Gröbner bases and elimination theory

Shing Tak Lam

March 22, 2023

1 Motivation

In Algebraic geometry, given polynomials $f_1, \ldots, f_m \in \mathbb{C}[x_1, \ldots, x_n]$, we want to study

$$V = \mathbb{V}(f_1, \ldots, f_m)$$

One natural question is whether $V = \emptyset$. From the (weak) Nullstellensatz, we know that

$$V = \emptyset \iff 1 \in I = (f_1, \ldots, f_m)$$

More generally, consider the *ideal membership problem*. Given an ideal $I = (f_1, \ldots, f_m) \leq k[x_1, \ldots, x_n]$, and $g \in k[x_1, \ldots, x_n]$, is there an algorithm for determining whether $g \in I$?

2 Reduction and Gröbner bases

First of all, we need to generalise the notion of polynomial division f/g in k[x] to division by polynomials g_1, \ldots, g_r in $\mathbb{C}[x_1, \ldots, x_n]$.

Recall long division of polynomials.

[Long division of polynomials]

Issue: k[x] is a Euclidean domain with Euclidean function deg, and deg gives us a well ordering

$$1 \prec x \prec x^2 \prec \dots$$

of the monomials in k[x]. However, deg no longer defines a well ordering on the set of monomials in $k[x_1, \ldots, x_n]$. For example,

$$x_1^2, x_1x_2, x_2^2$$

all have the same degree. Furthermore, we needed the fact that we have a well ordering to justify the fact that polynomial division terminates.

2.1 Monomial orders

Therefore, what we want is a well ordering of the monomials in $k[x_1, \ldots, x_n]$, which behaves nicely under multiplication.

Definition 2.1 (Monomial order)

A monomial ordering \succ on $k[x_1, \ldots, x_n]$ is a relation \succ on \mathbb{N}^n such that

- \succ defines a well ordering on \mathbb{N}^n .
- If $\alpha \succ \beta$, then for any γ , $\alpha + \gamma \succ \beta + \gamma$.

We write $x^{\alpha} \succ x^{\beta}$ if $\alpha \succ \beta$.

Example 2.2 (Lexicographic order)

 $\alpha \succ_{L} \beta \iff$ first nonzero entry of $\alpha - \beta \in \mathbb{Z}^{n}$ is positive

Example 2.3 (Graded lexicographic order)

 $\alpha \succ_{GL} \beta \iff (|\alpha| > |\beta|)$ or $(|\alpha| = |\beta| \text{ and } \alpha \succ_{L} \beta)$

Example 2.4 (Graded reverse lexicographic order)

 $\alpha \succ_{\text{GRL}} \beta \iff (|\alpha| > |\beta|)$ or $(|\alpha| = |\beta|)$ and the right most entry of $\alpha - \beta$ is negative)

Definition 2.5

For a polynomial $f = \sum_{\alpha} a_{\alpha} x^{\alpha}$, we define

- The multidegree mdeg(f) = max{ $\alpha \mid a_{\alpha} \neq 0$ }
- The leading monomial $lm(f) = x^{mdeg(f)}$
- The leading coefficient $lc(f) = a_{mdeq(f)}$
- The leading term lt(f) = lc(f) lm(f)

2.2 Reduction

Theorem 2.6 (Division algorithm). Let \succ be a monomial order on $k[x_1, \ldots, x_n]$, $G = (g_1, \ldots, g_s)$ be a *s*-tuple of polynomials in $k[x_1, \ldots, x_n]$. Then every $f \in k[x_1, \ldots, x_n]$ can be written as

$$f = q_1 g_1 + \dots + q_n g_n + r$$

where $q_1, \ldots, q_n, r \in k[x_1, \ldots, x_n]$ where either r = 0, or each monomial in r is not divisible by any of $lt(f_1), \ldots, lt(f_s)$.

[Sketch of algo here]

Remark 2.7. This depends on a lot of things.

For example, this depends on the monomial ordering. Consider reducing $f = x^2 + xy$ by $g_1 = x^2$, $g_2 = x + y$. If we have an ordering such that $x^2 \succeq xy$, then $q_1 = 1$, $q_2 = y$ and $r = -y^2$. Whereas if $xy \succeq x^2$, then we have $q_1 = 0$, $q_2 = x$ and r = 0.

In addition, this depends on the ordering of the g_i , for example, if $f = x^2y$, $g_1 = x^2$, $g_2 = xy$, then we get $q_1 = y$, $q_2 = 0$ whereas if $g_1 = xy$, $g_2 = x^2$ then we get $q_1 = x$, $q_2 = 0$.

Proposition 2.8 (Sufficient condition for ideal membership). If f, G as above, and we divide f by G and get r = 0, i.e.

$$f = q_1 g_1 + \dots + q_n g_n$$

then $f \in (g_1, \ldots, g_n)$.

However this is not a necessary condition. For example, consider $g_1 = xy - 1$, $g_2 = y^2 - 1 \in k[x, y]$, and $f = xy^2 - x$. Suppose we use the lex order on k[x, y]. If we divide f by (g_1, g_2) we get

$$xy^{2} - x = y(xy - 1) + 0(y^{2} - 1) + (-x + y)$$

whereas if we divide f by (g_2, g_1) we get

$$xy^{2} - x = x(y^{2} - 1) + 0(xy - 1) + 0$$

2.3 Gröbner bases

Definition 2.9

Let $I \leq k[x_1, \ldots, x_n]$ be a nonzero ideal, and fix a monomial ordering \succ on $k[x_1, \ldots, x_n]$. Then define $lt(I) = \{lt(f) \mid f \in I \setminus \{0\}\}.$

Proposition 2.10. If $I = (f_1, \ldots, f_s)$, then

$$(\operatorname{lt}(f_1), \ldots, \operatorname{lt}(f_n)) \subseteq (\operatorname{lt}(I))$$

Proof. By definition $lt(f_1) \in lt(I)$.

However, the reverse inclusion is usually false. For example, consider $f_1 = x^2 + x$, $f_2 = x^2$. Then $(\operatorname{lt}(f_1), \operatorname{lt}(f_2)) = (x^2)$ but $(\operatorname{lt}(I)) = (x)$.

Definition 2.11 (Gröbner basis)

Fix a monomial order on $k[x_1, \ldots, x_n]$, a finite subset $G = \{g_1, \ldots, g_t\}$ of a nonzero ideal $I \leq k[x_1, \ldots, x_n]$ is called a Gröbner basis if

 $(\operatorname{lt}(g_1),\ldots,\operatorname{lt}(g_t)) = (\operatorname{lt}(I))$

Lemma 2.12. Suppose $x^{\beta} \in (x^{\alpha(1)}, \dots, x^{\alpha(n)})$. Then $x^{\alpha(i)} \mid x^{\beta}$ for some *i*.

Proof. Write $x^{\beta} = \sum_{i} h_i x^{\alpha(i)}$, $h_i \in k[x_1, \ldots, x_n]$. We only care about the monomials which contribute to the leading term, so we have that

$$x^{\beta} = \operatorname{lt}(x^{\beta}) \sum_{j} \operatorname{lt}(h_{i_j}) x^{\alpha(i_j)}$$

where the i_j are such that $lt(h_{i_j})x^{\alpha(i_j)}$ contributes to the leading term. Thus, all of the $x^{\alpha(i_j)}$ divide x^{β} . \Box

Proposition 2.13. If $G = \{g_1, \ldots, g_t\}$ is a Gröbner basis for *I*, then

 $I = (g_1, \ldots, g_t)$

Proof. Clearly $(g_1, \ldots, g_t) \subseteq I$. Conversely, given $f \in I$, divide f by (g_1, \ldots, g_t) to get

$$f = q_1 g_1 + \dots + q_t g_t + r$$

As each $g_i \in I$ and $f \in I$, we must have that $r \in I$. If $r \neq 0$, then $lt(r) \in (lt(I)) = (lt(g_1), \ldots, lt(g_t))$. But this means that $lt(g_i) \mid lt(r)$ for some *i*. Contradiction.

There are tests to determine whether a set G is a Gröbner basis, and algorithms to compute them. However we will not discuss them here, and just assume their existence.

3 Ideal membership

First of all, we can use a Gröbner basis to determine ideal membership.

Proposition 3.1. Let $G = \{g_1, \ldots, g_t\}$ be a Gröbner basis for *I*. Then for any $f \in k[x_1, \ldots, x_n]$, there exists a unique *r* such that

- No term of r is divisible by any of $lt(q_1), \ldots, lt(q_t)$,
- f = g + r for some $g \in I$.

Proof. For existence, we use the division algorithm and write

$$f = \underbrace{q_1 g_1 + \dots + q_t g_t}_{q} + r$$

For uniqueness, if f = g + r = g' + r', then $r - r' = g - g' \in I$. If $r \neq r'$, then $lt(r - r') \in (lt(I))$. So by the same argument as before, we see that $lt(g_i) | lt(r - r')$ for some *i*. But this can't happen as no term in *r* or *r'* is divisible by any of $lt(g_1), \ldots, lt(g_t)$.

Corollary 3.2. No matter which order we do the division by elements of *G*, we always get the same result.

Proof. By uniqueness in the proposition.

Definition 3.3

Let G be a Gröbner basis for an ideal I. Then define the reduction of f by G

 $\operatorname{red}_G(f) = r$

where r is from the proposition.

Corollary 3.4. Let *G* be a Gröbner basis for an ideal *I*, $f \in k[x_1, ..., x_n]$. Then

 $f \in I \iff \operatorname{red}_G(r) = 0$

4 Elimination theory

4.1 Elimination

Example 4.1 If $I = (x^2 + y + z - 1, x + y^2 + z - 1, x + y + z^2 - 1)$, then a Gröbner basis is given by

$$g_{1} = x + y + z^{2} - 1$$

$$g_{2} = y^{2} - y - z^{2} + z$$

$$g_{3} = 2yz^{2} + z^{4} - z^{2}$$

$$g_{4} = z^{6} - 4z^{4} + 4z^{3} - z^{2}$$

Then $\mathbb{V}(I) = \mathbb{V}(g_1, g_2, g_3, g_4)$. But the second system of equations is much easier to solve. We can solve for *z* using g_4 , substitute into g_2 and g_3 to find *y*, and substitute into g_1 to find *x*.

Definition 4.2 (Elimination ideal)

Let $I \leq k[x_1, \ldots, x_n]$ be an ideal, the *l*-th elimination ideal of *I* is

$$I_l = I \cap k[x_{l+1}, \ldots, x_n]$$

Theorem 4.3 (Elimination theorem). Let *G* be a Gröbner basis for an ideal *I* with respect to the lexicographic order $x_1 \succ x_2 \succ \cdots \succ x_n$. Then for any $0 \le l \le n$, we have that

$$G_l = G \cap k[x_{l+1}, \ldots, x_n]$$

is a Gröbner basis for I_l .

Proof. By construction, $G_l \subseteq I_l$ and $(\operatorname{lt}(G_l)) \subseteq (\operatorname{lt}(I_l))$. We need to show the reverse inclusion $(\operatorname{lt}(I_l)) \subseteq (\operatorname{lt}(G_l))$.

Suppose $f \in I_l$. As $f \in I$, tt(f) is divisible by tt(g) for some $g \in G$. Since $f \in I_l$, tt(f) and tt(g) are in $k[x_{l+1}, \ldots, x_n]$. But we are using lex order, so $g \in k[x_{l+1}, \ldots, x_n]$ and $g \in G_l$.

Using the elimination theorem, we can solve for the coordinates of a point $p \in V = \mathbb{V}(I)$ one coordinate at a time. Define the *l*-th projection map

$$\pi_l:\mathbb{C}^n\to\mathbb{C}^{n-l}$$

Lemma 4.4. We have that $\pi_l(V) \subseteq \mathbb{V}(I_l)$.

Proof. Fix $f \in I_l$. Suppose $(a_1, \ldots, a_n) \in V$, then $f(a_1, \ldots, a_n) = 0$. But f only involves x_{l+1}, \ldots, x_n , so we can write

$$f(a_{l+1},...,a_n) = f(\pi_l(a_1,...,a_n)) = 0$$

Proposition 4.5. In fact, $\mathbb{V}(I_l)$ is the Zariski closure of $\pi_l(V)$ and $\pi_l(V)$ is a Zariski open subset of $\mathbb{V}(I_l)$.

4.2 Implicitisation

Now suppose we have a parametrised set X given by

$$x_1 = f_1(t_1, \dots, t_m)$$

$$\vdots$$

$$x_n = f_n(t_1, \dots, t_m)$$

where the f_i are polynomials, $(t_1, \ldots, t_m) \in k^m$. The equations above define a variety

$$V = \mathbb{V}(x_1 - f_1, \dots, x_n - f_n) \in k^{m+n}$$

where points on V are of the form

$$(t_1, \ldots, t_m, f_1(t), \ldots, f_n(t))$$

Then it is easy to see that

$$X = \pi_m(V)$$

Hence if $I = (x_1 - f_1, ..., x_n - f_n) \in k[t, x]$ and I_m is the *m*-th elimination ideal, then $\mathbb{V}(I_m)$ is the Zariski closure of X.

4.2.1 Rational parametrisations

Now suppose we have

$$x_1 = \frac{f_1(t_1, \dots, t_m)}{g_1(t_1, \dots, t_m)}$$

$$\vdots$$

$$x_n = \frac{f_n(t_1, \dots, t_m)}{g_n(t_1, \dots, t_m)}$$

where $f_i, g_i \in k[t]$ and $t \in k^m \setminus W$, where $W = \mathbb{V}(g_1, \ldots, g_n)$. We want to repeat the above process. However, the naïve guess $V = \mathbb{V}(g_1x - f_1, \ldots, g_nx - f_n)$ is too big. For example, consider

$$V = (vx - u^2, uy - v^2, z - u) \le k[u, v, x, y, z]$$

Then $I_2 = I \cap k[x, y, z] = (z(x^2y - z^3))$. We also want to add in the condition that g_1, \ldots, g_n is not zero. We can do this as such:

- 1. Let $g = g_1 \cdots g_n$.
- 2. Let $I = (g_1 x f_1, \dots, g_n x f_n, 1 gy) \leq k[y, t, x]$.
- 3. Let $V = \mathbb{V}(I) \subseteq k^{1+m+n}$, so points on V are of the form

$$\left(\frac{1}{g(t)}, t, \frac{f_1(t)}{g_1(t)}, \ldots, \frac{f_n(t)}{g_n(t)}\right)$$

and $\pi_{1+m}(V) = X$.

4. Then the Zariski closure of X is $\mathbb{V}(I_{1+m})$.

5 Ideal intersections

Theorem 5.1. Let $I, J \leq k[x_1, \ldots, x_n]$ be ideals. Then

$$I \cap J = (tI, (1-t)J) \cap k[x_1, \ldots, x_n]$$

Proof. Given $f \in I \cap J$, $f = tf + (1 - t)f \in (tI, (1 - t)J)$. Conversely, if we have $f \in (tI, (1 - t)J) \cap k[x_1, \dots, x_n]$. Then we can write

$$f = tg + (1-t)h$$

where $q \in I$ and $h \in J$. Setting t = 0 we see $f \in J$ and setting t = 1 we see $f \in I$.

Therefore, with this, we can compute the intersection of two ideals by eliminating *t*.

Example 5.2

If we have $I = (x^2 + y, x + yz)$ and $J = (xy, x^2y + z)$, then (tI, (1 - t)J) has Gröbner basis

 $g_{1} = tx + yz$ $g_{2} = ty + y^{2}z^{2}$ $g_{3} = -z + tz$ $g_{4} = xy + y^{2}z$ $g_{5} = xz + yz^{2}$ $g_{6} = yz + y^{2}z^{3}$

6 Minimal polynomial

Let $L = k(\alpha_1, ..., \alpha_n)$ be an algebraic extension, α_i has minimal polynomial p_i over $k(\alpha_1, ..., \alpha_{i-1})$. Let $\bar{p}_i \in k[x_1, ..., x_i]$ be such that $\bar{p}_i(\alpha_1, ..., \alpha_{i-1}, x_i) = p_i(x_i)$ (and $\bar{p}_1 = p_1$). Then we have

Theorem 6.1. Suppose $\beta \in L$, i.e.

$$\beta = \frac{f(\alpha_1, \ldots, \alpha_n)}{g(\alpha_1, \ldots, \alpha_n)}$$

where $f, g \in k[x_1, \ldots, x_n]$. Then let

$$J = (\bar{p}_1, \ldots, \bar{p}_n, gy - f) \leq k[x_1, \ldots, x_n, y]$$

Then the elimination ideal $J_n = J \cap k[y]$ is a principal ideal, and the unique monic element is the minimal polynomial of β .

Example 6.2

Consider the field extension $L = \mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$. Then

- Minimal polynomial of $\sqrt{2}$ over \mathbb{Q} is $x_1^2 2$.
- Minimal polynomial of $\sqrt[3]{5}$ over $\mathbb{Q}(\sqrt{2})$ is $x_2^3 5$.

If we wanted to compute the minimal polynomial of $\sqrt{2} + \sqrt[3]{5}$, we set

$$I = (x_1^2 - 2, x_2^3 - 5, y - (x_1 + x_2))$$

and we get the Gröbner basis

$$g_{1} = 1187x_{1} - 48y^{5} - 45y^{4} + 320y^{3} + 780y^{2} - 735y + 1820$$

$$g_{2} = 1187x_{2} + 48y^{5} + 45y^{4} - 320y^{3} - 780y^{2} - 452y - 1820$$

$$g_{3} = y^{6} - 6y^{4} - 10y^{3} + 12y^{2} - 60y + 17$$

So g_3 is the minimal polynomial of $\sqrt{2} + \sqrt[3]{5}$. In particular, as $[L:\mathbb{Q}] = 6$, we have that $L = \mathbb{Q}(\sqrt{2} + \sqrt[3]{5})$.

7 Graph colouring

Suppose we have the following graph

and we wanted to see whether we can 3-colour the graph. This is equivalent to finding $x_1, \ldots, x_8 \in \{1, \zeta, \zeta^2\}$ where if x_i and x_j are adjacent, $\zeta_i \neq \zeta_j$. In particular,

 $0 = x_i^3 - x_j^3 = (x_i - x_j)(x_i^2 + x_i x_j + x_j^2)$

so $x_i \neq x_j$ if and only if $x_i^2 + x_i x_j + x_j^2 = 0$. So if we define

- $v(x_j) = x_j^3 1$
- $a(x_i, x_j) = x_i^2 + x_i x_j + x_j^2$

and define the ideal

$$I = \left\langle \{v(x_j) \mid j = 1, \dots, 8\} \cup \{a(x_i, x_j) \mid x_i \text{ adjacent to } x_j\} \right\rangle$$

Then the graph has a 3-colouring if and only if $\mathbb{V}(I) \neq \mathbb{V}$. We can compute a Gröbner basis G for I, given by

$$g_{1} = x_{1} - x_{7}$$

$$g_{2} = x_{2} + x_{7} + x_{8}$$

$$g_{3} = x_{3} - x_{7}$$

$$g_{4} = x_{4} - x_{8}$$

$$g_{5} = x_{5} + x_{7} + x_{8}$$

$$g_{6} = x_{6} - x_{8}$$

$$g_{7} = x_{7}^{2} + x_{7}x_{8} + x_{8}^{2}$$

$$g_{8} = x^{8} - 1$$

Then $red_G(1) = 1$, and in fact the Gröbner basis gives us all possible 3-colourings of the graph, so we can see that in this case, the colouring is unique up to permutation of the colours.

8 Chicken nuggets

Now suppose we wanted to find a solution over $\ensuremath{\mathbb{N}}$ to

$$6a_6 + 9a_9 + 20a_{20} = 123$$

Consider the ideal

$$I = (y_6 - x^6, y_9 - x^9, y_{20} - x^{20}) \leq k[x, y_6, y_9, y_{20}]$$

We can compute a Gröbner basis for I, and we get

$$g_{1} = y_{9}^{20} - y_{20}^{9}$$

$$g_{2} = y_{20}^{6}y_{6} - y_{20}^{14}$$

$$g_{3} = y_{6}y_{9}^{6} - y_{20}^{3}$$

$$g_{4} = y_{20}^{3}y_{6}^{2} - y_{9}^{8}$$

$$g_{5} = y_{6}^{3} - y_{9}^{2}$$

$$g_{6} = xy_{20} - y_{6}^{2}y_{9}$$

$$g_{7} = xy_{9}^{5} - y_{20}^{2}y_{6}$$

$$g_{8} = xy_{6}^{2}y_{9}^{3} - y_{20}^{2}$$

$$g_{9} = x^{2}y_{9}^{2} - y_{20}$$

$$g_{10} = x^{3}y_{9} - y_{6}^{2}$$

$$g_{11} = x^{3}y_{6} - y_{9}$$

$$g_{12} = x^{6} - y_{6}$$

Then $\operatorname{red}_G(x^{123}) = y_{20}^3 y_{9}^7$. So $a_6 = 0$, $a_9 = 7$, $a_{20} = 3$ is a solution. We can also try other values. For example, $\operatorname{red}_G(x^{41}) = y_{20} y_6^2 y_9$, $\operatorname{red}_G(x^{42}) = y^6 y_9^4$. On the other hand, $\operatorname{red}_G(x^{43}) = x y_6 y_9^4$.