
Differential Geometry
Shing Tak LamMichaelmas 2023∗

Contents
1 Manifolds 11.1 Matrix Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Tangent spaces to manifolds 72.1 Left invariant vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Submanifolds 14

4 Differential forms 184.1 Orientability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204.2 Exterior derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214.3 de Rham cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234.4 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5 Vector bundles 265.1 Structure group and transition functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275.2 Principal bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295.3 Hopf bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315.4 Pullback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315.5 Morphisms of (vector) bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6 Connections on vector bundles 346.1 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7 Riemannian geometry 397.1 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437.2 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487.3 The Laplace-Beltrami operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Lecture 1
1 Manifolds
The concept of a manifold is intended to generalise curves and surfaces in R3.

Definition 1.1 (smooth structure)A smooth structure on a topological space M is a collection of charts (an atlas)
φα : Uα → Vα

where Uα ⊆ M , Vα ⊆ Rd are open, φα is a homeomorphism, such that1. M = ⋃α Uα . That is, the charts cover M .
∗Based on lectures by Alexei Kovalev. Last updated November 28, 2023.
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2. Given any charts φα , φβ , the map
φβ ◦ φ−1

α : φα (Uα ∩ Uβ ) → φβ (Uα ∩ Uβ )
is a smooth map between open subsets of Rd .3. If φ is compatible (as in the previous point) with every chart in the atlas, then φ is a chart in theatlas.

In practice (i.e. using Zorn’s lemma), given any collection of charts satisfying the first two conditions, wecan find a maximal atlas containing it.
Remark 1.2. 1. The second condition implies that φβ ◦ φ−1

α is a diffeomorphism.2. d is fixed, assuming that M is connected.
Definition 1.3 (manifold)A (smooth) manifold M is a second countable Huasdorff space topological space, equipped with a smoothstructure.

d = dim(M) is the dimension of M .
In practice, we may induce a topology on M from a smooth structure (without the mention of open orhomeomorphism), then D ⊆ M is open if for any chart φα , φα (D ∩ Uα ) is an open subseteq of Rd .

Remark 1.4. 1. We can also define a C k manifold by replacing smooth with C k as above. If k = 0, then we havea topological manifold .2. On the other hand, we can replace Rd with Cn , and obtain a complex manifold .
Rn is (trivially) a manifold.

Example 1.5 (unit sphere)Define
Sn = {x = (x0, . . . , xn) ∈ Rn | ∥x∥ = 1} ⊆ Rn+1

For the charts, we can consider the stereographic projections
φ(x) = 11 − x0 (x1, . . . , xn) for x0 ̸= 1

and
ψ(x) = 11 + x0 (x1, . . . , xn) for x0 ̸= −1

In particular,
ψ ◦ φ−1(u) = u∥u∥2

Example 1.6If M,N are manifolds of dimensions d, e respectively, then M ×N is a manifold of dimension d+ e.
As a corollary, T n = (S1)n is a manifold.

Example 1.7If M is a manifold, X ⊆ M is open, then X is a manifold.
Lecture 2
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A convention, we will will assume for any manifold M , we will assume all components are of the samedimension. In particular, dim(M) is well defined.
Notation 1.8. We will write Md to say M is a manifold of dimension d.
Example 1.9 (real projective space)The real projective space is

RPn = {straight lines in Rn+1 through 0}
Points in RPn can be written using homogeneous coordinates (x0 : · · · : xn), where the xi are not all zero,and (x0 : · · · : xn) = (λx0 : · · · : λxn)for all λ ̸= 0. We will induce a topology from a smooth structure. The charts are given by (φi, Ui) where

Ui = {xi ̸= 0}

and we define
φi(x0 : · · · : xn) = (x0xi , . . . , xi−1

xi
, xi+1
xi
, . . . , xnxi

)
∈ Rn

For i < j ,
φj ◦ φ−1

i (y0, . . . , yn) = (y1
yj
, . . . , 1

yj
, . . . , ynyj

)
where the 1 is in the i-th position, and we omit the j-th position. Thus, RPn is an n-dimensional manifold.Similarly, we can define the complex projective space CPn, which is a 2n-manifold (and a n-dimensionalcomplex manifold).
Example 1.10 (Grassmannian)

Gr(k, n) = {k-dimensional subspaces of Rn}Then Gr(k, n) is a manifold of dimension k (n − k ). Note we can also define the Grassmannian over C.
Sketch proof. An example of a coordinate neighbourhood is

U = {k-dimensional subspaces obtainable as the span of rows of k × n matrices of the form (Ik ∗
)}

where Ik is the k × k identity matrix. In this case, the k × (n − k ) block ∗ defines local coordinates. Choosingdifferent columns, we have (nk) neighbourhoods, Ui1,...,ik , where i1 < i2 < · · · < ik .In particular, note that RPn = Gr(1, n+ 1).
Example 1.11 (Non-example)Consider an equivalence relation on R2 given by

(x, y) ∼
(
λx, 1λy

)
for any λ ̸= 0. Let X = R2/ ∼ for the quotient, with the quotient topology. We can consider

{(x, y) | xy = c}

If c ̸= 0, then this is one equivalence class. If c = 0, this splits into three, which are• {(0, 0)},
3



• {(x, 0) | x ̸= 0},• {(0, y) | y ̸= 0}We can write
X = (−∞, 0) ∪ (0,∞) ∪

{0′, 0′′, 0′′′}
We have three charts φi corresponding to each choice of zero. For example,

U1 = (−∞, 0) ∪ {0′} ∪ (0,∞)
with the “natural” map φ1. On the other hand, the induced topology is not Hausdorff. Note the inducedtopology is not the quotient topology.
Refer to Examples Sheet 1 Question 12 for an example of a non-second countable (non-)example.

Definition 1.12 (smooth map)Let M,N be manifolds, a continuous map f : M → N is smooth if for any p ∈ M , we can find charts(φ,U) near p, (ψ, V ) near f (p), and the composition
ψ ◦ f ◦ φ−1

is smooth. as a map on
φ(U ∩ f−1(V ))

Definition 1.13 (diffeomorphism)A smooth map f : M → N is a diffeomorphism if f is a bijection, and f−1 is smooth. In this case, we saythat M,N are diffeomorphic .
Proposition 1.14. 1. If U ⊆ Rn, then f : U → Rm is smooth in the above definition if and only if it issmooth in the sense of multi-variate calculus.2. Every chart φ : U → φ(U) ⊆ Rd is a smooth map of manifolds. Moreover, it is a diffeomorphism.3. If f : M → N , g : N → P are smooth, then g ◦ f : M → P is smooth.

Proof. Obvious, and so omitted.
1.1 Matrix Lie groupsConsider the group GL(n,R) ⊆ Rn2 . In fact, this is an open subset, and so it is a manifold. Moreover, matrixmultiplication and inversion are smooth.

Definition 1.15 (Lie group)A group G is called a Lie group if• G is a manifold,• the multiplication map G × G → G is smooth,• inversion G → G is smooth.
Remark 1.16. Suffices to show that the map

G × G ∋ (σ, τ) 7→ στ−1 ∈ G
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is smooth.In particular, GL(n,R is a Lie group. Similarly, GL(n,C) is also a Lie group. More generally, for A =(aij ) ∈ Matn(C), we define the norm ∥∥A∥∥ = nmaxi,j |i, j |. (Note in finite dimensional, all norms are equivalent).In particular, ∥∥AB∥∥ ≤
∥∥A∥∥∥∥B∥∥We define the exponential of A as exp(A) =∑

k

Ak
k !This series converges for all A, by the same proof as for exp : C → C (or more generally, any Banach algebra).Moreover, it converges uniformly on balls {∥∥A∥∥ ≤ R
}

by the Weierstrass M-test. In particular, exp : Matn(C) → Matn(C) is continuous. Lecture 3First of all, note that
f (A) = Anis a differentiable function, with ∥∥(df )A∥∥ ≤ n|A|n−1

Therefore, the series which we get by differentiating term by term, converges uniformly on any bounded set,again by the Weierstrass M-test.Therefore, exp(A) is (at least) C 1 on Matn(C). We can similarly consider the higher derivatives, and we findthat exp(A) is C∞.
Remark 1.17. Some basic properties of the matrix exponential:1. exp(AT) = exp(A)T ,2. exp(A∗) = exp(A∗),3. exp(CAC−1) = C exp(A)C−1 ,In general, exp(A+ B) = exp(A) exp(B)does not hold. However, it does hold if AB = BA. In particular,4. exp(A) exp(−A) = exp(−A) exp(A) = I

We can also define the matrix logarithm via the series
log(I + A) =∑

m
(−1)m+1Am

m

We can show that this converges absolutely and uniformly on {|A| < ε} for any 0 < ε < 1. The same resultholds for the term by term differentiation, and again we get that log(I + A) is C∞ on {|A| < 1}Suppose log(A) is defined, that is, |A − I| < 1, then
exp(log(A)) = A

since the same proof as in C works for any Banach algebra.On the other hand, if we would like log(exp(A)) = Awe clearly need |exp(A) − I| < 1. Suppose
Aθ = (0 −θ

θ 0 )
for some θ ∈ R. In particular,

A2
θ = −θ2I
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and we find that exp(Aθ ) = (cos(θ) − sin(θ)sin(θ) cos(θ) )Setting θ = 2π , then we find that exp(A2π ) = I , but
log(exp(A2π )) = log(I) = 0 ̸= A2π

Hence |exp(A) − I| < 1 is a necessary, but not sufficient. On the other hand, |A| < log(2) is sufficient, since inthis case, ∣∣∣e|A| − 1∣∣∣ < 1
which is required for absolute convergence.

Example 1.18 (orthogonal group)Consider
O(n) = {A ∈ GL(n,R) | AAT = ATA = I

}
We will show that O(n) is a Lie group. Let A be an orthogonal matrix, |A − I| < ε < 1, then B = log(A) isdefined. Moreover, exp(B) = A. By continuity, we can take ε small enough such that |B| < log(2). Now

exp(B) exp(BT) = AAT = id
and so exp(B) = A = (AT)−1 = exp(BT)−1 = exp(−BT)
Taking log, since |B| = ∣∣BT∣∣ < log(2), we see that B = −BT .Conversely, if B is skew-symmetric, with |B| < log(2), then

exp(B) exp(BT) = I

Define
V0 = {B ∈ Matn(R) | |B| < log(2), BT + B = 0}and define

U = exp(V0)which is an open neighbourhood of I ∈ O(n).
Proposition 1.19. O(n) has a C∞ structure, making it into a manifold and a Lie group, with dimension
n(n − 1)/2.

Proof. We will use the subspace topology induced from O(n) ⊆ Rn2 . Define
h : U → V0
h(A) = log(A)

This is a homeomorphism onto its image, which is an open neighbourhood of 0 ∈ so(n) ∼= Rn(n−1)/2.Given C ∈ O(n), define
UC = {CA | A ∈ U}and
hC : UC → V0
hC (A) = log(C−1A)

Again, this is a homeomorphism onto its image. Since C ∈ UC , we have an open cover. Moreover,
hC2 ◦ h−1

C1 (B) = hC2 (C1 exp(B)) = log(C−12 C2 exp(B))
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which is a smooth map between open neighbourhoods of so(n). Therefore, O(n) is a smooth manifold.Similarly, for consider the map
F (A1, A2) = A1A−12In local coordinates,

Floc(B1, B2) = hC1C−12 (F (h−1
C1 (B1), h−1

C2 (B2)))= log((C1C−12 )−1C1 exp(B1)(C2 exp(B2))−1)
= log(C2 exp(B1) exp(−B2)C−12 )

and we can see that this is a smooth map as a function of B1, B2.
This method works for more groups, and is sometimes called the Cayley construction (for matrix Lie groups).

2 Tangent spaces to manifolds
Consider a local curve in a ball in Rn, defined by a smooth parametrisation x(t) = (x1(t), . . . , xn(t)). Supposewe have that x(0) = p ∈ Rn. In this case, its tangent vector at p is

ẋ(0) ∈ Rn

If y(x) is a smooth change of coordinates near p, then by the chain rule, we haveddt
∣∣∣∣
t=0y(x(t)) = J(y)pẋ(0)

where J(y) is the Jacobian matrix. More explicitly,
ẏi(0) =∑

j

∂yj
∂xj

ẋj (0)
Definition 2.1 (tangent vector)A tangent vector a to a manifold Mn at a point p ∈ M , is an assignment to each coordinate chart (U, φ)with p ∈ U , an n-tuple of coordinates (a1, . . . , an) ∈ Rn, such that if (U ′, φ′) is another chart near p,(xi), (x ′

i ) the respective local coordinates,
a′
i =∑

j

∂x ′
i

∂xj
aj

This definition is called the tensorial definition, where we focus on the transformation law. There are severalother definitions, for example, derivations, equivalence of curves to first order and so on.
Definition 2.2 (tangent space)The tangent space to M at a point p, denoted TpM is the space of all tangent vectors to M at p. It isnaturally a vector space (of dimension n over R).

Lecture 4A choice of chart (with local coordinates (xi) say), determines a linear isomorphismTpM → Rn

where n = dim(M). We denote by ∂
∂xi , the basis corrsponding to the usual standard basis of Rn, under thislinear isomorphism.If we want to emphasise the point p ∈ M , we may write(

∂
∂xi

)
p

or ∂
∂xi

∣∣∣∣
p
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Then by the usual linear algebra, we have that(
∂
∂xi

)
p

=∑
j

(∂x ′
j

∂xi

)
p

(
∂
∂x ′

j

)
pAn alternative view on tangent vectors is as derivations. Given

a =∑ai
∂
∂xi

∈ TpM
we can define a first-order derivation at p,

a : C∞(M) → Rwhere
a(f ) =∑

i
ai
∂f
∂xiin local coordinates. This definition is independent of the choice of local coordinates. We can define this in acoordinate independent way, by defining

a(f ) = ddt
∣∣∣∣
t=0f (x(t))where x is a local curve on M , with ẋ(0) = a. Moreover, every derivation satisfies the Leibniz rule

a(fg) = f · a(g) + a(f ) · gConversely, every linear map a : C∞(M) → R satisfying the Leibniz rule above arises as a derivation corre-sponding to a tangent vector.
Example 2.3Let r : R2

u,v ⊇ D → S ⊆ R3 be a regular parametrisation for a surface S . Then φ = r−1 defines a chart.The partial derivatives ru, rv correspond to
∂
∂u,

∂
∂vrespectively.

For a Lie group G , the tangent spaces has an “infinitessimal counterpart” of the group structure.
Definition 2.4 (Lie algebra)A Lie algebra is a vector space g, wiht a bilinear map

[·, ·] : g × g → g

called the Lie bracket , with• anticommutativity [x, y] = [−y, x ],• the Jacobi idenity [x, [y, z]] + [y, [z, x ]] + [z, [x, y]] = 0
Theorem 2.5. Let G ⊆ GL(n, F ) be a matrix Lie group (where F = R or C), such that log defines a chartnear I ∈ G . Let

g = TIGis identified with a (real) subspace of Matn(F ). Then g is a Lie algebra, with
[x, y] = xy − yx
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We call g the Lie algebra of G . We may also write
g = Lie(G)

Proof. Clearly g is a vector space, and [·, ·] is anticommutative and satisfies the Jacobi identity. Therefore, allwe need to show is that if x, y ∈ g, then so is [x, y].For B1, B2 ∈ g, consider
A(t) = exp(B1t) exp(B2t) exp(−B1t) exp(−B2t)

This defines a smooth path in G , with A(0) = I . Recall
exp(Bt) = I + Bt + 12B2t2 + o(t2)

as t → 0. We obtain that
A(t) = I + [B1, B2]t2 + o(t2)Letting B(t) = log(A(t)), for small t , we have that B(t) = [B1, B2]t2 + o(t2). But we also have that

exp(A(t)) = B(t)
Moreover, by definition, B(t) ∈ g for t small, as B(t) is in the image of the logarithm chart. So

B(t)
t2 ∈ g

as g is a vector space. So lim
t→0 B(t)

t2 = [B1, B2] ∈ g

since g ≤ Matn(F ) is closed.If we take G = O(n), then we have that
g = o(n) = {A ∈ Matn(R) | AT + A = 0}

is the space of skew-symmetric matrices.
Definition 2.6Let M be a manifold. Then the tangent bundle of M is

TM = ⊔
p∈M

TpM

Theorem 2.7. TM has a smooth structure, making it into a manifold of dimension 2 dim(M).
Proof. The topology on TM will be induced from the smooth structure. Let (φ,U) be a chart on M . Say thelocal coordinates corresponding to φ are x1, . . . , xn. So we can write a ∈ TpM as∑

ai
∂
∂xiDefine

UT = ⊔
p∈U

TpM
φT (p, a) = (φ(p), (ai))
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It is clear that the sets of the form UT cover, so all we need to check is that the change of coordinate maps aresmooth. Let (ψ, V ) be another chart on M , with local coordinates yi. Then
ψ ◦ φ−1(x, a) = (y, b)

and it is easy to see that y = ψ ◦ φ−1(x), and
bi =∑

j

∂yi
∂xj

aj

Hausdorff and second countable follow from the fact that M and Rn are. Lecture 5We will use the notation π : TM → M for the canonical projection map
π(p, a) = p

Proposition 2.8. The map π : TM → M is smooth.
Proof. In local coordinates given by φ and φT , we have

π(x, a) = x

Remark 2.9. In general, the tangent bundle TM need not be diffeomorphic to M × Rn .
Definition 2.10 ((smooth) vector field)A (smooth) vector field X on a manifold M is a smooth map X : M → TM , such that π(X (p)) = p. Thatis, X (p) ∈ TpM .
Example 2.11
X = 0 is a vector field. Similarly, X supported on a coordinate neighbourhood is a well defined vectorfield.
X is C∞ if and only if for each coordinate neighbourhood U , with local coordinates xi, we have

X =∑
i
ai(p) ∂∂xi

Smoothness of X becomes the requirement that each ai : U → R is smooth.
Theorem 2.12. Suppose Mn is a manifold, and X (1), . . . , X (n) are smooth vector fields on M , such that forall p ∈ M ,

X (1)(p), . . . , X (n)(p)is a basis for TpM . Then TM is isomorphic to the product M×Rd . That is, there exists Φ : TM → M×Rnis a diffeomorphism, such that Φ(p,m) = (p, φp(m))and for each fixed p, φp : TpM → Rn is a linear isomorphism.
Manifolds which satisfies the requirements of the theorem are called parallelisable.

10



Proof. For (p, a) ∈ TM , we can write it as
a =∑aiX (i)(p)

for some unique a1, . . . , an ∈ R. Using this, we can define a map
Φ(p, a) = (p, (ai)) ∈ M × Rn

It is easy to see that this is a bijection. Moreover, φp defines a linear isomorphism. Therefore, all we need tocheck is the smoothness. Let ψ : U → Rn be a chart on M , and ψT : UT → Rn × Rn be the correspondingchart on TM . In this case, (ψ × id) ◦ Φ ◦ ψ−1
T (x, b) = (x, a)such that

a =∑
i
aiX (i)(p) =∑

j
bj
(
∂
∂xj

)
pWe can write X (i) in the ∂

∂xj basis, to get
X (i) =∑

j
X (i)
j
∂
∂xjThus,

bj =∑
i
aiX (i)

j (x)
Since the X (i)

j are smooth, we are done. Moreover, the inverse transformation is also smooth, and thus Φ definesa local diffeomorphism, which must then be a diffeomorphism.
Remark 2.13. • The converse of the theorem is also true, and it is easy, since all we need to choose is (theimage of) (x, e1), . . . , (x, en).• The condition that M is parallelisable is a restriction. We know that all Lie groups are parallelisable, butgeneral manifolds are not. For example, there are no non-vanishing vector fields on S2 . More generally, Sn isparallelisable if and only if n = 1, 3 or 7.
Definition 2.14 (differential)Let F : M → N be a smooth map, Define the differential of F at p ∈ M as

dFp : TpM → TF (p)N
∂
∂xi

∣∣∣∣
p

7→
∑
j

∂yi
∂xj

(x(p)) ∂∂yj
∣∣∣∣
F (p)

where xi are local coordinates around p, given by the chart φ, and yj are local coordinates aroung F (p),given by ψ . In local coordinates, y = y(x) = ψ ◦ F ◦ ψ−1(x).Moreover, it is easy to see this is independent of choice of local coordinate, which follows from thechain rule in multivariave calculus.
Remark 2.15. For smooth maps F : M → N , G : N → P ,

d(G ◦ F ) = dG ◦ dF
Now suppose F : M → N is a diffeomorphism, X is a smooth vector field on M . Then the pushforward of

X by F is ((dF )X )F (p) = (dF )pX (p)which defines a vector field on N . We want F−1 to be smooth, since otherwise we don’t know whether theimage will be smooth.
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Every vector field X on M defines a linear map
X : C∞(M) → C∞(M)where if

X =∑
i
Xi

∂
∂xiwe define locally

Xh =∑
i
Xi
∂h
∂xiagain by the chain rule, this is independent of choice of coordinates.Let f ∈ C∞(N), F : M → N be a diffeomorphism. Then f ◦ F ∈ C∞(M). In coordinates xi on M , yj on Ngiven by F ,

∂
∂xi

(f ◦ F ) =∑
j

∂f
∂yj

∂yj
∂xiTherefore,

X (f ◦ F ) =∑
i,j
Xi
∂f
∂yj

∂yj
∂xi

= (((dF )X ) f ) ◦ F

That is, the diagram
C∞(N) C∞(M)

C∞(N) C∞(M)

·◦F

·◦F

(dF )X X

commutes.Let X, Y be vector fields on M . X and Y can be consider as a first order linear differential operator. Thenthe composition XY is not, but the Lie bracket[X, Y ] = XY − YXis a well defined first order linear differential operator. That is, it defines an R-linear map C∞(M) → C∞(M),satisfying [X, Y ](fg) = f · [X, Y ]g+ g · [X, Y ]fOne way to see this is by the symmetry of mixed partial derivatives. Thus, the space of all vector fields on
M forms a Lie algebra. Note that it is infinite dimensional, and so it can’t come from a Lie group. Lecture 6Suppose in local coordinates X = ∑i Xi ∂∂xi and Y = ∑i Yi ∂∂xi , then

[X, Y ] =∑
i,j

(
Xi
∂Yj
∂xi

− Yi
∂Xj
∂xi

)
∂
∂xk

Notation 2.16. We write V (M) for the vector space of all C∞ vector fields on M .
2.1 Left invariant vector fieldsLet G be a Lie group, e ∈ G is the identity element of G , and g = TeG for the tangent space of G at e, i.e. itsLie algebra.Given g ∈ G , we can define the left translation Lg : G → G ,

Lg(h) = gh

Lg is a diffeomorphism, as it is smooth with smooth inverse L−1
g = Lg−1 . Consider ξ ∈ g, and consider

Xξ (g) = (dLg)eξ ∈ TgGSince Lg is a diffeomorphism, (dLg)e is a linear isomorphism g → TgG , with inverse(dLg)−1
e = (dLg−1 )g
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Lemma 2.17. Xξ (g) as defined above, is smooth. Thus, Xξ is a smooth vector field.
Proof. Consider the map L : G×G → G , with L(g, h) = gh. Then L is smooth. Fix g0 ∈ G , the local coordinateexpression of L in a neighbourhood of (g0, e) is

L̂ : Ug0 × Ue → Vg0
Explicitly, L̂ = φg0 ◦ L ◦ (φ−1

g0 × φ−1
e ). With this,

L̂g = L̂(φg0 (g), ·) : Ue → Vg0
where g is in a neighbourhood of g0. With this, consider the derivative D2L̂ of L̂ in the Ve coordinates. Since
D2L̂ depends smoothly on the Vg0 coordinates on L, Xξ has smooth coefficients in a neighbourhood of g0.

Proposition 2.18. If ξ1, . . . , ξn ∈ g are linearly independent. That for all g ∈ G ,
Xξ1 (g), . . . , Xξn (g)

are linearly independent.
Proof. Clear from definition as (dLg)e is invertible.

Theorem 2.19. Every Lie group is parallelisable.
Proof. From the proposition and theorem 2.12.Also, consider g, h ∈ G , and ξ ∈ g. In this case,

(dLg)hXξ (h) = (dLg)h(dLh)e(ξ) = (dLg ◦ dLh)e(ξ) = (dLgh)e(ξ) = Xξ (gh)
That is, (dLg)Xξ = Xξ ◦ Lg

Definition 2.20 (left-invariant vector field)A vector field X on a Lie group G , with
(dLg)X = X ◦ Lg (1)

is called a left-invariant vector field . We write
ℓ(G) ⊆ V (G)

for the subspace of all left-invariant vector fields on G .
It is easy to see that ℓ(G) is finite dimensional, since any X ∈ ℓ(G) is Xξ for ξ = X (e) ∈ g. This alsoshows that the map g → ℓ(G) given by ξ 7→ Xξ is a linear isomorphism.Thus, dim(ℓ(G)) = dim(g) = dim(G)

Theorem 2.21. ℓ(G) is a Lie subalgebra of V (G). More precisely, [Xξ , Xη ] is left invariant for any ξ, η ∈ g.

13



Proof. Recall that
X (f ◦ F ) = (((dF )X ) f ) ◦ FWe will take F = Lg, f ∈ C∞(G), X = [Xξ , Xη ]. We will show that X satisfies eq. (1).((dLg)[Xξ , Xη ](f )) ◦ Lg = [Xξ , Xη ](f ◦ Lg)= XξXη(f ◦ Lg) − XηXξ (f ◦ Lg)= Xξ · (dLg)Xη(f ) ◦ Lg − Xη · (dLg)Xξ (f ) ◦ Lg= ((dLg)Xξ )((dLg)Xη)(f ) ◦ Lg − ((dLg)Xη)((dLg)Xξ )(f ) ◦ Lg= ([(dLg)Xξ , (dLg)Xη ]f ) ◦ Lg= [Xξ ◦ Lg, Xη ◦ Lg](f ) ◦ Lg= ([Xξ , Xη ] ◦ Lg)(f ) ◦ Lg

But f , g are arbitrary, and as such, we have
(dLg)[Xξ , Xη ] = [Xξ , Xη ] ◦ Lg

which means that [Xξ , Xη ] ∈ ℓ(G).With this, for all ξ, η ∈ g, there exists ζ ∈ g such that
[Xξ , Xη ] = Xη

This defines a Lie algebra structure on g.
Theorem 2.22. Let G be a matrix Lie group and log defines charts on G . Then the map

g ∋ ξ 7→ Xξ ∈ ℓ(G)
is an isomorphism of Lie algebras, where on g we use the matrix commutator.
We will prove this later.

3 Submanifolds
Let M be a manifold, N ⊆ M and N is a manifold. Consider the inclusion map ι : N ↪→ M .

Definition 3.1 (embedded submanifold)Suppose(i) ι is smooth,(ii) (dι)p : TpN → TpM is injective for all p,(iii) ι is a homeomorphism onto its image.Then we say that N is an embedded submanifold of M .
Remark 3.2. For (iii), D ⊆ N is open if and only if there exists U ⊆ M open, with D = D ∩ N .

Lecture 7The condition (iii) is required, since we don’t want an example which looks like a figure-8, or other ‘weird’topological spaces, such as

14



Remark 3.3. If ι only satisfies (i) and (ii), we call N an immersed submanifold .
Remark 3.4. A slight generalisation of this is that: if N,M are manifolds, a map ψ : N → M is called an embedding,denoted ψ : N ↪→ M , if ψ is injective, and satisfies conditions (i), (ii) and (iii). That is, ψ(N) ⊆ M is an immersedsubmanifold.If dΨ is injective for all p, then we call ψ an immersion.
Convention: Submanifold will mean embedded submanifold unless otherwise stated.

Example 3.5 (parametrised urves and surfaces in R3)In this case, condition (ii) simply means what we called a ‘regular’ parametrisation.
Example 3.6 (irrational twist flow)Define the map

R → T 2
t 7→ (eit , eiαt )

In this case, we see that the map is injective and an immersion, but not an embedding as the image isdense in T 2.
Is a submanifold the same as f−1(0) for some smooth map f : Rn → Rm, or more generally, f−1(p) for some

f : M → N .In general, no. Since f is smooth, it is continuous, and so f−1(p) is a closed set. On the other hand,
Proposition 3.7. For every closed subset E ⊆ R2, we can find a smooth map f : R2 → R, such that
f−1(0) = E .

Proof. Omitted, optional exercise.
Definition 3.8 (regular value)Let f : M → Y be a smooth map between manifolds. Then q ∈ Y is a regular value for f if for every
p ∈ f−1(q), (df )p : TpM → TqY is surjective.
Theorem 3.9 (preimage theorem). Suppose f : M → Y is a smooth map, y ∈ Y is a regular value, with
f−1(y) nonempty. Then N = f−1(y) is an embedded submanifold of M , with

dim(N) = dim(M) − dim(Y )
15



Proof. Omitted.A fact from differential topology: Suppose M is a manifold, N ⊆ M a subspace (with the subspace topology).Then there is at most one smooth structure on N making it into an embedded submanifold. Therefore, it makessense for us to say N is or is not a submanifold.The converse of the preimage theorem is only true locally.
Proposition 3.10. Let N ↪→ M be an embedded submanifold, p ∈ N . Then there exists an openneighbourhood p ∈ U ⊆ M , and f : U → Rd , d = dim(M) − dim(N), with 0 ∈ Rd is a regular value of f ,and f−1(0) = U ∩ f−1(0).

Proof. Let φ : U0 → Rn be a chart on M near p, with φ(p) = 0, with local coordinates x1, . . . , xn. Let
ψ : V0 → Rℓ be a chart on N , ψ(p) = 0 and with local coordinates u1, . . . , uℓ .We may assume without loss of generality that V0 = U0 ∩ N . In this case, ι : N ↪→ M is expressed locallyas

xi = xi(u1, . . . , uℓ )Thus, the rank of the Jacobian matrix (
∂xi
∂uj

)
is ℓ , by assumption. Without loss of generality,

det ( ∂xi
∂uj

)ℓ
i,j=1 ̸= 0

From the inverse function theorem from multivariate calculus, we have a local inverse
ui = ui(x1, . . . , xℓ )

near 0. Moreover, for i > ℓ , then xi = xi(u) = xi(u(x1, . . . , xℓ )) = hi(x1, . . . , xℓ ).Define fi(x) = xi − hi(x1, . . . , xℓ ) for ℓ < i < n. This gives the required map, with Jacobian at 0 given inblock form as (∗ Id
) Thus, 0 is a regular value.

Example 3.11Consider
N = {(x0 : x1 : x2) ∈ RP2 | x2 = 0}We can see that N ↪→ RP2, and N ∼= S1. However, it is impossible to write

N = f−1(q)
for all f : RP2 → M where M is a 1-manifold, q ∈ M a regular value.To see this, suppose we found such an f . Then consider a chart Ψ around q on M , ψ(q) = 0. Thenwe have that

ψ ◦ f : RP2 ⊇ U → (−1, 1)with N ⊆ U ⊆ RP2, U is open and connected. In this case, we have
N = {p | (ψ ◦ f )(p) = 0}

As q is a regular value, there exists p+, p− ∈ U such that
ψ(f (p+)) > 0 and ψ(f (p−)) < 0

But U \ N ⊆ RP2 \ N is connected, since it is either an annulus or a disc.
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Theorem 3.12 (Whitney embedding theorem). For any manifold Mn, there exists an embedding ψ : M ↪→
R2n.
On the examples sheet, we will show the result for RN , and with the additional assumption that M iscompact. It’s not too difficult to show that an embedding into R2n+1 exists, Reducing to 2n is the main difficultyin this theorem. Moreover, this result is optimal, for example by considering RP2 which embeds into R4 but not

R3. Lecture 8Using what we have done so far, we can now prove theorem 2.22. That is, for matrix Lie groups, the map
g → ℓ(G)
ξ 7→ Xξ

is a Lie algebra isomorphism.
Proof. We have shown before that [Xξ , Xη ] = Xζ for some ζ ∈ g. We would like to show that ζ = [ξ, η] = ξη−ηξ .First consider the case when G = GL(n) ⊆ Mat(n), which is an open subset. In this case, the Lie algebrais g = Mat(n). For g = (gij ) ∈ G , the left translation map is a linear function in the coordinates gij . Thus, for
g, h ∈ GL(n), we have that

(dLg)h : Mat(n) → Mat(n)
A 7→ gA

For A = (Aij ) ∈ g, we have that
XA(g) =∑X i

j (g) ∂
∂gijwith

X i
j (g) =∑

k

gikAkj

With this, the claim follows from a computation. That is, (using the summation convention),
gik

(
Akj

∂
∂gij

(
gℓpBpq

)
− Bkj

∂
∂gij

(
gℓpApq

)) ∂
∂gℓq

= gik
(
AkjB

j
qδ iℓ − BkjA

j
qδ iℓ
) ∂
∂gℓq= gik (AB − BA)kq ∂

∂giqUsing this, we see that [XA, XB ] = X[A,B]Now note that the change of basis of g from the identity chart as above, to the log chart is given by
(d log)I = id

Thus, the basis are the same, and so the above computation is valid in the log chart as well.Now consider a more general group satisfying our assumptions. The log chart assumption shows that
ι : G → GL(n) is an immersion. Moreover, Lg : G → G is a restriction of Lg : GL(n) → GL(n), and its derivativethe restriction of dLg : Mat(n) → Mat(n).Using this, for ξ ∈ g, the left invariant vector field Xξ ∈ ℓ(G) is a restriction of Xξ ∈ ℓ(GL(n)). As such,

[Xξ |G , Xη|G ] = [Xξ , Xη ]|G
We can use test functions which is constant in the variables which are transverse to G to see this. But weknow that [Xξ , Xη ] = Xξ,η on GL(n), and so we have that

X[ξ,η]|G = [Xξ |G , Xη|G ] ∈ ℓ(G)
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4 Differential forms
Let Mn be a manifold, p ∈ M . We have defined the tangent space TpM . Define the cotangent space of M at
p to be T∗

pM = (TpM)∗ = {linear maps TpM → R
}

Choosing local coordinates xi around p, we have a basis
∂
∂xi

∈ TpM
for TpM . This gives us a dual basis, which we will denote as

dxi ∈ T∗
pMThat is, 〈dxi, ∂∂xj

〉 := dxi( ∂
∂xj

) = δij

For any a ∈ T∗
pM , we have that

a =∑
i
aidxi

for aI ∈ R. Recall if yi is a different choice of local coordinates, then
∂
∂yj

=∑
i

∂xi
∂yj

∂
∂xi

Then by standard linear algebra arguments,
dxi =∑

j

∂xi
∂yj

dyj
Thus, for

a =∑aidxi =∑bidyi ∈ T∗
pMwe have that

bj =∑
i
ai
∂xi
∂yjWe can define the cotangent bundle of M , as

TM = ⊔
p∈M

T∗
pM

Theorem 4.1. T∗M is a smooth manifold, with dim(T∗M) = 2 dim(M). Again, we have a projection map
π : T∗M → M , with π(p, a) = p, which is a smooth map.

Proof. As for the tangent bundle. The only difference is the transformation law.
Definition 4.2 (differential 1-form)A ((smooth) differential) 1-form α on M , is by definition a smooth map α : M → T∗M , such that π◦α = id.That is, for all p ∈ M , α(p) ∈ T∗

pM .
As for vector fields, in local coordinates xi, we have that

α|U =∑
i
αi(p)dxi
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where αi ∈ C∞(U). This is equivalent to saying that
⟨α, X⟩ ∈ C∞(M)

for all X ∈ V (M). To see this, note that 〈
α, ∂∂xi

〉 = αi

We will now recall/define some multilinear algebra. For r = 0, 1, 2, . . ., and a vector space V , define the
r-th exterior power of V ∗ as

ΛrV ∗ =
alternating multilinear maps V × · · · × V︸ ︷︷ ︸

r copies → R


In particular, if r = 0, by convention Λ0V ∗ = R, and if r = 1, Λ1V ∗ = V ∗. If r > dim(V ), then ΛrV ∗ = 0.From this, we obtain the vector spaces ΛrT∗

pM , and we can define the r-th exterior power of T∗M as
ΛrT∗M = ⊔

p∈M

ΛrT∗
pM

Consider a smooth map α : M → ΛrT∗M , with π ◦ α = id. We call α a differential r-form. Lecture 9This is a vector space, with dimension dim(ΛrT∗
pM) = (nr). To see this, we can consider the basis

dxi1 ∧ · · · ∧ dxir with 1 ≤ i1 < · · · < ir ≤ n

By definition, (dxi1 ∧ · · · ∧ dxir )(v1, . . . , vr ) := det((dxik (vℓ ))k,ℓ)In particular, we see that ∧ is antisymmetric, and this extends by linearity and induction on p, q, to extendit to an assosiative bilinear product
ΛpT∗

xM × ΛqT∗
xM → Λp+qT∗

xM

Notation 4.3 (multi-index notation). If I = (i1, . . . , ir ), then we write |I| = r , and
dxI = dxi1 ∧ · · · ∧ dxir

The transformation law from dxI to dyJ is given by
dyJ = ∑

|I|=r
( r∏
k=1

∂yjk
∂xik

)dxI
Using this, we can show that ΛrT∗M is a smooth manifold, with dimension n + (n

r
). The projection map

π : ΛrT∗M → M is smooth, and we call ΛrT∗M the bundle of r-forms.
Definition 4.4 (smooth differential r-form)A ((smooth) differential) r-form is a section α of ΛrT∗M . The degree of α is r .
Note that α as above is smooth if and only if for any X1, . . . , Xr vector fields on M , α(X1, . . . , Xn) = 0. Inlocal coordinates, we can write

α = ∑
|I|=r αIdxIwhere the αI are smooth functions.
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Definition 4.5 (space of r-forms)For a manifold M , we write Ωr (M) for the space of all r-forms on M . By convention, Ω0(M) = C∞(M).
4.1 Orientability

Theorem 4.6. For any n-dimensional manifold, the following are equivalent:(a) There exists a nowhere vanishing ω ∈ Ωn(M).(b) There exists a collection of coordinate charts (φα , Uα ) such that• ⋃α Uα = M ,• for α, β with corresponding coordinates xi, yj , we have
det(∂yj∂xi

)
> 0

(c) ΛnT∗M is isomorphic to M × R.
Proof. (a) =⇒ (b): From the transformation law and taking r = n, we see that

dx1 ∧ · · · ∧ dxn = (∑
i1

∂x1
∂yi1 dyi1) ∧ · · · ∧

(∑
in

∂xn
∂yin

dyin)

= (∑
σ∈Sn

sign(σ ) ∂x1
∂yσ (1) · · · ∂xn

∂yσ (n)
)

= det( ∂xi∂yj

)dy1 ∧ · · · ∧ dyn
Given ω as in (a), consider an open cover by coordinate neighbourhoods Uα , with all Uα connected. In thiscase,

ω|Uα = fα (x)dxα1 ∧ · · · ∧ dxαnWe can assume without loss of generality that fα > 0 on each coordinate neighbourhood, but then
fα = det(∂xαi

∂xβj

)
fβ

and so the determinant must be positive.
(b) =⇒ (a): We will assume the following theorem without proof:

Theorem 4.7. For every open cover M = ⋃
α Uα , we can find a countable collection of smooth functions

ρi ∈ C∞(M), such that(i) supp(ρi) is compact, and contained in some Uα ,(ii) the ρi are locally finite, that is, given x ∈ M , there exists a neighbourhood Wx of x , such that allbut finitely many ρi are identically zero on Wx .(iii) ρi(x) ∈ [0, 1], and for any x ∈ M , ∑
i
ρi(x) = 1

We call {ρi} a partition of unity subordinate to Uα .
For any α , define ωα = dxα1 ∧ · · · ∧ dxαn ∈ Ωn(Uα ). By passing to a subcollection, we may assume we onlyhave countably many α , and say we have a parition of unity ρα subordinate to {Uα}. Then

ραωα ∈ Ωn(M)
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and using this, we can define
ω =∑ ραωαSince the sum is locally finite, ω is well defined. Moreover, since the ρα are nonnegative, and
det(∂xαi

∂xβj

)
> 0

ω never vanishes.For (c) =⇒ (a), suppose we have an isomorphism Φ : ΛnT∗M → M × R of vector bundles, consider
f : M → M × R, given by f (x) = (x, 1). Then Φ−1 ◦ f ∈ Ωn(M) never vanishes.Conversely, given a non-zero ω, notice for any (p, ξ) ∈ ΛnT∗M , there exists aξ such that ξ = aξω(p). Thus,we can define Φ(p, ξ) = (π(ξ), aξ )We leave as an exercise to check that Φ is a diffeomorphism.

Definition 4.8 (orientable)A manifold M satisfying any of the conditions in the above theorem is called orientable.
Suppose M is connected. then there are two choices of orientation, given by respectively:(a) ω up to rescaling by a positive function,(b) a choice of an open up to ‘positive compatibility’.(c) a choice of Φ up to compositions (x, a) 7→ (x, h(x)a), where h ∈ C∞(M) is positive.

Definition 4.9 (oriented)A manifold M with a choice of orientation is called oriented .
4.2 Exterior derivativeConsider f ∈ C∞(M). Formally, it is a smooth map f : M → R between manifolds, and so we have a differential

dfp : TpM → Tf (p)R = R

which depends on p in a smooth way. Then df ∈ Ω1(M)
Remark 4.10. A coordinate xi : U → R is a smooth function, and so dxi is a 1-form. Lecture 10
Theorem 4.11. There exists a unique R-linear map d : Ωk (M) → Ωk+1(M), determined by(i) If f ∈ Ω0(M) = C∞(M), then df is just the differential. That is,

df =∑
i

∂f
∂xi

dxi
(ii) d(ω ∧ η) = (dω) ∧ η + (−1)deg(ω)ω ∧ dη(iii) d2 = 0.The map d is called the exterior derivative.
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Proof. Consider a coordinate neighbourhood U ⊆ M , with coordinates xi. Consider ω ∈ Ωr (M), with
ω|U = f (x)dxIWe can assume this since d is linear. By (ii), (iii) and then (i),

d(ω|U ) = d(f (x)dxI ) = df ∧ dxI + f (x) r∑
k=1
(
· · · ∧ (−1)k−1ddxik ∧ · · ·

)
= m∑

i=1
∂f
∂xi

dxi ∧ dxI (∗)
Using this definition, (i) is clear, (ii) can be verified by a computation, and (iii) follows from the symmetryof mixed partial derivatives, since

∂2f
∂xi∂xj

= ∂2f
∂xj∂xiwe have that ∑

i,j

∂2f
∂xi∂xj

dxi ∧ dxj = 0
Using this, we have shown uniqueness since it is well defined and unique with respect to anny choiceof local coordinates. To show existence, we need to show that it is well defined with respect to a change ofcoordinates. But by (∗), (dω)p is determined by ω restricted to any neighbourhood of p.Thus, to show that d is well defined, it suffices to consider the intersection of coordinate neighbourhoods.Let yi be the other coordinates. The same computation as above gives an operator δ . We want to show that

δ = d. With this,
δ(f (x)dxI ) = δf ∧ dxI +∑

k

(
· · · ∧ (−1)k−1δdxik ∧ · · ·

)
Now δf = df as the differential is well defined, and δ(xik ) = dxik as well. Thus, δdxik = δ2xik = 0. With this,we find that

δ(f (x)dxI ) = df ∧ dxIas required.
Definition 4.12 (pullback)Let f : M → N be a smooth map between manifolds. Then we have a map

f ∗ : T∗
f (p)N → T∗

pMand more generally, we have
f ∗ : Ωr (N) → Ωr (M)which we call the pullback map of f . By definition,

(f ∗α)p(v1, . . . , vr ) = αf (p)((df )pv1, . . . , (df )pvr )
for every r-form α on N , p ∈ M, v1, . . . , vr ∈ TpM .
Remark 4.13. • f ∗ is defined for any smooth map. Compare this to the pushforward of vector fields, which isdefined only when f is a diffeomorphism.• (f ◦ g)∗ = g∗ ◦ f ∗ .• f ∗(α ∧ β) = f ∗(α) ∧ f ∗(β). In particular, for any h ∈ C∞(N), f ∗(hα) = (h ◦ f )f ∗α . That is, f ∗ is C∞(·)-linear.• d(f ∗α) = f ∗(dα). To see this, it suffices to do this in local coordinates, i.e. we can take M,N to be open subsetsof Euclidean space. Moreover, we can assume α = dyj , v = ∂

∂xk
, since we know both operators are R-linear,and we can use the Leibniz rule to extend to general r-forms. In this case, f becomes yj = yj (x), and we have
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that (f ∗dyj ) ( ∂
∂xk

) = dyj ((df ) ∂∂xk
) = dyj (∑

ℓ

∂yℓ
∂xk

∂
∂yℓ

) = ∂yj
∂xkWe see that f ∗ is determined by

f ∗dyj = n∑
k=1

∂yj
∂xk

dxk = d(yj ◦ f
) = d(f ∗yj

)

4.3 de Rham cohomologyWe will write dr for d : Ωr (M) → Ωr+1(M). That is, we have
0 Ω0(M) Ω1(M) Ω2(M) · · ·d0 d1 d2

If α = dβ , then dα = 0. The converse may not hold. We can use this:
Definition 4.14 (exact form)If α = dβ for some β , we say that α is exact. Equivalently, α ∈ im(dr ) for some r .
Definition 4.15 (closed form)If α ∈ ker(dr ), then we say that α is exact.
Since d2 = 0, im(dr−1) ⊆ ker(dr ). Moreover, it is a vector subspace.

Definition 4.16 (de Rham cohomology)The vector space Hr (M) = ker(dr )im(dr−1)is called the r-th de Rham cohomology group of M . We write
H∗ =⊕

r
Hr (M)

Proposition 4.17. If f : M → N is smooth, the pullback f ∗ : Ωr (N) → Ωr (M) descends to the quotient,i.e. we have a homomorphism
f ∗ : Hr (N) → Hr (M)Moreover, as for pullback of forms, (g ◦ f ∗) = f ∗ ◦ g∗

Proof. This follows from f ∗d = df ∗ (i.e. f ∗ is a chain map). Lecture 11In particular, if f is a diffeomorphism, then f ∗ : H∗(N) → H∗(M) is an isomorphism. The converse is false,for example H∗(RP3) ∼= H∗(S3)but they are diffeomorphic (not even homeomorphic, for example consider π1).
Theorem 4.18 (de Rham). HrdR(M) ∼= Hr (M ;R)
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where the right hand side is the singular cohomology of M as a topological space, with real coefficients.
If M is connected, then H0(M) = R, as it is just the space of constant functions (i.e. functions with zerodifferential).

Theorem 4.19 (Poincaré lemma). Suppose U ⊆ Rn is an open ball, α ∈ Ωk (U), for some k > 0, withdα = 0. Then α is exact, that is, we can find β ∈ Ωk−1(U), with α = dβ .
Corollary 4.20.

Hk (U) = {R k = 00 otherwise
Sketch proof of theorem 4.19. The main idea is to invert the exterior derivative d, by constructing appropriateintegral operators,

hk : Ωk (U) → Ωk−1(U)with
hk+1 ◦ dk + dk−1 ◦ hk = idΩk (U)That is, h defines a homotopy between id and the zero map on the de Rham cochain complex.

4.4 IntegrationThroughout, assume M is a oriented n-manifold, with orientation given by positively oriented charts (Uα , φα ).Let ω ∈ Ωn(M), and suppose supp(ω) is compact1. If supp(ω) ⊆ Uα for some α , with local coordinates xi,then we can write
ω|Uα = f (x)dx1 ∧ · · · ∧ dxnIn this case, we define ∫
M
ω = ∫

φα (Uα ) f (x)dx1 · · · dxn
where the right hand side is the integral over a subset of Rn, i.e. Riemann/Lebesgue integration.To see that this is well defined, suppose supp(ω) ⊆ Uβ , and Uβ has local coordinates yj , then

ω|Uβ = h(y)dy1 ∧ · · · ∧ dyn
In this case, ∫

φβ (Uβ ) h(y)dy1 · · · dyn = ∫
φα (Uα ) h(y(x))∣∣∣∣det (∂yi∂xj

)∣∣∣∣dx1 · · · dxn
= ∫

φα (Uα ) h(y(x)) det (∂yi∂xj

)dx1 · · · dxn
= ∫

φα (Uα ) f (x)dx1 ∧ · · · ∧ dxn
For more general n-forms with compact support, use a parition of unity {ρi} subordinate to a finite cover

{Ui} of supp(ω) by coordinate patches U1, . . . , UN . Let U0 = M \ supp(ω).
Definition 4.21 (integral of a differential form)
1This is different to lectures, but I’ll use the definition thatsupp(ω) = {p ∈ M | ω(p) ̸= 0}
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The integral of ω is ∫
M
ω = N∑

i=1
∫
Ui
ρiω

Basic properties:• it is linear in ω,• it is additive when we integrate over disjoint coordinate neighbourhoods,• it is independent of the choice of a parition of unity. If {ρ̃j} is a different partition of unity, then∑
i

∫
Ui
ρiω =∑

i,j

∫
Ui
ρiρ̃jω =∑

i,j

∫
Ui∩Ũj

ρiρ̃jω

Swapping ρi and ρ̃j gives the same result, and so we are done.
Theorem 4.22 (Stoke’s for manifolds without boundary). If η ∈ Ωn−1(M) is compactly supported, then∫

M
dη = 0

Note η being compactly supported implies dη is compactly supported, but the converse is false.
Proof. As above, let U1, . . . , UN be a positively oriented coordinate neighbourhoods covering supp(η), andlet U0 = M \ supp(η), which is positively oriented with respect to U1, . . . , UN . Choose a partition of unitysubordinate to {U0, . . . , UN}. Then

dη = d( N∑
i=1 ρiη

) = N∑
i=1 d(ρiη)

By additivity, suffices to show ∫
M

d(ρiη) = 0
Fix i, and choose local coordinates xk on Ui. Without loss of generality,

ρiη = h(x)dx2 ∧ · · · dxnWe can do this as the integral is linear. Then
d(ρiη) = ∂h

∂xi
dx1 ∧ · · · dxn

Integrating, choose R large enough such that∫
Rn

d(ρiη) = ∫
Rn−1

(∫ R

x1=−R

∂h
∂x1 dx1)dx2 · · · dxn

= ∫
Rn−1 h(R, x2, . . . , xn) − h(−R, x2, . . . , xn)dx2 · · · dxn= 0as we can assume h(R, x2, . . . , xn) = h(−R, x2, . . . , xn) = 0.

Corollary 4.23 (integration by parts). Assume α, β are differential forms on M , at least one is compactlysupported, with deg(α) + deg(β) = dim(M) − 1. Then∫
M
α ∧ dβ = (−1)deg(α)+1 ∫

M
(dα) ∧ β

25



Proof. Apply Stokes to η = α ∧ β , which is compactly supported. Lecture 12
5 Vector bundles

Definition 5.1 (vector bundle)A vector bundle E over a manifold B is1. a smooth manifold E ,2. a surjective submersion π : E → B, i.e. π is smooth, and (dπ)p is surjective,Moreover,(i) there exists a (finite dimensional) vector space V , such that for all p ∈ B, Ep = π−1(p) is a vectorspace isomorphic to V ,(ii) for any p ∈ B, there exists an open neighbourhood U of p, and a diffeomorphism ΦU making thediagram
π−1(U) U × V

U

ΦU

π pr1

commute.(iii) for each p ∈ U , the restriction ΦU : Ep → {p} × V ∼= V is a linear isomorphism.We call• B the base,• E the total space,• π the bundle projection,• V the typical fibre, if V is a real vector space, we call E → B a real vector bundle, and if V is acomplex vector space, then we call E → B a complex vector bundle.• dim(V ) is the rank of the vector bundlea,• ΦU a local trivialisation over U ,• U is a trivialising neighbourhood
aNote in the case of a complex vector bundle this depends on the real/complex dimension.

Remark 5.2. Note surjectivity of π follows from (i), and the fact that it is a submersion follows from (ii).
Definition 5.3 ((local) section)A section of a vector bundle E → B is a smooth map s : B → E such that π ◦ s = idB . A local section isa smooth map s;U → E , with π ◦ s = idU .
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Example 5.4 (product)If E = B × V , E → B is a vector bundle, and the space of sections is just C∞(B, V ).
Example 5.5 ((co)tangent space)TM and T∗M are real vector bundles of rank n = dim(M). The sections are vector fields and 1-formsrespectively. In general, these are non-trivial, i.e. they are not products.In general, ΛrT∗M is also a real vector bundle, and sections are r-forms. If TM is trivial, then so arethe bundles of differential forms.
Example 5.6 (tautological vector bundle)Over RPn,CPn (or more generally, Grassmannians), we have the tautological vector bundle.Say B = CPn, take

E = ⊔
ℓ line in Cn+1 through 0 ℓThe bundle projection sends

π : E ∋ ℓ 7→ ℓ ∈ CPnWe can check that this is a rank 1 complex vector bundle (i.e. a complex line bundle).
5.1 Structure group and transition functionsLet (Uα ,Φα ), (Uβ ,Φβ ) be local trivialisations of E . In this case, we have that for b ∈ Uα ∩ Uβ , v ∈ V ,Φβ ◦ Φ−1

α (b, v ) = (b, ψβα (b)v )where ψβα : Uα ∩ Uβ → GL(V ) is smooth.
Definition 5.7 (transition functions)The ψβα are called the transition functions.
The transition functions satisfy the following:• ψαα (b) = id,• ψαβ (b)ψβα (b) = id,• ψαβ (b)ψβγ (b)ψγα (b) = idwhich we call the cocycle conditions.

Example 5.8 ((co)tangent bundle)In the case of the (co)tangent bundles, with the charts defined earlier, the transition functions are givenby the derivatives (or the dual matrix) (
∂xi
∂yj

)
i,j

Proposition 5.9. The following data:• base manifold B,• trivialising neighbourhoods {Uα}α∈A covering B,• maps ψβα : Uα ∩ Uβ → GL(V ) smooth, satisfying the cocycle condition.
27



determines a vector bundle E over B, with typical fibre V .
The proof is called the Steenrod construction.

Proof. First we define the total space
E := ⊔

α∈A(Uα × V )
∼where Uα × V ∋ (b, v ) ∼ (b, ψβα (b)v ) ∈ Uβ × V .Without loss of generality, we may assume that the Uα ⊆ B are coordinate neighbourhoods, with charts φαThen

φ̃α = (φα , idV )for each α is a chart on Uα × V . This implies that E is a manifold, as these form a smooth structure. Thedefinitions of π and the existence of local trivialisations are clear.
Definition 5.10 (G-structure, structure group)Let E → B be a real vector bundle with typical fibre V . Let G ≤ GL(V ) be a subgroup. Suppose thereexists local trivialisations (Uα ,Φα ) covering B, where the transition maps ψαβ (b) ∈ G for all b ∈ Uα ∩Uβ .We call this a G-structure on E → B, and that E has G as a structure group.
Example 5.11If G = {id}, then E has a global trivialisation Φ : E → B × V .If G = GL+(V ) is the subgroup of matrices with positive determinant. Then a G-structure on E is anorientation of E . If E = TM , then this determines an orientation of M .
Definition 5.12 (orientable, oriented)A vector bundle E → B is orientable if it admits a GL+(V ) structure. E → B is oriented if we made achoice of orientation.

Lecture 13
Example 5.13 (orthogonal trivialisations)Let E be a real vector bundle, if G = O(V ), then there exists an invariantly defined inner product oneach fibre Ep. More precisely, this is obtained via a linear isometry Ep → (Rk , ⟨·, ·⟩). The respective Φαβgiving the O(V ) structure are then called orthogonal (local) trivialisations.In particular, if G = SO(V ) = GL+(V ) ∩ O(V ), then this is equivalent to a choice of an inner productas well as an orientation on the fibres.
Example 5.14Say now E is a real vector bundle with rank 2m. Then we can consider G = GL(m,C) ≤ GL(2m,R).For all p ∈ B, there exists Jp ∈ GL(Ep), with J2p = − idEp . Moreover, Jp depends smoothly on p. Thiscorresponds to J0 on R2n = Cn, defined by multiplication by i. This naturally makes E into a complexvector bundle.If E = TM , a GL(n,C)-structure on M is called an almost complex structure on M .
Example 5.15If G = U(k ) ⊆ GL(k,C), we get a unitary structure, analogous to the orthogonal case. The trivialisationsare called unitary trivialisations.
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More generally, if G preserves a tensor T on V under the inclusion G → GL(V ) (or the appropriate actionon the dual), then a G-structure induces a family Tp of tensors on Ep, which are equivalent to T under thetrivialisations.In general, existence of a G-structure for a given G can be a non-trivial problem. But for G = O(V ) and
G = U(V ), the answer is yes.
5.2 Principal bundlesLet G be a Lie group, with identity element 1G .

Definition 5.16 (smooth free right action)A smooth free right action of G on a manifold P is a smooth map
P × G → P(p, h) 7→ p · h

where(i) free: If p · h = p, then h = 1G ,(i) (p · h1) · h2 = p · (h1h2).
Remark 5.17. The fact that it is a right action implies that the map p 7→ ph is a diffeomorphism for all h ∈ G .
Definition 5.18 (principal bundle)Let G be a Lie group. A principal G-bundle P over a manifold B is1. a smooth manifold P , with a smooth free right action of G on P ,2. a surjective submersion π : P → B,Moreover,(i) for any b ∈ B, there exists an open neighbourhood U of b and a diffeomorphism ΦU making thediagram

π−1(U) U × G

U

π

φU

pr1

commute.(ii) ΦU commutes with the action of G . That is,
ΦU (ph) = (b, gh) = (π(p), gh)

where ΦU (p) = (b, g).We call
Remark 5.19. From the definitions, it follows that the fibres π−1(p) are embedded submanifolds, diffeomorphic to G .By analogy, we will call P the total space, B the base and so on.
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Remark 5.20 (Warning). If P → B is a fibre bundle, where each fibre is a Lie group, P does not have to be a principalbundle, since we don’t need to have a right action on each fibre.
Similar to the case of a vector bundle, we have: For every b ∈ Uα ∩ Uβ , consider

Φβ ◦ Φ−1
α (b, g) = (b, ψβα (b, g))

where
ψβα (b, ·) : G → GThe requirement that ΦU commutes with the G-action gives that

ψβα (b, gh) = ψβα (b, g)h
for any g, h ∈ G . We will abuse notation, and write

ψβα (b) := ψβα (b, 1G )
Using this, we get that

ψβα (b, g) = ψβα (b)g = Lψβα (b)gWith this, we have maps
ψβα : Uα ∩ Uβ → Gwhich are called the transition functions, and these satisfy the same cocycle conditions as for vector bundles.

Theorem 5.21. Given the data:• base manifold B,• trivialising neighbourhoods {Uα} covering B,• maps ψβα : Uα ∩ Uβ → G satisfying the cocycle conditions,Let
P = ⊔(Uα ×G)

∼where Uα × G ∋ (b, h) ∼ (b, ψβα (b)h) ∈ Uβ × G . Then P is a principal G-bundle, with proiection mapinduced by the projections on each element of the disjoint union, with transition functions {ψβα}. Theright multiplication action is given by right multiplication on each element in the disjoint union.
Proof. Basically the same as the vector bundle case.

Remark 5.22. If the G-action on a manifold P is smooth, free and proper, that is the map P × G → P is proper, i.e.the preimage of a compact set is compact. Then we can make the orbit space P/G into a manifold, and we can define
B = P/G and π is the quotient map. This then defines a principal bundle P → B.
Remark 5.23. Let G be a matrix Lie group. Suppose we have a vector bundle E → B with a G-structure, withtransition maps ψβα . From this we can obtain a principal G-bundle.Conversely, if we have a principal G-bundle, and a smooth faithful representation G → GL(V ), we can make avector bundle E → B using the transition functions.We then say that E is associated to the principal G-bundle P → B (and vice versa). Lecture 14
Example 5.24If E = TM , dim(M) = n, taking G = GL(n,R), then the principal bundle P is called a frame bundle, andeach fibre Pp is the set of a bases of the vector space TpM , by considering the columnes of an invertiblematrix.If G = O(n)< then P is called an orthonormal frame bundle, and each fibre is the set of orthonormal
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bases of TpM .
5.3 Hopf bundleA Hopf bundle is an example of a tautological complex line bundle over CP1. Recall that the fibre over(z1 : z2) ∈ CP1 is the complex line spanned by (z1, z2) in C2. We will work out the transition functions, andappeal to the Steenrod construction.Write Ui = {(z1 : z2) ∈ CP1 | zi ̸= 0}. U1 ∪ U2 is an open cover of CP1. Write z = z2/z1 for the localcoordinate on U1, and ζ = z1/z2 = 1/z for the local coordinate on U2.Set Φ1 : π−1(U1) → U1 × C

(w,wz) 7→ ((1 : z), w√1 + |z|2)and Φ2 : π−1(U2) → U2 × C

(ζw,w) 7→ ((ζ : 1), w√|ζ|2 + 1)We can compute
Φ−11 ((1 : z), w̃) =  w̃√1 + |z|2 ,

w̃√1 + |z|2 z


If z ̸= 0, then
Φ2 ◦ Φ−11 ((1 : z), w̃) = Φ2

 w̃

ζ
√1 + |ζ|−2 ζ,

w̃

ζ
√1 + |ζ|−2


= ((ζ : 1), |ζ|

ζ w̃
)

= ((1 : z), z|z| w̃
)

Hence the transition function is
ψ21((1 : z)) = z

|z|and
ψ12((ζ : 1)) = |z|

z = ζ
|ζ|Note that the cocycle conditions are trivial as we only have two transition functions. Note

ψ12, ψ21 : U1 ∩ U2 → U(1) = S1 ⊆ C× = GL(1,C)With this, the Hopf bundle admits a U(1) structure. Explicitly,∥∥(w,wz)∥∥ = |w|
√1 + |z|2

and we have a similar computation for π−1(U2). If we now remove the zero section, then we have an isomorphism
E \ {image of zero section} ∼= C2 \ {(0, 0)})which is the total space of an associated GL(1,C)-bundle.The associated principal U(1) = S1 bundle has total space
P = {(w1, w2) ∈ C2 | |w1|2 + |w2|2 = 1} = S3

and the bundle projection will send (w1, w2) → (w1 : w2) ∈ CP1 ∼= S2.We can see that the Hopf bundle is not the trivial bundle, since S3 and S2 × S1 are not homeomorphic.
5.4 Pullback
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Definition 5.25 (pullback)Let π : E → B be a vector bundle. and suppose we have a smooth map f : M → B. Then we can definethe pullback f ∗E of E → B as a vector bundle π̃ : f ∗E → M , such that1. the typical fibres are the same,2. there exists a smooth map F making the diagram
f ∗E E

M B

F

ππ̃

fcommute, and F : (f ∗E )p → Ef (p) is a linear isomoprhism for all p ∈ E .
From the definition, it follows that if (Φ, U) is a trivialisation of π , then we have a trivialisation Φ̃ with

π−1(U) U × V

π̃−1(π−1(U)) f−1(U) × V

Φ
F f×idV

Φ̃
That is, we induce a local trivialisation of f ∗E over f−1(U).

Example 5.26If B = {pt}, then E ∼= V , and Φ̃ : x 7→ (π̃(x), F (x)) ∈ M × Vtrivialises f ∗E over M .
Example 5.27Let M = B × X , f = pr1 : B × X → X . Then f ∗E is “trivial in the X-direction”. More precisely,
f ∗E = E × X , with bundle projection π̃ = π × idX .
Example 5.28In this case, if M = pt, then

F : f ∗E ∼= C ↪→ Eembeds V as a fibre Ef (pt).
In general, f ∗E is determined by pulling back transition functions, that is,

f ∗ψβα = ψβα ◦ f : f−1(Uα ∩ Uβ ) → GL(V )
This gives an alternative definition of the pullback.By replacing “vector bundle” with “principal G-bundle”, V with G , GL(V ) with G , we can define the pullbackof a principal G-bundle.In particular, if E is associated to P , then f ∗E is associated to f ∗P . Lecture 15
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5.5 Morphisms of (vector) bundlesLet π : E → B, π′ : E ′ → B′ be vector bundles, with typical fibres V , V ′ respectively. Let f : B → B′ be asmooth map.
Definition 5.29 (morphism of vector bundle)A vector bundle morphism covering f is a smooth map F : E → E ′, such that

E E ′

B B′

π π

F

fcommutes, and the morphism on any fibre
Fp : Ep → E ′

f (p)is a linear map.
Then for each local trivialisation (Φ, U) for E → B, and (Φ′, U ′) for E ′ → B′, with f (U) ⊆ U ′. Set

FU = Φ′ ◦ F|π−1(U) ◦ Φ−1
Then

FU (b, v ) = (f (b), h(b)v )where h(b) ∈ L(V , V ′) a linear map, b 7→ h(b) smooth.
Example 5.30If φ : M → N is a smooth map, then dφ : TM → TN is a morphism of vector bundles covering φ.
Example 5.31Let π : E → B be a vector bundle, f : M → B a smooth map, then the pullback f ∗E → M gives us amorphism of vector bundles f ∗E → E covering f .
Example 5.32Suppose B′ = B, and f ∈ Diff(B). Then if F is a morphism of vector bundles covering f , and each mapon fibres is an isomorphism, then F is an isomorphism of vector bundles covering f .If f = id, E = E ′, with π′ = π , then we call F a vector bundle automorphism of E , and we denotethe group of automorphisms as Aut(E ). In this case, each h(b) ∈ GL(V ), and so we have a smooth map
h : U → GL(V ).
Example 5.33If E admits a G structure for some G ≤ GL(V ), then

AutG (E ) = {F ∈ Aut(E ) | F preserves the G structure}

makes sense. In terms of local trivialisations, then the maps are h : U → G instead. In math-ematical physics, we call G = AutG (E ) the the group of gauge transformations. For example, G =U(1),SU(2),SU(3),SO(3) and so on.
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6 Connections on vector bundles
Let π : E → B be a real vector bundle of rank m, i.e. with typical fibre Rm. Let s ∈ Γ(E ) be a section, thenlocally,

sU = pr2 ◦Φ ◦ (s|U ) : U → Rn

is a vector valued function. We would like to extend the differential calculus. Locally, we have
dsU : TbB → Rm

but we also have ds : TbB → Ts(b)EIn this case, dim(Rm) = m, but dim(Ts(b)E ) = dim(B) + m. Intuitively, we have extra dimensions coming fromthe base manifold B.Throughout, we will fix notation:• dim(B) = n,• U ⊆ B is a coordinate neighbourhood and a trivialising neighbourhood for E , with local coordinates(xk )nk=1, and with coordinates (aj )mj=1 on the fibres.
• We will use the summation convention on i, j ∈ {1, . . . , m} and k, ℓ ∈ {1, . . . , n}, but not on Greekindices.Let Φ : π−1(U) → U × Rm be a local trivialisation. π−1(b) = Eb is a submanifold, and we have localcoordinates TpEb = span{ ∂

∂aj

}
This allows us to identify TpE = span{ ∂

∂xk ,
∂
∂aj

}

Definition 6.1 (vertical, horizontal subspace)The subspace TvpE = ker(dπp) is called the vertical subspace at p ∈ E .A subspace Sp ⊆ TpE is a horizontal subspace if
Sp ⊕ TvpE = TpE

In this case, we know that dim(Sp) = n for all p from linear algebra. However, it is not determined by π .Any n-dimensional subspace of TpE ∼= Rn+m is given by
m⋂
i=1 ker(θip)

where the θ1
p, . . . , θmp ∈ T∗

pE ∼= (Rn+m)∗ are linearly independent. In this case,
Sp = {v ∈ TpM | θip(v ) = 0 for all i}

where
θip = f ikdxk + gijdajfor constants f ik , gij . Suppose c ∈ TpE is vertical, that is,

c = cj ∂∂aj(i.e. it has no ∂
∂xk components). If c ̸= 0, then there exists i such that

θip(c) ̸= 0
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Equivalently,
gijci ̸= 0That is, we require the matrix (gij ) to be invertible. Let its inverse be (hij ). Now consider

θ̃i = hijθj = dai + eikdxkLetting p vary in π−1(U), we get functions eik : π−1(U) → R. We obtain
Proposition 6.2. Every field S = {Sp}p∈E of horizontal subspaces can be given in local trivialisations as

Sp = m⋂
i=1 ker(θip)

with
θip = dai + eik (x, a)dxkfor some smooth eik : U × Rn → R. If the eik are smooth, we say that S is smooth.

Definition 6.3 (connection)A smooth field S = {Sp}p∈E of subspaces is a connection on a vector bundle E if1. all Sp are horizontal,2. all the eik are linear in a ∈ Rm.
In this case, we can write

eik (x, a) = Γijk (x)ajfor some Γijk : U → R smooth. Thus,
θi = dai + Γijk (x)ajdxk = dai + Aijajwhere Aij = Γijk (x)dxk is a matrix of differential 1-forms. We can then consider the matrix A = (Aij ), and wewould like to consider the transformation law for it.Suppose (U ′,Φ′) is another trivialisation, with U ∩ U ′ ̸= ∅. We will use i′, j ′ indices for coordinates withrespect to U ′. Write Ψ−1 = (Φi′

i )mi,i′=1 for the transition function from Φ′ to Φ.Note that Ψi
i′Ψi′

j = δ ijNow suppose
ai′ = Ψi′

i aiThen dai′ = (dΨi′
i

)
ai + Ψi′

i daiBut we also have that Lecture 16
θi′ = dai′ + Ai′j ′aj

′

and so
θi′ = (dΨi′

j )aj + Ψi′
j daj + Ai′j ′daj ′Next, note that

θi = Ψi
i′θi

′ = dai + (Ψi
i′dΨi′

j + Ψi′
i Ai

′

j ′Ψj ′
j )ajTherefore,

Aij = Ψi
i′dΨi′

j + Ψi′
i Ai

′

j ′Ψj ′
jWriting AΦ = (Aji ) and so

AΦ′ = AΨ◦Φ = (Aj ′i′ )and so
AΨ◦Φ = ΨAΦΨ−1 − (dΨ)Ψ−1 = ΨAΦΨ−1 + Ψ d(Ψ−1) (2)
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Theorem 6.4. Every choice of (local) matrices of one-forms (Aij ) satisfying eq. (2) defines a connection on
E .
Remark 6.5. Note that eq. (2) shows that the (Aij ) will not define a matrix valued 1-form, since it has a differenttransformation law.One way to see this is that AΦ = 0 does not imply that AΨ◦Φ = 0.
Remark 6.6. We can consider Ψ as a local expression for an element of Aut(E ), and then eq. (2) defines a naturalaction of Aut(E ) on the space of all connections.
Consider local trivialisations Φα ,Φβ : π−1(U) → U × V . If we have Gα ∈ End(V ), with respect to thetrivialisation Φα , then2

Gβ = ΨβαGαΨαβThis defines an action of GL(V ) on End(V ), and so we can use the Steenrod construction to get a vector bundleEnd(E ), called the endomorphism bundle of E . The fibres are End(E )b = End(Eb) ∼= End(V ).With this, we have a well defined subset GL(E ), where each typical fibre is GL(E )p = GL(Ep). This is not
a principal bundle. For example, it has a global section b 7→ idEb , and it is not trivial. Moreover,Γ(GL(E )) = Aut(E )Hence elements of Aut(E ) can also be considered as sections of End(E ).Similarly to the above, we can consider typical fibre

{Rn × · · · × Rn → V | multilinear and alternating}which gives the bundle of differential r-forms with values in fibres of E .vector bundle typical fibre transition functions space of sections
E V v 7→ Ψβαv Γ(E )End(E ) End(V ) G 7→ ΨβαGΨαβ Γ(End(E ))T∗B ⊗ E L(Rn, V ) = (Rn)∗ ⊗ V vkdxk 7→ (Ψβαvk ) ∂xk∂xk′ dxk ′ Ω1

B(E )Λr (T∗B) ⊗ E Λr (Rn)∗ ⊗ V vKdxK 7→ (ΨβαvK ) ∂xK∂xK′ dxK ′ Ωr
B(E )T∗B ⊗ End(E ) (Rn)∗ ⊗ End(V ) Gkdxk 7→ (ΨβαGkΨαβ ) ∂xk∂xk′ dxk ′ Ω1

B(End(E ))ΛrT∗B ⊗ End(E ) Λr (Rn)∗ ⊗ End(V ) Ωr
B(End(E ))

where ∂xK
∂xK′ is the appropriate change of coordinates for 1-forms. In particular, from eq. (2), we find that if A, Ãare 1-forms, then

A − Ã = Ω1
B(End(E ))and so we can think of the space of all connections on E as an affine space with underlying vector spaceΩ1

B(End(E )).
Definition 6.7 (coariant derivative)A covariant derivative on a real vector bundle E → B is an R-linear map gradE : Γ(E ) → Ω1

B(E ), withthe Leibniz rule gradE (f s) = df ⊗ s+ fgradEsfor f ∈ C∞(B) and s ∈ Γ(E ).
Lecture 17

Example 6.8Let A be a connection on E , given in local trivialisations by A = (Aij ), Aij ∈ Ω1(U). Define
(dAs)|U = (ds+ As)|U = (dsi + Aijsj )mi=1

2No summation
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where s = (si). This is the covariant derivative associated to the connection A.In parricular, if U is a coordinate neighbourhood, then
(dAs)i = ( ∂si∂xk + Γijk (x)sj)dxk

in terms of local coordinates xk .We need to check that this is defined independent of a choice of local trivialisation. Suppose (Φ′, U ′)is another trivialisation, Let the transition function be ψ : U ∩ U ′ → GL(V ) from Φ′ to Φ. Then
s = ψs′

A = ψA′ψ−1 − (dψ)ψ−1
Substituting, locally

dAs = ds+ As= d(ψs) + (ψA′ψ−1 − (dψ)ψ−1)ψs′= ψds′ + (dψ)s′ + ψA′S ′ − (dψ)s′= ψ(ds′ + A′s′)= ψ(dA′s′)
and so we have the correct transformation law for dAs ∈ Ω1

B(E ).
Suppose E has an inner product ⟨·, ·⟩ on fibres, then a connection A on the real (resp. complex) vectorbundle E → B is orthogonal (resp. unitary), if for any s1, s2 ∈ Γ(E ), then

d ⟨s1, s2⟩ = ⟨dAs1, s2⟩ + ⟨s1, dAs2⟩where the right hand side is a one-form, and we take inner product on the E-component.
Theorem 6.9. Every covariant derivative gradE on E → B is of the form gradE = dA for some connection
A.

Proof. First of all,
Claim 6.10. Every covariant derivative is a local operator. That is, for any U ⊆ B open, if we have sections
s1, s2 ∈ Γ(E ) with s1|U = s2|U , then

(gradEs1)|U = (gradEs2)|U
Proof. For all b ∈ U , choose U0 ⊆ U , b ∈ U0 with U0 ⊆ U0 ⊆ U . In particular, we have a smooth function α ,with

α = {1 on U00 outside Uand 0 ≤ α ≤ 1. With this, α(s1 − s2) = 0. By linearity,
0 = gradE (α(s1 − s2)) = dα ⊗ (s1 − s2) + αgradE (s1 − s2)Since s1 − s2 vanishes at b, and α = 1 at b, gradEs1 = gradEs2 at b.Therefore, it suffices to work in an arbitrary trivialisation over a coordinate neighbourhood U say. In this,

s = (s1, . . . , sm) = sieiwhere e1, . . . , em is the standard basis of Rm, which defines local sections over U . Each si : U → R is smooth.We define Γijk = ((gradEej) · ∂
∂xk

)i
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which is a function U → R. Using this, we can computegradEs = gradE (siei)= (dsi + sjΓijkdxk)⊗ ei= dAsThe previous example shows that Aij = Γijkdxk is a well defined connection, i.e. it has the correct transformationlaw.With this, we have obtained three different views of connections:1. field of horizontal subspaces,2. matrix valued 1-forms Aij , or scalars Γijk ,3. a covariant derivativeMoreover, we can extend dA : Ωr
B(E ) → Ωr+1

B (E ), by requiringdA(σ ∧ ω) = (dAσ ) ∧ ω + (−1)deg(σ )σ ∧ dωIn local trivialisations, dA(sIdx I ) = (dAsI ) ∧ dx I= d(sIdx I) + A ∧ (sIdx I )Furthermore, we can extend dA : Ωr
B(End(E )) → Ωr+1

B (End(E )), via(dAC )s = dA(Cs) − C (dAs)for C ∈ Γ(End(E )), s ∈ Γ(E ). More generally,(dAµ) ∧ σ = dA(µ ∧ σ ) − (−1)deg(µ)µ ∧ dAσfor any µ ∈ Ωp
B(End(E )), q ∈ Ωq

B(E ). Using this,dA(µ1 ∧ µ2) = (dAµ1) ∧ µ2 + (−1)deg(µ1)µ1 ∧ (dAµ2)
Example 6.11For µ ∈ Ω2

B(End(E )), the above implies that locally,
dAµ = dµ + A ∧ µ − µ ∧ A

6.1 CurvatureRepeated applying the covariant derivative, we have
Γ(E ) = Ω0

B(E ) Ω1
B(E ) · · · Ωn−1

B (E ) Ωn
B(E ( 0dA dA

For s ∈ Γ(E ), locally, dA(dAs) = d(ds+ As) + A ∧ (ds+ As)= dA ∧ s − A ∧ ds+ A ∧ ds+ A ∧ A ∧ s= (dA+ A ∧ A) ∧ sThat is, it is the wedge of s with a two-form. Moreover, for any smooth function,dA(dA(f s)) = fdA(dAs)Hence it is C∞(B)-linear. Note that(A ∧ A)ij = Γipkdxk ∧ Γpjℓdxℓ = ΓipkΓpjldxk ∧ dxℓand so it need not vanish.
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Definition 6.12 (curvature)The form
F (A) = dA+ A ∧ A ∈ Ω2

B(End(E ))is called the curvature of A.
Note that the curvature is independent of local trivialisations as the As are.In coordinates,

F (A) = F (A)ij,kℓdxk ∧ dxℓ
In particular, F (A)ij,kℓ = −F (A)ij,ℓ,k , and the components are expressed in terms of Γijk and ∂Γijk

∂xℓ . Lecture 18
Definition 6.13 (flat)A connection A is flat if F (A) = 0. A flat vector bundle E → B is a vector bundle with a choice of a flatconnection.
Example 6.14Let E = B × Rm, and we can choose

dA = d : C∞(B,Rm) → Ω1(B) ⊗ Rm

This connection is called the trivial product connection. The converse is only true locally (Examples Sheet3 Q6).
Definition 6.15 (covariantly constant)A section s ∈ Γ(E ) is (covariantly) constant with respect to a connection A, if dAs = 0.
Theorem 6.16 (second Bianchi identity). For any connection A on E → B,

dA(F (A)) = 0
Proof. Let s ∈ Γ(E ), then dA(F (A)s) = dA(F (A))s+ F (A) ∧ dAsOn the other hand, dA(F (A)s) = dA(dAdAs) = (dAdA)dAs = F (A) ∧ dAsHence dA(F (A))s = 0 for any section s, which is true if and only if dA(F (A)) = 0.
7 Riemannian geometry

Definition 7.1 (Riemannian metric, Riemannian manifold)A Riemannian metric g on M is a field of positive definition symmetric bilinear forms
gp : TpM × TpM → R

which is smooth in p. A Riemannian manifold is a pair (M,g) of a manifold M with a Riemannian metric
g on M .
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Equivalently, we can define it as a section of S2T∗M which is positve definite on each fibre. In terms of vectorfields, let X, Y be vector fields on M , then g(X, Y ) : M → R is smooth. On each coordinate neighbourhood Uwith coordinates x i, we have
gij = g

(
∂
∂x i ,

∂
∂x j

)
∈ C∞(U)

Note symmetry becomes gij = gji. In local coordinates, we can write
g = gijdx idx jFormally, dx idx j = 12 (dx i ⊗ dx j + dx j ⊗ dx i)

Example 7.2If r = r(u, v ) is a parametrisation for a surface in R3, then we have the first fundamental form
Edu2 + 2Fdudv + Gdv2

where E = g11, F = g12 = g21, G = g22.
Theorem 7.3. Every manifold M admits a Riemannian metric.

Proof. Every vector bundle admits an inner product, using a partition of unity. Apply the result to TM .If F : M → N is a smooth map of manifolds, g a Riemannian metric on N , we can define
F ∗g(v, w) = g(dF (v ), dF (w))which is a symmetric bilinear form, which is nonnegative definite. If F is an immersion then F ∗g is a Riemannianmetric. For example, if M ⊆ N is a submanifold, we have a metric given by restriction.

Definition 7.4 (connection)A connection on a manifold M is a connection on TM → M .
Recall local coordinates x i on U ⊆ M gives us a trivialisation of TM , with

TM|U = TU ∼= U × span{ ∂
∂xi

}
The transition functions are determined by Jacobian matrices

ψii′ = ∂x i
∂x i′Note we use the convention ψ−1 = (ψi′i ). The coefficients Γijk of a connection on M are called Christoffel

symbols. The transformation law for the connection 1-forms Aij gives
Γijk = Γi′j ′k ′ψii′ψ

j ′
j
∂xk ′

∂xk + ψii′
∂ψi′j
∂xkThus for a connection on a manifold,

Γijk = Γi′j ′k ′
∂x i
∂x i′

∂x j ′

∂x j
∂xk ′

∂xk + ∂x i
∂x i′

∂2x i′
∂x j∂xkNow if Γ̃ijk = Γikjthen the Γ̃ have the correct transformation law, and so they give us a well defined connection.
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Definition 7.5 (torsion)Define the torsion of the connection as
T ijk = Γijk − Γikj ∈ Ω1

M (End(TM))
Formally, in local coordinates we should write

T ijkdxkwhich is a well defined 1-form. If X, Y ∈ V (M), then consider
T (X, Y ) = T ijkX jY k ∂

∂xi
∈ V (M)

By construction, T (X, Y ) = −T (Y , X ). Thus, we can also write
T ∈ Ω2

M (TM)
Definition 7.6 (symmetric)A connection A on M is symmetric , or torsion-free if T = 0. In local coordinates,

Γijk = Γikj
Denote the covariant derivative on M by D : V (M) = Ω0

M (RM) → Ω1
M (TM). If α ∈ Ω1(TM), X ∈ V (M),then α(X ) ∈ Ω0(TM) = V (M). We will write

DXY = (DY )(X )
and so we have a map DX : V (M) → V (M). In local coordinates,

(DXY )i ∂∂xi = (X j ∂Y i
∂x j − ΓijkY jX k

)
∂
∂xi

Proposition 7.7. A connection D is symmetric if and only if
DXY − DYX = [X, Y ]

for all vector fields X, Y .
Proof. Stare at the above line.

Theorem 7.8 (Levi-Civita connection). On each Riemannian manifold (M,g), there exists a unique con-nection D such that1. D is orthogonal, that is for all X, Y , Z ∈ V (M),
Zg(X, Y ) = g(DZX, Y ) + g(X,DZY )

2. D is symmetric.We call D the Levi-Civita connection of g.
Lecture 19Note that for a vector field X , we have a derivation DX , which is determined by the following properties:
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(a) DXY is linear in Y ,(b) DX (hY ) = (Xh)Y + hDXY ,(c) DfXY = fDXY ,
Proof. Step 1: Uniqueness. We will show that the Γijk are uniquely determined in each trivialisation. First,

D ∂
∂xi

= Γpik ∂
∂xp ⊗ dxk

We will write ∂i := ∂
∂x i . Using (i), set X = ∂i, Y = ∂j , Z = ∂k , we get

∂kgij = Γpikgpj + Γpjkgip (i)
We can apply a cyclic permutation of i, j , k to get

∂jgki = Γpkjgpi + Γpijgkp (ii)
∂jgjk = Γpjigpk + Γpkigjp (iii)

Let (giq) = (giq)−1 be the inverse matrix. Then for example,
Γpjkgpqgiq = Γpjkgpqδ ip = ΓijkNow consider (i) + (ii) − (iii). We get (using the fact that g and Γ) are symmetric,

∂kgij + ∂jgki − ∂igjk = 2Γpjkgpiand so Γijk = 12giq
(
∂gqj
∂xk + ∂gqk

∂x j −
∂gjk
∂xq

) (3)
Hence there is at most once choice of the Christoffel symbols, given by eq. (3). We can also write this in acoordinate-free manner, as

g(DXY , Z ) = 12 (Xg(Y , Z ) + Yg(Z, X ) − Zg(X, Y ) − g(Y , [X, Z ]) − g(Z, [Y , X ]) + g(X, [Z, Y ])) († )
Step 2: Existence. We will check properties (a), (b), (c) as above for DX , which is determined by († ). (a)is clear.For (c), let f ∈ C∞(M), then recall [fX , Z ] = (fX )Z − Z (fX ) = f [X, Z ] − (Zf )X . With this,

g(DfXY , Z ) = 12(fXg(Y , Z ) + Y (fg(Z, X )) − Z (fg(X, Y )) − fg(Y , [X, Z ]) + (Zf )g(X, Y )
− fg(Z, [Y , X ]) + (Y f )g(Z, X ) + fg(X, [Z, Y ]))= fg(DXY , Z )= g(fDXY , Z )

For (b), for h ∈ C∞(M),
g(DX (hY ), Z ) = 12(X (hg(Y , Z )) + (hY )g(Z, X ) − Z (hg(X, Y )) − hg(Y , [X, Z ]) − g(Z, [hY , X ]) + g(X, [Z, hY ]))

= 12((Xh)g(Y , Z ) + h(Xg(Y , Z ) + Yg(X, X ) − Zg(X, Y )) − (Zh)g(X, Y )
− h(g(Y , [X, Z ]) + g(Z, [X, Y ] − g(X, [Z, Y ]))) + (Xh)g(Z, Y ) + (Zh)h(X, Y ))= (Xh)g(Y , Z ) + hg(DXY , Z )

Hence we have that
g(DX (hY ), Z ) = g((Xh)Y + hDXY , Z )and so

DX (hY ) = (Xh)Y + hDXYHence D is a well defined covariant derivative, and so the Levi-Civita connection exists.
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7.1 GeodesicsLet γ = γ(t) : I → M be a smooth curve, I ⊆ R an interval. Let E → M be a vector bundle, with typical fibre
V and connection A = (Γijk ).

Definition 7.9 (lift)A curve γE : I → E is a lift of γ if π ◦ γE = γ .
If γ(t) = (xk (t)) in local coordinates, then

γE (t) = (xk (t), ai(t)) ∈ U × V = π−1(U)
Definition 7.10 (horizontal lift)A lift γE is horizontal if

γ̇E (t) ∈ SγE (t)for all t . That is, it is in the horizontal subspace of TγE (t)E with respect to A.
Equivalently,

θi(γ̇E (t)) = 0 for i = 1, . . . , m = rank(E )Moreover,
θi = dai + Γijkajdxkand so (dai + Γijkajdxk)(ẋℓ ∂

∂xℓ + ȧq ∂
∂aq

) = 0
Equivalently,

ȧi + Γijkaj ẋk = 0This gives a system of linear ODEs for a1, . . . , am. From ODE theory, this exists a unique solution on anyinterval I ⊆ R , given initial condition ai(0). Hence horizontal lift always exists, and is unique, once we fix theinitial condition γE (0) ∈ Eγ(0). Lecture 20If E = TM , then γ has a canonical lift given by aj (t) = ẋ j (t).
Definition 7.11 (geodesic)Let (M,g) be a Riemannian manifold, a curve γ : I → M is a geodesic if the canonical lift of γ is horizontalwith respect to the Levi-Civita connection.
In a local coordinate trivialisation, we have that

ẍ i + Γijk ẋ j ẋk = 0
This is a non-linear second order ODE for x(t) = (xk (t)), and so there exists ε > 0, such that there exists aunique solution for x(t) with |t| < ε, given initial conditions x(0) = p ∈ M , ẋ(0) = a ∈ TpM . Denote thisgeodesic as

γp(t, a)From standard ODE theory, the solutions are smooth with respect to the initial conditions, and so γ is a smoothfunction in (p, q) ∈ TM .
Proposition 7.12. Given any smooth curve γ on M , with γ̇(0) ̸= 0. Then there exists an open neighbour-hood U of γ(0), and a vector field X on U , such that X extends γ̇ . More precisely,

X (γ(t)) = γ̇(t)
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Moreover, for any such extensions Y , Z of γ̇ . For any connection D̂ on M , we have
D̂YY |γ(t) = D̂YZ|γ(t)D̂ZZ|γ(t)

Then the expression
D̂γ̇ γ̇|γ(t) = D̂YY |γ(t)is well defined.

Note that in local coordinates, if γ(t) = (xk (t)), then
D̂γ̇ γ̇ = ẍ i + Γ̂ijk ẋ j ẋk

Corollary 7.13. γ is a geodesic curve if and only if Dγ̇ γ̇ = 0, where D is the Levi-Civita connection.
Proof of proposition 7.12. Since γ̇(0) ̸= 0, without loss of generality ẋ1(0) ̸= 0. So there exists a smooth localinverse t = t(x1) for ∣∣x1∣∣ < δ where δ > 0. With this, we get that

x i = x i(x1) for i = 2, . . . , m
Set X (x1, x2, . . . , xn) = γ̇(t(x1)). Recall that

D̂ZY = (Z ℓ∂ℓY i + Γ̂ijkY jZ k) ∂i
Let p = γ(t0) = (x i(t0)), Y (p) = Z (p) = γ(t0). Clearly the second term only depends on the point p. For thefirst term, (Z ℓ∂ℓY i)|p = (ẋℓ∂ℓY i)|p = ddt

∣∣∣∣
t=t0Y

i(γ(t)) = ddt
∣∣∣∣
t=t0 ẋ

i(t) = ẍ i(t0)
With this, (D̂ZY )(p) = (ẍ(t0) + Γ̂ijk ẋ j (t0)ẋk (t0))∂i = D̂γγ|γ(t0)

Proposition 7.14. Suppose γ is a geodesic, then |γ̇(t)|g = const for all t (assuming the domain of γ isconnected).
Proof. For any p = γ(t), there exists an extension X of γ̇ in a neighbourhood U of p. We can write

γ̇ · g(γ̇, γ̇) = X · g(γ̇, γ̇)= g(Dγ̇ γ̇, γ̇) + g(γ̇, Dγ̇ γ̇)= 0
as γ is a geodesic. But the first term is

x i ∂∂x i
(g(γ̇, γ̇)) = ddt |γ̇(t)|2gby the chain rule. Hence |γ̇|g is constant.

Example 7.15Consider Rn with the standard Euclidean metric gij = δij . This means that Γijk = 0, and so the geodesicequation becomes
ẍ i ≡ 0and so ẋ i is constant. That is, γp(t, a) = p+ at is a straight line.
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Example 7.16If we consider Sn with the round metric, given by the embedding Sn ↪→ Rn+1. For p ∈ Sn a unit vectorin Rn+1, then we have a natural identification
TpSn = span{p}⊥

Choose a ∈ TpSn. Then consider the plane
P = span{p, a}

Consider reflection T in the plane P. This induces a diffeomorphism on Sn and preserves the metric (i.e. itis an isometry). Then T preserves the Γijk , and by construction it fixes p and a ∈ TpM . Thus it preservesall of the data defining γp(t, a). By uniqueness, we must have that T (γp(t, a)) = γp(t, a). Hence γp(t, a)must lie in P ∩ Sn. That is, it is a great circle on Sn.
Example 7.17Now consider geodesics on parametrised surfaces Σ ⊆ R3. Suppose we have a regular parametrisation
r(u, v ). Then g is the first fundamental form, with coefficients E, F,G . Then Γijk can be computed fromthe Gauss-Weingarten formulae. See examples sheet 3 question 10.
Let (M,g) be a Riemannian manifold, and fix p ∈ M . Consider γ(t, a) = γp(t, a). Let λinR. Then

ddt γ(λt, a) = λγ̇(λt, a)
and d2dt2 γ(λt, a) = λ2γ̈(λt, a)
From this, we see that γ(λt, a) is also a solution to the geodesic equations. With this, we have that

γ(λt, a) = γ(t, λa)
Remark 7.18. For all a ∈ TpM , we can find ε = εa > 0 such that for any |a| < εa ,

γ(s, a) = γ(1, sa)
But the map a 7→ εa can be chosen to be continuous, and so by compactness of the unit sphere in Rn , there exists
ε > 0 such that for all |a|g < ε, γ(1, a) is defined.

Lecture 21
Definition 7.19 (exponential map)Let (M,g) be a Riemannian manifold. The the exponential map at p is the map

expp : TpM → Mexpp(a) = γp(1, a)
Note that expp(a) is well defined for (and potentially only for ) a ∈ TpM with |a|g < ε. In this case, exppis smooth by standard ODE theory.
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Proposition 7.20. (d expp)0 = idTpM
Note here we identify T0TpM with TpM . Intuitively, consider the Taylor expansion.
Proof. Clearly expp(0) = p. When |a|g < ε, exp(a) is well defined, and we have that

γp(t, a) = γp(1, ta)
for |t| ≤ 1. Then

(d expp)0(a) = ddt
∣∣∣∣
t=0 expp(ta)

= ddt
∣∣∣∣
t=0γp(1, ta)

= ddt
∣∣∣∣
t=0γp(t, a)

= γ̇p(0, a)= a

Corollary 7.21. For some r0 > 0, the exponential map
expp : Bg(0, r0) → U

is a diffeomorphism onto its image U , a neighbourhood of p. In this case, Bg(0, r0) is the radius r0 openball with respect to the Riemannian metric g.
Proof. Inverse function theorem.Using this, (expp)−1 defines a chart around p. The respeective local coordinates are called the geodesic
(normal) coordinates. In these local coordinates,

exp−1
p (γp(t, a)) = ta (4)

and so the geodesics through p are represented by straight lines through 0. We call these radial geodesics.On Bg(0, ε), we have polar coordinates, given by
(0, ε) × Sn−1 → Bg(0, ε)(r, x) = rx

Using this, we obtain a local parametrisation given by
f (r, x) = exp(rx)

which is the geodesic polar coordinates. For r fixed, define the geodesic sphere

Σr = f ({r} × Sn−1) ⊆ M

Lemma 7.22 (Gauss). γp(t, a) meets Σr orthogonally for every r < ε, a ∈ TpM . Thus, locally
g = dr2 + h(r, v )

where h(r, v ) = g|Σr .
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Proof. Choose a vector field X ∈ V (Sn−1), where S [n − 1] will be the unit sphere in TpM with respect theinner product induced by g. Then extend X to a vector field X on B∗
g(0, 1)3, by choosing X to be independentof the radius.Let X̃ (r, v ) = rX (v ). This is still defined on B∗

g(0, 1). Let
Y (f (r, v )) = (d expp)rv X̃ (r, v )then Y is a vector field on a punctured neighourhood U of p.First, consider the vector field ∂

∂r . In this case,
∂
∂r = 1

|a|g
γ̇p(t, a)

from eq. (4). Now consider γ̇p(t, a), for |a|g = 1 varying over Sn−1 ⊆ TpM , with |t| < ε. This defines a vectorfield on U . Also, ddt g
(
∂
∂r ,

∂
∂t

) = ddt g(γ̇, γ̇) = 0
and so taking the limit t → 0 we see that

g
(
∂
∂r ,

∂
∂r

) = 1
Thus, it remains to show that

g
(
Y , ∂∂r

) = 0
First, consider

Dγ̇Y − DY γ̇ = (df ) (D ∂
∂r
X̃ − DX̃

∂
∂r

)
= (df ) ∂∂r X̃
= (df ) X̃r= (df )YrWith this,

∂
∂r g

(
Y , ∂∂r

) = g
(
Dγ̇Y , γ̇

) + g(Y ,Dγ̇ γ̇)︸ ︷︷ ︸=0 as γ geodesic
= g

(
Dγ̇ γ̇ + Y

r , γ̇
)

= 1
r g(Y , γ̇)as

g(Dγ̇ γ̇, γ̇) = 12Yg(γ̇, γ̇) = 0If we set G = g(Y , ∂∂r ), then ddr G = G
r

G is linear in r , and taking the limit as r → 0, we get
lim
r↓0 ddr G = lim

r↓0 g
(
X, ∂∂r

) = 0
since lim

v→0(d expp)v = idwhich is an isometry.3Punctured unit ball
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7.2 Curvature

Definition 7.23 (Riemann cuvrature)The (full) Riemann curvature of a metric g on a manifold M is R = R (g), which is the curvature of theLevi-Civita connection on M .
In particular,

R ∈ Ω2
M (End(TM))we take the sign convention that

R (g) = −D ◦ DThen in local coordinates
R = 12R i

j,kℓdxk ∧ dxℓ
We call R i

j,kℓ the Riemann cuvrature tensor .For example, if X, Y ∈ V (M), we obtain R (X, Y ) ∈ Γ(End(TM)). Locally, if X = X k∂k , Y = Y ℓ∂ℓ , then
R (X, Y ) = (R i

j,kℓX kY ℓ
)i
jSet

Rkℓ = R (∂k , ∂ℓ ) ∈ End(TpM)Then
R (X, Y ) = X kY ℓRkℓIn a local coordinate and trivialising neighbourhood, D = d + A, where A = Akdxk . Write
Dk = D∂k = ∂k + AkThen for any vector field Z ∈ V (M), (−D ◦ D)Z = RZ = (Rkℓdxk ∧ dxℓ )ZBut

RkℓZ = DℓDkZ − DkDℓZThus,
Rkℓ = −[Dk , Dℓ ]With this,

R i
j,kℓ = ((DℓDk −DkDℓ )∂j)iWrite DX = X kDk , then

−[DX , DY ] = −[X kDk , Y ℓDℓ ]= −X k (∂kY ℓ )Dℓ − X kY ℓDkDℓ + Y k (∂kX ℓ )Dℓ + Y kX ℓDℓDk= X kY ℓRkℓ − [X, Y ]ℓDℓWith this, we have shown
Lemma 7.24.

R (X, Y ) = D[X,Y ] − [DX , DY ]
Lecture 22Sometimes it is convenient to consider

Rij,kℓ = giqR i
j,kℓIn a coordinate free fashion, (X, Y , Z , T ) 7→ g(R (X, Y )Z, T )where X, Y , Z , T ∈ TpM . Thus,

Rij,kℓ = g
(
Rkℓ∂j , ∂i

)
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Proposition 7.25 (symmetries of the curvature tensor). We have(i) Rij,ℓk = −Rij,kℓ = Rji,kℓ ,(ii) (first Bianchi identity) R i
j,kℓ + R i

k,ℓj + R i
ℓ,jk = 0,(iii) Rij,kℓ = Rkℓ,ij

Proof. For (i), the first equality holds by properties of 2-forms. For the second equality, consider
∂gij
∂xk

= g(Dk∂i, ∂j ) + g(∂i, Dk∂j )
∂2gij
∂xℓ∂xk = g(DℓDk∂i, ∂j ) + g(Dk∂i, Dℓ∂j ) + g(Dℓ∂i, Dk∂j ) + g(∂i, DℓDk∂j )

But we know that gij is smooth, and so the partial derivatives commute. Hence
0 = ∂2gij

∂xℓ∂xk −
∂2gij
∂xk∂xℓ= g([Dℓ , Dk ]∂i, ∂j ) + g(∂i, [Dℓ , Dk ]∂j )= g(Rkℓ∂i, ∂j ) + g(∂i, Rjk∂j )= Rji,kℓ + Rij,kℓas required.For (ii), consider

R i
j,kℓ + R i

k,ℓj + R i
ℓ,jk = (DℓDk∂j −DkDℓ∂j + DjDℓ∂k −DℓDk∂k + DkDj∂ℓ −DjDk∂ℓ

)i
We claim that (DℓDk∂j )i = (DℓDj∂k )iThis follows by (i). A similar computation for the other terms shows that the sum is zero. Note we also use that

(Dk∂j )q = Γqjk = Γqkj = (Dj∂k )qFor (iii), first note that using the metric, we have that
Rij,kℓ + Rik,ℓj + Riℓ,jk = 0

See online notes for octahedron trick.
Corollary 7.26.

Rij,kℓ + Rik,ℓj + Riℓ,jk = 0
Corollary 7.27. At each p ∈ M , (Rij,kℓ ) defines a symmetric bilinear form on Λ2TpM .
It is useful to extract from (R i

j,kℓ ) simpler objects, with less components.
Definition 7.28 (Ricci curvature)The Ricci curvature of a metric g is

Ricp : TpM × TpM → RRicp(X, Y ) = tr(v 7→ R (X, v )Y )
for X, Y , v ∈ TpM .
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In local coordinates, Ric = (Ricij ), then
Ric(X, Y ) = Ricij X iY j

In terms of the full Riemann curvature tensor,
Ricij = Rq

i,jq = gpqRpi,jq

Using the last expression, we see that Ricp is a symmetric bilinear form on TpM .
Definition 7.29 (scalar curvature)The scalar curvature of a metric g is s = scal(g) ∈ C∞(M), it is the trace of Ric with respect to the metric
g.
Explicitly, if gij = δij , then

s =∑
i

Ricii
In general,

s = gij Ricij = gijgpqRpi,jq = gjkR ℓ
j,kℓ

Lemma 7.30 (from representation theory). Consider the “space of curvature tensors” (Rij,kℓ ), i.e. tensorssatisfying the symmetries of the Riemann curvature tensor. This space decomposes when dim(M) ≥ 5 intoirreducible representations of SO(n). Recall we have that at each p ∈ M , R ∈ Sym2(Λ2(T ∗
pM)). Applytrace as in the definition on scalar curvature, we get

Sym2(Λ2T∗
pM) Sym2(T∗

pM) RTr tr
where Ric = Tr(R ), scal = tr(Ric). Then

Sym2(Λ2T∗
pM) = ker(Tr) ⊕ ker(tr) ⊕ R

as irreducible representations.
Proof. Omitted. Lecture 23Note that we have that g,Ric(g) ∈ Γ(Sym2 T∗M), and so the equation

Ric(g) = λg

makes sense. If the equation holds, then Ric0 = ker(tr) = 0In this case, (M,g) is called an Einstein manifold . If λ = 0, then Ric(g) = 0 and we call (M,g) Ricci-flat .Next, we can consider the scalar curvature in low dimension.• In dimension 2, consider an embedded surface in R3. The Riemannian metric corresponds to the firstfundamental form. Recall
s = gijgpqRpi,jqThen 12s = R12,21

EG − F 2If we write the second fundamental form as
Ldu2 +Mdudv +Ndv2
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where L = ⟨ruu, n⟩, n is the unit normal. Recall that the Gaussian curvature
K = LN −M2

EG − F 2
only depends on E, F,G and their first derivatives, by the Theorema Egregium. In fact,

LN −M2 = R12,21and so
s = 2K

• in dimension 3, R (g) is determined by Ric(g). That is, the map Tr is a linear isomorphism. See examplessheet 4 question 6.• in dimension 4, consider the Weyl curvature

W (g) = ker(Tr) = W+ ⊕W−This can be related to examples sheet 4 question 8, for example by splitting into self-dual and anti-self-dual parts.
7.3 The Laplace-Beltrami operatorThroughout, assume (M,g) is an oriented Riemannian manifold, dim(M) = n, and suppose ε ∈ Ωn(M) is anorientation form.For all x ∈ M , apply Gram-Schmidt to the { ∂

∂xi } to obtain on any open neighbourhood of x , a localorthonormal frame field e1, . . . , en. We can assume this is positively oriented, that is,
ε(e1, . . . , en) > 0

Let ω1, . . . , ωn be the corresponding dual coframe field. That is, each ωi ∈ Ω1(U), and ωi(ej ) = δij . In thiscase,
ω1 ∧ · · · ∧ ωn = a(x)εwhere a(x) > 0. With respect to the inner product on the dual space, the ωi form an orthonormal basis as well.We can extend this to a unique inner product on ΛpT ∗

xM , by setting{
ωi1 ∧ · · · ωip | i1 < · · · < ip

}
to be an orthonormal basis. In this case,〈

α1 ∧ · · · ∧ αp, β1 ∧ · · · ∧ βp
〉 = det(〈αi, βj〉)if αi, βi are one-forms.Suppose ω′

i is another positively oriented orthonormal coframe field. Then
ω′1 ∧ · · · ∧ ω′

n = det(Φ) · ω1 ∧ · · · ∧ ωnwhere Φ is the change of basis matrix. Since Φ is orthogonal, and has positive determinant, det(Φ) = 1. Inparticular, the local n-forms
ω1 ∧ · · · ∧ ωnpatch together over (M,g) to a well defined non-vanishing n-form ωg. We call this the volume form of (M,g).

Definition 7.31 (Hodge star)The Hodge star on M is the linear map
∗ : ΛpT∗

xM → Λn−pT∗
xMsuch that

α ∧ ∗β = ⟨α, β⟩ ωg
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For uniqueness, the Hodge star is defined by its action on a basis. For example
∗(ω1 ∧ · · · ∧ ωp) = ωp+1 ∧ · · · ∧ ωn

using orthogonality. For example, ∗1 = ωg and ∗ωg = 1. A computation shows that
Lemma 7.32.

∗2 = (−1)p(n−p) idΛpT∗
xM

Definition 7.33 (codifferential)Define the codifferential
δ = (−1)n(p+1)+1 ∗ d∗ : Ωp(M) → Ωp−1(M)for p > 0. We define δ on 0-forms to be zero.

Definition 7.34 (Laplace-Beltrami)The Laplace-Beltrami operator is
∆ = δd + dδ : Ωp(M) → Ωp(M)

Proposition 7.35. ∫
M

⟨dα, β⟩g ωg = ∫
M

⟨α, δβ⟩g ωg

for all α ∈ Ωp−1(M), β ∈ Ωp(M) compactly supported.
Proof. By Stokes, ∫

M
d(α ∧ ∗β) = 0

But d(α ∧ ∗β) = (dα) ∧ ∗β + (−1)p−1α ∧ d(∗β)Now note that
− ∗ δβ = (−1)n(p+1) ∗ ∗ d(∗β) = (−1)n(p−1)+(n−p+1)(p−1) d(∗β) = (−1)p−1 d(∗β)

With this, we see that d(α ∧ ∗β) = ⟨dα, β⟩ ωg − ⟨α, δβ⟩ ωg

Remark 7.36. Define the L2 inner product of p-forms as
⟨⟨ξ, η⟩⟩M,g = ∫

M
⟨ξ, η⟩g ωg

and so we have that
⟨⟨dα, β⟩⟩M,g = ⟨⟨α, δβ⟩⟩M,gSo δ is the formal L2-adjoint of d.
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Corollary 7.37. ∆∗ = ∆ is formally self-adjoint.
Lecture 24

Definition 7.38 (harmonic)Define
Hp(M) = ker(∆ : Ωp(M) → Ωp(M))for the space of harmonic p-forms.

Remark 7.39. ∗∆ = ∆∗, and so the Hodge star is a well defined map
∗ : Hp(M) → Hn−p(M)

Proposition 7.40. Suppose M is compact. Then for α ∈ Ωp(M), ∆α = 0 if and only if dα = 0 and
δα = 0.

Proof. The ‘if’ direction is obvious. Now suppose ∆α = 0, then0 = ⟨⟨∆α, α⟩⟩ = ⟨⟨dδα + δdα, α⟩⟩ = ∥∥δα∥∥2 + ∥∥dα∥∥2
and so δα = 0 and dα = 0.

Corollary 7.41. Let f ∈ C∞(M), M compact and connected. If f is harmonic then f is constant.
Note thet the result is false if M is not compact, for example ex cos(y) on R2.

Theorem 7.42 (Hodge decomposition). Let M be a compact, oriented, Riemannian manifold, 0 ≤ p ≤dim(M), and we have that1. Hp is a finite dimensional vector space,2. we have the L2-orthogonal decompositions
Ωp(M) = Hp(M) ⊕ ∆Ωp(M)= Hp(M) ⊕ dδΩp(M) ⊕ δdΩp(M)= Hp(M) ⊕ dΩp−1(M) ⊕ δΩp+1(M)

Corollary 7.43. Let M be as in the Hodge decomposition. Then for all a ∈ HpdR(M) there exists a unique
α ∈ Hp(M) such that [α ] = a.

Proof. First we show uniqueness. If we have α1, α2 ∈ Hp, with α1 = α2 + dβ . With this,∥∥dβ∥∥2 = ⟨⟨α1 − α2, dβ⟩⟩ = ⟨⟨δα1 − δα2, β⟩⟩ = 0and so β = 0.For existence, given a class a, it will be represented by a closed form α̃ . Now
α̃ = α + dβ + δγby the Hodge decomposition, with α harmonic. Thus, we must have that dδγ = 0. Now0 = ⟨⟨dδγ, γ⟩⟩ = ∥∥δγ∥∥and so [α̃ ] = [α ].
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Corollary 7.44. We have a linear isomorphism of vector spaces
Hp(M) → HpdR(M)

α 7→ [α ]
The proof of the Hodge decomposition is quite involved. We will however make some remarks about theproof.The main argument concerns Ωp(M) = Hp(M)⊕∆Ωp(M). We can think of this as the existence of a solution

∆ω = α (5)
for some fixed α ∈ Ωp. If ω is a solution, then

⟨⟨∆ω, φ⟩⟩ = ⟨⟨α, φ⟩⟩

for all φ ∈ Ωp. Define
ℓ : Ωp(M) → R

ℓω(β) = ⟨⟨ω, β⟩⟩

ℓ defines a bounded linear map, since by Cauchy-Schwarz
|ℓω(β)| ≤ ∥ω∥∥∥β∥∥

Moreover,
ℓω(∆φ) = ⟨⟨ω,∆φ⟩⟩ = ⟨⟨∆ω, φ⟩⟩ = ⟨⟨α, β⟩⟩Thus, we define a weak solution of eq. (5) is a bounded linear map ℓ : Ωp(M) → R with

ℓ(∆φ) = ⟨⟨α, φ⟩⟩

for all φ ∈ Ωp. For this, we will require
Theorem 7.45 (elliptic regularity). Every weak solution of eq. (5) is of the form

ℓ(β) = ⟨⟨ω, β⟩⟩

for some ω ∈ Ωp. That is, every weak solution comes from a weak solution.
Theorem 7.46 (compactness). If a sequence αn ∈ Ωp(M) is such that ∥∥αn∥∥,∥∥∆αn∥∥ are bounded, then αncontains a Cauchy subsequence.
The fact that the space of harmonic forms is finite dimensional follows. If not, then it would contradictcompactness.We can write Ωp = Hp ⊕ (Hp)⊥where (Hp)⊥ is a closed subspace. By self-adjointness, ∆Ωp ⊆ (Hp)⊥. Thus, it suffices to show that eq. (5) hasa weak solution when α ⊥ Hp.For η ∈ Ω, put

ℓ(∆η) = ⟨⟨α, η⟩⟩We can show that ℓ extends from ∆Ωp to a bounded linear functional on p-forms, using Hahn-Banach.
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