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1 Manifolds

The concept of a manifold is intended to generalise curves and surfaces in R>.

Definition 1.1 (smooth structure)

A smooth structure on a topological space M is a collection of charts (an atlas)
Qo Uy — Vg

where U, C M, V, CR? are open, ¢q is a homeomorphism, such that

1. M=, Us That is, the charts cover M.

*Based on lectures by Alexei Kovalev. Last updated November 28, 2023.
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2. Given any charts ¢q, @g, the map
Pp © 97" Pa(Us N Ug) = @p(Ua N Up)
is a smooth map between open subsets of R?.

3. If ¢ is compatible (as in the previous point) with every chart in the atlas, then ¢ is a chart in the
atlas.

In practice (i.e. using Zorn's lemma), given any collection of charts satisfying the first two conditions, we
can find a maximal atlas containing it.

Remark 1.2. 1. The second condition implies that ¢z o @, is a diffeomorphism.

2. d is fixed, assuming that M is connected.

Definition 1.3 (manifold)

A (smooth) manifold M is a second countable Huasdorff space topological space, equipped with a smooth

structure.
d = dim(M) is the dimension of M.

In practice, we may induce a topology on M from a smooth structure (without the mention of open or
homeomorphism), then D C M is open if for any chart @4, @q(D N U,) is an open subseteq of RY.

Remark 1.4. 1. We can also define a C* manifold by replacing smooth with C* as above. If k = 0, then we have
a topological manifold.

2. On the other hand, we can replace R with C”, and obtain a complex manifold.

R is (trivially) a manifold.

Example 1.5 (unit sphere)
Define

p(x) = T—x CT— Xn) for xg #+ 1
and 1
Y(x) = T+ (x1, ..., Xn) for xo # —1
In particular,
oy )=

Example 1.6

If M, N are manifolds of dimensions d, e respectively, then M x N is a manifold of dimension d + e.

As a corollary, 7" = (S")" is a manifold.

Example 1.7
If M is a manifold, X C M is open, then X is a manifold.

Lecture 2



A convention, we will will assume for any manifold M, we will assume all components are of the same
dimension. In particular, dim(M) is well defined.

Notation 1.8. We will write M? to say M is a manifold of dimension d.

Example 1.9 (real projective space)

The real projective space is
RP" = {straight lines in R"*" through 0}

Points in RP" can be written using homogeneous coordinates (xo : - - - : x,), where the x; are not all zero,
and
(o ixp)=(Ax0 11 Axyp)

for all A # 0. We will induce a topology from a smooth structure. The charts are given by (¢;, U;) where

U[ = {X[ % O}
and we define
X0 Xi—1 Xi41 Xn
i n) = | —-oh T Ty = R"
¥ (XO * ) ( Xi Xi Xi Xi )
For i <,
1
e ~71( 0= ml) = ( g =00 Un)
piop (y Yn) n 5 U

where the 1 is in the i-th position, and we omit the j-th position. Thus, RP” is an n-dimensional manifold.
Similarly, we can define the complex projective space CP”, which is a 2n-manifold (and a n-dimensional
complex manifold).

Example 1.10 (Grassmannian)

Gr(k, n) = {k-dimensional subspaces of R"}

Then Gr(k, n) is a manifold of dimension k(n — k). Note we can also define the Grassmannian over C.

Sketch proof. An example of a coordinate neighbourhood is
U= {k—dlmensional subspaces obtainable as the span of rows of k x n matrices of the form (/k *)}

where I is the k x k identity matrix. In this case, the k x (n — k) block * defines local coordinates. Choosing
different columns, we have (Z) neighbourhoods, U;,, i, where i1 < iy < -+ < . O

In particular, note that RP" = Gr(1, n + 1).

Example 1.11 (Non-example)
Consider an equivalence relation on R? given by

1
~ | Ax =
(x.u) ( X, Ay)
for any A # 0. Let X = R?/ ~ for the quotient, with the quotient topology. We can consider

{x.y) | xy = c}
If ¢ # 0, then this is one equivalence class. If ¢ = 0, this splits into three, which are

e {(0.0)},




e {(x,0) | x +# 0},
e {(0,y) |y +0}

We can write
X = (—00,0) U (0, 0) U {O’, 0", O’”}

We have three charts ¢; corresponding to each choice of zero. For example,
Ui = (—o0,0) U {0’} U (0, c0)

with the “natural” map ¢j. On the other hand, the induced topology is not Hausdorff. Note the induced
topology is not the quotient topology.

Refer to Examples Sheet 1 Question 12 for an example of a non-second countable (non-)example.

Definition 1.12 (smooth map)

Let M, N be manifolds, a continuous map f : M — N is smooth if for any p € M, we can find charts
(¢, U) near p, (Y, V) near f(p), and the composition

(,[Jofog(f1

is smooth. as a map on
p(UNF(V)

Definition 1.13 (diffeomorphism)

A smooth map f : M — N is a diffeomorphism if f is a bijection, and f~' is smooth. In this case, we say
that M, N are diffeomorphic.

Proposition 1.14. 1. 1f U CR” then f: U — R is smooth in the above definition if and only if it is
smooth in the sense of multi-variate calculus.

2. Every chart ¢ : U — @(U) C R? is a smooth map of manifolds. Moreover, it is a diffeomorphism.

3. ff:M—N,g: N — P are smooth, then gof : M — P is smooth.

Proof. Obvious, and so omitted. O

1.1 Matrix Lie groups
Consider the group GL(n,R) C R™. In fact, this is an open subset, and so it is a manifold. Moreover, matrix

multiplication and inversion are smooth.

Definition 1.15 (Lie group)
A group G is called a Lie group if

e ( is a manifold,
o the multiplication map G x G — G is smooth,

e inversion G — G is smooth.

Remark 1.16. Suffices to show that the map

GxG3(o,1)—ot ' €G




| is smooth.

In particular, GL(n,R is a Lie group. Similarly, GL(n, C) is also a Lie group. More generally, for A =
(aij) € Mat,(C), we define the norm HAH = nmax; |i, j|. (Note in finite dimensional, all norms are equivalent).
In particular,

1ABI| < [[Alll|Bl]

We define the exponential of A as
Ak
exp(A) = 3

This series converges for all A, by the same proof as for exp : C — C (or more generally, any Banach algebra).
Moreover, it converges uniformly on balls

{[lAll < R}
by the Weierstrass M-test. In particular, exp : Mat,(C) — Mat,(C) is continuous.

First of all, note that
f(A) = A"
is a differentiable function, with

(6l < nja

Therefore, the series which we get by differentiating term by term, converges uniformly on any bounded set,
again by the Weierstrass M-test.

Therefore, exp(A) is (at least) C' on Mat,(C). We can similarly consider the higher derivatives, and we find
that exp(A) is C™.

Remark 1.17. Some basic properties of the matrix exponential:
1. exp(AT) = exp(A)',
2. exp(A*) = exp(A*),
3. exp(CACT") = Cexp(A)C",

In general,
exp(A + B) = exp(A) exp(B)

does not hold. However, it does hold if AB = BA. In particular,
4. exp(A) exp(—A) = exp(—A) exp(A) = |

We can also define the matrix logarithm via the series

Am

L [+ A) = -1 m+17

og(/ + A %;(> po
We can show that this converges absolutely and uniformly on {|A| < €} for any 0 < € < 1. The same result
holds for the term by term differentiation, and again we get that log(/ + A) is C* on {|A| < 1}

Suppose log(A) is defined, that is, |[A — /| < 1, then
expl(log(A)) — A

since the same proof as in C works for any Banach algebra.
On the other hand, if we would like
log(exp(A)) = A

we clearly need |exp(A) — /] < 1. Suppose

0 -0
v=fo )

for some 6 € R. In particular,
Aj = —0°1
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and we find that (6) in(0)
cos —swn
exp(As) = (s'm(@) cos(6) )

Setting 8 = 27, then we find that exp(Az;) = /, but
log(exp(Azx)) = log(/) = 0 # Azr

Hence |exp(A) — /| < 1 is a necessary, but not sufficient. On the other hand, |A] < log(2) is sufficient, since in
this case,
’e‘Al — 1’ <1

which is required for absolute convergence.

Example 1.18 (orthogonal group)

Consider
O(n) = {A€ GL(n,R) | AAT = ATA= [}

We will show that O(n) is a Lie group. Let A be an orthogonal matrix, |A — /| < € < 1, then B = log(A) is
defined. Moreover, exp(B) = A. By continuity, we can take € small enough such that |B| < log(2). Now

exp(B)exp(B') = AAT = id

and so |
exp(B) =A=(A") " =exp(B") =exp(—B")

Taking log, since |B| = |B'| < log(2), we see that B = —B'.
Conversely, if B is skew-symmetric, with |B| < log(2), then

exp(B)exp(B') =/

Define
Vo = {B € Mat,(R) | |B| < log(2), B + B =0}

and define
U = exp(W)

which is an open neighbourhood of / € O(n).

Proposition 1.19. O(n) has a C* structure, making it into a manifold and a Lie group, with dimension
nin—1)/2.

Proof. We will use the subspace topology induced from O(n) C R"™. Define

h:U— Vo
h(A) = log(A)

This is a homeomorphism onto its image, which is an open neighbourhood of 0 € so(n) = R""=1/2,
Given C € O(n), define
Uc = [CA| A€ U}

and

hC . UC — Vo
he(A) = log(C™'A)

Again, this is a homeomorphism onto its image. Since C € Uc, we have an open cover. Moreover,

he, o hg!(B) = he,(Crexp(B)) = log(C; ' G, exp(B)




which is a smooth map between open neighbourhoods of so(n). Therefore, O(n) is a smooth manifold.
Similarly, for consider the map
F(A1, Ay) = A1A

In local coordinates,
Foc(B1, B2) = he, e (F (g (Br). h) (B))
=log((GIG ) Crexp(Bi)(Crexp(B2) )
= log(CZ exp(By) exp(fBz)Cf)

and we can see that this is a smooth map as a function of By, 5,. ]

This method works for more groups, and is sometimes called the Cayley construction (for matrix Lie groups).

2 Tangent spaces to manifolds

Consider a local curve in a ball in R”, defined by a smooth parametrisation x(t) = (x1(¢), ..., Xn(t)). Suppose
we have that x(0) = p € R". In this case, its tangent vector at p is
x(0) e R”

If y(x) is a smooth change of coordinates near p, then by the chain rule, we have

d

P [:Oy(X(f)) = J(y)px(0)

where J(y) is the Jacobian matrix. More explicitly,

Definition 2.1 (tangent vector)

A tangent vector a to a manifold M" at a point p € M, is an assignment to each coordinate chart (U, ¢)
with p € U, an n-tuple of coordinates (a1, ..., a,) € R", such that if (U, ¢') is another chart near p,
(x:), (x{) the respective local coordinates,

This definition is called the tensorial definition, where we focus on the transformation law. There are several
other definitions, for example, derivations, equivalence of curves to first order and so on.

Definition 2.2 (tangent space)

The tangent space to M at a point p, denoted T,M is the space of all tangent vectors to M at p. It is
naturally a vector space (of dimension n over R).

Lecture 4
A choice of chart (with local coordinates (x;) say), determines a linear isomorphism
oM —R"
where n = dim(M). We denote by a%' the basis corrsponding to the usual standard basis of R”, under this

linear isomorphism.
If we want to emphasise the point p € M, we may write

9| 42
le- p aX,‘
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Then by the usual linear algebra, we have that
0 ) Z (0X,‘) ( 9 )
(6)(1 ) - 0x; » ax; ,

An alternative view on tangent vectors is as derivations. Given

0
G:Za,-a—xiETp/\/I

we can define a first-order derivation at p,
where

in local coordinates. This definition is independent of the choice of local coordinates. We can define this in a
coordinate independent way, by defining

d

alf) =+ 70f(X(f))

where x is a local curve on M, with X(0) = a. Moreover, every derivation satisfies the Leibniz rule
a(fg) =1 -alg) +a(f)- g
Conversely, every linear map a : C*(M) — R satisfying the Leibniz rule above arises as a derivation corre-

sponding to a tangent vector.

Example 2.3

Let r:R2, D D — S C R’ be a regular parametrisation for a surface S. Then ¢ = r~' defines a chart.
The partial derivatives r,, r, correspond to

respectively.

For a Lie group G, the tangent spaces has an ‘“infinitessimal counterpart” of the group structure.

Definition 2.4 (Lie algebra)

A Lie algebra is a vector space g, wiht a bilinear map
[ ]rgxg—g
called the Lie bracket, with
e anticommutativity [x, y] = [—y, x|,

e the Jacobi idenity
[y 2]+ [y [z 4+ [2.[x, y} = O

Theorem 2.5. Let G C GL(n, F) be a matrix Lie group (where F = R or C), such that log defines a chart
near / € G. Let
g=T1G

is identified with a (real) subspace of Mat,(F). Then g is a Lie algebra, with

[x, y] = xy — yx




We call g the Lie algebra of G. We may also write

g = Lie(G)

Proof. Clearly g is a vector space, and [-, -] is anticommutative and satisfies the Jacobt identity. Therefore, all
we need to show is that if x, y € g, then so s [x, y].
For By, B> € g, consider

A(t) = exp(Bit) exp(Byt) exp(—Bit) exp(—Bat)

This defines a smooth path in G, with A(0) = /. Recall
exp(Bt) = | + Bt + %thz + o(t?)

as t — 0. We obtain that
At) = | +[By, Bo)t? + o(t?)

Letting B(t) = log(A(t)), for small t, we have that B(t) = [By, By]t> + o(t?). But we also have that
exp(A(1)) = B(1)

Moreover, by definition, B(t) € g for ¢ small, as B(t) is in the image of the logarithm chart. So

as g is a vector space. So

since g < Mat,(F) is closed. O

If we take G = O(n), then we have that
g=o(n) ={A e Mat,(R) | A" + A= 0}

is the space of skew-symmetric matrices.

Definition 2.6
Let M be a manifold. Then the tangent bundle of M is

™ = U T,M
peM

Theorem 2.7. TM has a smooth structure, making it into a manifold of dimension 2 dim(M).

Proof. The topology on TM will be induced from the smooth structure. Let (¢, U) be a chart on M. Say the
local coordinates corresponding to ¢ are xi, ..., Xp. S0 we can write a € T,M as

5 0
laX[
Define

Ur = L| T,M
pelU

er(p, a) = (¢(p). (a:)



It is clear that the sets of the form Ut cover, so all we need to check is that the change of coordinate maps are
smooth. Let (¢, V) be another chart on M, with local coordinates y;. Then

Yo '(x.a) =y, b)

and it is easy to see that y = ¢y o ¢~ '(x), and

Hausdorff and second countable follow from the fact that M and R” are. O

We will use the notation 7 : TM — M for the canonical projection map

7i(p,a) =p

Proposition 2.8. The map 7 : TM — M is smooth.

Proof. In local coordinates given by ¢ and @7, we have

7(x, a) = x

Remark 2.9. In general, the tangent bundle TM need not be diffeomorphic to M x R”.

Definition 2.10 ((smooth) vector field)

A (smooth) vector field X on a manifold M is a smooth map X : M — TM, such that 7(X(p)) = p. That
is, X(p) € T,M.

Example 2.11

X = 0 is a vector field. Similarly, X supported on a coordinate neighbourhood is a well defined vector
field.

X is C* if and only if for each coordinate neighbourhood U, with local coordinates x;, we have
0
X = (p)—
Z ailp) 5
Smoothness of X becomes the requirement that each a; : U — R is smooth.

Theorem 2.12. Suppose M" is a manifold, and X, .., X" are smooth vector fields on M, such that for
all p € M,

is a basis for T,M. Then TM is isomorphic to the product M x R?. That is, there exists d : TM — M x R"
is a diffeomorphism, such that
®(p, m) = (p, dp(m))

and for each fixed p, ¢, : T,M — R" is a linear isomorphism.

Manifolds which satisfies the requirements of the theorem are called parallelisable.

10
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Proof. For (p, a) € TM, we can write it as
a=>Y aX"(p)
for some unique ay, ..., a, € R. Using this, we can define a map
®(p, a) = (p.(a;)) € M x R”

It is easy to see that this is a bijection. Moreover, ¢, defines a linear isomorphism. Therefore, all we need to
check is the smoothness. Let ¢y : U — R" be a chart on M, and ¢ : Ur — R"” x R" be the corresponding
chart on TM. In this case,

(¢ x id)o do 7' (x,b) = (x, a)

- revin-ru (2]
( j

We can write XU in the a% basis, to get
]

such that

P

Thus, .
b=> aXx(x)
i

Since the ij are smooth, we are done. Moreover, the inverse transformation is also smooth, and thus ¢ defines
a local diffeomorphism, which must then be a diffeomorphism. O

Remark 2.13. e The converse of the theorem is also true, and it is easy, since all we need to choose is (the
image of) (x, eq), ..., (x, en).

e The condition that M is parallelisable is a restriction. We know that all Lie groups are parallelisable, but
general manifolds are not. For example, there are no non-vanishing vector fields on S2. More generally, S" is
parallelisable if and only if n = 1,3 or 7.

Definition 2.14 (differential)
Let F : M — N be a smooth map, Define the differential of F at p € M as

de . Tp/\/l — T,E(p)/\/

0 ay; d
Ix; (x(p) ‘9791

F(p)

p i an

where x; are local coordinates around p, given by the chart ¢, and y; are local coordinates aroung F(p),
given by . In local coordinates, y = y(x) = Yo F o ¢ (x).

Moreover, it is easy to see this is independent of choice of local coordinate, which follows from the
chain rule in multivariave calculus.

Remark 2.15. For smooth maps F: M —- N, G: N — P,

d(GoF) =dGodF

Now suppose F : M — N is a diffeomorphism, X is a smooth vector field on M. Then the pushforward of
X by Fis
((dF)X)F(p) = (dF)pX(p)

which defines a vector field on N. We want F~" to be smooth, since otherwise we don't know whether the
image will be smooth.

i



Every vector field X on M defines a linear map

X 1 C®(M) — C®(M)

9
Y=2 Xy
L

where if

we define locally
Z oh
Xh = [ X[ain

again by the chain rule, this is independent of choice of coordinates.
Let f € C*®(N), F : M — N be a diffeomorphism. Then f o F € C*°(M). In coordinates x; on M, y; on N
given by F,

) of dy;
—(foF)=Y —=Z
Gxi( ° ) ;0% 6)([-
Therefore, 5
af dy,
X(foF)=Y X=—=2 = ((dF)X)f)o F
(foF) Zj 3y, 3~ (@FX)Ne
That is, the diagram
Co(N) —=E 5 Coo(Mm)
(dF)X X
Co(N) —=E 5 Coo(Mm)

commutes.
Let X, Y be vector fields on M. X and Y can be consider as a first order linear differential operator. Then
the composition XY is not, but the Lie bracket

X, Y]=XY =YX
is a well defined first order linear differential operator. That is, it defines an R-linear map C*(M) — C*®(M),
satisfying
(X, YI(fg) = £-[X, Y]g + g - [X, Y]f
One way to see this is by the symmetry of mixed partial derivatives. Thus, the space of all vector fields on

M forms a Lie algebra. Note that it is infinite dimensional, and so it can't come from a Lie group. Lecture 6
ecture

Suppose in local coordinates X =3~ Xi#- and ¥ =}, V5L, then

ay; oX;\ od
X, Y] = Xi=2L — V=L | =—
XYl ; ( "o " ox ) Oxk

Notation 2.16. We write V(M) for the vector space of all C* vector fields on M.

2.1 Left invariant vector fields

Let G be a Lie group, e € G is the identity element of G, and g = T, G for the tangent space of G at e, Le. its
Lie algebra.
Given g € G, we can define the left translation Ly : G — G,

Lg(h) = gh
Ly is a diffeomorphism, as it is smooth with smooth inverse Lg‘1 = L41. Consider ¢ € g, and consider
Xelg) = (dLges € T4G
Since Ly is a diffeomorphism, (dLy). is a linear isomorphism g — T,G, with inverse

(dLg)e " = (dLy-1)g

12



Lemma 2.17. Xz(g) as defined above, is smooth. Thus, Xz is a smooth vector field.
Proof. Consider the map L : Gx G — G, with L(g, h) = gh. Then L is smooth. Fix gg € G, the local coordinate
expression of L in a neighbourhood of (go, €) is
L Ugy x Up = Vi,

Explicitly, [ = @go 0 Lo (g, x @, 7). With this,

~

Ly = L@gy(g), ) : Ue — Voo

where g is in a neighbourhood of gg. With this, consider the derivative Dyl of L in the V. coordinates. Since
D>L depends smoothly on the Vg, coordinates on L, X¢ has smooth coefficients in a neighbourhood of go. [

Proposition 2.18. If &, ..., &, € g are linearly independent. That for all g € G,

are linearly independent.

Proof. Clear from definition as (dLy)e is invertible. O

Theorem 2.19. Every Lie group is parallelisable.

Proof. From the proposition and theorem 212 O
Also, consider g, h € G, and & € g. In this case,
(dLg)nXe(h) = (dLg)n(dLp)e() = (dLg o dLp)e() = (dLgn)e(s) = Xe(gh)

That is,
(dLg)Xe = Xz 0 Ly

Definition 2.20 (left-invariant vector field)
A vector field X on a Lie group G, with

(dLg)X = X o L, (1)
is called a left-invariant vector field. We write
2(G) C V(G)

for the subspace of all left-invariant vector fields on G.

It is easy to see that ¢(G) is finite dimensional, since any X & ¢(G) is Xc for & = X(e) € g. This also
shows that the map g — ¢(G) given by & +— X is a linear isomorphism.
Thus,
dim(4(G)) = dim(g) = dim(G)

Theorem 2.21. ¢(G) is a Lie subalgebra of V/(G). More precisely, [Xz, Xj| is left invartant for any &, n € g.

13



Proof Recall that
X(foF)=(((dF)X)f)o F

We will take F = Ly, f € C®(G), X = [Xe, X, We will show that X satisfies eq. 4

((dLg)[Xe, X,)(F)) © Ly = [Xe, Xyl(f 0 Lg)
— XeX,(fo L, )—XXz(foL )

= Xe - (L)X, (1) 0 Ly — X, - (dLg)Xe(N) o L
= ((dL, )Xs)(( X >(>oL — (L)X, )(dLg)Xe) ) o Ly
= ((dLo)Xe, [dLy)X,IF) 0 L

= [Xeo Ly, XoL}(f) Ly
= ((Xe, Xyl o Lg)(f) o Lg

But f, g are arbitrary, and as such, we have
(dLe)Xe, X, = [Xe, X, L
which means that [Xz, X,] € ¢(G).
With this, for all &, n € g, there exists { € g such that
[Xe, Xo] = X,

This defines a Lie algebra structure on g.

Theorem 2.22. Let G be a matrix Lie group and log defines charts on G. Then the map
g> < Xe e ¢(Q)

is an isomorphism of Lie algebras, where on g we use the matrix commutator.

We will prove this later.

3  Submanifolds

Let M be a manifold, N C M and N is a manifold. Consider the inclusion map ¢: N — M.

Definition 3.1 (embedded submanifold)
Suppose

(i) tis smooth,
(i) (do)p : T,N — T,M is injective for all p
(iit) ¢ is a homeomorphism onto its image.

Then we say that N is an embedded submanifold of M.

Remark 3.2. For (iii), D C N is open if and only if there exists U C M open, with D = D N N.

The condition (iii) is required, since we don't want an example which looks like a figure-8, or other ‘weird’

topological spaces, such as

14
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Remark 3.3. If ¢ only satisfies (i) and (it), we call N an immersed submanifold.

Remark 3.4. A slight generalisation of this is that: if N, M are manifolds, a map ¢ : N — M is called an embedding,
denoted ¢y : N — M, if  is injective, and satisfies conditions (i), (it) and (iii). That is, ¢(N) C M is an immersed
submanifold.

If dW is injective for all p, then we call ¢ an immersion.

Convention: Submanifold will mean embedded submanifold unless otherwise stated.

Example 3.5 (parametrised urves and surfaces in R?)

In this case, condition (ii) simply means what we called a ‘reqular’ parametrisation.

Example 3.6 (irrational twist flow)

Define the map

R— 77

t— (E’M, eiat)

In this case, we see that the map is injective and an immersion, but not an embedding as the image is
dense in T2

Is a submanifold the same as f~'(0) for some smooth map f : R” — R™, or more generally, f~'(p) for some
f:M—N.
In general, no. Since f is smooth, it is continuous, and so f~'(p) is a closed set. On the other hand,

Proposition 3.7. For every closed subset £ C R?, we can find a smooth map f : R? — R, such that
f~10) = E.

Proof. Omitted, optional exercise. O

Definition 3.8 (regular value)

Let f : M — Y be a smooth map between manifolds. Then g € Y is a regular value for f if for every
p € f~(qg), (df), : T,M — T4V is surjective.

Theorem 3.9 (preimage theorem). Suppose f : M — Y is a smooth map, y € Y is a reqular value, with
f~'(y) nonempty. Then N = f~'(y) is an embedded submanifold of M, with

dim(N) = dim(M) — dim(Y)
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Proof Omitted. O

A fact from differential topology: Suppose M is a manifold, N C M a subspace (with the subspace topology).
Then there is at most one smooth structure on N making it into an embedded submanifold. Therefore, it makes
sense for us to say N is or is not a submanifold.

The converse of the preimage theorem is only true locally.

Proposition 3.10. Let N — M be an embedded submanifold, p € N. Then there exists an open
neighbourhood p € U C M, and f : U — R? d = dim(M) — dim(N), with 0 € R? is a reqular value of f,
and f~1(0) = UN f~1(0).

Proof Let ¢ : Uy — R”" be a chart on M near p, with ¢(p) = 0, with local coordinates xy, ..., Xn. Let
Y Vo — R’ be a chart on N, ¢s(p) = 0 and with local coordinates uy, ..., Up.

We may assume without loss of generality that Vo = Uy N N. In this case, t: N — M is expressed locally
as

Thus, the rank of the Jacobian matrix

is ¢, by assumption. Without loss of generality,
0
det (3—) £0
i1 i j=1

From the inverse function theorem from multivariate calculus, we have a local inverse

up=uixq, ..., Xp)
near 0. Moreover, for i > ¢, then x; = x;(u) = x;(u(x1, .. ., xe)) = hi(xq, ..., Xp).
Define fi(x) = x; — hi(x1, .. ., xp) for ¢ < i < n. This gives the required map, with Jacobian at 0 given in
block form as (* /d) Thus, 0 is a regular value. O

Example 3.11

Consider
N={(x:x :x)€RP?|x =0}

We can see that N < RP? and N = S'. However, it is impossible to write
N =f"(q)

for all f : RP? — M where M is a 1-manifold, ¢ € M a reqular value.
To see this, suppose we found such an f. Then consider a chart ¥ around g on M, ¢(q) = 0. Then
we have that
Yof :RP*D U — (—1,1)

with N C U C RP?, U is open and connected. In this case, we have
N={p|(¢gohip) =0}
As g is a regular value, there exists py, p— € U such that
d(f(py)) >0 and  (f(p-)) <0

But U\ N C RP?\ N is connected, since it is either an annulus or a disc.
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Theorem 3.12 (Whitney embedding theorem). For any manifold M", there exists an embedding ¢y : M —
R?".

On the examples sheet, we will show the result for RN, and with the additional assumption that M is
compact. It's not too difficult to show that an embedding into R?"*" exists, Reducing to 2n is the main difficulty
in this theorem. Moreover, this result is optimal, for example by considering RP? which embeds into R* but not
R3.

Using what we have done so far, we can now prove theorem 222] That is, for matrix Lie groups, the map
g — 4(G)
> Xe
is a Lie algebra isomorphism.

Proof. We have shown before that [Xz, X,] = X¢ for some € g. We would like to show that { = [&, ] = &n—nd.

First consider the case when G = GL(n) C Mat(n), which is an open subset. In this case, the Lie algebra
is g = Mat(n). For g = (gijv) € G, the left translation map is a linear function in the coordinates g{j. Thus, for
g, h € GL(n), we have that

(dLg)n : Mat(n) — Mat(n)
A gA

For A= (A") € g, we have that

; d
Xalo) = )_Xil9)5
/

with v _
Xi(g)=> g" A,
k

With this, the claim follows from a computation. That is, (using the summation convention),

i d 0 k d 0 d i k i si k Al §i d
gy | A = (¢%,B%,) — B =— (¢, A)) | = =g, (A" B8, — BA/ 6)) —
k fdg/( p q) Jagj( P q) ag‘]q k( jZq” e j"tqv e aggq

0

=g' (AB — BA)¥ :

gk( )qaglq

Using this, we see that
[Xa, Xg] = Xap

Now note that the change of basis of g from the identity chart as above, to the log chart is given by
(dlog), = id

Thus, the basis are the same, and so the above computation is valid in the log chart as well.

Now consider a more general group satisfying our assumptions. The log chart assumption shows that
t: G — GL(n) is an immersion. Moreover, L, : G — G is a restriction of L, : GL(n) — GL(n), and its derivative
the restriction of dL; : Mat(n) — Mat(n).

Using this, for & € g, the left invariant vector field Xc € ¢(C) is a restriction of Xz € ¢(GL(n)). As such,

[XS‘GvXn‘C] = [XEan”C

We can use test functions which is constant in the variables which are transverse to G to see this. But we
know that [Xz, X;] = Xz, on GL(n), and so we have that

Xenle = [Xela, Xyle] € €(G)

17
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4 Differential forms

Let M" be a manifold, p € M. We have defined the tangent space T,M. Define the cotangent space of M at

p to be
M= (T,M)" = {linear maps T,M — R}

Choosing local coordinates x; around p, we have a basis

d
— e I,M
aXi € P

for T,M. This gives us a dual basis, which we will denote as
dx; € T;/\/I

That is,

Forany a € T;/\/I, we have that
a = Z Cl[dX[

for a; € R. Recall if y; is a different choice of local coordinates, then

Z (3)(, o
ag/ 9y, 0x;

Then by standard linear algebra arguments,

Z aX,

Thus, for
U—ZGdX, Zbdy, e TM

we have that

We can define the cotangent bundle of M, as

™M= | | Tsm
peM

Theorem 4.1. T*M is a smooth manifold, with dim(T*M) = 2dim(M). Again, we have a projection map
g T"M — M, with m(p, a) = p, which is a smooth map.

Proof. As for the tangent bundle. The only difference is the transformation law. O

Definition 4.2 (differential 1-form)

A ((smooth) differential) 1-form a on M, is by definition a smooth map a : M — T*M, such that Toa = id.
That is, for all p € M, a(p) € TyM.

As for vector fields, in local coordinates x;, we have that

aly = Z ai(p)dx;

i
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where a; € C*°(U). This is equivalent to saying that

(a,X) € C®(M)
for all X € V(M). To see this, note that
o)
(-
We will now recall/define some multilinear algebra. For r = 0,1,2,..., and a vector space V, define the
r-th exterior power of V* as
A'V* = 1 alternating multilinear maps V' x - x V - R
————

r copies

In particular, if r = 0, by convention A°V* =R, and if r = 1, ATV* = V*_If r > dim(V/), then A"V* = 0.
From this, we obtain the vector spaces A"T M, and we can define the r-th exterior power of T*M as

NTM=| | NTsM
peEM

Consider a smooth map a : M — N'T*M, with 7o a = id. We call « a differential r-form.
Lecture 9

This is a vector space, with dimension dim(A"T M) = (';) To see this, we can consider the basis
dxi, A---Adx, with 1< iy <--- < i, <n

By definition,
(dxg A Adxg ), .. V) = det((dX[k(Vg))k'g)

In particular, we see that A is antisymmetric, and this extends by linearity and induction on p, g, to extend
it to an assosiative bilinear product

NTIM x NTIM — APHTIM

Notation 4.3 (multi-index notation). If / = (i1, ..., i;), then we write |/| = r, and

dx; = dxy A - Adx;,

The transformation law from dx; to dy, is given by

=3 (119 ) o

= \ k=1

Using this, we can show that A"T*M is a smooth manifold, with dimension n + (). The projection map
7 N'T*M — M is smooth, and we call A"T*M the bundle of r-forms.

Definition 4.4 (smooth differential r-form)

A ((smooth) differential) r-form is a section a of A"T*M. The degree of a is r.

Note that o as above is smooth if and only if for any Xj, ..., X, vector fields on M, a(Xy, ..., X,)=0.In
local coordinates, we can write
a = Z ardx;

||=r

where the a; are smooth functions.
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Definition 4.5 (space of r-forms)
For a manifold M, we write Q"(M) for the space of all r-forms on M. By convention, Q°(M) = C>=(M).

4.1  Orientability

Theorem 4.6. For any n-dimensional manifold, the following are equivalent:
(a) There exists a nowhere vanishing w € Q"(M).
(b) There exists a collection of coordinate charts (¢, U,) such that

o |J,Us =M,

e for a, B with corresponding coordinates x;, y;, we have

ay,
det | = 0
e(a)>

Xi

(c) A"T*M is isomorphic to M x R.

Proof. (a) = (b): From the transformation law and taking r = n, we see that

0x4 X,
PGy | Ao dy;,
( i ag“ 1) Z ay )

- i
tn "

= ZSL n(o) AT
9 aga a5’0(/7)

aX,‘

dx; A Adx,

)dy1/\"‘/\dyn
/

Given w as in (a), consider an open cover by coordinate neighbourhoods U,, with all U, connected. In this
case,
wly, = fa(x)dxf A - Adxy

We can assume without loss of generality that f, > 0 on each coordinate neighbourhood, but then

fa:det(axiﬁ)fg

ax/.

and so the determinant must be positive.
(b) = (a): We will assume the following theorem without proof:

Theorem 4.7. For every open cover M = | J, U, we can find a countable collection of smooth functions
pi € C*(M), such that

(i) supp(p;) is compact, and contained in some U,

(it) the p; are locally finite, that is, given x € M, there exists a neighbourhood W, of x, such that all
but finitely many p; are identically zero on W,.

(it) pi(x) €10, 1], and for any x € M,

)>_pilx) =1

We call {p;} a partition of unity subordinate to U,.

For any a, define wy, = dx{ A --- Adxs € Q"(U,). By passing to a subcollection, we may assume we only
have countably many a, and say we have a parition of unity p, subordinate to {U,}. Then

Pawg € Q"(M)
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and using this, we can define

W = Zpawa

Since the sum is locally finite, w is well defined. Moreover, since the p, are nonnegative, and

ox%
det Xlﬁ >0
0)(/

w never vanishes.

For (c) = (a), suppose we have an isomorphism ¢ : A"T*M — M x R of vector bundles, consider
f:M— M xR, given by f(x) = (x,1). Then =" o f € Q"(M) never vanishes.

Conversely, given a non-zero w, notice for any (p, &) € A"T*M, there exists a¢ such that & = asw(p). Thus,
we can define

®(p,g) = (71(), ag)

We leave as an exercise to check that ® is a diffeomorphism. O

Definition 4.8 (orientable)

A manifold M satisfying any of the conditions in the above theorem is called orientable.

Suppose M is connected. then there are two choices of orientation, given by respectively:
(a) w up to rescaling by a positive function,
(b) a choice of an open up to ‘positive compatibility’

(c) a choice of ® up to compositions (x, a) — (x, h(x)a), where h € C*°(M) is positive.

Definition 4.9 (oriented)
A manifold M with a choice of orientation is called oriented.

4.2 Exterior derivative

Consider f € C*°(M). Formally, it is a smooth map f : M — R between manifolds, and so we have a differential
dfp . Tp/\/’ — Tf(p)]R =R

which depends on p in a smooth way. Then
df € Q'(M)

Remark 4.10. A coordinate x; : U — R is a smooth function, and so dx; is a 1-form.

Theorem 4.11. There exists a unique R-linear map d : QX(M) — Q**1(M), determined by
(i) If f € QOM) = C=(M), then df is just the differential. That is,

df = Z %dx,

(i) d(wA n) = (dw) A n+ (=1)%9 ey A dn
(i) d*> = 0.

The map d is called the exterior derivative.

21

Lecture 10



Proof. Consider a coordinate neighbourhood U C M, with coordinates x;. Consider w € Q" (M), with
wly = f(x)dx

We can assume this since d is linear. By (i), (iti) and then (i),
d(w]y) = d(f(x)dx) = df Adx+F(x)> (- A(=1)ddx A )
k=1

= of
Za— x; A\ dx; (*)

Using this definition, (i) is clear, (ii) can be verified by a computation, and (iii) follows from the symmetry
of mixed partial derivatives, since
0°f 0°f
Gx[dx/ N anaX[

we have that

’f

dx; Adx; =0
0 0)(10)(/ Xi/ X]

Using this, we have shown uniqueness since it is well defined and unique with respect to anny choice
of local coordinates. To show existence, we need to show that it is well defined with respect to a change of
coordinates. But by (*), (dw), is determined by w restricted to any neighbourhood of p.

Thus, to show that d is well defined, it suffices to consider the intersection of coordinate neighbourhoods.
Let y; be the other coordinates. The same computation as above gives an operator 0. We want to show that
0 = d. With this,

S(F(x)dxy) = 0F Adxi+ > (- A (=) Tadx, A---)
k
Now &f = df as the differential is well defined, and d(x;, ) = dx;, as well. Thus, ddx;, = 6°x;, = 0. With this,
we find that
o(f(x)dx)) = df Adx

as required. O

Definition 4.12 (pullback)

Let f: M — N be a smooth map between manifolds. Then we have a map
TN — ToM

and more generally, we have
QN (N) - Q" (M)

which we call the pullback map of f. By definition,

Remark 4.13. e f* is defined for any smooth map. Compare this to the pushforward of vector fields, which is
defined only when f is a diffeomorphism.

o (fog)*=g*of"
o *(aN\B)=f*(a)Af*(B). In particular, for any h € C®(N), f*(ha) = (ho f)f*a. That is, f* is C*(:)-linear.
e d(f*a) = f*(da). To see this, it suffices to do this in local coordinates, i.e. we can take M, N to be open subsets

of Euclidean space. Moreover, we can assume a = dy;, v = ‘1 since we know both operators are R-linear,
and we can use the Leibniz rule to extend to general r-forms. In this case, f becomes y; = y;(x), and we have
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that
d 6gg ay;
frdy) | =— | =dy; [(dh— ] =dy, | =2
( g/) ( an ) gj (( ) gj ( an dgg ) an

We see that * is determined by

"9
Frdy; = a—i’:dxk —d(y;0f) = d(fy;)
k=1

4.3 de Rham cohomology
We will write d, for d : Q"(M) — Q"*'(M). That is, we have

0 —— QM) — QM) —" QM) — -

If @ = dB, then da = 0. The converse may not hold. We can use this:

Definition 4.14 (exact form)

If @ = dpB for some B, we say that a is exact. Equivalently, a € im(d,) for some r.

Definition 4.15 (closed form)

If a € ker(d,), then we say that a is exact.

Since d® = 0, im(d,_1) C ker(d,). Moreover, it is a vector subspace.

Definition 4.16 (de Rham cohomology)

The vector space
ker(d,)

.Lm(er)
is called the r-th de Rham cohomology group of M. We write

= PHH M)

H' (M) =

Proposition 4.17. If f : M — N is smooth, the pullback f* : Q"(N) — Q"(M) descends to the quotient,
i.e. we have a homomorphism
f* H(N) — H (M)
Moreover, as for pullback of forms,
(gof)=1"og"

Proof. This follows from f*d = df* (ie. f* is a chain map). O

Lecture 11

In particular, if f is a diffeomorphism, then * : H*(N) — H*(M) is an isomorphism. The converse is false,

for example
H*(RP%) Z H*(S?)

but they are diffeomorphic (not even homeomorphic, for example consider 7).
Theorem 4.18 (de Rham).
Hir(M) = H (M; R)
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where the right hand side is the singular cohomology of M as a topological space, with real coefficients.

If M is connected, then HY(M) = R, as it is just the space of constant functions (i.e. functions with zero
differential).

Theorem 4.19 (Poincaré lemma). Suppose U C R" is an open ball, a € QX(U), for some k > 0, with
da = 0. Then « is exact, that is, we can find B € Qk’1(U), with a = dB.

Corollary 4.20.

Hk(U): R k=0
0 otherwise

Sketch proof of theorem[4.79 The main idea is to invert the exterior derivative d, by constructing appropriate
'mtegral operators,
h - QF(U) - Q)
with
his odi +diq 0 hy = idgr

That is, h defines a homotopy between id and the zero map on the de Rham cochain complex. O

4.4 Integration

Throughout, assume M is a oriented n-manifold, with orientation given by positively oriented charts (Uq, @q).
Let w € Q"(M), and suppose supp(w) is compactﬂ If supp(w) C Uy for some a, with local coordinates x;,
then we can write
wly, = f(X)dx1 A -+ Adx,

/ w = / f(x)dxq - - dx,
M o (Ua)

where the right hand side is the integral over a subset of R”, i.e. Riemann/Lebesgue integration.
To see that this is well defined, suppose supp(w) € Ug, and Ug has local coordinates y;, then

In this case, we define

w|U3 = h(y)dyT ANRRRA dgn

In this case,

h(y(x))

det (ag[) ‘d)q -,
aX/‘

/
_ /%(Ud) h(y(x) det (gi) dx; - - dx,
/

f(x)dx1 A -+ Adx,

For more general n-forms with compact support, use a parition of unity {p;} subordinate to a finite cover
{U;} of supp(w) by coordinate patches Us, ..., Un. Let Uy = M\ supp(w).

Definition 4.21 (integral of a differential form)

"This is different to lectures, but I'll use the definition that

supp(w) = {p € M | w(p) 0}
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The integral of w is
N

=T fy e

{

Basic properties:
e it is linear in w,
e it is additive when we integrate over disjoint coordinate neighbourhoods,

e it is independent of the choice of a parition of unity. If {p;} is a different partition of unity, then
> | pw= Z/ pipjw = Z/ _ pipjw
. /U T Ju 7 Jung,

Swapping p; and p; gives the same result, and so we are done.

Theorem 4.22 (Stoke's for manifolds without boundary). If n € Q"~1(M) is compactly supported, then

/dnzO
M

Note n being compactly supported implies dn is compactly supported, but the converse is false.

Proof. As above, let Uy, ..., Un be a positively oriented coordinate neighbourhoods covering supp(n), and
let Up = M \ supp(n), which is positively oriented with respect to U, ..., Un. Choose a partition of unity
subordinate to {U, ..., Un}. Then

N N
dn =d (Zm) = dipin)
[

i=1

| dipn =0

Fix i, and choose local coordinates xx on U;. Without loss of generality,

By additivity, suffices to show

pin = h(x)dxa A - - dx,
We can do this as the integral is linear. Then
oh
d(pin) = —d dx,
(pin) o, 41 A dx

Integrating, choose R large enough such that

R
/d(m): / ( / @hdm)dxz.‘.dxn
n Rn—1 x1=—R aX1

as we can assume h(R,x2, ..., xp) = h(—=R,x2, ..., xp) = 0. O

Corollary 4.23 (integration by parts). Assume «a, B are differential forms on M, at least one is compactly
supported, with deg(a) + deq(B) = dim(M) — 1. Then

_(_ deg(a)+1
/Ma/\dB (—1) /(da)/\B

M
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|
Proof. Apply Stokes to n = a A B, which is compactly supported.

5 Vector bundles

Definition 5.1 (vector bundle)

A vector bundle E over a manifold B is

1. a smooth manifold £,

2. a surjective submersion 7 : £ — B, ie. i is smooth, and (dor), is surjective,
Moreover,

(i) there exists a (finite dimensional) vector space V/, such that for all p € B, £, = 7~ (p) is a vector
space isomorphic to V,

(it) for any p € B, there exists an open neighbourhood U of p, and a diffeomorphism ®;; making the
diagram

—>U><\/

\/

(iit) for each p € U, the restriction &y : £, — {p} x V = V is a linear isomorphism.

commute.

We call
e B the base,
e [ the total space,

e 7 the bundle projection,

V' the typical fibre, if V is a real vector space, we call E — B a real vector bundle, and if V is a
complex vector space, then we call £ — B a complex vector bundle.

e dim(V) is the rank of the vector bund!d
o &y a local trivialisation over U,

e U is a trivialising neighbourhood

“Note in the case of a complex vector bundle this depends on the real/complex dimension.

Remark 5.2. Note surjectivity of 7 follows from (i), and the fact that it is a submersion follows from (ii).

Definition 5.3 ((local) section)

A section of a vector bundle £ — B is a smooth map s: B — E such that mos = idg. A local section is
a smooth map s; U — E, with mos = idy.
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Example 5.4 (product)
If E=BxV,E — Bis a vector bundle, and the space of sections is just C*°(B, V).

Example 5.5 ((co)tangent space)

TM and T*M are real vector bundles of rank n = dim(M). The sections are vector fields and 1-forms
respectively. In general, these are non-trivial, i.e. they are not products.

In general, A"T*M (s also a real vector bundle, and sections are r-forms. If TM is trivial, then so are
the bundles of differential forms.

Example 5.6 (tautological vector bundle)

Over RP", CPP" (or more generally, Grassmannians), we have the tautological vector bundle.

Say B = CP", take
E= | ] ¢

2 line in C"*1 through 0

The bundle projection sends
mE>0—¢eCP"

We can check that this is a rank 1 complex vector bundle (i.e. a complex line bundle).

5.1 Structure group and transition functions

Let (Uqg, ®o), (Ug, Pg) be local trivialisations of E. In this case, we have that for b € U, N Ug,v € V,
bpo®, (b, v) = (b, Ypa(b)V)

where gy : Uy N Ug — GL(V) is smooth.

Definition 5.7 (transition functions)

The (g, are called the transition functions.

The transition functions satisfy the following:
® Yuq(b) = id,

* Yop(b)Ypa(b) = id,

* Yap(b) gy (b)ya(b) = id

which we call the cocycle conditions.

Example 5.8 ((co)tangent bundle)

In the case of the (co)tangent bundles, with the charts defined earlier, the transition functions are given
by the derivatives (or the dual matrix)
( aXl‘ )
9y, ij

Proposition 5.9. The following data:
e base manifold B,
e trivialising neighbourhoods {Ug}aca covering B,

e maps Ygq : Uy N Ug — GL(V) smooth, satisfying the cocycle condition.
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determines a vector bundle £ over B, with typical fibre V.

The proof is called the Steenrod construction.

Proof. First we define the total space
£ U gealUa x V)

where U, x V 3 (b, v) ~ (b, Yga(b)v) € Ug x V.
Without loss of generality, we may assume that the U, C B are coordinate neighbourhoods, with charts ¢,
Then

@cr = ((Pa: id\/)

for each o is a chart on U, x V. This implies that £ is a manifold, as these form a smooth structure. The
definitions of 7 and the existence of local trivialisations are clear. O

Definition 5.10 (G-structure, structure group)

Let E — B be a real vector bundle with typical fibre V. Let G < GL(V) be a subgroup. Suppose there
exists local trivialisations (U, ®4) covering B, where the transition maps ug(b) € G for all b € U, N Ug.
We call this a G-structure on E — B, and that E has G as a structure group.

Example 5.11

If G = {id}, then E has a global trivialisation ¢ : E — B x V.
If G = GL4(V) is the subgroup of matrices with positive determinant. Then a G-structure on E is an
orientation of £. If £ = TM, then this determines an orientation of M.

Definition 5.12 (orientable, oriented)

A vector bundle E — B is orientable if it admits a GL (V) structure. £ — B is oriented if we made a
choice of orientation.

Lecture 13

Example 5.13 (orthogonal trivialisations)
Let £ be a real vector bundle, if G = O(V), then there exists an invariantly defined inner product on
each fibre E,. More precisely, this is obtained via a linear isometry £, — (R, (-, -)). The respective g
giving the O(V/) structure are then called orthogonal (local) trivialisations.

In particular, if G = SO(V) = GLL (V)N O(V), then this is equivalent to a choice of an inner product
as well as an orientation on the fibres.

Example 5.14
Say now E is a real vector bundle with rank 2m. Then we can consider G = GL(m, C) < GL(2m, R).
For all p € B, there exists J, € GL(E,), with j; = —idg,. Moreover, J, depends smoothly on p. This

corresponds to Jo on R?” = C", defined by multiplication by i. This naturally makes £ into a complex
vector bundle.
If E =TM, a GL(n, C)-structure on M is called an almost complex structure on M.

Example 5.15

If G = U(k) C GL(k, C), we get a unitary structure, analogous to the orthogonal case. The trivialisations
are called unitary trivialisations.
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More generally, if G preserves a tensor T on V under the inclusion G — GL(V/) (or the appropriate action
on the dual), then a G-structure induces a family 7, of tensors on £,, which are equivalent to 7 under the
trivialisations.

In general, existence of a G-structure for a given G can be a non-trivial problem. But for G = O(V) and
G = U(V), the answer is yes.

5.2 Principal bundles
Let G be a Lie group, with identity element 1.

Definition 5.16 (smooth free right action)

A smooth free right action of G on a manifold P is a smooth map

PxG-P
(p.h)—>p-h
where
(i) free: If p-h =p, then h =1g,

() (p-h1)-ha=p-(hih2).

Remark 5.17. The fact that it is a right action implies that the map p — ph is a diffeomorphism for all h € G.

Definition 5.18 (principal bundle)
Let G be a Lie group. A principal G-bundle P over a manifold B is

1. a smooth manifold P, with a smooth free right action of G on P,
2. a surjective submersion 7: P — B,
Moreover,

(i) for any b € B, there exists an open neighbourhood U of b and a diffeomorphism ®; making the
diagram

—>U><G

\/

(i) @y commutes with the action of G. That is,

®y(ph) = (b, gh) = (n(p). gh)

commute.

where ®y(p) = (b, g).
We call

Remark 5.19. From the definitions, it follows that the fibres 7~'(p) are embedded submanifolds, diffeomorphic to G.
By analogy, we will call P the total space, B the base and so on.
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Remark 5.20 (Warning). If P — B is a fibre bundle, where each fibre is a Lie group, P does not have to be a principal
bundle, since we don't need to have a right action on each fibre.

Similar to the case of a vector bundle, we have: For every b € U, N Ug, consider

bpod.'(b,g) = (b, Ygalb. g))

where

Ygalb,-): G — G
The requirement that ®;; commutes with the G-action gives that
Yga(b, gh) = Yga(b, g)h

for any g, h € G. We will abuse notation, and write

Wpa(b) = dpa(b. 1)
Using this, we get that
Ypa(b. 9) = Wpa(b)g = Lyy,(6)9

With this, we have maps
Ypo 1 Us NUg — G

which are called the transition functions, and these satisfy the same cocycle conditions as for vector bundles.

Theorem 5.21. Given the data:
e base manifold B,
e trivialising neighbourhoods {U,} covering B,
e maps Ygq : Uy N Ug — G satisfying the cocycle conditions,

Let T

P _ |_|( a X )
where Uy x G 2 (b, h) ~ (b, Yga(b)h) € Ug x G. Then P is a principal G-bundle, with proiection map
induced by the projections on each element of the disjoint union, with transition functions {¢ge}. The
right multiplication action is given by right multiplication on each element in the disjoint union.

Proof. Basically the same as the vector bundle case. O

Remark 5.22. If the G-action on a manifold P is smooth, free and proper, that is the map P x G — P is proper, Le.
the preimage of a compact set is compact. Then we can make the orbit space P/G into a manifold, and we can define
B = PJG and 7 is the quotient map. This then defines a principal bundle P — B.

Remark 5.23. Let G be a matrix Lie group. Suppose we have a vector bundle £ — B with a G-structure, with
transition maps (Jg,. From this we can obtain a principal G-bundle.

Conversely, if we have a principal G-bundle, and a smooth faithful representation G — GL(V), we can make a
vector bundle £ — B using the transition functions.

We then say that E is associated to the principal G-bundle P — B (and vice versa).

Example 5.24

If E = TM, dim(M) = n, taking G = GL(n, R), then the principal bundle P is called a frame bundle, and
each fibre P, is the set of a bases of the vector space T,M, by considering the columnes of an invertible
matrix.

If G = O(n)< then P is called an orthonormal frame bundle, and each fibre is the set of orthonormal
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bases of T, M.

5.3 Hopf bundle

A Hopf bundle is an example of a tautological complex line bundle over CP'. Recall that the fibre over
(z1 : z2) € CP' is the complex line spanned by (71, z2) in C?. We will work out the transition functions, and
appeal to the Steenrod construction.

Write U; = {(z1:22) € CP' | z; # 0}. U; U U, is an open cover of CP'. Write z = 2,/ for the local
coordinate on Uj, and { = z1/z; = 1/z for the local coordinate on Us.

Set

& (Uy) = Uy x C

(w,wz)— ((1:2),wr/1+ |Z|2)

Cbz . 7T_1(U2) — U2 x C

(Cw, w)— ((C: 1),W\/@)

and

We can compute

_ _ W W
d7N((1:2), W) = - =7
V112 /141

If z 4 0, then

dr0d (11 2), W) = by i ¢, v
G+ o1+l

- @ Ba)

,?W
zZ .
= ((1 1 2), ZW)
Hence the transition function is S
Un((1:2) =
|z
and 2] ¢
z
)= —==
LMZ((C )) 7 |(|

Note that the cocycle conditions are trivial as we only have two transition functions. Note
i, Yoy Uy N U, — U(1) = S" € C* = GL(1,C)
With this, the Hopf bundle admits a U(1) structure. Explicitly,
|(w, wz)|| = [wh/1+ |2|?
and we have a similar computation for 77='(U5). If we now remove the zero section, then we have an isomorphism

E\ {image of zero section} = C%\ {(0,0)})

which is the total space of an associated GL(1, C)-bundle.
The associated principal U(1) = S bundle has total space

P={ww)eC|w]"+w|*=1}=5>

and the bundle projection will send (wy, wo) — (wy : wy) € CP! = S2.
We can see that the Hopf bundle is not the trivial bundle, since S° and S? x S' are not homeomorphic.

5.4 Pullback
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Definition 5.25 (pullback)

Let 7 : E — B be a vector bundle. and suppose we have a smooth map f : M — B. Then we can define
the pullback f*E of E — B as a vector bundle 7 : f*£ — M, such that

1. the typical fibres are the same,

2. there exists a smooth map £ making the diagram
fFE—" S E
i f

commute, and F : (f*E), — Eyy) is a linear isomoprhism for all p € E.

From the definition, it follows that if (&, U) is a trivialisation of s, then we have a trivialisation ® with

) ———2—5 Ux V

F fxidy

~—1

7 () — f(U) x V
That is, we induce a local trivialisation of *E over f~1(U).

Example 5.26
If B = {pt}, then £ =V, and
¢ x— (7(x), Fx) eMx V

trivialises f*E over M.

Example 5.27

Let M = Bx X, f =pr; : BxX — X. Then f*E is "trivial in the X-direction”. More precisely,
f*E = E x X, with bundle projection 7 = s x idx.

Example 5.28

In this case, if M = pt, then
F:FEEC—E

embeds V' as a fibre Ef(y.

In general, f*E is determined by pulling back transition functions, that is,
f*Ypa = Ypao f 7 (Us N Ug) = GL(V)

This gives an alternative definition of the pullback.
By replacing “vector bundle” with “principal G-bundle’, V with G, GL(V) with G, we can define the pullback
of a principal G-bundle.

In particular, if £ is associated to P, then f*E is associated to f*P.
Lecture 15
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5.5 Morphisms of (vector) bundles

let m: E — B, ' : E/ — B’ be vector bundles, with typical fibres V, V' respectively. Let f : B — B’ be a
smooth map.

Definition 5.29 (morphism of vector bundle)
A vector bundle morphism covering f is a smooth map F : E — F’, such that

commutes, and the morphism on any fibre

is a linear map.

Then for each local trivialisation ($, U) for £ — B, and (¢', U') for £/ — B/, with f(U) C U’. Set
Fu=9"0F|yod™
Then
Fu(b,v) = (f(b), h(b)v)
where h(b) € L(V, V') a linear map, b+ h(b) smooth.

Example 5.30
If ¢ : M — N is a smooth map, then dp : TM — TN is a morphism of vector bundles covering ¢.

Example 5.31

Let 7 : E — B be a vector bundle, f : M — B a smooth map, then the pullback f*E — M gives us a
morphism of vector bundles f*£ — E covering f.

Example 5.32

Suppose B' = B, and f € Diff(B). Then if F is a morphism of vector bundles covering f, and each map
on fibres is an isomorphism, then F is an isomorphism of vector bundles covering f.

If f =1id, E = E’, with 7" = 7, then we call F a vector bundle automorphism of E, and we denote
the group of automorphisms as Aut(E). In this case, each h(b) € GL(V), and so we have a smooth map
h:U— GL(V).

Example 5.33
If E admits a G structure for some G < GL(V), then

Autg(E) = {F € Aut(E) | F preserves the G structure}

makes sense. In terms of local trivialisations, then the maps are h : U — G instead. In math-
ematical physics, we call G = Autg(E) the the group of gauge transformations. For example, G =

U(1), SU(2), SU(3), SO(3) and so on.
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6 Connections on vector bundles

Let 7 : E — B be a real vector bundle of rank m, i.e. with typical fibre R™. Let s € [(E) be a section, then
locally,
sy=pryodo(s|y): U—->TR"

is a vector valued function. We would like to extend the differential calculus. Locally, we have
dSU . TbB — R”

but we also have
ds : TbB — Ts(b)E

In this case, dim(R") = m, but dim(T)E) = dim(B) + m. Intuitively, we have extra dimensions coming from
the base manifold B.
Throughout, we will fix notation:

e dim(B) = n,

e U C B is a coordinate neighbourhood and a trivialising neighbourhood for £, with local coordinates
(Xk)Z:1, and with coordinates (af)j’.”:1 on the fibres.

e We will use the summation convention on i,j € {1,..., m} and k,¢ € {1,..., n}, but not on Greek
indices.

Let & : 77'(U) — U x R™ be a local trivialisation. 7~ '(h) = E, is a submanifold, and we have local

coordinates 5
TpEp = span {aal}
This allows us to identify

Jd 0
TPE = Span {W, am]‘

Definition 6.1 (vertical, horizontal subspace)

The subspace Tv,E = ker(dm,) is called the vertical subspace at p € E.
A subspace S, C T,E is a horizontal subspace if

S, ®Tv,E =T,E

In this case, we know that dim(S,) = n for all p from linear algebra. However, it is not determined by .
Any n-dimensional subspace of T,£ = R"*" is given by

ﬁ ker(6))
i=1

1 m * - n—+myx : . .
where the 6,, ..., 0y € T,E = (R"")* are linearly independent. In this case,
Sy = {v e T,M| 9;(\/) =0 for all i}

where . ’ o
6, = fidx" + gida’

for constants f, g; Suppose ¢ € T,E is vertical, that is,

=
- dd/

(Le. it has no % components). If ¢ = 0, then there exists i such that
6,(c) 0
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Equivalently, o
gic'+0
That is, we require the matrix (gj) to be invertible. Let its inverse be (hj-). Now consider
6' = hio/ = da' + ejdx*

Letting p vary in 7t~ '(U), we get functions e} : 7~ '(U) — R. We obtain

Proposition 6.2. Every field S = {S,},c£ of horizontal subspaces can be given in local trivialisations as

-

Sy = ker(Q;;)

i=1

with ’ v .
0, = da' + ey (x, a)dx*

for some smooth eik U X R" — R If the ei are smooth, we say that S is smooth.

Definition 6.3 (connection)

A smooth field S = {S,},c¢ of subspaces is a connection on a vector bundle E if
1. all S, are horizontal,

2. all the e} are linear in a € R™.

In this case, we can write . ‘ ‘
ex(x, a) =T (x)d
for some ", : U — R smooth. Thus,
6' = da' + Iy (x)a/dx* = da' + Ala/
i

), and we

where Aj- = I—j-k(x)dxk ts a matrix of differential 1-forms. We can then consider the matrix A = (A;

would like to consider the transformation law for it.
Suppose (U, @) is another trivialisation, with U N U’ # &. We will use {’, j* indices for coordinates with
respect to U/. Write W1 = (¢§/)Z’i,:1 for the transition function from ¢’ to ®.
Note that )
YiW =9
Now suppose

Then

But we also have that Lecture 16

0" = da" + Aj»;aj/
0" = (d¥})a’ + ¥;da’ + A;dd
Next, note that , o v o o
0 =VY.,0" =da' + (LPf-,dW} + WEA},LI% Ja;
Therefore, ‘
i . . g //
A} = WE,dLP} + LPﬁA},LPj
Writing A® = (Al) and so
AdD’ _ Aq)OQD _ (A{//)
and so
AV — YA (W)Y = WA L pd () (2)
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Theorem 6.4. Every choice of (local) matrices of one-forms (Aj-) satisfying eq. (2) defines a connection on
E.

Remark 6.5. Note that eq. shows that the (Aj) will not define a matrix valued 1-form, since it has a different
transformation law.
One way to see this is that A = 0 does not imply that A**® = 0.

Remark 6.6. We can consider W as a local expression for an element of Aut(E), and then eq. () defines a natural
action of Aut(£) on the space of all connections.

Consider local trivialisations ®,, ®g : 771 (U) — U x V. If we have G, € End(V), with respect to the
trivialisation &, therE|
GB = LPBO{GGLPGB

This defines an action of GL(V) on End(V/), and so we can use the Steenrod construction to get a vector bundle
End(E), called the endomorphism bundle of E. The fibres are End(E), = End(£,) = End(V).

With this, we have a well defined subset GL(E), where each typical fibre is GL(E), = GL(E,). This is not
a principal bundle. For example, it has a global section b+ idg,, and it is not trivial. Moreover,

[(GL(E)) = Aut(E)

Hence elements of Aut(E) can also be considered as sections of End(E).
Similarly to the above, we can consider typical fibre

{R” x -+ x R" — V| multilinear and alternating}

which gives the bundle of differential r-forms with values in fibres of E.

vector bundle typical fibre transition functions space of sections
E % vis Weov M(E)
End(E) End(V) G- Wp,GWop [(End(E))
T"B®E LR" V)=R")®V Vedxk (Wgavk)%;dxk' QL(E)
N(T*B)® E N RN ® V viedxK = (Wgavk) g;f, dxK’ QL(E)
T*B ® End(E) R")* ® End(V) Grdxk — (wBakaaB)%ka/ QL(End(E))
NT*B ® End(E) AN(R")* ® End(V) Qp(End(E))

where %:,, is the appropriate change of coordinates for 1-forms. In particular, from eq. , we find that if A, A
are 1-forms, then B
A— A= QL(End(F))

and so we can think of the space of all connections on E as an affine space with underlying vector space
QL(End(E)).

Definition 6.7 (coariant derivative)

A covariant derivative on a real vector bundle £ — B is an R-linear map grad® : [(E) — QL(E), with
the Leibniz rule
grad®(fs) = df ® s + fgradts

for f € C*(B) and s € T'(E).

Example 6.8
Let A be a connection on £, given in local trivialisations by A = (A}) A; € Q' (V). Define

(das)|u = (ds + As)|y = (ds' + Ais/),

2No summation
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where s = (s'). This is the covariant derivative associated to the connection A.
In parricular, if U is a coordinate neighbourhood, then

o5t

(das)' = ( o r;k(x)sf) dxk

in terms of local coordinates x*.

We need to check that this is defined independent of a choice of local trivialisation. Suppose (¢’, U')
is another trivialisation, Let the transition function be ¢y : U N U — GL(V) from ¢’ to ®. Then

s = s
A= gAY — (dg)y
Substituting, locally

das = ds + As

= d(is) + (A Y™ — (dg)p")ys’
= (ds’ + (dy)s" + YA'S" — (dyp)s’
= Y(ds’" + A’s')

= ¢(das’)

and so we have the correct transformation law for das € QF(E).

Suppose E has an inner product (-, -) on fibres, then a connection A on the real (resp. complex) vector
bundle £ — B is orthogonal (resp. unitary), if for any sy, s, € I'(E), then

d(s1,s2) = (dasy, s2) + (s1,das2)

where the right hand side is a one-form, and we take inner product on the E-component.

Theorem 6.9. Every covariant derivative grad® on £ — B is of the form grad® = d4 for some connection
A

Proof. First of all,

Claim 6.10. Every covariant derivative is a local operator. That is, for any U C B open, if we have sections
s1,52 € ['(E) with sq1]y = s2|u, then

(gradE51)|U = (gradEsz)\U

Proof. For all b € U, choose Uy C U, b € Uy with Uy C Uy C U. In particular, we have a smooth function a,
with

T on U

a =

0 outside U

and 0 < a < 1. With this, a(s1 — s2) = 0. By linearity,
0 = grad®(a(s1 — s2)) = da ® (s1 — 53) + agrad®(s; — s))

Since sy — sy vanishes at b, and a = 1 at b, gradEa = gradEsz at b. O

Therefore, it suffices to work in an arbitrary trivialisation over a coordinate neighbourhood U say. In this,

where eq, ..., en is the standard basis of R”, which defines local sections over U. Each s’ : U — R is smooth.
We define

) 0

i E

k= ((grad ef) i 6x’<)
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which is a function U — R. Using this, we can compute
grad®s = grad®(s'e))
= (dsi + sfl—j-kdxk) ® e;
= dAS

The previous example shows that Aj = r;kdxk is a well defined connection, i.e. it has the correct transformation
law. O

With this, we have obtained three different views of connections:
1. field of horizontal subspaces,
2. matrix valued 1-forms A; or scalars r;k,
3. a covariant derivative
Moreover, we can extend da : Q%(E) — Q5™ (E), by requiring
da(o A w) = (dg0) A w + (—=1)*9 g A dw
In local trivialisations,
da(sydx’) = (das;) A dx’
= d(s/dx') + AN (s/dx)
Furthermore, we can extend ds : Qz(End(E)) — QE”(End(E)), via
(daC)s = da(Cs) — C(das)
for C € I'(End(E)), s € T'(E). More generally,
(dap) A o = da(u A a) = (1)) A dao
for any p € QRZ(End(E)), g € QL(E). Using this,

daln A ) = (dagn) Az + (= 1)) 1 A (dagn)

Example 6.11
For € Q4(End(E)), the above implies that locally,

dap =duy+AANpE—pANA

6.1 Curvature

Repeated applying the covariant derivative, we have
M(E) = Q%E) —2 QLE) —— - —— Q3 (E) -2 QU(E(—— 0
For s € ['(E), locally,

da(das) = d(ds + As) + A A (ds + As)
=dAAs—ANds+ANds+ANAAS
=(dA+ANA) As

That is, it is the wedge of s with a two-form. Moreover, for any smooth function,
da(da(fs)) = fda(das)
Hence it is C*°(B)-linear. Note that
(ANA) = Tpdx* ATT,dx" =T T dx® A dx

and so it need not vanish.
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Definition 6.12 (curvature)

The form
F(A) = dA+ AAA € Q%(End(E))

is called the curvature of A.

Note that the curvature is independent of local trivialisations as the As are.

In coordinates, v
F(A) = F(A); ppdx* Adx*

. . oIt
In particular, F(A); ., = —F(A); . and the components are expressed in terms of [}, and =
' o Lecture 18

Definition 6.13 (flat)

A connection A is flat if F(A) = 0. A flat vector bundle E — B is a vector bundle with a choice of a flat
connection.

Example 6.14

Let £ = B x R™, and we can choose
da=d:C®B,R") - Q'(B)@R"

This connection is called the trivial product connection. The converse is only true locally (Examples Sheet

3.Q6).

Definition 6.15 (covariantly constant)

A section s € [(E) is (covariantly) constant with respect to a connection A, if das = 0.

Theorem 6.16 (second Bianchi identity). For any connection A on E — B,

da(F(A) =0

Proof. Let s € ['(E), then
da(F(A)s) = da(F(A))s + F(A) Adas

On the other hand,
da(F(A)s) = da(dadas) = (dada)das = F(A) A das

Hence da(F(A))s = 0 for any section s, which is true if and only if da(F(A)) = 0. O

7 Riemannian geometry

Definition 7.1 (Riemannian metric, Rtemannian manifold)

A Riemannian metric g on M is a field of positive definition symmetric bilinear forms
gp: TyMx T,M =R

which is smooth in p. A Riemannian manifold is a pair (M, g) of a manifold M with a Riemannian metric
g on M.
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Equivalently, we can define it as a section of S°T*M which is positve definite on each fibre. In terms of vector
fields, let X, Y be vector fields on M, then g(X, Y): M — R is smooth. On each coordinate neighbourhood U
with coordinates x!, we have

gij =9 (aax‘aaxf) e C™()
Note symmetry becomes g;; = g;;. In local coordinates, we can write
g = gidx'dx/
Formally,
dx'dx/ = % (dxi ®dx +d¥ ® dxi)

Example 7.2
If r = r(u,v) is a parametrisation for a surface in R?, then we have the first fundamental form

Edu? + 2Fdudv + Gdv?

where £ = g1, F = g12 = g21, G = g2

Theorem 7.3. Every manifold M admits a Riemannian metric.

Proof. Every vector bundle admits an inner product, using a partition of unity. Apply the result to TM. O
If F: M — N is asmooth map of manifolds, g a Riemannian metric on N, we can define
Frg(v,w) = g(dF(v), dF(w))

which is a symmetric bilinear form, which is nonnegative definite. If F is an immersion then F*g is a Riemannian
metric. For example, if M C N is a submanifold, we have a metric given by restriction.

Definition 7.4 (connection)

A connection on a manifold M is a connection on TM — M.

Recall local coordinates x! on U C M gives us a trivialisation of TM, with

M|y =TU= stpan{aa]»

Xi

The transition functions are determined by Jacobian matrices

oo
‘M’ = a i’
X
Note we use the convention ! = (). The coefficients r;lk of a connection on M are called Christoffel

symbols. The transformation law for the connection 1-forms Aj- gives

;
= i) 2 2
oxk C oxk
Thus for a connection on a manifold,
P e oX oxl axk axt 9%’
KT TR OXT 9xi axk T axT axioxk
Now if
Fl=rl,

then the I have the correct transformation law, and so they give us a well defined connection.
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Definition 7.5 (torsion)

Define the torsion of the connection as

i =T = Ty € QY(End(TM)

Formally, in local coordinates we should write
jikdxk
which is a well defined 1-form. If X, Y € V(M), then consider

o 0
i k
TX.Y) = TiXIYA S € VM)

By construction, T(X,Y) = —T(Y, X). Thus, we can also write

T e Q3,(TM)

Definition 7.6 (symmetric)
A connection A on M is symmetric, or torsion-free if T = 0. In local coordinates,

=Ty
Denote the covariant derivative on M by D : V(M) = Q% RM) — QL (TM). If a € Q" (TM), X € V(M),
then a(X) € QYTM) = V(M). We will write
DxY = (DY)(X)

and so we have a map Dy : V(M) — V(M). In local coordinates,

.0 aY! o 0
DxY)— = | X/=—— —TL YIX*| —
(Dx¥) 0x; o K ox;
Proposition 7.7. A connection D is symmetric if and only if
DxY — DyX =[X,Y]
for all vector fields X, Y.
Proof. Stare at the above line. O

Theorem 7.8 (Levi-Civita connection). On each Riemannian manifold (M, g), there exists a unique con-
nection D such that

1. D is orthogonal, that is for all X, Y,Z € V(M),

Zg(X,Y) = g(DzX,Y) + g(X,DzY)

2. D is symmetric.

We call D the Levi-Civita connection of g.

Lecture 19
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(@) DxVY is linear in Y,
(b) Dx(hY) = (Xh)Y + hDxY,
(c) DixY =1DxY,

Proof. Step 1: Uniqueness. We will show that the I—j.k are uniquely determined in each trivialisation. First,

We will write 0; := %. Using (i), set X = 0;, Y = 9, Z = 0k, we get

0kgij = I 9p + T Gip (©)
We can apply a cyclic permutation of i, j, k to get

0;gki = I, 9pi + 9kp (i0)

Jigjk = rfigpk + 1795 (i)
Let (§'9) = (giq)~" be the inverse matrix. Then for example,

rfkgpquq = rfkgpqéé = rj‘k
Now consider (i) + (it) — (iil). We get (using the fact that g and ') are symmetric,
0kgij + 0;gki — 9igjk = 21 gpi

and so

i1 99¢;  99qk  9Gk
L) oxk ' oxi oxd

Hence there is at most once choice of the Christoffel symbols, given by eq. (3). We can also write this in a
coordinate-free manner, as

(3)

9(DxY,7) = %(Xg(Y,Z) + Y92 X) = Zg(X. V) = g(V.[X. Z) = g(Z.[Y. X)) + g(X.[Z.Y])  (f)

Step 2: Existence. We will check properties (a), (b), (c) as above for Dy, which is determined by (7). (a)
is clear.
For (c), let f € C°(M), then recall [fX, Z] = (fX)Z — Z(fX) = f|X, Z] — (Zf)X. With this,

9(Drx Y, 2) = %(fXg(Y,Z) + Y(fg(Z, X)) = Z(fg(X, Y)) = fg(V.[X, Z]) + (Zf)g(X. V)

—fg(Z.[Y. X)) + (Y)g(Z, X) + fg(X.[Z, V)
= fg(DxY. 2)
= g(fDxY,2)

For (b), for h € C>*(M),

g(Dx(hY), Z) = 5(X(hg(Y, 2)) + (hV)g(Z, X) = Z(hg(X, V) — hg(Y[X, Z)) — g(Z.,[hY. X)) + g(X.[Z, hY]))

- N =

= 5((XPg(Y. 2) + h(Xg(Y, 2) + Yg(X. X) = Zg(X, Y)) = (Zh)g(X. V)

= h(g(Y.[X, Z) + g(Z,[X, Y] = g(X.[Z, Y])) + (Xh)g(Z, V) + (Zh)h(X, Y))
= (Xh)g(Y, Z) + hg(DxY, 7)

Hence we have that
g(Dx(hY),Z) = g((Xh)Y + hDxY, Z)

and so
Dx(hY)= (Xh)Y + hDxY

Hence D is a well defined covariant derivative, and so the Levi-Civita connection exists. O
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7.1 Geodesics

Let y = y(t) : | — M be a smooth curve, I C R an interval. Let E — M be a vector bundle, with typical fibre
V and connection A = (I'f,).

Definition 7.9 (lift)
Acurve ye Il - Eisaliftof yif moyr =y.

If y(t) = (x(t)) in local coordinates, then

velt) = (4 (1), a'(t) € Ux V = 7 '(U)

Definition 7.10 (horizontal lift)

A lift ye is horizontal if
VE(t) € Sye

for all ¢. That is, it is in the horizontal subspace of T,, (£ with respect to A.

Equivalently, ,
O'(ye(t) =0fori=1,..., m = rank(E)
Moreover, _ _ o
6 =da' + r}ka/dxk
and so 5 5
i T S SN :
(da' + [Mea’dx ) (x EG + aqaaq) =0
Equivalently, _ o
a' +adx" =0
This gives a system of linear ODEs for @', .. ., a”. From ODE theory, this exists a unique solution on any

interval / C R, given initial condition a‘(0). Hence horizontal lift always exists, and is unique, once we fix the

initial condition yg(0) € £,
Lecture 20

If E =TM, then y has a canonical lift given by a/(t) = x/(t).

Definition 7.11 (geodesic)

Let (M, g) be a Riemannian manifold, a curve y : [ — M is a geodesic if the canonical lift of y is horizontal
with respect to the Levi-Civita connection.

In a local coordinate trivialisation, we have that
K4 Tl =0

This is a non-linear second order ODE for x(t) = (x*(t)), and so there exists € > 0, such that there exists a
unique solution for x(t) with [t| < ¢, given initial conditions x(0) = p € M, X(0) = @ € T,M. Denote this
geodesic as

Vp(tr a)
From standard ODE theory, the solutions are smooth with respect to the initial conditions, and so y is a smooth
function in (p, g) € TM.

Proposition 7.12. Given any smooth curve y on M, with y(0) # 0. Then there exists an open neighbour-
hood U of y(0), and a vector field X on U, such that X extends y. More precisely,
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Moreover, for any such extensions Y, Z of y. For any connection D on M, we have
Dy Yy = Dy ZlyinDzZ |y

Then the expression
Dyvlvn = Dy Yy

is well defined.

Note that in local coordinates, if y(t) = (x*(t)), then

Dyy = X' 4 T xIx*

Corollary 7.13. y is a geodesic curve if and only if Dyy = 0, where D is the Levi-Civita connection.

Proof of proposition Since y(0) # 0, without loss of generality x'(0) # 0. So there exists a smooth local
inverse t = t(x") for [x'| < & where & > 0. With this, we get that

Set X(x',x%, .., x") = y(t(x")). Recall that
DY = (Z°0:v + T ¥IZ¥) 0

Let p = y(to) = (X(to)), Y(p) = Z(p) = v(to). Clearly the second term only depends on the point p. For the
first term,

. ) . d
(Z°00Y")]p = (X°0eY")|, = —

= () = (1)

t=ty

t=ty

With this,

~

(D2Y)(p) = (¥(to) + T e (to)*(t0))0; = Dylyiey

Proposition 7.14. Suppose y is a geodesic, then |y(t)\g = const for all t (assuming the domain of y is
connected).

Proof. For any p = y(t), there exists an extension X of y in a neighbourhood U of p. We can write
vogly.v)=X-gv.y)
= g(Dyv. v) + g(v. Dyy)
=0

as y is a geodesic. But the first term is

.0 d
x==(g(v. ) = g vl

by the chain rule. Hence [y|, is constant. O

Example 7.15

Consider R" with the standard Euclidean metric g;; = §;;. This means that r;ik = 0, and so the geodesic
equation becomes '
x'=0

and so X' is constant. That is, y,(t, a) = p + at is a straight line.
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Example 7.16

If we consider S™ with the round metric, given by the embedding S” — R"*'. For p € S" a unit vector
in R"*1 then we have a natural identification

T,S" = span{p}*
Choose @ € T,5". Then consider the plane
P = span{p, a}

Consider reflection T in the plane P. This induces a diffeomorphism on S" and preserves the metric (i.e. it
is an isometry). Then T preserves the r;k, and by construction it fixes p and a € T,M. Thus it preserves
all of the data defining y,(t, a). By uniqueness, we must have that T(y,(t, a)) = y,(t, a). Hence y,(t, a)
must lie in PN S”. That is, it is a great circle on S”.

Example 7.17

Now consider geodesics on parametrised surfaces £ C R3. Suppose we have a reqular parametrisation
r(u,v). Then g is the first fundamental form, with coefficients £, F, G. Then r;k can be computed from
the Gauss-Weingarten formulae. See examples sheet 3 question 10.

Let (M, g) be a Riemannian manifold, and fix p € M. Consider y(t, a) = y,(t, a). Let AinR. Then
4 (At, a) = Ay(At, a)
dty a) = AYIAL,

and
2

YWt a) = Ay(At, a)

From this, we see that y(At, a) is also a solution to the geodesic equations. With this, we have that

Y(At, a) = y(t, Aa)

Remark 7.18. For all @ € T,M, we can find € = &, > 0 such that for any |a| < &,
y(s. a) = y(1, sa)

But the map a +— &, can be chosen to be continuous, and so by compactness of the unit sphere in R”, there exists
€ > 0 such that for all |a|, < &, y(1, a) is defined.

Lecture 21

Definition 7.19 (exponential map)
Let (M, g) be a Riemannian manifold. The the exponential map at p is the map

exp, - [pM —> M
exp,(a) = y,(1. a)

Note that exp,(a) is well defined for (and potentially only for) a € T,M with |a|g < & In this case, exp,,
is smooth by standard ODE theory.
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Proposition 7.20.
(dexp,)o = tdr,m

Note here we identify ToT,M with T,M. Intuitively, consider the Taylor expansion.
Proof. Clearly exp,(0) = p. When |a|g < g, exp(a) is well defined, and we have that

Yp(t @) = vp(1. ta)

for [t] < 1. Then

(d expp)o(a) =5 . expp(ta)

= — 1.t
dt t:pr( ' G)

=0 Vp(tr a)

Corollary 7.21. For some rp > 0, the exponential map
exp, - Bg(0,r0) = U

is a diffeomorphism onto its image U, a neighbourhood of p. In this case, By(0, ro) is the radius ro open
ball with respect to the Riemannian metric g.

Proof. Inverse function theorem. O

Using this, (e><pp)’1 defines a chart around p. The respeective local coordinates are called the geodesic
(normal) coordinates. In these local coordinates,

exp, (1, a)) = ta (4)

and so the geodesics through p are represented by straight lines through 0. We call these radial geodesics.
On By(0, €), we have polar coordinates, given by

(0,€) x S"™" — B,(0, &)

(r.x)=rx
Using this, we obtain a local parametrisation given by
f(r, x) = exp(rx)
which is the geodesic polar coordinates. For r fixed, define the geodesic sphere

L =f{r}xs"hcm

Lemma 7.22 (Gauss). y,(t, a) meets ¥, orthogonally for every r < g, a € T,M. Thus, locally
g =dr’* + hir,v)

where h(r,v) =g

L,
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|
Proof Choose a vector field X € V(S"~"), where Sln — 1] will be the unit sphere in Tp,M with respect the
tnner product induced by g. Then extend X to a vector field X on Bg(0, 1E| by choosing X to be independent

of the radius.
Let X(r, v) = rX(v). This is still defined on Bg(0, 1). Let

Y(f(r.v)) = (dexp,)n X(r, v)
then Y is a vector field on a punctured neighourhood U of p.
First, consider the vector field % In this case,

d 1

— = —y,(t

ar al, Wit a)
from eq. (4). Now consider yy(t, a), for |a[, = 1 varying over ST C T,M, with |t] < e. This defines a vector
fleld on U. Also,
d a o d
(9 9)Y_ 9. i —o
dtg( ) rriAVARY)

or' ot
and so taking the limit t — 0 we see that

Thus, it remains to show that

0
o vi) o
First, consider
- 0
DyY — Dyy = (df) (D;X—Dkar)
d
= (df)=—X
(d )6r
X
= (dAHZ
(dh)~
Y
— (df)—
(d)-
With this,
0 0 . .
579 (Y'ar) =g (DyY.v)+ glY.Dyy)
=0 as y geodesic
oY
=g (Dyv+rvv)
1 .
= ~g(Y.¥)
as

. 1 .
g(Dyy,y) = iYg(v, y)=0

If we set G = g(Y, %), then

P
G is linear in r, and taking the limit as r — 0, we get

dGG

o d , 0
i 570 =tps (7] =0
since
}ij?)(d exp,)y = id
which is an isometry. O

3Punctured unit ball

47



7.2 Curvature

Definition 7.23 (Riemann cuvrature)

The (full) Riemann curvature of a metric g on a manifold M is R = R(g), which is the curvature of the
Levi-Civita connection on M.

In particular,
R € Q1,(End(TM))

we take the sign convention that
R(g)=—-DoD

Then in local coordinates ’
R = if?;,kgdxk AN ng
We call R, the Riemann cuvrature tensor.

For example, if X, Y € V(M), we obtain R(X, Y) € [(End(TM)). Locally, if X = X*0, Y = Y?9y, then

RX,Y) = (R X W)j_
Set
Rie = R(9x, 9¢) € End(T,M)

Then
R(X,Y) = X*Y*Ry,

In a local coordinate and trivialising neighbourhood, D = d + A, where A = A,dx*. Write
Dy = Do = 0k + A
Then for any vector fleld Z € V(M),
(=D o D)Z = RZ = (Repdx* A dx*)Z

But
RwZ = DyDvZ — DiDy7
Thus,
Ree = —[Dx, Dy]
With this,

Rl o = ((DeDx — DcDy)9;)'

Write Dy = X*Dy, then
—[Dx, Dy] = —[X*Dy, YDy
= —XK0: YO Dy — XKYIDL Dy + Y¥(0: XE) Dy + YEXP Dy Dy
= X*Y*Rey — X, YDy

With this, we have shown

Lemma 7.24.
R(X,Y) = Dix.y) —[Dx. Dy]

Lecture 22

Sometimes it is convenient to consider
i
Rijke = giqu,kg
In a coordinate free fashion,

(X,Y.Z, T~ g(RX,Y\Z,T)

where X, Y, Z, T € T,M. Thus,
Rijxe = g (Red;, 0;)
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Proposition 7.25 (symmetries of the curvature tensor). We have
(i) Rijex = —Rijke = Rjike,
(it) (first Bianchi identity) R, + Ri o, + Ry 4 =0,

(i) Rijke = Rieij

Proof. For (i), the first equality holds by properties of 2-forms. For the second equality, consider

99,
(97;5 = g(Dy0;,9;) + g(0;, D))
gy
Ixiaxk — 9(0eDx0:,9)) + g(Di0i, Ded)) + g(Ded:, Did)) + g(0i, DeD9))

But we know that g;; is smooth, and so the partial derivatives commute. Hence

_ 9°gyj _ gy

oxfoxk  oxkox?
= g([De. Di]0:,9;) + g(0:,[De, Di]0;)
= g(nga,-, 6/) + g(@i, R,k(?/)

= Rjixe + Rijke

0

as required.
For (ii), consider
R;,ke + R/i,éj + Réé,jk = (Dngaj — DkDga/ + D/Dgak — DyDy 0y + Dijag — D/Dkdg)i

We claim that _ _
(DeDy0;)" = (DeD;0y)'

This follows by (i). A similar computation for the other terms shows that the sum is zero. Note we also use that
(D)7 =T, = T{, = (D0)°
For (iil), first note that using the metric, we have that
Rijke + Rikoj + Riejx = 0

See online notes for octahedron trick. O

Corollary 7.26.
Rijke + Rikej + Riojx = 0

Corollary 7.27. At each p € M, (R ke) defines a symmetric bilinear form on /\2Tp/\/l.

It is useful to extract from (R/?M) simpler objects, with less components.

Definition 7.28 (Ricci curvature)
The Ricci curvature of a metric g is

Ric, : Ty M x T M — R
Ric, (X, Y) = tr(v — R(X, v)Y)

for X, Y,ve T,M.
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In local coordinates, Ric = (Ric;), then
Ric(X, Y) = Ric;; X'Y/
In terms of the full Riemann curvature tensor,
Ric; = Rﬁ/q = 9" Rpijq
Using the last expression, we see that Ric, is a symmetric bilinear form on T, M.
Definition 7.29 (scalar curvature)

The scalar curvature of a metric g is s = scal(g) € C*°(M), it is the trace of Ric with respect to the metric
g.

Explicitly, if g;; = 0y, then
S = Z RlCU
i

In general,
. - ‘o
s=g'Ricy = 979" Rpijg = 9" Rje

Lemma 7.30 (from representation theory). Consider the “space of curvature tensors” (K «¢), Le. tensors
satisfying the symmetries of the Riemann curvature tensor. This space decomposes when dim(M) > 5 into
irreducible representations of SO(n). Recall we have that at each p € M, R € ngz(/\Z(T[j/\/l)). Apply
trace as in the definition on scalar curvature, we get

Sym*(N°T5M) —— Sym?(TiM) —— R
where Ric = Tr(R), scal = tr(Ric). Then
Sym?(A*T5 M) = ker(Tr) @ ker(tr) ® R

as irreducible representations.

Proof. Omitted. ]
Lecture 23

Note that we have that g, Ric(g) € I'(Sym? T*M), and so the equation
Ric(g) = Ag
makes sense. If the equation holds, then
Ricy = ker(tr) =0
In this case, (M, g) is called an Einstein manifold. If A =0, then Ric(g) = 0 and we call (M, g) Ricci-flat.

Next, we can consider the scalar curvature in low dimension.

e In dimension 2, consider an embedded surface in R?. The Riemannian metric corresponds to the first
fundamental form. Recall B
s = gljgqupi,jq

Then
1 Ri2,21

P EG-F
If we write the second fundamental form as

Ldu? + Mdudv + Ndv?
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where L = (ry,, n), n is the unit normal. Recall that the Gaussian curvature

LN — M?
K—=_— >t
EG— F?
only depends on E, F, G and their first derivatives, by the Theorema Egregium. In fact,
LN — M* = Ry

and so
s=2K

e in dimension 3, R(g) is determined by Ric(g). That is, the map Tr is a linear isomorphism. See examples
sheet 4 question 6.

e in dimension 4, consider the Weyl curvature
W(g) = ker(Tr) = W, @ W_

This can be related to examples sheet 4 question 8, for example by splitting into self-dual and anti-self-
dual parts.

7.3 The Laplace-Beltrami operator

Throughout, assume (M, g) is an oriented Riemannian manifold, dim(M) = n, and suppose € € Q"(M) is an
orientation form.

For all x € M, apply Gram-Schmidt to the {@%} to obtain on any open neighbourhood of x, a local
orthonormal frame field eq, ..., e,. We can assume this is positively oriented, that is,

Let wq,..., wp be the corresponding dual coframe field. That is, each w; € Q'(U), and wi(e;) = 6;. In this

Wi A\ A wy = alx)e

where a(x) > 0. With respect to the inner product on the dual space, the w; form an orthonormal basis as well.
We can extend this to a unique inner product on A? T*M, by setting

{wh /\ . wl.p

1< < ip]’
to be an orthonormal basis. In this case,
(a1 N Nay, Br A ABy) = det({a;, B;))

if a;, B; are one-forms.
Suppose w; is another positively oriented orthonormal coframe field. Then

WA Aw, =det(®P) - wp A A w,y

where ® is the change of basis matrix. Since ¢ is orthogonal, and has positive determinant, det(®) = 1. In
particular, the local n-forms
w1 A\ A\ wpy

patch together over (M, g) to a well defined non-vanishing n-form w,. We call this the volume form of (M, g).
Definition 7.31 (Hodge star)
The Hodge star on M is the linear map

x ANPTIM — AN"PTIM

such that
aN*B = (a,B)wg
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For uniqueness, the Hodge star is defined by its action on a basis. For example
*(wy A A wp) = Wppr A A wy

using orthogonality. For example, *1 = w, and *w, = 1. A computation shows that

Lemma 7.32.

of = (—’I)P(nip) 'Ld/\thM

Definition 7.33 (codifferential)

Define the codifferential
5 = (=" e dse - QPM) — QP (M)

for p > 0. We define 6 on O-forms to be zero.

Definition 7.34 (Laplace-Beltrami)

The Laplace-Beltrami operator is

A = 5d +dd : QP (M) — Q°(M)

Proposition 7.35.
/ (da, B>g Wy = / (a, 5B>g Wy
M M
for all @ € QP~"(M), B € QP(M) compactly supported.

Proof. By Stokes,
/ dlanxB) =0
M

d(a A*B) = (da) A B + (—1)PTa A d(*B)

But

Now note that
— % 0B = (=) s xd(x) = (—1)" PPN (5 B) = (—1)P " d(B)

With this, we see that
d(a A*B) = (da, B) wg — (a, 0B) wy

Remark 7.36. Define the [? inner product of p-forms as

(& Mang = /M (&, 1), wy

and so we have that

(da. B,y = (. 0B
So ¢ is the formal [?-adjoint of d.
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Corollary 7.37. A* = A is formally self-adjoint.

Lecture 24

Definition 7.38 (harmonic)

Define
HP (M) = ker(A : QP(M) — QP (M)

for the space of harmonic p-forms.

Remark 7.39. *A = Ax, and so the Hodge star is a well defined map

* HP(M) — H"P(M)

Proposition 7.40. Suppose M is compact. Then for a € Q?(M), Aa = 0 if and only if doa = 0 and
oa =0.

Proof. The ‘if’ direction is obvious. Now suppose Aa = 0, then

0= (Aa, a)) = (dda + oda, a)) = ||oa]’ + ||da]|’
and so da =0 and da = 0. O

Corollary 7.41. Let f € C*°(M), M compact and connected. If f is harmonic then f is constant.

Note thet the result is false if M is not compact, for example e* cos(y) on R?.

Theorem 7.42 (Hodge decomposition). Let M be a compact, oriented, Riemannian manifold, 0 < p <
dim(M), and we have that

1. HP is a finite dimensional vector space,

2. we have the [’-orthogonal decompositions
QF (M) = HP (M) & AQP (M)
=HP(M) @ doQOP (M) & 0dQP (M)
= HP(M) & dQP~" (M) & QP (M)

Corollary 7.43. Let M be as in the Hodge decomposition. Then for all a € Hi5(M) there exists a unique
a € HP(M) such that [a] = a.

Proof. First we show uniqueness. If we have a1, @, € HP, with a1 = a» + dB. With this,

B = (a1 — av, dBY) = (3o — s, B)) = 0

and so 8= 0.
For existence, given a class a, it will be represented by a closed form a. Now

a=a+dB+dy
by the Hodge decomposition, with a harmonic. Thus, we must have that ddy = 0. Now
0= {(doy. v) = ||ov]]

and so [a] = [a]. O
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Corollary 7.44. We have a linear isomorphism of vector spaces

HP (M) = Hig(M)

a[a]

The proof of the Hodge decomposition is quite involved. We will however make some remarks about the
proof.
The main argument concerns QP (M) = HP (M) @ AQP(M). We can think of this as the existence of a solution

Aw =« )
for some fixed a € QF. If w is a solution, then
(Aw, @) = {a. @)
for all ¢ € P, Define

0 Q0P (M) > R
Cu(B) = (w. B))

¢ defines a bounded linear map, since by Cauchy-Schwarz

12.,(B)| < llwi||B]|

Moreover,
Cu(Agp) = (w, Ag)) = (Aw, @) = (a. B)
Thus, we define a weak solution of eq. (B) is a bounded linear map ¢ : OP(M) — R with

0(Ag) = (a, @)

for all ¢ € OOP. For this, we will require

Theorem 7.45 (elliptic regularity). Every weak solution of eq. (9) is of the form
0(B) = {w. B)

for some w € Q. That is, every weak solution comes from a weak solution.

Theorem 7.46 (compactness). If a sequence a, € QP(M) is such that ||an||, HAO(”H are bounded, then a,
contains a Cauchy subsequence.

The fact that the space of harmonic forms is finite dimensional follows. If not, then it would contradict
compactness.
We can write

OF = HP & (HP)*

where (HP)* is a closed subspace. By self-adjointness, AQP C (HF)*. Thus, it suffices to show that eq. (5) has
a weak solution when a L HP.
For n € Q, put
0(An) = (a, )

We can show that ¢ extends from AQ” to a bounded linear functional on p-forms, using Hahn-Banach.
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of a vector bundle,
trivialising neighbourhood, [20]
typical fibre, [26]

unitary connection, [37]
unitary trivialisation, [28]

vector bundle, [20]
vector field, [T0]
vertical subspace, 34
volume form, [57]

Weyl curvature, 5]
Whitney embedding theorem, [T7]

Xg, vector field generated by & [T7]
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