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1 Introduction

Definition 1.1Define the upper half plane
H = {τ ∈ C | im(τ) > 0}and the positive determinant group

GL2(R)+ = {g ∈ GL2(R) | det(g) > 0}

and Γ(1) = SL2(Z)
Lemma 1.2. GL2(R)+ acts transitively on H via Möbius transformations.

Proof. Suppose g = (
a b
c d

)
∈ GL2(R)+, and τ ∈ H. Then

Im(gτ) = 12i

(
aτ + b
cτ + d − aτ + b

cτ + d

) = 12i
(ad − bc)(τ − τ)

|cτ + d|2 = deg(g) Im(τ)
|cτ + d|2 > 0

For transitivity, for x + iy ∈ H, (
y x0 1)

· i = x + iy

Definition 1.3Let g ∈ GL2(R)+, τ ∈ H, define j(g, τ) = cτ +d, where g = (
a b
c d

). This is called the modular cocycle.If k is an integer, f : H → C is any function, then
f |k [g] : h → C

τ 7→ det(g)k−1f (gτ)j(g, τ)
∗Based on lectures by Jack Thorne. Last updated October 13, 2023.

1



is called the weight k action of g on f .
Lemma 1.4. This is a right action of GL2(R)+. That is,

f |k [gh] = (f |k [g]) |k [h]
Proof.

f |k [g]|k [h](τ) = det(h)k−1f |k [g](hτ)j(h, τ)−k = det(h)k−1 det(g)k−1f (ghτ)j(g, hτ)−k j(h, τ)−k

?= det(gh)k−1f (ghτ)j(gh, τ)−k

Therefore, suffices to show that
j(gh, τ) = j(g, hτ)j(h, τ)

Note that if g = (
a b
c d

), then g
(

τ1) = (
aτ + b
cτ + d

) = j(g, τ) (
gτ1 ), This means that,

j(gh, τ) (
ghτ1 ) = gh

(
τ1) = g

(
j(h, τ) (

hτ1 )) = j(g, hτ)j(h, τ) (
ghτ1 )

Formulae:For g, h ∈ GL2(R)+, τ ∈ h, Im(gτ) = det(g) Im(τ)
|j(g, τ)|2and

j(gh, τ) = j(g, hτ)j(h, τ)
Definition 1.5Let k ∈ Z, Γ ≤ Γ(1) a finite index subgroup. A weakly modular function of weight k and level Γ is ameromorphic function f : H → C, which is invariant under the weight k action of Γ. That is, such that forall γ ∈ Γ,

f |k [γ ] = f

We will define a modular form (when Γ = Γ(1)) next time, but they are weakly modular functions, which areholomorphic in H and at ∞.In fact, modular forms of fixed weight and level live in finite dimensional C-vector spaces Mk (Γ), which arethe main objects of study in this course.Why do we study modular forms?
1. They are related to the theory of elliptic functions. Let E/C be an elliptic curve. Let ω be a non-zero holomorphic 1-form. Then there exists a unique lattice Λ ≤ C, and an isomorphism of Riemannsurfaces, φ : C/Λ → E , such that φ∗(ω) = dz . We can show that E is isomorphic to the elliptic curve

y2 = 4x3 − 60G4(Λ)x − 140G6(Λ), where for k ∈ Z,
Gk (Λ) = ∑

λ∈Λ\0 λ−k

which converges for λ > 2. If τ ∈ H, then we have an associated lattice Λτ = Z ⊕ Zτ , and the function
Gk (τ) = Gk (Λτ )is a modular form of weight k and level Γ(1). This is called the Eisenstein series. Moreover, H/ SL2(Z)can be identified (as a set) with the set of isomorphism classes of elliptic curves over C.
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2. Modular forms f have Fourier expansions ∑
n∈Z

anqn

where an ∈ C, and often serve as generating functions for arithmetically interesting sequences an. Oneexample is
θ (q) = ∑

n
eπin2τ

If k ∈ 2N, then θ2k is a modular form, and on the other hand,
θ2k = ∑

n∈Z
rk (n)eπinτ

where rk (n) is the number of ways to write n as a sum of k squares. By expressing θ2k in terms of thermodular forms, we can prove formulae such as
r4(n) = 8 ∑

d|n,4 ̸|d

d

3. The Riemann ζ function is an important object in number theory. Properties include(a) The Euler product
ζ(s) = ∏

p
(1 − p−s)−1

(b) A meromorphic extension to C,(c) A functional equation relating ζ(s) and ζ(1 − s).A Dirichlet L-series is a function of the form ∑
n≥1 ann−s

which has similar properties is called an L-function. Modular forms can be used to construct interestingexamples of L-functions. Take Mk (Γ) and decompose them under the action of Hecke operators. Inparticular, if Γ = Γ(1), we get a decomposition into lines, called Hecke eigenforms.4. Connections to the Langland programme, which predicts (among other things) a relation between modularforms and other objects in arithmetic geometry. A special case of this is the Modularity conjecture,which says that there is a bijection between elliptic curves over Q (up to isogeny) and the set of Heckeeigenforms of weight 2. This implies Fermat’s last theorem. The bijection is formulated in the languageof Hecke operators and L-functions.Homework: Handout on Moodle called “Reminder of Complex Analysis”. Lecture 2
2 Modular forms on Γ(1)
Recall a meromorphic function on U ⊆ C is a closed subset A ⊆ U and a holomorphic function f : U \ A → C,such that for every a ∈ A, there exists δ > 0, such that

D∗(a, δ) ⊆ U \ Aand there exists an integer n ≥ Z such that (z − a)nf (z)defines a holomorphic function on D(a, δ). Such an a ∈ A is called a pole of f . f then has a Laurent expansion∑
m∈Z

am(z − a)m
which is absolutely convergent on D(a, δ).

3



Lemma 2.1. Let f be a weakly modular function of weight k and level Γ(1). Then there exists a uniquemeromorphic function f̃ on D∗(0, 1) such that
f (τ)f̃ (e2πiτ )

Proof. By assumption, f is meromorphic on H, let γ = (1 10 1)
∈ Γ(1). Then

f |k [γ ](τ) = f (γτ) = f (τ)as f is invariant under the weight k action of γ . But
f (γτ) = f (τ + 1)Existence: Locally, let a ∈ D∗(0, 1), δ > 0 be such that D(a, δ) ⊆ D∗(0, 1). Define f̃ in the disc by

f̃ (q) = f
( 12πi log(q))

where log is any branch of logarithm defined in D(a, δ). This is independent of the choice of branch of logarithm,since any two branches differ by 2πi, and f (τ) = f (τ + 1). Therefore, this defines f̃ on D∗(0, 1).Uniqueness: Since the map τ 7→ e2πiτ is surjective, f̃ is unique.
Suppose f̃ extends to a meromorphic function on D(0, 1), then there exists δ > 0 such that f̃ has a Laurentexpansion

f̃ (q) = ∑
n∈Z

anqn

which is absolutely convergent on D∗(0, δ). In particular, in the region where Im(τ) > 12π log(δ), we have
f (τ) = ∑

n
anqn

where q = e2πiτ . We call this the q-expansion of a weakly modular function f .
Definition 2.2Let f be a weakly modular function of weight k and level Γ(1). We say that f is meromorphic at ∞ if f̃extends to a meromorphic function on D(0, 1).We say that f is holomorphic at ∞ if f̃ extends, and is holomorphic at q = 0. In this case, we define

f (∞) = f̃ (0) = limIm(τ)→∞
f (τ)

We say that f vanishes at ∞ if f is holomorphic at ∞, and f (∞) = 0.
Definition 2.3 (modular form)A modular function (of weight k and level Γ(1)) is a weakly modular function, which is meromorphic at ∞.A modular form is a weakly modular function which is holomorphic in H, and holomorphic at ∞.A cuspidal modular form is a modular form which vanishes at ∞.
Remark 2.4. We let

Mk (Γ(1))be the set of modular forms of weight k and level Γ(1), and
Sk (Γ(1)) ⊆ Mk (Γ(1))

be the set of cuspidal modular forms of weight k and level Γ(1). These are C-vector spaces. If k is odd, then theyare zero. To see this, consider the matrix
γ = (

−1 00 −1)
∈ Γ(1)
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and the weight k-action is
f |k [γ ](τ) = (−1)k f (τ) = f (τ)We will now consider even weights only.If k ∈ Z is even, let

Gk (τ) = ∑
λ∈Λτ \0 λ−k = ∑

(m,n)∈Z2\0(mτ + n)−k

where Λτ = Zτ ⊕ Z ≤ C.If γ ∈ Γ(1), then we formally have
Gk |k [γ ](τ) = Gk (γτ)j(γ, τ)−k = ∑

λ∈Λγτ \0 λ−k j(γ, τ)−k

But if γ = (
a b
c d

), then
Λγτ = Z

aτ + b
cτ + d ⊕ Z = (cτ + d)−1 (Z(aτ + b) ⊕ Z(cτ + d)) = (cτ + d)−1Λτ

Therefore,
Gk |k [γ ](τ) = ∑

λ∈(cτ+d)−1Λτ \0 λ−k (cτ + d)−k = ∑
λ∈Λτ \0 λ−k = Gk (τ)

This is justified only when the series defining Gk (τ) converges absolutely.
Proposition 2.5. Let k > 2 be an even integer. Then Gk (τ) converges absolutely, and defines a modularform of weight k and level Γ(1), with

Gk (∞) = 2ζ(k )where ζ is the Riemann ζ-function. We call Gk the weight k Eisenstein series.
Remark 2.6. We will see later that M2(Γ(1)) = 0, so this is optimal.

Proof. We want to show absolute and local uniform convergence in H, since this shows that Gk is holomorphic.Let A ≥ 2, and define
ΩA = {

τ ∈ H

∣∣∣∣ Im(τ) ≥ 1
A and Re(τ) ∈ [−A, A]}

We will show uniform convergence in ΩA . If τ ∈ ΩA , x ∈ R, then
|τ + x| ≥

{ 1
A |x| ≤ 2A
|x|2 |x| ≥ 2ATherefore,

τ + x ≥ max { 1
A, |x|2A2

}
≥ max { 1

A2 , |x|2A2
}

≥ 12A2 max{1, |x|}

If (m, n) ∈ Z2, then we get that
|mτ + n| ≥ 12A2 max{|m|, |n|}If τ ∈ ΩA , then

∑
(m,n)∈Z2\0 |mτ + n|−k ≤ (2A2)k ∑

(m,n)∈Z2\0 max{|m|, |n|}−k

= (2A2)k ∑
d

d−k · #{(m, n) ∈ Z2 \ 0 | max{|m|, |n|} = d}

= (2A2)−k
∑

d
d1−k

= 8(2A2)kζ(k − 1) < ∞
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as k > 2. This shows uniform convergence in ΩA by the Weierstrass M-test.We now know that Gk is holomorphic in H, and invariant under the weight k action of Γ(1). It remains toshow to show Gk is holomorphic at ∞, with Gk (∞) = 2ζ(k ). It suffices to show thatlimIm(τ)→∞
Gk (τ) = 2ζ(k )

By uniform convergence, we can exchange the limit and sum. But
limIm(τ)→∞

(mτ + n)−k = {0 m ̸= 0
n−k m = 0

Lecture 3If we consider the q-expansion
f (τ) = ∑

n≥0 anqn

where q = e2πiτ , then we have that
f (∞) = f̃ (0) = a0We define

Ek (τ) = Gk (τ)2ζ(k ) = 1 + ∑
n≥1 anqn

and we will see that an ∈ Q for all n ≥ 1. We can construct more modular forms from these: if
f ∈ Mk (Γ(1)) and g ∈ Mℓ (Γ(1))then

fg ∈ Mk+ℓ (Γ(1))Exercise: Check. For fg holomorphic at ∞, we can use that the q-expansions multiply.For example,
E34 , E26 ∈ M12(Γ(1))and in fact, ∆ = E24 − E26 ∈ S12(Γ(1))and ∆ is called the Ramanujan ∆ function.Next, we want to show Mk (Γ(1)) is finite dimensional. We will study the space Γ(1)\H. To do this, wewill introduce a fundamental set F ′ ⊆ H for the Γ(1)-action, which contains exactly one element from eachΓ(1)-orbit.

F = {
τ ∈ H

∣∣ |Re(τ)| ≤ 12 , |τ| ≥ 1}
F ′ = {

τ ∈ F
∣∣ Re(τ) < 12 and if |τ| = 1 then − 12 ≤ Re(τ) ≤ 0}
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Define
T = (1 10 1)

S = ( 0 1
−1 0)

Then every element of F is conjugate under S, T to an element of F ′. In particular, T (τ) = τ+1, S(τ) = −τ .
Proposition 2.7. Let G = Γ(1)/{±I}. Then(i) For every τ ∈ H, τ is Γ(1)-conjugate to an element of F ′,(ii) if τ, τ ′ ∈ F ′ are Γ(1)-conjugate, then τ = τ ′,(iii) if τ ∈ F ′, then StabG (τ) = 1, except for

StabG (i) = ⟨S⟩ and StabG (ρ) = ⟨ST ⟩

where ρ = e2πi/3.(iv) Γ(1) is generated by S, T .

Proof. Define H = ⟨S, T ⟩ ≤ G .
Claim 2.8. Every τ ∈ H is H-conjugate to an element of F ′.

Proof of claim. By an easy observation, and as S, T ∈ H, it suffices to show every τ ∈ H is H-conjugate toan element of F .Let τ ∈ H, and recall that if γ = (
a b
c d

), then
Im(γτ) = Im(τ)

|cτ + d|2In particular, for all R > 0, the intersection Hτ ∩ {Im(τ ′) > R} is finite, since Im(τ) > R if and only if
|cτ + d|2 < Im(τ)

RBut Λτ = Z ⊕ Zτ is a lattice, and so its intersection with any compact subset is finite.In particular, there exists h ∈ H such that Im(hτ) ≥ Im(h′τ) for all h′ ∈ H . That is, the maximum value ofthe imaginary part is attained. By replacing τ with hτ , we can assume
Im(τ) ≥ Im(hτ)
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for all h ∈ H . Moreover, Im(T τ) = Im(τ), and so we can assume that
−12 ≤ Re(τ) ≤ 12Setting h = S , we have that Im(τ) ≥ Im(Sτ) = Im(τ)

|τ|2Hence |τ| ≥ 1.Note that this also proves (i). Now given τ, τ ′ ∈ F ′, and suppose γτ = τ ′ for some
γ = (

a b
c d

)
∈ Γ(1)

We want to show that γ = ±I or τ = i or τ = ρ. Without loss of generality, Im(τ ′) = Im(γτ) ≥ Im(τ). Thismeans that Im(γ(τ)) = Im(τ)
|cτ + d|2 ≥ Im(τ)

and so |cτ + d| ≤ 1.If τ ∈ F ′ then Im(τ) ≥
√32, with equality if and only if τ = ρ. Hence

|cτ + d| ≥ |c| im(τ) ≥ |c|
√32Hence |c| = 0 or 1. Therefore, c = 0, 1 or −1.If c = 0, then

γ = (
a b0 d

)
In this case, ad = 1, and so γ = ±T n for some T . But as the real part of τ and τ ′ lie in [−1/2, 1/2), we musthave n = 0, and so γ = ±I .If c = 1, then

γ = (
a b1 d

)
and |τ + d| ≤ 1. The only circles centered at integers, and with radius 1 which intersects F ′ are centred at
−d = −1 and d = 0.

The only possibilities are d = 0, and so |τ| = 1, or d = 1, and so τ = ρ.If c = 1, d = 0, |τ| = 1, then
γ = (

a −11 0 )
and γ(τ) = a − τ−1 = a − τ , and

Re(γτ) = a − Re(τ) ∈ Re(F ′ ∩ {|τ| = 1}) = [−1/2, 0]
8



But we also have that Re(γ(τ)) ∈ a − [−1/2, 0] = a + [0, 1/2]. But the intersection between
[−1/2, 0] ∩ (a + [0, 1/2])

is non-empty only if a = 0, and the unique point in the intersection is 0, or a = −1, and the unique point ofintersection is Re(τ) = Re(γτ) = −1/2. The first case is γ = i and the second is γ = ρ.If a = 0, then
γ = (0 −11 0 ) = −S

and if a = −1, then
γ = (

−1 −11 0 )
Computing,

ST = ( 0 1
−1 −1)

and (ST )2 = (
−1 −10 1 )

and (ST )3 = (1 00 1) = I

Now if c = 1, d = 1, τ = ρ, then
γ = (

a b1 1)
Then

γρ = aρ + b
ρ + 1 = ρ

We have that ρ2 + ρ + 1 = 0. In particular, ρ + 1 = −ρ2. Hence
aρ + b = ρ2 + ρ = −1

But since a, b ∈ Z, and ρ ∈ C, which is linearly independent of R, and so aρ + b = −1 implies a = 0 and
b = −1. Therefore,

γ = (0 −11 1 ) = −ST

The case c = −1 can be reduced to the case c = 1 by replacing γ = −γ .We have now shown (ii) and (iii). That is, Γ(1) is generated by S, T . As S2 = −I , it suffices to show G = H .Choose τ ∈ Int(F ), then StabG (τ) = {I}. Let g ∈ G , there exists h ∈ H such that hgτ ∈ F ′. But then by (ii)and (iii), we must therefore have hgτ = τ . This then implies hg ∈ StabG (τ) = 1, and so g = h−1 ∈ H . Lecture 4
Notation 2.9. For τ ∈ H, write eτ = |StabG (τ)|.
Let f be a non-zero modular function of weight k and level Γ(1). If τ ∈ H, write vτ (f ) for the order of thefunction f at τ . That is, if vτ (f ) = n, then

f (z) = (z − τ)ng(z)
in a neighbourhood of τ , g holomorphic and non-vanishing.Define the order of f at ∞:

v∞(f ) = v0(f̃ )where f̃ is the meromorphic function on the unit disc, with
f (τ) = f̃ (e2πiτ )

Note that these are well defined as f ̸= 0. With this,
9



Proposition 2.10. Let f be a non-zero modular function of weight k and level Γ(1). Then∑
τ∈Γ(1)\H

1
eτ

vτ (f ) + v∞(f ) = k12
Proof. First we need to check that the sum is well defined. If τ ∈ H, then eτ and vτ (f ) only depends on theΓ(1) orbit of τ . Moreover, it only has finitely many non-zero terms.If γ ∈ Γ(1), τ ∈ H, then StabΓ(1)(τ) and StabΓ(1)(γτ)are conjugate subgroups of Γ(1). In particular, they are isomorphic, and thus eτ = eγτ . On the other hand,

f (γτ) = f (τ)j(γ, τ)−k

But j as a function on H is a non-vanishing holomorphic function. Hence vγτ (f ) = vτ (f ).Since f is a modular function, f̃ is a meromorphic function on the unit disc D(0, 1). Hence there exists
δ > 0, such that f̃ is holomorphic and non-vanishing in D∗(0, δ). Hence there exists R > 0, such that f isholomorphic, and non-vanishing on

{τ ∈ H | Im(τ) > R}Since each orbit intersects F , to show that the sum is finite, it suffices to show f only has finitely many zeroesand poles in F with Im(τ) ≤ R . But this is true as the set of zeroes and poles of a meromorphic function arediscrete, and F ∩ {Im(τ) ≤ R} is compact.

To prove the identity, we will use contour integration.
Pullback formula: If u : U → V is a holomorphic map between open subsets of C, and a holomorphicfunction g : V → C, and a path γ in U , then∫

u◦γ
g(z)dz = ∫

γ
u∗g(z)dz = ∫

γ
g(u(z))u′(z)dz

A nice case of this is when g(z) = h′(z)
h(z) for a holomorphic non-vanishing function h. In this case,

g(z)dz = d log(h)
and ∫

u◦γ
d log(h) = ∫

γ
u∗(d log(h)) = ∫

γ
d(log(h) ◦ u) = ∫

γ

(h ◦ u)′(z)(h ◦ u)(z) dz

Cauchy’s argument principle: If U ⊆ C a simply connected open subset, γ ⊆ U a simple, positively orientedclosed path. Let g be meromorphic in U , with no zeroes or poles on γ . Then
12πi

∮
γ
d log(g) = 12πi

∮
γ

g′(z)
g(z) dz = ∑

a∈Int(γ) va(g)
10



With this, we can apply this to our modular function f . Choose R > 0 such that f has no zeroes or poles τwith Im(τ) ≥ R . Consider the contour integral 12πi

∮
γ
d(log(f ))

where γ is the contour

By our choice of R , there are no poles on the line segment AE . We first consider the case where f has nozeroes or poles on γ . In this case, by the argument principle,
12πi

∮
γ
d log(f ) = 12πi

(∫
AB

+ ∫
BC

+ ∫
CD

+ ∫
DE

+ ∫
EA

) d log(f ) = ∑
τ∈Γ(1)\H

1
eτ

vτ (f )
as vτ (f ) ̸= 0, eτ (f ) = 1 under the assumptions.Applying the pullback formula with u(τ) = τ + 1.

u(AB) = u(ED) f ◦ u = fand this gives us that
−

∫
DE

d log f = ∫
ED

d log g = ∫
u(AB) d log f = ∫

AB
d log(f ◦ u) = ∫

AB
d log f

Hence (∫
AB

+ ∫
DE

) d log f = 0
Now let q = e2πiτ . Then f = f̃ ◦ q, and q(AE ) is a positively oriented circle around 0 in D(0, 1). So12πi

∫
AE

d log f = 12πi

∫
AE

d log(
f̃ ◦ q

) = 12πi

∫
q(AE ) d log(

f̃
) = v∞(f )

Now let v (τ) = S(τ) = − 1
τ . Then v (BC ) = DC , and

f |k [S ](τ) = f (−1/τ)τ−k = f (τ)and so, f ◦ v (τ) = f (τ)τk . Hence∫
DC

d log f = ∫
v (BC ) d log(f )

= ∫
BC

d log(f ◦ v )
= ∫

BC
d log(

f (τ)τk)
= ∫

BC
d log(f ) + k

∫
BC

d log(τ)
= ∫

BC
d log(f ) + k log(C ) − log(B)
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where log is any branch of logarithm defined on BC .We can compute this, as B = ρ, C = i. Hence∫
CD

d log f = −
∫

BC
d log(f ) + k

(2πi3 − 2πi4
)

Therefore, (∫
BC

+ ∫
CD

) d log f = 2πik12Hence ∑
τ∈Γ(1)\H

1
eτ

vτ (f ) = 12πi

(∫
AB

+ ∫
BC

+ ∫
CD

+ ∫
DE

+ ∫
EA

) d log(f ) = 12πi

(2πik12 − 2πiv∞(f ))
Rearranging we get the result in this case. If there are poles on γ , then we will need to modify the contour.For example, if there was a pole at the point P ∈ AB, we can consider the modified contour:

For poles at B or C , we will leave to the examples sheet.

12



IndexΓ(1), 1
cuspidal modular form

Sk (Γ(1)), 4cuspoidal modular form, 4
Ek , 6
fundamental set, 6
holomorphic at ∞, 4
meromorphic at ∞, 4modular cocycle, 1modular formof weight k and level Γ(1), 4

Mk (Γ(1)), 4modular functionof weight k and level Γ(1), 4
q-expansion, 6
Ramanujan ∆-function, 6
upper half plane, 1
vanishes at ∞, 4
weakly modular function of weight j and level Γ, 2weight k action, 2weight k Eisenstein series, Gk , 5

13


	Introduction
	Modular forms on (1)

