,

q1

pr— P

there exists q € Spec(B), with g1 C g2, and g5 = p>. Note that in the diagram we use vertical line with
no arrows to denote contraction.

Proof. p1 = g1 N A, and so we have an injective map Alp; — B/qq4. This is an integral extension. From lying
over, there exists a prime ideal q2/q1 € Spec(B/q1), with g2 € Spec(B), which contracts to p,/p1 € Spec(Alp1).

Claim 7.1.4. g2 N A = py.

For this, consider the diagram
— B

|

Alpy ——— By

Contracting along the bottom left we get p,, and contracting along thr right gives qz. O
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Proposition 7.1.5 (going down). Let A C B be an integral extension of integral domains, and assume A
is integrally closed. Consider the diagram

q1

e

Then there exists a prime g2 € Spec(B) with g2 N A = ps.

Proof Consider the map

Claim 7.1.6. There exists n € Spec(Bg,) such that n N A = p,.

Assuming the claim, (n N B)NA = p,, and nN B is a prime ideal of B contained in q.
To prove the claim, it suffices to show that

(sz)qu = szqw NAC p2

Take y/s € (p2B)Bq, NA with y € p2B, s € B\ q1. Now A C B is an integral extension, therefore the integral
closure of p, in B is /p2B. Thus, y is integral over p,. Since A is integrally closed, by proposition m
y € Frac(A) is algebraic over Frac(A), and the minimal polynomial has the form

yr+uwgr4+-~+ur:0

where u; € p, (note any prime ideal is radical). We can then write

_9
y=3°
y,s € B C Frac(B), y/s € A C Frac(A), and so we have

—1
(gs)r—i-m (gs)r + - +u =0
s s

Multiply through by (s/y)",

,
sr+5u1s”+~-+(s) ur=0 (*)
Yy y
This is the minimal polynomial of s over Frac(A), since the process above is reversible. But s € B, and so s is
integral over A. Therefore, the coefficients of () must all be in A, again by proposition [/05]
Suppose for contradiction y/s & p,. Then

TN EA
o= (3] (y) "
Then (y/s)" € A\ p2, and we know that (s/y)'u; € A Since u; € po, we must have that (s/y)'u; € py. With

this, by (x),
s"eEpBCpB= (i NABCq

Hence s € g1. Contradiction. O
With the geometric picture as above, going up and going down allows us to move between the fibres in a
“nice” way. One way to think about this would be constructing a section of a bundle.
In terms of algebraic geometry, going up says that the natural map Spec(B) — Spec(A) is a closed map.

Similarly, going down says that the map Spec(B) — Spec(A) is open. Some assumptions might be needed to
make this analogy rigorous.

8 Primary decomposition
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Definition 8.0.1 (primary ideal)

Let / be an ideal of R, then / is primary if R/l is non-zero, and every zero divisor in R// is nilpotent.

Remark 8.0.2. Contrast this with / being prime if R// is an integral domain, and / is radical if R// has no non-zero
nilpotent elements.
In particular, any prime ideal is radical and primary. Note R is radical, but not prime nor primary.

Lecture 19

Example 8.0.3

In Z, (6) is radical, but not primary, since in R/6, there are no non-zero nilpotent elements, but 2 x 3 = 6.
But (9) is primary, but not radical.
More generally, for x = 0,

e (x) if and only if x is prime,
e (x) is radical if and only if x is square free,

e (x) is primary if and only if x = p” for some prime p.

Proposition 8.0.4. Let / < R be a proper ideal.
(1) if / is primary, then p = (/) is prime, and we say that / is p-primary,
(ii) if V/I is maximal, then / is primary,
(i) faq,..., q, are all p-primary, then so is g1 N --- N q,,
(iv) if I has a primary decomposition, i.e.
[=qn---Na, (%)

where q; is primary, then [ has a minimal primary decomposition, ie. like (x), but \/q1, ..., qn
are distinct, and none of the q; can be dropped,

(v) if R is Noetherian, then every ideal / has a primary decomposition

Proof. Examples sheet. O

Example 8.0.5

In Z,
(90) = (2) N (3*) N (5)

Example 8.0.6
For a prime ideal p of R, if p” is primary, then p” is p-primary, as /p” = p.
1. Not every primary ideal is a power of a prime. Let R = k[x,y] q = (x,y?). To see that
q is primary, \/q = (x,y), which is a maximal ideal, and so q is (x, y)-primary. Alternatively,

kix, yllg = klyl/ (y?). If f € K[y] and f + (y*) is a zero divisor, then y divides f, and so f + (y?)
is nilpotent.

On the other hand, if ¢ = p”, then \/q = p, but \/q = (x, y). But we have that

(x,yy’ C {x.y*) C (x,y)
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2. Power of a prime does not have to be primary. Let R = k[x,y, 2]/ (xy —z*) = k[x,7,Z], Let
p = (X,Z). We will show that p is prime, but p is not primary. In this case,

Rlp = Kyl
which is an integral domain, and so p is prime. On the other hand,
p? = (x*,x2,2°)
With this,
xXg=7" ey’
so the image of X7 in R/p’ is zero. But X 4+ p? # 0, and so § + p? is a zero divisor in R/p’. But

2

R/p2 = klx,y, z|/ <Xg — 22, X%, xz, 22>

and no power of y is in (xy — 2% x*,xz, 2*).

Theorem 8.0.7. Let /= ¢ N---Ng, be a minimal primary decomposition. Let p; = /q;, then
(i) (associated primes of I) pq, ..., p, are determined only by /,

(it) (isolated primes of I) the minimal elements amongst the pq, ..., p, are exactly the minimal primes
of R containing /,

(i) ifpq,.. ., p; are the isolated primes of /, then g1, ..., q; are determined only by /.

Proof. Examples sheet. O

Definition 8.0.8 (embedded primes)

The embedded primes of | are the associated primes which are not isolated.

Example 8.0.9
Let R = k[x, y], I = (x*,xy). Then we have primary decompositions

=)0 (xg) = (x)n (2 y)

In this case, v/(x) = (x), 1/ (x, y)* = (x, y), and /(x2, y) = (x, y).
In this case, the associated primes are (x),(x,y), which don't depend on the decomposition. In

particular, (x) is isolated and (x, y) is embedded.
Thining about this geometrically, V({x, y})) C V(x), which is why we call them embedded.

If/=qgyN---Ng,isaminimal primary decomposition, p; = \/q;. Say p1, ..., p: are the isolated primes.

Then
Vi=yain-nya=pn--np

which is a (minimal) primary decomposition of //, and all associated primes are isolated. Thus, going from /
ot V/1 is the same as forgetting the embedded primes of /.
Geometrically, in k[ty, .. ., tn] where k C C is a subfield, then

and /(V(/)) = /I, thus V(I) only sees v/1, or equivalently, it forgets about the embedded primes.
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9 Direct and inverse limits
Lecture 20

Let € be a category.

Definition 9.0.1 (directed set)
A directed set (I, <) is a poset, such that for all a, b € /, there exists ¢ € | such that a < ¢, b < c.

Definition 9.0.2 (directed system)
A direct system on [ is objects (Xj)i; of €, and for every i < j, a morphism f;; : X; — X], such that

1. fii = idy, for all {,
2. fy = fytforalli < j <k

Definition 9.0.3 (inverse system)

An inverse system on | is objects (Y;);/ of €, and for every i < j, a morphism h;; : X; — X, such that
1. hy =idy, for all ¢,
2. fy = fyfy foralli < j < k.

Example 9.0.4
Let I = (N, <), fix a prime p, consider the direct system

X[‘ = FPL‘

and f;; being field embeddings. Recall if a | b, then there exists an embedding Fpe — s, and that the
set of all embeddings are given by

c

x = @(x)P

for 0 < ¢ < a— 1. But we can just define f;; 11, and the other maps are defined by composition.

Example 9.0.5

Let I = (N, <), fix a prime p, and consider ‘
Yi=ZIp'

and
x— pix

the natural projection map.

Definition 9.0.6 (direct limit)
Let (/, <) be a directed set. If D = ((X;), (f;j)) forms a direct system, then the direct limit of D is

lim X, = HX
—

where for x; € Xi, x; € Xj, x; ~ x; if and only if there exists k such that fy(x;)) = fi(x;). Equivalently,
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take the equivalence relation generated by x; ~ f;;(x;) for all i < j.

Remark 9.0.7. If D is a direct system in %, then the direct limit is in € as well.

Definition 9.0.8 (inverse limit)

Let (/, <) be a direct set. If £ = ((V), (h;)) forms an inverse system, then the inverse limit of E is

l;mn—{yerln|yi—fff(y/>forattis1}

Example 9.0.9
We claim that F39 = lim Fye is an algebraic closure of F,,.

First we check that Fp? is algebraic over F,. Choose [x] € Fj?, say x € F,u, then x?' — x = 0, and
so [x]P" —[x] = 0.

Next we check that it is algebraically closed. Let [h] € Ff,lg[t]. Since [h] has finitely many coefficients,
we have that h € F,[t] Considering a splitting field for h, which is I, which in turn embeds into IF .

Hence h splits over F,a, and so h splits under the embdedding f, : F,i — F,e. This means that [h] splits
over the direct limit.

Example 9.0.10
Let

Zp == Llﬁ E
be the ring of p-adic integers. For example, 1 =(1,1,1,...) and

—1=(p-1.p"=1p—-1..)

Definition 9.0.11 (a-adic completion)
Let R be a ring, a < R an ideal, then the a-adic completion of R is

R = lim B

& al
Example 9.0.12
If R =7, a ={(p), then R = Zyp.
Example 9.0.13
If R =k[T], a=(T), then

R

R = lim 7 = k[T]
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Definition 9.0.14 (a-adic completion of a module)
Let R be a ring, a < R be an ideal, M an R-module, then a-adic completion of M is
~ M

=leCL"/\/I

which is naturally a M-module.

Definition 9.0.15 (filtration, completion with respect to a filtration)

A filtration of an R-module M is a sequence (M,) of submodules of M, with M, 2 M,.1 2 -+, and
My = M.
The completion of M with respect to the filtration is the inverse limit

lim M
— M,

Theorem 9.0.16. Let R be a Noetherian ring, and let a < R be an ideal. Let R denote the a-adic
completion of R.

() R is Noetherian,
(i) the functor R ®r (-) is exact.

(iit) if M is a finitely generated R-module, then the natural map
ReM— M

is an R-linear isomorphism.

10 Filtration and graded rings
10.1 Graded rings and modules

Definition 10.1.1 (graded ring)
A graded ring A is a ring

A= éAn
n=0

where each A; is an additive subgroup of A and A A, C Anin.

Lemma 10.1.2. Ay is a subring of A.
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Proof. The only thing we need to show is that 1 € Ag. If A = Ay then we are done. Otherwise, choose z € A,,

and say
1 = Z y,'

where y; € Ai. Then y;z € A,1i. But z =12z, and so we must have that yg =1, y; = 0 for i > 0. O

Example 10.1.3
Ag=KT, ..., T,] is a graded ring, and in this case Ay is the degree d homogeneous polynomials.

Definition 10.1.4 (irrelevant ideal)
We call

A+ = @An

n>1

the irrelevant ideal.

A, is the kernel of the projection map A — Ap, and so AJA; = Ag.

Definition 10.1.5 (graded module)
Let A be a graded ring. A graded A-module is an A-module M, with

M:@Mn

each M; an additive subgroup, and A,M,, C M4 m.

Proposition 10.1.6. Let A be a graded ring. Then A is Noetherian if and only if Ay is Noetherian and A
is a finitely generated Ap-algebra.

Proof. From Hilbert's basis theorem, if Ay is Noetherian and A is a finitely generated Ag-algebra, then A is

Noetherian.

Now suppose A is Noetherian. Then Ay = A/A. is the quotient of a Noetherian ring, and so Noetherian.
Next, A; is generated by the set of homogeneous elements of positive degree. Now A, is finitely generated,
as A is Noetherian. That is,

We would like to show A = A’ It suffices to show that A, C A’ for every A. We will prove this by induction

on n. n=0is clear.
Now take y € A,, n > 0. Now y € A;, and so we can write

y = Z riXi
i=1
where r; € A. Apply the projection A — A,, we get
S
Yy = Z aiXi
i=1
where a; € A,_i. But as k; > 0, the induction hypothesis implies that each a; is in A, and so y € A'. O
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10.2 Associated graded ring

Definition 10.2.1 (a-filtration)

Let a < R be an ideal, M an R-module. A filtration (M,) is an a-filtration if aM,, C M, 1 for all n.
An a-filtration is stable if aM, = M, 1 for all sufficiently large n.

Example 10.2.2
(a"M),>0 is a stable a-filtration of M.

Definition 10.2.3 (associated graded ring)

If a 9 R is an ideal, then we have an associated graded ring

We make this into a ring, by

forx €a",y € a’.

Definition 10.2.4 (associated graded module)

If a < R an ideal, M an R-module, (M,),>0 an a-filtration of M, then we have an associated graded

module
M,

/\/I,7+1

GM) =
n>0

which is an G4(R)-module, with module structure given by

(x + a™ ) (m + Moy1) = xm + My 041

Proposition 10.2.5. Let R be a Noetherian ring, a < R an ideal. Then
(i) Gq(R) is Noetherian,

(i) if M is a finitely generated R-module, (M,) is a stable a-filtration of M, then G(M) is a finitely
generated Gg4(R)-module.

Proof. For (i), since R is Noetherian, a is finitely generated, say
a=(x,..., Xs)

Set X; = x; + a’ € a/a’. Then G4(R) is generated as an R/a-algebra by X7, ..., Xp. But R/a is a Noetherian
ring, and so G4(R) by the Hilbert Basis Theorem.
For (ii), since (M,) is stable, so there exists N such that
Mnyr = a"My
Then G(M) is generated by
D
n<N Mn+1

as a Gq(R)-module. But each M, /M, .4 is a Noetherian R-module, annihilated by a. In particular, each
M, IM, 11 is a finitely generated R/a-module. So

M,

Mn+1

n<N
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is a finitely genertaed R/a-module, and so it is a finitely generated G4(R)-module. O

10.3 Filtrations

Definition 10.3.1 (equivalent)
Let M be an R-module. Then filtrations (M), (M!) of M are equivalent if there exists ng such that

Mpyiny CM: and M. C M,

n+ny =

for all n > 0.

Lemma 10.3.2. Let a < R be an ideal, M an R-module, (M,) is a stable a-filtration on M. Then (M,) is
equivalent to (a”M).

Proof We have that
M, 2 aM,—1 2 -+ 2 a"M D a""M

for all ng > 0. In the other direction, there exist ng > 0 such that aM,, = M, .4 for all n > ng. Hence

Mn+/7g = anMno Ca'M

Let a < R be an ideal, M an R-module, (M,) an a-filtration of M. Let

R*:éan

n=0
and .
v = Bm,
n=0
Then R* is a graded ring, and M* is a graded R*-module with the natural actions.
If R is Noetherian, then a = (xq, ..., x;), and R* is generated as an R-algebra by
D CI X, €a

Hence by the Hilbert basis theorem, R* is Noetherian.

Lemma 10.3.3. Let R be a Noetherian ring, M a finitely generated R-module, (M,) an a-filtration. Then
M* is a finitely generated R*-module if and only if the a-filtration (M,) is stable.

Proof First of all, note that

1. Each (M,) is a finitely generated R-module. Since R is Noetherian, and M s finitely generated, M is
Noetherian, and so every submodule is finitely generated.

2. Consider the submodule
Mp=M& - &M, ®aM, & a’M, -

of M*, then the ascending chain (M) stabilises, if and only if (M,) is a stable a-filtration.

Suppose M* is finitely generated. We know that R is Noetherian, and so R* is Noetherian, and therefore,
M* is Noetherian. But then the ascending chain (M) stabilises, and so (M,) is a stable a-filtration by 2.
Now suppose the filtration (M,) is stable. Then the sequence (M) stabilises at some ng. Now note that

M= M™;
n
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Hence M* = M; . But we know that
MO S RN Mno

generates M’ as an R*-module. But each M, is a finitely generated R-module, and so My @ --- @& M,, is a
finitely generated R-module. Thus, M} is a finitely generated R*-module. O

Proposition 10.3.4 (Artin-Rees). Let R be a Noetherian ring, a < R an ideal, M a finitely generated
R-module, (M) a stable a-filtration of M, and N C M a submodule.
Then (NN Mp) is a stable a-filtration of N.

Proof First of all,
a(NN M) CNNaMy C NN Mpyq

and so (NN Mp) is an a-filtration. Define

[ee]

N* = BN N My)

=0

This is an R*-submodule of M*. Recall R is Noetherian, and so R* is Noetherian. Since (My) is stable, M* is
finitely generated, and so M* is a Noetherian R*-module. Hence N* is a finitely generated R*-module, and
so (N N Mp) is stable. O

11 Dimension theory

Definition 11.0.1 (height)
Let p € Spec(R) be a prime. Then the height of p is

ht(p) = sup{d [ po & -~ S pg = p}
Geometrically, irreducible closed subsets of Spec(R) are precisely V(p) for a prime ideal p> Thus, if we
take V in the definition of height, we instead obtain
22224 =V(p)

which matches the definition of dimension.

Definition 11.0.2 ((Krull) dimension)
The (Krull) dimension of a ring is

dim(R) = sup{ht(p) | p € Spec(R)} = sup{ht(m) | m € maxSpec(R)}
Using the above, we can see that the dimension of R makes sense geometrically.

We can see that dim(R,) = ht(p), and so

dim(R) = sup{dim(Ry) | m € maxSpec(R)}

Definition 11.0.3

For an ideal / of R,
ht(/) = inf {ht(p) | / C p € Spec(R)}
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Proposition 11.0.4. If A C B is an integral extension of rings, then
(1) dim(A) = dim(B),

(it) if A, B are integral domains and k-algebras, where k is a field, then trdeg, (A) = trdeg,(B).

Proof. First, we show that dim(A) < dim(B). Given a chain

Po&p1 & &P
By lying over and going up, we have
QoCams -Cqe

with q; N A = p;, and so q; # q;41. Thus, dim(A) < dim(B).
Next, we show dim(A) > dim(B). Let
G & S

be a chain in Spec(B), then
GNAC S qaNA

is a chain in Spec(A). By incomparability, q; N A #+ qi+1 NA and so dim(A) > dim(B).
(i) is left as an exercise. O

Now if k is a fleld, A a finitely generated k-algebra, then by the Noether normalisation theorem, we had
a k-algebra embedding
KT, ..., Ty — A

which is an integral extension. Hence by the proposition,
dim(A) = dim(k[ T4, .. ., Ta) =d

by examples sheet 3 question 10.
Lecture 23

11.1  Hilbert polynomials and functions

Let A be a Noetherian graded ring. That is, Ag is Noetherian and A is a finitely generated Ap-algebra. Let M
be a finitely generated graded A-module. Then each M, is an Ap-module.

Claim 11.1.1. M, is a finitely generated Ag-module.
Proof. Say M = span,{m, ..., my}, each m; € M,, homogeneous. Therefore,

My ={armi +---+am;|a; € A}

We have that A = A[x1, ..., xs), each x; € Ay, ki > 0. Then

e,‘>Oeriei=n_ri]’

e e
M, = span,, {X11 S XSt

O

Now we will assume in addition that Ag is also Artinian. Therefore, each M, is an Artinian and Noetherian
module. Hence ¢(M,) < ocE|

Definition 11.1.2 (Poincaré series)

Let A, M be as above. The Poincaré series of M is

PM, T) = i OM,)T" € Z[T]
n=0

“That is, it has finite length. Equivalently, it has a composition series of finite length.
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Theorem 11.1.3 (Hilbert-Serre). P(M, T) is a rational function of the form

f(T)
|_|f:1(1 - Tk’)
for f € Z|T), s, k; as above.

Proof For the base case, s = 0, then A = Ay, and so M = span,, S, where S is a finite set. Hence it must
belong to a finite direct sum, and so M, = 0 for n > ng. Thus, P(M, T) is a polynomial.

Now write
V=@M,
nez

where My = 0 for ¢ < 0. We have an exact sequence of the form

m—Xxsm

0 K/? Mﬂ

Mn+k> Ln+k5 0

where K, L1k, are the kernel and cokernel respectively. Set

K=DK,
L=PL,

These are graded A—modulesEl Now note that K, L are annihilated by xs,
Apply 2 to the exact sequence, we get

Q(Kn) - g(/\/’n) + Q(MnJrkJ - E(Lnﬂg) =0
since ¢ is additive. Hence
QKT — eM) T+ €My ) T = €L i)™ = 0

Rearranging,
O(My i )T — TROMNT™ = 0Ly ) TR — TR O(K,)T"

Summing this over the integers, we get
(1 —=T5)PM, T)=PM, T) = TPM, T)=P(L, T)— T*P(K, T)
But we can write the right hand side as

f1 _ Tks fz

o =Th) 12— Tk

by induction. Rearranging gives the result. O

Let d(M) be the order of the pole of P(M, T) at t =1. Then if M # 0, d > 0. See notes for details.

Example 11.1.4
Let A=K[Tq,..., Ts] A, the homogeneous parts. Then

1. Ais generated as an Ay = k-algebra by T4, ..., Ts. In each case, k; = 1.
2. (A,) = dimg(A,) = (,,+§,1)’ which is a polynomial of degree s —1 in n over Q. In this case,

3.

P(A,T)—Z(n+§_1)T”—(1_1T)S

3If we defined homomorphisms of graded modules, then K, L are the kernel and cokernel respectively.
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that
O(M) = HPp(n)

for all n > Ny. Moreover,
deg(HPy) = d(M) —1

This is called the Hilbert polynomial.

Proof Let d = d(M) > 0. Then we can write

5 o)1 = 1)

—T)d
= 1-=T)
where f € Z|T], with f(1) # 0. Write
deg(f)
f=> aTt
k=0

for ax € Z. Next,

1 =
(=197~ )b
j=0

where b; = (/+7_1). Then

deg(

f)
O(Mn) = Z ap-ib

i=0

for n > deg(f). Since a; € Z, b; is a polynomial in j over Q of degree d —1. Moreover, the leading coefficient

of b[ is
1

(d—1)!

Hence ¢(M,) = p(n), where p € Q[T] All we need to show is that deg(p) = d — 1. The coefficient of 79~ in

pis

which is non-zero, as f(1) # 0 by assumption.

11.2  Dimension of local Noetherian rings

Lemma 11.2.1. Let (A, m) be a Noetherian local ring, then

(i) an ideal q of A is m-primary if and only if there exists t > 1 such that m

(ii) If g is m-primary, then A/q is Artinian.

Proof See notes.

Theorem 11.2.2 (dimension). If (A, m) is a Noetherian local ring, then

dim(A) = 0(A) = d(Gm(A))
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Proposition 11.1.5. If k; = .-+ = kg = 1, then there exists a polynomial HPy, € Q[T], and ng > 1, such

m.

Lecture 24



where
0(A) =
o(q) =

and d(Gm(A)) is the order of the pole at T =1 of the rational function associated to the Poincaré series
of G (A). That is, the order of the pole at 1 of

min{o(q) | ¢ € A m-primary}
minimal number of generators for g

Corollary 11.2.3 (Krull's height theorem). Let A be a Noetherian ring, a = (x, .. ., xr) € A an ideal. Let
a < p be a minimal prime of a. Then
ht(p) < r

Proof First of all, we claim that
VaA, = pA,

To see this, let n € Spec(A) be such that aA, C n, then
aC(aAy) Cn“Cyp

Then by minimality, n® = p. Hence n® = p®, and the result follows. Thus, aA, is pAy-primary. On the other

hand, . .
aAp = <T ,,,,, T>

ht(p) = dim(Ay) = 3(A,) < 3(ady) < r

Then

O

Geometrically, the height of p should be interpreted as the codomension of V(p) in Spec(A). Therefore, if a
is generated by r elements, we are imposing r-equations, and so the codimension should be at most r.
Let (A, m) be a Noetherian local ring, ¢ < A an m-primary ideal. Say 6(q) =s, and q = (xy, ..., Xs). Then

n

A
G =0 LoD
q q n22q

In this case, Alq is Artinian, and the images of x1, .. ., Xs generate q/q2 as an Alq algebra, the x; are of degree

1. Here, we have that
qﬂ
4 (qn+1 ) <00

From the Hilbert polynomial, ¢ (q‘ﬂﬁ) is eventually a polynomial, of degree < s—1=0(q) — 1.

Fix go € A m-primary, with 0(qo) = 0(A). With this, we have two special cases. We will write
deg(¢(q"/q"*")) for the degree of the corresponding Hilbert polynomial.
First of all,
deg(é(qg /™)) < 5(A) — 1

and 1
deg(¢(Alqq)) = Z O(aplap™") < 6(A)
i=0
Next,
deg(¢(m” fm"*")) = d(Gm(A) — 1
and

deg(¢(A/m")) = d(Gm(A))
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Moreover, there exists t > 1 such that
m' CqgCm

and so
O(AI") < 0(Alqg) < (AIm'™)

Thus, we must have that deg(¢(A/m")) = deg(¢(A/qg)).
Proposition 11.2.4. 6(A) > d(Gw(A))

Proof

0(A) = d(qo)
> deg(¢(Alqp))
= deg(¢(A/m"))
= d(Gm(A))

Proposition 11.2.5. If x € m is not a zero divisor, then

d (Gl AIXA)) < d(Gun () —

Proof. We know that (A/xA, m/xA) is still a local ring. In this case,
d(Gw(A)) = deg(¢(A/m”))

and
d(Gumjxa(AlxA)) = deg(€((m" + xA)[xA))

We want to show that
deg(¢(Al/(m + xA))) < deg(¢(A/m")) — 1

We have a short exact sequence

0 m'+xA XA A A 0
m” m"NxA m” m"+xA

Hence by additivity,
Z(A/m" + xA)) = 0(Alm™) — £(xA/(m" N xA))

We know the terms on the right hand side have the same degree, and so it suffices to show they have the same
leading coefficient.

But (m”) is a stable m-filtration of A, and so by Artin-Rees, (m” N xA) is a stable m filtration of xA. Hence
this is equivalent to (m"xA). Hence we have that

2(xA/m” N xA)) < O(xAm" T xA)

and
Z(xAm " xA) < Z(xAl(m” N xA))

Thus, by elemenrary facts about polynomials, they ahev the same degree. O

Proposition 11.2.6.
d(Gem(4) > dim(A)

Proof See notes. O
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Proposition 11.2.7. dim(A) > 0(A). That is, there exists ¢ < A m-primary, generated by dim(A) elements.

Proof. The height of m is exactly dim(A). Thus, for any other prime p € Spec(A), ht(p) < dim(A). So what we

want is to form an ideal q = (xq, ..., x4), with ht(q) = dim(A), since then for any minimal prime containing g,
we must have that the height of the prime is dim(A), and so /g = m, and so q is m-primary.
We construct (x1, ..., x¢) inductively, such that if
q={x,. .., X;)
then
ht(q;) > i

For the base case i = 0, we can just use qo = 0. For the inductive step, assume q;_1 has ht(q;) > i — 1. We
claim that there are only finitely many p1, ..., p; prime ideals, such that q;—y C p;, and ht(p;) = i — 1. If not,
since htg;_1 > i — 1, each p; is a minimal prime of q;. But in a Noetherian ring, every ideal has finitely many
minimal primes.

Now i — 1 < dim(A) = ht(m), and so m is not contained in p; for all j, and so m is not contained in their
union, by prime avoidance. So we can take x; € m, with x; & p; for any j. Define

Then if p is prime, which contains q;, then it contains q;—1 and x;. Hence it cannot be any of the p; above.
Thus, ht(p) > i as required. O
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