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1 Motivation

In Algebraic geometry, given polynomials fi, ..., fm€Clxi,..., Xp], we want to study

More generally, consider the ideal membership problem. Given an ideal | = (fy
and g € k[x1,..., Xp), is there an algorithm for determining whether g € I?

2 Reduction and Grobner bases

First of all, we need to generalise the notion of polynomial division f/g in k[x] to division by polynomials
gi, ..., grinClxq, ..., Xp).

Recall long division of polynomials.

[Long division of polynomials]

Issue: k[x| is a Euclidean domain with Euclidean function deg, and deq gives us a well ordering

T<x=<x><...

of the monomials in k[x] However, deg no longer defines a well ordering on the set of monomials in

Kix1,..., xp) For example,
X7, X1x2, X5

all have the same degree. Furthermore, we needed the fact that we have a well ordering to justify the fact
that polynomial division terminates.

2.1 Monomial orders

Therefore, what we want is a well ordering of the monomials in k[xy, ..., Xp), which behaves nicely under
multiplication.

Definition 2.1 (Monomial order)
A monomial ordering > on k[x1, ..., Xp] is a relation > on N” such that

e > defines a well ordering on N".
o If > B, thenforanyy, a+vy>B+y.

We write x% > xP if a > B.



Example 2.2 (Lexicographic order)

a > B <= first nonzero entry of a — B € Z" is positive

Example 2.3 (Graded lexicographic order)

a>a B & (la| > |B|) or (Ja| =|B| and a > B)

Example 2.4 (Graded reverse lexicographic order)

a>arL B < (la] > |B]) or (|a| = |B| and the right most entry of a — B is negative)

Definition 2.5

For a polynomial f =) a,x? we define
e The multidegree mdeq(f) = max{a | a, # 0}
e The leading monomial Im(f) = x™ded()
e The leading coefficient lc(f) = dmdeq(r)

e The leading term lt(f) = lc(f) Im(f)

2.2 Reduction

Theorem 2.6 (Division algorithm). Let > be a monomial order on k[xq, ..., Xn) G = (q1,..., gs) be a
s-tuple of polynomials in k[xq, ..., Xp). Then every f € k[xy, ..., Xp] can be written as

f:quW‘f‘"""(Jngn-l-f

where g1, ..., Gn, I € kKx1, ..., xn| where either r = 0, or each monomial in r is not divisible by any

[Sketch of algo here]

Remark 2.7. This depends on a lot of things.

For example, this depends on the monomial ordering. Consider reducing f = x> + xy by g1 = x%, g2 = x + y.
If we have an ordering such that x* > xy, then g1 = 1, g2 = y and r = —y?>. Whereas if xy > x?, then we have
g1 =0,g,=xand r=0.

In addition, this depends on the ordering of the g,, for example, if f = x?y, g1 = x%, g2 = xy, then we get
g1 =y, g2 = 0 whereas if g; = xy, g2 = x* then we get g; = x, g2 = 0.

Proposition 2.8 (Sufficient condition for ideal membership). If f, G as above, and we divide f by G and
get r =0, ie.

f=qig1+ -+ qngn
then 1 € (g1, ..., gn)-

However this is not a necessary condition. For example, consider g1 = xy — 1, g, = y> — 1 € k[x, y}, and
f = xy? — x. Suppose we use the lex order on k[x, y. If we divide f by (g1, g2) we get



xy? = x=y(xy = 1) +0(y* = 1) + (=x +y)
whereas if we divide f by (g2, g1) we get

xy? —x = x(y> = 1) +0(xy —1)+0

2.3 Grobner bases

Definition 2.9

Let | < klxq,..., xn] be a nonzero ideal, and fix a monomial ordering > on k[xq, ..., xp] Then define

() = {(f) | f € I\ {0}}.

Proposition 2.10. If I = (f1, ..., fs), then

Proof. By definition lt(fy) & Lt(/). O

However, the reverse inclusion is usually false. For example, consider f; = x2 4+ x, 6 = x% Then

(t(A), t(f2)) = (x*) but (It(/)) = (x).

Definition 2.11 (Grobner basis)

Fix a monomial order on k[xy, .. ., Xp), a finite subset G = {g1, .. ., g¢} of a nonzero ideal | < k[xq, ..., Xn
is called a Grobner basis if

Lemma 2.12. Suppose xf € (x?0), x0) Then x| x# for some i.

Proof. Write x# =Y hx?0, h; € k[xq, ..., xp). We only care about the monomials which contribute to the
leading term, so we have that

K =1t ) Li(hy )x)
J

where the i; are such that lt(h; )x“) contributes to the leading term. Thus, all of the x7) divide x#. [

Proposition 2.13. If G = {g1, . .., g:} is a Grobner basis for /, then

Proof. Clearly (g1, ..., g¢) C I. Conversely, given f € /, divide f by (g1, ..., g¢) to get

f=qigi+ - +qgi+r

As each g; € I and f € |, we must have that r € I. If r # 0, then Wt(r) € (t())) = (lt(g1), .- ., lt(g¢)). But
this means that lt(g;) | lt(r) for some i. Contradiction. O

There are tests to determine whether a set G is a Grobner basis, and algorithms to compute them. However
we will not discuss them here, and just assume their existence.



3 ldeal membership

First of all, we can use a Grobner basis to determine ideal membership.
Proposition 3.1. Let G = {g1,..., g:+} be a Grobner basis for /. Then for any f € k[xq, ..., Xp), there
exists a unique r such that

e No term of r is divisible by any of lt(g1), ..., lt(g),

o f =g+ rforsome gel

Proof. For existence, we use the division algorithm and write

f=qigi+-+qg.+r
—_———
9

For uniqueness, if f=g+r=¢g + ', thenr—r'=qg—gqg €/ If r# r/, then lt(r — r’) € (lt(/)). So by the
same argument as before, we see that lt(g;) | lt(r — r’) for some i. But this can’'t happen as no term in r or r’
is divisible by any of lt(g1), .. ., lt(ge). O

Corollary 3.2. No matter which order we do the division by elements of G, we always get the same result.

Proof. By uniqueness in the proposition. O

Definition 3.3
Let G be a Grobner basis for an ideal /. Then define the reduction of f by G

redg(f) =r

where r is from the proposition.

Corollary 3.4. Let G be a Grobner basis for an ideal /, f € k[xy, ..., Xp]. Then

fel & redg(r)=0

4  Elimination theory

4.1 Elimination

Example 4.1
fl=x+y+z—1x+y>+2z—1,x+y+2z>—1), then a Grobner basis is given by

gr=x+y+22—1

o=y —y—2+z
g3 =2y +2z' -7
gy =2°— 47" + 477 - 72

Then V(/) = V(g1, g2, g3, ga). But the second system of equations is much easier to solve. We can
solve for z using g4, substitute into g, and g3 to find y, and substitute into g1 to find x.



Definition 4.2 (Elimination ideal)

Let I < klxq, ..., xp] be an ideal, the [-th elimination ideal of / is

Theorem 4.3 (Elimination theorem). Let G be a Grobner basis for an ideal / with respect to the lexico-
graphic order x1 > x > -+ > x,. Then for any 0 < [ < n, we have that

is a Grobner basis for /.

Proof. By construction, G; C /; and (lt(Gy)) C (lt(/;)). We need to show the reverse inclusion (lt(/;)) C (Lt(Gy)).
Suppose f € I;. As f & [, lt(f) is divisible by lt(g) for some g € G. Since f € [, lt(f) and lt(g) are in
Kxt41, - xp). But we are using lex order, so g € k[x41, ..., xp) and g € Gy O

Using the elimination theorem, we can solve for the coordinates of a point p € V' = V{(/) one coordinate at
a time. Define the [-th projection map

7 C" — ¢!

Lemma 4.4. We have that m(V) C V(/).

Proof Fix f € I;. Suppose (ay, .. ., a,) € V, then f(aq, ..., an) = 0. But f only involves xi41, .. ., X, SO we
can write

O
Proposition 4.5. In fact, V(/)) is the Zariski closure of (V) and (V) is a Zariski open subset of V(/;).
4.2 Implicitisation
Now suppose we have a parametrised set X given by
x1=fi(t, ..., tm)
xp = fo(t1, ..., tm)
where the f; are polynomials, (t, ..., tn) € k™. The equations above define a variety
V=Vkx—*f,. .., Xy — fp) € k™"
where points on V are of the form
(ti,.... tm, f1(t), fu(1))
Then it is easy to see that
X = 1,(V)
Hence if I = (xq — f, ..., xp — fn) € k[t,x] and I, is the m-th elimination ideal, then V(/,) is the Zariski

closure of X.



4.2.1 Rational parametrisations

Now suppose we have

- f1(l'1 ..... l’m)
X1 =
g1(t1 ----- tm)
f
X, = l"l(t1r , tm)
gn(tj ,,,,, tm)

where f;,g; € k[t] and t € k™ \ W, where W = V(g1,..., gn). We want to repeat the above process.
However, the naive quess V =V(gix — f1,..., gnx — fy) is too big. For example, consider

2

/:(vxfuz,uyfv ,z—u) <Klu,v, x,y, 27|

Then b = INklx,y,z] = (z(x*y — 7). We also want to add in the condition that g, ..., g, is not zero.
We can do this as such:
1. Letg=qg1--- gy
2. LetI=(g1x—"fi,..., gnx —f,, 1 —qgy) <Ky, t, x].
3. Let V =V(/) C k""" so points on V are of the form
R
gnlt)

q(t)" " gal(t)

.....

and 140 (V) = X.
4. Then the Zariski closure of X is V(h1p).

5 ldeal intersections
Theorem 5.1. Let /,J < k[xq, ..., xp] be ideals. Then

107 =(th (1= 8)) N Kxa,- .., X]

Proof Given f € INJ, f =tf+(1—t)f € (t], (1 —1t)J). Conversely, if we have f € (tI, (1 —t)))Nklx, ..., Xp -
Then we can write

f=tg+(1—-1th
where g € [ and h € J. Setting t = 0 we see f € / and setting t = 1 we see f € /. O

Therefore, with this, we can compute the intersection of two ideals by eliminating .

Example 5.2
If we have | = (x* + y, x 4+ yz) and J = (xy, x’y + z), then (t/, (1 — t)J) has Grobner basis

g1 =tx+yz
g2 =ty +y°2°
g3 =—z+tz
g4 =xy +y’z
gs = XZ + gz2
go = yz + 4’2’



6 Minimal polynomial

a,) be an algebraic extension, a; has minimal polynomial p; over k(a, ...,
a;i—1,x;) = pi(x;) (and p1 = p1). Then we have

Let L = k(o, ..., a—1).
Let p; € k[xq, ..., x;| be such that p;(a, . ..,

Theorem 6.1. Suppose B € L, Le.

where f,g € k[x, ..., xp] Then let

Then the elimination ideal J, = J N k[y] is a principal ideal, and the unique monic element is the

minimal polynomial of B.

Example 6.2
Consider the field extension [ = Q(v/2, v/5). Then

e Minimal polynomial of v/2 over Q is X2 —2.
e Minimal polynomial of v/5 over Q(v/2) is x3 — 5.
If we wanted to compute the minimal polynomial of v/2 + v/5, we set
J=04 =2, =5y—(x+x)
and we get the Grobner basis
g1 = 1187x; — 48y° — 45y" + 320y + 780y° — 735y + 1820

g>» = 1187x; + 48y° + 45y* — 320y° — 780y° — 452y — 1820
g3 = y® —6y* —10y> +12¢* — 60y + 17

So g3 is the minimal polynomial of v/2+v/5. In particular, as [L : Q] = 6, we have that L = Q(v/24/5).

7 Graph colouring

Suppose we have the following graph

~ |

X3

X4 — X5

N

X7 X6 X1

,,,,,

and we wanted to see whether we can 3-colour the graph. This is equivalent to finding x

{1, ¢, ¢%} where if x; and x; are adjacent, (; # (;. In particular,



0= X,-3 — Xj3 = (x; — x/-)()([Z + XX + ij)

so x; # x; if and only if X2 4+ xux; + ij = 0. So if we define

° v(xj) = xj3 -1

e a(x;, xj) = x? + XiXj + ij

and define the ideal

I={{vix)|j=1...., 8} U {a(xi, x;) | xi adjacent to x;})
Then the graph has a 3-colouring if and only if V(/) . We can compute a Grébner basis G for /, given by

g1 =XxX1— X7

g2 = X2 + X7 + Xg
g3 =x3—Xx7

g4 = X4 — X8

gs = X5 + X7 + X3
g6 = X6 — X8
g7:X7Z+X7X8+X§
gg = x® —1

Then redg(1) =1, and in fact the Grobner basis gives us all possible 3-colourings of the graph, so we can
see that in this case, the colouring is unique up to permutation of the colours.

8 Chicken nuggets

Now suppose we wanted to find a solution over N to

6ag + 9aq + 20a50 = 123

Consider the ideal

I'=(ys — x°, yg — x°, y20 — x*°) < K[x, ys. Y9, Y20

We can compute a Grébner basis for /, and we get

91 =3’ =y
92 = y5ye — ys'
93 = Y6y — Y3
94 = Y50Ys — Yo
95 =Yg — Y3

g6 = XY20 — Ygyo
97 = XY3 — YoYs
g8 = XYsys — Yo
go = X"y — Y20
g10 = X’yo — yg
g = xys — Yo
g2 = x" — ye

Then redg(x'??) = y3,yd. So ag = 0,a9 = 7, a0 = 3 is a solution. We can also try other values. For
example, redg(x"") = ya0yZye, redg(x*?) = y°yg. On the other hand, red¢(x*?) = xysys.
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