Local fields

Shing Tak Lam

Michaelmas 2023*

Contents

1	Basic theory	1	
	1.1 Absolute value	1	Lecture 1

Makeup lecture Thursday Week 9. Four examples sheets/examples classes.

1 Basic theory

For example, we have Diophantine equations

$$f(x_1,\ldots,x_n) \in \mathbb{Z}[x_1,\ldots,x_n]$$

and we would like to find solutions to

 $f(x_1,\ldots,x_n)=0$

in \mathbb{Z}^n . Instead of trying to solve this equation, we can try to solve

 $f(x_1,\ldots,x_n) \equiv 0 \pmod{p}$

and also modulo higher powers of *p*.

Local fields packages all of this information together.

1.1 Absolute value

Definition 1.1 (absolute value)

Let K be a field. An *absolute value* on K is a function $|\cdot| : K \to \mathbb{R}_{\geq 0}$, satisfying:

- (i) |x| = 0 if and only if x = 0,
- (ii) |xy| = |x||y| for all $x, y \in K$,
- (iii) the triangle inequality $|x + y| \le |x| + |y|$ for all $x, y \in K$.

We call the pair $(K, |\cdot|)$ a value field.

Example 1.2

If $K = \mathbb{Q}, \mathbb{R}$ or \mathbb{C} , then the usual absolute value is an absolute value (in the above sense). We denote this as the $|x|_{\infty}$.

Example 1.3 (trivial absolute value)

^{*}Based on lectures by Rong Zhou. Last updated October 7, 2023.

For any field K, define

$$|x| = \begin{cases} 0 & x = 0\\ 1 & x \neq 0 \end{cases}$$

This defines a absolute valie. In this course, we will ignore this.

Example 1.4 (*p*-adic absolute value)

Let p be a prime number, and let $K = \mathbb{Q}$. For a nonzero $x \in \mathbb{Q}$, we can write write

$$x = p^n \frac{a}{b}$$

where (a, p) = (b, p) = 1. Then we can define the *p*-adic absolute value as follows:

$$|x|_{p} = \begin{cases} 0 & x = 0\\ p^{-n} & x = p^{n} \frac{a}{b} \text{ as above} \end{cases}$$

For the axioms, (i) is clear. For the other two, write

$$y = p^m \frac{c}{d}$$

(ii) is

$$|xy|_{p} = \left| p^{n+m} \frac{ac}{bd} \right|_{p} = p^{-(n+m)} = |x|_{p} |y|_{p}$$

as the numerator and denominator are coprime to p. For (iii), without loss of generality, we can assume $m \ge n$. Then

$$|x+y|_{p} = \left| p^{n} \left(\frac{ad + p^{m-n}bc}{bd} \right) \right| \le p^{-n} = |x|_{p} = \max\{|x|_{p}, |y|_{p}\} \le |x|_{p} + |y|_{p}$$

The inequality

$$|x + y|_p \le \max\{|x|_p, |y|_p\}$$

is called the *ultrametric inequality*.

An absolute value on K induces a metric on K, defined by

d(x, y) = |x - y|

This then induces a topology on K.

Definition 1.5 (equivalence of absolute values)

Suppose $|\cdot|$ and $|\cdot|'$ are absolute values on a field K. We say that these absolute values are *equivalent* if they induce the same topology. An equivalence class of absolute values is called a *place*.

Proposition 1.6. Let $|\cdot|$ and $|\cdot|'$ are (non-trivial) absolute values on K. Then the following are equivalent:

- (i) $|\cdot|$ and $|\cdot|'$ are equivalent,
- (ii) for all $x \in K$, |x| < 1 if and only if |x|' < 1,
- (iii) there exists c > 0 such that

for all $x \in K$.

Proof. (i) \implies (ii) Note that |x| < 1 if and only if $x^n \to 0$ with respect to the topology. Since the topologies are equivalent, this is true if and only if |x|' < 1.

 $|x|^c = |x|'$

(ii) \implies (iii) Note $|x|^c = |x|'$ is equivalent to saying

$$c \log |x| = \log |x|$$

Let $a \in K^{\times}$, such that |a| > 1. This exists since we assumed the absolute value is non-trivial. We need to show that for all $x \in K^{\times}$,

$$\frac{\log |x|}{\log |a|} = \frac{\log |x|}{\log |a|'}$$

y, for some $x \in K^{\times}$,

Suppose not. Then without loss of generality, for some $x \in K^{\diamond}$

$$\frac{\log |x|}{\log |a|} < \frac{\log |x|'}{\log |a|'}$$

Choose $m, n \in \mathbb{Z}$ such that

$$\frac{\log|x|}{\log|a|} < \frac{m}{n} < \frac{\log|x|'}{\log|a|'}$$

Rearranging,

$$n \log |x| < m \log |a|$$

 $n \log |x|' > m \log |a|'$

Exponentiating, we find that

$$\left|\frac{x^n}{a^m}\right| < 1$$
 and $\left|\frac{x^n}{a^m}\right|' > 1$

Contradiction.

(iii) \implies (ii) is clear.

Remark 1.7. $|\cdot|_{\infty}^{2}$ is *not* an absolute value, since it does not satisfy the triangle inequality. Some authors replace the triangle inequality by $|x + y|^{\beta} \le |x|^{\beta} + |y|^{\beta}$

for some $\beta > 0$.

In this course, we are mainly interested in the following:

Definition 1.8 (non-archimedean absolute value)

An absolute value $|\cdot|$ on K is *non-archimedean* if it satisfies the *ultrametric inequality*

 $|x+y| \le \max\{|x|, |y|\}$

If $|\cdot|$ is not non-archimedean, then it is *archimedean*.

Example 1.9 • $|\cdot|_{\infty}$ on \mathbb{R} is archimedean.

• $|\cdot|_p$ on $\mathbb Q$ is non-archimedean, see example 1.4.

Lemma 1.10. Let $(K, |\cdot|)$ be non-archimedean, $x, y \in K$. If |x| < |y|, then |x - y| = |y|.

Proof.

 $|x - y| \le \max\{|x|, |y|\} = |y|$

where we use the fact that |-y| = |y| (follows from the axioms of an absolute value). Conversely,

 $|y| \le \max\{|x|, |x-y|\} \le |x-y|$

since we can't have $|y| \leq |x|$.

Convergence is easier for non-archimedean absolute values.

Proposition 1.11. Let $(K, |\cdot|)$ be a non-archimedean valued field, and (x_n) be a sequence in the field K. Suppose $|x_n - x_{n+1}| \rightarrow 0$. Then (x_n) is Cauchy. In particular, if K is complete, then (x_n) converges.

Proof. For $\varepsilon > 0$, choose N such that for all $n \ge N$, $|x_n - x_{n+1}| < \varepsilon$. Then for $n, m \ge N$,

$$|x_n - x_m| = |(x_n - x_{n+1}) + \dots + (x_{m-1} - x_m)| < \varepsilon$$

by the ultrametric inequality (and induction).

Example 1.12

Consider the 5-adic metric, we will construct a sequence (x_n) in \mathbb{Q} such that

- (i) $x_n^2 + 1 \equiv 0 \pmod{5^n}$,
- (ii) $x_n \equiv x_{n+1} \pmod{5^n}$

Take $x_1 = 2$, and suppose we have defined x_n . Let $x_n^2 + 2 = a5^n$, and set $x_{n+1} = x_n + b5^n$. Then

$$x_{n+1}^{2} + 1 = x_{n}^{2} + 2bx_{n}5^{n} + b^{2}5^{2n} + 1 = a5^{n} + 2bx_{n}5^{n} + \underbrace{b^{2}5^{2n}}_{\equiv 0 \pmod{5^{n+1}}}$$

Therefore, all we need to do is choose *b* such that $a + 2bx_n \equiv 0 \pmod{5}$. Then $x_{n+1}^2 + 1 \equiv 0 \pmod{5^{n+1}}$. By the proposition, (ii) tells us that (x_n) is Cauchy. On the other hand, suppose $x_n \to \ell \in \mathbb{Q}$. By the usual properties of limits, $x_n^2 \to \ell^2$. But (i) tells us that $x_n^2 \to -1$. Hence $\ell^2 = -1$, contradiction. Using this, $(\mathbb{Q}, |\cdot|_5)$ is not compete.

Definition 1.13 (*p*-adic numbers) The *p*-adic numbers \mathbb{Q}_p is the completion of \mathbb{Q} with respect to $|\cdot|_p$.

Analogy: Compare this with the construction of \mathbb{R} as the completion of \mathbb{Q} with respect to the usual absolute value.