Local fields

Shing Tak Lam

Michaelmas 2023[∗]

Contents

Makeup lecture Thursday Week 9. Four examples sheets/examples classes.

1 Basic theory

For example, we have Diophantine equations

$$
f(x_1,\ldots,x_n)\in\mathbb{Z}[x_1,\ldots,x_n]
$$

and we would like to find solutions to

 $f(x_1, \ldots, x_n) = 0$

in Z *n* . Instead of trying to solve this equation, we can try to solve

 $f(x_1, \ldots, x_n) \equiv 0 \pmod{p}$

and also modulo higher powers of *^p*.

Local fields packages all of this information together.

1.1 Absolute value

Definition 1.1 (absolute value)

Let *K* be a field. An *absolute value* on *K* is a function $|\cdot| : K \to \mathbb{R}_{\geq 0}$, satisfying:

- (i) $|x| = 0$ if and only if $x = 0$,
- (ii) $|xy| = |x||y|$ for all $x, y \in K$,
- (iii) the triangle inequality $|x + y| \le |x| + |y|$ for all $x, y \in K$.

We call the pair (*K , |·|*) ^a *value field*.

Example 1.2

If $K = \mathbb{Q}$, $\mathbb R$ or $\mathbb C$, then the usual absolute value is an absolute value (in the above sense). We denote this as the *|x|[∞]*.

Example 1.3 (trivial absolute value)

[∗]Based on lectures by Rong Zhou. Last updated October 7, 2023.

For any field *^K*, define

$$
|x| = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases}
$$

This defines a absolute valie. In this course, we will ignore this.

Example 1.4 (*p*-adic absolute value)

Let *p* be a prime number, and let $K = \mathbb{O}$. For a nonzero $x \in \mathbb{O}$, we can write write

$$
x = p^n \frac{a}{b}
$$

where $(a, p) = (b, p) = 1$. Then we can define the *p-adic absolute value* as follows:

$$
|x|_p = \begin{cases} 0 & x = 0\\ p^{-n} & x = p^n \frac{a}{b} \text{ as above} \end{cases}
$$

For the axioms, (i) is clear. For the other two, write

$$
y = p^m \frac{c}{d}
$$

(ii) is

$$
|xy|_{p} = \left| p^{n+m} \frac{ac}{bd} \right|_{p} = p^{-(n+m)} = |x|_{p} |y|_{p}
$$

as the numerator and denominator are coprime to *^p*. For (iii), without loss of generality, we can assume $m \geq n$. Then

$$
|x + y|_{\rho} = \left| \rho^{n} \left(\frac{ad + p^{m-n}bc}{bd} \right) \right| \leq \rho^{-n} = |x|_{\rho} = \max\{|x|_{\rho}, |y|_{\rho}\} \leq |x|_{\rho} + |y|_{\rho}
$$

The inequality

$$
|x + y|_p \le \max\{|x|_p, |y|_p\}
$$

is called the *ultrametric inequality*.

An absolute value on *^K* induces a metric on *^K*, defined by

 $d(x, y) = |x - y|$

This then induces a topology on *^K*.

Definition 1.5 (equivalence of absolute values)

Suppose $|\cdot|$ and $|\cdot|'$ are absolute values on a field *K*. We say that these absolute values are *equivalent*
if thou induce the same topology, Ap oquivalence class of absolute values is called a place. if they induce the same topology. An equivalence class of absolute values is called a *place*.

Proposition 1.6. Let *|·|* and *|·|′* are (non-trivial) absolute values on *^K*. Then the following are equivalent:

- (i) *|·|* and *|·|′* are equivalent,
- (ii) for all $x \in K$, $|x| < 1$ if and only if $|x|' < 1$,
- (iii) there exists $c > 0$ such that

for all $x \in K$.

Proof. (i) \implies (ii) Note that $|x| < 1$ if and only if $x^n \to 0$ with respect to the topology. Since the topologies are equivalent, this is true if and only if $|x|' < 1$.

 $|x|^{c} = |x|^{c}$

 $(iii) \implies (iii) \text{ Note } |x|^c = |x|^b$ is equivalent to saying

$$
c \log |x| = \log |x|'
$$

Let *^a [∈] ^K ×*, such that *|a| >* 1. This exists since we assumed the absolute value is non-trivial. We need to show that for all $x \in K^{\times}$,

$$
\frac{\log |x|}{\log |a|} = \frac{\log |x|'}{\log |a|'}
$$

Suppose not. Then without loss of generality, for some $x \in K^{\times}$

$$
\frac{\log |x|}{\log |a|} < \frac{\log |x|'}{\log |a|'}
$$

Choose $m, n \in \mathbb{Z}$ such that

$$
\frac{\log |x|}{\log |a|} < \frac{m}{n} < \frac{\log |x|'}{\log |a|'}
$$

Rearranging,

$$
n \log |x| < m \log |a|
$$
\n
$$
n \log |x|' > m \log |a|'
$$

Exponentiating, we find that

$$
\left|\frac{x^n}{a^m}\right| < 1 \quad \text{and} \quad \left|\frac{x^n}{a^m}\right|' > 1
$$

Contradiction. (iii) ⁼*[⇒]* (ii) is clear.

Remark 1.7. $\vert\cdot\vert^2_{\infty}$ is *not* an absolute value, since it does not satisfy the triangle inequality. Some authors replace the
triangle inequality by triangle inequality by $|x + y|^{\beta} \leq |x|^{\beta} + |y|^{\beta}$

for some $\beta > 0$.

In this course, we are mainly interested in the following:

Definition 1.8 (non-archimedean absolute value)

An absolute value *|·|* on *^K* is *non-archimedean* if it satisfies the *ultrametric inequality*

 $|x + y| \leq \max\{|x|, |y|\}$

If *|·|* is not non-archimedean, then it is *archimedean*.

Example 1.9 • $|\cdot|_{\infty}$ on $\mathbb R$ is archimedean.

 \bullet $\left| \cdot \right|_p$ on $\mathbb Q$ is non-archimedean, see example [1.4.](#page-1-0)

Lemma 1.10. Let $(K, |\cdot|)$ be non-archimedean, $x, y \in K$. If $|x| < |y|$, then $|x - y| = |y|$.

Proof.

|x [−] y| ≤ max *{|x|, |y|}* ⁼ *|y|*

where we use the fact that *|−y|* ⁼ *|y|* (follows from the axioms of an absolute value). Conversely,

|y| ≤ max *{|x|, |x [−] y|} ≤ |x [−] y|*

since we can't have $|y| \leq |x|$.

Convergence is easier for non-archimedean absolute values.

 \Box

 \Box

Proposition 1.11. Let $(K, |\cdot|)$ be a non-archimedean valued field, and (x_n) be a sequence in the field K. Suppose $|x_n - x_{n+1}| \to 0$. Then (x_n) is Cauchy. In particular, if *K* is complete, then (x_n) converges.

Proof. For $\varepsilon > 0$, choose *N* such that for all $n \geq N$, $|x_n - x_{n+1}| < \varepsilon$. Then for $n, m \geq N$,

$$
|x_n - x_m| = |(x_n - x_{n+1}) + \cdots + (x_{m-1} - x_m)| < \varepsilon
$$

by the ultrametric inequality (and induction).

Example 1.12

value.

Consider the 5-adic metric, we will construct a sequence (x_n) in $\mathbb Q$ such that

- (i) $x_n^2 + 1 \equiv 0 \pmod{5^n}$,
- (ii) $x_n \equiv x_{n+1} \pmod{5^n}$

Take $x_1 = 2$, and suppose we have defined x_n . Let $x_n^2 + 2 = a5^n$, and set $x_{n+1} = x_n + b5^n$
.

$$
x_{n+1}^2 + 1 = x_n^2 + 2bx_n5^n + b^25^{2n} + 1 = a5^n + 2bx_n5^n + \underbrace{b^25^{2n}}_{\equiv 0 \pmod{5^{n+1}}}
$$

Therefore, all we need to do is choose *b* such that $a + 2bx_n \equiv 0 \pmod{5}$. Then $x_{n+1}^2 + 1 \equiv 0 \pmod{5^{n+1}}$.
By the proposition (ii) tells us that (x) is Cauchy. On the other hand suppose $x \to \ell \in \mathbb{Q}$. By the By the proposition, (ii) tells us that (x_n) is Cauchy. On the other hand, suppose $x_n \to \ell \in \mathbb{Q}$. By the usual properties of limits, $x_n^2 \to \ell^2$. But (i) tells us that $x_n^2 \to -1$. Hence $\ell^2 = -1$, contradiction. Using this, (Q*, |·|*⁵) is not compete.

Definition 1.13 (*p*-adic numbers) The *p*-adic numbers \mathbb{Q}_p is the completion of \mathbb{Q} with respect to $\lvert \cdot \rvert_p$.

Analogy: Compare this with the construction of $\mathbb R$ as the completion of $\mathbb Q$ with respect to the usual absolute

.

 \Box