Gröbner bases and elimination theory

Shing Tak Lam

March 22, 2023

1 Motivation

In Algebraic geometry, given polynomials $f_{1}, \ldots, f_{m} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, we want to study

$$
V=\mathbb{V}\left(f_{1}, \ldots, f_{m}\right)
$$

One natural question is whether $V=\varnothing$. From the (weak) Nullstellensatz, we know that

$$
V=\varnothing \Longleftrightarrow 1 \in I=\left(f_{1}, \ldots, f_{m}\right)
$$

More generally, consider the ideal membership problem. Given an ideal $I=\left(f_{1}, \ldots, f_{m}\right) \unlhd k\left[x_{1}, \ldots, x_{n}\right]$, and $g \in k\left[x_{1}, \ldots, x_{n}\right]$, is there an algorithm for determining whether $g \in l$?

2 Reduction and Gröbner bases

First of all, we need to generalise the notion of polynomial division f / g in $k[x]$ to division by polynomials g_{1}, \ldots, g_{r} in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.

Recall long division of polynomials.
[Long division of polynomials]
Issue: $k[x]$ is a Euclidean domain with Euclidean function deg, and deg gives us a well ordering

$$
1 \prec x \prec x^{2} \prec \ldots
$$

of the monomials in $k[x]$. However, deg no longer defines a well ordering on the set of monomials in $k\left[x_{1}, \ldots, x_{n}\right]$. For example,

$$
x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}
$$

all have the same degree. Furthermore, we needed the fact that we have a well ordering to justify the fact that polynomial division terminates.

2.1 Monomial orders

Therefore, what we want is a well ordering of the monomials in $k\left[x_{1}, \ldots, x_{n}\right]$, which behaves nicely under multiplication.

Definition 2.1 (Monomial order)
A monomial ordering \succ on $k\left[x_{1}, \ldots, x_{n}\right]$ is a relation \succ on \mathbb{N}^{n} such that

- \succ defines a well ordering on \mathbb{N}^{n}.
- If $\alpha \succ \beta$, then for any $\gamma, \alpha+\gamma \succ \beta+\gamma$.

We write $x^{\alpha} \succ x^{\beta}$ if $\alpha \succ \beta$.

Example 2.2 (Lexicographic order)

$$
\alpha \succ_{\mathrm{L}} \beta \Longleftrightarrow \text { first nonzero entry of } \alpha-\beta \in \mathbb{Z}^{n} \text { is positive }
$$

Example 2.3 (Graded lexicographic order)

$$
\alpha \succ_{\mathrm{GL}} \beta \Longleftrightarrow(|\alpha|>|\beta|) \text { or }\left(|\alpha|=|\beta| \text { and } \alpha \succ_{\mathrm{L}} \beta\right)
$$

Example 2.4 (Graded reverse lexicographic order)

$$
\alpha \succ \mathrm{GRL} \beta \Longleftrightarrow(|\alpha|>|\beta|) \text { or }(|\alpha|=|\beta| \text { and the right most entry of } \alpha-\beta \text { is negative })
$$

Definition 2.5

For a polynomial $f=\sum_{\alpha} a_{\alpha} x^{\alpha}$, we define

- The multidegree $\operatorname{mdeg}(f)=\max \left\{\alpha \mid a_{\alpha} \neq 0\right\}$
- The leading monomial $\operatorname{lm}(f)=x^{\text {mdeg }}(f)$
- The leading coefficient $\operatorname{lc}(f)=a_{\text {mdeg }}(f)$
- The leading term $\operatorname{lt}(f)=\operatorname{lc}(f) \operatorname{lm}(f)$

2.2 Reduction

Theorem 2.6 (Division algorithm). Let \succ be a monomial order on $k\left[x_{1}, \ldots, x_{n}\right], G=\left(g_{1}, \ldots, g_{s}\right)$ be a s-tuple of polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$. Then every $f \in k\left[x_{1}, \ldots, x_{n}\right]$ can be written as

$$
f=q_{1} g_{1}+\cdots+q_{n} g_{n}+r
$$

where $q_{1}, \ldots, q_{n}, r \in k\left[x_{1}, \ldots, x_{n}\right]$ where either $r=0$, or each monomial in r is not divisible by any of $\operatorname{lt}\left(f_{1}\right), \ldots, \operatorname{lt}\left(f_{s}\right)$.
[Sketch of algo here]
Remark 2.7. This depends on a lot of things.
For example, this depends on the monomial ordering. Consider reducing $f=x^{2}+x y$ by $g_{1}=x^{2}, g_{2}=x+y$. If we have an ordering such that $x^{2} \succeq x y$, then $q_{1}=1, q_{2}=y$ and $r=-y^{2}$. Whereas if $x y \succeq x^{2}$, then we have $q_{1}=0, q_{2}=x$ and $r=0$.

In addition, this depends on the ordering of the g_{i}, for example, if $f=x^{2} y, g_{1}=x^{2}, g_{2}=x y$, then we get $q_{1}=y, q_{2}=0$ whereas if $g_{1}=x y, g_{2}=x^{2}$ then we get $q_{1}=x, q_{2}=0$.

Proposition 2.8 (Sufficient condition for ideal membership). If f, G as above, and we divide f by G and get $r=0$, i.e.

$$
f=q_{1} g_{1}+\cdots+q_{n} g_{n}
$$

$$
\text { then } f \in\left(g_{1}, \ldots, g_{n}\right) \text {. }
$$

However this is not a necessary condition. For example, consider $g_{1}=x y-1, g_{2}=y^{2}-1 \in k[x, y]$, and $f=x y^{2}-x$. Suppose we use the lex order on $k[x, y]$. If we divide f by $\left(g_{1}, g_{2}\right)$ we get

$$
x y^{2}-x=y(x y-1)+0\left(y^{2}-1\right)+(-x+y)
$$

whereas if we divide f by $\left(g_{2}, g_{1}\right)$ we get

$$
x y^{2}-x=x\left(y^{2}-1\right)+0(x y-1)+0
$$

2.3 Gröbner bases

Definition 2.9

Let $I \unlhd k\left[x_{1}, \ldots, x_{n}\right]$ be a nonzero ideal, and fix a monomial ordering \succ on $k\left[x_{1}, \ldots, x_{n}\right]$. Then define $\operatorname{lt}(I)=\{\operatorname{lt}(f) \mid f \in I \backslash\{0\}\}$.

Proposition 2.10. If $I=\left(f_{1}, \ldots, f_{s}\right)$, then

$$
\left(l \mathrm{t}\left(f_{1}\right), \ldots, \operatorname{lt}\left(f_{n}\right)\right) \subseteq(\operatorname{lt}(/))
$$

Proof. By definition $\operatorname{lt}\left(f_{1}\right) \in \operatorname{lt}(I)$.
However, the reverse inclusion is usually false. For example, consider $f_{1}=x^{2}+x, f_{2}=x^{2}$. Then $\left(\operatorname{lt}\left(f_{1}\right), \operatorname{lt}\left(f_{2}\right)\right)=\left(x^{2}\right)$ but $(\operatorname{lt}(/))=(x)$.

Definition 2.11 (Gröbner basis)
Fix a monomial order on $k\left[x_{1}, \ldots, x_{n}\right]$, a finite subset $G=\left\{g_{1}, \ldots, g_{t}\right\}$ of a nonzero ideal $I \unlhd k\left[x_{1}, \ldots, x_{n}\right]$ is called a Gröbner basis if

$$
\left(\operatorname{lt}\left(g_{1}\right), \ldots, l \mathrm{t}\left(g_{t}\right)\right)=(\mathrm{lt}(/))
$$

Lemma 2.12. Suppose $x^{\beta} \in\left(x^{\alpha(1)}, \ldots, x^{\alpha(n)}\right)$. Then $x^{\alpha(i)} \mid x^{\beta}$ for some i.

Proof. Write $x^{\beta}=\sum_{i} h_{i} x^{\alpha(i)}, h_{i} \in k\left[x_{1}, \ldots, x_{n}\right]$. We only care about the monomials which contribute to the leading term, so we have that

$$
x^{\beta}=\operatorname{lt}\left(x^{\beta}\right) \sum_{j} \operatorname{lt}\left(h_{i_{j}}\right) x^{\alpha\left(i_{j}\right)}
$$

where the i_{j} are such that $\operatorname{lt}\left(h_{i_{j}}\right) x^{\alpha\left(i_{j}\right)}$ contributes to the leading term. Thus, all of the $x^{\alpha\left(i_{j}\right)}$ divide x^{β}.

Proposition 2.13. If $G=\left\{g_{1}, \ldots, g_{t}\right\}$ is a Gröbner basis for l, then

$$
I=\left(g_{1}, \ldots, g_{t}\right)
$$

Proof. Clearly $\left(g_{1}, \ldots, g_{t}\right) \subseteq I$. Conversely, given $f \in I$, divide f by $\left(g_{1}, \ldots, g_{t}\right)$ to get

$$
f=q_{1} g_{1}+\cdots+q_{t} g_{t}+r
$$

As each $g_{i} \in I$ and $f \in I$, we must have that $r \in I$. If $r \neq 0$, then $\operatorname{lt}(r) \in(\operatorname{lt}(I))=\left(\operatorname{lt}\left(g_{1}\right), \ldots, \operatorname{lt}\left(g_{t}\right)\right)$. But this means that $\operatorname{lt}\left(g_{i}\right) \mid \operatorname{lt}(r)$ for some i. Contradiction.

There are tests to determine whether a set G is a Gröbner basis, and algorithms to compute them. However we will not discuss them here, and just assume their existence.

3 Ideal membership

First of all, we can use a Gröbner basis to determine ideal membership.

Proposition 3.1. Let $G=\left\{g_{1}, \ldots, g_{t}\right\}$ be a Gröbner basis for I. Then for any $f \in k\left[x_{1}, \ldots, x_{n}\right]$, there exists a unique r such that

- No term of r is divisible by any of $\operatorname{lt}\left(g_{1}\right), \ldots, \operatorname{lt}\left(g_{t}\right)$,
- $f=g+r$ for some $g \in I$.

Proof. For existence, we use the division algorithm and write

$$
f=\underbrace{q_{1} g_{1}+\cdots+q_{t} g_{t}}_{g}+r
$$

For uniqueness, if $f=g+r=g^{\prime}+r^{\prime}$, then $r-r^{\prime}=g-g^{\prime} \in I$. If $r \neq r^{\prime}$, then $\operatorname{lt}\left(r-r^{\prime}\right) \in(\operatorname{lt}(I))$. So by the same argument as before, we see that $\operatorname{lt}\left(g_{i}\right) \mid \operatorname{lt}\left(r-r^{\prime}\right)$ for some i. But this can't happen as no term in r or r^{\prime} is divisible by any of $\operatorname{lt}\left(g_{1}\right), \ldots, \operatorname{lt}\left(g_{t}\right)$.

Corollary 3.2. No matter which order we do the division by elements of G, we always get the same result.

Proof. By uniqueness in the proposition.

Definition 3.3

Let G be a Gröbner basis for an ideal I. Then define the reduction of f by G

$$
\operatorname{red}_{G}(f)=r
$$

where r is from the proposition.

Corollary 3.4. Let G be a Gröbner basis for an ideal I, $f \in k\left[x_{1}, \ldots, x_{n}\right]$. Then

$$
f \in I \Longleftrightarrow \operatorname{red}_{G}(r)=0
$$

4 Elimination theory

4.1 Elimination

Example 4.1
If $I=\left(x^{2}+y+z-1, x+y^{2}+z-1, x+y+z^{2}-1\right)$, then a Gröbner basis is given by

$$
\begin{aligned}
& g_{1}=x+y+z^{2}-1 \\
& g_{2}=y^{2}-y-z^{2}+z \\
& g_{3}=2 y z^{2}+z^{4}-z^{2} \\
& g_{4}=z^{6}-4 z^{4}+4 z^{3}-z^{2}
\end{aligned}
$$

Then $\mathbb{V}(I)=\mathbb{V}\left(g_{1}, g_{2}, g_{3}, g_{4}\right)$. But the second system of equations is much easier to solve. We can solve for z using g_{4}, substitute into g_{2} and g_{3} to find y, and substitute into g_{1} to find x.

Definition 4.2 (Elimination ideal)

Let $I \unlhd k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, the l-th elimination ideal of I is

$$
I_{l}=I \cap k\left[x_{l+1}, \ldots, x_{n}\right]
$$

Theorem 4.3 (Elimination theorem). Let G be a Gröbner basis for an ideal / with respect to the lexicographic order $x_{1} \succ x_{2} \succ \cdots \succ x_{n}$. Then for any $0 \leq l \leq n$, we have that

$$
G_{l}=G \cap k\left[x_{l+1}, \ldots, x_{n}\right]
$$

is a Gröbner basis for I_{l}.

Proof. By construction, $G_{l} \subseteq l_{l}$ and $\left(\operatorname{lt}\left(G_{l}\right)\right) \subseteq\left(\operatorname{lt}\left(l_{l}\right)\right)$. We need to show the reverse inclusion $\left(\operatorname{lt}\left(l_{l}\right)\right) \subseteq\left(\operatorname{lt}\left(G_{l}\right)\right)$.
Suppose $f \in I_{l}$. As $f \in I, \operatorname{lt}(f)$ is divisible by $\operatorname{lt}(g)$ for some $g \in G$. Since $f \in I_{l}, \operatorname{lt}(f)$ and $\operatorname{lt}(g)$ are in $k\left[x_{l+1}, \ldots, x_{n}\right]$. But we are using lex order, so $g \in k\left[x_{l+1}, \ldots, x_{n}\right]$ and $g \in G_{l}$.

Using the elimination theorem, we can solve for the coordinates of a point $p \in V=\mathbb{V}(I)$ one coordinate at a time. Define the l-th projection map

$$
\pi_{l}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-l}
$$

Lemma 4.4. We have that $\pi_{l}(V) \subseteq \mathbb{V}\left(l_{l}\right)$.

Proof. Fix $f \in l_{l}$. Suppose $\left(a_{1}, \ldots, a_{n}\right) \in V$, then $f\left(a_{1}, \ldots, a_{n}\right)=0$. But f only involves x_{l+1}, \ldots, x_{n}, so we can write

$$
f\left(a_{l+1}, \ldots, a_{n}\right)=f\left(\pi_{l}\left(a_{1}, \ldots, a_{n}\right)\right)=0
$$

Proposition 4.5. In fact, $\mathbb{V}\left(l_{l}\right)$ is the Zariski closure of $\pi_{l}(V)$ and $\pi_{l}(V)$ is a Zariski open subset of $\mathbb{V}\left(l_{l}\right)$.

4.2 Implicitisation

Now suppose we have a parametrised set X given by

$$
\begin{aligned}
& x_{1}=f_{1}\left(t_{1}, \ldots, t_{m}\right) \\
& \vdots \\
& x_{n}=f_{n}\left(t_{1}, \ldots, t_{m}\right)
\end{aligned}
$$

where the f_{i} are polynomials, $\left(t_{1}, \ldots, t_{m}\right) \in k^{m}$. The equations above define a variety

$$
V=\mathbb{V}\left(x_{1}-f_{1}, \ldots, x_{n}-f_{n}\right) \in k^{m+n}
$$

where points on V are of the form

$$
\left(t_{1}, \ldots, t_{m}, f_{1}(t), \ldots, f_{n}(t)\right)
$$

Then it is easy to see that

$$
X=\pi_{m}(V)
$$

Hence if $I=\left(x_{1}-f_{1}, \ldots, x_{n}-f_{n}\right) \in k[t, x]$ and I_{m} is the m-th elimination ideal, then $\mathbb{V}\left(I_{m}\right)$ is the Zariski closure of X.

4.2.1 Rational parametrisations

Now suppose we have

$$
\begin{aligned}
& x_{1}=\frac{f_{1}\left(t_{1}, \ldots, t_{m}\right)}{g_{1}\left(t_{1}, \ldots, t_{m}\right)} \\
& \vdots \\
& x_{n}=\frac{f_{n}\left(t_{1}, \ldots, t_{m}\right)}{g_{n}\left(t_{1}, \ldots, t_{m}\right)}
\end{aligned}
$$

where $f_{i}, g_{i} \in k[t]$ and $t \in k^{m} \backslash W$, where $W=\mathbb{V}\left(g_{1}, \ldots, g_{n}\right)$. We want to repeat the above process. However, the naïve guess $V=\mathbb{V}\left(g_{1} x-f_{1}, \ldots, g_{n} x-f_{n}\right)$ is too big. For example, consider

$$
I=\left(v x-u^{2}, u y-v^{2}, z-u\right) \unlhd k[u, v, x, y, z]
$$

Then $I_{2}=I \cap k[x, y, z]=\left(z\left(x^{2} y-z^{3}\right)\right)$. We also want to add in the condition that g_{1}, \ldots, g_{n} is not zero. We can do this as such:

1. Let $g=g_{1} \cdots g_{n}$.
2. Let $I=\left(g_{1} x-f_{1}, \ldots, g_{n} x-f_{n}, 1-g y\right) \unlhd k[y, t, x]$.
3. Let $V=\mathbb{V}(I) \subseteq k^{1+m+n}$, so points on V are of the form

$$
\left(\frac{1}{g(t)}, t, \frac{f_{1}(t)}{g_{1}(t)}, \ldots, \frac{f_{n}(t)}{g_{n}(t)}\right)
$$

and $\pi_{1+m}(V)=X$.
4. Then the Zariski closure of X is $\mathbb{V}\left(\Lambda_{1+m}\right)$.

5 Ideal intersections

Theorem 5.1. Let $I, J \unlhd k\left[x_{1}, \ldots, x_{n}\right]$ be ideals. Then

$$
I \cap J=(t I,(1-t) J) \cap k\left[x_{1}, \ldots, x_{n}\right]
$$

Proof. Given $f \in I \cap J, f=t f+(1-t) f \in(t l,(1-t) J)$. Conversely, if we have $f \in(t /,(1-t) J) \cap k\left[x_{1}, \ldots, x_{n}\right]$. Then we can write

$$
f=t g+(1-t) h
$$

where $g \in I$ and $h \in J$. Setting $t=0$ we see $f \in J$ and setting $t=1$ we see $f \in I$.
Therefore, with this, we can compute the intersection of two ideals by eliminating t.

Example 5.2

If we have $I=\left(x^{2}+y, x+y z\right)$ and $J=\left(x y, x^{2} y+z\right)$, then $(t I,(1-t) J)$ has Gröbner basis

$$
\begin{aligned}
& g_{1}=t x+y z \\
& g_{2}=t y+y^{2} z^{2} \\
& g_{3}=-z+t z \\
& g_{4}=x y+y^{2} z \\
& g_{5}=x z+y z^{2} \\
& g_{6}=y z+y^{2} z^{3}
\end{aligned}
$$

6 Minimal polynomial

Let $L=k\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be an algebraic extension, α_{i} has minimal polynomial p_{i} over $k\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$.
Let $\bar{p}_{i} \in k\left[x_{1}, \ldots, x_{i}\right]$ be such that $\bar{p}_{i}\left(\alpha_{1}, \ldots, \alpha_{i-1}, x_{i}\right)=p_{i}\left(x_{i}\right)$ (and $\left.\bar{p}_{1}=p_{1}\right)$. Then we have

Theorem 6.1. Suppose $\beta \in L$, i.e.

$$
\beta=\frac{f\left(\alpha_{1}, \ldots, \alpha_{n}\right)}{g\left(\alpha_{1}, \ldots, \alpha_{n}\right)}
$$

where $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$. Then let

$$
J=\left(\bar{p}_{1}, \ldots, \bar{p}_{n}, g y-f\right) \unlhd k\left[x_{1}, \ldots, x_{n}, y\right]
$$

Then the elimination ideal $J_{n}=J \cap k[y]$ is a principal ideal, and the unique monic element is the minimal polynomial of β.

Example 6.2

Consider the field extension $L=\mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$. Then

- Minimal polynomial of $\sqrt{2}$ over \mathbb{Q} is $x_{1}^{2}-2$.
- Minimal polynomial of $\sqrt[3]{5}$ over $\mathbb{Q}(\sqrt{2})$ is $x_{2}^{3}-5$.

If we wanted to compute the minimal polynomial of $\sqrt{2}+\sqrt[3]{5}$, we set

$$
J=\left(x_{1}^{2}-2, x_{2}^{3}-5, y-\left(x_{1}+x_{2}\right)\right)
$$

and we get the Gröbner basis

$$
\begin{aligned}
& g_{1}=1187 x_{1}-48 y^{5}-45 y^{4}+320 y^{3}+780 y^{2}-735 y+1820 \\
& g_{2}=1187 x_{2}+48 y^{5}+45 y^{4}-320 y^{3}-780 y^{2}-452 y-1820 \\
& g_{3}=y^{6}-6 y^{4}-10 y^{3}+12 y^{2}-60 y+17
\end{aligned}
$$

So g_{3} is the minimal polynomial of $\sqrt{2}+\sqrt[3]{5}$. In particular, as $[L: \mathbb{Q}]=6$, we have that $L=\mathbb{Q}(\sqrt{2}+\sqrt[3]{5})$.

7 Graph colouring

Suppose we have the following graph

and we wanted to see whether we can 3-colour the graph. This is equivalent to finding $x_{1}, \ldots, x_{8} \in$ $\left\{1, \zeta, \zeta^{2}\right\}$ where if x_{i} and x_{j} are adjacent, $\zeta_{i} \neq \zeta_{j}$. In particular,

$$
0=x_{i}^{3}-x_{j}^{3}=\left(x_{i}-x_{j}\right)\left(x_{i}^{2}+x_{i} x_{j}+x_{j}^{2}\right)
$$

so $x_{i} \neq x_{j}$ if and only if $x_{i}^{2}+x_{i} x_{j}+x_{j}^{2}=0$. So if we define

- $v\left(x_{j}\right)=x_{j}^{3}-1$
- $a\left(x_{i}, x_{j}\right)=x_{i}^{2}+x_{i} x_{j}+x_{j}^{2}$
and define the ideal

$$
I=\left\langle\left\{v\left(x_{j}\right) \mid j=1, \ldots, 8\right\} \cup\left\{a\left(x_{i}, x_{j}\right) \mid x_{i} \text { adjacent to } x_{j}\right\}\right\rangle
$$

Then the graph has a 3 -colouring if and only if $\mathbb{V}(I) \neq$. We can compute a Gröbner basis G for I, given by

$$
\begin{aligned}
& g_{1}=x_{1}-x_{7} \\
& g_{2}=x_{2}+x_{7}+x_{8} \\
& g_{3}=x_{3}-x_{7} \\
& g_{4}=x_{4}-x_{8} \\
& g_{5}=x_{5}+x_{7}+x_{8} \\
& g_{6}=x_{6}-x_{8} \\
& g_{7}=x_{7}^{2}+x_{7} x_{8}+x_{8}^{2} \\
& g_{8}=x^{8}-1
\end{aligned}
$$

Then $\operatorname{red}_{G}(1)=1$, and in fact the Gröbner basis gives us all possible 3-colourings of the graph, so we can see that in this case, the colouring is unique up to permutation of the colours.

8 Chicken nuggets

Now suppose we wanted to find a solution over \mathbb{N} to

$$
6 a_{6}+9 a_{9}+20 a_{20}=123
$$

Consider the ideal

$$
I=\left(y_{6}-x^{6}, y_{9}-x^{9}, y_{20}-x^{20}\right) \unlhd k\left[x, y_{6}, y_{9}, y_{20}\right]
$$

We can compute a Gröbner basis for I, and we get

$$
\begin{aligned}
g_{1} & =y_{9}^{20}-y_{20}^{9} \\
g_{2} & =y_{20}^{6} y_{6}-y_{9}^{14} \\
g_{3} & =y_{6} y_{9}^{6}-y_{20}^{3} \\
g_{4} & =y_{20}^{3} y_{6}^{2}-y_{9}^{8} \\
g_{5} & =y_{6}^{3}-y_{9}^{2} \\
g_{6} & =x y_{20}-y_{6}^{2} y_{9} \\
g_{7} & =x y_{9}^{5}-y_{20}^{2} y_{6} \\
g_{8} & =x y_{6}^{2} y_{9}^{3}-y_{20}^{2} \\
g_{9} & =x^{2} y_{9}^{2}-y_{20} \\
g_{10} & =x^{3} y_{9}-y_{6}^{2} \\
g_{11} & =x^{3} y_{6}-y_{9} \\
g_{12} & =x^{6}-y_{6}
\end{aligned}
$$

Then $\operatorname{red}_{G}\left(x^{123}\right)=y_{20}^{3} y_{9}^{7}$. So $a_{6}=0, a_{9}=7, a_{20}=3$ is a solution. We can also try other values. For example, $\operatorname{red}_{G}\left(x^{41}\right)=y_{20} y_{6}^{2} y_{9}, \operatorname{red}_{G}\left(x^{42}\right)=y^{6} y_{9}^{4}$. On the other hand, $\operatorname{red}_{G}\left(x^{43}\right)=x y_{6} y_{9}^{4}$.

