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1 Motivation
Recall from IB Geometry the Gauss-Bonnet theorem.

Theorem 1.1 (Gauss-Bonnet). Suppose S is a compact Riemannian surface without boundary. Then
∫

S
κdA = 2πχ (S) (1)

where κ is the Gaussian curvature and χ is the Euler characteristic.

As a result, if suppose we wanted to find Riemannian surfaces with negative curvature everywhere. Then
Gauss-Bonnet gives us a topological restriction on the surface.

Example 1.2 (Genus-g surface)
Let Σg be denote the g-holed torus. Then Σg has a Riemannian metric with negative curvature everywhere
if and only if g ≥ 2.
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In this talk, we’re going to see how this generalises to general manifolds. That is, we’ll define a notion
of “curvature” for general Riemannian manifolds, and we’ll see how this gives restrictions on the fundamental
group of the manifold1.

Throughout, let (M, g) be a connected Riemannian manifold with dimension n, π : M̃ → M be its universal
cover, G = GD(π) be the deck group. Note G ∼= π1(M, p). We equip M̃ with the pullback metric π∗(g), so π is
a local isometry.

Lemma 1.3 (Deck transformations are isometries). GD(π) ≤ Isom(M̃).

Proof. Let f ∈ GD(π), then f must be a local isometry, as f ◦ π = π and M̃ has the pullback metric.

Since the length of a curve near a point is preserved by local isometries, and by compactness, we can
cover a curve by finitely many open neighbourhoods. So for any curve γ , Length(f ◦ γ) = Length(γ), so
d(f (p), f (q)) = d(p, q) and f must be a (global) isometry.

2 Exponential map and sectional curvature
First of all, a curve γ : [a, b] → M is called a geodesic if

γ̈i(t) + Γi
jk γ̇ j (t)γ̇k (t) = 0 (2)

We don’t really care about the exact equation here, or what Γi
jk is. What we do care about is

Theorem 2.1. Let p ∈ M , v ∈ TpM . Then there exists ε > 0, and a unique geodesic c : [0, ε] → M with
c(0) = p and ċ(0) = v . In addition, c depends smoothly on p and v .

Proof. Equation (2) is a second order ODE, so the result follows from Picard-Lindelöf.

Now fix p ∈ M , and denote the geodesic from theorem 2.1 with by cv . Then we have that

cv (t) = cλv

(
t
λ

)
for λ > 0, t ∈ [0, ε]

1In fact, we’ll be working with the deck group of the universal covering.
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by uniqueness in theorem 2.1 and the chain rule. In particular, cλv is defined on [0, ε/λ]. Since cv and ε
depends smoothly on v , and the unit sphere S in TpM is compact, there exists ε0 > 0 such that for all v ∈ S ,
cv is defined on [0, ε0]. Therefore, for any w ∈ TpM with ∥w∥ ≤ ε0, cw is defined on [0, 1].

Definition 2.2 (Exponential map)
Let

Vp := {v ∈ TpM | cv is defined on [0, 1]}

and define, expp : Vp → M , the exponential map of M at p by

expp(v ) = cv (1)

Lemma 2.3. The exponential map expp maps a neighbourhood of 0 ∈ TpM diffeomorphically onto a
neighbourhood of p ∈ M .

Proof. Since TpM is a vector space, we can identify TpM = T0TpM . Then the derivative at 0, d expp(0) becomes
a map TpM → TpM . Computing, we find that

d expp(v ) = v

and the result follows by the inverse function theorem.

With all of this in mind, we can now define the sectional curvature of M . Let σ be a 2-dimensional subspace
of TpM . Then σ ∩ Vp is an embedded surface in Vp, so by lemma 2.3, Sσ = expp(σ ∩ Vp) is an embedded
surface in M . Sσ is a Riemannian surface with the Riemannian metric given by restriction, so we can define
the sectional curvature of σ , sec(σ ) by the Gaussian curvature of Sσ at p.
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3 Cartan’s theorem
First of all, we will need a few things which requires a bit more machinery to prove, so we will black box it.

Suppose M has nonpositive sectional curvature. Then

Theorem 3.1 (Cartan-Hadamard). M̃ is diffeomorphic to Rn, and expp : TpM → M is a covering map.

We omit the proof here, since it uses some machinery which we don’t have yet.

Lemma 3.2 (Geodesics are unique). Let p, q ∈ M̃ be distinct points. Then there exists a unique geodesic
γ from p to q.

Proof. Since expp : TpM̃ → M̃ is a diffeomorphism, write q = expp(v ) for some v ∈ TpM̃ . Now let γ be
a geodesic from p to q. By reparametrisation, without loss of generality γ : [0, 1] → M̃ , with γ(0) = p and
γ(1) = q. From theorem 2.1, we have that γ is uniquely determined by γ̇(0) = w . Therefore, we must have that
γ = cw , so q = expp(w). But expp is a diffeomorphism (hence a bijection), so v = w and γ is unique.

Define fp(x) = 1
2d(x, p)2 for x, p ∈ M̃ . Then fp : M̃ → R is smooth, since the distance is a smooth function

of expp and in Rn, x 7→ ∥x∥2 is smooth.

Lemma 3.3. Let c be a geodesic on M̃ . Then fp ◦ c is strictly convex.

Proof. Since g(x) = x2 is strictly convex.

We can extend the definition of convexity from Rn to any Riemannian manifold, by saying that a function
f : M → R is (strictly) convex if f ◦ c is (strictly) convex for any geodesic c.

Theorem 3.4 (Cartan). Let F : M̃ → M̃ be an isometry with finite order (so F k = id for some k ). Then F̃
has a fixed point.

Example 3.5
Let us first consider the simplest case where M̃ = Rn with the Euclidean norm. Let R be a rotation,
x ∈ M . Say R k = id. Then consider x, Rx, . . . , R k−1x . The average of these points must in fact be in the
axis of the rotation. Similarly if T is a reflection, then (x + T x)/2 must be in the plane of reflection.
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We can generalise this idea of considering the average of the orbits to the general case. First, we define
the centre of mass of points p1, . . . , pk ∈ M to be

cm{p1, . . . , pk} = argmin
x

(max{fp1 (x), . . . , fpk (x)})

This is well defined since a stictly convex function has a unique minimum. With this, we can now prove
Cartan’s theorem.

Proof. Let k minimal be such that F k = id, p ∈ M̃ be arbitrary. Define q = cm{p, F (p), . . . , F k−1(p)}. We’ll
show F (q) = q.

Let f (x) = max{fp(x), fF (p)(x), . . . , fF k−1(p)(x)}. Then

f (F (q)) = max{fp(F (q)), . . . , fF k−1(p)(F (q))}

= 1
2 max{d(F (q), p), . . . , d(F (q), F k−1(p))}2

= 1
2 max{d(F (q), F k (p)), . . . , d(F (q), F k−1(p))}2

= 1
2 max d(q, F k−1(p)), . . . , d(q, F k−2(p))2

= f (q)

But f is strictly convex, so it has a unique minimum.

With this result, we can now prove our first result about π1(M).

Corollary 3.6. Let M be a complete Riemannian manifold with nonpositive curvature. Then π1(M, p) is
torsion free.

Proof. If there is any deck transformation f with finite order, then it must have a fixed point by theorem 3.4
(Cartan’s theorem). But this means that F = id.

4 Preissmann’s theorem

Theorem 4.1 (Preissmann). Let M be a compact manifold with negative curvature. Then every nontrivial
abelian subgroup of π1(M) is isomorphic to Z.

To prove this, we will need a few preliminary results. Let f : M → M be an isometry. Then an axis for f
is a geodesic c : R → M such that f ◦ c is a reparametrisation of c. Since f maps geodesics to geodesics, and
geodesics are parametrised by arc length, we have that

f ◦ c(t) = c(±t + a)
If we have −, then f fixes c(a/2). When we have f (c(t)) = c(t + a), we call a the period of F with respect

to c.
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Given an isometry f : M → M , the displacement function of f is δF : M → R, defined by

δf (x) = d(f (x), x)

Lemma 4.2. If δf has a positive minimum, then f has an axis.

Proof. Suppose δf attains it’s minimum at p ∈ M , c : [0, 1] → M be a segment from p to f (p). Then f ◦ c is a
segment from f (p) to f (f (p)) with the same speed.

We claim that these two meet at an angle π at f (p), so we can join them to get a geodesic c : [0, 2] → M .
Fix t ∈ [0, 1], then

δf (p) ≤ δf (c(t))
= d(c(t), f (c(t)))
≤ d(c(t), c(1)) + d(c(1), f (c(t)))
= d(c(t), c(1)) + d(f (c(0)), f (c(t)))
= d(c(t), c(1)) + d(c(0), c(t))
= d(c(1), c(0))
= δf (p)

So equality holds in all of these, and the segment given by c|[t,1] followed by f ◦c|[0,t] is a geodesic2. But by
theorem 3.1 (Cartan-Hadamard), expp is defined on all of TpM , so we can extend c to a geodesic c : R → M .
These two must agree, so (f ◦ c)(t) = c(1 + t). Repeating this argument we see that c is an axis of F with
period 1.

Lemma 4.3. If f : M̃ → M̃ a non-trivial deck transformation of the universal cover M̃ of M , then δf has a
positive minimum. The axis corresponding to this minimum is mapped to a closed geodesic in M whose
length is minimal in it’s homotopya class. Moreover, we have the lower bound

δf (x) ≥ CM > 0

for some constant CM
b depending only on M .

aunbased homotopy
bCM = 2 inj(M) is positive since M is compact,and CM = ∞ if M is simply connected.

Proof. Omitted.

Lemma 4.4 (Triangles in negative curvature). Let T be a triangle in M with sides a, b, c and angles
α, β, γ . Then

2Since geodesics are distance minimising.
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(i) α + β + γ ≤ π , with equality if and only if T is degenerate, i.e. all three vertices lie on a line.

(ii) a2 + b2 − 2ab cos(γ) ≤ c2.

Lemma 4.5. Let A ⊆ R be a subgroup, a = inf{x ∈ A | x > 0}. If a = 0 then A is dense, and if a > 0
then A = aZ.

With these, we are now ready to prove Preissmann’s theorem.

Proof of Preissmann’s theorem. As in the corollary of Cartan’s theorem, we will be working with the deck group
instead. By the lemmas above, we know that any non-trivial deck transformation F has an axis. First we will
show that this axis must be unique.

Suppose c1, c2 are axes for F .
First we consider the case where c1 and c2 intersect at some p ∈ M . Then since they are axes and f has

no fixed points, f (p) must also be on both of them. So c1 and c2 intersect at at least two points. By theorem 3.1
(Cartan-Hadamard), we have a unique geodesic between p and f (p). So in fact c1 = c2.

Now suppose c1 and c2 do not intersect. Fix p1 ∈ c1 and p2 ∈ c2. Let σ be the segement joining p1 to
p2. Then f ◦ σ is the segment joining f (p1) to f (p2). Since f is an isometry that preserves c1 and c2, the angle
between the axes and σ must be the same as the angle between f ◦ σ and the axes. So p1, p2, F (p2), F (p1)
define a quadrilateral with angle sum 2π . Hence by lemma 4.4 (angle sum), it is degenerate, so all points lie
on one geodesic, and c1 = c2. Contradiction.
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Finally, let g be any deck transformation which commutes commutes with f . Suppose c is an axis for f with
period 1, then

g(c(t + 1)) = g(f (c(t))) = f (g(c(t)))
This implies that g ◦ c is an axis for f , so by uniqueness must be c itself. Now let H = ⟨f , g⟩ be the

subgroup of the deck group generated by f and g. Any element of H has c as an axis, so we get a map
Φ : H → R which sends an isometry to its period. This is a group homomorphism, with trivial kernel since any
deck transformation with a fixed point must be the identity.

Since any positive period is greater than CM∥∥ċ
∥∥ , H must be cyclic.

Example 4.6 (Torus)
Recall from IB Geometry the Gauss-Bonnet theorem, that

∫

S
κdx = 2πχ (S)

where χ (S) is the Euler characteristic of S . From this, we can show that there is no metric on
T 2 = S1 × S1 with negative curvature everywhere, since χ (T 2) = 0.

By Preissmann’s theorem, this generalises to all T n, n ≥ 2. To see this, note π1(T n) = Z ⊕n, so there
are non-trivial, non-cylic abelian subgroups of π1(T n) for n ≥ 2.

In fact, even more is true.

Theorem 4.7. If M is a compact Riemannian manifold with negative sectional curvature. Then π1(M) is
non-abelian.

Proof. Suppose π1(M) is abelian. Then by Preissmann’s theorem, π1(M) is infinite cyclic, generated by f . Let
c̃ be the axis for f , and fix a point p̃ on c. Let b̃ be a geodesic orthogonal to c̃ at p̃, with b̃(0) = p and t > 0
fixed. Let b = π ◦ b̃ and c = π ◦ c̃, p = π(p̃). Let αt be a geodesic from b(t) to p. We will show Length(αt ) = t .

Let α̃t be the lift of αt starting at b(t). Since c is the axis for f , we must have that the end point of α̃(t) lies
on c. So by lemma 4.4 part (ii), we must have that

Length(α̃t ) ≥ Length(b̃)
But since the covering map π is a local isometry, we must also have that

Length(α̃t ) = Length(αt ) ≤ Length(b) = Length(b̃) = t
So Length(αt ) = t is unbounded. Contradiction as M is compact.
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In fact, even more is true.

Theorem 4.8 (Byers). If M is a compact Riemannian manifold with negative sectional curevature, then any
nontrivial solvable subgroup of π1(M) is isomorphic to Z. Furthermore, π1(M) does not have a (infinite)
cyclic subgroup of finite index.

5 Growth of the fundamental group
One easy corollary of Cartan’s theorem is that π1(M) must be infinite. Preissmann’s theorem says that the
group is “very non-abelian”. Milnor proved a theorem about one way of measuring how non-abelian a group
is. First, we need some group theory.

Let G be a finitely generated group, S = {g1, . . . , gp} a set of generators, S closed under inverse. Then
given x ∈ G , it’s word norm is defined to be

∥x∥ = inf{ℓ | x = gi1 · · · giℓ }

and define it’s growth function

γ(s) = |{x ∈ G | ∥x∥ ≤ s}|

We have an easy upper bound of γ(s) ≤ ps. Intuitively, if a group is “somewhat abelian”, then we would
get some cancellation between the elements, so it can’t grow that quickly. Conversely, if a group is “highly
non-abelian”, then not much cancellation will occur and we’ll get exponential growth.

Theorem 5.1 (Milnor). If M is a compact Riemannian manifold with negative curvature, then the growth
function of π1(M) is at least exponential. That is,

γ(s) ≥ as

for some constant a > 1.
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