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1 Introduction

A Lie group is fundamentally a group, which also a (smooth) manifold. For example, GL,, SL,, SO,, Sp,,.

Example 1.1

A prototypical example of a Lie group is the circle group S

Let G be a Lie group. Then the Lie algebra of G is the tangent space at the identity e of G. That s,
g="T.G

g is a vector space, with additional structure, which we will see later.
By taking a derivative, we turn the conjugation map

G — Aut(G)
g g()g"
into a map
ad : g — End(g)
called the adjoint. This gives a bilinear map
[]:exg—g
[x, yl = ad(x)(y)

Example 1.2
If G = GL,(R), then we have that g = gl,(R) = Mat,(R), with

[x, y] = xy — yx

What do Lie algebras tell us about the structure of the Lie group G?

o We will define the root system of g, and this then tells us about commutator relations in G (see Carter’s
book).

o We will define the Weyl group of g. For example, the Weyl group of gl,(C) is isomorphic to S, there
is an embedding S, — GL,(C), vie permutation matrices. Let B denote the Borel subgroup of upper
triangular matrices in GL,(C), then there exists a Bruhat decomposition

G= U BwB

wes,

Lie algebras also give us information of the representation theory of G and g. For example, there exists a
bijection
{finite dimensional C-representations of SL,(C)} < {finite dimensional C-representations of sl,(C)}
Moreover, we can describe the right hand side completely.
In addition, Lie algebras have applications in Algebraic Geometry, for example, we can use Lie algebras to

build families of surfaces, of equivalenrly, algebraic curves (See book by Slodovy).
We will define the Dynkin diagrams of semisimple Lie algebras. For example,




is a Dynkin diagram of type E7, and understanding the Dynkin diagram tells us about the singularities on the
surfaces.
Moreover, Lie algebras also have applications in number theory, root systems/Weyl groups give the structure
of groups over Q,, the p-adic integers (see paper on Moodle). Local Langlands correspondence predicts a
relationship
{Galois theory of local fields} <> {complex Lie theory}

Finally, there any other applications, for example algebraic groups, quantum groups, theoretical physics,
quantum mechanics.

2 Basic definitions and examples

Let k be a field. Most of the time, k = C, but not always. We will sometimes point out how things can go
wrong in characteristic p.

Definition 2.1 (Lie algebra)
A Lie algebra over k is a vector space g over k, together with a bilinear pairing
[ ]rexg—g
satisfying
1. [xx] =0 for all x € g,

2. the Jacobt identity
Myzl + [ylzx] + [2lxy] = 0

Notation 2.2. Note that when clear, we will write [xy] := [x, y].

Remark 2.3. In particular, we have antisymmetry, Le.

[xy] = —[yx]

Definition 2.4 ((Lie) subalgebra)
A k-vector subspace § of g is a (Lie) subalgebra if b is closed under the Lie bracket of g. That is, for all
X,y €h, [xy] €.

Example 2.5
Let V be a finite dimensional k-vector space, then

1. Let gl(V) = End(V), with [xy] = xy — yx. If we choose a basis for V, then we can identify gl(V)
with Mat, (k). In this case, we will write gl, or gl,(k).

2. Let
sl(V) = {x € gl(V) | tr(x) = 0}

This defines a subalgebra of gl(V), called the special linear Lie algebra, with dim(sl(V)) = dim(V/)*—
1. The standard basis of sl(V) is given by

Eijfori+j
Eii — Eit1,i41

We will often write s, for this Lie algebra.
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Example 2.6 (continued) 3. Suppose char(k) # 2, and suppose V' is endowed with a symmetric non-

degenerate bilinear form
() VxV-ok

Then define
so(V) ={x egl(V)| (xv,w)+ (v.xw) =0 for all v, w € V}

If M € GL(V) is such that {v, w) = v Mw, so
so(V) = {x | Mx+x'M =0}

We usually take

0 ”) n=2¢
b 0
M=4/1 0 0
00 I| n=20+1
0/ O

These are called the orthogonal Lie algebra, denoted so,,.

Remark 2.7. In the case n = 2, let
0 1 0 0 1 0
=6 o) =1 0) = 2

viewed as matrices (in sl,(C)). Indeed, this is the standard basis of sl,(C). Note

[efl=h
[he] = 2e
[hf] = —2f

We'll see that (in some sense) the structure of all semisimple Lie algebras comes from sl,(C).

4. Again suppose char(k) # 2. Now suppose V is endowed with a non-degenerate skew-symmetric
(or alternating) bilinear form (-, -), then

sp(V) = {x € gl{V) | (xv, w) + (v, xw) = 0}

In coordinates, we take the form (-, -) to be the skew-symmetric form given by

(0
v= {5 o)

where n = 2¢. This is called the symplectic Lie algebra, denoted sp,,.

If we consider the Lie groups in the above as being defined by the equation
XTMX =M

For appropriate choices of M, we get the Lie groups SO,, Sp,. Differentiating this equation gives us the Lie
algebras so,,, sp,,.

Exercise: Check that so, and sp, are Lie subalgebras of gl,. It's not very hard to check this directly. On
the other hand, we can also see that SO, and Sp, are subgroups, and so their tangent spaces are subspaces
of gl,,, and hence their Lie algebras are subalgebras of gl,.

Example 2.8 (continued) 5. Any vector space V is a Lie algebra with [vw] = 0 for all v, w. We call
such Lie algebras abelian. It is named like this, since for linear Lie algebras, that is, any subalgebra
of gl(V) where V is finite dimensional, [xy] = xy — yx = 0 is true if and only if x and y commute.



6. b, is the Borel algebra of upper triangular matrices
0 *
This is the Lie algebra associated to the Borel subgroup of upper triangular invertible matrices.

7. n, is the Lie algebra of strictly upper triangular matrices,

n stands for nilpotent, see section 7.

Basic representation theory

Definition 3.1 (homomorphism, isomorphism)

A linear map ¢ : g — b between two Lie algebras is a homomorphism if

o(xy)) = [o(x), @(y)]

for all x,y € g. If ¢ is a linear isomorphism, we call ¢ an isomorphism of Lie algebras.

Definition 3.2 (representation)

A representation of g is a Lie algebra homomorphism
¢ g—gllV)

for some vector space V.

Notation 3.3. We also call V itself a representation, or a g-module. We write g @ V, and say g acts on V. We will
write
X-v=xv:i= X))

The dimension of the representation is the dimension of V.

Example 3.4 1. Let dim(V) =1, then g @ V via xv = 0. This is called the trivial representation.
2. gis asubalgebra of gl(V), then the natural inclusion g < gl(V) is called the defining representation.

3. Let x € g, define ady : g — g by ady(y) = [xy]. The map

ad: g — gl(g)
X — ad,

is called the adjoint representation.



Remark 3.5. Recall e, h, f from remark [27] the adjoint representation of s[;(C) has matrices

oo o) el

with respect to the basis {e, h, f}.

4. If V, W are representations of g, then so is their direct sum V @ V, via
x(v, w) = (xv, xw)

5. If V is a representation of g, then so is the dual V*,

(xf)(v) = —f(xv)
forallx e g, feV,veV
6. If V, W are representations of g, then so is the homomorphisms Hom(V, W), via

(x-Hv) =x-f(v)—f(x-v)

Definition 3.6 (equivariant, isomorphism)

If V, W are representations of g, then a linear map ¢ : V — W is called g-equivariant forall x € g,v € V,

X plv) = glx-v)

We say V, W are isomorphic if there exists a g equivariant isomorphism (of vector spaces) V — W.

Definition 3.7 (subrepresentation, irreducible)

A subrepresentation W < V' is a subspace xw € W for all x € g, w € W. A non-zero representation V
is irreducible or simple if the only subrepresentations of V are 0 and V.

Exercise: The trivial representation is irreducible, and so are the defining and the adjoint representation of

sl (C).
2(C) Lecture 3

Definition 3.8 (completely reducible, semisimple)

A representation V' is completely reducible, or semisimple if it decomposes as the direct sum of irreducible
representations.

Exercise: A representation V is completely reducible if and only if for every subrepresentation W of V,
there exists another subrepresentation W’ such that

V=WeWwW

Example 3.9

If V' is a representation, W < V' a subrepresentation, then the quotient V/W is a representation of g, via

x(v+ W)= xv)+ W



| Remark 3.10. The isomorphism theorems hold for quotient representations as well.

4 Representation theory of sl,(C)

We'll see later on that the representation theory of general semisimple Lie algebras is "built up” from the
representation theory of sl;(C). Moreover, it serves as a useful example to motivate various definitions.

Recall
- [: %)

a,b,cE(C}>

Example 4.1
We have

=10 <l

which is the Borel subalgebra of 2 x 2 matrices. Let V = span {v; = (2)) V2 = (?) ]» and the defining

representation of by. This is not completely reducible. To see this, set
Vi = span{v}

and this does not have a complement.

Definition 4.2 (faithful)
A representation V of g is faithful if the map

g — gl(V)

is injective.

From now on, all Lie algebras and their representations will be over C, unless stated otherwise.
Let V be a representation of sl(C). Recall the basis

S

of sIr(C). We know three representations of sl(C) already.

dimension name action of h
1 trivial 0
. 17 0
2 defining (O 1 )
2
3 adjoint 0
-2

Definition 4.3 (weight space)
For A € C, the A-weight space of V is

Vi={veV|hv=2Av}

is the A-eigenspace of h.

The following are vector space sums, not decompositions into subrepresentations.




e For the trivial representation,
V=W

e For the defining representation,
V=VeV,

e For the adjoint representation,
V=V,eVyd V.,

where V; = (e), Vo = (h), Vo, = (f).

Forv e V),
h(ev) = (he)v = ((he] + eh)v = 2ev + Xev = (A + 2)ev

Hence ev € V)15 Similarly, fv € V,_.

That is, we have
e e e

e
— > Vo - Vi - Vis2

Definition 4.4 (highest weight vector)

A non-zero
v e VyNker(e)

for some A is called a highest weight vector (of weight A)

Example 4.5
In the adjoint representation, e is a highest weight vector.

Lemma 4.6. Suppose v € V) is a highest weight vector. Then for all n > 1,

ef"'v=nA—n+ 1"y

Proof Induction on n. For n =1,
(ef)v = (lef] + fe)v = (h + fe)y = lv = T(A =1+ 1)

The inductive step follows similarly.

Lemma 4.7. Suppose v € V) is a highest weight vector. Then
W = span{v, fv, v . }

is a sub-representation of V,

Proof. Suffices to show that for w = f"v € W, then ew, fw, hw € W. By definition, fw € W is obvious.
ew € W follows by lemma [46] and the n = 0 case is just ew = 0.

For hw,
fv € V)HZH

and so
hw = (A=2nwe W



Proposition 4.8. If V' is finite dimensional, then a highest weight vector exists.

Proof. Choose any nonzero eigenvector v of h (always exists as we are working over C). Consider
v.oev, e, .
These are eigenvectors for h, with distinct eigenvalues. Hence the set
{e"v ]| e"v # 0}
is linearly independent. As V' is finite dimensional, this set must be finite. Hence there must exists n such that
e"v+0 and e v=0

Then e"v is a highest weight vector. O

Lemma 4.9. Suppose V is finite dimensional, and v € V, is a highest weight vector, then A € Z.

Proof. Any non-zero vectors of the form f”v must be linearly independent, so there exists n > 0 such that
f7v 40,y = 0. By lemma

0=ef""v=(n+NA=n)f"v
Hence we must have that A = n, since n +1 0, f"v 0. OJ

Conclusion: Suppose V is irreducible, of dimension n + 1. Then by proposition [£:8] a highest weight vector
v € Vj exists. By lemma 7] we have a subrepresentation

W = span{v, fv,...}

So by irreducibility,
{v.fv, ..., "}

is a basis, as the fiv are linearly independent, and we know from lemma that A = n.

Corollary 4.10. If V' is an irreducible representation of sl, of dimension n + 1, then there exists a basis
Vo, . .., Vv, of V, such that the actions are:

[ 1 n— i+ vy i—1>0
hvi = (n — 2i)v fv, = i l.+ sn ev;, = i =i+ Tvicy [ 2
0 i=n 0 i=0

In particular, there is a unique irreducible representation of sl, with dimension n + 1 for all n > 0.

Remark 4.11. Let V be the n + 1 dimensional irreducible representation of sl,, and let v € V be a highest weight
vector. Note

(ef—&-fe—&-%hz)(v): (n—l—n;) %

5 lrreducible modules for sl

Notation 5.1. We will write V(n) for the n + 1 dimensional irreducible representation of sl;.

Lecture 4



Definition 5.2 (weights)

Given a representation V for sl,, the set
{AeC|V,+0}

are the weights of V.

We will show Weyl's theorem.

Theorem 5.3. Every finite dimensional representation of sl is completely reducible.

This result, along with corollary[A10] implies that the action of h completely determines a finite dimensional
representation of sl;.

Example 5.4

Suppose V' is a 5-dimensional representation of sl,, and there exists v € V of weight 3. This means that
by counting dimensions, the possible weights are {3,1, —1, =3}, and {0}. Thus,

V= VE3) @ V(0)

We will need a few facts. Let g be a Lie algebra, ¢ : g — gl(V) be a representation of g, and suppose there
exists o € gl(V) commuting with ¢(x) for all x € g. Then:
Fact 1:
ker(o — Aidy)

is a subrepresentation of V/, for all A € C. To see this, if v € V is such that o(v) = Av, then

Fact 2: If V is irreducible, then ¢ is a scalar multiple of idy. That is, Schur's Lemma.

Definition 5.5 (Casimir element)

Let V be a finite dimensional representation of sl,. Then
1.2
Q=ef+fe+§h e gl(V)

is called the Casimir element (of sl).

In fact, Q is central.

| Lemma 5.6. If ¢ : sl, — gl(V) is a representation, then QO commutes with ¢(x) for all x € sl,.

Proof. To show Q) is central, suffices to show Qe = eQ, Qf = fQ, Qh = hQ. Just compute. O

| Corollary 5.7. If V' is an irreducible finite dimensional representation of sl;, then QO @ V by a scalar.

Proof. By Schur's lemma and lemma [5.6] Moreover, the scalar is

n2

?—FH

10



Proof of theorem[h3 Let ¢ : sl — gl(V) be a finite dimensional representation of sl,. Let W < V be a
subrepresentation. We need to find a subrepresentaion U < V, such that

VEWeU

Case 1: W has codimension 1. So V/W = V/(0).
Subcase (i): W is trivial. In this case, dim(V) = 2, and so we have a basis vy, v, of V, with respect to
which sl; acts on V/, by matrices
0 =
o o)

We will show V' is isomorphic to V(0) @ V/(0). Note that
Rl

) e 4]

for all x, y. Since ¢ is a representation, it respects the Lie bracket. We must have that

and so 1
¢le) = slelh). (e)] =0

and ¢(f) = 0 similarly. Thus, the action of sl; is trivial.
Subcase (ii): W = V/(n) is irreducible, n > 0. We have the Casimir element Q € gl(V/), and we will show

V = V(n) & ker(Q)

By Schur's lemma, and the fact that W is irreducible, and that Q acts on V/W trivially, there is a basis for V,

such that o
*
a={5 o)

Note here, since W is a subrepresentation, Q) restricts to an element of gl(W), which is how we get the top left
entry. W is non-trivial by assumption, and so ker(Q)) # 0, and W N ker(Q) = 0. Hence

V=WeQ

Subcase (iii): For a general W. We do this by induction on dim(V). If dim(V) = 1, the result is clearly
true. So we can assume dim(V) > 2. Let W/ < W be a non-zero subrepresentation. As dim(W/W') < dim(V),
and codimyu/(W/W’) =1, by induction, this implies that we have a splitting

% W w”

w-w®wW 1
for some subspace W” < V, with W/ C W”, and W”/W’ is a subrepresentation of V/W’. Moreover, W /W’
has dimension 1, and dim(W’) < dim(V). W” being a subrepresentation of V' follows from the fact that W” /W’
is a subrepresentation. By induction again, there exists a subrepresentation U < W” such that

W' =waweU
We know that
V=WaoU

as W N U =0 since eq. is a direct sum, and so WNU < W nU =0. Using dim(U) = 1, and counting
dimensions we are done.
Case 2: Let W be arbitrary. Recall the action on Hom(V, W), is given by

(x@)(v) = x@(v) — @lxv)

Define
V = {¢ € Hom(V, W) | ¢|w = Aidw for some A}

i



and we have a subspace
W={yeV]|lw=0}<V

We lose one degree of freedom going from V to W, and so codimy(W) = 1. Suppose ¢|w = Aldw, x €
s, w € W, then
(xip)(w) = xp(w) = hlxw) = x(Aw) = Alxw) = 0

So V is a subrepresentation of Hom(V, W), and so W is a subrepresentation as well. By case 1, there exists
a one-dimensional subrepresentation U < 'V, such that

V=UoW

Write U = (y), for some y € V, and so y|w = Aidy, for some non-zero A.

Claim 5.8. We have a vector space decomposition:

V=W ® ker(y)
Lecture 5
Proof of claim. By construction, W N ker(y) = 0, and by dimension counting, dim(V) = dim(W) + dim(ker(y)),
as W = im(y). Since dimensions add up and the intersection is zero, we have a direct sum of vector spaces. [

Finally, it remains to show that ker(y) is a subrepresentation of V. Let v & ker(y), x € sl,. Since U is
one-dimensional of sly, it must be the trivial representation. Thus,
0 = (xy)(v) = xy(v) = v(xv) = —y(xv)

as y(v) = 0. This means that xv € ker(y) as required.
O

In Humphreys' book §6.3, Humphreys proves theorem [5.3] for a general semisimple Lie algebra. Or see
Henderson §5.2.1, §7.5.1.
Remark 5.9. 1. The proof only needed (in terms of representation theory)

e existence of a Casimir element Q,

e the only one-dimensional representation is the trivial representation.

2. Complete reducibility is rare, it can fail for infinite dimensional Lie algebras, or simple Lie algebras in positive
characteristic. For example, the adjoint representation of sl,(F,) on gl,(F,) is not completely reducible if p | n.

6 Tensor products

Given vector spaces V, W, with bases vy, ..., v, and wq, ..., w,, respectively. We define the tensor product
V ®c W as the C-vector space, with basis
{vi®wti,

subject to the usual bilinearity conditions.
Definition 6.1 (tensor product of representations)
If V, W are representations of a Lie algebra g, then so is V ® W, with

x(v@w) = (xv)@w+ v (xw)

Example 6.2
If V., W are sl; representations, v € V,, w € W,, then

h(v®w) = (A+ p)(vew)

12



That is,
v w = (Ve W),

+u

Thus, the weights of V. @& W are just A + p, where A is a weight for V, p is a weight for W.

Example 6.3
For
V() ® V(2) = V(2)¥
we have the weights:
‘2 0 -2
214 2 0
012 0 -2
210 -2 -4

and so

V)22 = V@4 @ V(2)® V(0)

In particular, if v, is a highest weight vector in V/(n), then v, ®

v is a highest weight vector for V(n)® V/(m).

We would like a general formula for decomposing V(n) ® V(m). The answer, as in Part |l Representation

theory, is a Clebsch-Gordon formula

n+m
V(n)® V(m) = D V(r)
r=|n—m|,r=n—m (mod 2)
We won't need this though.
Definition 6.4
The n-th symmetric power is
5 \/®n
V= (V)=
S Sym” (V) M
where M, is the span of
U Q- Q@ Up = Ug(t) @ - @ Ug(n)

where 0 € S, and u; € V.

For example, M, is the span of v ® w — w ® v. In particular, note that M, is a subrepresentation of V®"

of V. So Sym"(V) is a representation of V.

Example 6.5
In SV, v@w = w® v, and so S?V has basis

V[®\/j

for i < j. Decomposing S?V/(2), we see that e ® e € S?V(2) is nonzero (note V(2) is the adjoint

representation), and so V/(4) is a subrepresentation of S?V/(2

). In particular, we have a splitting

S?V(2) = V(4) & V(0)

Definition 6.6

13



The n-th exterior (or alternating) power is

\/®n
ANV =
N
where N, is the span of
u1 ® e ® un

where u; € V, and u; = u; for some i + j.

Again, N, is a subrepresentation of V®", and so A"V is a representation.
Example 6.7

With n =2, N, = span{v® v}.

Notation 6.8. We write (the coset of) u1 ® --- ® u, in A"V as

ug N---Nu,

Exercises:
1. Decompose A’V/(2) = V/(2), with basis e A f,e Ah, h AT
2. Find the dimensions of S"V and A\"V.

7 Results about semisimple Lie algebras

Let g be a Lie algebra over C.

Definition 7.1 (ideal)

A subspace | C g is an ideal of g if
[xyl el

foral xe g,y el

Remark 7.2. Any ideal is automatically a subalgebra.

Suppose [ is an ideal, then g// is a Lie algebra under
X+1Ly+=[xyl+/
Moreover, / is an ideal if and only if it is a subrepresentation of the adjoint representation ad : g — gl(g).

Example 7.3

The centre of g is
Zg)={xeg]|[x.y|=0foral y € g}

and by definition, Z(g) = ker(ad : g — gl(g)).

If Z(g) =0, then ad : g — gl(g) is faithful, and thus we have an embedding

ad: g — gl(g)

and as such, g can be regarded as a Lie subalgebra of gl,, where n = dim(g).

14



Theorem 7.4 (Ado). Suppose char(k) = O, then any finite dimensional Lie algebra g embeds as a Lie
subalgebra of gl,, for some m.

Proof Omitted. O

Note that the embedding need not be via the adjoint representation. In fact, this is true for char(k) = p > 0,
due to lwasawa.

Example 7.5
The derived subalgebra of g is

Dig) =lg. 0] = {Ix.ul [ x.y € g}
This is an ideal of g.

Recall sl, is a subalgebra of gl,. In fact,

D(g[n) =sl,

Example 7.6

Suppose ¢ : g — b is a homomorphism of Lie algebras, then

ker(p) = {x € g | ¢(x) = 0}

is an ideal of g. In fact, every ideal arises in this way.

Definition 7.7 (simple)
A Lie algebra g is simple if [g, g] # 0, and the only ideals are 0 and g.

Example 7.8
We can show that sl, (for n > 2), s0, (for n > 2) and sl (for € > 1) are simple.

Remark 7.9. 1. if g is simple, then [g, g] = g.
2. if g is simple, every representation of g is either faithful, or the direct sum of trivial representations.

3. g is simple if and only if the adjoint representation is irreducible.

Definition 7.10 (semisimple)

A Lie algebra g is semisimple if it is the direct sum of simple ideals. That is, ideals which are simple as
Lie algebras.

Example 7.11

504 = sl @ s

We will state a more ‘standard’ definition of semisimple Lie algebras, and show that these are equivalent.

15
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Definition 7.12 ((lower) central series)

The (lower) central series of a Lie algebra g is the sequence of subalgebras
g=¢'29'2¢°2

with g” = [g, g"~"]. That s,
g21g.9]2[0[0.0]2

Definition 7.13 (derived series, upper central series)

The derived series, or upper central series for a Lie algebra g is the sequence
g(O) ) 9(1) ) g(Z) S oo
where g = g, and gi" = [g""="), g"=")]. That is,

g2[g.02(s.0llo.g]2

Remark 7.14. o g Cyg",

e g” and g are ideals.
To see the second point, we induct on n. The case n =0 is clear. Let x € g,y € g". Then

[x.yle g
since "' is an ideal, and g" C g"~". As

g ={lxyllxegyeg '}

this clearly contains [x, y]

Example 7.15 1. if g is simple, then g” = g = g for all n.
2. if g is abelian, then g' = g/ = 0.

3. let n, C gl, be the Lie algebra of strictly upper triangular n x n matrices. The central series for
n, s

0 *

I
I
U
o

Note n3 is the Heisenberg Lie algebra.

Definition 7.16 (nilpotent)

If g” = 0 for some n, then g is called nilpotent.

Definition 7.17 (solvable, soluble)
If g”) = 0 for some n, then g is called solvable (or soluble in BrE).

Exercise: Let b, C gl, be the Borel Lie algebra of upper triangular matrices. Then b, is solvable but not
nilpotent (for n > 2).

Note on the other hand that as g!”) C g”, nilpotent implies solvable.

The next result allows the theory of complex semisimple Lie algebras to go far’ with minimal work.

16



Theorem 7.18 (Lie's theorem). Let k = C (or an algebraically closed field with characteristic 0). Let
g C gl(V) be a Lie subalgebra, and suppose g is solvable. Then there exists a common eigenvector for all
elements of g.

That is, there exists v € V non-zero, such that for all x € g, xv = A,v for some A, € C.

Proof. Omitted. See Humphreys Theorem 4.1. O

In particular, span{v} defines a one-dimensional subrepresentation of V.

Corollary 7.19. There exists a basis for V such that every element is upper trianqular.

In fact, using theorem [7.18 and induction on dim(V/), we can show that there exists a chain of subspsaces
O=W%<V< - ZV,=V

with dim(Vi) = i, and g- V; C V;. By considering a basis for V;, we get the corollary. Therefore, we can consider
g C b, as a subalgebra of the upper triangular matrices. To fill in the details here, the base case dim(V) =1
is trivial. Now suppose the result holds for all representations W with dim(W) = n. Let dim(V) = n+ 1. By
Lie's theorem, we have a one-dimensional subrepresentation U. Now consider V/U, which has dimension n.
Hence by induction, there exists a chain of subspaces

O=Wo<W < - < W, =W= VU
with dim(W;) = i and g - W; C W,. By the correspondence theorem, say W; = V4/U. Then we obtain a chain
O=W<Vi<- -V, =V

with the desired properties.
Aside: We call the sequence
O=WIWV<-- <V,

a maximal flag, and there is interesting geometry related to this.
One application of Lie's theorem is when we have the adjoint representation g — gl(g), since subrepresen-
tations correspond to ideals. Thus, we have a sequence

of ideals of g, with dim(g;) = L.

Proposition 7.20. Suppose /, J are ideals of g. Then
(i) if g is solvable, then any subalgebra or quotient of g is solvable.
(ii) if / is solvable, and g// is solvable, then so is g.

(iit) if /,J are solvable, then so is / + J.

Proof. (i) is clear from definitions. For (ii), choose n such that (g//)"" = 0. Then this forces g C /. But then
we have g(””’) C '™ for each m > 0. Since we know that / is solvable, we are done.
For (iit), note that

/
nj

I

I+
J

and the right hand side is solvable, by (i), and J is solvable by assumption, and so by (ii), / + J is solvable. [
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Definition 7.21 (radical)

The radical of g is Rad(g) is the maximal solvable ideal of g. That is, it is the sum of all solvable ideals
of g.

Definition 7.22 (trace form)

Suppose ¢ : g — gl(V) is a finite dimensional representation of g. Then the trace form of V (or ¢) is the
symmetric bilinear form

() gxg—>C
(x, y) = tr(e(x)e(y))

Exercise: We have the invariance relation ([x, y], z) = (x,[y, z]). This is essentially just the cyclic property
of trace.

Definition 7.23 (Killing form)
The Killing form K{(-, ) is the trace form of ad. That is,

K(x, y) = tr(ad(x) ad(y)) = (x, y)ad

Lecture 7

Theorem 7.24 (Cartan-Killing criterion). For a finite dimensional Lie algebra g, the following are equiv-
alent:

(i) g is semisimple,
(it) Rad(g) =0,

(iit) the Killing form of g is non-degenerate.

Remark 7.25. Rad(g/Rad(g)) = 0O, since a suitable ideal of g/Rad(g) would lift to give an ideal J of g, containing
Rad(g), with J/Rad(g) solvable. Hence J is solvable, and J C Rad(g).
Using this, g/ Rad(g) is semisimple.

Theorem 7.26 (Levi's theorem). Let k be a field with char(k) = 0, and g a finite dimensional Lie algebra
over k. Then there exists a Lie subalgebra g’ of g, with g’ N Rad(g) = 0, and as vector spaces,

g =g @ Rad(g)

and g’ is isomorphic to Rad(g), and thus semisimple. That is, the short exact sequence
0 —— Rad(g) —— g —— g/Rad(g) —— 0

splits. This is called the Levi decomposition of g, and g’ the Levi subalgebra of g.

Not proven in the course. See Fulton-Harris appendix E. O

Lemma 7.27. Let g be a Lie algebra,

(i) if I is an ideal of g, then so is [/, /],

18



(i) Rad(g) = 0 if and only if g has no non-trivial abelian ideals.

Proof. For (i), if x,y € I,z € g, we need to show that
[z [x.y] €[l 1]

Using the Jacobi identity,
2.y = —xly. 2] =[y. x. 2] €[] 1]

as / is an ideal.
For (ii), it is clear that any abelian ideal is solvable. Conversely, if / is solvable, then the last non-zero
term in the derived series of / is abelian. O

Notation 7.28. Define
g-={xcg|K(kxy) =0forall x € g}

Lemma 7.29. g* is an ideal.

Proof. For x € g*,y,z € g, then K([x,y, z) = K(x,[y, z]) = 0 O

Lemma 7.30. Let / be an ideal of g, and let K denote the Killing form of /. Then
Kilx, y) = K{x, y)

forall x,y € /.

Proof. Choose a basis for /, and extend it to a basis of g. Given x, y € /, with respect to this basis,

ad(x) = (g‘ ;)

where A = (ad(x))|;, and similarly for ad(y). Set B = (ad(y))|;. Then

Ki(x, y) = tr(AB) = tr(ad(x) ad(y)) = K(x, y)

o o] (o 5] = (%3]

Note here that

Theorem 7.31 (Cartan’s criterion (for solvability)). Suppose g is a subalgebra of gl(V), for V a finite
dimensional vector space over C. g is solvable if and only if tr(xy) = 0 for all x € g,y € [g, g}
In other words, g!" < g*.

Proof. See Humphreys 4.3 using Lie's theorem and the Jordan decomposition. For the Jordan decomposition,
see §8. O

Corollary 7.32. (i) if g = g*, then g is solvable.

(ii) if g is simple, then g+ = 0,

1

(iit) g is solvable for any finite dimensional Lie algebra g.
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Proof. (i) Consider the adjoint ad : g — gl(g). The image is ad(g) = g/ker(g) = g/Z(g). Z(g) is solvable, since
it is abelian, and by assumption g = g*. By theorem ad(g) is solvable, and so g is solvable.

(i) Since g+ is an ideal, and g is simple, g= = 0 or g* = g. In the second case, by (i) g is solvable,
contradicting the fact that g is simple, as [g, g] = g.

(iit) By lemma m (g4)*F = g+, so by (i), g* is solvable. O

With this, we can now prove the Cartan-Killing criterion.

Proof of theorem[Z24 First we show (i) = (iii). In this case, g is solvable, and so g* < Rad(g) = 0. Thus
K is non-degenerate.

For (iii) = (ii), let A be an abelian ideal of g. We will show that A C g*. Choose @ € A, y € g. Choose
a basis for A, and extend it to a basis of g. That is,

ad(a)=(8 g) and ad(g)=(g :)

Computing tr(ad(a)ad(y)), we find that it is zero. Thus A = 0. Therefore, Rad(g) is non-zero, then g* is
non-zero.
Now assume (ii) and (iii) hold. If g is simple, then we are done. If not, choose a minimal non-zero ideal /.
Let
g={xecg|Kx y =0forallyel}

This is an ideal of g.

Claim 7.33. g=g,® /.

Proof. Since [ is simple (by minimality), and non-abelian (by (i),
Ing C I+ =0

Consider the map
g—— g —— I
given by
x— K(x, ")

The kernel of this map is g;. Thus, g/g; = I* = | as vector spaces. O

Repeat this argument with g,. That is, choosing some minimal ideal of g;. We can do this as any ideal of
g/ is an ideal of g, and so Rad(g,) = 0.

Claim 7.34. (g)t =0

Proof. Since if x € (g)*, then x € g*. More precisely, let x & (g/)*

y1 € gr,y2 € 1. Then

.y € g We can write y = yq + y2, where
K(x, y) = K(x, y1) + K(x, y2)
The first term vanishes as x € (g,)*, and the second term vanishes as x € g;. O

This proves (i). To see this, we note that (g/)~ = 0 implies that the Killing form of g, is non-degenerate.
Thus (by induction on the dimension), g, is semisimple. It remains to show that any ideal of g, is an ideal of
g. Let / C g be an ideal, x € /,y € g. As above, write y = y1 + yo, with y1 € g/, y> € /. Then

byl = yal + [x, g2

But [x, y1] € J as J is an ideal, and [x, y2] € gy 1 = 0.
Finally, to show (i) = (i), write
=D/
J

where the /; are simple ideals. Let s; : g — /; denote the projection.
Lecture 8
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Claim 7.35. If J is an ideal of g, then (/) is an ideal of /;.

Now if A is an abelian ideal of g, then 7;(A) is an abelian ideal of /;, and so s;(A) = 0 for all j. With this,
A=0. O

Theorem 7.36 (Weyl). Any finite dimensional representation of a semisimple Lie algebra is completely
reducible.

Proof. Almost the same as for s1,(C), as in theorem[5.3] The main ingredient follows from a Casimir element. [

Exercise: Any ideal or quotient of a semisimple Lie algebra is semisimple. For this, note that the decompo-

sttion

g=1g
holds for any ideal. In particular, the Killing form of / is non-degenerate. Moreover, g// = g, is isomorphic to
an ideal of g, which is semisimple.

In fact, / is a sum of the /;.

For the Casimir element, let ¢ : g — gl(V) be an irreducible representation of a semisimple Lie algebra g.
Without loss of generality, assume ¢ is faithful (if not, we can consider g/ker(¢)). We know by theorem [7.24]
that the trace form (-, -)y is non-degenerate. Choose a basis xq, ..., x, for g. With respect to the trace form, we
have a dual basis y1, ..., y, for g. That is,

(xi, y/)v = 5[/

Definition 7.37 (Casimir element)

Define the Casimir element associated with ¢

Remark 7.38. o O, € gl(V),

o (), commutes with ¢(x) for all x € g. In particular, by Schur's lemma, Q, is a scalar multiple of idy, and

tr(Q,) = ) tr(g(x)e(ys)) = dim(g)

From this, we also see that (), is independent of the choice of basis of g which we chose.

Example 7.39
If g =sb < gb, let V =C?and ¢ = id is the defining representation. Recall the basis

0 1 0 0 1 0
=loo) =0 o) =o %)
Some easy linear algebra gives a dual basis with respect to the trace form, which is {f, %h, e} (in the
same order). With this,
1

Qy=ef +fe+ =h? = (

2

32 0
0 3/2

which is the same as the one we obtained earlier.

8 Jordan decomposition

Two observations:
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1. If g is a simple Lie algebra, ¢ : g — gl(V) is a finite dimensional representation, then ¢(g) C sl(V). This
is because [g, g] = g, and so

p(g) = o(g.8) = [#(9). ¢(g)] < [gl(V), gl(V)] = sl(V)

2. Recall from Linear algebra that if x € gl(V/), then there exists a basis of V' such that x a block diagonal

matrix, with Jordan blocks of the form
A1 0

Definition 8.1 (nilpotent, semisimple)

We say x € gl(V) is nilpotent if x” = 0 for some n. We say x is semisimple if the roots of its minimal
polynomial are distinct, that is, it is diagonalisable.

Proposition 8.2 (Jordan decomposition). If x € gl(V/), where V' is finite dimensional. Then
(i) there exists unique elements xs, x, € gl(V), where x; is semisimple and x, is nilpotent, with
X = Xs + Xp
and [xs, x,] = 0.

(i) there exists polynomials ps, p; € C[t], without constant terms, such that xs = ps(x) and x, = p,(x).
In particular, xs and x, will commute with any y € gl(V) with [x, y] = 0.

(iii) if A< B <V are subspaces, and x(B) C A, then x5(B) C A and x,(B) C A

The decomposition x = xs + x, is called the (additive) Jordan(-Chevalley) decomposition of x. xs and x,
are called the semisimple part and the nilpotent part of x respectively.

Proof. Routine linear algebra. See Humphreys §4.2. O
Example 8.3
If x is represented by a single Jordan block
A 0
X =
1
A
then the Jordan decomposition is
A 0 o 1 -0
Xs = - Xn =
' 1
A 0

i.e. the diagonal and nilpotent parts.
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Why is this valuable?

Let V be a finite dimensional vector space. We can consider the adjoint representation ad : gl(V) — gl(gl(V)).
If x € gl(V) is semisimple, then so is ad(x). Similarly, if x is nilpotent, then so is ad(x).

Lemma 8.4. Let x € g < gl(V), where V is finite dimensional. Let x = xs+x, be its Jordan decomposition.
Then ad(x) = ad(xs) + ad(x,) is the Jordan decomposition of ad(x) € gl(g).
Proof. ad(xs) and ad(x,) are semisimple and nilpotent respectively, they commute since
[ad(xs), ad(x,)] = ad([xs, x,]) = ad(0) = 0

Thus, by uniqueness in proposition [B.2] the Jordan decomposition must be as stated. O

Theorem 8.5. Suppose g is a semisimple Lie algebra, which is a subalgebra of gl(V). Let x € g, then
Xs, Xp € @.

Proof Let
N(g) ={y € gl(V) | [y, 2] € g for all z € g}

be the normaliser of g in gl(V).

Claim 8.6. (i) N(g) is a subalgebra of gl(V), containing g as an ideal.

(D) x5, xn € N(g).

Proof. (i) is clear from the definition of the normaliser. For (ii), let z € g, we have that
[xs, 2] = ad(xs)(z) = ad(x)s(2)

By proposition [B7 (ii), this is in g, as ad(x)s is a polynomial in ad(x) with no constant term. But for z € g, as
x € g, ad(x)(z) =[x,Zz] € g. O

Let W be an irreducible subrepresentation of V, and define

gw=1{y €gl(V)| yw e Wforallwe W and tr(y|w) = 0}

Claim 8.7. g is a subalgebra of gw.

Proof W is a subrepresentation of g, and so it is stabilised by g, and also the image of g in gl(W), say @, is
also semisimple.

With this, [g,8] = 8, and so every element of g is a sum of commutators, and all of the traces are zero, and
so g < gw. O

Using this, tr(x|w) = 0. Note xs, x, are polynomials in x, and so they stabilise everything that x does.
Moreover, tr(x,|w) = 0 as x,|w is nilpotent. Thus, tr(xs|w) = tr(x|w) — tr(x,|w) = 0. Using this, xs, x, € gw
for all W.

To finish, define
d=Ngn ] o

W<V irred subrep

Claim 8.8. g=g¢".
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Proof. Since g’ < N(g), g is an ideal of g’. Then g is a subrepresentation of g’ under the adjoint action of g.
By Weyl's theorenﬂ g = g ® U as representations. It suffices to show U = 0.

Choose u € U, then as g is an ideal, [u, g] C g. But ad(g)(U) C U, and so [u, g] C U. Hence [u, g] = 0, and
so u commutes with every element of g. Using this, u is a g-endomorphism V' — V/, and so it stabilises every
irreducible subrepresentation W.

By Schur's lemma, u|w = Aidyy for some scalar A € C. But tr(u]y) = 0 since u € gy, and so A = 0. But
every representation splits as a direct sum of irreducibles, and so u must be zero. O

By the above, we see that xg, x, is in each set on the right hand side, and so xs, x, € g. O

For g < gl(V) a semisimple Lie algebra, we can define an abstract Jordan decomposition
ad(x) = ad(x)s + ad(x),

Since ad is faithful, as g is semisimple, g is isomorphic to ad(g) < gl(g). By theorem [85] ad(x)s, ad(x), € ad(g),
and so there exists xg, x, € g such that x = x5 + x,.

Suppose g < gl(V) for some V, with x = xs + x,. Then since ad(x,) = ad(x), and ad(xs) = ad(x)s, the
abstract Jordan decomposition is just the usual Jordan decomposition.

Corollary 8.9. Let ¢ : g — gl(V) be any representation of a semisimple Lie algebra g. Choose x € g,
and let it have a Jordan decomposition x = xs + x,, then

p(xs) = @x)s and  @(xp) = @(x)n

defines a Jordan decomposition of ¢(x).

Proof. See Corollary 5.11 of the notes by David Stuart on Moodle. It needs semisimplicity, and the fact that
we are working over C. It fails if we work over a field with positive characteristic. O

10 Cartan subalgebras and root space decompositions

In this section, g is a finite dimensional semisimple Lie algebra over C.

Definition 10.1 (toral subalgebra)
A subalgebra t of g is toral if

1. t is abelian,
2. ad(x) is semisimple for all x € t.

A maximal toral subalgebra is called a maximal torus, or a Cartan subalgebra (CSA).

To justify the terminology, note that a connected abelian Lie group is isomorphic to R x T and so a
connected compact abelian Lie group is a torus.

Remark 10.2. Many authors, including Humphreys define Cartan subalgebras as a nilpotent subalgebra which equals
its normaliser in g. That is,

t={xeg|xtct}

This is equivalent to our definition.

Example 10.3

If g < sl,, gl,, with t being the set of diagonal matrices, then t is a maximal torus. It is true for so, and
5p,, as well.

Tapplied to the representation g’ of the semisimple Lie algebra g
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Lemma 10.4. Let t,..., t, € End(V) which pairwise commute, and are all semisimple. For A =
(A1, .., An) € C", define
Vi={veV]|tyv=Avforall i}

That is, the simultaneuous eigenspaces for the ¢, Then

\/:QB\/A

AeCn

Proof. By induction on n. n =1 is true by definition. For n > 1, we know by induction that

V=P W

reCr—!
for the action of tq, ..., t,—1. Then since the t; commute,
tn(\//\’) C Wy
for all X'. By decomposing each V) in terms of t, eigenspaces, we are done. O

Lemma 10.5. Any g contains a Cartan subalgebra.

Proof. Needs Engel's theorem (Examples sheet 2), and Zorn's lemma. See David Stuart’s notes. O

Recasting lemma[T0.4] suppose we have h < gl(V/) with a basis of commuting semisimple elements ¢y, .. ., ty.
Take A € C", this corresponds the element of h*, given by

t,‘F—>)\,'

Then
Vi={veV]hv=Ahyvforall h € b}
In our situation, fix a Cartan subalgebra t < g, then
g= EBEA
et

where
gy ={x €g|[tx]=At)x for all x € t}
Lecture 10

Definition 10.6 (root)

Let
¢ = {a et \{0} | go # 0}

The elements of ¢ are the roots of g with respect to t. If a € &, then g, is called a root space.

With this, we have

g=00®Pa.

aced

which is the root space decomposition, or the Cartan decomposition of g.

Proposition 10.7. (i) For all @, B € t*, [g4. 98] C Ga+5,
(it) If a € d, x € g4, then ad(x) is nilpotent.

(it) If a4+ B #0, then K(ga, gg) =0 for all a, B € g*.
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|
Proof. For (i), let x € go, y € gg, t € t. We have the Jacobi identity:

[t.x gl = =aly, =y, [t x] = I [t gl = a(t)ly, «] = Blo)lx, y] — alt)ly, x] = (a + B)(t)x, ]

Note Fulton-Harris calls this the fundamental calculation.
For (ii), use (i) and the fact that g is finite dimensional.
For (iil), if a + B # 0, we can find t € t such (a+ B)(t) # 0. Fixsucha t €t, x € g, and y € gg. Then

a(t)K(x, y) = K(t.x], y) = =K(Ix, ] y) = =K{x, [t y]) = =B(1)K(x, y)
and so (a + B)(t)K(x, y) = 0. But by assumption a(t) + B(t) + 0, and so K(x, y) = 0. O

Corollary 10.8. (i) The Killing form restricted to go is non-degenerate.

(i) If a € ®, then —a € &.

Proof. For (i), if z € go, with K(z,x) = 0 for all x € go, then by (iii), we know that go is orthogonal to all g,
with a # 0. If x € g, we can write it as
X = Xxo + Z Xq

with x, € go. Using this, we see that K(z, x) = 0 for all x € g. By non-degeneracy of the Killing form (as g
is semisimple), we must have that z = 0.
For (ii), the proof is similar. O

Proposition 10.9.

I
.

do

Proof. See Humphreys §8.2. O

Corollary 10.10. The Killing form is non-degenerate when restricted to t. In particular, the map

t—ot
t— K(t, )
is an isomorphism of vector spaces. We denote the inverse map as A+ t,, where ¢, is called the coroot

associated to A, defined by
K{(tx, x) = Alx)

forall x € g.

Example 10.11

For g = s, t = span{h}. Define @ € t* by a(h) = 2. Then g, = span{e}, and g_, = span{f}. With
this,
sh=t0 g, © g«

Example 10.12
For g = sl3, the Cartan subalgebra is t = span{h1, h,}, where

1 0
hy = = hy = 1
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Let a; € t* be such that

Then
shh=t® 9o—a D Bar—a; D Jay—a3 @ Jor—ay D Jos—a1 @ Jo3—

where
gaﬁa/ = Span{ei,j}

We can decompose the adjoint in a similar fashion. Moreover, this generalises to g = sl,, with t being
the diagonal.
Similarly, the diagonal matrices form the Cartan subalgebra of so0,, sp;,.

Proposition 10.13. Let @ € ® be a root, e, € gq, then there exists f, € g_q, such that
m, = span{eq, o, he = |eq, fo]} = s

We call eq, fo, hy an sly-triple.

We're saying that every semisimple Lie algebra is “made up from sl,s"
Note that if t € t and it satisfies a(t) =0, for all @ € &, then t =0, since if @ € ®, x € g, non-zero, then

0=a(t)x =t x|

Since a toral subalgebra is by definition abelian, this holds for all of g, and so t € Z(g).
| Lemma 10.14. ¢ spans t*.

Proof. If not, then there exists t # 0 such that a(t) = 0 for all @ € ¢. O

| Lemma 10.15. [gq, §—o] is one-dimensional.

Proof. Take x € go. y € gq, then [x, y] € t. Let t € ¢, s0
Kilx gl t) = Kix. [y, t) = =K(x.[t, y) = a()K(x, y)

Hence [x, y] = K(x, y)t,. With this,
[0, 8-a] C span{ta}

and so the dimension is at most one. But by non-degeneracy, we can find x, y such that K(x, y) # 0, and so
the dimension is one. O

Lemma 10.16. a(t,) + 0.

Proof. Since the Killing form is non-degenerate, and rescaling is possible, we may choose x € go, y € g_q
such that K(x, y) = 1. Then

[Xr U} =tq
[to, X] = a(te)x
[tar g} = _a(ta)y

Thus, the space h = span{x, y, t,} is a subalgebra of g. Suppose a(t,) = 0. Then, [h, b] = span{t,}, and so b
is solvable. Now consider the adjoint representation

ad: g — gl(g)
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This shows that h embeds as a solvable Lie subalgebra of gl(g). By Lie's theorem, we can assume ad(h) is a
subset of the space of upper triangular matrices. With this, ad(t,) = [ad(x), ad(y)] is strictly upper triangular.
Hence ad(t,) is nilpotent, but ad(t,) is semlsimpleﬂ and so ad(ty) = 0. Thus,

te €Z(g) =0
Contradiction, as a # 0 implies t, # 0. O

Lemma 10.17. [[ga. 8—a]. 8o] #+ O.

Proof. If x € gq, y € g—q with K(x, y) # 0, then for all z € g,,
[x gl 2] = K(x, y)lta, 2] = K(x, y)alta)z

O
Proof of proposition[T0.13, Take e, € gq, and find f, € g_, such that
2
K(eq, fa) = —
el = o
Define 5
he = t
C K(te, ta) “
We can check that this satisfies the sl, relations.
leq, fo] = K(eq, fa)ta = hq
2
[ha, ea] = m[ta, E‘a] = Zea
[ha, fo] = =21,
and so m, = sb. O
Exercise: Show that weights add. If g is semisimple, with root space decomposition
g=1t& @ Yo
[ed
and V, W representations of g, with weight spaces V,, W,. Then
1. 90 Vg C Viuip
2. Vo @ Wp C (VO W)aip
Lemma 10.18. 1. if V is a finite dimensional representation of g, then V|, is a finite dimensional

representation of mg,

2. forB e d, or B=0, let

V= @93@«1

ceC

where we sum over ¢ € C such that 8+ ca € ®. This is a representation of m, under the adjoint
action.

We call V' the a-root string through B

Proof. (i) is true by generic facts about restrictions. For (i), it follows by proposition O

2This follows from t, € t.
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Proposition 10.19. Let @ € ®. Then the root spaces g., are 1-dimensional. Moreover, the if ca € ¢,
for some ¢ € C, then ¢ = 1.

Proof. Suppose ca € ®, then h, takes ca(h,) = 2c as an eigenvalue. The eigenvalues of h, are integers, and
so either c € Z, orCEZJr%
Write

Let K = ker(a) < t. We can check that K + m, is an mg-subrepresentation of V. By Weyl's theorem, as a
representation of my,
V=Kom,d& W

where W is a complementary subrepresentation. Suppose either of the conclusions in the statement are false.
Then W # 0. Let Wy < W be an irreducible subrepresentation. We know Wy = V(s) for some s. Then W,
has a highest weight vector wy, with wy € g, for some ¢, and

[ha, Vo] = S\

Case 1: s is even. In this case, O is an eigenvalue of h,. Let e be the eigenvector. But the zero eigenspace of
he on V is t, which is contained in K @ m,. Thus, e € (K @ m,) N Wy = 0. Contradiction.

Aside: If 2a is a root, then h, has 2a(hy) = 4 as an eigenvalue, but the eigenvalues of h, on K & m, are
0,2, —2. So the only way this could happen is if W contains an irreducible subrepresentaion V/(s), where s is
even. With this, if « is a root, then 2a is not a root.

Case 2: s is odd. In this case, 1 is an eigenvalue of h,. As a(hy) = 2, this means that %0{ is a root. But
then by the above,

a=2-za
is not a root. Contradiction. O

Exercise: We have a canonical identification m, = m_, and h, = h_,.

Proposition 10.20. Let a, B8 € ¢ such that a # +5. Then
(i) Blhe) € Z, and we call these the Cartan integers.

(it) there exists integers p, g > 0 such that if r € Z, then
B+raed « —p<r<g
Moreover, p — g = B(hg).

(iil) [9a. 98] = Barp-

Proof. For (i), consider

V= @ 9B+ra

rez

and let m, act on V by the adjoint action. Let
g=max{r €Z|B+rae d}
In particular, B+ qga is a root. Choose v € gg4q Non-zero. Then
[eq, V] € Bpr(gs1)a =0

and
[ha, vl = (B + qa)(hq)(v) € span{v}
Thus, v is a highest weight vector, with weight (B + ga)(h,). With this, by sl, representation theory,

Blha) + qalhe) € Zxo
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and so
Blha) + 29 € Z>o

which means that B(h,) € Z.
For (i), recall from lemma [4.7] that
W = span{v, fv, v, ... }

is an irreducible representation of V, and so h, acts by

(B + qa)(ha)
(B + (g —=1)a)(ha)

—(B+qa)(ha)

In particular,

q
W = @ 9B+ra

r=—p
for some p, where
p=min{r eZ|B—raec o}

Suppose W/ < V is a proper subrepresentation. Then W’ contains a highest weight vector w € g, for
some y. Then
0 <y(he) < —=(B+qa)(he) <0

Contradiction. Finally,
(B—pa)lha) = —(B+ qa)(hs)

and rearranging,

Blhe) =p —
Lecture 12

For (iit), we already know that [gs, 9] C ga+g. Thus, if @ + B is not a root we are done. On the other
hand, if @ + B is a root, choose v € gg non-zero. Suppose [e,, v] = 0, then v is a highest weight vector for v.
Contradiction. Thus, [e4, v] # 0, and ga-g is spanned by it, as it is one-dimensional. O

Definition 10.21 (reflection)
For a € ®, define the reflection at a by

Wy i t8 = t*

Wa(B) = B — Blhq)a

Corollary 10.22 (of proposition [T0.20). we(®) = &.

Proof. Let B € ®, let p, g be as in proposition [T0.20] We need to show that B — B(hy)a € . We have that
B—Blha)a=B—(p—q)a
But

—p<—p—q)<gq
and so this lives in the root string. O

image
wg is the reflection in the root hyperplane

H, = {} € £ | A(hy) = 0}

and this reflection preserves ®. We will now define a root system as something with the nice properties of &,
and we'll show that there is a correspondence

{root systems} <> {semisimple Lie algebras}
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11 Root systems

11.1 Roots in Euclidean space

Recall that ® spans t*.

Proposition 11.1. Define a bilinear form on t* by

(Ap) = K(ta, t)
where K is the Killing forn{?} A, y € t*. Then
L) If a, B € &, then (a,B) € Q.
(W o, .., ap is a basis of t*, and B € ¥, then B =), cia;, with ¢; € Q. That s,

dimg (®) = dime(t)

(iit) (-, -) is positive definite on spang(®).

%f g restricted to t

Proof. See Grojnowski notes, Proposition 4.7. For (i), note

11.2  Abstract root systems

Let (E, (-, ) be a real Euclidean space. If o € E is non-zero, define
a’ E—-R

2(a, A)

(a,a)

a' () =

and we define

Wy E— E
We(A) = A —a’(})

Geometrically, this is reflection in the hyperplane with normal a.

Definition 11.2 (root system)
A finite subset ® C E is a root system if

1. 0 & &, & spans E,

2. ifa, B e, then BY(a) € Z,
3. if a € P, then w,(P) = b,
4. if a,ca € o, then ¢ = +1.

Each a € ¢ is called a root.

Remark 11.3. Removing 4. gives a ‘non-reduced” root system.
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Notation 11.4. If y € £, X1 € E*, we will write
(1 A) = Ap)
and so (B, a") = a"(B).

This may seem opposite to the usual convention, but using the canonical isomorphism £ — E* given by
the Riesz representation theorem, the ordering “doesn’t matter”.

Example 11.5

If g is a semisimple Lie algebra, t < t a Cartan subalgebra, ® is the set of roots associated to ®, then ¢
is a root system in spang(®).

Definition 11.6 (rank)
The rank of a root system (®, £) is dimg(E).

Definition 11.7 (isomorphism)

Given root systems (P, £), (¢, £'), an isomorphism is a linear isomorphism p : £ — E’, with
1. p(d) = ¢/,
2. {p(a), p(B)) = (a,BY) for all a, B € .

Example 11.8 (rank 1)

In this case, we only have the Ay root system, £ = R, (x,y) = xy, and & = {a, —a} for some a # 0,
(a,a")y =2

~A—— «

Example 11.9 (A1 x Aj)
E =R? & = {+a, +B}, given by the standard basis vectors +ey, +e,.
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Example 11.10 (A2)

In this case,

> N

Example 11.11 (5;)

In this case,
¢ = {+a,+B,+(a + B), £(2a + B)}

A

Example 11.12 (Gy)

In this case, the root lattice is:

Returning to Lie algebras,
Example 11.13

5[2 - <h> @ ga @ g—a
with a(h) = 2. Taking h as the generator for the Cartan subalgebra, sl; has root system A;.
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Analogously, sl3 has root system A, if we set

Then a(hy) = 2, a(hy) = =1, B(h1) = =1, B(h2) = 2.
Finally, sp, and so5 have root system B,.

Definition 11.14 (Weyl group)
The Weyl group of (b, E) is a the subgroup W of GL(E) generated by the ws.

Note that W is finite. To see this, by definition each w, acts as a permutation on ®. As such, we have
an embedding of W into Sym(®), which is finite. The map is an injection as spang(®) = E, and so if two
reflections agree on @, then they agree on all of E.

Lecture 13
Example 11.15 1. For Ay, W = G,
2. For Ay, W = Dg = S5,
3. For By, W = D,
4. For Gy, W = Dy,
5 For Ay x A, WEV, =06 x G.

Definition 11.16

If (b1, E1), (P2, E2) are root systems, then (¢4 x {0} U {0} x &,, E1 & E,) is also a root system.
Any root system which can be written in this form, with ®, ®, non-empty, is called reducible. Oth-
erwise, it is irreducible.

Remark 11.17. By abuse of notation, sometimes we will write it as (P U &,, E1 & E,).

Example 11.18
A1 x Aq is reducible, Ay, Ay, By, Gy are irreducible.

Example 11.19

If ® corresponds to a Cartan subalgebra t in a semisimple Lie algebra g, then ¢ is irreducible when g is
indecomposable.

Lemma 11.20 (finiteness). If ® is a root system, a, B € &, a #+ £p, then

(a,B")(B.a”) €{0,1,2,3}

Proof (a, B) = IIC(HHBH cos(6), where 6 is the angle between a and B. So
4(a, B)’
a, BY VY= 2 4cost(O) € Z
o B} (B ra1i2(| 8| )
Now cos?(6) € [0,1], and so cos’(0) € {0,1/4,1/2,3/4,1}. But they are not parallel, and so cos’(@) +1. O
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In particular, this puts constraints on the angles, and the ratios of lengths.

e 0 corresponds to 6 = x1/2, and so there is no constraint on the lengths,

e 1 corresponds to 6 = /3, and the ratio of lengths is 1 (iL.e. they have the same length),
e 2 corresponds to 6 = /4, and the ratio of lengths is /2,

e 3 corresponds to O = /6, and the ratio of lengths is v/3.

Corollary 11.21. If ¢ is a root system, and a, B are roots, then

(a,BY) € {0, £1,+2,£3}

Exercise: The only rank 2 systems are, up to isomorphism, A1 x A1, Az, B2, Go. Use the angles and length
ratios from finiteness.

Corollary 11.22. If ® is an irreducible root system, then |||l can take at most two values as a € ¢
varies.

Proof. Exercise. Suppoe not, then we get a contradiction due to the fact that the {a, BY) are integers. O

Definition 11.23 (simply laced)

An irreducible root system ¢ is simply-laced if all the roots are of the same length.

Example 11.24
A1, Ay are simply laced, By, Gy are not.

Exercise: If & is simply laced, then (&, £) is isomorphic to a root system (', £'), where (a, B¥) € {0, +1}
for all a, B € @', a # £B. This follows from the length ratio constraints above.

12 Weyl chambers and root bases

Throughout, (®, E) is a root system.
For a root o € ®, we have the root hyperplane

H, = (A€ E| (4 a") =0}

corresponding to a. The connected components of

EN He

acd

are called the Weyl chambers.
A subset A = {oy, ..., ar} C & is called a root basis, or a base, if

1. Ais a basis for E,

2. if a € d, with
4
a = Z Ci
i=1

then all of the ¢; have the same sign (or are zero). ie. ¢;c; > 0.
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Definition 12.1 (simple roots, positive and negative roots)

The elements of A are called simple roots. If
a = Z CiQ

with all ¢; > 0, then we call a a positive root, denoted o > 0 (or a > 0). If all ¢; < 0, we call a a

negative root.
The set of all positive roots is denoted ¢+, and ®~ = —d* the set of negative roots.

Note that H, = H_,. In particular, the Weyl chambers are all of the form
Cc={reE|e,(Aa")>0}
where €, € {£1}. Note on the other hand not all choices of (g,) give a Weyl chamber.

Remark 12.2. A defines a partial order on E, by saying

U <A & A—ypisasum of positive root or A = p

Lemma 12.3. Let W be the Weyl group of (¥, E). Then if A is a base, and w € W, then w(A) is a base.

Proof. We know that w is invertible, so w(A) is a basis for £, and as w acts on &, w(A) C d. Ifa € P is a
root, with
o = Z CiQ
i

with all ¢; > 0 (without loss of generality). Then

w(a) = Z ciw(a;)

with all ¢; > 0. O

That is, the Weyl group acts on the set of root bases. It remains to show how to construct a root basis.
e Choose y € E\ |, Hq (Le. v in a Weyl chamber). Define
*f ={aed|(y a")>0}
and & = —dF Note d = b U D

e Define
Ay={aed) |a+p+pforall i+ B e d)}

Theorem 12.4. (i) A, is a root basis,

(it) every root basis is of this form A, for some y in a Weyl chamber.

Proof. For (i),

Claim 125. If a, B € A, then a — B & A,

Proof. Suppose a, B € A,. Without loss of generality a — p € <Dj. Otherwise, take B — a. Then
o —(a—B)+B

Contradicting the definition.
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Claim 12.6. If @, B € A, are distinct, then (a, BY) = 0.

Proof Recall from lemma that
(a,B")(B.a") €{0,1,2,3}

Suppose {(a, BY) > 0. Without loss of generality, assume {a, B¥) = 1. Otherwise, consider (B, a"). Now
wg(a) = 0(7<0(,BV>B: a—Beh,
But wg preserves A, contradicting claim [T25] O

Claim 12.7. Let A, = {«, . . ., at, a € dF,

n
a = E CiQ;
i—1

then ¢; > 0 for all i.

Proof. Suppose not. Choose an a which cannot be written this way, and with (a, y) minimal. By construction,
a & Ay, hence a = By + B where By, B € & With this, (a,y) = (B1,¥) + (B2, v). By definition, g € ¢,
and so (B:,¥) > 0, hence (a,y) > (B, y). With this, B1, B> can be written as a Zso-linear combination of the
a;. But then so can a = By + B>. Contradiction. O

If we worked with @ instead, this means that every element in &, is a non-positive linear combination
instead. Also, A, spans E as ¢ spans E.

Claim 12.8. A, is a linearly independent set.

Proof. Suppose for some ¢; € R, ), ¢;a; = 0. Without loss of generality, we can assume ¢; > 0 for 1 <i<m
and ¢; < O0form+1<i<¥ Set

m ¢
V = E ciap = — E C/'G/'
i=1

j=m+1
Now consider
m 4
(\/’\/):— E E C[C/' (C([,Gj) SO
— . ~—~
i=1 j=m+1 20 20

Hence v = 0. With this,

0=(y,v)= ¢y,
; (v, &)
= >0
Hence ¢; = 0 for 1 < i < m. Similarly, the other ¢; are zero as well. O
For (ii), see Humphreys §10.1. O

Corollary 12.9. We have a bijection

{Weyl chambers} < {root bases}

Proof. Given a Weyl chamber C, we can choose y € C, and we have a root basis A,. Conversely given A,
A = A, for some y, which in turn is in a Weyl chamber C. O
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In either case, B — a; € ®.

Notation 12.10. Write G, = C, if A = A,, where C, is the Weyl chamber containing y. We call it the fundamental
Weyl chamber relative to A.

Example 12.11

For example, with the root system A,, and the root basis {a, B}, the fundamental Weyl chamber is

R

Definition 12.12 (height)

fA={o,..., ae} is a root basis, a € , say

¢
a = Z CiQ
i=1
The height of a is
¢
)_c
i=1
Often it is useful when proving statements to induct on the height of a root.
Lemma 12.13. If A= {oq,..., o} is a root basis, B € &\ A, then there exists i such that B — o; € .

Proof. Given B, if (B, ;) < 0 for all i, then AU {B} is a linearly independent set. So there exists i such that
(o) >0
Since (B, ') (a;, BY) € {0,1,2,3}, then (B, &) =1 or (a;, BY) = 1. That is,

W (B) = B — a; or wg(ai) = o — B

Corollary 12.14. If B € &7, then B can be written as a sum

n
B=> ay
j=1
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where a;;) are not-necessarily distinct simple roots, and each partial sum is a root, ie.
K
Z ayj) € ¢
=1
Proof. Use the lemma and induction on the height of B. O

13 Facts about the Weyl group
Recall that W acts on the set of root bases, and so it preserves the Weyl chambers.
Lemma 13.1. If w € W, A,y € E, then
(Au") = (W), w)")
Using this, we can deduce that

Proposition 13.2. If A is a root basis, and w € W, then

Cwa) = w(Ca)

Lemma 13.3. For ¢ a root system, A a root basis, and W the Weyl group, a € A, then w, permutes

o+ \ {a}.

Lecture 15
Proof. Take oy € A, where A ={m, ..., ap}, take B € 1, B # oq. In particular, we can write
B = Z Ciq;
i
with ¢; € Z~p. In this case,
W, (B) =B —(B.ai') a
0
= (¢ — <B, Oﬁv>)0f1 + Z CiQ;

i=2

Since B is a positive root and it is not a1, we(B) #+ 1. Hence ¢; > 0 for some i > 2, hence wg, (B) is a
positive root. O

Theorem 13.4. (i) the Weyl group acts simply transitively (or reqular, or sharply transitively) on the
set of root bases (and on the set of Weyl chambers).

(ii) given a root basis A and a € &, then there exists w € W such that w(a) € A. This w is not
necessarily unique.

(i) fA={oy,. .., ag} is a root basis, then W is generated by wg,, . .., We,-

Proof. Omitted. See Humphreys §10.3 O
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14 Classification of irreducible root systems

Throughout, let ($, E) be a root system, and a root basis A = {a, ..., as}. Let W be the Weyl group of ¢.

Definition 14.1 (Cartan matrix)
The Cartan matrix of ® is the ¢ x ¢ matrix,
C= (<ai' O(/\'/>)1g[,/§€
This is independent of the choice of root basis (up to permutation), since given A" another root basis, there
exists w € W with w(A) = A/, and the action of W preserves (-, -).
Note det(C) # 0. This follows from the fact that A is a basis of E.
Example 14.2
Recall the root system G, given by
A
(4
v
Let oy = @, a» = B. In this case, (m, &)) = —1, (@, ') = —3. Hence the Cartan matrix is
2 -1
-3 2
Example 14.3
Similarly, for Ay x A, we have
2 0
0 2
For Ay we have
2 -1
-1 2
and for B5, we have
2 =2
-1 2
Proposition 14.4. Suppose (¢, E’) is another root system, with root basis {a, ..., a;}, with
(ai ') = (e (a))")
Then the linear map @; — ] induces an isomorphism ¢ of root systems, with
(pla). $(B)) = (a. BY)
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for all a, B € ®. Hence the Cartan matrix of ¢ determines ¢ up to isomorphism.

Proof. Since A is a basis for £, and A’ a basis for £/, we have a unique linear isomorphism ¢ : £ — E’, with
dla) = af. If a, B € A, then

|
S
Q\

Wo(a)(P(B) = war(B) = B — (B, (d)") o
P(B) — (B, a”) p(a)

= ¢B—(B.a")a)

That is, we have a commutative diagram

Wa Woia)

Now use theorem the respective Weyl groups W, W’ are generated by simple reflections, and so the map
Wi gowod

is an isomorphism W — W’ sending w, to wg( for each @ € A. Each B € & is conjugate under W to a
simple root, say B = w(a) for some a € A. This implies that

$(B) = ¢(w(a)) = (pw¢ ™ ')$(a) € ¢’

Hence ¢ maps ¢ onto . Using the formula for reflections, ¢ preserves the Cartan integers, iLe.

(a,B") = (w(d(a), w(e(B))")

Remark 14.5. The proposition suggests it is possible, in principle, to recover the root systems ¢ from the Cartan
integers. See Humphreys for a reference.

Definition 14.6 (Coxeter graph)
Recall if a # £B, then
(a,B")(B.a”) €{0,1,2,3}

The Coxeter graph of ® is a graph with ¢ vertices, for i # j, we join the i-th vertex to the j-th with
(ai a)) (a. ') edges.

The Coxeter graph determines <oq, a/-v> in the case where all the roots have the same length (Le. it is simply-

laced). In the case where more than one root length occurs (e.g. for B, G2), the graph fails to tell us which of
a pair of vertices should correspond to a short simple root, and which corresponds to a long simple root (in the
case where the vertices are joined by two or three edges).

Remark 14.7. The Coxeter graph determines W as it determines the order of products of the generators of W.

Definition 14.8

The Dynkin diagram of ® is the Coxeter graph, but if a multiple edge between vertices occurs, we add an
arrow to point to the shorter root.
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Example 14.9

For ranks 1 and 2, we have the Dynkin diagrams
1. A e
2. A1 XA e e
3. Ay e
4. By exe

5. Gzi mﬂ

%in lectures Gy was drawn the other way around, i.e. ex»

Lecture 16

Remark 14.10. The maximum number of edges between two vertices in a Dynkin diagram is 3, and a root system is
simply laced if and only if its Dynkin diagram has no multiple edges.

Exercise: ¢ is irreducible if and only if its Dynkin diagram is (simply) connected.

Theorem 14.11. Let ® be an irreducible root system, then its Dynkin diagram is one of the following:

(1) Classical root systems (with rank #):

.Ag(€21)HH
08@(?22)0—%4—.:;:.

OCg(gz?))o—ka—m

o Dy (0> 4) e 4{
(1) Exceptional root systems:

o [q: H—I—O—O

5 B o)

o f[g: H—I—o—o—o—o

0F4jo—o:>:o—o

o (H e

Remark 14.12. The restriction on ¢ is included so that we don't have repetitions. For example, B, = G, and so on.
Proof. See Humphreys. Alternatively, do five pages of Euclidean geometry. O

Theorem 14.13. For every Dynkin diagram D listed above, there exists a simple Lie algebra g with a
Cartan subalgebra ¢, roots ¢ corresponding to ¢, such that the Dynkin diagram corresponding to ¢ is D.

Proof sketch. For Ay, let eq, ..., es+1 be the standard basis of R*". Let
<D:{e,v—ej|i%j}gR”1

We can see that ® spans an #-dimensional subspace £ of R**". Then & is a root system in £, and it has a
root basis given by

0;p = €; — €i+1
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Note for i < j,
ei—ej=(e;—eip1) + (el +1]—eu2) + -+ (ej-1 — ¢

Also,
=1 |i—j] =1
(aafy=<2 i=j
0 otherwise

Hence the Dynkin diagram in this case is Ay:

a az g1 ap

Now note wy, flips the i-th and i + 1-th coordinates, so W = Syi1. The corresponding Lie algebra is
slp41(C), with Cartan subalgebra t of diagonal matrices, and

t
Qi =l — tipg
toy

For the other classical root systems, with e; a basis of R’ and t the Cartan subalgebra of diagonal matrices.

Type | ® C R’ ACo W g Dimension
Bg {it’:‘,’,i@[i@j | [7&]} {E‘[-E‘[.H}U{Eg} Sg X sz 502041 2€2+€
@) {£2e;, xei+e; | i+ j} {ei— e} U {2ep} Sex Cf 5Py 202+ ¢
D, {£ei+e;|i+j} {e;—emtU{ecs+ed Sex G soy 202 —¢

For the Weyl group for By, Sp acts on the coordinates, and C; acts as a sign change on each coordinate.
For the exceptional types, see Humphreys (or Erdmann and Wildon). We summarise some of the results:

e (, there are 12 roots, £ = (e + e, + 93,)l <R3
o 4, E=RY |0 =148, |W|=1152,

e F¢, £7, Eg: First do Eg, and find root systems of types E7, Eg as subsets. For Eg: £ = RS, |®] = 240,
\W|=2"4.3.52.7.

O

For Eg, let a1, ..., ag be its root basis, and we have a Coxeter element

8
.
i=1

which has order 30. There is a plane of R® on which w, acts as a rotation. Image stolen from Wikipedia:
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| Remark 14.14. To look up root systems, see the Spherical explorer
| Remark 14.15. To do computations, it is useful to compute things in terms of a root basis.

Remark 14.16. We have Lie algebras gy, 4, ¢, ¢7, e corresponding to the exceptional Lie algebras.
In particular, g, is the algebra of “derivations of octonions Q", where a derivation is a linear map 0 such that

S(ab) = 8(a)b + ad(b)

O is an 8-dimensional normed division algebra over R, and it has a one-dimensional centre Span{1}, on which
g, acts trivially. There is a representation g, — so07, which is the lowest dimensional non-trivial representation. See
Humphreys §19.3. Others can be constructed, see Fulton-Harris §22.4.

Remark 14.17. Given ®, there is a natural construction of a Lie algebra with ® as its root system.

So far, we have found correspondences
{simple Lie algebra g with CSA t} — {irred. root systems ®} <> {connected Dynkin diagrams}
We will now show that
e the root system corresponding to g is independent of the choice of Cartan subalgebra t,

e two Lie algebras with the same root system are isomorphic.

9 Brief introduction to inner automorphisms

An automorphism of g is an isomorphism g — g. The group of all such is called Aut(g). For example, if g = gl(V)
or sl(V), A € GL(V), then
X = AxA™

is an automorphism of g.
Let V be a finite dimensional, choose x &€ g such that ad(x) is nilpotent, say (ad(x))” = 0. Then

(ad(x))* n (ad(x))"""

exp(ad(x) = 1+ ad(x) + =— T T )

It is easy to see that exp(ad(x)) € Aut(g) = GL(g), and an automorphism of this form is called inner. The
subgroup of Aut(g) generated by these is called Inn(g), and this is a normal subgroup of Aut(g). This is because
if € Aut(g), x € g, then ¢pad(x)¢~" = ad(¢(x)), and so

pexplad(x))¢ ™" = exp(ad(¢(x)))

Lemma 9.1. Let g < gl(V) be a complex Lie algebra, and x € g nilpotent. Then ad(x) is nilpotent, and

exp(x)y exp(x) ™" = exp(ad(x))y

forally € g.

Proof. Humphreys §2.3. O

Example 9.2 1. Inn(sl,(C)) = GL,(C)/Z,
2. Inn(so,(C)) = SO,(C)/Z,
3. Inn(sp,(C)) = Sp, (C)/Z,
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Let G be a matrix Lie group, and g = T.G its Lie algebra. We have the exponential map exp : g — G. For
g € G, define

G:G—=G

X gxg!
for the conjugation map. Differentiating this, at e € G, we get

Adg:g—g

X gxg”!

In particular, Ady € GL(g), and so Ad : G — GL(g) defines a representation. This map also happens to be
smooth, and so we can differentiate it again, to get

ad: g — gl(g)
which is the matrix commutator. What lemma [0] says is then
Adexp(x) = exp(ad(x))

In fact, this is true for general Lie groups, we have that if ¢ : G — H is a homomorphism, then

commutes. When ¢ = Ad, dg = ad, we get that exp(ad(x)) = Adexp(x)-

15 Conjugacy results

Let g be a semisimple Lie algebra, t a Cartan subalgebra, ® the root system corresponding to {, and so we

have a decomposition
g=1to® @ Ya
aed

and A C & a root basis.

Lemma 15.1. If ¥’ is another Cartan subalgebra of g, then there exists an (inner) automorphism ¥ & Inn(g),
with ¢(t) = ¢

Proof. Humphreys §16.4, Carter page 34. Read at your peril. O

Definition 15.2 (rank)

The rank of a Lie algebra g is the dimension of a Cartan subalgebra, which is independent of the choice
of Cartan subalgebra. If g is semisimple, then

rank(g) = rank(®)

where @ is the root system of g corresponding to a Cartan subalgebra t.

45



Lemma 15.3. If ¥’ is another Cartan subalgebra of g, with root system @', then ® and ¢’ are isomorphic.

Proof. Let ¢y € Inn(g), be as in lemma[T5.1] Take t € t, @ € ®, e, € go. Then
(1), hleq)] = (t, eqd)) = dla(t)ed) = a(t)ip(eq)

As ((e,) spans the root space for ¢,

O = ooy [aed} = () (@)

Theorem 15.4. If g’ is a semisimple Lie algebra, with root system ¢ (the same as g), then g = g’.

Proof. See Carter Ch 7, using the theory of (finite) structure constants. Choose a basis h, of t, and e, in each
root space gq, So that
[eq, e_o] = hg

This gives a basis of g (consistent with sl, theory), with
[ha, hgl =0 for a + B
[ha, eg] = Blha)eg
Naﬁea+8 a+peD

[eareﬁ}: he B=—a
0 a+ B¢ duU{0}

16  Weights

Example 16.1
Let g = s05, we have simple roots a, B for the root system & of g, which is of type B,. Recall
Mg = ga © ([ga, §—al) ® g—a = 5L

We can decompose the adjoint representation of g under the action of m,.
If e4 € gq, then

€a By = Baty

for all y € ®. That is, each a-root string corresponds to an irreducible subrepresentation m, of g. In fact,
gm, = V0@ V(22 V() V()

Similarly,
glm, = VO)® V(O) @ V(O)® V()@ V(1) V(2)

Let (®, E) be a root system, and fix a base A = {a, ..., ap} of simple roots.

Definition 16.2 (root lattice, weight lattice)

ZCD—<|ZCGGCGEZ}§E
acd

The root lattice is

and the weight lattice is
X={rceE|({a")eZforall a € b}
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In the case of a semisimple Lie algebra g, with Cartan subalgebra t, we have
{tet' | Blhy) € Z for all a € ¢}

The elements of X are called weights.

Note
o 7o C X,
e if A€ X, with w(A) € X for all w € W, since (A, a¥) = (w(}), w(a)¥).

e the root lattice is a lattice in E, since it is the Z-span of an R-basis.
Lecture 18

Lemma 16.3. A € X if and only if (A, @") € Z for all & € A.

Proof. Examples sheet 3. O

Definition 16.4 (fundamental weights)
For each 1 < i < ¢, define w; € E by

(w0}) =5,
We call the {w;} the fundamental weights with respect to A.

X={ZC[(4)[ C[EZ:|>
i

Moreover, X/Z® is a finite group, called the fundamental group. Moreover,

By lemma [T6.3]

X
—| = det(C
26|~ det©)
where C is the Cartan matrix of g. The number |X/Z®| is sometimes called the index of connection.

Example 16.5

For g = sl), ® = {*a}, Zd = Za, and {a,a") = 2, and so X = Z(a/2). In this case, |X/Z®| =2 =
det((2)). More generally for type Ay, |X/Z®| = €+ 1.

Definition 16.6 (dominant)

A € X is called dominant if (A, @") > 0 for all a € ®T. If the inequality is strict for all a, it is called
strongly dominant. The set of dominant weights is denoted X™.

This is equivalent to:
o A lies in the closure of the fundamental Weyl chamber with respect to A,
e A=) .ciw;, where each ¢; > 0.

Now assume g is a semisimple Lie algebra, with a Cartan subalgebra t and root system ®. Choose e, € g4
for each a € ®, with
[eq, €—o] = hyg

and ¢ : g — gl(V) a finite dimensional representation over C.

47



Lemma 16.7.

V= Vy
ret
where
Vi={veV]tv=At)forall t €t}
Proof. Clear from lemma [T0.4] where the commuting semisimple elements are the basis elements of t. O

Recall for A,y € t*, we write
U< A &= )\—u=Z/<[oq

where each k; > 0. If V is a representation of g, we say
e The weight of a non-zerov e Vis Aifv e V),
o A& t"is a highest weight if V) 0 and if V, # 0, then p < A

Proposition 16.8. (i) if v € V), then e,V) = V44,
(ii) if V) is non-zero, then A € X. That is, A(hy) € Z for all «,

(ifi) dim(V;) = dim(Viy(p) for all w € W.

Proof. For (i), fix t € t. Then
tleqv) = ([t eq] + eqt)v = a(t)eqv + eqA(t)y = (a + A)(t)eqv

For (it), consider V|m,. Then h, acts by integer weights, so A(h,) € Z.
For (iii), first of all, it is enough to assume w = w,. Now

V0, = @ V)
J

where VU are m, irreducible representations. The h, weight spaces of VU are 1-dimensional, and so we
can choose a basis vy, ..., vy, for V), with each v; being in a distinct VU, Now it suffices to show that given
v € VU there exists x € my such that xv; € Viva(y- But we know that we(A) = A — (A, @V) a, and that the set

[ekvi, ek vi| a ez}

spans VU,
Define M = max{k | eXv; # 0}, m = max{k | eX ,v; # 0}. We need to prove that

fm§f<)\,av>§/\/l

However
A+ Ma)(hg) = —(A—ma)(hg)

and so A(hy) = m — M. But A(hy) = (A, @) and so we are done. O

Definition 16.9 (highest weight vector)
v € V is a highest weight vector if

o v+0,
e vV, for some A

o eo,v=_0forall a € ¢ .

In the examples sheet, we show that there is a root oy of maximal height with respect to the basis A called the
highest root. Any non-zero element of g, is a highest weight vector with respect to the adjoint action.
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17 The PBW theorem

Example 17.1
Let g = sl3, the root lattice is

and we have a unique highest weight oy + @, for the adjoint representation.

Lecture 19

Example 17.2
Let g = sl5, t be the Cartan subalgebra of diagonal matrices, with basis
1 0
= —1 = 1
0 —1

Let V' be the defining representation of g, with the standard basis elements {e, 2, e3}. We look for
|A; € t* such that
V-G
A

We know that

he €1 = e
a€2 — —€2
a 93 = 0
0’291 = 0
he,€2 = €2
®n€3 = —e3
Take
M(hg,) =1 M(he) =0 = Vy, = (e1)
Aolha) = =1 Xlhg) =1 = V), = (e2)
Alhe) =0 A(he) =1 = Vi, = (e3)
Note A1 = wi, A2 = —wi + w2 and A3 = —wy, see page 81 in notes. In this case, e is a highest weight
vector.

See Fulton-Harris Lectures 12 and 13 for more examples.

Lemma 17.3. (i) V has a highest weight vector,

(it) if v € V) is a highest weight vector, then A is dominant.
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Proof. For (i), choose any non-zero element vy € Vj for some A. If vy is a highest weight vector then we are
done. Otherwise, choose a € &1 such that ey(v) # 0. Let

k' = max{k | vy + 0}
and
vi = e vo = Vitka

Repeat this argument, it must terminate as V' is finite dimensional, and each v; lives in a distinct weight space,
as we always add on a positive root.

For (ii), let @ € ®T, we need to show that (A, a) > 0. Consider my, = (eq, fu = e_q, hy) acting on V.
Then e,v = 0 and hov = A(hy)v. So v is a highest weight vector for any m, = sl, acting on V, hence
Ahy) > 0 by sbp theory. O

Next, we will show that there is a correspondence

{f.d. irred. reps of g} <> {dominant weights}

17.1 Universal enveloping algebra

For now, let k be any field. We will associate to each Lie algebra g over k an associative unital algebra
(which in general is infinite dimensional over k), which is generated “as freely as possible” by the Lie algebra
g subject to the commutation relations in g.

Definition 17.4 (tensor algebra)

Let V be a vector space over k, defined the tensor algebra of V as

T(V) = @ \/®n

n>0

where (by convention) V® = k. On T(V), we have an associative product defined on homogeneous
generators by

(V1®"‘®Vm)®(u1®"'®Un):V1®"‘®Vm®u1®"'®unE\/®(m+n)

Definition 17.5 (symmetric algebra)

The symmetric algebra on V' is

T
S(V) = Sym(V) = (T)

where [ is the (two-sided) ideal generated by

®y—-—yex|xyeV}

Notice
S(v) =P s"v)
n>0
and we can identify
S(V) = k[V]

for the algebra of polynomials on V.

Note both 7 (V) and S(V) are graded algebras.

Definition 17.6 (universal enveloping algebra)

Given an arbitrary Lie algebra g over k (could be infinite dimensional), then the wuniveral enveloping
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algebra U(g) is the associative k-algebra

T(g
ug) = 12
where J is the (two-sided) ideal generated by

x®y—y®x—I[xyllxye g}

Some facts/exercises:
e we often write x ® y as xy,

e if V is a representation of g, then V' is a U(g)-module, with
XM ® - ®X))V=2x1-XpV
This is well defined as (x @ y — y ® x)(v) = xyv — yxv =[x, yv,

e if V is a finite dimensional representation of g = sl,(C), we defined the Casimir element Q = ef 4+ fe +
%hz € gl(V). Q is naturally an element of U(g), independent of V. In general, if g is a semisimple Lie
algebra complex Lie algebra, with basis {x1, ..., xp}, with dual basis {y1, ..., yn} with respect to the
Killing form. Then we define the Casimir element

n

Q=> xyi €Ulg)
i=1

Moreover, Q € Z(U(g))

e U(g) is not graded, since the generators of J are not homogeneous. For example, g® g is not closed under
addition. But it does have a filtration. Let U, be the image of

@ g®i
i=0

in U(g), then U, Uy C Upip.
Exercise (utterly horendous): If x € U,, y € Uy, then xy — yx € Upin_1.

The universal property of the universal enveloping algebra is: If A is an (associative unital, not necessarily
commutative) algebra over k, 7 : g — A a k-linear map, such that

71([x, y]) = 7(x)(y) = 7(y)m(x)

Then there exists a unique k-algebra homomorphism ¢, making

commute.

Another motivation for the universal enveloping algebra: If G is a simple compact Lie group, with Lie algebra
g, then U(g) is the algebra of left invariant differential operators on Gi. We can also use this to motivate the
Casimir element. G has a natural bi-invariant metric. Then we can consider the Laplace-Beltrami operator

A =dd + od

This is central in U(g), and the corresponding element in g is the Casimir element.
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Definition 17.7 (associated graded algebra)
Given any filtration Fp C F71 C F3, we call

ar(F) = EP FilFis

the associated graded algebra.

In our case,

grlU(g)) = Lo &

B UalU

n>1

See also the Commutative Algebra course.
Lecture 20

17.2 PBW theorem

Since gl(V) is an associative unital algebra, a representation g — gl(V) is equivalent to a k-algebra homomor-
phism U(g) — gl(V). Therefore, it would be useful to understand the structure of U(g), and the PBW theorem
is one part of this.

Theorem 17.8 (Poincaré-Birkhoff-Witt). There exists an isomorphism of algebras

S(g) = grtd(g))
Equivalently, if {x, ..., xp} is a basis for g, then

X//|<1 . an

is a basis for U(g), and so g embeds into U(g).

Proof”. Omitted. For the first part, see Humphreys §17.4. We have a map g — U, by inclusion, then consider
the composition of this with the quotient map. Hence we get a map from the tensor algebra to the associated
graded algebra, which by the exercise at the end of the last lecture, factors through the symmetric algebra, S(g).

T(g) —— grti(g))

Slg)

It's not too hard to show the map is surjective, but it is hard to show that it is injective.
For the basis, a basis for S(g) gives an associated basis of gr(l{(g)), which in turn gives a basis for U(g).
See Humphreys §17.3 Corollary C. O

Lemma 17.9. Suppose V is a representation of g, and v € V. Then the minimal subrepresentation of V
which contains v is
U(g)v = {uv | u e Ulg)}

Proof. It is clear that U(g)v contains everything we want, as it contains all elements of the form x; - - - x,v for
all x; € g. It also contains all scalar multiples, and all of the sums of the above. O
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Example 17.10

Let V' be a infinite dimensional C-vector space, with basis v, v1, . ... Define an sly-action on V' by
evp=0
hVO =0
fvi = vig

We claim that vy and v; are highest weight vectors for the sl,-action. We need that evy = ev; = 0. For
j=1
evi = efvy = (e, f]+ fe)wy = hvy =0

We also require that (v) and (v1) to contain their images under h. hvy = 0 so this is clear, and for vy,

hV1 =hf\/0=([h,f]+fh)\/o=[h,f]\/0=—2f\/o —2\/1

So vi € V_; is a highest weight vector.
Also note that

is a subrepresentation of V, and V/W is one dimensional, and so V/W = V/(0).

More generally, if V") is a C-vector space, with basis v, . . ., vy, and with sl action given by
evp=20
hV() =Ny
fvi = vip

Then v,11 is a highest weight vector. If we let
W = span{vapq1, ..., Vi }

and we have that
VW) Z v ()

18 Highest weight modules and Verma modules

As usual, let g be a semisimple Lie algebra, with a Cartan subalgebra t and roots ®, and a base A = {¢, .. ., as}
of simple roots. If V' is a representation, then we have weight spaces

Vi={veV|tv=At)forall t €t}

Remark 18.1. e \/, makes sense even if V is infinite dimensional.
e the definition of a highest weight vector also makes sense if V' is infinite dimensional.

e if e, € g, is non-zero, then
€a V)\ g V/Ha

which still makes sense if V is infinite dimensional.

Definition 18.2 (highest weight module)

A representation V' of g is a highest weight module if V' contains a highest weight vector v, such that

vV =Ul(g)v

Note that Humphreys calls this a standard cyclic module, but the modern terminology is highest weight
module.
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Example 18.3

v. Thus equality holds as V' is irreducible.

Example 18.4
In example [17.10} v is a highest weight vector, and v; = flvg, and so

vV =U(g)v

is a highest weight module.

Remark 18.5. e Not every highest weight module is irreducible,

dominant.

Notation 18.6. Define

U+ = 6{9 Ja

acdt

n = 6{9 Ja

acd—

With this, we have that
g=n"oten

Lemma 18.7. Suppose V' is a highest weight module, with a highest weight vector v such that V = U(g)v.

Then in fact
V=Un)v

Proof Choose a basis x1, ..., x, of n7, a basis ty, ..., tp of t, and a basis y1, ..., yn of n™. Then

Ulg) =U(n") U(t) @ U(n™)

and by PBW,
Ulg)v = span{x;’ -t 17y} ypv)
But y;v =0 for all i, and t;v € span{v}, and so

Any finite dimensional irreducible representation v of g is a highest weight module. This follows as v
has to contain a highest weight vector v, and we saw that U(g)v is a subrepresentation of V' containing

e If V is an infinite dimensional weight module, v € Vj a highest weight vector, then A does not have to be

O

Intuitively, since v is a highest weight vector, it is in the kernel of all of the y; € n*. So the weight can

only decrease.

Then
(1)

V=B v

HeD()

where

4
D) = {A=> ki | ki € Zso}
i=1
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is the descent set of A.
(i) Any submodule of V' is a direct sum of weight spaces V/,,
(iit) dim(V)) =1 and any other V,, is finite dimensional,
(iv) V is irreducible if and only if every highest weight vector lies in V},

(v) V contains a maximal (proper) subrepresentation.

Proof. Recall that V = U(n~)v,, and so by considering expressions of the form

6781 U e*Br VA

where the B; are positive roots, r > 0, e_g a non-zero vector in g_g. These expressions span V.
In this case, the weight of such an expression is A — (81 + - + B;), and so the generators live in V;_5 g,
where B; € ®*. This shows (i). Moreover, this also shows (iii), since given p there exists only a finite number

of ways to write
H=V—= Z Bi
i

where the B; are positive roots.
For (ii), let W <V be a submodule. Write w € W as a sum

n

W=ZV/<

k=1

where vi € V), the A¢ are distinct. We need to show that all the v are in W. If not, then we can choose a w
with n minimal, n > 1.
In particular, none of the v is in W. Find t € t, for which tn(t) # p2(t). Then

tw = Zu[(t)v,- ew

as does
(t = (t) d)w = (a(t) — m(t)va + - 4 (bn(t) — 1 ())va
The right hand side is non-zero. But since n is minimal, this forces v, € W.

For (iv), suppose V has a highest weight vector v, € V), where y # A. Then U(g)v, is a subrepresentation,
and it does not contain v,. To see this, the weights for U(g)v, are of the form

U_Zkia[
i

Hence U(g)v, is a non-trivial proper subrepresentation. Conversely, suppose U C V' is a non-trivial proper
subrepresentation. We can write U as a direct sum of V. Choose p such that v, € U, and if we write

,LI=)\—Z/<{G[

have ) , k; minimal. Let v, € V, be non-zero, a € &, e, € go. Then
eaVy € Vyra NU =0

Hence v, is a highest weight vector.

(v) has been left as an exercise. Let W;, W5 be submodules of V. If vy € W, then W, = V. So we may
assume that vy & W, We claim that W; + W, is a proper subrepresentation. But this follows from the fact
shown in (ii) that Wy + W, decomposes into weight spaces, and by (iii), the A weight space is one dimensional.

Therefore, the sum of all proper subrepresentations must also be a subrepresentation, since if it contains v;,
a finite sum of proper subrepresentations must contain v,. With this, maximality is clear. O

Other easy exercises (Humphreys):

e show that V' is indecomposable as a g-module,

e show that every non-zero homomorphic image of V' is also a highest weight module
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18.1  Verma modules

Definition 18.9 (highest weight)

If V is a highest weight module with v € V) a highest weight vector, V' = U(g)v, then we say that V' is
of highest weight A.

Let t be a Cartan subalgebra of g, with corresponding root system ¢ and a root basis A = {a, ..., ast.
Choose a basis hy, ..., he of t, with h; = h,. For A € %, let J(A) be the (left) ideal of U(g) generated by

e e, for a € ¢,
o h; — A(hi)1 for each i

That is, J(A) comprises elements

Z Ug€q + Z yi (hi — A(h:)1)

acdt

where vy, y; € U(g). J(A) is a left module for U(g).

Definition 18.10 (Verma module)

Let M(A) be the quotient space

M = 49

JA)
This is a U(g)-module, with action
u(v+J(A) = uv + J(A)

and we say that M(A) is the Verma module associated to A

Proposition 18.11. M(A) is a highest weight module, with highest weight A.

Moreover, M(A) is universal. That is, for m, € M(A), a highest weight vector, V' any other highest
weight module with highest weight A, and highest weight vector v,, then there exists a unique g-equivariant
linear map M(A) — V/, sending m, to v,.

Proof. Let my =14 J(A) € M(A). This is a generator for M(A) as a U(g)-module. Then
himj = hi +J(A) = A(h)1 + J(A)

and if a € ®T, e, € g,, then
€qM) = €q +j()‘) = j()\) =0

In this case, m, is a highest weight vector, with highest weight A, and M(A) = U(g)m,. So any other highest
weight vector is a scalar multiple of this one.
By the PBW theorem, if &+ = {p;, ..., B/}, then

is a basis for M(A). Define

©:MA) -V

e—py g My ep g

O

Remark 18.12. Humphreys calls M(A) the universal standard cyclic modules.
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Lemma 18.13. Given a weight A € t¥, there is a unique irreducible highest weight module with highest
weight A, called V/(A).

Proof. We know that M(}) has a unique maximal (proper) submodule J, by proposition [T8:8] Then M(A)/J is
irreducible. Uniqueness follows from the universal property of the Verma module. O

Example 18.14

In example [17.10] we had V' = M(0), / = (v1,...), and M(0)/J = V/(0), which is the trivial representation
of 5[24

Example 18.15

See Erdmann-Wildon Example 15.12, they give an example of an irreducible Verma module, for g = s1,(C).
This shows that sl;(C) has infinite dimensional irreducible representations.

Remark 18.16. Verma modules are building blocks for the ‘category O'. Although each M(A) is infinite dimensional,
when we viewed as a U(g)-modules, it has finite length. That is, there exists submodules

0=Mo <My <o <M, = M)

such that M1 /M; are simple for all i.
See Humphreys ‘category O book.

Remark 18.17. In 1985, Drinfeld and Jimbo independently defined quantum groups, by 'deforming’ the universal
enveloping algebras of Lie algebras. These have numerous applications in theoretical physics, knot theory, and
representation theory of algebraic groups.

Theorem 18.18. V = V/(A) is a finite dimensional irreducible g-module if and only if A is dominant.

Proof. If V' is finite dimensional, then for each simple root a;, let m,, be the corresponding copy of sl;. Then V
is also a finite dimensional module for m;, and a highest weight vector for g is a highest weight vector for m;.
Since, there exists a highest weight vector of weight A, then the weight for the Cartan subalgebra t; C m,, is
determined by the A(h;), since h;(v) = A(h;)v = (A, ) v. This forces A(h;) € Zo.

For the converse, V/(A) is a direct sum of finite dimensional weight spaces, as it is the quotient of the Verma
module. The idea is to show that the set of weights

M(A) = {w | V(A), + 0}

is finite. Let A={a, ..., ap} be a root base, and for each i, let {x;, y;, h;} be a mq-triple.
We need that in U(g),

[, yst = 0for i # j (1)
oyt = =k Nyi (k-1 = hy) (i)

for k > 0. See Humphreys §21.2.

Claim 18.19. V/(A) contains a non-zero finite dimensional m,,-module, for each i.
Proof. Let v € V(A) be a highest weight vector. As A is dominant,
n;g = <)\, alv> (S Zzo
Let u = y™"™'v. We will show that u = 0. By (i), for i # j,

Xju = Yyt (x;v) + [x;, Yy =0
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Next, for (i),

xiu =y av) + [ gy = (i + 1y — by = 0

Suppose if u =+ 0, then from the above, u would be a highest weight vector of weight A — (n; + 1)a; < A
Contradiction, the highest weight is unique. So

W = <v,g[v ,,,,, yf"+1v>

is a non-zero finite dimensional m,, subrepresentation of V/(A). To see that ;W C W, use (ii). O

Claim 18.20. For each i, V(A) is the sum of all finite dimensional m,, subrepresentations contained in it.

Proof. Let W be the sum of all finite dimensional m,,-modules contained in V/(A). We will show that W is a
g-submodule of V/(A). But V/(A) is irreducible, and by claim W £ 0, and so W = V(A).
For x € g,w € W, we need to show that xw € W. But then w € W’ for some finite dimensional
mg,-module W’ Let
X = Z Xp

Bedu{0}
where xg € gg. Then xgw € ggW’ = W”. Now consider
W’ = spang{ggp W’}
Then W” is finite dimensional, and it is clearly my-invariant, as
xiW" C spang{xixg W'}

But
xixgW' = xg(x W') + [xi, xg]W' C xgW' + gg o gW C W”

Similarly, repeat for y;, h;. Thus, xw € W C W. O

Claim 18.21. The Weyl group acts on [(A) by permutations.

Assuming the claim, ['(A) decomposes as a disjoint union of orbits, this will mean that it is now enough to
show there are only finitely many orbits, as W is finite. First, we will show

Claim 18.22. If y € T1(A), then w;(y) € MN(A), where w; = wy,. Also,

dim(V(A),) = dim(V(A) ()

Proof. Since V/(A), is finite dimensional, there exists a finite-dimensional m,-module U containing V(A),. Pick
an element 0 + w € V/(A),. We have that

hiw = p(h)w

Hence w € U is a weight vector for h;. Thus by sl, theory, u(h;) = p(e)) = m € Z. Hence all weights
are in Z, as this holds for all i. Since m appears as a weight of U, so does —m. Moreover, we have that
dim(Uy,) = dim(U_p,).

If m >0, then y"w # 0, and y'm € U_,. But

yi'w € V()\)/k(;/,a,v)m = V(Aw)

as weights add. If m < 0, the same argument with x; " works.

To get the equality of dimensions, if wy, ..., w, is a basis of V(A),, then wy, ..., w; is linearly independent
in Uy. Applying yi" (or x;™), the results are still linearly independent, which live in V(A),,(,). With this,

dim(V(A)y) < dim{V(A)w,(u))

But we can just swap ¢ and w;(y), as w? = id. O
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Claim 18.23. For p € T1(2), its Weyl orbit Wy contains a dominant weight.

Proof. The orbit W is finite, so there exists n € W, which is maximal with respect to <. Then we know that
n its dominant, since if not, then

(n.a’) <0
for some i, and so w;(n) € Wy, with wi(n) = n— (n, &) with w;(n) > n. Contradiction. L]
Claim 18.24.
S ={n| n dominant, n < A}
is finite.

Proof If n € S, then A — i is a sum of positive roots, with nonnegative coefficients. hence n lies in a discrete
set.
Moreover, A 4+ i is dominant, and so

(A+na')>0

for all i. In particular,
A+nA=n>0 = (LX) >(n.n)

and so S is a subset of a compact set. Thus S is compact and discrete, and so finite. O

From claim [T823] any W-orbit of () contains a dominant weight, L.e. an element of S. But S is finite
and so there are only finitely many orbits. O

We've just shown that there exists a bijection

{dominant weights A} < {finite dimensional irreducible representations V(A) of g}

19 The Weyl character formula

Let g be a semisimple Lie algebra, with Cartan subalgebra t, root basis A = {a, ..., ap}, weight lattice X,
Weyl group W.

Example 19.1
Define :

P=5 Z a

acdt
Let us compute (p, o) for Ay, Az, Bs.
For Ay, Bo, A = {ay, ap}, we claim that

p=w+ w2
In particular,

(pra/) =1
For Ai, A= {1}, p= /2, and

(p.ai) =

We claim that ,
p= Z Wi
i=1

where the w; are the fundamental dominant welghtsﬂ It suffices to show that (p, ajv> =T1forall ¢ € A In
this case,

W (p) =p—(p. o) q

3Recall that this means <wl, Orjv> = 0;j. By construction they are dominant.
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But we also have that
1 1
We, (p) = Wq, 5 Z a+ 59
We know that w,, permutes ®* \ {a;}, and so

1
walp)=5 ) a-5a=p-g

Recall from theorem [18.18] that
M) = {w| V(A), # 0}

This leads to the questions:
e what is [1(A)?
e what is dim(V/(A),)?

Definition 19.2
We have a partial ordering < on X, defined by

4

pXAMA—p =) ka
i=1

where k; € Zg for all (.

Now note that
N) = {u|w=A}

and to determine [1(A), we only need to find the dominant weights in it. This is because (Humphreys Lemma
13.2A) each weight is conjugate under the Weyl group to a unique dominant weight. See claim [T8:23] for
existence. For our purposes, we won't need uniqueness.

Proposition 19.3. Suppose A, y are dominant weights. Then y € (A) if and only if p < A

Lecture 24

Proof. Suppose p < A Then

A=y = Zkaa

aedt

where ko € Z>o. We will induct on ) k,. We've already done the case where Yk, = 0. Now suppose
H=A—a

for some a € ®*. Then
<u, av> = <)\, av> —2>0

by dominance, and so {(a, a¥) > 2. Let v; € V) be non-zero. Since
havy = nvy

fo some n > 2, and then we know that
e_qvy #0

By the usual sl theory, e_,vy € V(A),_o = V(A),, and so p is a weight.
Now suppose we know the claim is true for )k, = n — 1. We assume now that ) k, = n, so that

p=A—pBi— =B

60



We have two cases:
Case 1: For some i, distinct, <B[,B}/> < 0. Without loss of generality, i < j. In this case, B + B, is a
positive root. Thus, we have that

n i—1 J—i n
Y Bi=) Bt Y B+ ) B+ (B+B)
i=1 k=1

k=i+1 k=j+1

which is a sum of n — 1 positive roots, and so we are done by induction.
Case 2: For all i, j distinct, (B, B) > 0. For this,

Claim 19.4. .
A=Y B enN@
i=1
forall 1< r<n.
Proof. By induction on r. See notes. O

Example 19.5

For G, we have the root basis {1, az}, with &y short, and we would like to compute M(2wy).
add diagram
Now wy is such that (wr, o) = 1, and (wi, &) = 0. The dominant weights of M(2wy) are the
dominant p with ¢ < 2wy by the proposition.
First, 2wy = 4aq + 20, and wy = 30 + 2. Then wy X 2wy, But wy + wy £ 2wy. Hence the
dominant weights in N(2wq) are
w1, 2(4)1, wy, 0

The Weyl conjugates of wq are the short roots, and the Weyl conjugates of w, are all the long roots. So

M(2w1) = {short root} U {2(short root)} U {long root}
= U {+£2w, L2¢, £2(n1 + a2), 0}

See Humpreys page 68, 69, or Fulton-Harris pages 339-359. This is a very typical exam question.

Definition 19.6 ((formal) character)
Let Z[X] be the free Z-module with basis

{e" | pe X}

with multiplication

eueA _ €u+)\

This makes Z[X] into a commutative ring, with 1 = €Y.
Let V be a finite dimensional representation of g, then the (formal) character of V is

ch(V) =) dim(V,)e" € Z[X]

neXx

Z|X] is the group ring generated by the lattice X.

Example 19.7
For g = sly, then

Nl Q
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Let z = %2, then

ch(V(n) = 2"+ + 27"

Exercise: Find the character of the adjoint represenation of sls.
Recall from examples sheet 3 that for w € W, ¢(w) is the minimal n such that

W:WCH.'.WGH
where a; € A. The sign of w is

sign(w) = (1)1

Example 19.8
If g = sl,, then for w € W, the sign of w as above, is the same as the sign of w in S,,.

Theorem 19.9 (Weyl character formula). Let A be a dominant weight, and

1
p=§Za=ij

aedt j
Then .
. A
Ch(\/()\)) _ ZWEW Slgn(W)e
er |_|a€d>+(1 - eia)
Proof. Fulton-Harris Chapter 24, Grojnowski §7, Humphreys 24.3. O

Corollary 19.10 (Weyl denominator formula).

ef |_| 1—e9) = Z sign(w)e"?)

acdt weW

Proof. Plug A = 0 into the Weyl character formula. Note ch(V/(A)) = 1. O

Corollary 19.11 (Weyl dimension formula). If A is dominant, then

dim(V(}) =

Muco- G +p.0¥) _ ) Gtp.a
Moco- 2@y L oa)
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*Proof”. By definition,
ch(V(A) = ) dim(V,)e”

pex+

We'd like to substitute e# =1, for any p, but we would get 0/0.
Indeed, for 4 € X, p € Z|X], define

Fulp) :Ryo — R
Fule’)(q) = g "

and extend linearly over p. Note £, is multiplicative and F,(p) is C' on Rq. Clearly Fo(e*) = 1, and

Fo(ch(V(4))) = dim(V(4))
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First apply £, to the Weyl denominator formula, we get

q—(p,u) |_| (1— q(a,u)) — Z slgn(w)q_(wf"“) - Z sign(w)q_(p'w") (*)

acd weW weW
Since sign(w) = sign(w™') and (wx, y) = (X, W’1g).

Now apply F, to the Weyl character formula, we get

—(p.w(A+p))
Folch(VIA)g) = q_(gﬁgm — ]

Note we need (p, a) # 0 for all a. But recall that (p, &) =1 > 0 for all i, and so (p, @) > 0 for all a € ®T.
Using (x) with y = A+ p,

—(p.A+p) _ glaA+p)
q [Tocor (T — g™
Fp(ch(V(4))) = ) |—|aE (1 — glpa))

q acdt q

where we applied (*) to the numerator. Finally, note that

Fplch(V(A))(g) = ) dim(V(A),)qg ")

Taking the limit ¢ — 1, and using L'Hopital's rule,

HGEKD‘ (/\ + P a)

L S P

as required. O

Example 19.12
For g = sb, wy = Ja = p, and X* = {mw;}, and so

dim(V(A)) = W — 41

Example 19.13

For g =sl3, &t = {a, B, a + B}. Let
= mwi + Mywy

and
p=a+B=w + w
Computing:
A+p a)=m +1
(A+p B)=my+1
A+pa+B)=m+m+2
(p,a) =1
(p.B) =1
(o a+B)=
and so

(m1 + 1)(1’172 + 1)(”71 + my + 2)
2

dim(V(A)) =

Exercise: Compute the dimensions of the finite dimensional irreducible representations of B, and (. See
Humphreys page 140.
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Example 19.14 (A very common tripos question)
For g = sp4(C), which is of type B,. Let oy be a short root. Suppose A = aw; + bw, is a dominant

weight. In this case,
[ ] (p.a") =6

acdt

Next, A+ p = (a + 1w + (b + 1wy. Hence

[1 (A +p.a")=(a+ Db +1)a+2b+3)(a+b+2)

aed

Let V' be the defining representation. For its highest weight,
dim(V(w1)) = 4

and so if W is a non-trivial representation of sp4, and not isomorphic to V/(ws), then by the dimension
formula, we need dim(W) > 4. Hence V = V(wy).
Finally, to decompose V ® V' into irreducible subrepresentations, we need to find Ay, .. ., A, such that

VeV =V e & V)

Let v € V(wi) be a highest weight vector. Then v® v is a highest weight vector, with weight 2w;. That is,
V(2w1) is a subrepresentation of V® V. But 2w = 201 + a2, and so V/(2w») is the adjoint representation.

In particular,
dim(V(2w1).,) = 1

Finally, take a basis {v,} where y € IM(w) be a basis of weight vectors of V. Then
{v ®w, [ v1,v2 € T(wi)}
is a basis of weight vectors for V ® V. Using this,

dim((V ® V)y,) =
dim((V ® V).,
dim((V ® V)o)

1
2
4

All other weight spaces correspond to non-dominant weights. Next,

dim(V(2w)w,) =1
dim(V(wp)) =5

and V(w;) has to be a subrepresentation of V ® V. By counting dimensions, we get

VeV =VQ2w)® V(w)® V(0)
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Hom(V/, W) representation, o]
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inner automorphism,
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of representations, [6]
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Jordan decomposition, [22]
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Levi's theorem, [T8]

Levi decomposition, [T8]
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Lie algebra, 3]
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linear Lie algebra, [4]
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maximal torus, [24]
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PBW theorem, B2
positive root, [30]

quotient representation, |§|
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reducible

root system, [34]
representation,
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root space decomposition, [25]



root string, [28]
root system,

semisimple, [0} [22]

Lie algebra, [T5]
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simple

Lie algebra, [T5]
simple representation, |§|
simple roots, [30]
simply-laced, [39]
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(Lie) subalgebra, [3]
subrepresentation, [0]
symmetric algebra, [B0]
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tensor product
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trivial representation, El

universal enveloping algebra, [51]
Verma module, [56]

weight lattice, [46]
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Weyl group, 34
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