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Definition 0.0.1 (module)An R-module M is an abelian group M with an fixed ring homomorphism ρ : R → End(M). We will write
r ·m := ρ(r)(m).
Remark 0.0.2. By definition, this implies that (r1 + r2) · m = r1 · m + r2 · m, r · (m1 + m2) = r · m1 + r · m2 and
r1 · (r2 ·m) = (r1r2) ·m.
Example 0.0.3 (Examples of modules) • Let k be a field. Then a k-module is the same as a k-vectorspace.• Every abelian group is a Z-module in a unique way, since we must have that ρ(1) = idM . Therefore,abelian groups and Z-modules are the same thing.• Every ring R is (trivially) an R-module.• More generally, R⊕N (direct sum) and RN (direct product) are R-modules.
Another useful example to keep in mind is that if I is an ideal in R , then R/I is an R-module.

1 Chain conditions

Definition 1.0.1 (Noetherian, Artinian module)An R-module M is Noetherian if one of the following (equivalent) conditions hold:1. Every ascending chain of submodules M0 ⊆ M1 ⊆ M2 ⊆ · · · stabilises. That is, it is eventuallyconstant.2. Every non-empty set Σ of submodules of M has a maximal element.
M is Artinian if we replace in the above: ascending with descending, maximal with minimal.

Lemma 1.0.2. An R-module M is Noetherian if and only if every submodule of M is finitely generated.
In particular, every Noetherian module is finitely generated. If R = Z[T1, T2, . . . ], with M = R as an

R-module. Then M is finitely generated. On the other hand, M ′ = ⟨T1, T2, T3, . . .⟩, is not finitely generated.
Definition 1.0.3 (Noetherian, Artinian ring)A ring R is Noetherian (resp. Artinian) if it is Noetherian (resp. Artinian) as an R-module.
Example 1.0.4 1. Z is Noetherian (as it is a PID), but not Artinian (e.g. ⟨2⟩ ⊇ ⟨4⟩ ⊇ ⟨8⟩ ⊇ · · ·).2. Z[1/2]/Z is Artinian, but not Noetherian as a Z-module.3. A ring R is Artinian if and only if R is Noetherian and R has Krull dimension 0.
Definition 1.0.5 (Exact sequence)
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A sequence
· · · Mi−1 Mi Mi+1 · · ·fi fi+1

of R-modules and R-module homomorphisms is exact if im(fi) = ker(fi+1) for all i.
Definition 1.0.6 (Short exact sequence)A short exact sequence (SES) is an exact sequence of the form

0 N M L 0ι

That is, we have an embedding ι : N ↪→ M , and an isomorphism L ∼= M/ι(N).
Lemma 1.0.7. Let 0 N M L 0be an SES of R-modules. Then M is Noetherian (resp. Artinian) if and only if N and L are Noetherian(resp. Artinian).

Proof. We may assume without loss of generality that N is a submodule of M . Let P1 ⊆ P2 ⊆ . . . be anincreasing (resp. decreasing) sequence of submodules of M . In this case,
N ∩ P1 ⊆ N ∩ P2 ⊆ · · ·

is an increasing (resp. decreasing) sequence of submodules of N , hence eventually constant. Similarly,
N + P1
N ⊆ N + P2

N ⊆ · · ·

is an increasing (resp. decreasing) sequence of submodules of L = M/N , hence eventually constant. For large
n, we will have

Pn ⊆ Pn+1 N ∩ Pn = N ∩ Pn+1 N + Pn = N + Pn+1Hence Pn = Pn+1 for large enough n.
Corollary 1.0.8. If M1, . . . ,Mn are Noetherian (resp. Artinian) R-modules, then M1 ⊕ · · · ⊕ Mn isNoetherian (resp. Artinian).

Proof. By the lemma and induction.Recall a module homomorphism
φ : M1 ⊕ · · · ⊕Mn → Lis the same as a collection of module homomorphism φi : Mi → L. This is also true for infinite direct sums (butnot products!).

Proposition 1.0.9. For a Noetherian (resp. Artinian) ring R , every finitely generated R-module isNoetherian (resp. Artinian).
Proof. M is finitely generated if and only if there exists a surjection Rn ↠ M for some n ∈ N. The fact that
Rn is Noetherian (resp. Artinian) implies that M is Noetherian (resp. Artinian), as quotients of Noetherian(resp. Artinian) modules are Noetherian (resp. Artinian). This follows by the correspondence theorem.
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Definition 1.0.10 (algebra)An R-algebra A is a ring A with a fixed ring homomorphism ρ : R → A. We will write r · a := ρ(r)a.
Definition 1.0.11 (noetherian algebra)An R-algebra A is Noetherian if it is Noetherian as a ring.
Remark 1.0.12. Every R-algebra is an R-module.
Example 1.0.13The polynomial ring k [T1, . . . , Tn] is a k-algebra. Do note however that it is a finitely generated by
T1, . . . , Tn as a k-algebra, but it is infinite dimensional as a k-vector space.
Definition 1.0.14 (algebra homomorphism)
φ : A→ B is an R-algebra homomorphism if φ is a ring homomorphism and φ(r · 1A) = r · 1B .
Equivalently, it is a ring homomorphisms which is also an R-linear map.

Definition 1.0.15 (finitely generated algebra)An R-algebra A is finitely generated if there exists a surjective R-algebra homomorphism R [T1, . . . , Tn] ↠
A for some n ∈ N.

Lecture 2
Theorem 1.0.16 (Hilbert basis theorem). Every finitely generated algebra A over a Noetherian ring R isNoetherian (as a ring).
For example, if k is a field, then k [T1, . . . , Tn] is Noetherian.

Proof. It suffices to prove for A = R [T1, . . . , Tn], since every finitely generated algebra is a quotient of
R [T1, . . . , Tn]. Moreover, by induction, suffices to prove the result for A = R [T ].Let a be an ideal of A = R [T ]. For every i ≥ 0, define

a(i) = {c0 | c0ti + · · ·+ cit0 ∈ a
}

for the set of all leading coeffients of elements of degree i in a (and containing 0). In this case, a(i) ⊆ R is anideal, and we have an ascending chain of ideals
a(i) ⊆ a(i+ 1) ⊆ · · ·Since R is Noetherian, each a is finitely generated (as an ideal), and the ascending sequence of ideal stabilises.That is,

a(m′) = a(m)for all m′ ≥ m. We write a(i) = ⟨bi,1, . . . , bi,mi⟩, where bi,j ∈ R . Let fi,j ∈ a be a polynomial of degree i, withleading coefficient bi,j . Define the new ideal
b = 〈fi,j | i ≤ m, 1 ≤ j ≤ mi

〉
⊴ R [T ]In this case, b(i) = a(i) for all i. By construction, b ⊆ a.Suppose for contradiction that a ̸⊆ b. Take f ∈ a \ b of minimal degree i. But b(i) = a(i), and so thereexists g ∈ b, of degree i, and with the same leading coefficient as f . That is, deg(f − g) < i. By minimality,

f − g ∈ b, and so f = (f − g) + g ∈ b. Contradiction.Therefore, if we have a subset S ⊆ R [T1, . . . , Tn]/I , then ⟨S⟩ = ⟨S0⟩, where S0 ⊆ S is finite.
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2 Tensor products
Let M,N be R-modules. An informal definition of their tensor product is

M ⊗R N = { ℓ∑
i=1 mi ⊗ ni

∣∣∣∣ mi ∈ M,ni ∈ N
}

where we have the relations (m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n, m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2, and thatfor r ∈ R , (rm)⊗ n = r(m⊗ n) = m⊗ (rn).For example, consider Z/2⊗Z Z/3. Then
x ⊗ y = (3x)⊗ y = x ⊗ (3y) = x ⊗ 0 = 0

and so, Z/2⊗Z Z/3 = 0. On the other hand, if we have vector spaces, then
Rm ⊗R Rℓ ∼= Rmℓ

Recall f : M×N → L is R-bilinear if n 7→ f (m0, n) and m 7→ f (m, n0) are R-linear for all m0 ∈ M,n0 ∈ N .
Definition 2.0.1 (tensor product of modules)Let M,N be R-modules, let

F = R⊕(M×N) = spanR {e(m,n) | m ∈ m, n ∈ N
}

be the free module indexed by m × n, and define K ⊆ F for the submodule generated by the relations(where we write (m, n) for e(m,n))
(m, n1) + (m, n2) = (m, n1 + n2)(m1, n) + (m2, n) = (m1 +m2, n)

r(m, n) = (rm, n)
r(m, n) = (m, rn)

The tensor product is
M ⊗R N := FKWe have an R-bilinear map

iM⊗N : M ×N → M ⊗R N(m, n) 7→ m⊗ n

Proposition 2.0.2 (universal property of tensor product). For every R-module L and any R-bilinear map
f : M ×N → L, there exists a unique R-linear h : M ⊗N → L, making the diagram

M ×N M ⊗R N

L

f

iM⊗N

h

commute.
Proof. Uniqueness is clear, since we must have that

h(m⊗ n) = f (m, n)
5



since the pure tensors generate, h must be unique, if it exists. Therefore, suffices to show the above extends toan R-linear map M ⊗R N → L. This follows from the map
R⊕(M×N) → L

e(m,n) 7→ f (m, n)extending to a linear map (by the universal property of the direct sum), and that this map vanishes on K.Therefore, h extends to M ⊗R N from the pure tensors.
Proposition 2.0.3. Let M,N be R-modules, T an R-module, j : M × N → T an R-bilinear map,(T , j) satisfying the universal property of tensors. Then there exists a unique R-linear isomorphism
φ : M ⊗N → T , such that

M ×N

M ⊗R N Tφ

iM⊗N j

commutes.
Proof. By the universal property of tensor product, such a map φ exists, with φ(m⊗n) = j(m, n). Similarly, wehave a homomorphism ψ : T → M ⊗R N . In particular,

ψ ◦ φ ◦ iM⊗N = iM⊗N = idM⊗N ◦iM⊗NIn particular, by uniqueness in the universal property, we must have that ψ ◦ φ = idM⊗N . Lecture 3
Proposition 2.0.4. Suppose M,N are R-modules, then∑

i
mi ⊗ ni = 0 ∈ M ⊗R N

if and only if for all R-modules L, and every R-bilinear map f : M ×N → L has∑
i
f (mi, ni) = 0

Proof. Suppose ∑mi ⊗ ni = 0, let f : M × N → L be bilinear. Then f factors through M × N → M ⊗R N ,and we can write
M ×N M ⊗N

L

f

iM⊗N

h

In this case, we have that∑
i
f (mi, ni) =∑

i
h(i(m, n)) =∑

i
h(mi ⊗ ni) = h

(∑
i
mi ⊗ ni

) = h(0) = 0
Conversly, if ∑

i
mi ⊗ ni ̸= 0

then by definition, ∑
i
im⊗n(mi, ni) ̸= 0
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Example 2.0.5Let k be a field, and consider the tensor product
km ⊗ k ℓ

Suppose km has basis {e1, . . . , em}, and k ℓ has basis {f1, . . . , fℓ}, then
km ⊗ k ℓ = spank{v ⊗ w | v ∈ km, w ∈ k ℓ} = spank {ei ⊗ fj}

Claim 2.0.6. {ei ⊗ fj} is a basis.
Proof. Suppose we have ∑

ij
αij (ei ⊗ fj ) = 0

For every 1 ≤ a ≤ m, 1 ≤ b ≤ ℓ , define a bilinear map
Tab : km × k ℓ → k

Tab((vi), (wj )) = vawb

This is a k-bilinear map. By proposition 2.0.4,
0 =∑

i,j
αijTab(ei, fj ) =∑

i,j
αijδiaδjb = αab

Example 2.0.7More concretely, let us consider R2 ⊗ R2. We have a basis of size 4, given by
e1 ⊗ f1, e1 ⊗ f2, e2 ⊗ f1, e2 ⊗ f2

What do pure tensors look like?
(αe1 + βe2)⊗ (γf1 + δf2) = αγ(e1 ⊗ f1) + αδ(e1 ⊗ f2) + βγ(e2 ⊗ f1) + βδ(e2 ⊗ f2)

These are not generic elements of R2 ⊗ R2, since the vectors
(αγ, αδ) and (βγ, βδ)

are linearly dependent. In particular,
e1 ⊗ f1 + 2e1 ⊗ f2 + 3e2 ⊗ f1 + 4e2 ⊗ f2

is not a pure tensor.
Example 2.0.8 (warning)First consider

Z⊗Z Z/2In this case, 2⊗ 1 = 1⊗ 2 = 1⊗ 0 = 0Now consider 2Z⊗Z Z/2
7



But in this case, 2⊗ 1 ̸= 0since we can define a bilinear map
B : 2Z× Z/2→ Z/2

B(2m, x) = mx

In this case,
B(2, 1) = 1 · 1 = 1 ̸= 0However, if M ′ ≤ M,N ′ ≤ N are submodules, and∑

i
mi ⊗ ni = 0

in M ′ ⊗N ′, then ∑
i
mi ⊗ ni = 0

in M ⊗N .
Proposition 2.0.9. If ∑

mi ⊗ ni = 0 ∈ M ⊗R Nthen there are finitely generated R-submodules M ′ ≤ M,N ′ ≤ N , such that∑
mi ⊗ ni = 0 ∈ M ′ ⊗R N ′

Intuitively, a proof that the sum is zero is finite, and so it can only involve finitely many expressions. Wecan take them to be the generators.
Proof. ∑

mi ⊗ ni = 0 ∈ M ⊗N = R⊕(M×N)
Kthen ∑

i
e(mi,ni) = 0 ∈ K

This means that we can write the left hand side as a finite sum of the generators of K. Taking all the elementsof M and N which appear, gives the result.
Corollary 2.0.10. Let A, B be torsion-free abelian groups, then A⊗Z B is torsion free.

Proof. Suppose
n ·
(∑

i
ai ⊗ bi

) = 0 ∈ A⊗ B

for some n ≥ 1. By proposition 2.0.9, there exists finitely generated subgroups A′ ≤ A, B′ ≤ B, such that
n ·
(∑

i
ai ⊗ bi

) = 0 ∈ A′ ⊗ B′

By the structure theorem of finitely generated abelian groups, A′ ∼= Zr , B′ ∼= Zs, and so we have that
A′ ⊗ B′ ∼= Zrs

which is torsion free. Contradiction.
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Example 2.0.11

C2 ⊗C C3 ∼= C6
as C-vector spaces, and we also have that C6 ∼= R12 as R-vector spaces. On the other hand,

C2 ⊗R C3 ∼= R4 ⊗R R6 ∼= R24

Proposition 2.0.12. 1. M ⊗N ∼= N ⊗N2. (M ⊗N)⊗ P ∼= M ⊗ (N ⊗ P) ∼= M ⊗N ⊗ P , where we define M ⊗N ⊗ P using trilinear maps.3. (⊕iMi
)
⊗ P ∼=⊕i(Mi ⊗ P)4. R ⊗R M ∼= M ,

Proof. See examples sheet 1.
Example 2.0.13Using proposition 2.0.12, we can compute

Rm ⊗ R ℓ ∼= (⊕mi=1R)⊗ (⊕ℓj=1R)
∼= ⊕i,jR
∼= Rmℓ

2.1 Tensor product of R-linear maps

Proposition 2.1.1. For R-linear maps f : M → M ′, g : N → N ′, then there exists a unique R-linear map
f ⊗ g : M ⊗N → M ′ ⊗N ′

with (f ⊗ g)(m⊗ n) = f (m)⊗ g(n)
Proof. Uniqueness is clear since the pure tensors generate. For existence, we can use the universal propertyon the R-bilinear map

T : M ×N → M ′ ⊗N ′

T (m, n) = f (m)⊗ g(n)
Lecture 4Exercise: (f ⊗ g) ◦ (h ⊗ i) = (f ◦ h) ⊗ (h ◦ i). We can check this in pure tensors, since they generate. Butthe statement is clear in that case.

Example 2.1.2Let T : ka → kc and S : kb → kd be linear. Then
(T ⊗ S)(ei ⊗ ej ) = T (ei)⊗ S(ej ) =∑

ℓ,t

[T ]ℓi[S ]tj (fℓ ⊗ ft )
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where [T ] is the matrix representation of T . If we order the basis of ka ⊗ kb by
e1 ⊗ e1, . . . , e1 ⊗ ec, e2 ⊗ e1, . . . , e2 ⊗ ec, . . . , ea ⊗ ec

and a similar ordering for the range, then
[T ⊗ S ] =

[T ]11S · · · [T ]1aS
...

. . .
...[T ]c1S · · · [T ]caS


is the Kronecker product of [T ] and [S ].
Proposition 2.1.3. Let f : M → M ′, g : N → N ′ be R-linear.(i) If f , g are isomorphisms, then so is f ⊗ g,(ii) if f and g are surjective, so is f ⊗ g.

Proof. For (i), (f−1 ⊗ g−1) = (f ⊗ g)−1, since we have that (f ⊗ g) ◦ (h⊗ i) = (f ◦ h)⊗ (h ◦ i).For (ii), notice that im(f ⊗ g) contains all pure tensors in M ′ ⊗N ′.
Example 2.1.4If f : Z→ Z, f (n) = pn, then we have

(f ⊗ id) : Z⊗ Z/p→ Z⊗ Z/p

is the zero map, as (f ⊗ id)(a⊗ b) = (pa)⊗ b = a⊗ (pb) = a⊗ 0 = 0But Z⊗ Z/p ∼= Z/p which is nonzero.
2.2 Tensor product of algebrasLet B, C be R-algebras. Then we have B⊗R C as an R-module. We would like to define the multiplication by(b⊗ c)(b′ ⊗ c′) = (bb′)⊗ (cc′)This is well-defined. Fix (b, c) ∈ B × C, then we have a bilinear map

B × C → B ⊗ C(b′, c′) 7→ (bb′)⊗ (cc′)which gives us a map B ⊗ C → B′ ⊗ C ′, with
b′ ⊗ c′ 7→ (bb′)⊗ (cc′)It is easy to show that this then satisfies the ring axioms. Hence B⊗C is a ring. The R-algebra structure willbe given by

R → B ⊗ C
r 7→ (r1B)⊗ 1C = r(1B ⊗ 1C ) = 1B ⊗ (r1C )

Example 2.2.1There is an isomorphism
φ : R [x1, . . . , xn]⊗R R [t1, . . . , tr ] ∼= R [x1, . . . , xn, t1, . . . , tr ]
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Proof. We have an R-basis for the left hand side, which is
xk ⊗ tℓ

and we also have a R-basis for the right hand side,
xk tℓ

Define
φ(xk ⊗ tℓ ) = xk tℓwhich gives us a R-module isomorphism. Moreover,
φ(r ⊗ 1) = r1 = 1

and by distributivity, suffices to show
φ((xk ⊗ tℓ )(xm ⊗ tn)) = xk tℓxmtn

which is clear by definition.More generally,
R [x1, . . . , xn]

I ⊗ R [t1, . . . , tr ]
J

∼= R [x1, . . . , xn, t1, . . . , tr ]
L

∼= R [x1, . . . , xn, t1, . . . , tr ]
Ie + Jewhere Ie = ⟨I⟩ ⊴ R [x1, . . . , xn, t1, . . . , tr ] denotes the extension of I .

Example 2.2.2
C[x,y,z]
⟨f ,g⟩ ⊗

C[w,u]
h is isomorphic as C-algebras to

C[x, y, z, w, u]
⟨f , g, h⟩

Proposition 2.2.3 (universal property of tensor product of algebras). Let A, B be R-algebras, for every
R-algebra C , and R-algebra homomorphisms f1 : A→ C and f2 : B → C , there exists a unique R-algebramap

h : A⊗ B → Csuch that
A A⊗ B B

C

iA iB

f1 f2h

commutes, where iA(a) = a ⊗ 1, iB(b) = 1 ⊗ b. Moreover, this characterises (A ⊗ B, iA, iB) uniquely (upto isomorphism).
Proof. A⊗ B is generated, as an R-algebra, by

{a⊗ 1 | a ∈ A} ∪ {1⊗ b | b ∈ B}This then implies the uniqueness of h, as it defines h on the generators. For the existence, define the bilinearmap A× B → C , given by
f (a, b) = f1(a)f2(b)Using the universal property of tensor product of modules, there exists h : A⊗ B → C which is R-linear, with
h(a⊗ b) = f1(a)f2(b)It is then easy to show that h is an algebra homomorphism.
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Consider R [x1, . . . , xn, t1, . . . , tr ] from above. We have natural embeddings from R [x1, . . . , xn] and R [t1, . . . , tn].Given f1, f2 as above, we see that the image of the xi is determined by f1, and the image of ti is determined by
f2. Therefore,

R [x1, . . . , xn, t1, . . . , tr ] ∼= R[x1, . . . , xn]⊗ R [t1, . . . , tr ]as it satisfies the universal property. Lecture 5If we have f : A → A′, g : B → B′ which are algebra homomorphisms, then the tensor product of R-linearmaps,
f ⊗ g : A⊗ B → A′ ⊗ B′is an R-algebra homomorphism. Moreover, we have R-algebra isomorphisms• (R/I)⊗ (R/J) ∼= R/(I + J)• A⊗ B ∼= B ⊗ A,• (A⊗ B)⊗ C ∼= A⊗ (B ⊗ C ),• A⊗ Bn ∼= (A⊗ B)n,

2.3 Restriction and extension of scalars
Restriction of scalarsWe will have a ring homomorphisms f : R → S , let M be an S-module, so M is also an R-module,

r ·m := f (r)mfor r ∈ R,m ∈ M . The fact that this is a module is clear by our definition, since it is just the composition
R S End(M)f

Example 2.3.1If we consider the embedding R ↪→ C, then Cn is a C-vector space, but also an R-vector space, ofdimension 2n.
Extension of scalarsLet f : R → S be a ring homomorphism, M be an S-module (thus an R-module by restriction of scalars), N isan R-module. From this, we can form

M ⊗R Nwhich is an R-module. In fact, M ⊗R N is also an S-module, with
s · (m⊗ n) := (sm)⊗ nIs this well defined? We have an R-bilinear map
M ×N → M ⊗R N(m, n) 7→ (sm)⊗ nBy the universal property, we have a map

hs : M ⊗R N → M ⊗R Nwhich is R-linear, and hs(m⊗ n) = (sm)⊗ n. Now define
φ : S → End(M ⊗R N)
φ(s) = hsWhich is a ring homomorphism, and so, we have an S-module structure on M ⊗R N .
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Example 2.3.2We know from before that S ⊗R R ∼= S as R-module, with
s⊗ r 7→ s · f (r)

But in fact, this is also S-linear, since
s′ · (s⊗ r) = (s′s)⊗ r 7→ s′s · f (r)

For example, this implies that
C⊗R R ∼= Cas C-vector spaces.

Example 2.3.3If M is an S-module, Ni are R-modules, then
M ⊗R

(⊕
i
Ni

)
∼=⊕

i
(M ⊗R Ni)

as S-modules.In this case,
C⊗R Rn ∼= Cn

as C-vector spaces.
Example 2.3.4Consider Cn as a C-module. Restricting to R,

Cn ∼= R2n
as R-vector spaces. Now extending scalars,

C⊗R R2n ∼= C2n
as C-vector spaces.
Example 2.3.5Now consider Rn as an R-vector space. Extending scalars,

Rn ⊗R C ∼= Cn

over C. Restricting to R,
Cn ∼= R2n

Example 2.3.6Consider Zn as an Z-module, and let f : Z→ Z/2 be the quotient map. Extending scalars,
(Z/2)⊗Z Zn ∼= (Z/2)n

13



Example 2.3.7Consider
Cn ⊗R Rℓ

One way to compute this:
Cn ⊗R Rℓ ∼=R R2n ⊗ Rℓ ∼=R R2nℓ ∼=R Cnℓ

where ∼=R denotes isomorphism as R-vector spaces. Another way to do this:
Cn ⊗R Rℓ ∼=C Cn ⊗C

(
C⊗R Rℓ) ∼=C Cn ⊗ Cℓ ∼=C Cnℓ

The first isomorphism is given by
v ⊗ u 7→ v ⊗ (1⊗ u)Combining these, the isomorphism Cn ⊗R Rℓ → Cn ⊗ Cℓ sends
v ⊗ u 7→ v ⊗ u

where we use the inclusion Rℓ ↪→ Cℓ .
Proposition 2.3.8. Let M be an S-module, N be an R-module, then

M ⊗R N ∼= M ⊗S (S ⊗R N)
as S-modules. In particular, the isomorphism is given by

m⊗ n 7→ m⊗ (1⊗ n)(sm)⊗ n← [ m⊗ (s⊗ n)
Intuitively, what this is saying is that we only need to consider the special case of extension by scalars,which is N ⊗R S .

Proposition 2.3.9. Let M,M ′ be S-modules, N,N ′ be R-modules, then we have S-module isomorphisms(i) M ⊗R N ∼= N ⊗R M , via m⊗ n→ n⊗m(ii) (M ⊗R N)⊗R N ′ ∼= M ⊗R (N ⊗R N ′)(iii) (M ⊗R N)⊗S M ′ ∼= M ⊗S (N ⊗R M ′)(iv) M ⊗R (⊕iNi) ∼=⊕i(M ⊗R Ni)
Proof. We will prove (iii). Using proposition 2.3.8, we have

(M ⊗R N)⊗S M ′ ∼= (M ⊗S (N ⊗R S))⊗S M ′
∼= M ⊗S

((N ⊗R S)⊗S M ′)
∼= M ⊗S (N ⊗R M ′)

Example 2.3.10As C-vector spaces,
C⊗R (Rℓ ⊗R Rk ) ∼= (C⊗R Rℓ )⊗C (C⊗R Rk ) ∼= Cℓ ⊗ Ck ∼= Cℓk
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Corollary 2.3.11. If N,N ′ are R-modules, then
S ⊗R (N ⊗N ′) ∼=S (S ⊗R N)⊗S (S ⊗N ′)

Proof. By proposition 2.3.8 and proposition 2.3.9 (ii):
S ⊗R (N ⊗R N ′) ∼= (S ⊗R N)⊗R N ′ ∼= (S ⊗R N)⊗S (S ⊗R N ′)

Lecture 6By induction, we have that
S ⊗R (N1 ⊗R · · · ⊗R Nℓ ) ∼= (S ⊗R N1)⊗S · · · ⊗S (S ⊗R N1)

Extension of scalars for morphismsLet f : N → N ′ be R-linear, where N,N ′ are R-modules, M is an S-module. Then we have a mapid⊗f : M ⊗R N → M ⊗R N ′In particular, it is S-linear, as(id⊗f )(s(m⊗ n)) = (id⊗f )((sm)⊗ n) = (sm)⊗ f (n) = s(m⊗ f (n)) = s(id⊗f )(m⊗ n)Given T : Rn → Rℓ which is an R-linear map, Rn with basis e1, . . . , en and Rℓ with basis f1, . . . , fℓ . Inthis case, consider id⊗T : C⊗ Rn → C⊗ Rℓ

Note that C⊗ Rn has basis 1⊗ e1, . . . , 1⊗ en. In particular,
(id⊗T )(1⊗ ei) = 1⊗ T (ei) = 1⊗ ℓ∑

j=1 Tjifj = ℓ∑
j=1 Tji(1⊗ fj )Thus, T and id⊗T have the same matrix representation.

Extension of scalars of algebrasLet A, B be R-algebras. Recall that in this case, A⊗R B is also an R-algebra. In fact, A⊗R B is an A-algebra(and by symmetry a B-algebra). For example, we have
A→ A⊗R B
a 7→ a⊗ 1

Example 2.3.12
S ⊗R R [x1, . . . , xn] ∼=S S [x1, . . . , xn] (where ∼=S denotes isomorphism of S-algebras).
Proof. We already have an S-module isomorphism

φ : S ⊗R R [x1, . . . , xn]→ S [x1, . . . , xn]
with φ(s⊗ f ) = sf . It is easy to show that

φ(s⊗ 1) = s

and that φ preserves multiplication.More generally, we have that
S ⊗

(
R [x1, . . . , xn]

I

)
∼= S [x1, . . . , xn]

Ie
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where Ie = ⟨f (I)⟩ is the ideal generated by I under the ring homomorphism f : R → S .
Proposition 2.3.13. Suppose A is an R-algebra, B is an S-algebra, then A ⊗R B is an S-algebra.Moreover,

A⊗R B ∼=S-alg (A⊗R S)⊗ B
Proof. A⊗R B is a B-algebra, and we can then restrict scalats to S . The isomorphism is clear from the modulecase, as all we need to check is it preserves multiplication.

Proposition 2.3.14. Suppose A, B are R-algebras, then
S ⊗R (A⊗R B) ∼=S-alg (S ⊗R A)⊗S (S ⊗R B)

2.4 Exactness properties of the tensor productLet M be a fixed R-module. Define TM (N) = M ⊗R Nwhere N is an R-module. If f : N → N ′ is R-linear, then we have an induced map
TM (f ) = idM ⊗f : TM (N)→ TM (N ′)

Suppose we have an exact sequence
A B C 0f g

of R-modules. We will show that we have an exact sequence
TM (A) TM (B) TM (C ) 0TM (f ) TM (g)

That is, TM is a right exact functor from R-modules to R-modules.
Definition 2.4.1 (Hom)Suppose Q,P are R-modules, then we can define

HomR (Q,P) = {f : Q → P | f is R-linear}
This is an R-module itself, with (r · φ)(q) = r · φ(q)
Definition 2.4.2 (Hom functors)We have two functors,1. HomR (Q, ·), where Q is a fixed R-module,2. HomR (·, P), where P is a fixed R-module.Suppose we have f : N → N ′ which is R-linear, then the action on morphisms are

HomR (Q, f ) : HomR (Q,N)→ HomR (Q,N ′)
φ 7→ f ◦ φ =: f∗(φ)
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On the other hand, HomR (·, P) is contravariant. That is,
HomR (f , P) : HomR (N ′, P)→ HomR (N,P)

φ 7→ φ ◦ f =: f ∗(φ)
Proposition 2.4.3 (left exactness of the Hom-functors). 1. If

0 A B Cf g

is exact, then so is
0 HomR (Q, A) HomR (Q,B) HomR (Q,C )HomR (Q,f ) HomR (Q,g)

2. If
A B C 0f g

is exact, then so is
0 HomR (C, P) HomR (B,P) HomR (A, P)HomR (g,P) HomR (f ,P)

In both cases, we say that the respective Hom functor is left exact .
Proof. Omitted.

Lemma 2.4.4. Consider a (not necessarily exact) sequence
A B Cf g

and suppose for all R-module P , the sequence
HomR (C, P) HomR (B,P) HomR (A, P)

is exact, then the original sequence is exact.
Proof. Step 1: let P = C . Then we get the sequence

HomR (C, C ) HomR (B, C ) HomR (A, C )
which is exact by assumption. Under this,

idC 7→ idC ◦g = g 7→ g ◦ f

Thus, we have that g ◦ f = 0, and so im(f ) ⊆ ker(g).
Step 2: Let P = coker f = Bim(f ) . In this case, we have

Hom(C, coker(f )) Hom(B, coker(f )) Hom(A, coker(f ))
Let h : B → coker(f ) denote the quotient map. Then h◦f = 0, and so by exactness, there exists e : C → coker(f ),with Hom(g, coker(f ))(e) = e ◦ g = hIn particular, ker(g) ⊆ ker(h) = im(f ).Recall that we have a bijection HomR (M⊗R N, L) ∼= Bil(M×N, L) from the universal property of the tensorproduct. But Bil(M ×N, L) ∼= HomR (N,HomR (M, L))
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and so we have an isomorphism
HomR (M ⊗N, L) ∼= HomR (N,HomR (M, L))

sending φ to n 7→ (m 7→ φ(m⊗ n)) Lecture 7
Proposition 2.4.5. Let M be an R-module. Then TM is a right exact functor.

Proof. Given an exact sequence
A B C 0f g

Fix an R-module P . We will apply the functors HomR (·, P), then the functor HomR (M, ·), to get the sequence
0 HomR (M,HomR (C, P)) HomR (M,HomR (B,P)) HomR (M,HomR (A, P))

which is exact as the Hom functors are left exact. Using the isomorphism above, and noting that the square
HomR (M,HomR (C, P)) HomR (M,HomR (B,P))

HomR (M ⊗ C, P) HomR (M ⊗ B,P)
commutes, we have an exact sequence

0 HomR (M ⊗ C, P) Hom(M ⊗ B,P) Hom(M ⊗ A, P)
Since P is arbitrary, using lemma 2.4.4, we see that

TM (A) TM (B) TM (C ) 0
is exact, as required.

Remark 2.4.6. Note on the other hand that
A B C

being exact does not imply that TM (A) TM (B) TM (C )is exact.For example, consider the exact sequence
0 Z Z·2

This is exact, but 0 Z⊗ Z/2 Z⊗ Z/2·2
is not.

2.5 Flat modules - a first encounter

Definition 2.5.1 (flat module)An R-module M is flat if for any injective R-module homomorphism N → N ′, the map TM (f ) : TM (N)→TM (N ′) is injective.
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Example 2.5.2
Z/2 is not a flat Z-module, as seen in the remark above.
Example 2.5.3Free modules are flat. To see this, suppose f : N → N ′ is an injective R-linear map. Then we have thecommuting square

R⊕I ⊗N R⊕I ⊗N ′

(R ⊗N)⊕I (R ⊗N ′)⊕I
N⊕I (N ′)⊕I

id⊗f

f⊕I

where the vertical maps are isomorphisms, and
f⊕I ((ni)i∈I ) = (f (ni))i∈I

It is clear that f⊕I is injective.
Remark 2.5.4. With this, we see that the base ring matters. Z/2 is not a flat Z-module, but it is a flat Z/2-moduleas it is free.
Definition 2.5.5 (torsion free)An R-module is torsion free if for any r ∈ R,m ∈ M , rm = 0 implies that m = 0 or r is a zero divisor.
Proposition 2.5.6. Flat modules are torsion free.

Proof. Suppose M was not torsion free. Then there exists r0 ∈ R,m0 ∈ M with r0 not a zero divisor, m0 ̸= 0,such that r0m0 = 0. We can define a map
f : R → R

f (x) = r0x
f is injective as r0 is not a zero divisor. Thus, we have the square

M ⊗ R M ⊗ R

M M

id⊗f

r0·But the bottom map is not injective, as it sends m0 to zero.For a specical case of the above:
Proposition 2.5.7. Let R be an integral domain, I a non-zero, non-unit ideal. Then R/I is not flat.

Proof. Since I ̸= R , R/I is non-zero. Choose x ∈ I \ 0, and consider the map
f : R → R
f (r) = xrThis is an injective map. But the induced map on R ⊗ (R/I) ∼= R/I is multiplication by x , which is the zeromap.
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Proposition 2.5.8 (criterion for flatness). Let M be an R-module. Then teh following are equivalent:
(i) TM preserves exactness of all exact sequences,(ii) TM preserves exactness of short exact sequences,(iii) TM is flat,(iv) if f : N → N ′ is R-linear and injective, N,N ′ are finitely generated R-modules, then idM ⊗f isinjective.

Proof. (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) is clear.For (ii) =⇒ (i), suppose
A B Cf g

is exact, then we have a short exact sequence
0 Aker(f ) B im(g) 0f g

Thus, we have a short exact sequence
0 M ⊗ Aker(f ) M ⊗ B M ⊗ im(g) 0

That is, ker(idM ⊗g) = im(idM ⊗f ) = im(idM ⊗f ). Thus the sequence
M ⊗ A M ⊗ B M ⊗ Cis exact.We will omit the proof of (iv) =⇒ (iii), it can be found in the lecturer’s notes.For (iii) =⇒ (ii), we note that this follows from TM being right exact.

Proposition 2.5.9. Let f : R → S be a ring homomorphism, M is a flat R-module. Then S ⊗R M is a flat
S-module.

Proof. Let g : N → N ′ be an injective S-linear map. Then the square
(S ⊗R M)⊗S N (S ⊗R M)⊗S N ′

M ⊗R N M ⊗R N ′commutes. But the bottom map is injective as M is flat. Lecture 8
2.6 Further examples of tensor products

Example 2.6.1First consider x ⊗ y ∈ Q⊗Z (Z/n). We can write
x ⊗ y = n xn ⊗ y = x

n ⊗ ny = 0
and so, Q⊗Z (Z/n) = 0. We used the fact that Q is a divisible group, that is, for all x ∈ Q, n ∈ N, thereexists y ∈ Q such that ny = x . Moreover, we also used the fact that Z/n is torsion.More generally, divisible⊗ torsion = 0and so (Q/Z)⊗Z (Q/Z)
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But for an R-module M which is non-zero, if M is finitely generated, then M ⊗R M ̸= 0.
Example 2.6.2Let V be a Q vector space, then

Q⊗Q V = VBut in this case, we also have that
Q⊗Z V = Vwith x ⊗ v 7→ xv .

Proof. Every tensor in Q⊗Z V is pure, since we can write∑ ai
bi
⊗ vi =∑ 1

bi
⊗ (aivi) =∑ 1

bi
⊗ ai
bi
vi =∑ 1⊗ ai

bi
vi = 1⊗∑ ai

biClearly this map is surjective, and it is easy to see that if xv = 0 then either x = 0 or v = 0.
Example 2.6.3Recall that

M ⊗R

(⊕
i∈I

Ni

)
∼=⊕

i∈I

(M ⊗Ni)
On the other hand, if we consider the direct product, we have a map

M ⊗
∏
i
Ni →

∏
i

(M ⊗Ni)
m⊗ (ni) 7→ (m⊗ ni)

which is in general, not an isomorphism. For example, consider
Q⊗Z

∏
n≥1

Z2n →∏
n≥1Q⊗

Z2n
But from above, Q⊗ (Z/2n) = 0, and so the right hand side is zero. For the left hand side, take

g = (1, 1, . . . ) ∈∏
n≥1

Z2n
Note that g has infinite order, and so it generates a subgroup isomorphic to Z . But recall that

Q⊗Z Z = Q

With this, we have an injective map
Q⊗ ⟨g⟩ ↪→ Q⊗

∏
n≥1

Z2n
We will see later that Q is a flat Z-module.
Example 2.6.4Consider C ⊗R C as an C-algebra, where we first restrict scalars on the right copy of C, and extendscalars using the left copy.Recall that as a C-vector space,

C⊗R C = C⊗R R2 ∼= C2
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and we have a basis C⊗R C, which is 1⊗ 1, 1⊗ i as a C-vector space.To consider this as a C-algebra, then
C⊗R C ∼= C⊗R

R[t]
⟨t2 + 1⟩ ∼= C[t]

⟨t2 + 1⟩ = C[t]
⟨t − i⟩ ⟨t + i⟩

∼= C[t]
⟨t − i⟩ ×

C[t]
⟨t + i⟩

∼= C× C

where we used the Chinese remainder theorem. On a pure tensor, we have
(a+ bi)⊗ (c + di) 7→ (a+ bi)⊗ [c + dt]︸ ︷︷ ︸coset of c+dt

7→ (a+ bi)[c + dt]
We can compute this, to get

P = (ac + bdit) + (ibc + tad)and we then have
P 7→ (ac − bd+ i(bc + ad), ac + bd+ i(bc − ad))If we set x = a+ bi, y = c + di, then the result is just (xy, xy).

3 Localisation

Definition 3.0.1 (multiplicative subset)A multiplicative(ly closed) subset S ⊆ R such that1. 1 ∈ S ,2. if a, b ∈ S , then ab ∈ S .
If U ⊆ R is any set, then the multiplicative closure S of U is the set of

n∏
i=1 uiwhere ui ∈ U , n ≥ 0.

Example 3.0.2If R is an integral domain, then S = R \ {0} is multiplicative. More generally, if p ⊴ R is a prime ideal(of any ring R ), then S = R \ p is multiplicative.
Example 3.0.3If x ∈ R , then S = {1, x, x2, . . . } is multiplicative.
Example 3.0.4
Q is obtained from Z by adding inverses for the elements of the multiplicative subset Z \ {0}, and wehave a ring homomorphism Z ↪→ Q.
We will generalise this example to general rings R , and with arbitrary multiplicative subsets S ⊆ R . Butin general, we will lose injectivity. Lecture 9

3.1 Construction
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Definition 3.1.1 (localisation)Let S ⊆ R be a multiplicative set, M is an R-module. Consider the set M × S , with the relation(m1, s1) ∼ (m2, s2) if there exists u ∈ S , such that
u(s2m1 − s1m2) = 0

This is an equivalence relation, and we S−1M for the set of equivalence classes. We write
m
s = [(m, s)]

for the equivalence class. Finally, we write
m1
s1 + m2

s2 = m1s2 +m2s1
s1s2and

r · ms = rm
sThe above makes S−1M into an R-module. We call S−1M the localisation of M at S .If M = R , we can make S−1R into a ring by

r1
s1 ·

r2
s2Next, we note that we have an S−1R-module structure on S−1M , via

r
s ·

m
t = rm

stWe have localisation maps:
R → S−1R
r 7→ r1which is a ring homomorphism, and

M → S [ − 1]M
m 7→ m1which is an R-linear map.

We check that ∼ above defines an equivalence relation: Reflexivity and symmetry are clear. Say (m1, s1) ∼(m2, s2) and (m2, s2) ∼ (m3, s3). That is, there exists u, v ∈ S such that
u(s2m1 − s1m2) = v (s3m2 − s2m3) = 0

Multiplying the first term by vs3 and the second by us1, we get
uvs2s3m1 = uvs3s1m2
uvs1s3m2 = uvs1s2m3

and so, we have that
uvs2(s3m1 − s1m3) = 0Since S is multiplicatively closed, we are done.

Proposition 3.1.2 (universal property of S−1R ). Let U ⊆ R be any subset, and let S ⊆ R be themultiplicative closure of U . Let f : R → B be a ring homomorphism, such that f (u) is a unit for all u ∈ U .
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Then there exists a unique ring homomorphism h : S−1R → B, such that the diagram
R S−1R

B

f

r 7→ r1

h

commutes. That is,
f (r) = h

( r1)
Another way of thinking about this is that we have a bijectionHomRing(S−1R,B)↔ {φ : R → B ring hom., with φ(U) ⊆ B×}given by sending f to r 7→ f

( r1).
Proof. Let f : R → B be a ring homomorphism, with f (U) ⊆ B×. In this case, f (S) ⊆ B× as well. We want
h : S−1R → B, with

f (r) = h
( r1)First, such h must satisfy: 1 = h(1) = h

(1
s ·

s1
) = h

(1
s

)
f (s)

Thus, we must have that h(1/s) = f (s)−1. With this, we have
h
( r
s

) = h
( r1)h

(1
s

) = f (r)f (s)−1
But we need to check if h is well defined. That is, if r1/s1 = r2/s2, then there exists t ∈ S such that
t(s2r1 − s1r2) = 0, or equivalently,

ts2r1 = ts1r2Applying f , we get
f (t)f (s2)f (r1) = f (t)f (s1)f (r2)But every element in the above equality are in B×, and so we are done. It is easy to check that h is a ringhomomorphism.

Proposition 3.1.3. If (A, j) satisfies the same universal property of (S−1R, ι), where ι(r) = r/1, then thereexists an isomorphism S−1R → A, sending
r
s 7→ j(r)j(s)−1

Facts1. Take r/s ∈ S−1R , then
r
s = 01 ⇐⇒ there exists u ∈ S with ur = 0

2. S−1R = 0 if and only if 0 ∈ S .3. ker(ι : R → S−1R ) = {r ∈ R | there exists u ∈ S with ur = 0}4. In particular, ι is injective if and only if S does not contain any zero divisors.5. ι is always an epimorphism1, but usually not surjective. For example, ι : Z → Q is an epimorphism. Ifwe have f , g : Q→ A ring homomorphisms, with f ◦ ι = g ◦ ι, then f = g.
1A morphism f : X → Y (in some category) is called an epimorphism if for all g1, g2 : Y → Z , with g1 ◦ f = g2 ◦ f , we have g1 = g2 .

24



Example 3.1.4For f ∈ R , let S = {fn | n ≥ 0}. Then we define Rf = S−1R .If R = Z, f = 2, then
Rf = { a2n ∣∣ a ∈ Z, n ≥ 0} = Z

[12
]

Notation 3.1.5. In this course, we will write:• Z/n for the finite ring,• Z2 for the 2-adic integers,• Z[1/2] for the above ring.
Example 3.1.6For a ring R , let Spec(R ) denote its prime spectrum. For p ∈ Spec(R ), we can let S = R \ p, and wewrite Rp = (R \ p)−1R .If R = Z, p = ⟨3⟩, then

Z⟨3⟩ = {ab ∣∣ a, b ∈ Z, 3 ∤ b
}

Proposition 3.1.7. If M is an R-module, S ⊆ R a multiplicative subset, then we have an isomorphism:
S−1R ⊗R M → S−1M

r
s ⊗m 7→

rm
s

Proof. We can define a bilinear map
S−1R ×M → S−1M( r

s , m
)
7→ rm

sand thus, by the universal property we haev φ : S−1R ⊗R M → S−1M . This is R-linear, and it is easy to seethat φ is also S−1R-linear. It is clear that φ is surjective, since
φ
(1
s ⊗m

) = m
s

We want to show that every tensor
t =∑

i

ri
si
⊗mi ∈ S−1R ⊗R M

is prime. Define s =∏i si, and tj =∏i ̸=j si. In this case,∑ ri
si
⊗mi =∑ 1

si
⊗ (rimi)

=∑ ti
s ⊗ (rimi)

= 1
s ⊗

(∑
i
ritimi

)
Using this, if

φ
(1
s ⊗m

) = m
s = 0 = 01
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That is, there exists u ∈ S , such that um = 0. In this case,1
s ⊗m = u

us ⊗m = 1
us ⊗ (um) = 0

With this, S−1R ⊗ (· · · ) acts on R-modules. But in fact, it also acts on R-linear maps. Lecture 10
Proposition 3.1.8 (localisation is a functor). Let M be an R-module, S ⊆ R a multiplicative subset. Let
f : N → N ′ be an R-linear map. Then the following square commutes:

S−1R ⊗N S−1R ⊗N ′

S−1N S−1N ′
∼ ∼

idS−1R ⊗f

S−1(f )
In particular, (S−1f )(ns) = f (n)

s

With this, the functors S−1R ⊗ (·) and S−1(·) are naturally isomorphic.
Remark 3.1.9. Let A be an R-algebra, S−1R⊗A→ S−1A is S−1R-linear, and also an isomorphism of S−1R-algebras.
Lemma 3.1.10. If M is an S−1R-module, then, we can restrict scalars on M from S−1R to R , then apply
S−1(·). Then

S−1M ∼= Mas S−1R-modules. Equivalently,
M ∼= S−1R ⊗Mas S−1R-modules.

Proof. We can see that the map
M → S−1M
m 7→ m1is S−1R-linear. Surjectivity and injectivity are clear.

Proposition 3.1.11. Let M be an R-module, L an S−1R-module, f : M → L is R-linear. Then there existsa unique h : S−1M → L which is S−1R-linear, such that
f (m) = h

(m1 )
Proof. We know that S−1(·)⊗S−1R ⊗ (·), and so it suffices to prove the result for the tensor product. With this,the localisation map is

ι : M → S−1R ⊗M
m 7→ 11 ⊗m

26



Let f : M → L be R-linear. We then have that
h : idS−1R ⊗f : S−1R ⊗R M → S−1R ⊗R L

But the previous lemma shows that S−1R ⊗R L ∼= L as S−1R-modules. In particular,
h
( r
s ⊗m

) = r
s f (m)

For the uniqueness of h, it follows from the fact that elements of the form 11 ⊗ m generate S−1R ⊗R M as an
S−1R-module.

Proposition 3.1.12 (the functor S−1R is exact). If
A B Cf g

is an exact sequence of R-modules, then
S−1A S−1B S−1CS−1f S−1g

is an exact sequence of S−1R-modules.
Proof. (S−1g) ◦ (S−1f ) = S−1(g ◦ f ) = S−1(0) = 0and so im(S−1f ) ⊆ ker(S−1g). Let

b
s ∈ ker(S−1g)

Then
g(b)
s = 01That is, there exists u ∈ S , such that u · g(b) = 0. But g is R-linear, u ∈ R , and so g(ub) = 0, which meansthat ub ∈ ker(g) = im(f ). Thus, there exists a ∈ A such that f (a) = ub. Now

b
s = ub

us = f (a)
us = S−1f ( aus) ∈ im(S−1f )

Equivalently, S−1R is a flat R-module. Suppose ι : N → M is the inclusion map, then
S−1ι : S−1N → S−1M

is injective, and so the expression
n
smakes sense in S−1N and S−1(M).

Proposition 3.1.13. Let M be an R-module, N,P submodules of M . Then(i) S−1(N + P) = S−1N + S−1P .(ii) S−1(N ∩ P) = S−1N ∩ S−1P ,(iii) (S−1M)/(S−1N) ∼= S−1(M/N) as S−1R modules via
m
s + S−1N ↔ m+N

s
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Proof. For (i), the left hand side consists of elements of the form n+p
s , and the right hand side consists ofelements of the form n

s1 + p
s2 . The result is then clear.For (ii), ⊆ is clear. Given x ∈ S−1N ∩ S−1P , that is,

x = n
s1 = p

s2for n ∈ N, p ∈ P, s1, s2 ∈ S . But then there exists u ∈ S , such that us2n = us1p =: w ∈ N ∩ P . With this,
x − n

s1 = us2n
us1s2 = w

us1s2 ∈ S−1(N ∩ P)
For (iii), consider the exact sequence

0 N M M/N 0
Applying the exact functor S−1,

0 S−1N S−1M S−1(M/N) 0
But this immediately gives that

S−1(M/N) ∼= S−1M
S−1Nas S−1R-modules. Computing the respective maps gives the result.

Proposition 3.1.14. If M,N are R-modules, then
S−1M ⊗S−1R S−1N ∼= S−1(M ⊗R N)

Proof. We have the isomorphism from extension of scalars:
(S−1R ⊗R M)⊗S−1R (S−1R ⊗R N) ∼= S−1R ⊗R (M ⊗R N)

A special case of this is that if p is a prime ideal of R , then
Mp ⊗Rp

Np = (M ⊗R N)p
3.2 Extension and contraction of idealsRecall if f : A→ B is a ring homomorphism, we define the contraction of b ⊴ B as

bc = f−1(b) ⊴ A

and the extension of a ⊴ A as
ae = ⟨f (a)⟩ ⊴ BIn examples sheet 1, we have a bijection

{contracted ideals of A} ↔ {extended ideals of B}
To see this, we have that an ideal a is contracted if and only if a = aec , and an ideal b is extended if and onlyif b = bce, and so the bijection is given by extension/contraction.Let S be a multiplicative subset of R , and we will consider the ring homomorphism R → S−1R , given by
r 7→ r/1. For an ideal a of R , we have the extension

ae = S−1a ⊴ S−1R
and for an ideal b of S−1R , we have the contraction bc ⊴ R .
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Proposition 3.2.1.

ae = S−1a = {as
∣∣∣∣ a ∈ a, s ∈ S

}
Lecture 11

Proof. ae is the ideal generated by a/1 for a ∈ a, and so ⊇ holds. But the right hand side is already an ideal,and so by minimality, equality holds.
Proposition 3.2.2. aec = ⋃s∈S (a : s) where (a : s) = {r ∈ R | rs ∈ a}.

Proof. Take r ∈ ⋃s∈S (a : s). That is, rs = a ∈ a, and so in S−1R ,
rs1 = a1 =⇒ r1 = a

s ∈ ae

and so r ∈ aec . Conversly, if r ∈ aec , then
r1 = a

sfor some a ∈ a, s ∈ S . But this means that there exists u ∈ S , such that urs = ua. With this, r ∈ (a : us),
us ∈ S as S is multiplicative.Now suppose b is an ideal of S−1R . Then

bc = {r ∈ R
∣∣∣∣ r1 ∈ b

}

Proposition 3.2.3. bce = b.
Proof. ⊆ always holds. Take r/s ∈ b, then r/1 ∈ b. Thus, r ∈ bc , and so r/1 ∈ bce, which means that
r/s ∈ bce.

Proposition 3.2.4. Consider the localisation map R → S−1R , then(i) Every ideal of S−1R is extended.(ii) An ideal a of R is contracted if and only if the image of S in R/a contains no zero divisors of R/a.(iii) ae = S−1R if and only if a ∩ S ̸= ∅.(iv) We have a bijection:
{p ∈ Spec(R ) | p ∩ S = ∅} ↔ Spec(S−1R )

p 7→ pe

qc ←[ q

Proof. (i) Follows from proposition 3.2.3. For (ii), a is contracted if and only if aec ⊆ a. But
aec = ⋃

s∈S

(a : s)
Thus, aec ⊆ a if and only if: for all r ∈ R , if Sr ∩ a ̸= ∅, then r ∈ a. But Sr ∩ a ̸= is true if and only if 0 + ais in the image of S , and r ∈ a is the same as r + a = 0. Thus, a is contracted if and only if the image of S in
R/a contains no zero divisors.
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For (iii), suppose a ∩ S ̸= ∅. Choose x ∈ a ∩ S , then
1 = x

x ∈ ae

Conversely, if ae = S−1R . Then 1 ∈ ae, and so 11 = a
sfor some a ∈ a, s ∈ S , and so there exists u ∈ S such that us = ua. But us ∈ S as it is multiplicative,

ua ∈ a as it is an ideal.For (iv), first consider the contraction map Spec(S−1R ) → {p ∈ Spec(R ) | p ∩ S = ∅}. This makes senseas the contraction of a prime ideal is prime, and if p ∈ Spec(R ) is contracted, by (ii), we see that S ∩ p isempty, since R/p is an integral domain, and so the only zero divisor is zero.Moreover, this map is injective, since it has a left inverse, as all ideals in S−1R are extended ideals, andso qce = q. In the other direction, for a prime ideal p ∈ Spec(R ), with p ∩ S = ∅, we have seen that p iscontracted, and so pec = p. With this, all we need to show is that pe is prime.We would like to show that (S−1R )/pe is an integral domain. We know that pe is not all of S−1R , and so(S−1R )/pe is not the zero ring. So we need to show that (S−1R )/pe has no zero divisors. We will do this byembedding (S−1R )/pe into Frac(R/p).Now consider the composition map
R R/p Frac(R/p)

This has the property that the elements of S are sent to units, since S ∩ p = ∅. Using the universal propertyof S−1R , we hava an induced map
R R/p Frac(R/p)

S−1R
φ

In particular,
φ
( r
s

) = r + p

s+ pIt suffices to show that ker(φ) = pe. First, we see that im(φ) ⊆ S−1(R/p), where S is the image of S in S−1R .With this, we cam consider φ : S−1R → S−1(R/p). Take r/s ∈ ker(φ). That is,
r + p

s+ p
= 01 ∈ S−1(R/p)

Then there exists u+ p ∈ S , such that
(u+ p)(r + p) = (ur) + p = 0

That is, ur ∈ p. Then we have that
r
s = ur

us ∈ pe

Conversely, take x ∈ pe. Then x = p/s, and
φ(x) = p+ p

s+ p
= 0

and so x ∈ ker(φ).In the special case where S = {1, f , · · · }, we can view this in terms of algebraic geometry. There, we havea natural identification of Spec(Rf ) with D(f ), which is the complement of the zero set of f . The left hand sideis precisely D(f ), essentially by definition.
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An applicationIf I ⊴ R is an ideal, then the radical of I is
√
I = {r ∈ R | ∃m ≥ 1 such that rm ∈ I}

Proposition 3.2.5. √
I = ⋂

I≤p∈Spec(R ) p

Proof. Take x ∈ √I , then xn ∈ I , and so for every p ∈ Spec(R ), if I ⊆ p, then xn ∈ p, and so x ∈ p. That is,
⊆ holds. For the other inclusion, take x ∈ R , x /∈

√
I . We know that I ̸= R , and R/I is not the zero ring. Let

x ∈ R/I be the image of x . Consider (R/I)x = {xn}−1(R/I)This is not the zero ring, since we did not invert zero. Therefore, (R/I)x has a prime ideal, which correspondsto a prime ideal of R/I which avoids x , which in turn, corresponds to a prime ideal of R , which contains I , andavoids x . Lecture 12
3.3 Local properties

Definition 3.3.1 (local ring)A ring R is local if it has a unique maximal ideal. We write (R,m) for the local ring R with maximal ideal
m.
Example 3.3.2Let p ∈ Spec(R ). Then recall that we have a bijection

{q ∈ Spec(R ) | q ⊆ p} ↔ Spec(Rp)
given by extension and contraction. With this, all prime ideals of Rp are contained in pRp. Thus, (Rp, pRp)is a local ring.In particular, Z⟨2⟩ is a local ring, and the unique maximal ideal is

⟨2⟩Z⟨2⟩ = {2a
b

∣∣∣∣ a, b ∈ Z, 2 ∤ b
}

Proposition 3.3.3. Let M be an R-module. Then the following are equivalent:(i) M = 0,(ii) Mp = 0 for all p ∈ Spec(R ),(iii) Mm = 0 for all m ∈ maxSpec(R ).That is, being zero is a local property (i.e. it is localisable and local to global).
Proof. The implications (i) =⇒ (ii) =⇒ (iii) is clear. Suppose (iii) holds, and suppose for contradiction thereexists m ∈ M non-zero. Consider

AnnR (m) = {r ∈ R | rm = 0} ⊴ R
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Since m ̸= 0, 1 /∈ AnnR (m). Take a maximal ideal m containing AnnR (m). In this case,
m1 = 0 ∈ Mm

That is, um = 0 for some u ∈ R \m. But in this case, u /∈ AnnR (m). Contradiction.
Proposition 3.3.4. Lte f : M → N be an R-linear map. Then the following are equivalent:(i) f is injective,(ii) fp : Mp → Np is injective for every p ∈ Spec(R ),(iii) fm : Mm → Nm is injective for every m ∈ maxSpec(R ),The same statements holds for surjectivity.
Recall

fp
(m
s

) = f (m)
s

Proof. Suppose (i) holds. Since localising at p is an exact functor, (ii) follows. (ii) implies (iii) is by definition.Suppose (iii) holds. We have the exact sequence
0 ker(f ) M Nf

Localising at m, we get 0 ker(f )m Mm Nm
fm (∗)which is exact as localisation is an exact functor. But (∗) shows thatker(fm) = ker(f )mBut we assumed ker(fm) = 0, and so ker(f )m = 0 for all maximal ideals m. Thus, by proposition 3.3.3,ker(f ) = 0.

Proposition 3.3.5. Let M be an R-module. Then the following are equivalent:(i) M is a flat R-module,(ii) Mp is a flat Rp-module for all p ∈ Spec(R ),(iii) Mm is a flat Rm-module for all m ∈ maxSpec(R ).
Proof. For (i) =⇒ (ii), since Mp

∼= Rp ⊗R M as Rp-modules, and we have shown that extension of scalarspreserves flatness. As usual, (ii) =⇒ (iii) is trivial.Suppose (iii) holds. Suppose f : N → P is R-linear and injective. Fix a maximal ideal m ∈ maxSpec(R ).Then fm : Nm → Pm is injective by proposition 3.3.4. Then
Nm ⊗Mm Pm ⊗Mm

fm⊗id
is injective by (iii). But we have isomorphisms (N ⊗R M)m ∼= Nm ⊗Rm

Mm, and using this,
Nm ⊗Mm Pm ⊗Mm

(N ⊗R M)m (P ⊗R M)m

fm⊗id

(f⊗id)m
∼ ∼

the bottom map must be injective. But then (f ⊗ id)m is injective for all m, and so f ⊗ id is injective byproposition 3.3.4.
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Example 3.3.6An R-module M is locally free if Mp is a free Rp module for every p ∈ Spec(R ).Take R = C× C. The set of prime ideals of R is just
{C× 0, 0× C}

But then we have a ring homomorphism
C× C→ C(a, b) = b

This sends C× C \ C× 0 to units, and so we have a ring homomorphism
(C× C)C×0 → C(a, b)(c, d) 7→ b

d

This is a bijection. With this, (C × C)C×0 ∼= (C × C)0×C are fields, and so every C × C-module M islocally free.Now consider M = C× {0} as an C×C-module. This is not free (it is not zero, and it is not free ofrank ≥ 1). Thus, M is locally free but not free.
3.4 Localisation as a quotientLet U ⊆ R be a subset, S ⊆ R be its multiplicative closure. Define

RU = R [{Tu : u ∈ U}]
⟨uTu | u ∈ U⟩

Denote the ideal IU = ⟨uTu | u ∈ U⟩. Let u, Tu denote the images of u, Tu respectively.
Claim 3.4.1. RU is isomorphic to S−1R as rings, and also as R-algebras. The isomorphism is given by

RU ↔ S−1R
Tu 7→

1
u

rTu1 · · ·Tun ←[
r

u1 · · ·un
Proof. We will show that RU satisfies the universal property of localisation. Let A be any ring, f : R → A anyring homomorphism, sending U to units.

R RU

A

f
∃!h

Since A is an R-algebra via f , the diagram commutes if and only if h is an R-algebra as well. But we havethe bijection HomR−alg(RU , A)↔ {φ : U → A | f (u)φ(u) = 1}But the set on the right hand side has one elmeent.
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Example 3.4.2For x ∈ R , we can invert x , and we have that
Rx ∼= R [t]

⟨tx − 1⟩
The intuition here is that Tu = 1/u. Lecture 13

4 Nakayama’s lemma

Proposition 4.0.1 (Cayley-Hamilton). Let M be a finitely generated R-module, f : M → M an R-linearmap, a ⊴ R an ideal, with f (M) ⊆ aM . Then
fn + a1fn−1 + an id = 0

where ai ∈ a.
Proof. Say M = spanR{m1, . . . , mn}, then aM = spana{m1, . . . , mn}. Therefore,f (m1)

...
f (mn)

 = P

m1
...
mn


where P ∈ Matn(a). Take ρ : R → End(M) to be the structure ring homomorphism of M as an R-module, thenwe can define

R [t]→ EndR (M)
t 7→ fwhich makes M into an R [t]-module. Using this,

t ·

m1
...
mn

 = P

m1
...
mn


and so

Q

 m1
...

mn = 0


where Q = t · In − P = 0. Multiplying by adj(Q), we get that
det(Q)

m1
...
mn

 = 0
Hence det(Q)m = 0 for all m ∈ M , and so m 7→ det(Q)m is the zero map. But then det(Q) gives the polynomialas required.

Corollary 4.0.2. Let M be a finitely generated R-module. a ⊴ R an ideal, if aM = M , then there exists
a ∈ a such that am = m for every m ∈ M .

Proof. Apply Cayley-Hamilton with f = idM , we get that(1 + a1 + · · ·+ an) idM = 0and so we can take a = −(a1 + · · ·+ an).
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Definition 4.0.3 (Jacobson radical)The Jacobson radical of a ring R is
J(R ) = ⋂

m⊴R maximalm

Example 4.0.4If (R,m) is a local ring, then J(R ) = m. On the other hand, J(Z) = 0.
Proposition 4.0.5. For x ∈ R , x ∈ J(R ) if and only if 1− xy is a unit in R for every y ∈ R .

Proof. Suppose that x ∈ J(R ), and suppose for contradiction that 1 − xy is not a unit, for some y ∈ R . Withthis, 1− xy is contained in a maximal ideal m. Since x ∈ J(R ), x ∈ m. Thus,1 = (1− xy) + xy ∈ mContradiction. On the other hand, if x /∈ J(R ), then there exists a maximal ideal m such that x /∈ m. Then
m + ⟨x⟩ = R . In particular, there exists t ∈ m, y ∈ R such that t + xy = 1. In this case, 1− xy = t ∈ m, andso it is not a unit.

Proposition 4.0.6 (Nakayama’s lemma). Let M be a finitely generated R-module, a ≤ J(R ) is an ideal of
R , with aM = M . Then M = 0.

Proof. By corollary 4.0.2, there exists a ∈ a such that am = m for all m ∈ M . By proposition 4.0.5, 1 = a isa unit, and so we can multiply by (1− a)−1, to get that
m = (1− a)−1(1− a)m = (1− a)−1 · 0 = 0

Corollary 4.0.7. Let M be a finitely generated R-module, N ≤ M an R-submodule, a ≤ J(R ) an ideal,such that
N + aM = Mthen N = M .

Proof.
a ·
(
M
N

) = aM +N
N = M

NTherefore, by Nakayama, M/N = 0, and so N = M .
5 Integral and finite extensions

Definition 5.0.1 (integral)Let A be an R-algebra, x ∈ A is integral over R if there exists f ∈ R [t] monic, such that f (x) = 0.
Example 5.0.2If K is a field, A is a K -algebra, x ∈ A, then x is integral over K if and only if it is algebraic over K .
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Example 5.0.3We will see later1. the elements of Q which are integral over Z is just Z,2. the Z integral elements of Q(√2) is Z[√2],
3. the Z integral elements of Q(√5) is Z

[ 1+√52
]

To see this, we can also recall Part II Number Fields and the ring of integers of a number field.
Definition 5.0.4 (faithful)An R-module M is faithful if the structure ring homomorphism R → EndR (M) is injective.That is, for every non-zero r ∈ R , there exists m ∈ M such that rm ̸= 0.
Example 5.0.5Let R ⊆ A be rings, and so A is an R-module in a natural way. It must be faithful, since we have r1 = r .
Proposition 5.0.6. Let R ⊆ A be rings, x ∈ A. Then R [x ] ⊆ A is a subring, which makes A into an
R [x ]-algebra (and thus an R [x ]-module). Then x is R [x ]-integral if and only if there exists M ⊆ A suchthat1. M is a faithful R [x ]-module, that is, M is an R-submodule of A, xM ⊆ M , and R [x ] → EndR [x ](M)is injective,2. M is finitely generated as an R-module.

Proof. Suppose such an M exists. With this, we have an R-linear map f : M → M ,
f (m) = xm

Since M is a finitely generated R-module, we can apply Cayley-Hamilton (proposition 4.0.1), to get
fn + r1fn−1 + · · ·+ rn = 0

where ri ∈ R . Evaluating at m ∈ M , we get that
(xn + r1xn−1 + · · ·+ rn)(m) = 0

Since M is a faithful R [x ]-module, xn + f1xn−1 + · · ·+ rn = 0 That is, x is integral over R . Now suppose x isintegral over R . Then
xn + r1xn−1 + · · ·+ rn = 0for some ri ∈ R . Take
M = spanR{1, x, · · · , xn−1}satisfies xM = M , and as 1 ∈ M , it is faithful. The fact that it is finitely generated is clear by definition. Lecture 14

Definition 5.0.7 (integral)Let A be an R-algebra. Then A is integral over R if every x ∈ A is integral over R .
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Definition 5.0.8 (finite over)Let A be an R-algebra, then A is finite over A if it is finitely generated as an R-module.
Proposition 5.0.9. Let A be an R-algebra. Then the following are equivalent:(i) A is a finitely generated integral R-algebra,(ii) A is generated as an R-algebra by a finite set of integral elements,(iii) A is finite over R ,

Proof. (i) =⇒ (ii) is trivial. Suppose (ii) holds. Then A is generated by α1, . . . , αm as an R-algebra. But αibeing integral implies that
αnii + ri,1αni−1

i + · · ·+ ri,ni = 0That is,
αnii ∈ spanR{1, αi, . . . , αni−1

i }But this means that for all e1, . . . en ≥ 0,
αe11 · · · αemm ∈ spanR{α f11 · · · α fmm | 0 ≤ fi ≤ ni − 1}Hence A is a finitely generated R-module.Finally, suppose (iii) holds. If A is finitely generated as an R-module, then it is necessarily finitely generatedas an R-algebra. Choose α ∈ A, we would like to show that α is integral over R . Let ρ;R → A be the structurering homomorphism of A as an R-algebra. Then ρ(R ) is a subring of A. With this, it then makes sense toconsider ρ(R )[α ] as a subring of A.Next, A is a ρ(R )[α ]-module, and it must be faithful as 1 ∈ A. Using this, and the fact that A is a finitelygenerated ρ(R )[α ]-module, so by proposition 5.0.6, α is integral over ρ(R ). Equivalently, α is integral over

R .
Proposition 5.0.10. If A is an R-algebra, O is the integral elements of A, then O is an R-subalgebra of
A.

Proof. Take x, y ∈ O. Then this is a finite set of R-integral elements, and so must generate an integral
R-subalgebra of A. But this contains x ± y, xy, which must then be integral. Hence O is a ring. The fact thatit is an R-subalgebra is clear.

Proposition 5.0.11. If A ⊆ B ⊆ C are rings,(i) if C is finite over B, and B is finite over A, then C is finite over A.(ii) if C is integral over B, B is integral over A, then C is integral over A.
Proof. For (i), if C = spanB{γ1, . . . , γn}, B = spanA{β1, . . . , βℓ}, then C = spanA{βiγj}.For (ii), let c ∈ C . We would like to show that c is A-integral. We know that c is B-integral, and so
f (c) = 0 for some

f (T ) = T n + b1T n−1 + · · ·+ bn ∈ B[T ]Hence f ∈ A[b1, . . . , bn][T ]. Set A′ = A[b1, . . . , bn]. Then we have inclusions
A ⊆ A′ ⊆ A′[c]Both inclusions are integral, as they are generated by finitely many integral elements. But this tells us thatboth extensions are finite by proposition 5.0.9. By (i), A ⊆ A′[c] is finite, and so A ⊆ A′[c] is integral, and so cis integral over A.
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Definition 5.0.12Let A ⊆ B be rings. The integral closure of A in B is
A = {b ∈ B | b integral over A}

We say that A is integrally closed if A = A.If A is an integral domain, then its integral closure is its integral closure in Frac(A), and it is integrally
closed if it is integrally closed in Frac(A).
Example 5.0.13Consider A = Z[√5]. This is not integrally closed, since Frac(A) = Q(√5). In this case,

α = 1 +√52 ∈ Frac(A) \ A
But α is integral over A, since α2 − α − 1 = 0.
Example 5.0.14
Z and k [t1, · · · , tn] are integrally closed.
Proposition 5.0.15. If A is a UFD, then A is integrally closed.

Proof. Take x ∈ Frac(A) \ A, say x = a/b, a, b ∈ A, with some p ∈ A prime, p | b but p ∤ a. If x is A-integral,then (a
b

)n + a1 (ab)n−1 + · · ·+ a0 = 0
Multiply through by bn, we get

an = −b(a1 + a2b+ · · ·+ anbn−1)Since p | b, p divides the right hand side, and so p ∈ an. Thus, p | a.
Lemma 5.0.16. If A ⊆ B are rings, A the integral closure of A in B, then A is integrally closed over A.

Proof. If x ∈ B is integral over A, then we have integral extensions
A ⊆ A ⊆ A[x ]

By transitivity, A ⊆ A[x ] is integral, and so x is integral over A, that is, x ∈ A.
Proposition 5.0.17. Let A ⊆ B be rings,(i) If B is integral over A,(a) for every ideal b of B,

B
b

is integral over A
b ∩ A(b) if S ⊆ A is a multiplicative set, then S−1B is integral over S−1A,(ii) If A is the integral closure of A in B, then then S−1A is the integral closure of S−1A in S−1B. Thatis, S−1A = S−1A
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Proof. See notes.
Lemma 5.0.18. Suppose A ⊆ B is an integral extension of rings,(i) A ∩ B× = A×,(ii) if A, B are domains, then A is a field if and only if B is a field.

Proof. For (i), ⊇ is clear. Conversely, take a ∈ A ∩ B×. Then there exists b ∈ B such that ab = 1. We needto show that b ∈ A. We know that b is integral over A, that is,
bn + a1bn−1 + · · ·+ an = 0

Multiply this by an−1, we get
b+ a1 + a2a+ · · ·+ anan−1 = 0But a1 + a2a+ · · ·+ anan−1 ∈ A, and so b ∈ A.For (ii), suppose that B is a field. Then

A× = A ∩ B× = A ∩ (B \ {0}) = A \ {0}
and so A is a field. Now suppose A is a field. Let b ∈ B be non-zero. Since b is integral over A,

bn + a1bn−1 + · · ·+ an = 0
where n is minimal. With this,

b(bn−1 + a1bn−2 + · · ·+ an−1︸ ︷︷ ︸=δ
) = −an

By minimality, δ ̸= 0. Therefore, an ̸= 0 as it is a domain. But an ∈ A is a unit, so Lecture 15
b(a−1

n δ) = 1
and so b is a unit.

Corollary 5.0.19. Let A ⊆ B be an integral extension of rings, q a prime ideal of B. Then q is a maximalideal of B if and only if q ∩ A is a maximal ideal of A.
Proof. We have a ring embedding

A
q ∩ A ↪→ B

qand these are integral domains as q is prime. Moreover, this is an integral extension, and so we are done.
6 Noether normalisation and Hilbert’s Nullstellensatz
6.1 Noether normalisationThroughout, let k be a field.

Definition 6.1.1 (algebraically independent)If A is a k-algebra, and x1, . . . , xn ∈ A, then x1, . . . , xn are k-algebraically independent if for every
p ∈ k [T1, . . . , Tn] non-zero, p(x1, . . . , xn) ̸= 0. That is, the k-algebra homomorphism k [T1, . . . , Tn] → Agiven by sending Ti to xi is injective.
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Theorem 6.1.2 (Noether normalisation). If A ̸= 0 is a finitely generated k-algebra, then there exists
x1, . . . , xn ∈ A, which are k-algebraically independent, such that A is finite over

A′ = k [x1, . . . , xn]
Example 6.1.3 (of the method of proof)Let A = k [t, t−1]. First of all, note that k [t] ⊆ k [t, t−1] is not a finite extension. To see this, suppose itwas, then t−1 is integral over k [t]. That is,

t−n ∈ spank [t]{1, t−1, . . . , t−(n−1)}
Multiply through by tn, we get 1 ∈ spank [t]{tn, tn−1, . . . , t}which is a contradiction. However, let c ∈ k (which we will choose later). Then

A = k [t, t−1] = k [t, t−1 − ct]
Claim 6.1.4. k [T−1 − cT ] ⊆ A is a finite extension for “most” c.

Proof. Since tt−1 − 1 = 0, we have that
((t−1 − ct) + ct)t − 1 = 0

Expanding,
ct2 + (t−1 − ct)t − 1 = 0Thus, if c ̸= 0, then we can divide by c to show that t is integral over k [t − ct−1].

Proof of theorem 6.1.2 assuming k is infinite. We will induct on the minimal number m of generators of A asan k-algebra.
Base case: m = 0 is trivial since A = k . We can take A′ = A.
Inducive step: Suppose A is generated by x1, . . . , xm ∈ A as an k-algebra. If x1, . . . , xm are algebraicallyindependent, then we can take A = A′. Otherwise,

Claim 6.1.5. There exists c1, . . . , cm−1 ∈ k such that xm is integral over
B = k [x1 − c1xm, . . . , xm−1 − cm−1xm]

Assuming the claim, then A = B[xn], and so A is finite over B. But B is generated by m − 1 elements, andso by induction, B contains z1, . . . , zn ∈ B, with B finite over A′ = k [z1, . . . , zn]. Then A is finite over A′ bytransitivity.
Proof of claim 6.1.5. Since x1, . . . , xn are not algebraically independent over k , there exists a non-zero f ∈
k [t1, . . . , tm], with

f (x1, . . . , xm) = 0We would like to prove that xm is integral over B, where ci ∈ k we will choose later. Write
f = r∑

i=0 f[i]as a sum of homogeneous parts. Set F = f[r] for the highest order part. For c1, . . . , cm−1 ∈ k , set
g(t1, . . . , tm) = f (t1 + c1tm, . . . , tm−1 + cm−1tm, tm) = F (c1, . . . , cm−1, 1)trm + h(t1, . . . , tm)
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where each term in h has degree of tm less than r . Note
g(x1 − c1xm, · · · , xm−1 − cm−1xm, xm) = f (x1, . . . , xm) = 0

and that g as a polynomial in tm over k [t1, . . . , tm−1] has degree at most r , and the coefficient of trm is
F (c1, . . . , cm−1, 1), Since F (t1, . . . , tm) is a non-zero homogeneous polynomial, and so F (t1, . . . , tm−1, 1) isnot zero. Therefore, there are c1, . . . , cm−1, with

F (c1, . . . , cm−1) ̸= 0
since we are working over an infinite field (Schwartz-Zippel).

Remark 6.1.6. Noether normalisation is true for any field.
From the example

k [t, t−1] ∼= k [x, y]
⟨xy− 1⟩Geometrically, xy − 1 is a hyperbola. The projection onto the x-axis is not surjective, but the projection onto

y = cx is surjective for c ̸= 0.
6.2 Hilbert Nullstellensatz

Proposition 6.2.1 (Zariski’s lemma). Let k ⊆ L be fields, with L finitely generated as a k-algebra. Thendimk (L) <∞.
Proof. By Noether normalisation, we have a finite extension k [x1, . . . , xℓ ] ≤ L where the xi are algebraicallyindependent. Moreover, this is an integral extension, and so k [x1, . . . , xℓ ] is a field. So ℓ = 0. Hence k ≤ L isa finite extension. Lecture 16From now on, fix a field extension Ω/k , where Ω is algebraically closed.

Definition 6.2.2 (vanishing locus, algebraic set)For S ⊆ k [T1, . . . , Tn], define
V(S) = {x ∈ Ωn | f (x) = 0 for all f ∈ S}

we call such sets k-algebraic sets

Definition 6.2.3 (ideal of a subset)For X ⊆ Ωn, define
I(X ) = {f ∈ k [T1, . . . , Tn] | f (x) = 0 for all x ∈ X} ⊴ k [T1, . . . , Tn]

Remark 6.2.4. Note V(S) = V(⟨S⟩).
Recall from field theory that if L/k is a finite field extension, then there exists a k-homomorphism L→ Ω.

Theorem 6.2.5. Let a ⊴ k [T1, . . . , Tn] be an ideal. Then(i) (Weak Nullstellensatz) V(a) = ∅ if and only if 1 ∈ a,
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(ii) (Strong Nullstellensatz) I(V(a)) = √a.
Proof. For (i), ⇐= is clear. Now suppose 1 /∈ a. Hence there exists a maximal ideal m of k [T1, . . . , Tn]containing a, and so L = k [T1, . . . , Tn]/m is a field, and it is also finitely generated as a k-algebra. By Zariski’slemma, dimk (L) <∞. Hence there exists a k-homomorphism L→ Ω.Consider the composition φ : k [T1, . . . , Tn]→ L→ Ω. In this case, ker(φ) = m. Define

x = (φ(T1), . . . , φ(Tn)) ∈ Ωn

Then for f ∈ k [T1, . . . , Tn],
φ(f ) = f (x)Hence for all f ∈ a ⊆ m,

f (x) = φ(f ) = 0For (ii), let f ∈ √a. Then then f ℓ ∈ a for some ℓ , and thus f ℓ (x) = 0 for all x ∈ V(a). But we are workingin a field, and so f (x) = 0 for all x ∈ V(a), i.e. f ∈ I(V(a)).Conversely, take f ∈ I(V(a)). We want to show that f ∈ √a. Equivalently, f is nilpotent in R =
k [T1, . . . , Tn]/a. In turn, this is equivalent to

Rf = 0But recall that
Rf = R [T1, . . . , Tn, U ]

ae + ⟨Uf − 1⟩Let b = ae + ⟨UF − 1⟩. Hence we need to show that 1 ∈ b. By the Weak Nullstellensatz, it suffices to show
Vb = ∅.Take x = (x1, . . . , xn, u) ∈ V(b) ⊆ Ωn+1. Let x ′ = (x1, . . . , xn), then

x ′ ∈ V(a)
Hence f (x ′), since f ∈ I(V(a)). Considering the canonical embedding k [T1, . . . , Tn] ↪→ k [T1, . . . , Tn, U ], f (x ′) = 0.Now (Uf − 1)(x) = −1 ̸= 0, contradiction, as Uf − 1 ∈ b.

Recall √√I = √I , and we have that1. if X ⊆ Y ⊆ Ωn, then I(Y ) ⊆ I(X ),2. if S ⊆ T ⊆ k [T1, . . . , Tn], then V(T ) ⊆ V(S),3. if S ⊆ k [T1, . . . , Tn], then S = I(V(S)),4. if X ⊆ Ωn, then X ⊆ V(I(X )).5. if X ⊆ Ωn is an algebraic set, then X = V(I(X )). This follows from writing X = V(a).6. if X ⊆ Ωn, then I(X ) is a radical ideal.
Proposition 6.2.6. We have a bijection

{k-alg. subsets of Ωn} ↔ {radical ideals in k [T1, . . . , Tn]}
X 7→ I(X )

V(a)←[ a

Proof. We know I(X ) is radical, and X = V(I(X )). Now take a ∈ k [T1, . . . , Tn] a radical ideal, then by thestrong Nullstellensatz
I(V(a)) = √a = a
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Remark 6.2.7. Note that we defined algebraic subsets with respect to k ⊆ Ω.
Corollary 6.2.8. Under the above correspondence, maximal ideals correspond to minimal non-emptyalgebraic sets. In particular, let k = Ω be an algebraically closed field. Then we have a bijection

Ωn ↔ {maximal ideals of Ω[T1, . . . , Tn]}
x = (x1, . . . , xn) 7→ mx = (T1 − x1, . . . , Tn − xn)

Proof. The first part is just the fact that V and I are order reversing.Since Ω[T1, . . . , Tn]/mx = Ω, mx is a maximal ideal. Moreover, mx is the ideal of polynomials which vanishon x . To see this,
mx ⊆ I({x})But mx is maximal, and I({x}) is a proper ideal, and so equality holds. Moreover, V(mx ) = {x}. The claimfollows from the inclusion reversing bijection from before.Note that the requirement that k = Ω above is necessary. Consider the field extension C/R. In R[t],〈

t2 + 1〉 is a maximal ideal, but it corresponds to the points {i,−i} ⊆ C. In general, for Ω/k as above, eachpoint x ∈ kn is a minimal k-algebraic subsets of Ωn, but there can be more. If char(k ) = 0, then x ∈ Ωn is
k-algebraic if and only if the coordinates are in k . More generally, if Ω/k is separable.On the other hand, if k = Fp(x) is the field of rational functions over Fp, Ω = k , n = 1. Consider thepolynomial

T p − x ∈ k [T ]By Frobenius and that k is algebraically closed, T p − x = (T − x1/p)p over Ω. Hence
V(T p − x) = {x1/p}

Finally, note that every prime ideal is radical.
Definition 6.2.9 (irreducible)
X ⊆ Ωn is irreducible if X is not the union X = X1 ∪ X2, X1, X2 algebraic and X ̸= X1, X2.
Proposition 6.2.10. Let X ⊆ Ωn be an algebraic set. Then X is irreducible if and only if I(X ) is prime.

Proof. See notes, or Part II Algebraic Geometry.
7 Integral and finite extensions again

Definition 7.0.1 (integral over an ideal)If A ⊆ B, a ⊴ A, x ∈ B is integral over a if
xn + a1xn−1 + · · ·+ an = 0

where ai ∈ a.
Lecture 17

Definition 7.0.2 (integral closure over an ideal)If A ⊆ B rings, a ⊴ A, then the integral closure of a in B is
{x ∈ B | x is a-integral}
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Proposition 7.0.3. If A ⊆ B are rings, A the integral closure of A ⊆ B, a ⊆ A is an ideal. Then theintegral closure of a in B is √
aAwhere we take the radical in A.

Proof. Suppose b ∈ B is a-integral, then
bn + a1bn−1 + an = 0

with ai ∈ a. In particular, b is integral over A, and therefore, b0, . . . , bn−1 ∈ A. Using the above,
bn ∈ aA

and so b ∈ √aA.Now suppose b ∈ √aA. Then bn ∈ aA for some n, and so
bn = m∑

i=1 aixi (∗)
where ai ∈ a, xi ∈ A. Define the algebra

M := A[x1, . . . , xm]
Since each xi is integral over A, M is a finite A-algebra. Moreover, from (∗), bnM ⊆ aM . Now define
f : M → M ,

f (m) = bnmThis satisfies f (M) ⊆ aM , and f is A-linear. Therefore, by Cayley-Hamilton,
f ℓ + α1f ℓ−1 + · · ·+ αℓ = 0 ∈ EndR (M)

where each αi ∈ a. Evaluating this at 1 ∈ A, we get that
bnℓ + α1bn(ℓ−1) + · · ·+ αℓ = 0 ∈ B

and so b is a-integral.
Corollary 7.0.4. Suppose A ⊆ B are rings, a ⊴ A, b ∈ B, then b is a-integral if and only if b is√
a-integral.

Proof. By the proposition, it suffices to show √
aA =√√aA

⊆ is clear. For ⊇, note that in general, √Ie ⊆ √Ie. Applying this to the above, we have that
√
aA ⊆

√
aA

and so √√
aA ⊆

√
aA
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Proposition 7.0.5. Let A be an integrally closeda integral domain, and A ⊆ B rings, B is an integraldomain, and an ideal a ⊴ A. Let b ∈ B, We have a field extension Frac(B)/ Frac(A), and the followingare equivalent:(i) b is integral over a(ii) b is algebraic over Frac(A), with minimal polynomial over Frac(A) of the form
T n + a1T n−1 + · · ·+ a0

where ai ∈ √a.
ain Frac(A)

Proof. Suppose (ii) holds, then b is integral over √a by definition. By the corollary, b is integral over a.Now suppose (i) holds. Let F = Frac(A). Then we have that
bn + a1bn−1 + · · ·+ an = 0

where ai ∈ a. Set
h(T ) = T n + a1T n−1 + · · ·+ an ∈ F [T ]Then h(b) = 0, and so b is algebraic over Frac(A). Now let f be the minimial polynomial of b over F . Let Ω/Fbe an algebraically closed field. In this case,

f = ℓ∏
i=1(T − αi) (∗)

where each αi ∈ Ω. We would like to show that the coefficient of f are in √a. Since A is integrally closed, theintegral closure of a in F is √a ⊴ A. Thus, it suffices to show that the coefficients of f are a-integral. Notethat by definition, the coefficient of f are in F .Expanding (∗), we see the coefficients of f are sums of products of the αi. By the proposition, the integralclosure of a in Ω is closed under sums and products (as it is an ideal). Therefore, we need to show that each
αi is integral over A.In this case, αi and b have the same minimal polynomial over Frac(A), and therefore, there exists φi : F (b)→
F (αi), which is a F-homomorphism, with φi(b) = αi. Since h has coefficients in F ,

h(αi) = h(φi(b)) = φ(hi(b)) = 0
7.1 Cohen-Seidenberg theoremsLet ι : A ↪→ B be the inclusion map. Then we have a pullback

i∗ : Spec(B)→ Spec(A)
q 7→ q ∩ A

We are interested in studying i∗, in particular its fibres.
Proposition 7.1.1 (incomparability). If A ⊆ B is an integral extension, q, q′ ∈ Spec(B), q ⊆ q′, and
q ∩ A = q′ ∩ A. Then q = q′.
That is, the elements of the fibres are pairwise incomparable.

Proof. Let p = q ∩ A = q′ ∩ A, and S = A \ p. q and q′ are prime ideals of B not intersecting S , So
q = (S−1q)c
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where by S−1q, we mean the extension of q to S−1B. Note this is not the localisation of B at p, since p neednot be a prime in B. Similarly, q′ = (S−1q′)c . We would like to show that
S−1q = S−1q′To see this,

S−1q ∩ Ap = S−1q ∩ S−1A = S−1(q ∩ A) = S−1p = pApSimilarly, S−1q′ ∩ Ap = pAp, which is the unique maximal ideal of Ap.Since A ⊆ B is an integral extension, so is Ap ⊆ S−1B. Therefore, the contractions S−1q, S−1q′ aremaximal ideals of S−1B. But q ⊆ q′, and so they are equal. Lecture 18
Proposition 7.1.2 (lying over). Let A ⊆ B be an integral extension, p ∈ Spec(A). Then there exists
q ∈ Spec(B) with q ∩ A = p.Equivalently, the natural map Spec(B)→ Spec(A) is surjective.
We can think about this geometrically, if p : Spec(B) → Spec(A) denotes the natural map, then we canthink of Spec(B) as a “bundle” over Spec(A). Surjectivity means that each fibre is non-empty.

Proof. Let S = A \ p, then we have the commutative diagram
A B

Ap = S−1A S−1B
β

Take m ∈ maxSpec(S−1B). Since S−1A ⊆ S−1B is an integral extension, and so m∩S−1A ∈ maxSpec(S−1A) =
{pAp}. Hence m ∩ S−1A = pAp. Under the localisation map, pAp contracts to p. Thus, m contracts to p, andso q = β−1(m) has q ∩ A = p.

Proposition 7.1.3 (going up). Let A ⊆ B be an integral extension of rings, let p1, p2 ∈ Spec(A), q1 ∈Spec(B), with p1 ⊆ p2, qc1 = p1. That is,
q1

p1 p2
there exists q2 ∈ Spec(B), with q1 ⊆ q2, and qc2 = p2. Note that in the diagram we use vertical line withno arrows to denote contraction.

Proof. p1 = q1 ∩ A, and so we have an injective map A/p1 → B/q1. This is an integral extension. From lyingover, there exists a prime ideal q2/q1 ∈ Spec(B/q1), with q2 ∈ Spec(B), which contracts to p2/p1 ∈ Spec(A/p1).
Claim 7.1.4. q2 ∩ A = p2.
For this, consider the diagram

A B

A/p1 B/q1Contracting along the bottom left we get p2, and contracting along thr right gives q2.
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Proposition 7.1.5 (going down). Let A ⊆ B be an integral extension of integral domains, and assume Ais integrally closed. Consider the diagram
q1

p1 p2
Then there exists a prime q2 ∈ Spec(B) with q2 ∩ A = p2.

Proof. Consider the map
A B Bq1

Claim 7.1.6. There exists n ∈ Spec(Bq1 ) such that n ∩ A = p2.
Assuming the claim, (n ∩ B) ∩ A = p2, and n ∩ B is a prime ideal of B contained in q1.To prove the claim, it suffices to show that(p2B)Bq1 = p2Bq1 ∩ A ⊆ p2Take y/s ∈ (p2B)Bq1 ∩A, with y ∈ p2B, s ∈ B \ q1. Now A ⊆ B is an integral extension, therefore the integralclosure of p2 in B is √p2B. Thus, y is integral over p2. Since A is integrally closed, by proposition 7.0.5,
y ∈ Frac(A) is algebraic over Frac(A), and the minimal polynomial has the form

yr + u1yr−1 + · · ·+ ur = 0where ui ∈ p2 (note any prime ideal is radical). We can then write
y = y

s s

y, s ∈ B ⊆ Frac(B), y/s ∈ A ⊆ Frac(A), and so we have(y
s s
)r + u1 (ys s)r−1 + · · ·+ ur = 0

Multiply through by (s/y)r ,
sr + s

yu1sr−1 + · · ·+ ( sy
)r
ur = 0 (∗)

This is the minimal polynomial of s over Frac(A), since the process above is reversible. But s ∈ B, and so s isintegral over A. Therefore, the coefficients of (∗) must all be in A, again by proposition 7.0.5.Suppose for contradiction y/s /∈ p2. Then
ui = (ys )i

(
s
y

)i
ui

Then (y/s)i ∈ A \ p2, and we know that (s/y)iui ∈ A. Since ui ∈ p2, we must have that (s/y)iui ∈ p2. Withthis, by (∗),
sr ∈ p2B ⊆ p1B = (q1 ∩ A)B ⊆ q1Hence s ∈ q1. Contradiction.With the geometric picture as above, going up and going down allows us to move between the fibres in a“nice” way. One way to think about this would be constructing a section of a bundle.In terms of algebraic geometry, going up says that the natural map Spec(B) → Spec(A) is a closed map.Similarly, going down says that the map Spec(B) → Spec(A) is open. Some assumptions might be needed tomake this analogy rigorous.

8 Primary decomposition
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Definition 8.0.1 (primary ideal)Let I be an ideal of R , then I is primary if R/I is non-zero, and every zero divisor in R/I is nilpotent.
Remark 8.0.2. Contrast this with I being prime if R/I is an integral domain, and I is radical if R/I has no non-zeronilpotent elements.In particular, any prime ideal is radical and primary. Note R is radical, but not prime nor primary. Lecture 19
Example 8.0.3In Z, ⟨6⟩ is radical, but not primary, since in R/6, there are no non-zero nilpotent elements, but 2×3 = 6.But ⟨9⟩ is primary, but not radical.More generally, for x ̸= 0,• ⟨x⟩ if and only if x is prime,• ⟨x⟩ is radical if and only if x is square free,• ⟨x⟩ is primary if and only if x = pn for some prime p.
Proposition 8.0.4. Let I ⊴ R be a proper ideal.(i) if I is primary, then p = ⟨I⟩ is prime, and we say that I is p-primary,(ii) if √I is maximal, then I is primary,(iii) if q1, . . . , qn are all p-primary, then so is q1 ∩ · · · ∩ qn,(iv) if I has a primary decomposition, i.e.

I = q1 ∩ · · · ∩ qn (∗)
where qi is primary, then I has a minimal primary decomposition, i.e. like (∗), but √q1, . . . ,√qnare distinct, and none of the qi can be dropped,(v) if R is Noetherian, then every ideal I has a primary decomposition

Proof. Examples sheet.
Example 8.0.5In Z,

⟨90⟩ = ⟨2⟩ ∩ 〈32〉 ∩ ⟨5⟩
Example 8.0.6For a prime ideal p of R , if pn is primary, then pn is p-primary, as √pn = p.1. Not every primary ideal is a power of a prime. Let R = k [x, y], q = 〈

x, y2〉. To see that
q is primary, √q = ⟨x, y⟩, which is a maximal ideal, and so q is ⟨x, y⟩-primary. Alternatively,
k [x, y]/q = k [y]/ 〈y2〉. If f ∈ k [y] and f + 〈y2〉 is a zero divisor, then y divides f , and so f + 〈y2〉is nilpotent.On the other hand, if q = pn, then √q = p, but √q = ⟨x, y⟩. But we have that

⟨x, y⟩2 ⊂ 〈x, y2〉 ⊂ ⟨x, y⟩
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2. Power of a prime does not have to be primary. Let R = k [x, y, z]/ 〈xy− z2〉 = k [x, y, z], Let
p = ⟨x, z⟩. We will show that p is prime, but p2 is not primary. In this case,

R/p = k [y]
which is an integral domain, and so p is prime. On the other hand,

p2 = 〈x2, xz, z2〉
With this,

xy = z2 ∈ p2
so the image of xy in R/p2 is zero. But x + p2 ̸= 0, and so y+ p2 is a zero divisor in R/p2. But

R/p2 = k [x, y, z]/ 〈xy− z2, x2, xz, z2〉
and no power of y is in 〈xy− z2, x2, xz, z2〉.

Theorem 8.0.7. Let I = q1 ∩ · · · ∩ qn be a minimal primary decomposition. Let pi = √qi, then(i) (associated primes of I) p1, . . . , pn are determined only by I ,(ii) (isolated primes of I) the minimal elements amongst the p1, . . . , pn are exactly the minimal primesof R containing I ,(iii) if p1, . . . , pt are the isolated primes of I , then q1, . . . , qt are determined only by I .
Proof. Examples sheet.

Definition 8.0.8 (embedded primes)The embedded primes of I are the associated primes which are not isolated.
Example 8.0.9Let R = k [x, y], I = 〈x2, xy〉. Then we have primary decompositions

I = ⟨x⟩ ∩ ⟨x, y⟩2 = ⟨x⟩ ∩ 〈x2, y〉
In this case, √⟨x⟩ = ⟨x⟩, √⟨x, y⟩2 = ⟨x, y⟩, and √⟨x2, y⟩ = ⟨x, y⟩.In this case, the associated primes are ⟨x⟩ , ⟨x, y⟩, which don’t depend on the decomposition. Inparticular, ⟨x⟩ is isolated and ⟨x, y⟩ is embedded.Thining about this geometrically, V(⟨x, y⟩) ⊆ V⟨x⟩, which is why we call them embedded.
If I = q1 ∩ · · · ∩ qn is a minimal primary decomposition, pi = √qi. Say p1, . . . , pt are the isolated primes.Then √

I = √q1 ∩ · · · ∩ √qt = p1 ∩ · · · ∩ ptwhich is a (minimal) primary decomposition of √I , and all associated primes are isolated. Thus, going from Iot √I is the same as forgetting the embedded primes of I .Geometrically, in k [t1, . . . , tn], where k ⊆ C is a subfield, then
V(I) = V(√I)

and I(V(I)) = √I , thus V(I) only sees √I , or equivalently, it forgets about the embedded primes.
49



9 Direct and inverse limits Lecture 20Let C be a category.
Definition 9.0.1 (directed set)A directed set (I,≤) is a poset, such that for all a, b ∈ I , there exists c ∈ I such that a ≤ c, b ≤ c.
Definition 9.0.2 (directed system)A direct system on I is objects (Xi)i∈I of C , and for every i ≤ j , a morphism fij : Xi → Xj , such that1. fii = idXi for all i,2. fik = fjk fij for all i ≤ j ≤ k .
Definition 9.0.3 (inverse system)An inverse system on I is objects (Yi)i∈I of C , and for every i ≤ j , a morphism hij : Xj → Xi, such that1. hii = idYi for all i,2. fik = fij fjk for all i ≤ j ≤ k .
Example 9.0.4Let I = (N,≤), fix a prime p, consider the direct system

Xi = Fpi!and fij being field embeddings. Recall if a | b, then there exists an embedding Fpa ↪→ Fpb , and that theset of all embeddings are given by
x 7→ φ(x)pcfor 0 ≤ c ≤ a− 1. But we can just define fi,i+1, and the other maps are defined by composition.

Example 9.0.5Let I = (N,≤), fix a prime p, and consider
Yi = Z/piand

hij : Z/pj → Z/pi

x 7→ pi−jx

the natural projection map.
Definition 9.0.6 (direct limit)Let (I,≤) be a directed set. If D = ((Xi), (fij )) forms a direct system, then the direct limit of D is

lim−→Xi = ⊔
i Xi
∼where for xi ∈ Xi, xj ∈ Xj , xi ∼ xj if and only if there exists k such that fik (xi) = fjk (xj ). Equivalently,
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take the equivalence relation generated by xi ∼ fij (xi) for all i ≤ j .
Remark 9.0.7. If D is a direct system in C , then the direct limit is in C as well.
Definition 9.0.8 (inverse limit)Let (I,≤) be a direct set. If E = ((Yi), (hij )) forms an inverse system, then the inverse limit of E is

lim←−Yi = {y ∈∏
i
Yi | yi = fij (yj ) for all i ≤ j

}

Example 9.0.9We claim that Falg
p = lim−→Fpi! is an algebraic closure of Fp.First we check that Falg

p is algebraic over Fp. Choose [x ] ∈ Falg
p , say x ∈ Fpi! , then xpi! − x = 0, andso [x ]pi! − [x ] = 0.Next we check that it is algebraically closed. Let [h] ∈ Falg

p [t]. Since [h] has finitely many coefficients,we have that h ∈ Fpi! [t]. Considering a splitting field for h, which is Fpℓ , which in turn embeds into Fpℓ! .Hence h splits over Fpℓ! , and so h splits under the embdedding fiℓ : Fpi! → Fpℓ! . This means that [h] splitsover the direct limit.
Example 9.0.10Let

Zp = lim←− Z
pibe the ring of p-adic integers. For example, 1 = (1, 1, 1, . . . ) and

−1 = (p− 1, p2 − 1, p3 − 1, . . . )
Definition 9.0.11 (a-adic completion)Let R be a ring, a ⊴ R an ideal, then the a-adic completion of R is

R̂ = lim←− R
ai

Example 9.0.12If R = Z, a = ⟨p⟩, then R̂ = Zp.
Example 9.0.13If R = k [T ], a = ⟨T ⟩, then

R̂ = lim←− R
⟨T i⟩ = kJT K
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Definition 9.0.14 (a-adic completion of a module)Let R be a ring, a ⊴ R be an ideal, M an R-module, then a-adic completion of M is
M̂ = lim←− M

aiM

which is naturally a M̂-module.
Definition 9.0.15 (filtration, completion with respect to a filtration)A filtration of an R-module M is a sequence (Mn) of submodules of M , with Mn ⊇ Mn+1 ⊇ · · ·, and
M0 = M .The completion of M with respect to the filtration is the inverse limit

lim←− M
Mn

Theorem 9.0.16. Let R be a Noetherian ring, and let a ⊴ R be an ideal. Let R̂ denote the a-adiccompletion of R .
(i) R̂ is Noetherian,
(ii) the functor R̂ ⊗R (·) is exact.(iii) if M is a finitely generated R-module, then the natural map

R̂ ⊗M → M̂

is an R̂-linear isomorphism.
Corollary 9.0.17. If R is a Noetherian ring, RJT1, . . . , TnK is Noetherian.

Proof. It is the m-adic completion of R [T1, . . . , Tn] at m = ⟨T1, . . . , Tn⟩. Lecture 21
10 Filtration and graded rings
10.1 Graded rings and modules

Definition 10.1.1 (graded ring)A graded ring A is a ring
A = ∞⊕

n=0 Anwhere each Ai is an additive subgroup of A, and AnAm ⊆ An+m.
Lemma 10.1.2. A0 is a subring of A.
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Proof. The only thing we need to show is that 1 ∈ A0. If A = A0 then we are done. Otherwise, choose z ∈ An,and say 1 =∑
i
yi

where yi ∈ Ai. Then yiz ∈ An+i. But z = 1z , and so we must have that y0 = 1, yi = 0 for i > 0.
Example 10.1.3
Ad = k [T1, . . . , Tn] is a graded ring, and in this case Ad is the degree d homogeneous polynomials.
Definition 10.1.4 (irrelevant ideal)We call

A+ =⊕
n≥1 Anthe irrelevant ideal.

A+ is the kernel of the projection map A→ A0, and so A/A+ ∼= A0.
Definition 10.1.5 (graded module)Let A be a graded ring. A graded A-module is an A-module M , with

M =⊕
n
Mn

each Mi an additive subgroup, and AnMm ⊆ Mn+m.
Proposition 10.1.6. Let A be a graded ring. Then A is Noetherian if and only if A0 is Noetherian and Ais a finitely generated A0-algebra.

Proof. From Hilbert’s basis theorem, if A0 is Noetherian and A is a finitely generated A0-algebra, then A isNoetherian.Now suppose A is Noetherian. Then A0 = A/A+ is the quotient of a Noetherian ring, and so Noetherian.Next, A+ is generated by the set of homogeneous elements of positive degree. Now A+ is finitely generated,as A is Noetherian. That is,
A+ = ⟨x1, . . . , xs⟩where xi ∈ Aki , ki > 0. Let A′ be the A0-subalgebra of A, defined by
A′ = A0[x1, . . . , xs]

We would like to show A = A′. It suffices to show that An ⊆ A′ for every A. We will prove this by inductionon n. n = 0 is clear.Now take y ∈ An, n > 0. Now y ∈ A+, and so we can write
y = s∑

i=1 rixiwhere ri ∈ A. Apply the projection A→ An, we get
y = s∑

i=1 aixiwhere ai ∈ An−ki . But as ki > 0, the induction hypothesis implies that each ai is in A′, and so y ∈ A′.
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10.2 Associated graded ring

Definition 10.2.1 (a-filtration)Let a ⊴ R be an ideal, M an R-module. A filtration (Mn) is an a-filtration if aMn ⊆ Mn+1 for all n.An a-filtration is stable if aMn = Mn+1 for all sufficiently large n.
Example 10.2.2(anM)n≥0 is a stable a-filtration of M .
Definition 10.2.3 (associated graded ring)If a ⊴ R is an ideal, then we have an associated graded ring

Ga(R ) =⊕
n≥0

an

an+1
We make this into a ring, by (x + an+1)(y+ aℓ+1) = xy+ an+ℓ+1
for x ∈ an, y ∈ aℓ .
Definition 10.2.4 (associated graded module)If a ⊴ R an ideal, M an R-module, (Mn)n≥0 an a-filtration of M , then we have an associated graded
module G(M) =⊕

n≥0
Mn

Mn+1which is an Ga(R )-module, with module structure given by
(x + an+1)(m+Mℓ+1) = xm+Mn+ℓ+1

Proposition 10.2.5. Let R be a Noetherian ring, a ⊴ R an ideal. Then(i) Ga(R ) is Noetherian,(ii) if M is a finitely generated R-module, (Mn) is a stable a-filtration of M , then G(M) is a finitelygenerated Ga(R )-module.
Proof. For (i), since R is Noetherian, a is finitely generated, say

a = ⟨x1, . . . , xs⟩Set xi = xi + a2 ∈ a/a2. Then Ga(R ) is generated as an R/a-algebra by x1, . . . , xn. But R/a is a Noetherianring, and so Ga(R ) by the Hilbert Basis Theorem.For (ii), since (Mn) is stable, so there exists N such that
MN+r = arMNThen G(M) is generated by ⊕

n≤N

Mn

Mn+1as a Ga(R )-module. But each Mn/Mn+1 is a Noetherian R-module, annihilated by a. In particular, each
Mn/Mn+1 is a finitely generated R/a-module. So ⊕

n≤N

Mn

Mn+1
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is a finitely genertaed R/a-module, and so it is a finitely generated Ga(R )-module.
10.3 Filtrations

Definition 10.3.1 (equivalent)Let M be an R-module. Then filtrations (Mn), (M ′n) of M are equivalent if there exists n0 such that
Mn+n0 ⊆ M ′n and M ′n+n0 ⊆ Mn

for all n ≥ 0.
Lecture 22

Lemma 10.3.2. Let a ⊴ R be an ideal, M an R-module, (Mn) is a stable a-filtration on M . Then (Mn) isequivalent to (anM).
Proof. We have that

Mn ⊇ aMn−1 ⊇ · · · ⊇ anM ⊇ an+n0Mfor all n0 ≥ 0. In the other direction, there exist n0 ≥ 0 such that aMn = Mn+1 for all n ≥ n0. Hence
Mn+n0 = anMn0 ⊆ anM

Let a ⊴ R be an ideal, M an R-module, (Mn) an a-filtration of M . Let
R∗ = ∞⊕

n=0 a
n

and
M∗ = ∞⊕

n=0 Mn

Then R∗ is a graded ring, and M∗ is a graded R∗-module with the natural actions.If R is Noetherian, then a = ⟨x1, . . . , xr⟩, and R∗ is generated as an R-algebra by
x1, . . . , xn ∈ a

Hence by the Hilbert basis theorem, R∗ is Noetherian.
Lemma 10.3.3. Let R be a Noetherian ring, M a finitely generated R-module, (Mn) an a-filtration. Then
M∗ is a finitely generated R∗-module if and only if the a-filtration (Mn) is stable.

Proof. First of all, note that1. Each (Mn) is a finitely generated R-module. Since R is Noetherian, and M is finitely generated, M isNoetherian, and so every submodule is finitely generated.2. Consider the submodule
M∗n = M0 ⊕ · · · ⊕Mn ⊕ aMn ⊕ a2Mn ⊕ · · ·of M∗, then the ascending chain (M∗n) stabilises, if and only if (Mn) is a stable a-filtration.Suppose M∗ is finitely generated. We know that R is Noetherian, and so R∗ is Noetherian, and therefore,

M∗ is Noetherian. But then the ascending chain (M∗n) stabilises, and so (Mn) is a stable a-filtration by 2.Now suppose the filtration (Mn) is stable. Then the sequence (M∗n) stabilises at some n0. Now note that
M∗ =⋃

n
M∗n
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Hence M∗ = M∗n0 . But we know that
M0 ⊕ · · · ⊕Mn0generates M∗n as an R∗-module. But each Mn is a finitely generated R-module, and so M0 ⊕ · · · ⊕Mn0 is afinitely generated R-module. Thus, M∗n is a finitely generated R∗-module.

Proposition 10.3.4 (Artin-Rees). Let R be a Noetherian ring, a ⊴ R an ideal, M a finitely generated
R-module, (Mℓ ) a stable a-filtration of M , and N ⊆ M a submodule.Then (N ∩Mℓ ) is a stable a-filtration of N .

Proof. First of all,
a(N ∩Mℓ ) ⊆ N ∩ aMℓ ⊆ N ∩Mℓ+1and so (N ∩Mℓ ) is an a-filtration. Define

N∗ = ∞⊕
ℓ=0 (N ∩Mℓ )

This is an R∗-submodule of M∗. Recall R is Noetherian, and so R∗ is Noetherian. Since (Mℓ ) is stable, M∗ isfinitely generated, and so M∗ is a Noetherian R∗-module. Hence N∗ is a finitely generated R∗-module, andso (N ∩Mℓ ) is stable.
11 Dimension theory

Definition 11.0.1 (height)Let p ∈ Spec(R ) be a prime. Then the height of p is
ht(p) = sup{d | p0 ⊊ · · · ⊊ pd = p}

Geometrically, irreducible closed subsets of Spec(R ) are precisely V(p) for a prime ideal p> Thus, if wetake V in the definition of height, we instead obtain
Z0 ⊋ · · · ⊇ Zd = V(p)

which matches the definition of dimension.
Definition 11.0.2 ((Krull) dimension)The (Krull) dimension of a ring is

dim(R ) = sup{ht(p) | p ∈ Spec(R )} = sup{ht(m) | m ∈ maxSpec(R )}
Using the above, we can see that the dimension of R makes sense geometrically.We can see that dim(Rp) = ht(p), and so

dim(R ) = sup{dim(Rm) | m ∈ maxSpec(R )}
Definition 11.0.3For an ideal I of R , ht(I) = inf {ht(p) | I ⊆ p ∈ Spec(R )}
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Proposition 11.0.4. If A ⊆ B is an integral extension of rings, then(i) dim(A) = dim(B),(ii) if A, B are integral domains and k-algebras, where k is a field, then trdegk (A) = trdegk (B).
Proof. First, we show that dim(A) ≤ dim(B). Given a chain

p0 ⊊ p1 ⊊ · · · ⊊ pdBy lying over and going up, we have
q0 ⊆ q1 ⊆ · · · ⊆ qdwith qi ∩ A = pi, and so qi ̸= qi+1. Thus, dim(A) ≤ dim(B).Next, we show dim(A) ≥ dim(B). Let

q0 ⊊ · · · ⊊ qdbe a chain in Spec(B), then
q0 ∩ A ⊊ · · · ⊊ qd ∩ Ais a chain in Spec(A). By incomparability, qi ∩ A ̸= qi+1 ∩ A, and so dim(A) ≥ dim(B).(ii) is left as an exercise.Now if k is a field, A a finitely generated k-algebra, then by the Noether normalisation theorem, we hada k-algebra embedding
k [T!, . . . , Td] ↪→ Awhich is an integral extension. Hence by the proposition,

dim(A) = dim(k [T1, . . . , Td]) = d

by examples sheet 3 question 10. Lecture 23
11.1 Hilbert polynomials and functionsLet A be a Noetherian graded ring. That is, A0 is Noetherian and A is a finitely generated A0-algebra. Let Mbe a finitely generated graded A-module. Then each Mn is an A0-module.

Claim 11.1.1. Mn is a finitely generated A0-module.
Proof. Say M = spanA{m1, . . . , mt}, each mi ∈ Mri homogeneous. Therefore,

Mn = {a1m1 + · · ·+ atmt | ai ∈ An−ri}We have that A = A0[x1, . . . , xs], each xi ∈ Aki , ki > 0. Then
Mn = spanA0

{
xe11 · · · xess mi

∣∣∣∣ ei ≥ 0,∑ kiei = n− ri
}

Now we will assume in addition that A0 is also Artinian. Therefore, each Mn is an Artinian and Noetherianmodule. Hence ℓ(Mn) <∞2.
Definition 11.1.2 (Poincaré series)Let A,M be as above. The Poincaré series of M is

P(M,T ) = ∞∑
n=0 ℓ(Mn)T n ∈ ZJT K

2That is, it has finite length. Equivalently, it has a composition series of finite length.
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Theorem 11.1.3 (Hilbert-Serre). P(M,T ) is a rational function of the form
f (T )∏s

i=1(1− T ki )for f ∈ Z[T ], s, ki as above.
Proof. For the base case, s = 0, then A = A0, and so M = spanA0 S , where S is a finite set. Hence it mustbelong to a finite direct sum, and so Mn = 0 for n > n0. Thus, P(M,T ) is a polynomial.Now write

M =⊕
n∈Z

Mn

where Mℓ = 0 for ℓ < 0. We have an exact sequence of the form
0 Kn Mn Mn+ks Ln+ks 0m 7→xsm

where Kn, Ln+ks are the kernel and cokernel respectively. Set
K =⊕

n
Kn

L =⊕
n
Ln

These are graded A-modules3. Now note that K, L are annihilated by xs,Apply ℓ to the exact sequence, we get
ℓ(Kn)− ℓ(Mn) + ℓ(Mn+ks )− ℓ(Ln+ks ) = 0since ℓ is additive. Hence

ℓ(Kn)T n+ks − ℓ(Mn)T n+ks + ℓ(Mn+ks )T n+ks − ℓ(Ln+ks )n+ks = 0Rearranging,
ℓ(Mn+ks )T n+ks − T ksℓ(Mn)T n = ℓ(Ln+ks )T n+ks − T ksℓ(Kn)T nSumming this over the integers, we get(1− T ks )P(M,T ) = P(M,T )− T ksP(M,T ) = P(L, T )− T ksP(K, T )But we can write the right hand side as

f1∏s−1
i=1 (1− T ki ) − T ks f2∏s−1

i=1 (1− T ki )by induction. Rearranging gives the result.Let d(M) be the order of the pole of P(M,T ) at t = 1. Then if M ̸= 0, d ≥ 0. See notes for details.
Example 11.1.4Let A = k [T1, . . . , Ts], An the homogeneous parts. Then1. A is generated as an A0 = k-algebra by T1, . . . , Ts. In each case, ki = 1.2. ℓ(An) = dimk (An) = (n+s−1

s
), which is a polynomial of degree s− 1 in n over Q. In this case,3.
P(A, T ) =∑(

n+ s− 1
n

)
T n = 1(1− T )s

3If we defined homomorphisms of graded modules, then K, L are the kernel and cokernel respectively.
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Proposition 11.1.5. If k1 = · · · = ks = 1, then there exists a polynomial HPM ∈ Q[T ], and n0 ≥ 1, suchthat
ℓ(Mn) = HPM (n)for all n ≥ N0. Moreover, deg(HPM ) = d(M)− 1This is called the Hilbert polynomial.

Proof. Let d = d(M) ≥ 0. Then we can write∑
n≥0 ℓ(Mn)T n = f (T )(1− T )d

where f ∈ Z[T ], with f (1) ̸= 0. Write
f = deg(f )∑

k=0 akT
k

for ak ∈ Z. Next, 1(1− T )d = ∞∑
j=0 bjT

j

where bj = (j+d−1
j
). Then

ℓ(Mn) = deg(f )∑
i=0 an−ibifor n ≥ deg(f ). Since ai ∈ Z, bj is a polynomial in j over Q of degree d− 1. Moreover, the leading coefficientof bi is 1(d− 1)!Hence ℓ(Mn) = p(n), where p ∈ Q[T ]. All we need to show is that deg(p) = d− 1. The coefficient of T d−1 in

p is deg(f )∑
i=0 ai

1(d− 1)! = f (1)(d− 1)!
which is non-zero, as f (1) ̸= 0 by assumption.
11.2 Dimension of local Noetherian rings

Lemma 11.2.1. Let (A,m) be a Noetherian local ring, then(i) an ideal q of A is m-primary if and only if there exists t ≥ 1 such that mt ⊆ q ⊆ m.(ii) If q is m-primary, then A/q is Artinian.
Lecture 24

Proof. See notes.
Theorem 11.2.2 (dimension). If (A,m) is a Noetherian local ring, then

dim(A) = δ(A) = d(Gm(A))
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where
δ(A) = min{δ(q) | q ⊆ A m-primary}
δ(q) = minimal number of generators for q

and d(Gm(A)) is the order of the pole at T = 1 of the rational function associated to the Poincaré seriesof Gm(A). That is, the order of the pole at 1 of∑
n≥0 ℓ

(
mn

mn+1
)
T n

Corollary 11.2.3 (Krull’s height theorem). Let A be a Noetherian ring, a = (x1, . . . , xr ) ⊆ A an ideal. Let
a ≤ p be a minimal prime of a. Then ht(p) ≤ r

Proof. First of all, we claim that √
aAp = pApTo see this, let n ∈ Spec(A) be such that aAp ⊆ n, then

a ⊆ (aAp)c ⊆ nc ⊆ p

Then by minimality, nc = p. Hence nce = pe, and the result follows. Thus, aAp is pAp-primary. On the otherhand,
aAp = 〈x11 , . . . , xr1 〉Then ht(p) = dim(Ap) = δ(Ap) ≤ δ(aAp) ≤ r

Geometrically, the height of p should be interpreted as the codomension of V(p) in Spec(A). Therefore, if ais generated by r elements, we are imposing r-equations, and so the codimension should be at most r .Let (A,m) be a Noetherian local ring, q ⊴ A an m-primary ideal. Say δ(q) = s, and q = ⟨x1, . . . , xs⟩. Then
Gq(A) = A

q
⊕ q

q2 ⊕⊕
n≥2

qn

qn+1
In this case, A/q is Artinian, and the images of x1, . . . , xs generate q/q2 as an A/q algebra, the xi are of degree1. Here, we have that

ℓ
(

qn

qn+1
)
<∞

From the Hilbert polynomial, ℓ ( qn

qn+1
) is eventually a polynomial, of degree ≤ s− 1 = δ(q)− 1.Fix q0 ⊆ A m-primary, with δ(q0) = δ(A). With this, we have two special cases. We will writedeg(ℓ(qn/qn+1)) for the degree of the corresponding Hilbert polynomial.First of all, deg(ℓ(qn0 /qn+10 )) ≤ δ(A)− 1and deg(ℓ(A/qn0 )) = n−1∑

i=0 ℓ(qi0/qi+10 ) ≤ δ(A)
Next, deg(ℓ(mn/mn+1)) = d(Gm(A))− 1and deg(ℓ(A/mn)) = d(Gm(A))
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Moreover, there exists t ≥ 1 such that
mt ⊆ q ⊆ mand so

ℓ(A/mn) ≤ ℓ(A/qn0 ) ≤ ℓ(A/mtn)Thus, we must have that deg(ℓ(A/mn)) = deg(ℓ(A/qn0 )).
Proposition 11.2.4. δ(A) ≥ d(Gm(A))

Proof.

δ(A) = δ(q0)
≥ deg(ℓ(A/qn0 ))= deg(ℓ(A/mn))= d(Gm(A))

Proposition 11.2.5. If x ∈ m is not a zero divisor, then
d (Gm/xA(A/xA)) ≤ d(Gm(A))− 1

Proof. We know that (A/xA,m/xA) is still a local ring. In this case,
d(Gm(A)) = deg(ℓ(A/mn))

and
d(Gm/xA(A/xA)) = deg(ℓ((mn + xA)/xA))We want to show that deg(ℓ(A/(m + xA))) ≤ deg(ℓ(A/mn))− 1We have a short exact sequence

0 mn+xA
mn = xA

mn∩xA
A
mn

A
mn+xA 0

Hence by additivity,
ℓ(A/(mn + xA)) = ℓ(A/mm)− ℓ(xA/(mn ∩ xA))We know the terms on the right hand side have the same degree, and so it suffices to show they have the sameleading coefficient.But (mn) is a stable m-filtration of A, and so by Artin-Rees, (mn ∩ xA) is a stable m filtration of xA. Hencethis is equivalent to (mnxA). Hence we have that

ℓ(xA/(mn ∩ xA)) ≤ ℓ(xA/mn+n0xA)
and

ℓ(xA/mnxA) ≤ ℓ(xA/(mn ∩ xA))Thus, by elemenrary facts about polynomials, they ahev the same degree.
Proposition 11.2.6.

d(Gm(A)) ≥ dim(A)
Proof. See notes.
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Proposition 11.2.7. dim(A) ≥ δ(A). That is, there exists q ⊴ A m-primary, generated by dim(A) elements.
Proof. The height of m is exactly dim(A). Thus, for any other prime p ∈ Spec(A), ht(p) < dim(A). So what wewant is to form an ideal q = ⟨x1, . . . , xd⟩, with ht(q) = dim(A), since then for any minimal prime containing q,we must have that the height of the prime is dim(A), and so √q = m, and so q is m-primary.We construct ⟨x1, . . . , xd⟩ inductively, such that if

qi = ⟨x1, . . . , xi⟩
then ht(qi) ≥ iFor the base case i = 0, we can just use q0 = 0. For the inductive step, assume qi−1 has ht(qi) ≥ i − 1. Weclaim that there are only finitely many p1, . . . , pt prime ideals, such that qi−1 ⊆ pj , and ht(pj ) = i − 1. If not,since ht qi−1 ≥ i− 1, each pj is a minimal prime of qi. But in a Noetherian ring, every ideal has finitely manyminimal primes.Now i − 1 < dim(A) = ht(m), and so m is not contained in pj for all j , and so m is not contained in theirunion, by prime avoidance. So we can take xi ∈ m, with xi /∈ pj for any j . Define

qi = ⟨x1, . . . , xi⟩
Then if p is prime, which contains qi, then it contains qi−1 and xi. Hence it cannot be any of the pj above.Thus, ht(p) ≥ i as required.
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