Modular Forms

Shing Tak Lam

Michaelmas 2023[∗]

Contents

1 Introduction

Definition 1.1 Define the upper half plane

 $\mathfrak{H} = \{ \tau \in \mathbb{C} \mid \text{im}(\tau) > 0 \}$

and the positive determinant group

$$
GL_2(\mathbb{R})^+=\{g\in GL_2(\mathbb{R})\mid \det(g)>0\}
$$

and

 $\Gamma(1) = SL_2(\mathbb{Z})$

Lemma 1.2. $GL_2(\mathbb{R})^+$ acts transitively on \mathfrak{H} via Möbius transformations.

Proof. Suppose $g = \begin{pmatrix} a & b \ c & d \end{pmatrix} \in GL_2(\mathbb{R})^+$, and $\tau \in \mathfrak{H}$. Then $\text{Im}(g\tau) = \frac{1}{2i}$ $\int \frac{a\tau + b}{a\tau}$ $\frac{a\tau + b}{c\tau + d} - \frac{a\overline{\tau} + b}{c\overline{\tau} + d}$ *cτ* ⁺ *^d* \setminus $=\frac{1}{2i}$ $\frac{(ad - bc)(\tau - \overline{\tau})}{\sqrt{a^2}}$ $\frac{-bc}{|\tau + d|^2} = \frac{\deg(g) \operatorname{Im}(\tau)}{|\tau + d|^2}$ $\frac{e^{3}(9) \dots (r)}{|c\tau + d|^2} > 0$

For transitivity, for $x + iy \in \mathfrak{H}$,

$$
\begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} \cdot i = x + iy
$$

 \Box

 L^{center}

Definition 1.3 Let $g \in GL_2(\mathbb{R})^+$, $\tau \in \mathfrak{H}$, define $j(g,\tau)=c\tau+d$, where $g=\begin{pmatrix} a & b \ c & d \end{pmatrix}$. This is called the *modular cocycle*. If *k* is an integer, $f : \mathfrak{H} \to \mathbb{C}$ is any function, then $f|_k[q]: \mathfrak{h} \to \mathbb{C}$

$$
\tau \mapsto \det(g)^{k-1} f(g \tau) j(g, \tau)
$$

[∗]Based on lectures by Jack Thorne. Last updated October 13, 2023.

is called the *weight ^k action of ^g on ^f*.

Lemma 1.4. This is a *right* action of $GL_2(\mathbb{R})^+$. That is,

$$
f|_k[gh] = (f|_k[g])|_k[h]
$$

Proof.

$$
f|_{k}[g]|_{k}[h](\tau) = \det(h)^{k-1}f|_{k}[g](h\tau)j(h,\tau)^{-k} = \det(h)^{k-1}\det(g)^{k-1}f(gh\tau)j(g,h\tau)^{-k}j(h,\tau)^{-k}
$$

$$
\stackrel{?}{=} \det(gh)^{k-1}f(gh\tau)j(gh,\tau)^{-k}
$$

Therefore, suffices to show that

$$
j(gh, \tau) = j(g, h\tau)j(h, \tau)
$$

Note that if $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then $g\begin{pmatrix} \tau \\ 1 \end{pmatrix} = \begin{pmatrix} a\tau + b \\ c\tau + d \end{pmatrix} = j(g, \tau) \begin{pmatrix} g\tau \\ 1 \end{pmatrix}$. This means that,

$$
j(gh, \tau) \begin{pmatrix} gh\tau \\ 1 \end{pmatrix} = gh\begin{pmatrix} \tau \\ 1 \end{pmatrix} = g\begin{pmatrix} j(h, \tau) \begin{pmatrix} h\tau \\ 1 \end{pmatrix} \end{pmatrix} = j(g, h\tau)j(h, \tau) \begin{pmatrix} gh\tau \\ 1 \end{pmatrix}
$$

Formulae: For *g, h [∈]* GL2(R) ⁺, *^τ [∈]* ^h,

$$
\mathrm{Im}(g\,\tau)=\frac{\det(g)\,\mathrm{Im}(\tau)}{\left|j(g,\,\tau)\right|^2}
$$

 \Box

and

$$
j(gh,\tau)=j(g,h\tau)j(h,\tau)
$$

Definition 1.5

Let *^k [∈]* ^Z, ^Γ *[≤]* Γ(1) a finite index subgroup. A *weakly modular function of weight ^k and level* ^Γ is a meromorphic function *f* : $\mathfrak{H} \to \mathbb{C}$, which is invariant under the weight *k* action of Γ. That is, such that for all *^γ [∈]* Γ,

 $f|_k[\gamma] = f$

We will define a modular form (when $\Gamma = \Gamma(1)$) next time, but they are weakly modular functions, which are holomorphic in \mathfrak{H} and at ∞ .

In fact, modular forms of fixed weight and level live in finite dimensional ^C-vector spaces *^M^k* (Γ), which are

the main objects of study in this course. why do we study modular forms.

1. They are related to the theory of elliptic functions. Let *E/*^C be an elliptic curve. Let *^ω* be a nonzero holomorphic 1-form. Then there exists a unique lattice ^Λ *[≤]* ^C, and an isomorphism of Riemann surfaces, ϕ : $\mathbb{C}/\Lambda \to E$, such that $\phi^*(\omega) = dz$. We can show that *E* is isomorphic to the elliptic curve *y*² = 4*x*³ − 60*G*₄(\land)*x* − 140*G*₆(\land), where for *k* ∈ Z,

$$
G_k(\Lambda)=\sum_{\lambda\in\Lambda\setminus 0}\lambda^{-k}
$$

which converges for $\lambda > 2$. If $\tau \in \mathfrak{H}$, then we have an associated lattice $\Lambda_{\tau} = \mathbb{Z} \oplus \mathbb{Z}_{\tau}$, and the function

$$
G_k(\tau)=G_k(\Lambda_\tau)
$$

is a modular form of weight *k* and level Γ(1). This is called the *Eisenstein series*. Moreover, $\mathfrak{H}/SL_2(\mathbb{Z})$ can be identified (as a set) with the set of isomorphism classes of elliptic curves over ^C.

2. Modular forms *^f* have Fourier expansions

$$
\sum_{n\in\mathbb{Z}}a_nq^n
$$

where $a_n \in \mathbb{C}$, and often serve as generating functions for arithmetically interesting sequences a_n . One example is

$$
\vartheta(q) = \sum_n e^{\pi i n^2 \tau}
$$

If $k \in 2\mathbb{N}$, then ϑ^{2k} is a modular form, and on the other hand,

$$
\vartheta^{2k} = \sum_{n \in \mathbb{Z}} r_k(n) e^{\pi i n \tau}
$$

where $r_k(n)$ is the number of ways to write *n* as a sum of *k* squares. By expressing ϑ^{2k} in terms of ther
modular forms, we can prove formulae such as modular forms, we can prove formulae such as

$$
r_4(n) = 8 \sum_{d|n,4|d} d
$$

- 3. The Riemann *^ζ* function is an important object in number theory. Properties include
	- (a) The Euler product

$$
\zeta(s) = \prod_p (1 - p^{-s})^{-1}
$$

- (b) A meromorphic extension to ^C,
- (c) A functional equation relating *^ζ*(*s*) and *^ζ*(1 *[−] ^s*).

^A *Dirichlet L-series* is a function of the form

$$
\sum_{n\geq 1} a_n n^{-s}
$$

which has similar properties is called an *^L*-function. Modular forms can be used to construct interesting examples of *^L*-functions. Take *^M^k* (Γ) and decompose them under the action of Hecke operators. In particular, if $\Gamma = \Gamma(1)$, we get a decomposition into lines, called Hecke eigenforms.

forms and other objects in arithmetic geometry. A special case of this is the *Modularity conjecture*, which cause that there is a bijection between elliptic curves ever \mathbb{D} (up to isosopul) and the set of Hocke which says that there is a bijection between elliptic curves over $\mathbb Q$ (up to isogeny) and the set of Hecke eigenforms of weight 2. This implies Fermat's last theorem. The bijection is formulated in the language of Hecke operators and *^L*-functions.

Homework: Handout on Moodle called "Reminder of Complex Analysis".

2 Modular forms on Γ(1)

Recall a *meromorphic function* on $U \subseteq \mathbb{C}$ is a closed subset $A \subseteq U$ and a holomorphic function $f: U \setminus A \to \mathbb{C}$, such that for every $a \in A$, there exists $\delta > 0$, such that

$$
D_*(a,\delta)\subseteq U\setminus A
$$

and there exists an integer $n \geq \mathbb{Z}$ such that

$$
(z-a)^n f(z)
$$

defines a holomorphic function on *^D*(*a, δ*). Such an *^a [∈] ^A* is called a *pole* of *^f*. *^f* then has a *Laurent expansion*

$$
\sum_{m\in\mathbb{Z}}a_m(z-a)^m
$$

which is absolutely convergent on *^D*(*a, δ*).

Lemma 2.1. Let *^f* be a weakly modular function of weight *^k* and level Γ(1). Then there exists a unique meromorphic function \tilde{f} on $D_{*}(0, 1)$ such that

 $f(\tau)\tilde{f}(e^{2\pi i \tau})$

Proof. By assumption, *f* is meromorphic on \mathfrak{H} , let $\gamma = \begin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix} \in \Gamma(1)$. Then

$$
f|_k[\gamma](\tau) = f(\gamma \tau) = f(\tau)
$$

as *^f* is invariant under the weight *^k* action of *^γ*. But

$$
f(\gamma\tau)=f(\tau+1)
$$

Existence: Locally, let $a \in D_*(0, 1)$, $\delta > 0$ be such that $D(a, \delta) \subset D_*(0, 1)$. Define \tilde{f} in the disc by

$$
\tilde{f}(q) = f\left(\frac{1}{2\pi i}\log(q)\right)
$$

where log is any branch of logarithm defined in *^D*(*a, δ*). This is independent of the choice of branch of logarithm, since any two branches differ by $2\pi i$, and $f(\tau) = f(\tau + 1)$. Therefore, this defines \tilde{f} on $D_*(0, 1)$. \Box

Uniqueness: Since the map $\tau \mapsto e^{2\pi i \tau}$ is surjective, \tilde{f} is unique.

Suppose \tilde{f} extends to a meromorphic function on $D(0, 1)$, then there exists $\delta > 0$ such that \tilde{f} has a Laurent expansion

$$
\tilde{f}(q) = \sum_{n \in \mathbb{Z}} a_n q^n
$$

which is absolutely convergent on $D_*(0, \delta)$. In particular, in the region where $\text{Im}(\tau) > \frac{1}{2\pi} \log(\delta)$, we have

$$
f(\tau)=\sum_n a_n q^n
$$

where *^q* ⁼ *^e* ²*πiτ* . We call this the *q-expansion of a weakly modular function ^f*.

Definition 2.2

Let *^f* be a weakly modular function of weight *^k* and level Γ(1). We say that *^f* is *meromorphic at [∞]* if ˜*^f* extends to a meromorphic function on *^D*(0*,* 1).

We say that *f* is *holomorphic at* ∞ if \tilde{f} extends, and is holomorphic at $q = 0$. In this case, we define

$$
f(\infty) = \tilde{f}(0) = \lim_{\text{Im}(\tau) \to \infty} f(\tau)
$$

We say that *f vanishes* at ∞ if *f* is holomorphic at ∞ , and $f(\infty) = 0$.

Definition 2.3 (modular form)

^A *modular function* (of weight *^k* and level Γ(1)) is a weakly modular function, which is meromorphic at *[∞]*. ^A *modular form* is a weakly modular function which is holomorphic in ^H, and holomorphic at *[∞]*. ^A *cuspidal modular form* is a modular form which vanishes at *[∞]*.

Remark 2.4. We let

^M^k (Γ(1))

be the set of *modular forms of weight ^k and level* Γ(1), and

 S_k (Γ(1)) $\subseteq M_k$ (Γ(1))

be the set of *cuspidal modular forms of weight ^k and level* Γ(1). These are ^C-vector spaces. If *^k* is odd, then they are zero. To see this, consider the matrix

$$
\gamma = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in \Gamma(1)
$$

and the weight *^k*-action is

$$
f|_k[\gamma](\tau) = (-1)^k f(\tau) = f(\tau)
$$

We will now consider even weights only

If *^k [∈]* ^Z is even, let

$$
G_k(\tau) = \sum_{\lambda \in \Lambda_\tau \setminus 0} \lambda^{-k} = \sum_{(m,n) \in \mathbb{Z}^2 \setminus 0} (m\tau + n)^{-k}
$$

where $\Lambda_{\tau} = \mathbb{Z}_{\tau} \oplus \mathbb{Z} \leq \mathbb{C}$.

If *^γ [∈]* Γ(1), then we formally have

$$
G_k|_k[\gamma](\tau) = G_k(\gamma \tau) j(\gamma, \tau)^{-k} = \sum_{\lambda \in \Lambda_{\gamma \tau} \setminus 0} \lambda^{-k} j(\gamma, \tau)^{-k}
$$

But if $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then

$$
\Lambda_{\gamma\tau} = \mathbb{Z}\frac{a\tau+b}{c\tau+d} \oplus \mathbb{Z} = (c\tau+d)^{-1} \left(\mathbb{Z}(a\tau+b) \oplus \mathbb{Z}(c\tau+d) \right) = (c\tau+d)^{-1}\Lambda_{\tau}
$$

Therefore,

$$
G_k|_k[\gamma](\tau)=\sum_{\lambda\in (c\tau+d)^{-1}\Lambda_r\setminus 0}\lambda^{-k}(c\tau+d)^{-k}=\sum_{\lambda\in \Lambda_r\setminus 0}\lambda^{-k}=G_k(\tau)
$$

This is justified only when the series defining $G_k(\tau)$ converges absolutely.

Proposition 2.5. Let *k >* ² be an even integer. Then *^G^k* (*τ*) converges absolutely, and defines a modular form of weight *^k* and level Γ(1), with

$$
G_k(\infty)=2\zeta(k)
$$

where *^ζ* is the Riemann *^ζ*-function. We call *^G^k* the *weight ^k Eisenstein series*.

Remark 2.6. We will see later that $M_2(\Gamma(1)) = 0$, so this is optimal.

Proof. We want to show absolute and local uniform convergence in \mathfrak{H} , since this shows that G_k is holomorphic. Let $A \geq 2$, and define

$$
\Omega_A = \left\{ \tau \in \mathfrak{H} \: \middle| \: \text{Im}(\tau) \geq \frac{1}{A} \text{ and } \text{Re}(\tau) \in [-A, A] \right\}
$$

We will show uniform convergence in Ω_A . If $\tau \in \Omega_A$, $x \in \mathbb{R}$, then

$$
|\tau + x| \ge \begin{cases} \frac{1}{A} & |x| \le 2A\\ \frac{|x|}{2} & |x| \ge 2A \end{cases}
$$

Therefore,

$$
\tau + x \ge \max\left\{\frac{1}{A}, \frac{|x|}{2A^2}\right\} \ge \max\left\{\frac{1}{A^2}, \frac{|x|}{2A^2}\right\} \ge \frac{1}{2A^2} \max\{1, |x|\}
$$

If $(m, n) \in \mathbb{Z}^2$, then we get that

$$
|m\tau + n| \ge \frac{1}{2A^2} \max\{|m|, |n|\}
$$

If *^τ [∈]* ^Ω*^A*, then

$$
\sum_{(m,n)\in\mathbb{Z}^2\backslash 0} |m\tau + n|^{-k} \le (2A^2)^k \sum_{(m,n)\in\mathbb{Z}^2\backslash 0} \max\{|m|, |n|\}^{-k}
$$

= $(2A^2)^k \sum_d d^{-k} \cdot # \{(m,n)\in\mathbb{Z}^2\backslash 0 \mid \max\{|m|, |n|\} = d\}$
= $(2A^2)^{-k} \sum_d d^{1-k}$
= $8(2A^2)^k \zeta(k-1) < \infty$

as *k >* 2. This shows uniform convergence in ^Ω*^A* by the Weierstrass *^M*-test.

We now know that *G_k* is holomorphic in *f*₁, and invariant under the weight *k* action of Γ(1). It remains to show to show G_k is holomorphic at ∞ , with $G_k(\infty) = 2\zeta(k)$. It suffices to show that

$$
\lim_{\mathrm{Im}(\tau)\to\infty}G_k(\tau)=2\zeta(k)
$$

By uniform convergence, we can exchange the limit and sum. But

$$
\lim_{\ln(\tau) \to \infty} (m\tau + n)^{-k} = \begin{cases} 0 & m \neq 0 \\ n^{-k} & m = 0 \end{cases}
$$

 \Box Lecture 3

If we consider the *q-expansion*

$$
f(\tau) = \sum_{n\geq 0} a_n q^n
$$

where $q = e^{2\pi i \tau}$, then we have that

$$
f(\infty) = \tilde{f}(0) = a_0
$$

We define

$$
E_k(\tau) = \frac{G_k(\tau)}{2\zeta(k)} = 1 + \sum_{n\geq 1} a_n q^n
$$

and we will see that $a_n \in \mathbb{Q}$ for all $n \geq 1$. We can construct more modular forms from these: if

$$
f \in M_k(\Gamma(1)) \quad \text{and} \quad g \in M_\ell(\Gamma(1))
$$

then

$$
fg\in M_{k+\ell}(\Gamma(1))
$$

Exercise: Check. For *f g* holomorphic at *[∞]*, we can use that the *^q*-expansions multiply.

For example,

$$
E_4^3, E_6^2 \in M_{12}(\Gamma(1))
$$

and in fact,

$$
\Delta = E_4^2 - E_6^2 \in S_{12}(\Gamma(1))
$$

and [∆] is called the *Ramanujan* [∆] *function*.

Next, we want to show $M_k(\Gamma(1))$ is finite dimensional. We will study the space $\Gamma(1)\setminus \mathfrak{H}$. To do this, we will introduce a *fundamental set F'* ⊆ *ξ*) for the Γ(1)-action, which contains exactly one element from each
Γ(1) orbit Γ(1)-orbit.

$$
\mathcal{F} = \left\{ \tau \in \mathcal{H} \mid |\text{Re}(\tau)| \le \frac{1}{2}, |\tau| \ge 1 \right\}
$$

$$
\mathcal{F}' = \left\{ \tau \in \mathcal{F} \mid \text{Re}(\tau) < \frac{1}{2} \text{ and if } |\tau| = 1 \text{ then } -\frac{1}{2} \le \text{Re}(\tau) \le 0 \right\}
$$

Define

$$
T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
$$

Then every element of $\cal F$ is conjugate under *S*, $\cal T$ to an element of ${\cal F'}$. In particular, $\cal T(\tau)=\tau+1$, $S(\tau)=-\overline{\tau}$.

Proposition 2.7. Let *^G* = Γ(1)*/{±I}*. Then

(i) For every $\tau \in \mathfrak{H}$, τ is $\Gamma(1)$ -conjugate to an element of \mathcal{F}' ,

(ii) if $\tau, \tau' \in \mathcal{F}'$ are $\Gamma(1)$ -conjugate, then $\tau = \tau'$,

(iii) if $\tau \in \mathcal{F}'$, then $\text{Stab}_G(\tau) = 1$, except for

$$
Stab_G(i) = \langle S \rangle \quad \text{and} \quad Stab_G(\rho) = \langle ST \rangle
$$

where $\rho = e^{2\pi i/3}$.

(iv) Γ(1) is generated by *S, T* .

Proof. Define $H = \langle S, T \rangle \leq G$.

Claim 2.8. Every $\tau \in \mathfrak{H}$ is *H*-conjugate to an element of \mathcal{F}' .

Proof of claim. By an easy observation, and as *S*, $T \in \mathfrak{H}$, it suffices to show every $\tau \in \mathfrak{H}$ is *H*-conjugate to an element of *^F*.

Let $\tau \in \mathfrak{H}$, and recall that if $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then

$$
\operatorname{Im}(\gamma \tau) = \frac{\operatorname{Im}(\tau)}{\left| c\tau + d \right|^2}
$$

In particular, for all $R > 0$, the intersection $H\tau \cap \{\text{Im}(\tau) > R\}$ is finite, since $\text{Im}(\tau) > R$ if and only if

$$
|c\tau+d|^2<\frac{\text{Im}(\tau)}{R}
$$

But $\Lambda_{\tau} = \mathbb{Z} \oplus \mathbb{Z} \tau$ is a lattice, and so its intersection with any compact subset is finite.

In particular, there exists $h \in H$ such that $\text{Im}(h\tau) \geq \text{Im}(h'\tau)$ for all $h' \in H$. That is, the maximum value of imaginary part is attained. By replacing τ with $h\tau$, we can assume the imaginary part is attained. By replacing *^τ* with *hτ*, we can assume

$$
\text{Im}(\tau) \geq \text{Im}(h\,\tau)
$$

for all $h \in H$. Moreover, $Im(T\tau) = Im(\tau)$, and so we can assume that

$$
-\frac{1}{2} \le \text{Re}(\tau) \le \frac{1}{2}
$$

Setting $h = S$, we have that

$$
\text{Im}(\tau) \geq \text{Im}(S\tau) = \frac{\text{Im}(\tau)}{|\tau|^2}
$$

Hence *|τ| ≥* 1.

Note that this also proves (i). Now given τ , $\tau' \in \mathcal{F}'$, and suppose $\gamma \tau = \tau'$ for some

$$
\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1)
$$

We want to show that $γ = ±I$ or $τ = i$ or $τ = ρ$. Without loss of generality, $Im(τ') = Im(γτ) ≥ Im(τ)$. This means that

$$
\operatorname{Im}(\gamma(\tau)) = \frac{\operatorname{Im}(\tau)}{|\tau + d|^2} \ge \operatorname{Im}(\tau)
$$

and so $|c\tau + d| \leq 1$.

If $\tau \in \mathcal{F}'$ then $\text{Im}(\tau) \ge$ *√* 32, with equality if and only if $\tau = \rho$. Hence

$$
|c\tau + d| \ge |c| \operatorname{im}(\tau) \ge |c| \frac{\sqrt{3}}{2}
$$

Hence $|c| = 0$ or 1. Therefore, $c = 0, 1$ or -1 . If $c = 0$, then

$$
\gamma = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}
$$

In this case, $ad = 1$, and so $\gamma = \pm T^n$ for some *T*. But as the real part of *τ* and *τ'* lie in [*−*1/2*,* 1/2), we must have $n = 0$, and so $\gamma = \pm l$.

If $c = 1$, then

$$
\gamma = \begin{pmatrix} a & b \\ 1 & d \end{pmatrix}
$$

and *|τ* ⁺ *d| ≤* 1. The only circles centered at integers, and with radius ¹ which intersects *^F ′ −d* = −1 and *d* = 0.

The only possibilities are $d = 0$, and so $|\tau| = 1$, or $d = 1$, and so $\tau = \rho$. If $c = 1$, $d = 0$, $|\tau| = 1$, then

$$
\gamma = \begin{pmatrix} a & -1 \\ 1 & 0 \end{pmatrix}
$$

and $\gamma(\tau) = a - \tau^{-1} = a - \overline{\tau}$, and

$$
\text{Re}(\gamma \tau) = a - \text{Re}(\tau) \in \text{Re}(\mathcal{F}' \cap \{|\tau| = 1\}) = [-1/2, 0]
$$

But we also have that $Re(y(\tau)) \in a - [-1/2, 0] = a + [0, 1/2]$. But the intersection between

[*−*1*/*2*,* 0] *[∩]* (*^a* + [0*,* ¹*/*2])

is non-empty only if *^a* = 0, and the unique point in the intersection is 0, or *^a* ⁼ *[−]*1, and the unique point of intersection is $Re(\tau) = Re(\gamma \tau) = -1/2$. The first case is $\gamma = i$ and the second is $\gamma = \rho$. If $a = 0$, then

$$
\gamma = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = -S
$$

$$
\gamma = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}
$$

and if *^a* ⁼ *[−]*1, then

Computing,

and

$$
ST = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}
$$

$$
(ST)^{2} = \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix}
$$

$$
(ST)^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I
$$

 $(ST)^3 =$

 \setminus

Now if *^c* = 1*, d* = 1*, τ* ⁼ *^ρ*, then

Then

$$
\gamma \rho = \frac{a\rho + b}{\rho + 1} = \rho
$$

 $\gamma = \begin{pmatrix} a & b \\ 1 & 1 \end{pmatrix}$

We have that $\rho^2 + \rho + 1 = 0$. In particular, $\rho + 1 = -\rho^2$. Hence

 $a\rho + b = \rho^2 + \rho = -1$

But since $a, b \in \mathbb{Z}$, and $\rho \in \mathbb{C}$, which is linearly independent of R, and so $a\rho + b = -1$ implies $a = 0$ and *b* = −1. Therefore,

$$
\gamma = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} = -ST
$$

The case $c = -1$ can be reduced to the case $c = 1$ by replacing $\gamma = -\overline{\gamma}$.
We have now shown (ii) and (iii) That is $\Gamma(1)$ is generated by S T. As

We have now shown (ii) and (iii). That is, Γ(1) is generated by *S, T* . As *^S* ² ⁼ *−I*, it suffices to show *^G* ⁼ *^H*. Choose $\tau \in \text{Int}(\mathcal{F})$, then $\text{Stab}_G(\tau) = \{l\}$. Let $q \in G$, there exists $h \in H$ such that $h q \tau \in \mathcal{F}'$. But then by (ii) and (iii), we must therefore have $hg\tau = \tau$. This then implies $hg \in \text{Stab}_G(\tau) = 1$, and so $g = h^{-1} \in H$.

Notation 2.9. For *τ* ∈ \mathfrak{H} , write $e_r = |\text{Stab}_G(\tau)|$.

Let *f* be a non-zero modular function of weight *k* and level $\Gamma(1)$. If $\tau \in \mathfrak{H}$, write $v_{\tau}(f)$ for the order of the function *f* at *τ*. That is, if $v_r(f) = n$, then

 $f(z) = (z - \tau)^n g(z)$

in a neighbourhood of *^τ*, *^g* holomorphic and non-vanishing.

Define the *order of ^f at [∞]*:

 $v_{\infty}(f) = v_0(f)$

where \tilde{f} is the meromorphic function on the unit disc, with

 $f(\tau) = \tilde{f}(e^{2\pi i \tau})$

Note that these are well defined as $f \neq 0$. With this,

Proposition 2.10. Let *^f* be a non-zero modular function of weight *^k* and level Γ(1). Then

$$
\sum_{\tau \in \Gamma(1) \setminus \mathfrak{H}} \frac{1}{e_{\tau}} v_{\tau}(f) + v_{\infty}(f) = \frac{k}{12}
$$

Proof. First we need to check that the sum is well defined. If $\tau \in \mathfrak{H}$, then e_τ and $v_\tau(f)$ only depends on the Γ(1) orbit of *^τ*. Moreover, it only has finitely many non-zero terms.

If $γ ∈ Γ(1)$, $τ ∈ ξ$ *,* then

$$
Stab_{\Gamma(1)}(\tau) \quad \text{and} \quad Stab_{\Gamma(1)}(\gamma\tau)
$$

are conjugate subgroups of Γ(1). In particular, they are isomorphic, and thus *^e^τ* ⁼ *^eγτ* . On the other hand,

$$
f(\gamma \tau) = f(\tau) j(\gamma, \tau)^{-k}
$$

But *j* as a function on \mathfrak{H} is a non-vanishing holomorphic function. Hence $v_{\gamma\tau}(f) = v_{\tau}(f)$.

Since *f* is a modular function, \tilde{f} is a meromorphic function on the unit disc $D(0, 1)$. Hence there exists δ > 0, such that \tilde{f} is holomorphic and non-vanishing in $D_{*}(0, \delta)$. Hence there exists $R > 0$, such that *f* is holomorphic, and non-vanishing on

$$
\{\tau \in \mathfrak{H} \mid \mathrm{Im}(\tau) > R\}
$$

Since each orbit intersects *^F*, to show that the sum is finite, it suffices to show *^f* only has finitely many zeroes and poles in $\mathcal F$ with $\text{Im}(\tau) \leq R$. But this is true as the set of zeroes and poles of a meromorphic function are discrete, and $\mathcal{F} \cap \{\text{Im}(\tau) \leq R\}$ is compact.

To prove the identity, we will use contour integration. Pullback formula: If *^u* : *^U [→] ^V* is a holomorphic map between open subsets of ^C, and a holomorphic function $q: V \to \mathbb{C}$, and a path γ in *U*, then

$$
\int_{u \circ \gamma} g(z) dz = \int_{\gamma} u^* g(z) dz = \int_{\gamma} g(u(z)) u'(z) dz
$$

A nice case of this is when $g(z) = \frac{h'(z)}{h(z)}$ $\frac{f(t/2)}{h(z)}$ for a holomorphic non-vanishing function *h*. In this case,

$$
g(z)\mathrm{d}z = \mathrm{d}\log(h)
$$

and

$$
\int_{u \circ \gamma} d \log(h) = \int_{\gamma} u^*(d \log(h)) = \int_{\gamma} d(\log(h) \circ u) = \int_{\gamma} \frac{(h \circ u)'(z)}{(h \circ u)(z)} dz
$$

Cauchy's argument principle: If *^U [⊆]* ^C a simply connected open subset, *^γ [⊆] ^U* a simple, positively oriented closed path. Let *^g* be meromorphic in *^U*, with no zeroes or poles on *^γ*. Then

$$
\frac{1}{2\pi i} \oint_{\gamma} d \log(g) = \frac{1}{2\pi i} \oint_{\gamma} \frac{g'(z)}{g(z)} dz = \sum_{a \in \text{Int}(\gamma)} v_a(g)
$$

With this, we can apply this to our modular function *^f*. Choose *R >* ⁰ such that *^f* has no zeroes or poles *^τ* with $Im(\tau) \geq R$. Consider the contour integral

$$
\frac{1}{2\pi i}\oint_{\gamma} d(\log(f))
$$

where *^γ* is the contour

By our choice of *^R*, there are no poles on the line segment *AE*. We first consider the case where *^f* has no zeroes or poles on *^γ*. In this case, by the argument principle,

$$
\frac{1}{2\pi i} \oint_{\gamma} d \log(f) = \frac{1}{2\pi i} \left(\int_{AB} + \int_{BC} + \int_{CD} + \int_{DE} + \int_{EA} \right) d \log(f) = \sum_{\tau \in \Gamma(1) \setminus \mathfrak{H}} \frac{1}{e_{\tau}} v_{\tau}(f)
$$

as $v_{\tau}(f) \neq 0$, $e_{\tau}(f) = 1$ under the assumptions.

Applying the pullback formula with $u(\tau) = \tau + 1$.

$$
u(AB) = u(ED) \qquad f \circ u = f
$$

and this gives us that

$$
-\int_{DE} d\log f = \int_{ED} d\log g = \int_{u(AB)} d\log f = \int_{AB} d\log(f \circ u) = \int_{AB} d\log f
$$

hence
T

$$
\left(\int_{AB} + \int_{DE}\right) d\log f = 0
$$

Now let $q = e^{2\pi i \tau}$. Then $f = \tilde{f} \circ q$, and $q(AE)$ is a positively oriented circle around 0 in $D(0, 1)$. So

$$
\frac{1}{2\pi i} \int_{AE} d\log f = \frac{1}{2\pi i} \int_{AE} d\log \left(\tilde{f} \circ q \right) = \frac{1}{2\pi i} \int_{q(AE)} d\log \left(\tilde{f} \right) = v_{\infty}(f)
$$

Now let $v(\tau) = S(\tau) = -\frac{1}{\tau}$. Then $v(BC) = DC$, and

$$
f|_{k}[S](\tau) = f(-1/\tau)\tau^{-k} = f(\tau)
$$

and so, $f \circ v(\tau) = f(\tau)\tau^k$. Hence

$$
\int_{DC} d \log f = \int_{v(BC)} d \log(f)
$$

=
$$
\int_{BC} d \log(f \circ v)
$$

=
$$
\int_{BC} d \log(f(\tau) \tau^k)
$$

=
$$
\int_{BC} d \log(f) + k \int_{BC} d \log(\tau)
$$

=
$$
\int_{BC} d \log(f) + k \log(C) - \log(B)
$$

where log is any branch of logarithm defined on *BC*.
We say semplify this as $B - e$ $C - i$, Hence

We can compute this, as $B = \rho$, $C = i$. Hence

$$
\int_{CD} d \log f = - \int_{BC} d \log(f) + k \left(\frac{2\pi i}{3} - \frac{2\pi i}{4} \right)
$$

Therefore,

$$
\left(\int_{BC} + \int_{CD}\right) d\log f = \frac{2\pi i k}{12}
$$

Hence

$$
\sum_{\tau \in \Gamma(1) \setminus \mathfrak{H}} \frac{1}{e_{\tau}} v_{\tau}(f) = \frac{1}{2\pi i} \left(\int_{AB} + \int_{BC} + \int_{CD} + \int_{DE} + \int_{EA} \right) d\log(f) = \frac{1}{2\pi i} \left(\frac{2\pi i k}{12} - 2\pi i v_{\infty}(f) \right)
$$

Rearranging we get the result in this case. If there are poles on *^γ*, then we will need to modify the contour. For example, if there was a pole at the point $P \in AB$, we can consider the modified contour:

For poles at *^B* or *^C*, we will leave to the examples sheet.

 \Box

Index

Γ(1), [1](#page-0-1)

cuspidal mod[ula](#page-3-0)r form *^S^k* (Γ(1)), 4 cuspoidal modular form, [4](#page-3-0)

^E^k , [6](#page-5-0)

fundamental set, [6](#page-5-0)

holomorphic at *[∞]*, [4](#page-3-0)

meromorphic at *[∞]*, [4](#page-3-0) modular form modular form
of weight *k* [an](#page-3-0)d level Γ(1), [4](#page-3-0)
 $M \sqrt{F(1)}$ *M*_{*k*}(Γ (1)), 4
modular function modular function of weight *^k* and level Γ(1), [4](#page-3-0)

^q-expansion, [6](#page-5-0)

Ramanujan ∆-function, [6](#page-5-0)

upper half plane, [1](#page-0-1)

vanishes at *[∞]*, [4](#page-3-0)

weakly modular [fu](#page-1-0)nction of weight *^j* and level Γ, [2](#page-1-0) weight *^k* action, 2 weight *k* Eisenstein series, G_k , [5](#page-4-0)