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1 Introduction

Definition 1.1

Define the upper half plane
H={reC]|im(r) >0}

and the positive determinant group

CLR)" = {g € GL2(R) | det(g) > 0}

and
(1) = SL(2Z)

Lemma 1.2. GL,(R)" acts transitively on $ via Mébius transformations.

b

Proof. Suppose g = (i dl € CL(R)*, and T € §. Then

1 (aT+b ar+b) 1 ({ad —bc)(t —7)  deg(g)Im(r)
i

| = — —
m(gT) 2i\ct+d T+d 20 et 4 df leT + d|?

For transitivity, for x + iy € 9,

(g ;() l=x+ 0y

Definition 1.3

If k is an integer, f : $ — C is any function, then

flilg]l: h — C
T det(g)" ' f(g7)j(g. )

*Based on lectures by Jack Thorne. Last updated October 13, 2023.

= — = >0

Let g € GLo(R)™, T € §, define j(g, T) = cT+d, where g = (i Z) . This is called the modular cocycle.
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is called the weight k action of g on f.

Lemma 1.4. This is a right action of GL,(R)". That is,

fllgh] = (flxlg] [«[h]

Proof.

flelgll[h](T) = det(h)* " fl[g](hT)j(h, T) % = det(h)* " det(g)*'f(ghT)j(g, hT)*j(h, 7)™

! k-1 K
= det(gh)" f(ght)j(gh, T)"
Therefore, suffices to show that

Jlgh, ) = j(g, hT)j(h, 7)

Note that if g = (Z Z) then g (;) = (2;13) = j(g, 1) (9111) This means that,

sigh o) (17} = b (T) = o (st (7)) = stg.bevtn. o (947

Formulae:
For g, h € GLy(R)*, T € b,

and

Definition 1.5

Let Kk € Z, [ < T(1) a finite index subgroup. A weakly modular function of weight k and level " is a
meromorphic function f : $9 — C, which is invariant under the weight k action of [. That is, such that for
ally eT,

flly] =1

We will define a modular form (when I = (1)) next time, but they are weakly modular functions, which are
holomorphic in $ and at co.

In fact, modular forms of fixed weight and level live in finite dimensional C-vector spaces M ('), which are
the main objects of study in this course.

Why do we study modular forms?

1. They are related to the theory of elliptic functions. Let E/C be an elliptic curve. Let w be a non-
zero holomorphic 1-form. Then there exists a unique lattice A < C, and an isomorphism of Riemann
surfaces, ¢ : C/A — E, such that ¢*(w) = dz. We can show that £ is isomorphic to the elliptic curve
y? = 4x> — 60G4(A)x — 140Gg(N), where for k € Z,

G\ =) +*

AEA\D
which converges for A > 2. If T € §), then we have an associated lattice A; = Z @ Z-, and the function
Gi(T) = Gi(Ar)

is a modular form of weight k and level ['(1). This is called the Eisenstein series. Moreover, $/ SL,(Z)
can be identified (as a set) with the set of isomorphism classes of elliptic curves over C.



2. Modular forms f have Fourier expansions

> ang"

nez

where a, € C, and often serve as generating functions for arithmetically interesting sequences a,. One
example is
ﬁ(q) _ Z em‘nzr
n

If k € 2N, then 9% is a modular form, and on the other hand,

192k _ Z rk(n)eﬂinr

nez

where ri(n) is the number of ways to write n as a sum of k squares. By expressing 9% in terms of ther
modular forms, we can prove formulae such as

rnn)=8 ) d

dln, Al

3. The Riemann ¢ function is an important object in number theory. Properties include

(@) The Euler product
co) =] J1=p)"

p
(b) A meromorphic extension to C,

(c) A functional equation relating {(s) and {(1 — s).

A Dirichlet L-series is a function of the form
> o
n>1

which has similar properties is called an L-function. Modular forms can be used to construct interesting
examples of [-functions. Take My(l") and decompose them under the action of Hecke operators. In
particular, if ' = T(1), we get a decomposition into lines, called Hecke eigenforms.

4. Connections to the Langland programme, which predicts (among other things) a relation between modular
forms and other objects in arithmetic geometry. A special case of this is the Modularity conjecture,
which says that there is a bijection between elliptic curves over Q (up to isogeny) and the set of Hecke
eigenforms of weight 2. This implies Fermat's last theorem. The bijection is formulated in the language
of Hecke operators and [-functions.

Homework: Handout on Moodle called “Reminder of Complex Analysis”.

2 Modular forms on [ (1)

Recall a meromorphic function on U C C is a closed subset A C U and a holomorphic function f: U\ A — C,
such that for every a € A there exists 0 > 0, such that

D.(a,8) C U\ A

and there exists an integer n > Z such that
(z —a)"f(z)

defines a holomorphic function on D(a, d). Such an @ € A is called a pole of f. f then has a Laurent expansion
Z am(z —a)”
mez

which is absolutely convergent on D(a, 9).
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Lemma 2.1. Let f be a weakly modular function of weight k and level T(1). Then there exists a unique
meromorphic function f on D,(0, 1) such that

f(T)?(EZm'T)

0 1
flelvl(t) = fy1) = f(7)
as f is invariant under the weight k action of y. But
flyr)=f(t+1)
Existence: Locally, let a € D,(0,1),d > 0 be such that D(a, ) € D,(0, 1). Define f in the disc by

Proof. By assumption, f is meromorphic on $, let y = (1

2mi

)= 1 | 35 osta

where log is any branch of logarithm defined in D(a, 9). This is independent of the choice of branch of logarithm,
since any two branches differ by 2sri, and f(t) = f(T 4+ 1). Therefore, this defines f on D,(0, 1).
Uniqueness: Since the map T+ e’ is surjective, f is unique. O

Suppose f extends to a meromorphic function on D(0, 1), then there exists & > 0 such that f has a Laurent

expansion
f(q) = Z anq"

nez

which is absolutely convergent on D, (0, 9). In particular, in the region where Im(t) > 217 log(0), we have
f(r) = Z anq”

where g = e?™. We call this the g-expansion of a weakly modular function f.

Definition 2.2

Let f be a weakly modular function of weight k and level ['(1). We say that f is meromorphic at oo if f
extends to a meromorphic function on D(0, 1).
We say that f is holomorphic at oo if f extends, and is holomorphic at g = 0. In this case, we define

floo) = f(0) = Llim f(1)

Im(7)—00

We say that f vanishes at oo if f is holomorphic at oo, and f(co) = 0.

Definition 2.3 (modular form)

A modular function (of weight k and level ['(1)) is a weakly modular function, which is meromorphic at co.
A modular form is a weakly modular function which is holomorphic in §, and holomorphic at co.
A cuspidal modular form is a modular form which vanishes at co.

Remark 2.4. We let
Mi(T(1))

be the set of modular forms of weight k and level (1), and
Se(T(1) € Mi(T(1))

be the set of cuspidal modular forms of weight k and level I'(1). These are C-vector spaces. If k is odd, then they
are zero. To see this, consider the matrix

=% &) erm




and the weight k-action is

We will now consider even weights only.

= Z 2k = Z (mT—}—n)’k

If Kk € Z is even, let

AENNO (m,n)€Z>\0
where A, =Z, ®7Z < C.
If y € (1), then we formally have
Gielu[Yl(T) = Gily ) = > Aot
AeN,\O

Butif y = (i Z),then

Ayr = 79T+ ®Z=(ct+d) " (Zat + b) S Z(cT + d) = (cT+ d) A,
ct+d
Therefore,
Gyt = > Afer+dy* = ) x*=

AE(cT+d)ANO AEAND

This is justified only when the series defining Gg(t) converges absolutely.

Proposition 2.5. Let k > 2 be an even integer. Then Gi(t) converges absolutely, and defines a modular
form of weight k and level ['(1), with

Gi(oo) = 24(K)

where ( is the Riemann {-function. We call Gy the weight k Eisenstein series.

Remark 2.6. We will see later that M,(I'(1)) = 0, so this is optimal.

Proof. We want to show absolute and local uniform convergence in §, since this shows that Gy is holomorphic.
Let A > 2, and define

)>\4

Qp = <|TES7J‘ Im(t) > — and Re( )e[—A,A}}

We will show uniform convergence in Qa. If T € Q4 x € R, then

|T+ x| > A <2
= X

Therefore,

+x > ma UL > ma 1 > ! max{1, |x|}
X X X _— X X
t A'2A2 A A [ Z oA '

If (m, n) € Z?, then we get that

Imt+ n| > 5 max{|m|, [n|}

A2
If T &€ Qyu, then

Z Imt + n| 7" < (249 Z max{|m|, |n|} ¥

(m,n)€Z2\0 (m,n)€Z?\0
= (AN dF - #{(m,n) € Z°\ 0| max{|m|, |n|} = d}

_ (2A2)7/< Z d17/<

d
= 8RAN(k —1) < o0



as k > 2. This shows uniform convergence in Q4 by the Weierstrass M-test.
We now know that G is holomorphic in ), and invariant under the weight k action of ['(1). It remains to
show to show Gy is holomorphic at oo, with Gy (oo) = 2{(k). It suffices to show that

lim  Ge(t) = 2¢(K)

Im(7)—00
By uniform convergence, we can exchange the limit and sum. But
0 m %0

lim (mt+n)~=
Im(TL)Hoo( + ) {ﬂk m=20

O
Lecture 3
If we consider the g-expansion

where g = e?™7, then we have that

We define Gelr)
T
= 01

and we will see that a, € Q for all n > 1. We can construct more modular forms from these: if

feMd(T(1) and g & M('(1))

then
fg € Miro(I'(1))
Exercise: Check. For fg holomorphic at oo, we can use that the g-expansions multiply.
For example,
£ E§ € Mi(T(1))
and in fact,
A= Ef = E§ € Su(f(1)
and A is called the Ramanujan A function.

Next, we want to show M((1)) is finite dimensional. We will study the space '(1)\$). To do this, we
will introduce a fundamental set F' C $ for the I'(1)-action, which contains exactly one element from each

[(1)-orbit.
F = {TEH | [Re(7)| < %,|r| > 1}

f/_{ref-{ Re(r)<%andlf\r|:1then ;gRe(T)§O]»




Define 0
11 1
r=fo ) o5

Then every element of F is conjugate under S, T to an element of F'. In particular, T(7) = t+1, S(1) = —T.

Proposition 2.7. Let G = ["(1)/{%/}. Then
(i) For every T € §, T is [(1)-conjugate to an element of F’,
(i) if 7,7 € F’ are ['(1)-conjugate, then 7 = T/,
(it) if T € F’, then Stabg(t) = 1, except for
Stabg(i) = (S) and Stabg(p) = (ST)

where p = 23,

(iv) (1) is generated by S, T.

e~

Proof. Define H= (S, T) < G.

Claim 2.8. Every 7 € ) is H-conjugate to an element of F".

Proof of claim. By an easy observation, and as S, T € 6, it suffices to show every T € $ is H-conjugate to
an element of F.

Let T € $, and recall that if y = (i Z) then

Im(7)

imiyT) = e + d|?

In particular, for all R > 0, the intersection Ht N {Im(7’) > R} is finite, since Im(t) > R if and only if

Im(7)

dZ
jer+df* < T

But Ay =Z @ Zt is a lattice, and so its intersection with any compact subset is finite.
In particular, there exists h € H such that Im(ht) > Im(h'7) for all h” € H. That is, the maximum value of

the imaginary part is attained. By replacing 7 with ht, we can assume

Im(7) > Im(h7)



for all h € H. Moreover, Im(7 t) = Im(7), and so we can assume that

< Re(1) <

N —

Setting h = S, we have that

Hence |7] > 1. O
Note that this also proves (i). Now given 7, T € F’, and suppose y7 = 7’ for some
_[a b
=lec d
We want to show that y = &/ or T = i or T = p. Without loss of generality, Im(7’) = Im(yt) > Im(7). This
means that

el (1)

Im(7)

- lct+d)* ~ ()

Im(y(1))

and so |cTt+d| < 1.
If T € F' then Im(7) > v/32, with equality if and only if T = p. Hence

V3

jer+d| > |efim() > || 5>

Hence |c| = 0 or 1. Therefore, c =0,1 or —1.
If ¢ =0, then

_[a b
Y=lo d
In this case, ad =1, and so y = =T" for some 7. But as the real part of T and 7’ lie in [=1/2,1/2), we must
have n =0, and so y = £/.
_[a b
=11 4

If c =1, then
and |t 4 d| < 1. The only circles centered at integers, and with radius 1 which intersects F’ are centred at
—d=—-1and d=0.

The only possibilities are d =0, and so |7| =1, 0or d =1, and so 7 = p.

lfc=1,d=0,|t| =1, then
_[a -1
L

Re(yt) = a — Re(1) € Re(F' n{|t] =1}) =[-1/2,0]

1

and y(r)=a—71' =a—T, and



But we also have that Re(y(t)) € a —[—1/2,0] = a +0, 1/2]. But the intersection between

[—1/2,0]Nn (a +0,1/2))

is non-empty only if @ = 0, and the unique point in the intersection is 0, or a = —1, and the unique point of
intersection is Re(t) = Re(yt) = —1/2. The first case is y = i and the second is y = p.
If a =0, then

0 —1
V=(1 o)=_5

and if a = —1, then
Computing,
and
and
Now if c=1,d=1,7 = p, then

(5 Y

_ap+b

Then

We have that p? + p+ 1= 0. In particular, p + 1 = —p?. Hence
ap+b=p’+p=—1

But since a, b € Z, and p € C, which is linearly independent of R, and so ap + b = —1 implies ¢ = 0 and
b = —1. Therefore,
0 -1
y = (1 1 ) =-ST

The case ¢ = —1 can be reduced to the case ¢ =1 by replacing y = —y.

We have now shown (i) and (iii). That is, [(1) is generated by S, T. As S? = —/, it suffices to show G = H.
Choose T € Int(F), then Stabg(t) = {/}. Let g € G, there exists h € H such that hgt € F’. But then by (ii)
and (iii), we must therefore have hgt = 7. This then implies hg € Stabg(t) =1, and so g = h™' € H. O

Notation 2.9. For 7 € §), write e, = |Stab(7)|.

Let f be a non-zero modular function of weight k and level ['(1). If T € $, write v,(f) for the order of the
function f at 7. That is, if v¢(f) = n, then

) =z — 1"g(2)
in a neighbourhood of 7, g holomorphic and non-vanishing.
Define the order of f at co: )
Voo (f) = w(f)
where f is the meromorphic function on the unit disc, with

f(t) = f(e”™"T)

Note that these are well defined as f # 0. With this,
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Proposition 2.10. Let f be a non-zero modular function of weight k and level I'(1). Then

el vl = 15

el(I\S

Proof. First we need to check that the sum is well defined. If T € §, then e; and v;(f) only depends on the
["(1) orbit of 7. Moreover, it only has finitely many non-zero terms.
ifyel(1), e, then
Stabrm(‘[) and Stabrm(y‘[)

are conjugate subgroups of ['(1). In particular, they are isomorphic, and thus e; = e,;. On the other hand,

flyt) = f(z)jly. )"

But j as a function on $) is a non-vanishing holomorphic function. Hence v,(f) = v(f).
Since f is a modular function, f is a meromorphic function on the unit disc D(0,1). Hence there exists
0 > 0, such that fis holomorphic and non-vanishing in D,(0, d). Hence there exists R > 0, such that f is
holomorphic, and non-vanishing on
{tefn|Im(r) >R}

Since each orbit intersects F, to show that the sum is finite, it suffices to show f only has finitely many zeroes
and poles in F with Im(t) < R. But this is true as the set of zeroes and poles of a meromorphic function are
discrete, and F N {Im(t) < R} is compact.

R=m(T)

\

To prove the identity, we will use contour integration.
Pullback formula: If v : U — V is a holomorphic map between open subsets of C, and a holomorphic
function g : V — C, and a path y in U, then

/UOVQ(Z)dZ— [yu*g(z)dz— /yg(U(Z))u/(Z)dZ

’;7/((22)) for a holomorphic non-vanishing function h. In this case,

A nice case of this is when g(z) =

g(z)dz = dlog(h)

/ dlog(h) = /u*(d log(h)) = /d(log(h)ou) _ /%dz

Cauchy’s argument principle: If U C C a simply connected open subset, y C U a simple, positively oriented
closed path. Let g be meromorphic in U, with no zeroes or poles on y. Then

! _ v fgE,
o fdtosto) = 5 ¢ 80z = Y wia

aclnt(y)

and
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With this, we can apply this to our modular function f. Choose R > 0 such that f has no zeroes or poles T

S jgd log(f)

with Im(t) > R. Consider the contour integral

where y is the contour

By our choice of R, there are no poles on the line segment AE. We first consider the case where f has no
zeroes or poles on y. In this case, by the argument principle,

s oein ol [ oy o= £ o

T\
as v¢(f) # 0, e¢(f) = 1 under the assumptions.
Applying the pullback formula with u(t) = T+ 1.

u(AB) = u(ED)  fou="f

and this gives us that

—/ dlogf:/ dlogg:/ d[ogf:/ dlog(fou):/ dlogf
DE ED u(AB) AB AB
(/ / )dlogf—O
AB  JDE

Now let g = e?™*. Then f = f o g, and g(AE) is a positively oriented circle around 0 in D(0, 1). So

Hence

1 1 .
_ fe — f -
P AEdlog Sl AEd[og( oq)

o q(AE)dlog(?) — v (f)

Now let v(1) = S(1) = 71;. Then v(BC) = DC, and
flSI(T) = f(—=1/r)T " = (1)

and so, f o v(1) = f(1)7*. Hence

/Dcd[ogf—/(BC)leQ(f)

:/ dlog(f ov)
BC

:/ dlog(f(1)7")
BC

=/ dlog(f) + k [ dlog(t)
BC BC

:/ dlog(f) + k log(C) — log(B)
BC

i



where log is any branch of logarithm defined on BC.
We can compute this, as B = p, C = i. Hence

/ d[ogf:—/ dlog(f)+k(2m—2m)
cD BC 3 4

2mik
+ dlogf =
[ L) eear =55

1 1 / / / / / ) 1 (27T[/< )
— v (f) = — + + + + dlog(f) = =— — 2iveo(f
Z er Y 27 ( AB BC CcD DE EA 917 27 12 )

el (1\H

Therefore,

Hence

Rearranging we get the result in this case. If there are poles on y, then we will need to modify the contour.
For example, if there was a pole at the point P € AB, we can consider the modified contour:

ad

For poles at B or C, we will leave to the examples sheet. O
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