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1 Motivation
In Algebraic geometry, given polynomials f1, . . . , fm ∈ C[x1, . . . , xn], we want to study

V = V(f1, . . . , fm)One natural question is whether V = ∅. From the (weak) Nullstellensatz, we know that
V = ∅ ⇐⇒ 1 ∈ I = (f1, . . . , fm)More generally, consider the ideal membership problem. Given an ideal I = (f1, . . . , fm) ⊴ k [x1, . . . , xn],and g ∈ k [x1, . . . , xn], is there an algorithm for determining whether g ∈ I?

2 Reduction and Gröbner bases
First of all, we need to generalise the notion of polynomial division f /g in k [x ] to division by polynomials
g1, . . . , gr in C[x1, . . . , xn].Recall long division of polynomials.[Long division of polynomials]Issue: k [x ] is a Euclidean domain with Euclidean function deg, and deg gives us a well ordering

1 ≺ x ≺ x2 ≺ . . .of the monomials in k [x ]. However, deg no longer defines a well ordering on the set of monomials in
k [x1, . . . , xn]. For example,

x21 , x1x2, x22all have the same degree. Furthermore, we needed the fact that we have a well ordering to justify the factthat polynomial division terminates.
2.1 Monomial ordersTherefore, what we want is a well ordering of the monomials in k [x1, . . . , xn], which behaves nicely undermultiplication.

Definition 2.1 (Monomial order)A monomial ordering ≻ on k [x1, . . . , xn] is a relation ≻ on Nn such that
• ≻ defines a well ordering on Nn.• If α ≻ β , then for any γ , α + γ ≻ β + γ .
We write xα ≻ xβ if α ≻ β .
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Example 2.2 (Lexicographic order)
α ≻L β ⇐⇒ first nonzero entry of α − β ∈ Zn is positive

Example 2.3 (Graded lexicographic order)
α ≻GL β ⇐⇒ (|α| > |β|) or (|α| = |β| and α ≻L β)

Example 2.4 (Graded reverse lexicographic order)
α ≻GRL β ⇐⇒ (|α| > |β|) or (|α| = |β| and the right most entry of α − β is negative)

Definition 2.5For a polynomial f = ∑
α aαxα , we define

• The multidegree mdeg(f ) = max{α | aα ̸= 0}• The leading monomial lm(f ) = xmdeg(f )
• The leading coefficient lc(f ) = amdeg(f )• The leading term lt(f ) = lc(f ) lm(f )

2.2 Reduction

Theorem 2.6 (Division algorithm). Let ≻ be a monomial order on k [x1, . . . , xn], G = (g1, . . . , gs) be a
s-tuple of polynomials in k [x1, . . . , xn]. Then every f ∈ k [x1, . . . , xn] can be written as

f = q1g1 + · · · + qngn + rwhere q1, . . . , qn, r ∈ k [x1, . . . , xn] where either r = 0, or each monomial in r is not divisible by anyof lt(f1), . . . , lt(fs).
[Sketch of algo here]
Remark 2.7. This depends on a lot of things.For example, this depends on the monomial ordering. Consider reducing f = x2 + xy by g1 = x2 , g2 = x + y.If we have an ordering such that x2 ⪰ xy, then q1 = 1, q2 = y and r = −y2 . Whereas if xy ⪰ x2 , then we have
q1 = 0, q2 = x and r = 0.In addition, this depends on the ordering of the gi , for example, if f = x2y, g1 = x2 , g2 = xy, then we get
q1 = y, q2 = 0 whereas if g1 = xy, g2 = x2 then we get q1 = x, q2 = 0.
Proposition 2.8 (Sufficient condition for ideal membership). If f , G as above, and we divide f by G andget r = 0, i.e.

f = q1g1 + · · · + qngnthen f ∈ (g1, . . . , gn).
However this is not a necessary condition. For example, consider g1 = xy − 1, g2 = y2 − 1 ∈ k [x, y], and

f = xy2 − x . Suppose we use the lex order on k [x, y]. If we divide f by (g1, g2) we get
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xy2 − x = y(xy − 1) + 0(y2 − 1) + (−x + y)whereas if we divide f by (g2, g1) we get
xy2 − x = x(y2 − 1) + 0(xy − 1) + 0

2.3 Gröbner bases

Definition 2.9Let I ⊴ k [x1, . . . , xn] be a nonzero ideal, and fix a monomial ordering ≻ on k [x1, . . . , xn]. Then definelt(I) = {lt(f ) | f ∈ I \ {0}}.
Proposition 2.10. If I = (f1, . . . , fs), then

(lt(f1), . . . , lt(fn)) ⊆ (lt(I))
Proof. By definition lt(f1) ∈ lt(I).However, the reverse inclusion is usually false. For example, consider f1 = x2 + x, f2 = x2. Then(lt(f1), lt(f2)) = (x2) but (lt(I)) = (x).

Definition 2.11 (Gröbner basis)Fix a monomial order on k [x1, . . . , xn], a finite subset G = {g1, . . . , gt} of a nonzero ideal I ⊴ k [x1, . . . , xn]is called a Gröbner basis if
(lt(g1), . . . , lt(gt )) = (lt(I))

Lemma 2.12. Suppose xβ ∈ (xα(1), . . . , xα(n)). Then xα(i) | xβ for some i.
Proof. Write xβ = ∑

i hixα(i), hi ∈ k [x1, . . . , xn]. We only care about the monomials which contribute to theleading term, so we have that
xβ = lt(xβ ) ∑

j
lt(hij )xα(ij )

where the ij are such that lt(hij )xα(ij ) contributes to the leading term. Thus, all of the xα(ij ) divide xβ .
Proposition 2.13. If G = {g1, . . . , gt} is a Gröbner basis for I , then

I = (g1, . . . , gt )
Proof. Clearly (g1, . . . , gt ) ⊆ I . Conversely, given f ∈ I , divide f by (g1, . . . , gt ) to get

f = q1g1 + · · · + qtgt + rAs each gi ∈ I and f ∈ I , we must have that r ∈ I . If r ̸= 0, then lt(r) ∈ (lt(I)) = (lt(g1), . . . , lt(gt )). Butthis means that lt(gi) | lt(r) for some i. Contradiction.There are tests to determine whether a set G is a Gröbner basis, and algorithms to compute them. Howeverwe will not discuss them here, and just assume their existence.
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3 Ideal membership
First of all, we can use a Gröbner basis to determine ideal membership.

Proposition 3.1. Let G = {g1, . . . , gt} be a Gröbner basis for I . Then for any f ∈ k [x1, . . . , xn], thereexists a unique r such that
• No term of r is divisible by any of lt(g1), . . . , lt(gt ),• f = g + r for some g ∈ I .

Proof. For existence, we use the division algorithm and write
f = q1g1 + · · · + qtgt︸ ︷︷ ︸

g

+r

For uniqueness, if f = g + r = g′ + r′, then r − r′ = g − g′ ∈ I . If r ̸= r′, then lt(r − r′) ∈ (lt(I)). So by thesame argument as before, we see that lt(gi) | lt(r − r′) for some i. But this can’t happen as no term in r or r′is divisible by any of lt(g1), . . . , lt(gt ).
Corollary 3.2. No matter which order we do the division by elements of G , we always get the same result.

Proof. By uniqueness in the proposition.
Definition 3.3Let G be a Gröbner basis for an ideal I . Then define the reduction of f by G

redG (f ) = rwhere r is from the proposition.
Corollary 3.4. Let G be a Gröbner basis for an ideal I , f ∈ k [x1, . . . , xn]. Then

f ∈ I ⇐⇒ redG (r) = 0
4 Elimination theory
4.1 Elimination

Example 4.1If I = (x2 + y + z − 1, x + y2 + z − 1, x + y + z2 − 1), then a Gröbner basis is given by
g1 = x + y + z2 − 1
g2 = y2 − y − z2 + z
g3 = 2yz2 + z4 − z2
g4 = z6 − 4z4 + 4z3 − z2

Then V(I) = V(g1, g2, g3, g4). But the second system of equations is much easier to solve. We cansolve for z using g4, substitute into g2 and g3 to find y, and substitute into g1 to find x .
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Definition 4.2 (Elimination ideal)Let I ⊴ k [x1, . . . , xn] be an ideal, the l-th elimination ideal of I is
Il = I ∩ k [xl+1, . . . , xn]

Theorem 4.3 (Elimination theorem). Let G be a Gröbner basis for an ideal I with respect to the lexico-graphic order x1 ≻ x2 ≻ · · · ≻ xn. Then for any 0 ≤ l ≤ n, we have that
Gl = G ∩ k [xl+1, . . . , xn]is a Gröbner basis for Il.

Proof. By construction, Gl ⊆ Il and (lt(Gl)) ⊆ (lt(Il)). We need to show the reverse inclusion (lt(Il)) ⊆ (lt(Gl)).Suppose f ∈ Il. As f ∈ I , lt(f ) is divisible by lt(g) for some g ∈ G . Since f ∈ Il, lt(f ) and lt(g) are in
k [xl+1, . . . , xn]. But we are using lex order, so g ∈ k [xl+1, . . . , xn] and g ∈ Gl.Using the elimination theorem, we can solve for the coordinates of a point p ∈ V = V(I) one coordinate ata time. Define the l-th projection map

πl : Cn → Cn−l

Lemma 4.4. We have that πl(V ) ⊆ V(Il).
Proof. Fix f ∈ Il. Suppose (a1, . . . , an) ∈ V , then f (a1, . . . , an) = 0. But f only involves xl+1, . . . , xn, so wecan write

f (al+1, . . . , an) = f (πl(a1, . . . , an)) = 0

Proposition 4.5. In fact, V(Il) is the Zariski closure of πl(V ) and πl(V ) is a Zariski open subset of V(Il).
4.2 ImplicitisationNow suppose we have a parametrised set X given by

x1 = f1(t1, . . . , tm)...
xn = fn(t1, . . . , tm)

where the fi are polynomials, (t1, . . . , tm) ∈ km. The equations above define a variety
V = V(x1 − f1, . . . , xn − fn) ∈ km+n

where points on V are of the form
(t1, . . . , tm, f1(t), . . . , fn(t))Then it is easy to see that

X = πm(V )Hence if I = (x1 − f1, . . . , xn − fn) ∈ k [t, x ] and Im is the m-th elimination ideal, then V(Im) is the Zariskiclosure of X .
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4.2.1 Rational parametrisationsNow suppose we have
x1 = f1(t1, . . . , tm)

g1(t1, . . . , tm)...
xn = fn(t1, . . . , tm)

gn(t1, . . . , tm)where fi, gi ∈ k [t] and t ∈ km \ W , where W = V(g1, . . . , gn). We want to repeat the above process.However, the naïve guess V = V(g1x − f1, . . . , gnx − fn) is too big. For example, consider
I = (vx − u2, uy − v2, z − u) ⊴ k [u, v, x, y, z]Then I2 = I ∩ k [x, y, z] = (z(x2y − z3)). We also want to add in the condition that g1, . . . , gn is not zero.We can do this as such:

1. Let g = g1 · · · gn.2. Let I = (g1x − f1, . . . , gnx − fn, 1 − gy) ⊴ k [y, t, x ].3. Let V = V(I) ⊆ k1+m+n, so points on V are of the form( 1
g(t) , t, f1(t)

g1(t) , . . . , fn(t)
gn(t)

)
and π1+m(V ) = X .4. Then the Zariski closure of X is V(I1+m).

5 Ideal intersections

Theorem 5.1. Let I, J ⊴ k [x1, . . . , xn] be ideals. Then
I ∩ J = (tI, (1 − t)J) ∩ k [x1, . . . , xn]

Proof. Given f ∈ I ∩ J , f = tf + (1 − t)f ∈ (tI, (1 − t)J). Conversely, if we have f ∈ (tI, (1 − t)J) ∩ k [x1, . . . , xn].Then we can write
f = tg + (1 − t)hwhere g ∈ I and h ∈ J . Setting t = 0 we see f ∈ J and setting t = 1 we see f ∈ I .Therefore, with this, we can compute the intersection of two ideals by eliminating t .

Example 5.2If we have I = (x2 + y, x + yz) and J = (xy, x2y + z), then (tI, (1 − t)J) has Gröbner basis
g1 = tx + yz
g2 = ty + y2z2
g3 = −z + tz
g4 = xy + y2z
g5 = xz + yz2
g6 = yz + y2z3
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6 Minimal polynomial
Let L = k (α1, . . . , αn) be an algebraic extension, αi has minimal polynomial pi over k (α1, . . . , αi−1).Let p̄i ∈ k [x1, . . . , xi] be such that p̄i(α1, . . . , αi−1, xi) = pi(xi) (and p̄1 = p1). Then we have

Theorem 6.1. Suppose β ∈ L, i.e.
β = f (α1, . . . , αn)

g(α1, . . . , αn)where f , g ∈ k [x1, . . . , xn]. Then let
J = (p̄1, . . . , p̄n, gy − f ) ⊴ k [x1, . . . , xn, y]Then the elimination ideal Jn = J ∩ k [y] is a principal ideal, and the unique monic element is theminimal polynomial of β .

Example 6.2Consider the field extension L = Q(√2, 3√5). Then
• Minimal polynomial of √2 over Q is x21 − 2.
• Minimal polynomial of 3√5 over Q(√2) is x32 − 5.
If we wanted to compute the minimal polynomial of √2 + 3√5, we set

J = (x21 − 2, x32 − 5, y − (x1 + x2))and we get the Gröbner basis
g1 = 1187x1 − 48y5 − 45y4 + 320y3 + 780y2 − 735y + 1820
g2 = 1187x2 + 48y5 + 45y4 − 320y3 − 780y2 − 452y − 1820
g3 = y6 − 6y4 − 10y3 + 12y2 − 60y + 17

So g3 is the minimal polynomial of √2+ 3√5. In particular, as [L : Q] = 6, we have that L = Q(√2+ 3√5).
7 Graph colouring
Suppose we have the following graph

x8 x2
x3
x4 x5
x7 x6 x1and we wanted to see whether we can 3-colour the graph. This is equivalent to finding x1, . . . , x8 ∈

{1, ζ, ζ2} where if xi and xj are adjacent, ζi ̸= ζj . In particular,
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0 = x3
i − x3

j = (xi − xj )(x2
i + xixj + x2

j )so xi ̸= xj if and only if x2
i + xixj + x2

j = 0. So if we define
• v (xj ) = x3

j − 1
• a(xi, xj ) = x2

i + xixj + x2
jand define the ideal

I = 〈
{v (xj ) | j = 1, . . . , 8} ∪ {a(xi, xj ) | xi adjacent to xj}

〉
Then the graph has a 3-colouring if and only if V(I) ̸=. We can compute a Gröbner basis G for I , given by

g1 = x1 − x7
g2 = x2 + x7 + x8
g3 = x3 − x7
g4 = x4 − x8
g5 = x5 + x7 + x8
g6 = x6 − x8
g7 = x27 + x7x8 + x28
g8 = x8 − 1Then redG (1) = 1, and in fact the Gröbner basis gives us all possible 3-colourings of the graph, so we cansee that in this case, the colouring is unique up to permutation of the colours.

8 Chicken nuggets
Now suppose we wanted to find a solution over N to

6a6 + 9a9 + 20a20 = 123Consider the ideal
I = (y6 − x6, y9 − x9, y20 − x20) ⊴ k [x, y6, y9, y20]We can compute a Gröbner basis for I , and we get

g1 = y209 − y920
g2 = y620y6 − y149
g3 = y6y69 − y320
g4 = y320y26 − y89
g5 = y36 − y29
g6 = xy20 − y26y9
g7 = xy59 − y220y6
g8 = xy26y39 − y220
g9 = x2y29 − y20

g10 = x3y9 − y26
g11 = x3y6 − y9
g12 = x6 − y6Then redG (x123) = y320y79. So a6 = 0, a9 = 7, a20 = 3 is a solution. We can also try other values. Forexample, redG (x41) = y20y26y9, redG (x42) = y6y49. On the other hand, redG (x43) = xy6y49.
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