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1 Introduction
A Lie group is fundamentally a group, which also a (smooth) manifold. For example, GLn,SLn,SOn,Sp2n.

Example 1.1A prototypical example of a Lie group is the circle group S1.
Let G be a Lie group. Then the Lie algebra of G is the tangent space at the identity e of G . That is,

g = TeG
g is a vector space, with additional structure, which we will see later.By taking a derivative, we turn the conjugation map

G → Aut(G)
g 7→ g(·)g−1

into a map
ad : g → End(g)

called the adjoint . This gives a bilinear map
[·, ·] : g × g → g[x, y] = ad(x)(y)

Example 1.2If G = GLn(R), then we have that g = gln(R) = Matn(R), with
[x, y] = xy − yx

What do Lie algebras tell us about the structure of the Lie group G?• We will define the root system of g, and this then tells us about commutator relations in G (see Carter’sbook).• We will define the Weyl group of g. For example, the Weyl group of gln(C) is isomorphic to Sn, thereis an embedding Sn ↪→ GLn(C), vie permutation matrices. Let B denote the Borel subgroup of uppertriangular matrices in GLn(C), then there exists a Bruhat decomposition

G = ⊔
w∈Sn

BwB

Lie algebras also give us information of the representation theory of G and g. For example, there exists abijection
{finite dimensional C-representations of SLn(C)} ↔ {finite dimensional C-representations of sln(C)}
Moreover, we can describe the right hand side completely.In addition, Lie algebras have applications in Algebraic Geometry, for example, we can use Lie algebras tobuild families of surfaces, of equivalenrly, algebraic curves (See book by Slodovy).We will define the Dynkin diagrams of semisimple Lie algebras. For example,

• • • • • •

•
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is a Dynkin diagram of type E7, and understanding the Dynkin diagram tells us about the singularities on thesurfaces.Moreover, Lie algebras also have applications in number theory, root systems/Weyl groups give the structureof groups over Qp, the p-adic integers (see paper on Moodle). Local Langlands correspondence predicts arelationship
{Galois theory of local fields} ↔ {complex Lie theory}Finally, there any other applications, for example algebraic groups, quantum groups, theoretical physics,quantum mechanics.

2 Basic definitions and examples
Let k be a field. Most of the time, k = C, but not always. We will sometimes point out how things can gowrong in characteristic p.

Definition 2.1 (Lie algebra)A Lie algebra over k is a vector space g over k , together with a bilinear pairing
[·, ·] : g × g → g

satisfying1. [xx ] = 0 for all x ∈ g,2. the Jacobi identity [x [yz]] + [y[zx ]] + [z[xy]] = 0
Notation 2.2. Note that when clear, we will write [xy] := [x, y].
Remark 2.3. In particular, we have antisymmetry, i.e.

[xy] = −[yx ]
Definition 2.4 ((Lie) subalgebra)A k-vector subspace h of g is a (Lie) subalgebra if h is closed under the Lie bracket of g. That is, for all
x, y ∈ h, [xy] ∈ h.
Example 2.5Let V be a finite dimensional k-vector space, then1. Let gl(V ) = End(V ), with [xy] = xy − yx . If we choose a basis for V , then we can identify gl(V )with Matn(k ). In this case, we will write gln or gln(k ).2. Let

sl(V ) = {x ∈ gl(V ) | tr(x) = 0}This defines a subalgebra of gl(V ), called the special linear Lie algebra, with dim(sl(V )) = dim(V )2−1. The standard basis of sl(V ) is given by
Ei,j for i ̸= j
Ei,i − Ei+1,i+1

We will often write sln for this Lie algebra.
Lecture 2
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Example 2.6 (continued) 3. Suppose char(k ) ̸= 2, and suppose V is endowed with a symmetric non-degenerate bilinear form
⟨·, ·⟩ : V × V → kThen define

so(V ) = {x ∈ gl(V ) | ⟨xv, w⟩ + ⟨v, xw⟩ = 0 for all v, w ∈ V}If M ∈ GL(V ) is such that ⟨v, w⟩ = vTMw , so
so(V ) = {x | Mx + xTM = 0}

We usually take
M =



(0 Iℓ
Iℓ 0

)
n = 2ℓ1 0 00 0 Iℓ0 Iℓ 0

 n = 2ℓ + 1
These are called the orthogonal Lie algebra, denoted son.

Remark 2.7. In the case n = 2, let
e = (0 10 0) f = (0 01 0) h = (1 00 −1)

viewed as matrices (in sl2(C)). Indeed, this is the standard basis of sl2(C). Note
[ef ] = h[he] = 2e[hf ] = −2f

We’ll see that (in some sense) the structure of all semisimple Lie algebras comes from sl2(C).
4. Again suppose char(k ) ̸= 2. Now suppose V is endowed with a non-degenerate skew-symmetric(or alternating) bilinear form ⟨·, ·⟩, then

sp(V ) = {x ∈ gl(V ) | ⟨xv, w⟩ + ⟨v, xw⟩ = 0}

In coordinates, we take the form ⟨·, ·⟩ to be the skew-symmetric form given by
M = ( 0 Iℓ

−Iℓ 0)
where n = 2ℓ . This is called the symplectic Lie algebra, denoted spn.

If we consider the Lie groups in the above as being defined by the equation
XTMX = M

For appropriate choices of M , we get the Lie groups SOn,Spn. Differentiating this equation gives us the Liealgebras son, spn.Exercise: Check that son and spn are Lie subalgebras of gln. It’s not very hard to check this directly. Onthe other hand, we can also see that SOn and Spn are subgroups, and so their tangent spaces are subspacesof gln, and hence their Lie algebras are subalgebras of gln.
Example 2.8 (continued) 5. Any vector space V is a Lie algebra with [vw ] = 0 for all v, w . We callsuch Lie algebras abelian. It is named like this, since for linear Lie algebras, that is, any subalgebraof gl(V ) where V is finite dimensional, [xy] = xy − yx = 0 is true if and only if x and y commute.
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6. bn is the Borel algebra of upper triangular matrices∗ · · · ∗
. . .

...0 ∗


This is the Lie algebra associated to the Borel subgroup of upper triangular invertible matrices.7. nn is the Lie algebra of strictly upper triangular matrices,0 · · · ∗

. . .
...0 0


n stands for nilpotent, see section 7.
3 Basic representation theory

Definition 3.1 (homomorphism, isomorphism)A linear map φ : g → h between two Lie algebras is a homomorphism if
φ([xy]) = [φ(x), φ(y)]

for all x, y ∈ g. If φ is a linear isomorphism, we call φ an isomorphism of Lie algebras.
Definition 3.2 (representation)A representation of g is a Lie algebra homomorphism

φ : g → gl(V )
for some vector space V .
Notation 3.3. We also call V itself a representation, or a g-module. We write g

⟳V , and say g acts on V . We willwrite
x · v = xv := φ(x)(v )The dimension of the representation is the dimension of V .

Example 3.4 1. Let dim(V ) = 1, then g

⟳V via xv = 0. This is called the trivial representation.2. g is a subalgebra of gl(V ), then the natural inclusion g ↪→ gl(V ) is called the defining representation.3. Let x ∈ g, define adx : g → g by adx (y) = [xy]. The map
ad : g → gl(g)

x 7→ adx
is called the adjoint representation.
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Remark 3.5. Recall e, h, f from remark 2.7, the adjoint representation of sl2(C) has matrices
adh = 2 0

−2
 ade =  −2 1 adf = −1 2


with respect to the basis {e, h, f}.

4. If V ,W are representations of g, then so is their direct sum V ⊕ V , via
x(v, w) = (xv, xw)

5. If V is a representation of g, then so is the dual V ∗,
(xf )(v ) = −f (xv )

for all x ∈ g, f ∈ V ∗, v ∈ V .6. If V ,W are representations of g, then so is the homomorphisms Hom(V ,W ), via
(x · f )(v ) = x · f (v ) − f (x · v )

Definition 3.6 (equivariant, isomorphism)If V ,W are representations of g, then a linear map φ : V → W is called g-equivariant for all x ∈ g, v ∈ V ,
x · φ(v ) = φ(x · v )

We say V ,W are isomorphic if there exists a g equivariant isomorphism (of vector spaces) V → W .
Definition 3.7 (subrepresentation, irreducible)A subrepresentation W ≤ V is a subspace xw ∈ W for all x ∈ g, w ∈ W . A non-zero representation Vis irreducible or simple if the only subrepresentations of V are 0 and V .
Exercise: The trivial representation is irreducible, and so are the defining and the adjoint representation of

sl2(C). Lecture 3
Definition 3.8 (completely reducible, semisimple)A representation V is completely reducible, or semisimple if it decomposes as the direct sum of irreduciblerepresentations.
Exercise: A representation V is completely reducible if and only if for every subrepresentation W of V ,there exists another subrepresentation W ′ such that

V = W ⊕W ′

Example 3.9If V is a representation, W ≤ V a subrepresentation, then the quotient V /W is a representation of g, via
x(v +W ) = (xv ) +W
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Remark 3.10. The isomorphism theorems hold for quotient representations as well.
4 Representation theory of sl2(C)
We’ll see later on that the representation theory of general semisimple Lie algebras is “built up” from therepresentation theory of sl2(C). Moreover, it serves as a useful example to motivate various definitions.Recall

sl2(C) = {(a b
c −a

) ∣∣∣∣ a, b, c ∈ C
}

Example 4.1We have
b2 = {(a b0 c

)}
which is the Borel subalgebra of 2 × 2 matrices. Let V = span{v! = (10) , v2 = (01)}, and the definingrepresentation of b2. This is not completely reducible. To see this, set

V1 = span{v1}
and this does not have a complement.
Definition 4.2 (faithful)A representation V of g is faithful if the map

g → gl(V )
is injective.
From now on, all Lie algebras and their representations will be over C , unless stated otherwise.Let V be a representation of sl2(C). Recall the basis

e = (0 10 0) f = (0 01 0) h = (1 00 −1)
of sl2(C). We know three representations of sl2(C) already.dimension name action of h1 trivial 02 defining (1 00 −1)

3 adjoint 2 0
−2


Definition 4.3 (weight space)For λ ∈ C, the λ-weight space of V is
Vλ = {v ∈ V | hv = λv}

is the λ-eigenspace of h.
The following are vector space sums, not decompositions into subrepresentations.

7



• For the trivial representation,
V = V0

• For the defining representation,
V = V1 ⊕ V−1

• For the adjoint representation,
V = V2 ⊕ V0 ⊕ V−2where V2 = ⟨e⟩ , V0 = ⟨h⟩ , V−2 = ⟨f ⟩.For v ∈ Vλ,

h(ev ) = (he)v = ([he] + eh)v = 2ev + λev = (λ+ 2)evHence ev ∈ Vλ+2. Similarly, f v ∈ Vλ−2.That is, we have
· · · Vλ−2 Vλ Vλ+2 · · ·

e e e e

ffff

Definition 4.4 (highest weight vector)A non-zero
v ∈ Vλ ∩ ker(e)for some λ is called a highest weight vector (of weight λ)

Example 4.5In the adjoint representation, e is a highest weight vector.
Lemma 4.6. Suppose v ∈ Vλ is a highest weight vector. Then for all n ≥ 1,

efnv = n(λ − n+ 1)fn−1v
Proof. Induction on n. For n = 1,

(ef )v = ([ef ] + fe)v = (h+ fe)v = λv = 1(λ − 1 + 1)f 0v
The inductive step follows similarly.

Lemma 4.7. Suppose v ∈ Vλ is a highest weight vector. Then
W = span{v, f v, f 2v, . . . }

is a sub-representation of V ,
Proof. Suffices to show that for w = fnv ∈ W , then ew, fw, hw ∈ W . By definition, fw ∈ W is obvious.
ew ∈ W follows by lemma 4.6, and the n = 0 case is just ew = 0.For hw ,

fnv ∈ Vλ−2nand so
hw = (λ − 2n)w ∈ W
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Proposition 4.8. If V is finite dimensional, then a highest weight vector exists.
Proof. Choose any nonzero eigenvector v of h (always exists as we are working over C). Consider

v, ev, e2v, . . .
These are eigenvectors for h, with distinct eigenvalues. Hence the set

{env | env ̸= 0}

is linearly independent. As V is finite dimensional, this set must be finite. Hence there must exists n such that
env ̸= 0 and en+1v = 0

Then env is a highest weight vector.
Lemma 4.9. Suppose V is finite dimensional, and v ∈ Vλ is a highest weight vector, then λ ∈ Z≥0.

Proof. Any non-zero vectors of the form fnv must be linearly independent, so there exists n ≥ 0 such that
fnv ̸= 0, fn+1v = 0. By lemma 4.6,

0 = efn+1v = (n+ 1)(λ − n)fnv
Hence we must have that λ = n, since n+ 1 ̸= 0, fnv ̸= 0.Conclusion: Suppose V is irreducible, of dimension n+ 1. Then by proposition 4.8, a highest weight vector
v ∈ Vλ exists. By lemma 4.7, we have a subrepresentation

W = span{v, f v, . . . }

So by irreducibility,
{v, f v, . . . , fnv}is a basis, as the f iv are linearly independent, and we know from lemma 4.9 that λ = n.

Corollary 4.10. If V is an irreducible representation of sl2, of dimension n+ 1, then there exists a basis
v0, . . . , vn of V , such that the actions are:

hvi = (n − 2i)vi f vi = {vi+1 i+ 1 ≤ n0 i = n
evi = {i(n − i+ 1)vi−1 i − 1 ≥ 00 i = 0

In particular, there is a unique irreducible representation of sl2 with dimension n+ 1 for all n ≥ 0.
Lecture 4

Remark 4.11. Let V be the n + 1 dimensional irreducible representation of sl2 , and let v ∈ V be a highest weightvector. Note (
ef + fe+ 12h2) (v ) = (n+ n22

)
v

5 Irreducible modules for sl2
Notation 5.1. We will write V (n) for the n+ 1 dimensional irreducible representation of sl2 .
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Definition 5.2 (weights)Given a representation V for sl2, the set
{λ ∈ C | Vλ ̸= 0}

are the weights of V .
We will show Weyl’s theorem.

Theorem 5.3. Every finite dimensional representation of sl2 is completely reducible.
This result, along with corollary 4.10, implies that the action of h completely determines a finite dimensionalrepresentation of sl2.

Example 5.4Suppose V is a 5-dimensional representation of sl2, and there exists v ∈ V of weight 3. This means thatby counting dimensions, the possible weights are {3, 1, −1, −3}, and {0}. Thus,
V ∼= V (3) ⊕ V (0)

We will need a few facts. Let g be a Lie algebra, φ : g → gl(V ) be a representation of g, and suppose thereexists σ ∈ gl(V ) commuting with φ(x) for all x ∈ g. Then:Fact 1: ker(σ − λ idV )is a subrepresentation of V , for all λ ∈ C. To see this, if v ∈ V is such that σ (v ) = λv , then
σ (φ(x)v ) = φ(x)σ (v ) = λφ(x)

Fact 2: If V is irreducible, then σ is a scalar multiple of idV . That is, Schur’s Lemma.
Definition 5.5 (Casimir element)Let V be a finite dimensional representation of sl2. Then

Ω = ef + fe+ 12h2 ∈ gl(V )
is called the Casimir element (of sl2).
In fact, Ω is central.

Lemma 5.6. If φ : sl2 → gl(V ) is a representation, then Ω commutes with φ(x) for all x ∈ sl2.
Proof. To show Ω is central, suffices to show Ωe = eΩ,Ωf = fΩ,Ωh = hΩ. Just compute.

Corollary 5.7. If V is an irreducible finite dimensional representation of sl2, then Ω ⟳V by a scalar.
Proof. By Schur’s lemma and lemma 5.6. Moreover, the scalar is

n22 + n
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Proof of theorem 5.3. Let φ : sl2 → gl(V ) be a finite dimensional representation of sl2. Let W ≤ V be asubrepresentation. We need to find a subrepresentaion U ≤ V , such that
V ∼= W ⊕U

Case 1: W has codimension 1. So V /W ∼= V (0).
Subcase (i): W is trivial. In this case, dim(V ) = 2, and so we have a basis v1, v2 of V , with respect towhich sl2 acts on V , by matrices (0 ∗0 0)We will show V is isomorphic to V (0)︸︷︷︸=W

⊕V (0)︸︷︷︸=U
. Note that

[(0 x0 0) ,(0 y0 0)] = 0
for all x, y. Since φ is a representation, it respects the Lie bracket. We must have that

φ(h) = [φ(e), φ(f )] = 0
and so

φ(e) = 12 [φ(h), φ(e)] = 0
and φ(f ) = 0 similarly. Thus, the action of sl2 is trivial.

Subcase (ii): W = V (n) is irreducible, n > 0. We have the Casimir element Ω ∈ gl(V ), and we will show
V = V (n) ⊕ ker(Ω)

By Schur’s lemma, and the fact that W is irreducible, and that Ω acts on V /W trivially, there is a basis for V ,such that Ω = (λI ∗0 0)Note here, since W is a subrepresentation, Ω restricts to an element of gl(W ), which is how we get the top leftentry. W is non-trivial by assumption, and so ker(Ω) ̸= 0, and W ∩ ker(Ω) = 0. Hence
V = W ⊕ Ω

Subcase (iii): For a general W . We do this by induction on dim(V ). If dim(V ) = 1, the result is clearlytrue. So we can assume dim(V ) ≥ 2. Let W ′ ≤ W be a non-zero subrepresentation. As dim(W/W ′) < dim(V ),and codimV /W ′ (W/W ′) = 1, by induction, this implies that we have a splitting
V
W ′ = W

W ′ ⊕ W ′′

W ′ (1)
for some subspace W ′′ ≤ V , with W ′ ⊆ W ′′, and W ′′/W ′ is a subrepresentation of V /W ′. Moreover, W ′′/W ′has dimension 1, and dim(W ′) < dim(V ). W ′′ being a subrepresentation of V follows from the fact that W ′′/W ′is a subrepresentation. By induction again, there exists a subrepresentation U ≤ W ′′ such that

W ′′ = W ′ ⊕ U

We know that
V = W ⊕Uas W ∩ U = 0 since eq. (1) is a direct sum, and so W ∩ U ≤ W ′ ∩ U = 0. Using dim(U) = 1, and countingdimensions we are done.

Case 2: Let W be arbitrary. Recall the action on Hom(V ,W ), is given by
(xφ)(v ) = xφ(v ) − φ(xv )

Define
V = {ψ ∈ Hom(V ,W ) | ψ|W = λ idW for some λ}
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and we have a subspace
W = {ψ ∈ V | ψ|W = 0} ≤ VWe lose one degree of freedom going from V to W, and so codimV(W) = 1. Suppose ψ|W = λ idW , x ∈

sl2, w ∈ W , then (xψ)(w) = xψ(w) − ψ(xw) = x(λw) − λ(xw) = 0So V is a subrepresentation of Hom(V ,W ), and so W is a subrepresentation as well. By case 1, there existsa one-dimensional subrepresentation U ≤ V, such that
V = U ⊕ W

Write U = ⟨γ⟩, for some γ ∈ V, and so γ|W = λ idW , for some non-zero λ.
Claim 5.8. We have a vector space decomposition:

V = W ⊕ ker(γ) Lecture 5
Proof of claim. By construction, W ∩ ker(γ) = 0, and by dimension counting, dim(V ) = dim(W ) + dim(ker(γ)),as W = im(γ). Since dimensions add up and the intersection is zero, we have a direct sum of vector spaces.Finally, it remains to show that ker(γ) is a subrepresentation of V . Let v ∈ ker(γ), x ∈ sl2. Since U isone-dimensional of sl2, it must be the trivial representation. Thus,

0 = (xγ)(v ) = xγ(v ) − γ(xv ) = −γ(xv )
as γ(v ) = 0. This means that xv ∈ ker(γ) as required.

In Humphreys’ book §6.3, Humphreys proves theorem 5.3 for a general semisimple Lie algebra. Or seeHenderson §5.2.1, §7.5.1.
Remark 5.9. 1. The proof only needed (in terms of representation theory)• existence of a Casimir element Ω,• the only one-dimensional representation is the trivial representation.2. Complete reducibility is rare, it can fail for infinite dimensional Lie algebras, or simple Lie algebras in positivecharacteristic. For example, the adjoint representation of sln(Fp) on gln(Fp) is not completely reducible if p | n.

6 Tensor products
Given vector spaces V ,W , with bases v1, . . . , vn and w1, . . . , wm respectively. We define the tensor product
V ⊗C W as the C-vector space, with basis

{vi ⊗ wj}i,jsubject to the usual bilinearity conditions.
Definition 6.1 (tensor product of representations)If V ,W are representations of a Lie algebra g, then so is V ⊗W , with

x(v ⊗ w) = (xv ) ⊗ w + v ⊗ (xw)
Example 6.2If V ,W are sl2 representations, v ∈ Vλ, w ∈ Wµ , then

h(v ⊗ w) = (λ+ µ)(v ⊗ w)
12



That is,
v ⊗ w = (V ⊗W )λ+µThus, the weights of V ⊗W are just λ+ µ, where λ is a weight for V , µ is a weight for W .

Example 6.3For
V (2) ⊗ V (2) = V (2)⊗2

we have the weights: 2 0 -22 4 2 00 2 0 -2-2 0 -2 -4and so
V (2)⊗2 = V (4) ⊕ V (2) ⊕ V (0)In particular, if vn is a highest weight vector in V (n), then vn⊗vm is a highest weight vector for V (n)⊗V (m).

We would like a general formula for decomposing V (n) ⊗ V (m). The answer, as in Part II Representationtheory, is a Clebsch-Gordon formula
V (n) ⊗ V (m) = n+m⊕

r=|n−m|,r∼=n−m (mod 2)V (r)
We won’t need this though.

Definition 6.4The n-th symmetric power is
SnV = Symn(V ) = V⊗n

Mnwhere Mn is the span of
u1 ⊗ · · · ⊗ un − uσ (1) ⊗ · · · ⊗ uσ (n)where σ ∈ Sn, and ui ∈ V .

For example, M2 is the span of v ⊗ w − w ⊗ v . In particular, note that Mn is a subrepresentation of V⊗nof V . So Symn(V ) is a representation of V .
Example 6.5In S2V , v ⊗ w = w ⊗ v , and so S2V has basis

vi ⊗ vj

for i ≤ j . Decomposing S2V (2), we see that e ⊗ e ∈ S2V (2) is nonzero (note V (2) is the adjointrepresentation), and so V (4) is a subrepresentation of S2V (2). In particular, we have a splitting
S2V (2) = V (4) ⊕ V (0)

Definition 6.6
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The n-th exterior (or alternating) power is
ΛnV = V⊗n

Nnwhere Nn is the span of
u1 ⊗ · · · ⊗ unwhere ui ∈ V , and ui = uj for some i ̸= j .

Again, Nn is a subrepresentation of V⊗n, and so ΛnV is a representation.
Example 6.7With n = 2, N2 = span{v ⊗ v}.
Notation 6.8. We write (the coset of) u1 ⊗ · · · ⊗ un in ΛnV as

u1 ∧ · · · ∧ un

Exercises:1. Decompose Λ2V (2) = V (2), with basis e ∧ f , e ∧ h, h ∧ f .2. Find the dimensions of SnV and ΛnV .
7 Results about semisimple Lie algebras
Let g be a Lie algebra over C.

Definition 7.1 (ideal)A subspace I ⊆ g is an ideal of g if [xy] ∈ Ifor all x ∈ g, y ∈ I .
Remark 7.2. Any ideal is automatically a subalgebra.
Suppose I is an ideal, then g/I is a Lie algebra under

[x + I, y+ I ] = [x, y] + I

Moreover, I is an ideal if and only if it is a subrepresentation of the adjoint representation ad : g → gl(g).
Example 7.3The centre of g is

Z (g) = {x ∈ g | [x, y] = 0 for all y ∈ g}and by definition, Z (g) = ker(ad : g → gl(g)).
If Z (g) = 0, then ad : g → gl(g) is faithful, and thus we have an embedding

ad : g → gl(g)
and as such, g can be regarded as a Lie subalgebra of gln, where n = dim(g).
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Theorem 7.4 (Ado). Suppose char(k ) = 0, then any finite dimensional Lie algebra g embeds as a Liesubalgebra of glm for some m.
Proof. Omitted.Note that the embedding need not be via the adjoint representation. In fact, this is true for char(k ) = p > 0,due to Iwasawa.

Example 7.5The derived subalgebra of g is
D(g) = [g, g] = {[x, y] | x, y ∈ g}This is an ideal of g.

Recall sln is a subalgebra of gln. In fact,
D(gln) = sln

Example 7.6Suppose φ : g → h is a homomorphism of Lie algebras, then
ker(φ) = {x ∈ g | φ(x) = 0}

is an ideal of g. In fact, every ideal arises in this way.
Lecture 6

Definition 7.7 (simple)A Lie algebra g is simple if [g, g] ̸= 0, and the only ideals are 0 and g.
Example 7.8We can show that sln (for n ≥ 2), son (for n ≥ 2) and sl2ℓ (for ℓ ≥ 1) are simple.
Remark 7.9. 1. if g is simple, then [g, g] = g.2. if g is simple, every representation of g is either faithful, or the direct sum of trivial representations.3. g is simple if and only if the adjoint representation is irreducible.
Definition 7.10 (semisimple)A Lie algebra g is semisimple if it is the direct sum of simple ideals. That is, ideals which are simple asLie algebras.
Example 7.11

so4 ∼= sl2 ⊕ sl2
We will state a more ‘standard’ definition of semisimple Lie algebras, and show that these are equivalent.
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Definition 7.12 ((lower) central series)The (lower) central series of a Lie algebra g is the sequence of subalgebras
g = g0 ⊇ g1 ⊇ g2 ⊇ · · ·

with gn = [g, gn−1]. That is,
g ⊇ [g, g] ⊇ [g, [g, g]] ⊇ · · ·

Definition 7.13 (derived series, upper central series)The derived series, or upper central series for a Lie algebra g is the sequence
g(0) ⊇ g(1) ⊇ g(2) ⊇ · · ·

where g(0) = g, and g(n) = [g(n−1), g(n−1)]. That is,
g ⊇ [g, g] ⊇ [[g, g], [g, g]] ⊇ · · ·

Remark 7.14. • g(n) ⊆ gn ,• gn and g(n) are ideals.To see the second point, we induct on n. The case n = 0 is clear. Let x ∈ g, y ∈ gn . Then
[x, y] ∈ gn−1

since gn−1 is an ideal, and gn ⊆ gn−1 . As
gn = {[x, y] | x ∈ g, y ∈ gn−1}

this clearly contains [x, y].
Example 7.15 1. if g is simple, then gn = g(n) = g for all n.2. if g is abelian, then g1 = g(1) = 0.3. let nn ⊆ gln be the Lie algebra of strictly upper triangular n × n matrices. The central series for

nn is 
0 ∗

. . . 0

 ⊇




0 0 ∗
. . . . . .

. . . 00


 ⊇ · · · ⊇ 0

Note n3 is the Heisenberg Lie algebra.
Definition 7.16 (nilpotent)If gn = 0 for some n, then g is called nilpotent .
Definition 7.17 (solvable, soluble)If g(n) = 0 for some n, then g is called solvable (or soluble in BrE).
Exercise: Let bn ⊆ gln be the Borel Lie algebra of upper triangular matrices. Then bn is solvable but notnilpotent (for n ≥ 2).Note on the other hand that as g(n) ⊆ gn, nilpotent implies solvable.The next result allows the theory of complex semisimple Lie algebras to go ‘far’ with minimal work.
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Theorem 7.18 (Lie’s theorem). Let k = C (or an algebraically closed field with characteristic 0). Let
g ⊆ gl(V ) be a Lie subalgebra, and suppose g is solvable. Then there exists a common eigenvector for allelements of g.That is, there exists v ∈ V non-zero, such that for all x ∈ g, xv = λxv for some λx ∈ C.

Proof. Omitted. See Humphreys Theorem 4.1.In particular, span{v} defines a one-dimensional subrepresentation of V .
Corollary 7.19. There exists a basis for V such that every element is upper triangular.

In fact, using theorem 7.18 and induction on dim(V ), we can show that there exists a chain of subspsaces
0 = V0 ≤ V1 ≤ · · · ≤ Vn = V

with dim(Vi) = i, and g ·Vi ⊆ Vi. By considering a basis for Vi, we get the corollary. Therefore, we can consider
g ⊆ bn as a subalgebra of the upper triangular matrices. To fill in the details here, the base case dim(V ) = 1is trivial. Now suppose the result holds for all representations W with dim(W ) = n. Let dim(V ) = n+ 1. ByLie’s theorem, we have a one-dimensional subrepresentation U . Now consider V /U , which has dimension n.Hence by induction, there exists a chain of subspaces

0 = W0 ≤ W1 ≤ · · · ≤ Wn = W = V /U

with dim(Wi) = i and g · Wi ⊆ Wi. By the correspondence theorem, say Wi = V1/U . Then we obtain a chain
0 = V0 ≤ V1 ≤ · · · ≤ Vn = V

with the desired properties.Aside: We call the sequence 0 = V0 ≤ V1 ≤ · · · ≤ Vna maximal flag, and there is interesting geometry related to this.One application of Lie’s theorem is when we have the adjoint representation g → gl(g), since subrepresen-tations correspond to ideals. Thus, we have a sequence
0 = g0 ≤ · · · ≤ gn = g

of ideals of g, with dim(gi) = i.
Proposition 7.20. Suppose I, J are ideals of g. Then(i) if g is solvable, then any subalgebra or quotient of g is solvable.(ii) if I is solvable, and g/I is solvable, then so is g.(iii) if I, J are solvable, then so is I + J .

Proof. (i) is clear from definitions. For (ii), choose n such that (g/I)(n) = 0. Then this forces g(n) ⊆ I . But thenwe have g(n+m) ⊆ I (m) for each m ≥ 0. Since we know that I is solvable, we are done.For (iii), note that
I + J
J

∼= I
I ∩ Jand the right hand side is solvable, by (i), and J is solvable by assumption, and so by (ii), I + J is solvable.
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Definition 7.21 (radical)The radical of g is Rad(g) is the maximal solvable ideal of g. That is, it is the sum of all solvable idealsof g.
Definition 7.22 (trace form)Suppose φ : g → gl(V ) is a finite dimensional representation of g. Then the trace form of V (or φ) is thesymmetric bilinear form

(·, ·) : g × g → C(x, y) = tr(φ(x)φ(y))
Exercise: We have the invariance relation ([x, y], z) = (x, [y, z]). This is essentially just the cyclic propertyof trace.

Definition 7.23 (Killing form)The Killing form K (·, ·) is the trace form of ad. That is,
K (x, y) = tr(ad(x) ad(y)) = (x, y)ad

Lecture 7
Theorem 7.24 (Cartan-Killing criterion). For a finite dimensional Lie algebra g, the following are equiv-alent:(i) g is semisimple,(ii) Rad(g) = 0,(iii) the Killing form of g is non-degenerate.
Remark 7.25. Rad(g/ Rad(g)) = 0, since a suitable ideal of g/ Rad(g) would lift to give an ideal J of g, containingRad(g), with J/ Rad(g) solvable. Hence J is solvable, and J ⊆ Rad(g).Using this, g/ Rad(g) is semisimple.
Theorem 7.26 (Levi’s theorem). Let k be a field with char(k ) = 0, and g a finite dimensional Lie algebraover k . Then there exists a Lie subalgebra g′ of g, with g′ ∩ Rad(g) = 0, and as vector spaces,

g = g′ ⊕ Rad(g)
and g′ is isomorphic to Rad(g), and thus semisimple. That is, the short exact sequence

0 Rad(g) g g/ Rad(g) 0
splits. This is called the Levi decomposition of g, and g′ the Levi subalgebra of g.

Not proven in the course. See Fulton-Harris appendix E.
Lemma 7.27. Let g be a Lie algebra,(i) if I is an ideal of g, then so is [I, I ],
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(ii) Rad(g) = 0 if and only if g has no non-trivial abelian ideals.
Proof. For (i), if x, y ∈ I, z ∈ g, we need to show that

[z, [x, y]] ∈ [I, I ]
Using the Jacobi identity, [z, [x, y]] = −[x, [y, z]] − [y, [x, z]] ∈ [I, I ]as I is an ideal.For (ii), it is clear that any abelian ideal is solvable. Conversely, if I is solvable, then the last non-zeroterm in the derived series of I is abelian.

Notation 7.28. Define
g⊥ = {x ∈ g | K (x, y) = 0 for all x ∈ g}

Lemma 7.29. g⊥ is an ideal.
Proof. For x ∈ g⊥, y, z ∈ g, then K ([x, y], z) = K (x, [y, z]) = 0

Lemma 7.30. Let I be an ideal of g, and let KI denote the Killing form of I . Then
KI (x, y) = K (x, y)

for all x, y ∈ I .
Proof. Choose a basis for I , and extend it to a basis of g. Given x, y ∈ I , with respect to this basis,

ad(x) = (A ∗0 0)
where A = (ad(x))|I , and similarly for ad(y). Set B = (ad(y))|I . Then

KI (x, y) = tr(AB) = tr(ad(x) ad(y)) = K (x, y)
Note here that (

A ∗0 0)(B ∗0 0) = (AB ∗0 0)

Theorem 7.31 (Cartan’s criterion (for solvability)). Suppose g is a subalgebra of gl(V ), for V a finitedimensional vector space over C. g is solvable if and only if tr(xy) = 0 for all x ∈ g, y ∈ [g, g].In other words, g(1) ≤ g⊥.
Proof. See Humphreys 4.3 using Lie’s theorem and the Jordan decomposition. For the Jordan decomposition,see §8.

Corollary 7.32. (i) if g = g⊥, then g is solvable.(ii) if g is simple, then g⊥ = 0,(iii) g⊥ is solvable for any finite dimensional Lie algebra g.
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Proof. (i) Consider the adjoint ad : g → gl(g). The image is ad(g) = g/ ker(g) = g/Z (g). Z (g) is solvable, sinceit is abelian, and by assumption g = g⊥. By theorem 7.31, ad(g) is solvable, and so g is solvable.(ii) Since g⊥ is an ideal, and g is simple, g⊥ = 0 or g⊥ = g. In the second case, by (i) g is solvable,contradicting the fact that g is simple, as [g, g] = g.(iii) By lemma 7.30, (g⊥)⊥ = g⊥, so by (i), g⊥ is solvable.With this, we can now prove the Cartan-Killing criterion.
Proof of theorem 7.24. First we show (ii) =⇒ (iii). In this case, g is solvable, and so g⊥ ≤ Rad(g) = 0. Thus
K is non-degenerate.For (iii) =⇒ (ii), let A be an abelian ideal of g. We will show that A ⊆ g⊥. Choose a ∈ A, y ∈ g. Choosea basis for A, and extend it to a basis of g. That is,

ad(a) = (0 ∗0 0) and ad(y) = (∗ ∗0 ∗

)
Computing tr(ad(a) ad(y)), we find that it is zero. Thus A = 0. Therefore, Rad(g) is non-zero, then g⊥ isnon-zero.Now assume (ii) and (iii) hold. If g is simple, then we are done. If not, choose a minimal non-zero ideal I .Let

gI = {x ∈ g | K (x, y) = 0 for all y ∈ I}This is an ideal of g.
Claim 7.33. g = gI ⊕ I .

Proof. Since I is simple (by minimality), and non-abelian (by (ii)),
I ∩ gI ⊆ I⊥ = 0

Consider the map
g g∗ I∗∼

given by
x 7→ K (x, ·)The kernel of this map is gI . Thus, g/gI ∼= I∗ ∼= I as vector spaces.Repeat this argument with gI . That is, choosing some minimal ideal of gI . We can do this as any ideal of

gI is an ideal of g, and so Rad(gI ) = 0.
Claim 7.34. (gI )⊥ = 0

Proof. Since if x ∈ (gI )⊥, then x ∈ g⊥. More precisely, let x ∈ (gI )⊥, y ∈ g. We can write y = y1 + y2, where
y1 ∈ gI , y2 ∈ I . Then

K (x, y) = K (x, y1) + K (x, y2)The first term vanishes as x ∈ (gI )⊥, and the second term vanishes as x ∈ gI .This proves (i). To see this, we note that (gI )⊥ = 0 implies that the Killing form of gI is non-degenerate.Thus (by induction on the dimension), gI is semisimple. It remains to show that any ideal of gI is an ideal of
g. Let J ⊆ gI be an ideal, x ∈ J, y ∈ g. As above, write y = y1 + y2, with y1 ∈ gI , y2 ∈ I . Then

[x, y] = [x, y1] + [x, y2]But [x, y1] ∈ J as J is an ideal, and [x, y2] ∈ gI ∩ I = 0.Finally, to show (i) =⇒ (ii), write
g =⊕

j
Ij

where the Ij are simple ideals. Let πj : g → Ij denote the projection. Lecture 8
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Claim 7.35. If J is an ideal of g, then πj (J) is an ideal of Ij .
Now if A is an abelian ideal of g, then πj (A) is an abelian ideal of Ij , and so πj (A) = 0 for all j . With this,

A = 0.
Theorem 7.36 (Weyl). Any finite dimensional representation of a semisimple Lie algebra is completelyreducible.

Proof. Almost the same as for sl2(C), as in theorem 5.3. The main ingredient follows from a Casimir element.Exercise: Any ideal or quotient of a semisimple Lie algebra is semisimple. For this, note that the decompo-sition
g = I ⊕ gIholds for any ideal. In particular, the Killing form of I is non-degenerate. Moreover, g/I ∼= gI is isomorphic toan ideal of g, which is semisimple.In fact, I is a sum of the Ij .For the Casimir element, let φ : g → gl(V ) be an irreducible representation of a semisimple Lie algebra g.Without loss of generality, assume φ is faithful (if not, we can consider g/ ker(φ)). We know by theorem 7.24that the trace form (·, ·)V is non-degenerate. Choose a basis x1, . . . , xn for g. With respect to the trace form, wehave a dual basis y1, . . . , yn for g. That is, (xi, yj )V = δij

Definition 7.37 (Casimir element)Define the Casimir element associated with φ

Ωφ =∑
i
φ(xi)φ(yi)

Remark 7.38. • Ωφ ∈ gl(V ),• Ωφ commutes with φ(x) for all x ∈ g. In particular, by Schur’s lemma, Ωφ is a scalar multiple of idV , and
tr(Ωφ

) =∑tr(φ(xi)φ(yi)) = dim(g)
From this, we also see that Ωφ is independent of the choice of basis of g which we chose.

Example 7.39If g = sl2 ≤ gl2, let V = C2 and φ = id is the defining representation. Recall the basis
e = (0 10 0) f = (0 01 0) h = (1 00 −1)

Some easy linear algebra gives a dual basis with respect to the trace form, which is {f , 12h, e} (in thesame order). With this, Ωφ = ef + fe+ 12h2 = (3/2 00 3/2)which is the same as the one we obtained earlier.
8 Jordan decomposition
Two observations:
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1. If g is a simple Lie algebra, φ : g → gl(V ) is a finite dimensional representation, then φ(g) ⊆ sl(V ). Thisis because [g, g] = g, and so
φ(g) = φ([g, g]) = [φ(g), φ(g)] ≤ [gl(V ), gl(V )] = sl(V )

2. Recall from Linear algebra that if x ∈ gl(V ), then there exists a basis of V such that x a block diagonalmatrix, with Jordan blocks of the form 
λ 1 · · · 0

. . . . . .
...

. . . 1
λ



Definition 8.1 (nilpotent, semisimple)We say x ∈ gl(V ) is nilpotent if xn = 0 for some n. We say x is semisimple if the roots of its minimalpolynomial are distinct, that is, it is diagonalisable.
Proposition 8.2 (Jordan decomposition). If x ∈ gl(V ), where V is finite dimensional. Then(i) there exists unique elements xs, xn ∈ gl(V ), where xs is semisimple and xn is nilpotent, with

x = xs + xn

and [xs, xn] = 0.(ii) there exists polynomials ps, pt ∈ C[t], without constant terms, such that xs = ps(x) and xn = pn(x).In particular, xs and xn will commute with any y ∈ gl(V ) with [x, y] = 0.(iii) if A ≤ B ≤ V are subspaces, and x(B) ⊆ A, then xs(B) ⊆ A and xn(B) ⊆ A.The decomposition x = xs + xn is called the (additive) Jordan(-Chevalley) decomposition of x . xs and xnare called the semisimple part and the nilpotent part of x respectively.
Proof. Routine linear algebra. See Humphreys §4.2.

Example 8.3If x is represented by a single Jordan block
x =


λ 1 · · · 0

. . . . . .
...

. . . 1
λ


then the Jordan decomposition is

xs =

λ 0

. . .
. . .

λ

 xn =


0 1 · · · 0
. . . . . .

...
. . . 10


i.e. the diagonal and nilpotent parts.
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Why is this valuable?Let V be a finite dimensional vector space. We can consider the adjoint representation ad : gl(V ) → gl(gl(V )).If x ∈ gl(V ) is semisimple, then so is ad(x). Similarly, if x is nilpotent, then so is ad(x).
Lemma 8.4. Let x ∈ g ≤ gl(V ), where V is finite dimensional. Let x = xs+xn be its Jordan decomposition.Then ad(x) = ad(xs) + ad(xn) is the Jordan decomposition of ad(x) ∈ gl(g).

Proof. ad(xs) and ad(xn) are semisimple and nilpotent respectively, they commute since
[ad(xs), ad(xn)] = ad([xs, xn]) = ad(0) = 0

Thus, by uniqueness in proposition 8.2, the Jordan decomposition must be as stated.
Theorem 8.5. Suppose g is a semisimple Lie algebra, which is a subalgebra of gl(V ). Let x ∈ g, then
xs, xn ∈ g.

Proof. Let
N(g) = {y ∈ gl(V ) | [y, z] ∈ g for all z ∈ g}be the normaliser of g in gl(V ).

Claim 8.6. (i) N(g) is a subalgebra of gl(V ), containing g as an ideal.(ii) xs, xn ∈ N(g).
Proof. (i) is clear from the definition of the normaliser. For (ii), let z ∈ g, we have that

[xs, z] = ad(xs)(z) = ad(x)s(z)
By proposition 8.2 (ii), this is in g, as ad(x)s is a polynomial in ad(x) with no constant term. But for z ∈ g, as
x ∈ g, ad(x)(z) = [x, z] ∈ g.Let W be an irreducible subrepresentation of V , and define

gW = {y ∈ gl(V ) | yw ∈ W for all w ∈ W and tr(y|W ) = 0}

Claim 8.7. g is a subalgebra of gW .
Proof. W is a subrepresentation of g, and so it is stabilised by g, and also the image of g in gl(W ), say g, isalso semisimple. Lecture 9With this, [g, g] = g, and so every element of g is a sum of commutators, and all of the traces are zero, andso g ≤ gW .Using this, tr(x|W ) = 0. Note xs, xn are polynomials in x , and so they stabilise everything that x does.Moreover, tr(xn|W ) = 0 as xn|W is nilpotent. Thus, tr(xs|W ) = tr(x|W ) − tr(xn|W ) = 0. Using this, xs, xn ∈ gWfor all W .To finish, define

g′ = N(g) ∩
⋂

W≤V irred subrep gW

Claim 8.8. g = g′.
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Proof. Since g′ ≤ N(g), g is an ideal of g′. Then g is a subrepresentation of g′ under the adjoint action of g.By Weyl’s theorem1, g′ = g ⊕ U as representations. It suffices to show U = 0.Choose u ∈ U , then as g is an ideal, [u, g] ⊆ g. But ad(g)(U) ⊆ U , and so [u, g] ⊆ U . Hence [u, g] = 0, andso u commutes with every element of g. Using this, u is a g-endomorphism V → V , and so it stabilises everyirreducible subrepresentation W .By Schur’s lemma, u|W = λ idW for some scalar λ ∈ C. But tr(u|W ) = 0 since u ∈ gW , and so λ = 0. Butevery representation splits as a direct sum of irreducibles, and so u must be zero.By the above, we see that xs, xn is in each set on the right hand side, and so xs, xn ∈ g.For g ≤ gl(V ) a semisimple Lie algebra, we can define an abstract Jordan decomposition

ad(x) = ad(x)s + ad(x)n
Since ad is faithful, as g is semisimple, g is isomorphic to ad(g) ≤ gl(g). By theorem 8.5, ad(x)s, ad(x)n ∈ ad(g),and so there exists xs, xn ∈ g such that x = xs + xn.Suppose g ≤ gl(V ) for some V , with x = xs + xn. Then since ad(xn) = ad(x)n and ad(xs) = ad(x)s, theabstract Jordan decomposition is just the usual Jordan decomposition.

Corollary 8.9. Let φ : g → gl(V ) be any representation of a semisimple Lie algebra g. Choose x ∈ g,and let it have a Jordan decomposition x = xs + xn, then
φ(xs) = φ(x)s and φ(xn) = φ(x)n

defines a Jordan decomposition of φ(x).
Proof. See Corollary 5.11 of the notes by David Stuart on Moodle. It needs semisimplicity, and the fact thatwe are working over C. It fails if we work over a field with positive characteristic.
10 Cartan subalgebras and root space decompositions
In this section, g is a finite dimensional semisimple Lie algebra over C.

Definition 10.1 (toral subalgebra)A subalgebra t of g is toral if1. t is abelian,2. ad(x) is semisimple for all x ∈ t.A maximal toral subalgebra is called a maximal torus, or a Cartan subalgebra (CSA).
To justify the terminology, note that a connected abelian Lie group is isomorphic to Rk × T ℓ , and so aconnected compact abelian Lie group is a torus.

Remark 10.2. Many authors, including Humphreys define Cartan subalgebras as a nilpotent subalgebra which equalsits normaliser in g. That is,
t = {x ∈ g | [x, t] ⊆ t}This is equivalent to our definition.

Example 10.3If g ≤ sln, gln, with t being the set of diagonal matrices, then t is a maximal torus. It is true for son and
sp2n as well.
1applied to the representation g′ of the semisimple Lie algebra g
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Lemma 10.4. Let t1, . . . , tn ∈ End(V ) which pairwise commute, and are all semisimple. For λ =(λ1, . . . , λn) ∈ Cn, define
Vλ = {v ∈ V | tiv = λiv for all i}That is, the simultaneuous eigenspaces for the ti. Then

V = ⊕
λ∈Cn

Vλ

Proof. By induction on n. n = 1 is true by definition. For n > 1, we know by induction that
V = ⊕

λ′∈Cn−1
Vλ′

for the action of t1, . . . , tn−1. Then since the ti commute,
tn(Vλ′ ) ⊆ Vλ′

for all λ′. By decomposing each Vλ′ in terms of tn eigenspaces, we are done.
Lemma 10.5. Any g contains a Cartan subalgebra.

Proof. Needs Engel’s theorem (Examples sheet 2), and Zorn’s lemma. See David Stuart’s notes.Recasting lemma 10.4, suppose we have h ≤ gl(V ) with a basis of commuting semisimple elements t1, . . . , tn.Take λ ∈ Cn, this corresponds the element of h∗, given by
ti 7→ λiThen

Vλ = {v ∈ V | hv = λ(h)v for all h ∈ h}In our situation, fix a Cartan subalgebra t ≤ g, then
g =⊕

λ∈t∗

gλ

where
gλ = {x ∈ g | [t, x ] = λ(t)x for all x ∈ t} Lecture 10

Definition 10.6 (root)Let Φ = {α ∈ t∗ \ {0} | gα ̸= 0}The elements of Φ are the roots of g with respect to t. If α ∈ Φ, then gα is called a root space.
With this, we have

g = g0 ⊕
⊕
α∈Φ gαwhich is the root space decomposition, or the Cartan decomposition of g.

Proposition 10.7. (i) For all α, β ∈ t∗, [gα , gβ ] ⊆ gα+β ,(ii) If α ∈ Φ, x ∈ gα , then ad(x) is nilpotent.(iii) If α + β ̸= 0, then K (gα , gβ ) = 0 for all α, β ∈ g∗.
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Proof. For (i), let x ∈ gα , y ∈ gβ , t ∈ t. We have the Jacobi identity:[t, [x, y]] = −[x, [y, t]] − [y, [t, x ]] = [x, [t, y]] − α(t)[y, x ] = β(t)[x, y] − α(t)[y, x ] = (α + β)(t)[x, y]Note Fulton-Harris calls this the fundamental calculation.For (ii), use (i) and the fact that g is finite dimensional.For (iii), if α + β ̸= 0, we can find t ∈ t such (α + β)(t) ̸= 0. Fix such a t ∈ t, x ∈ gα and y ∈ gβ . Then
α(t)K (x, y) = K ([t, x ], y) = −K ([x, t], y) = −K (x, [t, y]) = −β(t)K (x, y)and so (α + β)(t)K (x, y) = 0. But by assumption α(t) + β(t) ̸= 0, and so K (x, y) = 0.

Corollary 10.8. (i) The Killing form restricted to g0 is non-degenerate.(ii) If α ∈ Φ, then −α ∈ Φ.
Proof. For (i), if z ∈ g0, with K (z, x) = 0 for all x ∈ g0, then by (iii), we know that g0 is orthogonal to all gαwith α ̸= 0. If x ∈ g, we can write it as

x = x0 +∑
α∈Φ xαwith xα ∈ gα . Using this, we see that K (z, x) = 0 for all x ∈ g. By non-degeneracy of the Killing form (as gis semisimple), we must have that z = 0.For (ii), the proof is similar.

Proposition 10.9.
g0 = t

Proof. See Humphreys §8.2.
Corollary 10.10. The Killing form is non-degenerate when restricted to t. In particular, the map

t → t∗

t 7→ K (t, ·)
is an isomorphism of vector spaces. We denote the inverse map as λ 7→ tλ, where tλ is called the coroot
associated to λ, defined by

K (tλ, x) = λ(x)for all x ∈ g.
Example 10.11For g = sl2, t = span{h}. Define α ∈ t∗ by α(h) = 2. Then gα = span{e}, and g−α = span{f}. Withthis,

sl2 = t ⊕ gα ⊕ g−α

Example 10.12For g = sl3, the Cartan subalgebra is t = span{h1, h2}, where
h1 = 1

−1 0
 h2 = 0 1

−1


26



Let αi ∈ t∗ be such that
αi

a1
a2

a3
 = ai

Then
sl3 = t ⊕ gα1−α2 ⊕ gα1−α3 ⊕ gα2−α3 ⊕ gα2−α1 ⊕ gα3−α1 ⊕ gα3−α2where

gαi−αj = span{ei,j}We can decompose the adjoint in a similar fashion. Moreover, this generalises to g = sln, with t beingthe diagonal.Similarly, the diagonal matrices form the Cartan subalgebra of son, sp2n.
Proposition 10.13. Let α ∈ Φ be a root, eα ∈ gα , then there exists fα ∈ g−α , such that

mα = span{eα , fα , hα = [eα , fα ]} ∼= sl2
We call eα , fα , hα an sl2-triple.
We’re saying that every semisimple Lie algebra is “made up from sl2s”.Note that if t ∈ t and it satisfies α(t) = 0, for all α ∈ Φ, then t = 0, since if α ∈ Φ, x ∈ gα non-zero, then0 = α(t)x = [t, x ]Since a toral subalgebra is by definition abelian, this holds for all of g, and so t ∈ Z (g).

Lemma 10.14. Φ spans t∗.
Proof. If not, then there exists t ̸= 0 such that α(t) = 0 for all α ∈ Φ.

Lemma 10.15. [gα , g−α ] is one-dimensional.
Proof. Take x ∈ gα , y ∈ gα , then [x, y] ∈ t. Let t ∈ t, so

K ([x, y], t) = K (x, [y, t]) = −K (x, [t, y]) = α(t)K (x, y)Hence [x, y] = K (x, y)tα . With this, [gα , g−α ] ⊆ span{tα}and so the dimension is at most one. But by non-degeneracy, we can find x, y such that K (x, y) ̸= 0, and sothe dimension is one.
Lemma 10.16. α(tα ) ̸= 0.

Proof. Since the Killing form is non-degenerate, and rescaling is possible, we may choose x ∈ gα , y ∈ g−αsuch that K (x, y) = 1. Then [x, y] = tα[tα , x ] = α(tα )x[tα , y] = −α(tα )yThus, the space h = span{x, y, tα} is a subalgebra of g. Suppose α(tα ) = 0. Then, [h, h] = span{tα}, and so his solvable. Now consider the adjoint representationad : g → gl(g)
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This shows that h embeds as a solvable Lie subalgebra of gl(g). By Lie’s theorem, we can assume ad(h) is asubset of the space of upper triangular matrices. With this, ad(tα ) = [ad(x), ad(y)] is strictly upper triangular.Hence ad(tα ) is nilpotent, but ad(tα ) is semisimple2, and so ad(tα ) = 0. Thus,
tα ∈ Z (g) = 0Contradiction, as α ̸= 0 implies tα ̸= 0.

Lemma 10.17. [[gα , g−α ], gα ] ̸= 0.
Proof. If x ∈ gα , y ∈ g−α with K (x, y) ̸= 0, then for all z ∈ gα ,[[x, y], z] = K (x, y)[tα , z] = K (x, y)α(tα )z

Lecture 11
Proof of proposition 10.13. Take eα ∈ gα , and find fα ∈ g−α such that

K (eα , fα ) = 2
α(tα )Define

hα = 2
K (tα , tα ) tαWe can check that this satisfies the sl2 relations.[eα , fα ] = K (eα , fα )tα = hα[hα , eα ] = 2

α(tα ) [tα , eα ] = 2eα[hα , fα ] = −2fαand so mα
∼= sl2.Exercise: Show that weights add. If g is semisimple, with root space decomposition

g = t ⊕
⊕
α

gα

and V ,W representations of g, with weight spaces Vα ,Wα . Then1. gα · Vβ ⊆ Vα+β2. Vα ⊗Wβ ⊆ (V ⊗W )α+β .
Lemma 10.18. 1. if V is a finite dimensional representation of g, then V |mα is a finite dimensionalrepresentation of mα ,2. for β ∈ Φ, or β = 0, let

V =⊕
c∈C

gβ⊕cα

where we sum over c ∈ C such that β + cα ∈ Φ. This is a representation of mα under the adjointaction.We call V the α-root string through β

Proof. (i) is true by generic facts about restrictions. For (ii), it follows by proposition 10.7.
2This follows from tα ∈ t.
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Proposition 10.19. Let α ∈ Φ. Then the root spaces g±α are 1-dimensional. Moreover, the if cα ∈ Φ,for some c ∈ C, then c = ±1.
Proof. Suppose cα ∈ Φ, then hα takes cα(hα ) = 2c as an eigenvalue. The eigenvalues of hα are integers, andso either c ∈ Z, or c ∈ Z + 12 .Write

V = t ⊕
⊕
cα∈Φ gαLet K = ker(α) ≤ t. We can check that K + mα is an mα-subrepresentation of V . By Weyl’s theorem, as arepresentation of mα ,

V = K ⊕ mα ⊕Wwhere W is a complementary subrepresentation. Suppose either of the conclusions in the statement are false.Then W ̸= 0. Let W0 ≤ W be an irreducible subrepresentation. We know W0 ∼= V (s) for some s. Then W0has a highest weight vector w0, with w0 ∈ gcα for some c, and
[hα , v0] = sv0

Case 1: s is even. In this case, 0 is an eigenvalue of hα . Let e be the eigenvector. But the zero eigenspace of
hα on V is t, which is contained in K ⊕ mα . Thus, e ∈ (K ⊕ mα ) ∩W0 = 0. Contradiction.Aside: If 2α is a root, then hα has 2α(hα ) = 4 as an eigenvalue, but the eigenvalues of hα on K ⊕ mα are0, 2, −2. So the only way this could happen is if W contains an irreducible subrepresentaion V (s), where s iseven. With this, if α is a root, then 2α is not a root.

Case 2: s is odd. In this case, 1 is an eigenvalue of hα . As α(hα ) = 2, this means that 12α is a root. Butthen by the above,
α = 2 · 12αis not a root. Contradiction.Exercise: We have a canonical identification mα = m−α and hα = h−α .

Proposition 10.20. Let α, β ∈ Φ such that α ̸= ±β . Then(i) β(hα ) ∈ Z, and we call these the Cartan integers.(ii) there exists integers p, q ≥ 0 such that if r ∈ Z, then
β + rα ∈ Φ ⇐⇒ −p ≤ r ≤ q

Moreover, p − q = β(hα ).(iii) [gα , gβ ] = gα+β .
Proof. For (i), consider

V =⊕
r∈Z

gβ+rα
and let mα act on V by the adjoint action. Let

q = max {r ∈ Z | β + rα ∈ Φ}

In particular, β + qα is a root. Choose v ∈ gβ+qα non-zero. Then
[eα , v ] ∈ gβ+(q+1)α = 0

and [hα , v ] = (β + qα)(hα )(v ) ∈ span{v}Thus, v is a highest weight vector, with weight (β + qα)(hα ). With this, by sl2 representation theory,
β(hα ) + qα(hα ) ∈ Z≥0
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and so
β(hα ) + 2q ∈ Z≥0which means that β(hα ) ∈ Z.For (ii), recall from lemma 4.7 that

W = span{v, f v, f 2v, . . . }is an irreducible representation of V , and so hα acts by
(β + qα)(hα ) (β + (q − 1)α)(hα )

. . .
−(β + qα)(hα )


In particular,

W = q⊕
r=−p

gβ+rα
for some p, where

p = min{r ∈ Z | β − rα ∈ Φ}Suppose W ′ ≤ V is a proper subrepresentation. Then W ′ contains a highest weight vector w ∈ gγ , forsome γ . Then 0 ≤ γ(hα ) < −(β + qα)(hα ) ≤ 0Contradiction. Finally, (β − pα)(hα ) = −(β + qα)(hα )and rearranging,
β(hα ) = p − q Lecture 12For (iii), we already know that [gα , gβ ] ⊆ gα+β . Thus, if α + β is not a root we are done. On the otherhand, if α + β is a root, choose v ∈ gβ non-zero. Suppose [eα , v ] = 0, then v is a highest weight vector for v .Contradiction. Thus, [eα , v ] ̸= 0, and gα+β is spanned by it, as it is one-dimensional.

Definition 10.21 (reflection)For α ∈ Φ, define the reflection at α by
wα : t∗ → t∗

wα (β) = β − β(hα )α
Corollary 10.22 (of proposition 10.20). wα (Φ) = Φ.

Proof. Let β ∈ Φ, let p, q be as in proposition 10.20. We need to show that β − β(hα )α ∈ Φ. We have that
β − β(hα )α = β − (p − q)αBut

−p ≤ −(p − q) ≤ qand so this lives in the root string.
image
wα is the reflection in the root hyperplane

Hα = {λ ∈ t∗ | λ(hα ) = 0}and this reflection preserves Φ. We will now define a root system as something with the nice properties of Φ,and we’ll show that there is a correspondence
{root systems} ↔ {semisimple Lie algebras}
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11 Root systems
11.1 Roots in Euclidean spaceRecall that Φ spans t∗.

Proposition 11.1. Define a bilinear form on t∗ by
⟨λ, µ⟩ = K (tλ, tµ)

where K is the Killing forma, λ, µ ∈ t∗. Then(i) If α, β ∈ Φ, then ⟨α, β⟩ ∈ Q.(ii) If α1, . . . , αℓ is a basis of t∗, and β ∈ Φ, then β = ∑i ciαi, with ci ∈ Q. That is,
dimQ(Φ) = dimC(t)

(iii) ⟨·, ·⟩ is positive definite on spanQ(Φ).
aof g restricted to t

Proof. See Grojnowski notes, Proposition 4.7. For (i), note
β(hα ) = 2 ⟨α, β⟩

⟨α, α⟩

11.2 Abstract root systemsLet (E, (·, ·)) be a real Euclidean space. If α ∈ E is non-zero, define
α∨ : E → R

α∨(λ) = 2 (α, λ)(α, α)and we define
wα : E → E
wα (λ) = λ − α∨(λ)

Geometrically, this is reflection in the hyperplane with normal α .
Definition 11.2 (root system)A finite subset Φ ⊆ E is a root system if1. 0 /∈ Φ, Φ spans E ,2. if α, β ∈ Φ, then β∨(α) ∈ Z,3. if α ∈ Φ, then wα (Φ) = Φ,4. if α, cα ∈ Φ, then c = ±1.Each α ∈ Φ is called a root.
Remark 11.3. Removing 4. gives a “non-reduced” root system.
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Notation 11.4. If µ ∈ E, λ ∈ E∗ , we will write
⟨µ, λ⟩ = λ(µ)and so ⟨β, α∨⟩ = α∨(β).

This may seem opposite to the usual convention, but using the canonical isomorphism E → E∗ given bythe Riesz representation theorem, the ordering “doesn’t matter”.
Example 11.5If g is a semisimple Lie algebra, t ≤ t a Cartan subalgebra, Φ is the set of roots associated to Φ, then Φis a root system in spanR(Φ).
Definition 11.6 (rank)The rank of a root system (Φ, E ) is dimR(E ).
Definition 11.7 (isomorphism)Given root systems (Φ, E ), (Φ′, E ′), an isomorphism is a linear isomorphism ρ : E → E ′, with1. ρ(Φ) = Φ′,2. ⟨ρ(α), ρ(β)∨⟩ = ⟨α, β∨⟩ for all α, β ∈ Φ.
Example 11.8 (rank 1)In this case, we only have the A1 root system, E = R, (x, y) = xy, and Φ = {α,−α} for some α ̸= 0,
⟨α, α∨⟩ = 2.

Example 11.9 (A1 × A1)
E = R2, Φ = {±α,±β}, given by the standard basis vectors ±e1, ±e2.

32



Example 11.10 (A2)In this case, Φ = {±α,±β,±(α + β)}

Example 11.11 (B2)In this case, Φ = {±α,±β,±(α + β), ±(2α + β)}

Example 11.12 (G2)In this case, the root lattice is:

Returning to Lie algebras,
Example 11.13

sl2 = ⟨h⟩ ⊕ gα ⊕ g−αwith α(h) = 2. Taking h as the generator for the Cartan subalgebra, sl2 has root system A1.
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Analogously, sl3 has root system A2, if we set
h1 = 1

−1 0
 h2 = 0 1

−1


Then α(h1) = 2, α(h2) = −1, β(h1) = −1, β(h2) = 2.Finally, sp4 and so5 have root system B2.
Definition 11.14 (Weyl group)The Weyl group of (Φ, E ) is a the subgroup W of GL(E ) generated by the wα .
Note that W is finite. To see this, by definition each wα acts as a permutation on Φ. As such, we havean embedding of W into Sym(Φ), which is finite. The map is an injection as spanR(Φ) = E , and so if tworeflections agree on Φ, then they agree on all of E . Lecture 13

Example 11.15 1. For A1, W ∼= C2,2. For A2, W ∼= D6 ∼= S3,3. For B2, W ∼= D8,4. For G2, W ∼= D12,5. For A1 × A1, W ∼= V4 = C2 × C2.
Definition 11.16If (Φ1, E1), (Φ2, E2) are root systems, then (Φ1 × {0} ∪ {0} × Φ2, E1 ⊕ E2) is also a root system.Any root system which can be written in this form, with Φ1,Φ2 non-empty, is called reducible. Oth-erwise, it is irreducible.
Remark 11.17. By abuse of notation, sometimes we will write it as (Φ1 ⊔ Φ2, E1 ⊕ E2).
Example 11.18
A1 × A1 is reducible, A1, A2, B2, G2 are irreducible.
Example 11.19If Φ corresponds to a Cartan subalgebra t in a semisimple Lie algebra g, then Φ is irreducible when g isindecomposable.
Lemma 11.20 (finiteness). If Φ is a root system, α, β ∈ Φ, α ̸= ±β , then〈

α, β∨〉 〈β, α∨〉 ∈ {0, 1, 2, 3}

Proof. (α, β) = ∥α∥∥∥β∥∥ cos(θ), where θ is the angle between α and β . So〈
α, β∨〉 〈β, α∨〉 = 4 (α, β)2∥α∥2∥∥β2∥∥ = 4 cos2(θ) ∈ Z

Now cos2(θ) ∈ [0, 1], and so cos2(θ) ∈ {0, 1/4, 1/2, 3/4, 1}. But they are not parallel, and so cos2(θ) ̸= 1.
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In particular, this puts constraints on the angles, and the ratios of lengths.• 0 corresponds to θ = π/2, and so there is no constraint on the lengths,• 1 corresponds to θ = π/3, and the ratio of lengths is 1 (i.e. they have the same length),• 2 corresponds to θ = π/4, and the ratio of lengths is √2,• 3 corresponds to θ = π/6, and the ratio of lengths is √3.
Corollary 11.21. If Φ is a root system, and α, β are roots, then〈

α, β∨〉 ∈ {0, ±1, ±2, ±3}

Exercise: The only rank 2 systems are, up to isomorphism, A1 × A1, A2, B2, G2. Use the angles and lengthratios from finiteness.
Corollary 11.22. If Φ is an irreducible root system, then ∥α∥2 can take at most two values as α ∈ Φvaries.

Proof. Exercise. Suppoe not, then we get a contradiction due to the fact that the ⟨α, β∨⟩ are integers.
Definition 11.23 (simply laced)An irreducible root system Φ is simply-laced if all the roots are of the same length.
Example 11.24
A1, A2 are simply laced, B2, G2 are not.
Exercise: If Φ is simply laced, then (Φ, E ) is isomorphic to a root system (Φ′, E ′), where ⟨α, β∨⟩ ∈ {0, ±1}for all α, β ∈ Φ′, α ̸= ±β . This follows from the length ratio constraints above.

12 Weyl chambers and root bases
Throughout, (Φ, E ) is a root system.For a root α ∈ Φ, we have the root hyperplane

Hα = {λ ∈ E |
〈
λ, α∨〉 = 0}

corresponding to α . The connected components of
E \

⋃
α∈ΦHα

are called the Weyl chambers.A subset ∆ = {α1, . . . , αℓ} ⊆ Φ is called a root basis, or a base, if1. ∆ is a basis for E ,2. if α ∈ Φ, with
α = ℓ∑

i=1 ciαithen all of the ci have the same sign (or are zero). i.e. cicj ≥ 0.
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Definition 12.1 (simple roots, positive and negative roots)The elements of ∆ are called simple roots. If
α =∑

i
ciαi

with all ci ≥ 0, then we call α a positive root , denoted α > 0 (or α ≻ 0). If all ci ≤ 0, we call α a
negative root .The set of all positive roots is denoted Φ+, and Φ− = −Φ+ the set of negative roots.
Note that Hα = H−α . In particular, the Weyl chambers are all of the form

Cε = {λ ∈ E | εα
〈
λ, α∨〉 > 0}where εα ∈ {±1}. Note on the other hand not all choices of (εα ) give a Weyl chamber.

Remark 12.2. ∆ defines a partial order on E , by saying
µ < λ ⇐⇒ λ − µ is a sum of positive root or λ = µ

Lemma 12.3. Let W be the Weyl group of (Φ, E ). Then if ∆ is a base, and w ∈ W , then w(∆) is a base.
Proof. We know that w is invertible, so w(∆) is a basis for E , and as w acts on Φ, w(∆) ⊆ Φ. If α ∈ Φ is aroot, with

α =∑
i
ciαi

with all ci ≥ 0 (without loss of generality). Then
w(α) =∑

i
ciw(αi)

with all ci ≥ 0.That is, the Weyl group acts on the set of root bases. It remains to show how to construct a root basis.• Choose γ ∈ E \
⋃
α Hα (i.e. γ in a Weyl chamber). DefineΦ+

γ = {α ∈ Φ |
〈
γ, α∨〉 > 0}and Φ−

γ = −Φ+
γ . Note Φ = Φ+

γ ∪ Φ−
γ .• Define ∆γ = {α ∈ Φ+

γ | α ̸= β1 + β2 for all β1 + β2 ∈ Φ+
γ }

Theorem 12.4. (i) ∆γ is a root basis,(ii) every root basis is of this form ∆γ for some γ in a Weyl chamber.
Proof. For (i),

Claim 12.5. If α, β ∈ ∆γ , then α − β /∈ ∆γ .
Proof. Suppose α, β ∈ ∆γ . Without loss of generality α − β ∈ Φ+

γ . Otherwise, take β − α . Then
α = (α − β) + βContradicting the definition. Lecture 14
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Claim 12.6. If α, β ∈ ∆γ are distinct, then ⟨α, β∨⟩ = 0.
Proof. Recall from lemma 11.20 that 〈

α, β∨〉 〈β, α∨〉 ∈ {0, 1, 2, 3}

Suppose ⟨α, β∨⟩ > 0. Without loss of generality, assume ⟨α, β∨⟩ = 1. Otherwise, consider ⟨β, α∨⟩. Now
wβ (α) = α −

〈
α, β∨〉 β = α − β ∈ ∆γBut wβ preserves ∆γ , contradicting claim 12.5.

Claim 12.7. Let ∆γ = {α1, . . . , αℓ}, α ∈ Φ+
γ ,

α = n∑
i−1 ciαithen ci ≥ 0 for all i.

Proof. Suppose not. Choose an α which cannot be written this way, and with (α, γ) minimal. By construction,
α /∈ ∆γ , hence α = β1 + β2 where β1, β2 ∈ Φ+

γ . With this, (α, γ) = (β1, γ) + (β2, γ). By definition, βi ∈ Φ+
γ ,and so (βi, γ) > 0, hence (α, γ) > (βi, γ). With this, β1, β2 can be written as a Z≥0-linear combination of the

αi. But then so can α = β1 + β2. Contradiction.If we worked with Φ−
γ instead, this means that every element in Φ−

γ is a non-positive linear combinationinstead. Also, ∆γ spans E as Φ spans E .
Claim 12.8. ∆γ is a linearly independent set.

Proof. Suppose for some ci ∈ R, ∑i ciαi = 0. Without loss of generality, we can assume ci ≥ 0 for 1 ≤ i ≤ mand ci ≤ 0 for m+ 1 ≤ i ≤ ℓ . Set
v = m∑

i=1 ciαi = −
ℓ∑

j=m+1 cjαjNow consider
(v, v ) = −

m∑
i=1

ℓ∑
j=m+1 cicj︸︷︷︸

≤0
(
αi, αj

)︸ ︷︷ ︸
≤0

≤ 0
Hence v = 0. With this,

0 = (γ, v ) = m∑
i=1 ci (γ, αi)︸ ︷︷ ︸

>0Hence ci = 0 for 1 ≤ i ≤ m. Similarly, the other ci are zero as well.For (ii), see Humphreys §10.1.
Corollary 12.9. We have a bijection

{Weyl chambers} ↔ {root bases}
Proof. Given a Weyl chamber C , we can choose γ ∈ C , and we have a root basis ∆γ . Conversely given ∆,∆ = ∆γ for some γ , which in turn is in a Weyl chamber C .
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Notation 12.10. Write C∆ = Cγ if ∆ = ∆γ , where Cγ is the Weyl chamber containing γ . We call it the fundamental
Weyl chamber relative to ∆.
Example 12.11For example, with the root system A2, and the root basis {α, β}, the fundamental Weyl chamber is

Definition 12.12 (height)If ∆ = {α1, . . . , αℓ} is a root basis, α ∈ Φ, say
α = ℓ∑

i=1 ciαiThe height of α is
ℓ∑
i=1 ci

Often it is useful when proving statements to induct on the height of a root.
Lemma 12.13. If ∆ = {α1, . . . , αℓ} is a root basis, β ∈ Φ+ \ ∆, then there exists i such that β − αi ∈ Φ.

Proof. Given β , if (β, αi) ≤ 0 for all i, then ∆ ∪ {β} is a linearly independent set. So there exists i such that〈
β, α∨

i
〉
> 0

Since ⟨β, α∨
i ⟩ ⟨αi, β∨⟩ ∈ {0, 1, 2, 3}, then ⟨β, α∨

i ⟩ = 1 or ⟨αi, β∨⟩ = 1. That is,
wαI (β) = β − αi or wβ (αi) = αi − β

In either case, β − αi ∈ Φ.
Corollary 12.14. If β ∈ Φ+, then β can be written as a sum

β = n∑
j=1 αi(j)
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where αi(j) are not-necessarily distinct simple roots, and each partial sum is a root, i.e.
k∑
j=1 αi(j) ∈ Φ

Proof. Use the lemma and induction on the height of β .
13 Facts about the Weyl group
Recall that W acts on the set of root bases, and so it preserves the Weyl chambers.

Lemma 13.1. If w ∈ W , λ, µ ∈ E , then 〈
λ, µ∨〉 = 〈w(λ), w(µ)∨〉

Using this, we can deduce that
Proposition 13.2. If ∆ is a root basis, and w ∈ W , then

Cw(∆) = w(C∆)
Lemma 13.3. For Φ a root system, ∆ a root basis, and W the Weyl group, α ∈ ∆, then wα permutesΦ+ \ {α}.

Lecture 15
Proof. Take α1 ∈ ∆, where ∆ = {α1, . . . , αℓ}, take β ∈ Φ+, β ̸= α1. In particular, we can write

β =∑
i
ciαi

with ci ∈ Z≥0. In this case,
wα1 (β) = β −

〈
β, α∨1 〉 α1

= (ci −
〈
β, α∨1 〉)α1 + ℓ∑

i=2 ciαiSince β is a positive root and it is not α1, wα (β) ̸= ±α1. Hence ci > 0 for some i ≥ 2, hence wα1 (β) is apositive root.
Theorem 13.4. (i) the Weyl group acts simply transitively (or regular, or sharply transitively) on theset of root bases (and on the set of Weyl chambers).(ii) given a root basis ∆ and α ∈ Φ, then there exists w ∈ W such that w(α) ∈ ∆. This w is notnecessarily unique.(iii) if ∆ = {α1, . . . , αℓ} is a root basis, then W is generated by wα1 , . . . , wαℓ .

Proof. Omitted. See Humphreys §10.3
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14 Classification of irreducible root systems
Throughout, let (Φ, E ) be a root system, and a root basis ∆ = {α1, . . . , αℓ}. Let W be the Weyl group of Φ.

Definition 14.1 (Cartan matrix)The Cartan matrix of Φ is the ℓ × ℓ matrix,
C = (〈αi, α∨

j
〉)1≤i,j≤ℓThis is independent of the choice of root basis (up to permutation), since given ∆′ another root basis, thereexists w ∈ W with w(∆) = ∆′, and the action of W preserves ⟨·, ·⟩.

Note det(C ) ̸= 0. This follows from the fact that ∆ is a basis of E .
Example 14.2Recall the root system G2, given by

Let α1 = α, α2 = β . In this case, ⟨α1, α∨2 ⟩ = −1, ⟨α2, α∨1 ⟩ = −3. Hence the Cartan matrix is( 2 −1
−3 2 )

Example 14.3Similarly, for A1 × A1, we have (2 00 2)For A2 we have ( 2 −1
−1 2 )and for B2, we have ( 2 −2
−1 2 )

Proposition 14.4. Suppose (Φ′, E ′) is another root system, with root basis {α ′1, . . . , α ′
ℓ}, with〈

αi, α∨
j
〉 = 〈α ′

i , (α ′
j )∨〉Then the linear map αi 7→ α ′

i induces an isomorphism φ of root systems, with〈
φ(α), φ(β)∨〉 = 〈α, β∨〉
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for all α, β ∈ Φ. Hence the Cartan matrix of Φ determines Φ up to isomorphism.
Proof. Since ∆ is a basis for E , and ∆′ a basis for E ′, we have a unique linear isomorphism φ : E → E ′, with
φ(αi) = α ′

i . If α, β ∈ ∆, then
wφ(α)(φ(β)) = wα ′ (β ′) = β ′ −

〈
β ′, (α ′)∨〉 α ′= φ(β) −

〈
β, α∨〉φ(α)= φ(β −
〈
β, α∨〉 α)= φ(wα (β))

That is, we have a commutative diagram
E E ′

E E ′

φ

φ

wα wφ(α)

Now use theorem 13.4, the respective Weyl groups W,W ′ are generated by simple reflections, and so the map
w 7→ φ ◦ w ◦ φ−1

is an isomorphism W → W ′, sending wα to wφ(α) for each α ∈ ∆. Each β ∈ Φ is conjugate under W to asimple root, say β = w(α) for some α ∈ ∆. This implies that
φ(β) = φ(w(α)) = (φwφ−1)φ(α) ∈ Φ′

Hence φ maps Φ onto Φ′. Using the formula for reflections, φ preserves the Cartan integers, i.e.〈
α, β∨〉 = 〈w(φ(α)), w(φ(β))∨〉

Remark 14.5. The proposition suggests it is possible, in principle, to recover the root systems Φ from the Cartanintegers. See Humphreys for a reference.
Definition 14.6 (Coxeter graph)Recall if α ̸= ±β , then 〈

α, β∨〉 〈β, α∨〉 ∈ {0, 1, 2, 3}The Coxeter graph of Φ is a graph with ℓ vertices, for i ̸= j , we join the i-th vertex to the j-th with〈
αi, α∨

j
〉 〈
αj , α∨

i
〉 edges.

The Coxeter graph determines 〈αi, α∨
j
〉 in the case where all the roots have the same length (i.e. it is simply-laced). In the case where more than one root length occurs (e.g. for B2, G2), the graph fails to tell us which ofa pair of vertices should correspond to a short simple root, and which corresponds to a long simple root (in thecase where the vertices are joined by two or three edges).

Remark 14.7. The Coxeter graph determines W as it determines the order of products of the generators of W .
Definition 14.8The Dynkin diagram of Φ is the Coxeter graph, but if a multiple edge between vertices occurs, we add anarrow to point to the shorter root.
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Example 14.9For ranks 1 and 2, we have the Dynkin diagrams1. A1:2. A1 × A1:3. A2:4. B2:5. G2: a

ain lectures G2 was drawn the other way around, i.e.
Lecture 16

Remark 14.10. The maximum number of edges between two vertices in a Dynkin diagram is 3, and a root system issimply laced if and only if its Dynkin diagram has no multiple edges.
Exercise: Φ is irreducible if and only if its Dynkin diagram is (simply) connected.

Theorem 14.11. Let Φ be an irreducible root system, then its Dynkin diagram is one of the following:
(I) Classical root systems (with rank ℓ):• Aℓ (ℓ ≥ 1):• Bℓ (ℓ ≥ 2):• Cℓ (ℓ ≥ 3):

• Dℓ (ℓ ≥ 4):
(II) Exceptional root systems:

• E6:
• E7:
• E8:• F4:• G2:

Remark 14.12. The restriction on ℓ is included so that we don’t have repetitions. For example, B2 = C2 and so on.
Proof. See Humphreys. Alternatively, do five pages of Euclidean geometry.

Theorem 14.13. For every Dynkin diagram D listed above, there exists a simple Lie algebra g with aCartan subalgebra t, roots Φ corresponding to t, such that the Dynkin diagram corresponding to Φ is D .
Proof sketch. For Aℓ , let e1, . . . , eℓ+1 be the standard basis of Rℓ+1. Let

Φ = {ei − ej | i ̸= j
}

⊆ Rℓ+1
We can see that Φ spans an ℓ-dimensional subspace E of Rℓ+1. Then Φ is a root system in E , and it has aroot basis given by

αi = ei − ei+1
42



Note for i < j ,
ei − ej = (ei − ei+1) + (e[i+ 1] − ei+2) + · · · + (ej−1 − ej )Also, 〈

αi, α∨
j
〉 =


−1 |i − j| = 12 i = j0 otherwiseHence the Dynkin diagram in this case is Aℓ :

α1 α2 αℓ−1 αℓNow note wαi flips the i-th and i + 1-th coordinates, so W = Sℓ+1. The corresponding Lie algebra is
slℓ+1(C), with Cartan subalgebra t of diagonal matrices, and

αi


t1 . . .

tℓ+1


 = ti − ti+1

For the other classical root systems, with ei a basis of Rℓ and t the Cartan subalgebra of diagonal matrices.Type Φ ⊆ Rℓ ∆ ⊆ Φ W g Dimension
Bℓ {±ei, ±ei ± ej | i ̸= j} {ei − ei+1} ∪ {eℓ} Sℓ ⋉ C ℓ2 so2ℓ+1 2ℓ2 + ℓ
Cℓ {±2ei, ±ei ± ej | i ̸= j} {ei − ei+1} ∪ {2eℓ} Sℓ ⋉ C ℓ2 sp2ℓ 2ℓ2 + ℓ
Dℓ {±ei ± ej | i ̸= j} {ei − ei+1} ∪ {eℓ−1 + eℓ} Sℓ ⋉ C ℓ−12 so2ℓ 2ℓ2 − ℓFor the Weyl group for Bℓ , Sℓ acts on the coordinates, and C2 acts as a sign change on each coordinate.For the exceptional types, see Humphreys (or Erdmann and Wildon). We summarise some of the results:• G2, there are 12 roots, E = ⟨e1 + e2 + e3⟩⊥ ≤ R3

• F4, E = R4, |Φ| = 48, |W | = 1152,• E6, E7, E8: First do E8, and find root systems of types E7, E6 as subsets. For E8: E = R8, |Φ| = 240,
|W | = 214 · 35 · 52 · 7.

For E8, let α1, . . . , α8 be its root basis, and we have a Coxeter element

wc = 8∏
i=1 wαiwhich has order 30. There is a plane of R8, on which wc acts as a rotation. Image stolen from Wikipedia:
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Remark 14.14. To look up root systems, see the Spherical explorer.
Remark 14.15. To do computations, it is useful to compute things in terms of a root basis.
Remark 14.16. We have Lie algebras g2, f4, e6, e7, e8 corresponding to the exceptional Lie algebras.In particular, g2 is the algebra of “derivations of octonions O”, where a derivation is a linear map δ such that

δ(ab) = δ(a)b+ aδ(b)
O is an 8-dimensional normed division algebra over R, and it has a one-dimensional centre span{1}, on which

g2 acts trivially. There is a representation g2 → so7 , which is the lowest dimensional non-trivial representation. SeeHumphreys §19.3. Others can be constructed, see Fulton-Harris §22.4.
Remark 14.17. Given Φ, there is a natural construction of a Lie algebra with Φ as its root system. Lecture 17So far, we have found correspondences

{simple Lie algebra g with CSA t} ↠ {irred. root systems Φ} ↔ {connected Dynkin diagrams}We will now show that• the root system corresponding to g is independent of the choice of Cartan subalgebra t,• two Lie algebras with the same root system are isomorphic.
9 Brief introduction to inner automorphisms
An automorphism of g is an isomorphism g → g. The group of all such is called Aut(g). For example, if g = gl(V )or sl(V ), A ∈ GL(V ), then

x 7→ AxA−1
is an automorphism of g.Let V be a finite dimensional, choose x ∈ g such that ad(x) is nilpotent, say (ad(x))m = 0. Then

exp(ad(x)) = 1 + ad(x) + (ad(x))22 + · · · + (ad(x))m−1(m− 1)!It is easy to see that exp(ad(x)) ∈ Aut(g) = GL(g), and an automorphism of this form is called inner . Thesubgroup of Aut(g) generated by these is called Inn(g), and this is a normal subgroup of Aut(g). This is becauseif φ ∈ Aut(g), x ∈ g, then φ ad(x)φ−1 = ad(φ(x)), and so
φ exp(ad(x))φ−1 = exp(ad(φ(x)))

Lemma 9.1. Let g ≤ gl(V ) be a complex Lie algebra, and x ∈ g nilpotent. Then ad(x) is nilpotent, and
exp(x)y exp(x)−1 = exp(ad(x))y

for all y ∈ g.
Proof. Humphreys §2.3.

Example 9.2 1. Inn(sln(C)) = GLn(C)/Z ,2. Inn(son(C)) = SOn(C)/Z ,3. Inn(spn(C)) = Spn(C)/Z ,
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Let G be a matrix Lie group, and g = TeG its Lie algebra. We have the exponential map exp : g → G . For
g ∈ G , define

Cg : G → G
x 7→ gxg−1

for the conjugation map. Differentiating this, at e ∈ G , we get
Adg : g → g

x 7→ gxg−1
In particular, Adg ∈ GL(g), and so Ad : G → GL(g) defines a representation. This map also happens to besmooth, and so we can differentiate it again, to get

ad : g → gl(g)
which is the matrix commutator. What lemma 9.1 says is then

Adexp(x) = exp(ad(x))
In fact, this is true for general Lie groups, we have that if φ : G → H is a homomorphism, then

G H

g h

φ

dφ
exp exp

commutes. When φ = Ad, dφ = ad, we get that exp(ad(x)) = Adexp(x).
15 Conjugacy results
Let g be a semisimple Lie algebra, t a Cartan subalgebra, Φ the root system corresponding to t, and so wehave a decomposition

g = t ⊕
⊕
α∈Φ gαand ∆ ⊆ Φ a root basis.

Lemma 15.1. If t′ is another Cartan subalgebra of g, then there exists an (inner) automorphism Ψ ∈ Inn(g),with ψ(t) = t′.
Proof. Humphreys §16.4, Carter page 34. Read at your peril.

Definition 15.2 (rank)The rank of a Lie algebra g is the dimension of a Cartan subalgebra, which is independent of the choiceof Cartan subalgebra. If g is semisimple, then
rank(g) = rank(Φ)

where Φ is the root system of g corresponding to a Cartan subalgebra t.
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Lemma 15.3. If t′ is another Cartan subalgebra of g, with root system Φ′, then Φ and Φ′ are isomorphic.
Proof. Let ψ ∈ Inn(g), be as in lemma 15.1. Take t ∈ t, α ∈ Φ, eα ∈ gα . Then[ψ(t), ψ(eα )] = ψ([t, eα ]) = ψ(α(t)eα ) = α(t)ψ(eα )As ψ(eα ) spans the root space for t′, Φ′ = {α ◦ ψ−1 | α ∈ Φ} = (ψ−1)∗(Φ)

Theorem 15.4. If g′ is a semisimple Lie algebra, with root system Φ (the same as g), then g ∼= g′.
Proof. See Carter Ch 7, using the theory of (finite) structure constants. Choose a basis hα of t, and eα in eachroot space gα , so that [eα , e−α ] = hαThis gives a basis of g (consistent with sl2 theory), with[hα , hβ ] = 0 for α ̸= β[hα , eβ ] = β(hα )eβ

[eα , eβ ] =

Nαβeα+β α + β ∈ Φ
hα β = −α0 α + β /∈ Φ ∪ {0}

16 Weights

Example 16.1Let g = so5, we have simple roots α, β for the root system Φ of g, which is of type B2. Recall
mα = gα ⊕ ⟨[gα , g−α ]⟩ ⊕ g−α

∼= sl2
We can decompose the adjoint representation of g under the action of mα .If eα ∈ gα , then

eα · gγ = gα+γfor all γ ∈ Φ. That is, each α-root string corresponds to an irreducible subrepresentation mα of g. In fact,
g|mα = V (0) ⊕ V (2) ⊕ V (2) ⊕ V (2)

Similarly,
g|mβ = V (0) ⊕ V (0) ⊕ V (0) ⊕ V (1) ⊕ V (1) ⊕ V (2)

Let (Φ, E ) be a root system, and fix a base ∆ = {α1, . . . , αℓ} of simple roots.
Definition 16.2 (root lattice, weight lattice)The root lattice is

ZΦ = {∑
α∈Φ cαα | cα ∈ Z

}
⊆ E

and the weight lattice is
X = {λ ∈ E |

〈
λ, α∨〉 ∈ Z for all α ∈ Φ}
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In the case of a semisimple Lie algebra g, with Cartan subalgebra t, we have
{t ∈ t∗ | β(hα ) ∈ Z for all α ∈ Φ}

The elements of X are called weights.
Note• ZΦ ⊆ X ,• if λ ∈ X , with w(λ) ∈ X for all w ∈ W , since ⟨λ, α∨⟩ = ⟨w(λ), w(α)∨⟩.• the root lattice is a lattice in E , since it is the Z-span of an R-basis. Lecture 18

Lemma 16.3. λ ∈ X if and only if ⟨λ, α∨⟩ ∈ Z for all α ∈ ∆.
Proof. Examples sheet 3.

Definition 16.4 (fundamental weights)For each 1 ≤ i ≤ ℓ , define ωi ∈ E by 〈
ωi, α∨

j
〉 = δijWe call the {ωi} the fundamental weights with respect to ∆.

By lemma 16.3,
X = {∑

i
ciωi

∣∣∣∣ ci ∈ Z

}
Moreover, X/ZΦ is a finite group, called the fundamental group. Moreover,∣∣∣∣ XZΦ

∣∣∣∣ = det(C )
where C is the Cartan matrix of g. The number |X /ZΦ| is sometimes called the index of connection.

Example 16.5For g = sl2, Φ = {±α}, ZΦ = Zα , and ⟨α, α∨⟩ = 2, and so X = Z(α/2). In this case, |X /ZΦ| = 2 =det((2)). More generally for type Aℓ , |X /ZΦ| = ℓ + 1.
Definition 16.6 (dominant)
λ ∈ X is called dominant if ⟨λ, α∨⟩ ≥ 0 for all α ∈ Φ+. If the inequality is strict for all α , it is called
strongly dominant . The set of dominant weights is denoted X+.
This is equivalent to:• λ lies in the closure of the fundamental Weyl chamber with respect to ∆,• λ = ∑i ciωi, where each ci ≥ 0.Now assume g is a semisimple Lie algebra, with a Cartan subalgebra t and root system Φ. Choose eα ∈ gαfor each α ∈ Φ, with [eα , e−α ] = hαand φ : g → gl(V ) a finite dimensional representation over C.
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Lemma 16.7.
V =⊕

λ∈t∗

Vλ

where
Vλ = {v ∈ V | tv = λ(t)v for all t ∈ t}

Proof. Clear from lemma 10.4, where the commuting semisimple elements are the basis elements of t.Recall for λ, µ ∈ t∗, we write
µ ≤ λ ⇐⇒ λ − µ =∑

i
kiαi

where each ki ≥ 0. If V is a representation of g, we say• The weight of a non-zero v ∈ V is λ if v ∈ Vλ,• λ ∈ t∗ is a highest weight if Vλ ̸= 0 and if Vµ ̸= 0, then µ ≤ λ.
Proposition 16.8. (i) if v ∈ Vλ, then eαVλ = Vα+λ,(ii) if Vλ is non-zero, then λ ∈ X . That is, λ(hα ) ∈ Z for all α ,(iii) dim(Vλ) = dim(Vw(λ)) for all w ∈ W .

Proof. For (i), fix t ∈ t. Then
t(eαv ) = ([t, eα ] + eα t)v = α(t)eαv + eαλ(t)v = (α + λ)(t)eαvFor (ii), consider V |mα . Then hα acts by integer weights, so λ(hα ) ∈ Z.For (iii), first of all, it is enough to assume w = wα . Now

V |mα =⊕
j
V (j)

where V (j) are mα irreducible representations. The hα weight spaces of V (j) are 1-dimensional, and so wecan choose a basis v1, . . . , vn for Vλ, with each vi being in a distinct V (j). Now it suffices to show that given
vi ∈ V (j), there exists x ∈ mα such that xvi ∈ Vwα (λ). But we know that wα (λ) = λ − ⟨λ, α∨⟩ α , and that the set

{ekαvi, ek−αvi | α ∈ Z}spans V (j).Define M = max{k | ekαvi ̸= 0}, m = max{k | ek−αvi ̸= 0}. We need to prove that
−m ≤ −

〈
λ, α∨〉 ≤ MHowever (λ+Mα)(hα ) = −(λ − mα)(hα )and so λ(hα ) = m−M . But λ(hα ) = ⟨λ, α∨⟩ and so we are done.

Definition 16.9 (highest weight vector)
v ∈ V is a highest weight vector if• v ̸= 0,• v ∈ Vλ for some λ,• eαv = 0 for all α ∈ Φ+.

In the examples sheet, we show that there is a root α0 of maximal height with respect to the basis ∆ called the
highest root . Any non-zero element of gα0 is a highest weight vector with respect to the adjoint action.
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17 The PBW theorem
Example 17.1Let g = sl3, the root lattice is

and we have a unique highest weight α1 + α2 for the adjoint representation.
Lecture 19

Example 17.2Let g = sl3, t be the Cartan subalgebra of diagonal matrices, with basis
hα1 = 1

−1 0
 hα2 = 0 1

−1


Let V be the defining representation of g, with the standard basis elements {e1, e2, e3}. We look for
|λi ∈ t∗ such that

V =⊕
λ

Vλ

We know that
hα1e1 = e1
hα1e2 − −e2
hα1e3 = 0
hα2e1 = 0
hα2e2 = e2
hα2e3 = −e3

Take
λ1(hα1 ) = 1 λ1(hα2 ) = 0 =⇒ Vλ1 = ⟨e1⟩

λ2(hα1 ) = −1 λ2(hα2 ) = 1 =⇒ Vλ1 = ⟨e2⟩
λ3(hα1 ) = 0 λ3(hα2 ) = −1 =⇒ Vλ1 = ⟨e3⟩

Note λ1 = ω1, λ2 = −ω1 + ω2 and λ3 = −ω2, see page 81 in notes. In this case, e1 is a highest weightvector.
See Fulton-Harris Lectures 12 and 13 for more examples.

Lemma 17.3. (i) V has a highest weight vector,(ii) if v ∈ Vλ is a highest weight vector, then λ is dominant.
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Proof. For (i), choose any non-zero element v0 ∈ Vλ for some λ. If v0 is a highest weight vector then we aredone. Otherwise, choose α ∈ Φ+ such that eα (v0) ̸= 0. Let
k ′ = max{k | ekαv0 ̸= 0}

and
v1 = ek ′

α v0 = Vλ+k ′αRepeat this argument, it must terminate as V is finite dimensional, and each vi lives in a distinct weight space,as we always add on a positive root.For (ii), let α ∈ Φ+, we need to show that ⟨λ, α∨⟩ > 0. Consider mα = ⟨eα , fα = e−α , hα⟩ acting on V .Then eαv = 0 and hαv = λ(hα )v . So v is a highest weight vector for any mα
∼= sl2 acting on V , hence

λ(hα ) > 0 by sl2 theory.Next, we will show that there is a correspondence
{f.d. irred. reps of g} ↔ {dominant weights}

17.1 Universal enveloping algebraFor now, let k be any field. We will associate to each Lie algebra g over k an associative unital algebra(which in general is infinite dimensional over k ), which is generated “as freely as possible” by the Lie algebra
g subject to the commutation relations in g.

Definition 17.4 (tensor algebra)Let V be a vector space over k , defined the tensor algebra of V as
T (V ) =⊕

n≥0 V
⊗n

where (by convention) V⊗0 = k . On T (V ), we have an associative product defined on homogeneousgenerators by
(v1 ⊗ · · · ⊗ vm) ⊗ (u1 ⊗ · · · ⊗ un) = v1 ⊗ · · · ⊗ vm ⊗ u1 ⊗ · · · ⊗ un ∈ V⊗(m+n)

Definition 17.5 (symmetric algebra)The symmetric algebra on V is
S(V ) = Sym(V ) = T (V )

Iwhere I is the (two-sided) ideal generated by
{x ⊗ y − y ⊗ x | x, y ∈ V}

Notice
S(V ) =⊕

n≥0 S
n(V )

and we can identify
S(V ) = k [V ]for the algebra of polynomials on V .

Note both T (V ) and S(V ) are graded algebras.
Definition 17.6 (universal enveloping algebra)Given an arbitrary Lie algebra g over k (could be infinite dimensional), then the univeral enveloping
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algebra U(g) is the associative k-algebra
U(g) = T (g)

Jwhere J is the (two-sided) ideal generated by
{x ⊗ y − y ⊗ x − [x, y] | x, y ∈ g}

Some facts/exercises:• we often write x ⊗ y as xy,• if V is a representation of g, then V is a U(g)-module, with
(x1 ⊗ · · · ⊗ xn)v = x1 · · · xnv

This is well defined as (x ⊗ y − y ⊗ x)(v ) = xyv − yxv = [x, y]v ,• if V is a finite dimensional representation of g = sl2(C), we defined the Casimir element Ω = ef + fe+12h2 ∈ gl(V ). Ω is naturally an element of U(g), independent of V . In general, if g is a semisimple Liealgebra complex Lie algebra, with basis {x1, . . . , xn}, with dual basis {y1, . . . , yn} with respect to theKilling form. Then we define the Casimir element

Ω = n∑
i=1 xiyi ∈ U(g)

Moreover, Ω ∈ Z (U(g))• U(g) is not graded, since the generators of J are not homogeneous. For example, g⊗g is not closed underaddition. But it does have a filtration. Let Un be the image of
n⊕
i=0 g⊗i

in U(g), then UnUm ⊆ Um+n.Exercise (utterly horendous): If x ∈ Un, y ∈ Um, then xy − yx ∈ Um+n−1.The universal property of the universal enveloping algebra is: If A is an (associative unital, not necessarilycommutative) algebra over k , π : g → A a k-linear map, such that
π([x, y]) = π(x)π(y) − π(y)π(x)

Then there exists a unique k-algebra homomorphism ψ , making
U(g)

g A

ψ

π

commute.Another motivation for the universal enveloping algebra: If G is a simple compact Lie group, with Lie algebra
g, then U(g) is the algebra of left invariant differential operators on G . We can also use this to motivate theCasimir element. G has a natural bi-invariant metric. Then we can consider the Laplace-Beltrami operator

∆ = dδ + δd
This is central in U(g), and the corresponding element in g is the Casimir element.
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Definition 17.7 (associated graded algebra)Given any filtration F0 ⊆ F1 ⊆ F2, we call
gr(F ) =⊕

i
Fi/Fi−1

the associated graded algebra.
In our case, gr(U(g)) = U0 ⊕

(⊕
n≥1 Un/Un−1

)
See also the Commutative Algebra course. Lecture 20

17.2 PBW theoremSince gl(V ) is an associative unital algebra, a representation g → gl(V ) is equivalent to a k-algebra homomor-phism U(g) → gl(V ). Therefore, it would be useful to understand the structure of U(g), and the PBW theoremis one part of this.
Theorem 17.8 (Poincaré-Birkhoff-Witt). There exists an isomorphism of algebras

S(g) ∼= gr(U(g))
Equivalently, if {x1, . . . , xn} is a basis for g, then

xk11 · xknnis a basis for U(g), and so g embeds into U(g).
Proof*. Omitted. For the first part, see Humphreys §17.4. We have a map g → Un by inclusion, then considerthe composition of this with the quotient map. Hence we get a map from the tensor algebra to the associatedgraded algebra, which by the exercise at the end of the last lecture, factors through the symmetric algebra, S(g).

T (g) gr(U(g))

S(g)
It’s not too hard to show the map is surjective, but it is hard to show that it is injective.For the basis, a basis for S(g) gives an associated basis of gr(U(g)), which in turn gives a basis for U(g).See Humphreys §17.3 Corollary C.

Lemma 17.9. Suppose V is a representation of g, and v ∈ V . Then the minimal subrepresentation of Vwhich contains v is
U(g)v = {uv | u ∈ U(g)}

Proof. It is clear that U(g)v contains everything we want, as it contains all elements of the form x1 · · · xnv forall xi ∈ g. It also contains all scalar multiples, and all of the sums of the above.
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Example 17.10Let V be a infinite dimensional C-vector space, with basis v0, v1, . . .. Define an sl2-action on V by
ev0 = 0
hv0 = 0
f vi = vi+1

We claim that v0 and v1 are highest weight vectors for the sl2-action. We need that ev0 = ev1 = 0. For
j = 1,

ev1 = efv0 = ([e, f ] + fe)v0 = hv0 = 0We also require that ⟨v0⟩ and ⟨v1⟩ to contain their images under h. hv0 = 0 so this is clear, and for v1,
hv1 = hfv0 = ([h, f ] + fh)v0 = [h, f ]v0 = −2f v0 = −2v1

So v1 ∈ V−2 is a highest weight vector.Also note that
W = span{v1, . . . , vn}is a subrepresentation of V , and V /W is one dimensional, and so V /W ∼= V (0).More generally, if V (n) is a C-vector space, with basis v0, . . . , vm, and with sl2 action given by

ev0 = 0
hv0 = nv0
f vi = vi+1

Then vn+1 is a highest weight vector. If we let
W (n) = span{vn+1, . . . , vm}

and we have that
V (n)/W (n) ∼= V (n)

18 Highest weight modules and Verma modules
As usual, let g be a semisimple Lie algebra, with a Cartan subalgebra t and roots Φ, and a base ∆ = {α1, . . . , αℓ}of simple roots. If V is a representation, then we have weight spaces

Vλ = {v ∈ V | tv = λ(t)v for all t ∈ t}

Remark 18.1. • Vλ makes sense even if V is infinite dimensional.• the definition of a highest weight vector also makes sense if V is infinite dimensional.• if eα ∈ gα is non-zero, then
eαVλ ⊆ Vλ+αwhich still makes sense if V is infinite dimensional.

Definition 18.2 (highest weight module)A representation V of g is a highest weight module if V contains a highest weight vector v , such that
V = U(g)v

Note that Humphreys calls this a standard cyclic module, but the modern terminology is highest weightmodule.
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Example 18.3Any finite dimensional irreducible representation v of g is a highest weight module. This follows as vhas to contain a highest weight vector v , and we saw that U(g)v is a subrepresentation of V containing
v . Thus equality holds as V is irreducible.
Example 18.4In example 17.10, v0 is a highest weight vector, and vi = f iv0, and so

V = U(g)v0
is a highest weight module.
Remark 18.5. • Not every highest weight module is irreducible,• If V is an infinite dimensional weight module, v ∈ Vλ a highest weight vector, then λ does not have to bedominant.
Notation 18.6. Define

η+ = ⊕
α∈Φ+ gα

η− = ⊕
α∈Φ−

gα

With this, we have that
g = η+ ⊕ t ⊕ η−

Lemma 18.7. Suppose V is a highest weight module, with a highest weight vector v such that V = U(g)v .Then in fact
V = U(η−)v

Proof. Choose a basis x1, . . . , xn of η−, a basis t1, . . . , tℓ of t, and a basis y1, . . . , yn of η+. Then
U(g) = U(η−) ⊗ U(t) ⊗ U(η+)and by PBW,

U(g)v = span{xk11 · · · xknn t
m11 · · · tmℓ

ℓ yr11 · · · yrnn v}But yiv = 0 for all i, and tiv ∈ span{v}, and so
U(g)v = U(η−)v

Intuitively, since v is a highest weight vector, it is in the kernel of all of the yi ∈ η+. So the weight canonly decrease.
Proposition 18.8. Let V be a highest weight module, with highest weight vector vλ ∈ Vλ, with V = U(g)vλ.Then(i)

V = ⊕
µ∈D(λ)Vµwhere

D(λ) = {λ −
ℓ∑
i=1 kiαi | ki ∈ Z≥0}
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is the descent set of λ.(ii) Any submodule of V is a direct sum of weight spaces Vµ ,(iii) dim(Vλ) = 1 and any other Vµ is finite dimensional,(iv) V is irreducible if and only if every highest weight vector lies in Vλ,(v) V contains a maximal (proper) subrepresentation.
Lecture 21

Proof. Recall that V = U(η−)vλ, and so by considering expressions of the form
e−β1 · · · e−βr vλwhere the βi are positive roots, r ≥ 0, e−β a non-zero vector in g−β . These expressions span V .In this case, the weight of such an expression is λ − (β1 + · · · + βr ), and so the generators live in Vλ−∑ βi ,where βi ∈ Φ+. This shows (i). Moreover, this also shows (iii), since given µ there exists only a finite numberof ways to write
µ = v −

∑
i
βi

where the βi are positive roots.For (ii), let W ≤ V be a submodule. Write w ∈ W as a sum
w = n∑

k=1 vkwhere vk ∈ Vλk , the λk are distinct. We need to show that all the vk are in W . If not, then we can choose a wwith n minimal, n > 1.In particular, none of the vk is in W . Find t ∈ t, for which µ1(t) ̸= µ2(t). Then
tw =∑

i
µi(t)vi ∈ W

as does (t − µ1(t) id)w = (µ2(t) − µ1(t))v2 + · · · + (µn(t) − µ1(t))vnThe right hand side is non-zero. But since n is minimal, this forces v2 ∈ W .For (iv), suppose V has a highest weight vector vµ ∈ Vµ , where µ ̸= λ. Then U(g)vµ is a subrepresentation,and it does not contain vλ. To see this, the weights for U(g)vµ are of the form
µ −

∑
i
kiαi

Hence U(g)vµ is a non-trivial proper subrepresentation. Conversely, suppose U ⊊ V is a non-trivial propersubrepresentation. We can write U as a direct sum of Vµ . Choose µ such that vµ ∈ U , and if we write
µ = λ −

∑
i
kiαi

have ∑i ki minimal. Let vµ ∈ Vµ be non-zero, α ∈ Φ+, eα ∈ gα . Then
eαvµ ∈ Vµ+α ∩ U = 0Hence vµ is a highest weight vector.(v) has been left as an exercise. Let W1,W2 be submodules of V . If vλ ∈ Wi, then Wi = V . So we mayassume that vλ /∈ Wi. We claim that W1 + W2 is a proper subrepresentation. But this follows from the factshown in (ii) that W1 +W2 decomposes into weight spaces, and by (iii), the λ weight space is one dimensional.Therefore, the sum of all proper subrepresentations must also be a subrepresentation, since if it contains vλ,a finite sum of proper subrepresentations must contain vλ. With this, maximality is clear.Other easy exercises (Humphreys):• show that V is indecomposable as a g-module,• show that every non-zero homomorphic image of V is also a highest weight module
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18.1 Verma modules

Definition 18.9 (highest weight)If V is a highest weight module with v ∈ Vλ a highest weight vector, V = U(g)v , then we say that V isof highest weight λ.
Let t be a Cartan subalgebra of g, with corresponding root system Φ and a root basis ∆ = {α1, . . . , αℓ}.Choose a basis h1, . . . , hℓ of t, with hi = hαi . For λ ∈ t∗, let J(λ) be the (left) ideal of U(g) generated by• eα for α ∈ Φ+,• hi − λ(hi)1 for each iThat is, J(λ) comprises elements ∑

α∈Φ+ uαeα +∑yi (hi − λ(hi)1)
where uα , yi ∈ U(g). J(λ) is a left module for U(g).

Definition 18.10 (Verma module)Let M(λ) be the quotient space
M(λ) = U(g)

J(λ)This is a U(g)-module, with action
u(v + J(λ)) = uv + J(λ)and we say that M(λ) is the Verma module associated to λ.

Proposition 18.11. M(λ) is a highest weight module, with highest weight λ.Moreover, M(λ) is universal. That is, for mλ ∈ M(λ)λ a highest weight vector, V any other highestweight module with highest weight λ, and highest weight vector vλ, then there exists a unique g-equivariantlinear map M(λ) → V , sending mλ to vλ.
Proof. Let mλ = 1 + J(λ) ∈ M(λ). This is a generator for M(λ) as a U(g)-module. Then

himλ − hi + J(λ) = λ(hi)1 + J(λ)
and if α ∈ Φ+, eα ∈ gα , then

eαmλ = eα + J(λ) = J(λ) = 0In this case, mλ is a highest weight vector, with highest weight λ, and M(λ) = U(g)mλ. So any other highestweight vector is a scalar multiple of this one.By the PBW theorem, if Φ+ = {β1, . . . , βr}, then
e−β1 · · · e−βrmλ

is a basis for M(λ). Define
φ : M(λ) → V

e−β1 · · · e−βrmλ 7→ e−β1 · · · e−βr vλ

Lecture 22
Remark 18.12. Humphreys calls M(λ) the universal standard cyclic modules.
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Lemma 18.13. Given a weight λ ∈ t∗, there is a unique irreducible highest weight module with highestweight λ, called V (λ).
Proof. We know that M(λ) has a unique maximal (proper) submodule J , by proposition 18.8. Then M(λ)/J isirreducible. Uniqueness follows from the universal property of the Verma module.

Example 18.14In example 17.10, we had V = M(0), J = ⟨v1, . . .⟩, and M(0)/J ∼= V (0), which is the trivial representationof sl2.
Example 18.15See Erdmann-Wildon Example 15.12, they give an example of an irreducible Verma module, for g = sl2(C).This shows that sl2(C) has infinite dimensional irreducible representations.
Remark 18.16. Verma modules are building blocks for the ‘category O’. Although each M(λ) is infinite dimensional,when we viewed as a U(g)-modules, it has finite length. That is, there exists submodules

0 = M0 ≤ M1 ≤ · · · ≤ Mr = M(λ)
such that Mi+1/Mi are simple for all i.See Humphreys ‘category O’ book.
Remark 18.17. In 1985, Drinfeld and Jimbo independently defined quantum groups, by ‘deforming’ the universalenveloping algebras of Lie algebras. These have numerous applications in theoretical physics, knot theory, andrepresentation theory of algebraic groups.
Theorem 18.18. V = V (λ) is a finite dimensional irreducible g-module if and only if λ is dominant.

Proof. If V is finite dimensional, then for each simple root αi, let mαi be the corresponding copy of sl2. Then Vis also a finite dimensional module for mi, and a highest weight vector for g is a highest weight vector for mi.Since, there exists a highest weight vector of weight λ, then the weight for the Cartan subalgebra ti ⊆ mαi isdetermined by the λ(hi), since hi(v ) = λ(hi)v = ⟨λ, α∨
i ⟩ v . This forces λ(hi) ∈ Z≥0.For the converse, V (λ) is a direct sum of finite dimensional weight spaces, as it is the quotient of the Vermamodule. The idea is to show that the set of weightsΠ(λ) = {µ | V (λ)µ ̸= 0}is finite. Let ∆ = {α1, . . . , αℓ} be a root base, and for each i, let {xi, yi, hi} be a mαi-triple.We need that in U(g), [xj , yk+1

i ] = 0 for i ̸= j (i)[xi, yk+1
i ] = −(k + 1)yki (k · 1 − hi) (ii)for k ≥ 0. See Humphreys §21.2.

Claim 18.19. V (λ) contains a non-zero finite dimensional mαi-module, for each i.
Proof. Let v ∈ V (λ) be a highest weight vector. As λ is dominant,

ni = 〈λ, α∨
i
〉

∈ Z≥0Let u = yni+1
i v . We will show that u = 0. By (i), for i ̸= j ,

xju = yni+1
i (xjv ) + [xj , yni+1

i ]v = 0
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Next, for (ii),
xiu = yni+1

i (xiv ) + [xi, yni+1
i ]v = −(ni + 1)ynii (ni − hi)v = 0Suppose if u ̸= 0, then from the above, u would be a highest weight vector of weight λ − (ni + 1)αi < λ.Contradiction, the highest weight is unique. So

W = 〈v, yiv, . . . , yni+1
i v

〉
is a non-zero finite dimensional mαi subrepresentation of V (λ). To see that xiW ⊆ W , use (ii).

Claim 18.20. For each i, V (λ) is the sum of all finite dimensional mαi subrepresentations contained in it.
Proof. Let W be the sum of all finite dimensional mαi-modules contained in V (λ). We will show that W is a
g-submodule of V (λ). But V (λ) is irreducible, and by claim 18.19, W ̸= 0, and so W = V (λ).For x ∈ g, w ∈ W , we need to show that xw ∈ W . But then w ∈ W ′ for some finite dimensional
mαi-module W ′. Let

x = ∑
β∈Φ∪{0}

xβ

where xβ ∈ gβ . Then xβw ∈ gβW ′ = W ′′. Now consider
W ′′ = spanβ{gβW ′}Then W ′′ is finite dimensional, and it is clearly mαi-invariant, as

xiW ′′ ⊆ spanβ{xixβW ′}But
xixβW ′ = xβ (xiW ′) + [xi, xβ ]W ′ ⊆ xβW ′ + gαi+βW ′ ⊆ W ′′

Similarly, repeat for yi, hi. Thus, xw ∈ W ′′ ⊆ W .
Claim 18.21. The Weyl group acts on Π(λ) by permutations.
Assuming the claim, Π(λ) decomposes as a disjoint union of orbits, this will mean that it is now enough toshow there are only finitely many orbits, as W is finite. First, we will show Lecture 23

Claim 18.22. If µ ∈ Π(λ), then wi(µ) ∈ Π(λ), where wi = wαi . Also,
dim(V (λ)µ) = dim(V (λ)wi(µ))

Proof. Since V (λ)µ is finite dimensional, there exists a finite-dimensional mαi-module U containing V (λ)µ . Pickan element 0 ̸= w ∈ V (λ)µ . We have that
hiw = µ(hi)wHence w ∈ U is a weight vector for hi. Thus by sl2 theory, µ(hi) = µ(α∨

i ) = m ∈ Z. Hence all weightsare in Z, as this holds for all i. Since m appears as a weight of U , so does −m. Moreover, we have thatdim(Um) = dim(U−m).If m ≥ 0, then ymi w ̸= 0, and yim ∈ U−m. But
ymi w ∈ V (λ)µ−⟨µ,α∨

i ⟩αi = V (λ)wi(µ)as weights add. If m < 0, the same argument with x−m
i works.To get the equality of dimensions, if w1, . . . , wr is a basis of V (λ)µ , then w1, . . . , wr is linearly independentin Um. Applying ymi (or x−m

i ), the results are still linearly independent, which live in V (λ)wi(µ). With this,dim(V (λ)µ) ≤ dim(V (λ)wi(µ))But we can just swap µ and wi(µ), as w2
i = id.
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Claim 18.23. For µ ∈ Π(λ), its Weyl orbit Wµ contains a dominant weight.
Proof. The orbit Wµ is finite, so there exists η ∈ Wµ which is maximal with respect to ≤. Then we know that
η is dominant, since if not, then 〈

η, α∨
i
〉
< 0for some i, and so wi(η) ∈ Wµ, with wi(η) = η − ⟨η, α∨

i ⟩ with wi(η) ≥ η. Contradiction.
Claim 18.24.

S = {η | η dominant, η ≤ λ}is finite.
Proof. If η ∈ S , then λ − η is a sum of positive roots, with nonnegative coefficients. hence η lies in a discreteset.Moreover, λ+ η is dominant, and so 〈

λ+ η, α∨
i
〉

≥ 0for all i. In particular, (λ+ η, λ − η) ≥ 0 =⇒ (λ, λ) ≥ (η, η)and so S is a subset of a compact set. Thus S is compact and discrete, and so finite.From claim 18.23, any W -orbit of Π(λ) contains a dominant weight, i.e. an element of S . But S is finiteand so there are only finitely many orbits.We’ve just shown that there exists a bijection
{dominant weights λ} ↔ {finite dimensional irreducible representations V (λ) of g}

19 The Weyl character formula
Let g be a semisimple Lie algebra, with Cartan subalgebra t, root basis ∆ = {α1, . . . , αℓ}, weight lattice X ,Weyl group W .

Example 19.1Define
ρ = 12 ∑

α∈Φ+ αLet us compute ⟨ρ, α∨
i ⟩ for A1, A2, B2.For A2, B2, ∆ = {α1, α2}, we claim that

ρ = ω1 + ω2
In particular, 〈

ρ, α∨
i
〉 = 1For A1, ∆ = {α1}, ρ = α1/2, and 〈

ρ, α∨1 〉 = 1
We claim that

ρ = ℓ∑
i=1 ωiwhere the ωi are the fundamental dominant weights3. It suffices to show that 〈ρ, α∨

j
〉 = 1 for all αj ∈ ∆. Inthis case,

wαj (ρ) = ρ −
〈
ρ, α∨

j
〉
αj

3Recall that this means 〈ωi, α∨
j

〉 = δij . By construction they are dominant.
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But we also have that
wαj (ρ) = wαj

12 ∑
α∈Φ+\{αj}

α + 12αj


We know that wαj permutes Φ+ \ {αj}, and so
wαj (ρ) = 12 ∑

α∈Φ+\{αj}

α − 12αj = ρ − αj

Recall from theorem 18.18 that Π(λ) = {µ | V (λ)µ ̸= 0}This leads to the questions:• what is Π(λ)?• what is dim(V (λ)µ)?
Definition 19.2We have a partial ordering ⪯ on X , defined by

µ ⪯ λ iff λ − µ = ℓ∑
i=1 kiαiwhere ki ∈ Z≥0 for all i.

Now note that Π(λ) = {µ | µ ⪯ λ}and to determine Π(λ), we only need to find the dominant weights in it. This is because (Humphreys Lemma13.2A) each weight is conjugate under the Weyl group to a unique dominant weight. See claim 18.23 forexistence. For our purposes, we won’t need uniqueness.
Proposition 19.3. Suppose λ, µ are dominant weights. Then µ ∈ Π(λ) if and only if µ ⪯ λ.

Lecture 24
Proof. Suppose µ ⪯ λ. Then

λ − µ = ∑
α∈Φ+ kααwhere kα ∈ Z≥0. We will induct on ∑ kα . We’ve already done the case where ∑ kα = 0. Now suppose

µ = λ − α

for some α ∈ Φ+. Then 〈
µ, α∨〉 = 〈λ, α∨〉− 2 ≥ 0by dominance, and so ⟨α, α∨⟩ ≥ 2. Let vλ ∈ Vλ be non-zero. Since

hαvλ = nvλ

fo some n ≥ 2, and then we know that
e−αvλ ̸= 0By the usual sl2 theory, e−λvλ ∈ V (λ)λ−α = V (λ)µ , and so µ is a weight.Now suppose we know the claim is true for ∑ kα = n − 1. We assume now that ∑ kα = n, so that

µ = λ − β1 − · · · − βn
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We have two cases:
Case 1: For some i, j distinct,

〈
βi, β∨

j
〉
< 0. Without loss of generality, i < j . In this case, βi + βj is apositive root. Thus, we have that

n∑
i=1 βi = i−1∑

k=1 βk + j−i∑
k=i+1 βk + n∑

k=j+1 βk + (βi + βj )
which is a sum of n − 1 positive roots, and so we are done by induction.

Case 2: For all i, j distinct,
〈
βi, β∨

j
〉

≥ 0. For this,
Claim 19.4.

λ −
r∑
i=1 βr ∈ Π(λ)

for all 1 ≤ r ≤ n.
Proof. By induction on r . See notes.

Example 19.5For G2 we have the root basis {α1, α2}, with α1 short, and we would like to compute Π(2ω1).
add diagramNow ω1 is such that ⟨ω1, α∨1 ⟩ = 1, and ⟨ω1, α∨2 ⟩ = 0. The dominant weights of Π(2ω1) are thedominant µ with µ ⪯ 2ω1 by the proposition.First, 2ω2 = 4α1 + 2α2, and ω2 = 3α1 + 2α2. Then ω2 ⪯ 2ω2. But ω1 + ω2 ̸⪯ 2ω1. Hence thedominant weights in Π(2ω1) are

ω1, 2ω1, ω2, 0The Weyl conjugates of ω1 are the short roots, and the Weyl conjugates of ω2 are all the long roots. So
Π(2ω1) = {short root} ∪ {2(short root)} ∪ {long root}= Φ ∪ {±2ω1, ±2α1, ±2(α1 + α2), 0}

See Humpreys page 68, 69, or Fulton-Harris pages 339-359. This is a very typical exam question.
Definition 19.6 ((formal) character)Let Z[X ] be the free Z-module with basis

{eµ | µ ∈ X}

with multiplication
eµeλ = eµ+λThis makes Z[X ] into a commutative ring, with 1 = e0.Let V be a finite dimensional representation of g, then the (formal) character of V is

ch(V ) =∑
µ∈X

dim(Vµ)eµ ∈ Z[X ]
Z[X ] is the group ring generated by the lattice X .

Example 19.7For g = sl2, then
X = Z · α2
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Let z = eα/2, then ch(V (n)) = zn + · · · + z−n

Exercise: Find the character of the adjoint represenation of sl3.Recall from examples sheet 3 that for w ∈ W , ℓ(w) is the minimal n such that
w = wα1 · · · wαnwhere αi ∈ ∆. The sign of w is sign(w) = (−1)ℓ(w)

Example 19.8If g = sln, then for w ∈ W , the sign of w as above, is the same as the sign of w in Sn.
Theorem 19.9 (Weyl character formula). Let λ be a dominant weight, and

ρ = 12 ∑
α∈Φ+ α =∑

j
ωj

Then ch(V (λ)) = ∑
w∈W sign(w)ew(λ+ρ)
eρ
∏

α∈Φ+ (1 − e−α )
Proof. Fulton-Harris Chapter 24, Grojnowski §7, Humphreys 24.3.

Corollary 19.10 (Weyl denominator formula).
eρ
∏
α∈Φ+(1 − e−α ) = ∑

w∈W

sign(w)ew(ρ)

Proof. Plug λ = 0 into the Weyl character formula. Note ch(V (λ)) = 1.
Corollary 19.11 (Weyl dimension formula). If λ is dominant, then

dim(V (λ)) = ∏
α∈Φ+ ⟨λ+ ρ, α∨⟩∏
α∈Φ+ ⟨ρ, α∨⟩ = ∏

α∈Φ+
(λ+ ρ, α)(ρ, α)

Lecture 25
*Proof*. By definition, ch(V (λ)) = ∑

µ∈X+ dim(Vµ)eµ
We’d like to substitute eµ = 1, for any µ, but we would get 0/0.Indeed, for µ ∈ X , p ∈ Z[X ], define

Fµ(p) : R≥0 → R
Fµ(eλ)(q) = q−(µ,λ)

and extend linearly over p. Note Fµ is multiplicative and Fµ(p) is C 1 on R>0. Clearly F0(eλ) = 1, and
F0(ch(V (λ))) = dim(V (λ))

62



First apply Fµ to the Weyl denominator formula, we get
q−(ρ,µ) ∏

α∈Φ+(1 − q(α,µ)) = ∑
w∈W

sign(w)q−(wρ,µ) = ∑
w∈W

sign(w)q−(ρ,wµ) (∗)
Since sign(w) = sign(w−1) and (wx, y) = (x, w−1y).Now apply Fρ to the Weyl character formula, we get

Fρ(ch(V (λ)))(q) = ∑
w∈W q−(ρ,w(λ+ρ))

q−(ρ,ρ)∏
α∈Φ+ (1 − q−(ρ,α))

Note we need (ρ, α) ̸= 0 for all α . But recall that (ρ, αi) = 1 > 0 for all i, and so (ρ, α) > 0 for all α ∈ Φ+.Using (∗) with µ = λ+ ρ,
Fp(ch(V (λ))) = q−(p,λ+ρ)∏

α∈Φ+ (1 − q(α,λ+µ))
q−(p,ρ)∏

α∈Φ+ (1 − q(ρ,α))where we applied (∗) to the numerator. Finally, note that
Fp(ch(V (λ)))(q) =∑dim(V (λ)µ)q−(p,µ)

Taking the limit q → 1, and using L‘Hôpital’s rule,
dim(V (λ)) = ∏

α∈Φ+ (λ+ ρ, α)∏
α∈Φ+ (ρ, α)

as required.
Example 19.12For g = sl2, ω1 = 12α = ρ, and X+ = {mω1}, and so

dim(V (λ)) = (m+ 1) (α, α)(α, α) = m+ 1
Example 19.13For g = sl3, Φ+ = {α, β, α + β}. Let

λ = m1ω1 +m2ω2and
ρ = α + β = ω1 + ω2Computing:
(λ+ ρ, α) = m1 + 1(λ+ ρ, β) = m2 + 1(λ+ ρ, α + β) = m1 +m2 + 2(ρ, α) = 1(ρ, β) = 1(ρ, α + β) = 2

and so dim(V (λ)) = (m1 + 1)(m2 + 1)(m1 +m2 + 2)2
Exercise: Compute the dimensions of the finite dimensional irreducible representations of B2 and G2. SeeHumphreys page 140.
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Example 19.14 (A very common tripos question)For g = sp4(C), which is of type B2. Let α1 be a short root. Suppose λ = aω1 + bω2 is a dominantweight. In this case, ∏
α∈Φ+

〈
ρ, α∨〉 = 6

Next, λ+ ρ = (a+ 1)ω1 + (b+ 1)ω2. Hence∏
α∈Φ+

〈
λ+ ρ, α∨〉 = (a+ 1)(b+ 1)(a+ 2b+ 3)(a+ b+ 2)

Let V be the defining representation. For its highest weight,
dim(V (ω1)) = 4

and so if W is a non-trivial representation of sp4, and not isomorphic to V (ω1), then by the dimensionformula, we need dim(W ) > 4. Hence V ∼= V (ω1).Finally, to decompose V ⊗V into irreducible subrepresentations, we need to find λ1, . . . , λr such that
V ⊗ V = V (λ1) ⊕ · · · ⊕ V (λr )

Let v ∈ V (ω1) be a highest weight vector. Then v ⊗v is a highest weight vector, with weight 2ω1. That is,
V (2ω1) is a subrepresentation of V ⊗V . But 2ω1 = 2α1 +α2, and so V (2ω1) is the adjoint representation.In particular, dim(V (2ω1)ω1 ) = 1Finally, take a basis {vγ} where γ ∈ Π(ω1) be a basis of weight vectors of V . Then

{vγ1 ⊗ vγ2 | γ1, γ2 ∈ Π(ω1)}
is a basis of weight vectors for V ⊗ V . Using this,

dim((V ⊗ V )ω1 ) = 1dim((V ⊗ V )ω2 ) = 2dim((V ⊗ V )0) = 4
All other weight spaces correspond to non-dominant weights. Next,

dim(V (2ω1)ω2 ) = 1dim(V (ω2)) = 5
and V (ω2) has to be a subrepresentation of V ⊗ V . By counting dimensions, we get

V ⊗ V = V (2ω1) ⊕ V (ω2) ⊕ V (0)
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