Modular Forms

Shing Tak Lam

Michaelmas 2023*

Contents

1	Introduction	1
2	Modular forms on $\Gamma(1)$	3

1 Introduction

Definition 1.1 Define the upper half plane

f plane $\mathfrak{H}=\{ au\in\mathbb{C}\mid \mathsf{im}(au)>0\}$

and the positive determinant group

$$\mathrm{GL}_2(\mathbb{R})^+ = \{g \in \mathrm{GL}_2(\mathbb{R}) \mid \det(g) > 0\}$$

and

 $\Gamma(1) = SL_2(\mathbb{Z})$

Lemma 1.2. $\text{GL}_2(\mathbb{R})^+$ acts transitively on \mathfrak{H} via Möbius transformations.

Proof. Suppose $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{R})^+$, and $\tau \in \mathfrak{H}$. Then $\operatorname{Im}(g\tau) = \frac{1}{2i} \left(\frac{a\tau + b}{c\tau + d} - \frac{a\overline{\tau} + b}{c\overline{\tau} + d} \right) = \frac{1}{2i} \frac{(ad - bc)(\tau - \overline{\tau})}{|c\tau + d|^2} = \frac{\deg(g)\operatorname{Im}(\tau)}{|c\tau + d|^2} > 0$ For transitivity for $\tau + i\mu \in \mathfrak{H}$

For transitivity, for $x + iy \in \mathfrak{H}$,

$$\begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} \cdot i = x + iy$$

Lecture 1

Definition 1.3 Let $g \in GL_2(\mathbb{R})^+$, $\tau \in \mathfrak{H}$, define $j(g, \tau) = c\tau + d$, where $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. This is called the *modular cocycle*. If k is an integer, $f : \mathfrak{H} \to \mathbb{C}$ is any function, then $f|_k[g] : \mathfrak{H} \to \mathbb{C}$

$$\tau \mapsto \det(g)^{k-1} f(g\tau) j(g, \tau)$$

^{*}Based on lectures by Jack Thorne. Last updated October 13, 2023.

is called the *weight k action of g on f*.

Lemma 1.4. This is a *right* action of $GL_2(\mathbb{R})^+$. That is,

$$f|_{k}[gh] = (f|_{k}[g])|_{k}[h]$$

Proof.

$$f|_{k}[g]|_{k}[h](\tau) = \det(h)^{k-1}f|_{k}[g](h\tau)j(h,\tau)^{-k} = \det(h)^{k-1}\det(g)^{k-1}f(gh\tau)j(g,h\tau)^{-k}j(h,\tau)^{-k}$$

$$\stackrel{?}{=}\det(gh)^{k-1}f(gh\tau)j(gh,\tau)^{-k}$$

Therefore, suffices to show that

$$j(gh, \tau) = j(g, h\tau)j(h, \tau)$$

Note that if $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then $g \begin{pmatrix} \tau \\ 1 \end{pmatrix} = \begin{pmatrix} a\tau + b \\ c\tau + d \end{pmatrix} = j(g, \tau) \begin{pmatrix} g\tau \\ 1 \end{pmatrix}$, This means that,
$$j(gh, \tau) \begin{pmatrix} gh\tau \\ 1 \end{pmatrix} = gh \begin{pmatrix} \tau \\ 1 \end{pmatrix} = g \left(j(h, \tau) \begin{pmatrix} h\tau \\ 1 \end{pmatrix} \right) = j(g, h\tau)j(h, \tau) \begin{pmatrix} gh\tau \\ 1 \end{pmatrix}$$

Formulae: For $q, h \in GL_2(\mathbb{R})^+, \tau \in \mathfrak{h}$,

$$\operatorname{Im}(g\tau) = \frac{\det(g)\operatorname{Im}(\tau)}{\left|j(q,\tau)\right|^2}$$

and

$$j(gh, \tau) = j(g, h\tau)j(h, \tau)$$

Definition 1.5

Let $k \in \mathbb{Z}$, $\Gamma \leq \Gamma(1)$ a finite index subgroup. A *weakly modular function of weight* k *and level* Γ is a meromorphic function $f : \mathfrak{H} \to \mathbb{C}$, which is invariant under the weight k action of Γ . That is, such that for all $\gamma \in \Gamma$,

 $f|_k[\gamma] = f$

We will define a modular form (when $\Gamma = \Gamma(1)$) next time, but they are weakly modular functions, which are holomorphic in \mathfrak{H} and at ∞ .

In fact, modular forms of fixed weight and level live in finite dimensional \mathbb{C} -vector spaces $M_k(\Gamma)$, which are the main objects of study in this course.

Why do we study modular forms?

1. They are related to the theory of elliptic functions. Let E/\mathbb{C} be an elliptic curve. Let ω be a nonzero holomorphic 1-form. Then there exists a unique lattice $\Lambda \leq \mathbb{C}$, and an isomorphism of Riemann surfaces, $\phi : \mathbb{C}/\Lambda \to E$, such that $\phi^*(\omega) = dz$. We can show that E is isomorphic to the elliptic curve $y^2 = 4x^3 - 60G_4(\Lambda)x - 140G_6(\Lambda)$, where for $k \in \mathbb{Z}$,

$$G_k(\Lambda) = \sum_{\lambda \in \Lambda \setminus 0} \lambda^{-k}$$

which converges for $\lambda > 2$. If $\tau \in \mathfrak{H}$, then we have an associated lattice $\Lambda_{\tau} = \mathbb{Z} \oplus \mathbb{Z}_{\tau}$, and the function

$$G_k(\tau) = G_k(\Lambda_{\tau})$$

is a modular form of weight k and level $\Gamma(1)$. This is called the *Eisenstein series*. Moreover, $\mathfrak{H}/SL_2(\mathbb{Z})$ can be identified (as a set) with the set of isomorphism classes of elliptic curves over \mathbb{C} .

2. Modular forms *f* have Fourier expansions

$$\sum_{n\in\mathbb{Z}}a_nq^n$$

where $a_n \in \mathbb{C}$, and often serve as generating functions for arithmetically interesting sequences a_n . One example is

$$\vartheta(q) = \sum_{n} e^{\pi i n^2 \tau}$$

If $k \in 2\mathbb{N}$, then ϑ^{2k} is a modular form, and on the other hand,

$$\vartheta^{2k} = \sum_{n \in \mathbb{Z}} r_k(n) e^{\pi i n}$$

where $r_k(n)$ is the number of ways to write n as a sum of k squares. By expressing ϑ^{2k} in terms of ther modular forms, we can prove formulae such as

$$r_4(n) = 8 \sum_{d \mid n, 4 \mid d} d$$

- 3. The Riemann ζ function is an important object in number theory. Properties include
 - (a) The Euler product

$$\zeta(s) = \prod_{p} (1 - p^{-s})^{-1}$$

- (b) A meromorphic extension to C,
- (c) A functional equation relating $\zeta(s)$ and $\zeta(1-s)$.

A Dirichlet L-series is a function of the form

$$\sum_{n\geq 1} a_n n^{-s}$$

which has similar properties is called an *L*-function. Modular forms can be used to construct interesting examples of *L*-functions. Take $M_k(\Gamma)$ and decompose them under the action of Hecke operators. In particular, if $\Gamma = \Gamma(1)$, we get a decomposition into lines, called Hecke eigenforms.

4. Connections to the Langland programme, which predicts (among other things) a relation between modular forms and other objects in arithmetic geometry. A special case of this is the *Modularity conjecture*, which says that there is a bijection between elliptic curves over \mathbb{Q} (up to isogeny) and the set of Hecke eigenforms of weight 2. This implies Fermat's last theorem. The bijection is formulated in the language of Hecke operators and *L*-functions.

Homework: Handout on Moodle called "Reminder of Complex Analysis".

Lecture 2

2 Modular forms on $\Gamma(1)$

Recall a *meromorphic function* on $U \subseteq \mathbb{C}$ is a closed subset $A \subseteq U$ and a holomorphic function $f : U \setminus A \to \mathbb{C}$, such that for every $a \in A$, there exists $\delta > 0$, such that

$$D_*(a, \delta) \subseteq U \setminus A$$

and there exists an integer $n \geq \mathbb{Z}$ such that

$$(z-a)^{\prime\prime}f(z)$$

defines a holomorphic function on $D(a, \delta)$. Such an $a \in A$ is called a *pole* of f. f then has a *Laurent expansion*

$$\sum_{m\in\mathbb{Z}}a_m(z-a)^m$$

which is absolutely convergent on $D(a, \delta)$.

Lemma 2.1. Let f be a weakly modular function of weight k and level $\Gamma(1)$. Then there exists a unique meromorphic function \tilde{f} on $D_*(0, 1)$ such that

 $f(\tau)\tilde{f}(e^{2\pi i\tau})$

Proof. By assumption, f is meromorphic on \mathfrak{H} , let $\gamma = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \Gamma(1)$. Then

$$f|_k[\gamma](\tau) = f(\gamma\tau) = f(\tau)$$

as f is invariant under the weight k action of y. But

$$f(\gamma \tau) = f(\tau + 1)$$

Existence: Locally, let $a \in D_*(0, 1), \delta > 0$ be such that $D(a, \delta) \subset D_*(0, 1)$. Define \tilde{f} in the disc by

$$\tilde{f}(q) = f\left(\frac{1}{2\pi i}\log(q)\right)$$

where log is any branch of logarithm defined in $D(a, \delta)$. This is independent of the choice of branch of logarithm, since any two branches differ by $2\pi i$, and $f(\tau) = f(\tau + 1)$. Therefore, this defines \tilde{f} on $D_*(0, 1)$.

Uniqueness: Since the map $\tau \mapsto e^{2\pi i \tau}$ is surjective, \tilde{f} is unique.

Suppose \tilde{f} extends to a meromorphic function on D(0, 1), then there exists $\delta > 0$ such that \tilde{f} has a Laurent expansion

$$\tilde{f}(q) = \sum_{n \in \mathbb{Z}} a_n q^n$$

which is absolutely convergent on $D_*(0, \delta)$. In particular, in the region where $\text{Im}(\tau) > \frac{1}{2\pi} \log(\delta)$, we have

$$f(\tau) = \sum_{n} a_n q^n$$

where $q = e^{2\pi i \tau}$. We call this the *q*-expansion of a weakly modular function *f*.

Definition 2.2

Let f be a weakly modular function of weight k and level $\Gamma(1)$. We say that f is meromorphic at ∞ if \tilde{f} extends to a meromorphic function on D(0, 1).

We say that f is holomorphic at ∞ if \tilde{f} extends, and is holomorphic at q = 0. In this case, we define

$$f(\infty) = \tilde{f}(0) = \lim_{|m(\tau) \to \infty} f(\tau)$$

We say that *f* vanishes at ∞ if *f* is holomorphic at ∞ , and $f(\infty) = 0$.

Definition 2.3 (modular form)

A modular function (of weight k and level $\Gamma(1)$) is a weakly modular function, which is meromorphic at ∞ . A modular form is a weakly modular function which is holomorphic in \mathfrak{H} , and holomorphic at ∞ . A cuspidal modular form is a modular form which vanishes at ∞ .

Remark 2.4. We let

 $M_k(\Gamma(1))$

be the set of *modular forms of weight k and level* $\Gamma(1)$, and

 $S_k(\Gamma(1)) \subseteq M_k(\Gamma(1))$

be the set of cuspidal modular forms of weight k and level $\Gamma(1)$. These are \mathbb{C} -vector spaces. If k is odd, then they are zero. To see this, consider the matrix

$$\mathbf{v} = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix} \in \Gamma(1)$$

and the weight k-action is

$$f|_k[\gamma](\tau) = (-1)^k f(\tau) = f(\tau)$$

We will now consider even weights only.

If $k \in \mathbb{Z}$ is even, let

$$G_k(\tau) = \sum_{\lambda \in \Lambda_{\tau} \setminus 0} \lambda^{-k} = \sum_{(m,n) \in \mathbb{Z}^2 \setminus 0} (m\tau + n)^{-k}$$

where $\Lambda_{\tau} = \mathbb{Z}_{\tau} \oplus \mathbb{Z} \leq \mathbb{C}$.

If $\gamma \in \Gamma(1)$, then we formally have

$$G_k|_k[\gamma](\tau) = G_k(\gamma\tau)j(\gamma,\tau)^{-k} = \sum_{\lambda \in \Lambda_{\gamma\tau} \setminus 0} \lambda^{-k}j(\gamma,\tau)^{-k}$$

But if $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then

$$\Lambda_{\gamma\tau} = \mathbb{Z} \frac{a\tau + b}{c\tau + d} \oplus \mathbb{Z} = (c\tau + d)^{-1} \left(\mathbb{Z} (a\tau + b) \oplus \mathbb{Z} (c\tau + d) \right) = (c\tau + d)^{-1} \Lambda_{\tau}$$

Therefore,

$$G_k|_k[\gamma](\tau) = \sum_{\lambda \in (c\tau+d)^{-1} \wedge_{\tau} \setminus 0} \lambda^{-k} (c\tau+d)^{-k} = \sum_{\lambda \in \wedge_{\tau} \setminus 0} \lambda^{-k} = G_k(\tau)$$

This is justified only when the series defining $G_k(\tau)$ converges absolutely.

Proposition 2.5. Let k > 2 be an even integer. Then $G_k(\tau)$ converges absolutely, and defines a modular form of weight k and level $\Gamma(1)$, with

$$G_k(\infty) = 2\zeta(k)$$

where ζ is the Riemann ζ -function. We call G_k the weight k Eisenstein series.

Remark 2.6. We will see later that $M_2(\Gamma(1)) = 0$, so this is optimal.

Proof. We want to show absolute and local uniform convergence in \mathfrak{H} , since this shows that G_k is holomorphic. Let $A \ge 2$, and define

$$\Omega_{A} = \left\{ \tau \in \mathfrak{H} \mid \operatorname{Im}(\tau) \geq \frac{1}{A} \text{ and } \operatorname{Re}(\tau) \in [-A, A] \right\}$$

We will show uniform convergence in Ω_A . If $\tau \in \Omega_A$, $x \in \mathbb{R}$, then

$$|\tau + x| \ge \begin{cases} \frac{1}{A} & |x| \le 2A\\ \frac{|x|}{2} & |x| \ge 2A \end{cases}$$

Therefore,

$$\tau + x \ge \max\left\{\frac{1}{A}, \frac{|x|}{2A^2}\right\} \ge \max\left\{\frac{1}{A^2}, \frac{|x|}{2A^2}\right\} \ge \frac{1}{2A^2}\max\{1, |x|\}$$

If $(m, n) \in \mathbb{Z}^2$, then we get that

$$|m\tau + n| \ge \frac{1}{2A^2} \max\{|m|, |n|\}$$

If $\tau \in \Omega_A$, then

$$\sum_{\substack{(m,n)\in\mathbb{Z}^2\setminus 0}} |m\tau+n|^{-k} \le (2A^2)^k \sum_{\substack{(m,n)\in\mathbb{Z}^2\setminus 0}} \max\{|m|, |n|\}^{-k}$$
$$= (2A^2)^k \sum_d d^{-k} \cdot \#\{(m,n)\in\mathbb{Z}^2\setminus 0 \mid \max\{|m|, |n|\} = d\}$$
$$= (2A^2)^{-k} \sum_d d^{1-k}$$
$$= 8(2A^2)^k \zeta(k-1) < \infty$$

as k > 2. This shows uniform convergence in Ω_A by the Weierstrass *M*-test.

We now know that G_k is holomorphic in \mathfrak{H} , and invariant under the weight k action of $\Gamma(1)$. It remains to show to show G_k is holomorphic at ∞ , with $G_k(\infty) = 2\zeta(k)$. It suffices to show that

$$\lim_{\mathrm{Im}(\tau)\to\infty}G_k(\tau)=2\zeta(k)$$

By uniform convergence, we can exchange the limit and sum. But

$$\lim_{\mathrm{Im}(\tau)\to\infty} (m\tau+n)^{-k} = \begin{cases} 0 & m\neq 0\\ n^{-k} & m=0 \end{cases}$$

Lecture 3

If we consider the q-expansion

$$f(\tau) = \sum_{n \ge 0} a_n q^n$$

where $q = e^{2\pi i \tau}$, then we have that

$$f(\infty) = \tilde{f}(0) = a_0$$

We define

$$E_k(\tau) = \frac{G_k(\tau)}{2\zeta(k)} = 1 + \sum_{n \ge 1} a_n q^n$$

and we will see that $a_n \in \mathbb{Q}$ for all $n \ge 1$. We can construct more modular forms from these: if

$$f \in \mathcal{M}_k(\Gamma(1))$$
 and $g \in \mathcal{M}_\ell(\Gamma(1))$

then

$$fg \in M_{k+\ell}(\Gamma(1))$$

<u>Exercise</u>: Check. For fg holomorphic at ∞ , we can use that the *q*-expansions multiply.

For example,

$$E_4^3$$
, $E_6^2 \in M_{12}(\Gamma(1))$

and in fact,

$$\Delta = E_4^2 - E_6^2 \in S_{12}(\Gamma(1))$$

and Δ is called the *Ramanujan* Δ *function*.

Next, we want to show $M_k(\Gamma(1))$ is finite dimensional. We will study the space $\Gamma(1)\setminus\mathfrak{H}$. To do this, we will introduce a *fundamental set* $\mathcal{F}' \subseteq \mathfrak{H}$ for the $\Gamma(1)$ -action, which contains exactly one element from each $\Gamma(1)$ -orbit.

$$\mathcal{F} = \left\{ \tau \in \mathcal{H} \mid |\operatorname{Re}(\tau)| \le \frac{1}{2}, |\tau| \ge 1 \right\}$$
$$\mathcal{F}' = \left\{ \tau \in \mathcal{F} \mid \operatorname{Re}(\tau) < \frac{1}{2} \text{ and if } |\tau| = 1 \text{ then } -\frac{1}{2} \le \operatorname{Re}(\tau) \le 0 \right\}$$

Define

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Then every element of \mathcal{F} is conjugate under S, T to an element of \mathcal{F}' . In particular, $T(\tau) = \tau + 1$, $S(\tau) = -\overline{\tau}$.

Proposition 2.7. Let $G = \Gamma(1)/\{\pm I\}$. Then

(i) For every $\tau \in \mathfrak{H}$, τ is $\Gamma(1)$ -conjugate to an element of \mathcal{F}' ,

(ii) if $\tau, \tau' \in \mathcal{F}'$ are $\Gamma(1)$ -conjugate, then $\tau = \tau'$,

(iii) if $\tau \in \mathcal{F}'$, then $\operatorname{Stab}_G(\tau) = 1$, except for

$$\operatorname{Stab}_G(i) = \langle S \rangle$$
 and $\operatorname{Stab}_G(\rho) = \langle ST \rangle$

where $\rho = e^{2\pi i/3}$.

(iv) $\Gamma(1)$ is generated by *S*, *T*.

Proof. Define $H = \langle S, T \rangle \leq G$.

Claim 2.8. Every $\tau \in \mathfrak{H}$ is *H*-conjugate to an element of \mathcal{F}' .

Proof of claim. By an easy observation, and as $S, T \in \mathfrak{H}$, it suffices to show every $\tau \in \mathfrak{H}$ is *H*-conjugate to an element of \mathcal{F} .

Let $\tau \in \mathfrak{H}$, and recall that if $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then

$$\operatorname{Im}(\gamma\tau) = \frac{\operatorname{Im}(\tau)}{\left|c\tau + d\right|^2}$$

In particular, for all R > 0, the intersection $H\tau \cap \{Im(\tau') > R\}$ is finite, since $Im(\tau) > R$ if and only if

$$\left|c\tau+d\right|^{2} < \frac{\operatorname{Im}(\tau)}{R}$$

But $\Lambda_{\tau} = \mathbb{Z} \oplus \mathbb{Z}\tau$ is a lattice, and so its intersection with any compact subset is finite.

In particular, there exists $h \in H$ such that $Im(h\tau) \ge Im(h'\tau)$ for all $h' \in H$. That is, the maximum value of the imaginary part is attained. By replacing τ with $h\tau$, we can assume

$$\operatorname{Im}(\tau) \ge \operatorname{Im}(h\tau)$$

for all $h \in H$. Moreover, $Im(T\tau) = Im(\tau)$, and so we can assume that

$$-\frac{1}{2} \le \operatorname{Re}(\tau) \le \frac{1}{2}$$

Setting h = S, we have that

$$\operatorname{Im}(\tau) \ge \operatorname{Im}(S\tau) = \frac{\operatorname{Im}(\tau)}{|\tau|^2}$$

Hence $|\tau| \ge 1$.

Note that this also proves (i). Now given $\tau, \tau' \in \mathcal{F}'$, and suppose $\gamma \tau = \tau'$ for some

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1)$$

We want to show that $\gamma = \pm I$ or $\tau = i$ or $\tau = \rho$. Without loss of generality, $\text{Im}(\tau') = \text{Im}(\gamma\tau) \ge \text{Im}(\tau)$. This means that

$$\operatorname{Im}(\gamma(\tau)) = \frac{\operatorname{Im}(\tau)}{|c\tau + d|^2} \ge \operatorname{Im}(\tau)$$

and so $|c\tau + d| \leq 1$.

If $\tau \in \mathcal{F}'$ then $Im(\tau) \ge \sqrt{32}$, with equality if and only if $\tau = \rho$. Hence

$$|c\tau + d| \ge |c|\operatorname{im}(\tau) \ge |c|\frac{\sqrt{3}}{2}$$

Hence |c| = 0 or 1. Therefore, c = 0, 1 or -1. If c = 0, then

$$\gamma = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$

In this case, ad = 1, and so $\gamma = \pm T^n$ for some *T*. But as the real part of τ and τ' lie in [-1/2, 1/2), we must have n = 0, and so $\gamma = \pm I$.

If c = 1, then

$$\gamma = \begin{pmatrix} a & b \\ 1 & d \end{pmatrix}$$

and $|\tau + d| \le 1$. The only circles centered at integers, and with radius 1 which intersects \mathcal{F}' are centred at -d = -1 and d = 0.

The only possibilities are d = 0, and so $|\tau| = 1$, or d = 1, and so $\tau = \rho$. If c = 1, d = 0, $|\tau| = 1$, then

$$\gamma = \begin{pmatrix} a & -1 \\ 1 & 0 \end{pmatrix}$$

and $\gamma(\tau) = a - \tau^{-1} = a - \overline{\tau}$, and

$$\operatorname{Re}(\gamma \tau) = a - \operatorname{Re}(\tau) \in \operatorname{Re}(\mathcal{F}' \cap \{ |\tau| = 1 \}) = [-1/2, 0]$$

 _	

But we also have that $\operatorname{Re}(\gamma(\tau)) \in a - [-1/2, 0] = a + [0, 1/2]$. But the intersection between

 $[-1/2, 0] \cap (a + [0, 1/2])$

is non-empty only if a = 0, and the unique point in the intersection is 0, or a = -1, and the unique point of intersection is $\operatorname{Re}(\tau) = \operatorname{Re}(\gamma\tau) = -1/2$. The first case is $\gamma = i$ and the second is $\gamma = \rho$. If a = 0, then

γ =	$\begin{pmatrix} 0\\ 1 \end{pmatrix}$	-1 0) = -	-5
γ	= (—1 1	$\begin{pmatrix} -1 \\ 0 \end{pmatrix}$	

and if a = -1, then

Computing,

and

and

$$(ST)^{2} = \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix}$$
$$(ST)^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

 $ST = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$

Now if c = 1, d = 1, $\tau = \rho$, then

Then

$$\gamma \rho = \frac{a\rho + b}{\rho + 1} = \rho$$

 $\gamma = \begin{pmatrix} a & b \\ 1 & 1 \end{pmatrix}$

We have that $\rho^2 + \rho + 1 = 0$. In particular, $\rho + 1 = -\rho^2$. Hence

 $a\rho + b = \rho^2 + \rho = -1$

But since $a, b \in \mathbb{Z}$, and $\rho \in \mathbb{C}$, which is linearly independent of \mathbb{R} , and so $a\rho + b = -1$ implies a = 0 and b = -1. Therefore,

$$\gamma = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} = -ST$$

The case c = -1 can be reduced to the case c = 1 by replacing $\gamma = -\overline{\gamma}$.

We have now shown (ii) and (iii). That is, $\Gamma(1)$ is generated by S, T. As $S^2 = -I$, it suffices to show G = H. Choose $\tau \in Int(\mathcal{F})$, then $Stab_G(\tau) = \{I\}$. Let $q \in G$, there exists $h \in H$ such that $hq\tau \in \mathcal{F}'$. But then by (ii) and (iii), we must therefore have $hq\tau = \tau$. This then implies $hq \in \text{Stab}_G(\tau) = 1$, and so $q = h^{-1} \in H$.

Lecture 4

Notation 2.9. For $\tau \in \mathfrak{H}$, write $e_{\tau} = |\text{Stab}_G(\tau)|$.

Let f be a non-zero modular function of weight k and level $\Gamma(1)$. If $\tau \in \mathfrak{H}$, write $v_{\tau}(f)$ for the order of the function f at τ . That is, if $v_{\tau}(f) = n$, then

$$f(z) = (z - \tau)^n g(z)$$

in a neighbourhood of τ , g holomorphic and non-vanishing.

Define the order of f at ∞ :

$$v_{\infty}(f) = v_0(f)$$

where \tilde{f} is the meromorphic function on the unit disc, with

$$f(\tau) = \tilde{f}(e^{2\pi i\tau})$$

Note that these are well defined as $f \neq 0$. With this,

Proposition 2.10. Let *f* be a non-zero modular function of weight *k* and level $\Gamma(1)$. Then

$$\sum_{\in \Gamma(1)\backslash\mathfrak{H}} \frac{1}{e_{\tau}} v_{\tau}(f) + v_{\infty}(f) = \frac{k}{12}$$

Proof. First we need to check that the sum is well defined. If $\tau \in \mathfrak{H}$, then e_{τ} and $v_{\tau}(f)$ only depends on the $\Gamma(1)$ orbit of τ . Moreover, it only has finitely many non-zero terms.

If $\gamma \in \Gamma(1)$, $\tau \in \mathfrak{H}$, then

Stab_{$$\Gamma(1)$$}(τ) and Stab _{$\Gamma(1)$} ($\gamma\tau$)

are conjugate subgroups of $\Gamma(1)$. In particular, they are isomorphic, and thus $e_{\tau} = e_{\gamma\tau}$. On the other hand,

$$f(\gamma \tau) = f(\tau)j(\gamma, \tau)^{-k}$$

But *j* as a function on \mathfrak{H} is a non-vanishing holomorphic function. Hence $v_{\gamma\tau}(f) = v_{\tau}(f)$.

Since f is a modular function, \tilde{f} is a meromorphic function on the unit disc D(0, 1). Hence there exists $\delta > 0$, such that \tilde{f} is holomorphic and non-vanishing in $D_*(0, \delta)$. Hence there exists R > 0, such that f is holomorphic, and non-vanishing on

$$\{\tau \in \mathfrak{H} \mid \operatorname{Im}(\tau) > R\}$$

Since each orbit intersects \mathcal{F} , to show that the sum is finite, it suffices to show f only has finitely many zeroes and poles in \mathcal{F} with $\text{Im}(\tau) \leq R$. But this is true as the set of zeroes and poles of a meromorphic function are discrete, and $\mathcal{F} \cap \{\text{Im}(\tau) \leq R\}$ is compact.

To prove the identity, we will use contour integration.

Pullback formula: If $u : U \to V$ is a holomorphic map between open subsets of \mathbb{C} , and a holomorphic function $g : V \to \mathbb{C}$, and a path γ in U, then

$$\int_{u \circ \gamma} g(z) dz = \int_{\gamma} u^* g(z) dz = \int_{\gamma} g(u(z)) u'(z) dz$$

A nice case of this is when $g(z) = \frac{h'(z)}{h(z)}$ for a holomorphic non-vanishing function h. In this case,

$$q(z)dz = d\log(h)$$

and

$$\int_{u \circ \gamma} \mathrm{d}\log(h) = \int_{\gamma} u^*(\mathrm{d}\log(h)) = \int_{\gamma} \mathrm{d}(\log(h) \circ u) = \int_{\gamma} \frac{(h \circ u)'(z)}{(h \circ u)(z)} \mathrm{d}z$$

Cauchy's argument principle: If $U \subseteq \mathbb{C}$ a simply connected open subset, $\gamma \subseteq U$ a simple, positively oriented closed path. Let g be meromorphic in U, with no zeroes or poles on γ . Then

$$\frac{1}{2\pi i} \oint_{\gamma} d\log(g) = \frac{1}{2\pi i} \oint_{\gamma} \frac{g'(z)}{g(z)} dz = \sum_{a \in \operatorname{Int}(\gamma)} v_a(g)$$

With this, we can apply this to our modular function f. Choose R > 0 such that f has no zeroes or poles τ with $Im(\tau) \ge R$. Consider the contour integral

$$\frac{1}{2\pi i} \oint_{\gamma} \mathrm{d}(\log(f))$$

where γ is the contour

By our choice of R, there are no poles on the line segment AE. We first consider the case where f has no zeroes or poles on γ . In this case, by the argument principle,

$$\frac{1}{2\pi i} \oint_{\gamma} d\log(f) = \frac{1}{2\pi i} \left(\int_{AB} + \int_{BC} + \int_{CD} + \int_{DE} + \int_{EA} \right) d\log(f) = \sum_{\tau \in \Gamma(1) \setminus \mathfrak{H}} \frac{1}{e_{\tau}} v_{\tau}(f)$$

as $v_{\tau}(f) \neq 0$, $e_{\tau}(f) = 1$ under the assumptions.

Applying the pullback formula with $u(\tau) = \tau + 1$.

$$u(AB) = u(ED) \qquad f \circ u = f$$

and this gives us that

$$-\int_{DE} d\log f = \int_{ED} d\log g = \int_{u(AB)} d\log f = \int_{AB} d\log(f \circ u) = \int_{AB} d\log f$$

Hence

$$\left(\int_{AB} + \int_{DE}\right) \mathrm{d}\log f = 0$$

Now let $q = e^{2\pi i \tau}$. Then $f = \tilde{f} \circ q$, and q(AE) is a positively oriented circle around 0 in D(0, 1). So

$$\frac{1}{2\pi i} \int_{AE} d\log f = \frac{1}{2\pi i} \int_{AE} d\log\left(\tilde{f} \circ q\right) = \frac{1}{2\pi i} \int_{q(AE)} d\log\left(\tilde{f}\right) = v_{\infty}(f)$$

Now let $v(\tau) = S(\tau) = -\frac{1}{\tau}$. Then v(BC) = DC, and

$$f|_k[S](\tau) = f(-1/\tau)\tau^{-k} = f(\tau)$$

and so, $f \circ v(\tau) = f(\tau)\tau^k$. Hence

$$\int_{DC} d\log f = \int_{v(BC)} d\log(f)$$

$$= \int_{BC} d\log(f \circ v)$$

$$= \int_{BC} d\log(f(\tau)\tau^{k})$$

$$= \int_{BC} d\log(f) + k \int_{BC} d\log(\tau)$$

$$= \int_{BC} d\log(f) + k \log(C) - \log(B)$$

where log is any branch of logarithm defined on BC.

We can compute this, as $B = \rho$, C = i. Hence

$$\int_{CD} d\log f = -\int_{BC} d\log(f) + k \left(\frac{2\pi i}{3} - \frac{2\pi i}{4}\right)$$

Therefore,

$$\left(\int_{BC} + \int_{CD}\right) d\log f = \frac{2\pi i k}{12}$$

Hence

$$\sum_{\tau \in \Gamma(1) \setminus \mathfrak{H}} \frac{1}{e_{\tau}} v_{\tau}(f) = \frac{1}{2\pi i} \left(\int_{AB} + \int_{BC} + \int_{CD} + \int_{DE} + \int_{EA} \right) d\log(f) = \frac{1}{2\pi i} \left(\frac{2\pi i k}{12} - 2\pi i v_{\infty}(f) \right)$$

Rearranging we get the result in this case. If there are poles on γ , then we will need to modify the contour. For example, if there was a pole at the point $P \in AB$, we can consider the modified contour:

For poles at B or C, we will leave to the examples sheet.

Index

Γ(1), 1

cuspidal modular form $S_k(\Gamma(1)), 4$ cuspoidal modular form, 4

*E*_{*k*}, 6

fundamental set, 6

holomorphic at ∞ , 4

meromorphic at ∞ , 4 modular cocycle, 1 modular form of weight k and level $\Gamma(1)$, 4 $M_k(\Gamma(1))$, 4 modular function of weight k and level $\Gamma(1)$, 4

q-expansion, 6

Ramanujan Δ -function, 6

upper half plane, 1

vanishes at ∞ , 4

weakly modular function of weight j and level Γ , 2 weight k action, 2 weight k Eisenstein series, G_k , 5