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1 Limits and Convergence

Definition (Sequence). A sequence (x,), (xn);24 is a function N — R (or C).
Definition (Convergence). x, — x as n — oo if Ve > 0,3IN,Vn > N, |x, — x| < &.
Definition (Increasing Sequence). (x,) is increasing if Vn, x, < x,41

Definition (Strictly Increasing Sequence). (x;) is strictly increasing if Vn, x, < xp41

Definition (Monotone). (x,) is monotone if (x,) is increasing or decreasing.

Definition (Supremum). If a set S C R is nonempty and bounded above, sup S is the least upper bound of
S. That is

e Vxe S x<supS

e Ve>0,dxe S k—e<x<k

Theorem. Every increasing sequence that is bounded above converges.

Proof Let S = {x, : n € N}. Then S is bounded above and nonempty. We will show that x, — sup S. By
definition of the supremum, we know that given € > 0, there exists N such that k — e < xny < k. As x, (s
increasing, Vn > N, k —e < xny < x, < k. O

Lemma. (i) Limit is unique. If x, — a and x, — b as n — oo, then a = b.
(it) If a, — a asn — oo, and ny < ny < ..., then a,, — a as k — oo.
(iii) If a, = c for all n, then a, — c.

(iv) Ifa, — a and b, — b, then a, + b, — a + b.

(v) Ifa, — a and b, — b, then a,b, — ab.

(vi) Ifa, — a, a, #+ 0 for all n, a + 0, then 1/a, — 1/a.
(vii) If a, < A for all n, and a, — a, then a < A.

Proof. (i) Given € > 0, we have |a — b| < |a, — a| + |a, — b| < 2¢. Setting € = |a — b|/3 for a + b we
get a contradiction. So a = b.

(it) Given € > 0, exists N such that Vn > N, |a, — a| < e We note that ny > k, so Yk > N,
lan, —al < e.

(i) Clearly a, — ¢ =0, so N is arbitrary.
(iv) Clear from triangle inequality. |a, + b, —a — b| < |a, — a| + |b, — b|.

(V) |apb, — ab| < |ap,b, — apb| + |anb — ab| = |as||b, — b| + |b||a, — a|. For n large enough, |a,| <
la| +1, |an —a| < €, |b, —b| < € s0 |anb, —ab| < e(|a] + 1+ |b]).

(vi) For n large enough, |a,| > 3|al. Then |a:0‘ < # Also, |a, — a| < e. With this, ai,, — 1=

n_—_ 2

aaﬂaa < Wc‘:.

(vit) If a > A then e = a—-—A >0 |la,—al < a—-A = a—a+A<a = A<a,
Contradiction. O
Lemma. % -0

Proof. Clearly decreasing and bounded below so it converges to a. Note % — %a, but it is also a

subsequence so %a = a. Hence a = 0. O



1.1 Bolzano-Weierstrass

Theorem (Bolzano Weierstrass). Every bounded sequence has a convergent subsequence.

Proof. Suppose for all n, x, € [a, b]. At least one of S1 = {n: x, € a, Gzib]} and S, ={n:x, € [”;b, bl}
must be infinite. We can use this to generate new interval [a1, b1] where {n : x, € [a1, b1]} is infinite.
Proceed inductively and we get two sequences a,, b,. Now note that a,—1 < a, < b, < b,—4, and
b, —a, = %(bn,1 — ap—1). So a, = a, b, — b and a = b. Now as {n : x, € [ax, bi]} is infinite for all k,
we may choose x,, such that x,, & [ak, bi] and ng > ng_1 > --- > nq. So x,, — a. O

Proof. Alternatively, every bounded sequence has a monotonic subsequence. Consider the set S = {n :
Xp > Xxm Ym > n}. If S is infinite, we can use this to construct our monotonic subsequence. If S is finite,
then for all n > max(5), there exists m > n such that x,, > x,. We can use this to construct a monotonic
subsequence. Clearly any monotonic bounded sequence converges. 0

1.2 Cauchy Sequences

Definition (Cauchy). (a,) is Cauchy if given € > 0, 3N, |a, — an| < € for all n,m > N.

Lemma. Every convergent sequence is Cauchy.

Proof. |a, — ap| < |an — a| + |am — a| < 2¢ for n, m large enough. O
Theorem. Every Cauchy sequence is convergent.

Proof. First note that every Cauchy sequence is bounded, by setting € = 1 in definition and taking the max
of it and the first N terms. From Bolzano-Weierstrass, a, has a convergent subsequence a,, — a. Then
la, —al < ’an — a,,/‘ + ’0,7/ — a‘ < 2¢ for n, j large enough. O

1.3 Series

0 N

Definition. For a sequence (a,) (real or complex), > a; converges to s if the partial sums ) a; converges
j=1 j=1

to s as N — oo.

o0

Lemma. (i) If ) a;and ) _b; converges, so does ) (Aa;+ ubj)
- = ;

j=1 j=1

oQ oQ

(ii) If for all n > N, a, = by, then ) _a; converges if and only if ) converges.

Jj=1 Jj=1
Proof. (i) Write out partial sums and use distributivity.
n N—-1 n n N—1 n N—-1 N—1
(i) Let Sy =) aj= ) aj+) ajand D, =) bj=1) bj+3Y bj. S,—d, =) a;j+ ) bjand
1 1 N 1 1 N 1 1
is constant. So S, converges if and only if D, converges. O

oQ
Lemma. If) a; converges, then a; — 0.
1

Proof. Let S, =) aj. a, =5,— 5,1 —= 0. O
7

Proof Let Sy, =) 1/j. Son =Sy +1(n+ 1)+ ...+ 12n > S, +1/2. So if S, — a, then Sy, — a, and
1
a > a + 1/2. Contradiction. ]



1.4 Geometric Series
n
Definition (Geometric Series). Given x, set a, = xS, = > aj.
1

—x"

Proposition. S, = 11

Proof. Consider (1 — x)S,, and the terms cancel. O

Proposition. S, converges if and only if |x| < 1.

Proof If |x| < 1, then x” — 0 as n — oco. To see this, wlog 0 < x < 1, let 1/x =1+ 0 where 0 > 0. Then
0<x"=1/(1+9)" <1/(14 on). By comparison with 1/n, we can show 1/(1 + on) — O.

If [x] > 1, again wlog x > 1, x" = (1+0)" > 1+ don — 0.

For x =1, 5, = n and clearly diverges. For x = —1, S, oscillates between 1 and —1. O

1.5 Convergence Tests

(o] o
Theorem (Comparison Test). If0 < b, < a, for all n, and ) _a, converges, then so does ) b,,.
1 1

n n
Proof Let S, = ) a; and D, = ) bj, then D, < S, < S for all n, and D, is increasing, so it must
1 1

converge. O

Theorem (Root Test). Assume a, > 0 and a}/™ — a as n — oo. If a <1, then Y_a, converges. If a > 1,
then ) a, diverges.

Proof If a < 1, choose a < r < 1. Then for n large enough, a/”

series converges. By comparison, so does a,.
If @ > 1, for n large enough, a}/” > 1, so a, > 1. Then }_a, can't converge as the terms don't tend to
zero. O

< randa, <r" Asr <1, the geometric

Theorem (Ratio Test). Suppose a, > 0, ‘7(”7—:1 — lasn — oo Ifl <1, then) a, converges, if L > 1, then
Y _ap diverges.

f ' h l r F() n a, n

If { > 1, then a, > anr"~N by a similar method. By comparison to geometric, Y a,, diverges. O

Theorem (Cauchy's Condensation Test). Let a, be a sequence of decreasing positive terms. Then ) a,
converges if and only if Y 2" ax converges.

2n 2n 2
Proof First suppose if Y _a, = A 2" 'a;m < 5 ap so Z 2" g < Z Y apm =) ap
m=2n-141 n="1m=2n-141 m=2
N N N
Hence > 2"am <2 ) an <2(A—a1). So ) 2"au is increasing and bounded above, thus it converges.
n=1 m=2 n=1
2[7 /’V /\/
For the reverse implication, Y @, < 2" 'ayn-1, 50 Z Z Z am <Y 2" 'ay. Thus
m=2n—141 m=2 n=1m=2n-1-1 n=1
Y a, is bounded and increasing, so it converges. 0

Propositlon. > % converges if and only if k > 1.

Proof As 15 < 1, (z25)F < 1,50 0 < & < (M) S 2%a = 2"(1R"M)k = 277K So Y 2"aw is a
geometric series. This converges if and only if 2'% < 1, ie k > 1. O
Theorem (Alternating Series Test). If a, is decreasing, and a, — 0, then Y _(—1)"*"a, converges.

Proof Let S, = 27:1(—1)”1 a;. Then Sy, = (a1—az)+(a3—as)+ - +(a2p-1—a2y) = Son—2+(a20-1—0a2n).

As a, is decreasing, S2, > Syp—2. Rearranging, Sz, = a1 — (a2 — a3) — - - — a2, < aq. So Sy, is bounded
above and increasing, thus it converges. Say Sy, — S. Sopp1 = Son + a2pe1 — S as well. Hence S, — S
by choosing N to be the max of the N from Sy, and Sz,41. O



1.6 Absolute Convergence

Definition (Absolute Convergence). Let a, € C, then ) a, is absolutely convergent if ) |a,| converges.

Theorem. Absolute convergence implies convergence.

Proof. First suppose a, € R. Let v, = w”‘% W, = w”‘%a” Then vy, wy, >0, a, = v, — w,, |a,| =

Vo + Wy > v, wy. if Y |a,| converges, by comparison ) v, and ) w, converges. So ) a, =) v,—w, =
Y Vp— Y W, converges.

If a, € C, then let a, = x, + iyn. |xnl, |yn] < |an|, so if )_|a,| converges, by comparison so do ) _ |xj|
and ) |yp|- Thus > x, and )y, converges. Then ) a, =) x,+ iy, =) X, + iy y, converges. [J

Definition (Conditional Convergence). A sequence is conditionally convergent if it is convergent and not
absolutely convergent.

Definition (Rearrangement). Let 0 : N — N be a bijection, then @, = @,y is a rearrangement of a,,.

Theorem. If ) a, is absolutely convergent, then every rearrangement will sum to the same value.

n n
Proof. We shall first show this for a, € R. Let a/, be a rearrangement of a,,. Lets, =) a;and t, =) d’.

i=1 i=1
For now, let's consider a, > 0. Given n, we can find ¢ = max{c(i) : 0 < i < n} such that every term in s,
isin ty. Then s, <ty < tforall n, and as s, is increasing and bounded, s, — s < t. Similarly t <'s, so
s=t

New define v, = ‘a”‘% Wy = ‘a”‘%a” and v}, w), similarly. As ) |a,| converges, so do ) v, ) v,

> wpand ) w). Then v/ is a rearrangement of v,, and w}, is a rearrangement of w,,. So ) v, =) v/ and
> w, =) w). Result follows.

For complex a, let a, = x, + iy,. Then ) |x,| and ) _|y,| converges. Then use the above. O

Theorem (Riemann Rearrangement Theorem). /f Y a, is conditionally convergent, then given x € R, there
is a rearrangement a), such that ) _al, = x.

Proof Let b, be the positive terms in a,, ¢, be the negative terms, d, be the zeroes. Then > b, and ) ¢,
must both diverge. Now add on terms from b; until we go over x, then add on ¢; until we go below x, and
so on. This converges to x as |x — x,| is bounded by |b,| and |c,|. Intersperse the d,, as appropriate. [

2 Continuity

Let E CC, E nonempty, f : £ - C, a € E.

Definition (Continuity (1)). f is continuous at a € E if for every sequence z, € E, z, — a, we have that
f(zn) — f(a)

Definition (Continuity (2)). f is continuous at @ € E if given € > O, there exists 0 > 0 such that for any
x € E, if [x —a| <9, then |[f(x) — f(a)| < e

Proposition. The two definitions of continuity are equivalent.

Proof (2) = (1). Given € > 0, we require |z, — a| < 0, and this is true for all n > N.

(1) = (2). Suppose f(z,) — f(a) whenever z, — a. Also suppose that (according to 2), f is not
continuous at a. That is, 3¢ > 0,¥0 > 0, 3x, |[x — a| < 0 A |[f(x) — f(a)| > €. From this we get z, such that
|z, —a] < % and |f(z,) — f(a)| > €. Contradiction, as we must have that f(z,) — f(a) as z, — a. O

Proposition. Let f,g : E — C be continuous at a. Then so is f + g, fg, Af for A € C. If f(z) # O for all
z € E, then 1/f is also continuous.

Proof. Using sequence definition of continuity, these are properties of sequences which we have already
shown. O



Definition (Continuous Function). f : £ — C is continuous if it is continuous at every x € E.

Theorem. Letf:A— C,g: B — C, f(A) C B, f continuous at a, g continuous at f(a). Then gof: A — C
is continous at a.

Proof. Take any sequence z, — a. Set w, = f(z,). Then g(w,) — g(f(a)) by continuity. 0

2.1 Limits of Functions

Definition (Limit Point). Let £ C C, @ € E is a limit point of £ if for all 6 > 0, exists z € E such that
0<|z—a| <.

Proposition. a is a limit point if and only if there exists z, € E such that z, — a and z, # a for all n.
Proof. Reverse implication is clear. For forward implication use 0 = 1/n to construct z,. O

Definition (Limit of Function). For f : £ — C, a a limit point of £, then lim f(z) = [ if given € > O, there

zZ—da
exists 0 > 0 such that for all |z —a| < 9, |[f(z) — (| < €.
Or equivalently, f(z,) — [ for every sequence z, € E, z, + a, z, — a.

Proposition. lim f(z) = f(a) if and only if f is continuous at a.
z—a

Proof. Clear from definition. O
Proposition. /f a € E is not a limit point, then f is continuous at a.

Proof. Choose 0 small enough such that a is the only point left. O
Lemma. (i) Limit of functions is unique

(ii) f(z) = A and g(z) — B as z — a implies f(z) + g(z) - A+ B as z — a.

(iii) f(z) - A and g(z) — B as z — a implies f(z)g(z) - AB as z — a.

(iv) If in addition, B #+ 0, g(z) # 0 then f(2)/g(z) — AlB.

Proof. Clear from sequence definition of limits and properties of the limits of sequences. O

2.2 Intermediate Value Theorem

Theorem (Intermediate Value Theorem). Let f : [a, b] — R be continuous, wlog f(a) < f(b), then for any
f(a) < n < f(b), there exists a < ¢ < b such that f(c) = n.

Proof Let S = {x € [a, b]: f(x) < n}. Clearly S is bounded above by b and a € S. Set ¢ = sup S. From
definition of the supremum, there exists c —1/n < x, < c for all n. Then x, — ¢, f(x;) — f(c) by continuity,
and f(x,) < n. So f(c) < n.

For n large enough, c+1/n < b, and c+1/n — ¢, so f(c+1/n) — f(c). As c+1/n > ¢, f(c+1/n) > n,
so f(c) > n and we are done. O

2.3 Bounds of a Continuous Function

Theorem. Let f :[a, b] — R be continuous. Then there exists k such that |f(x)| < k for all x € [a, b].

Proof. Suppose not. Then for all n € N, there exists x, € [a, b] such that |f(x,)| > n. As x, is bounded, from
Bolzano-Weierstrass there exists a convergent subsequence x,, — x. So f(x,;) — f(x). But ‘f(xnj)‘ > nj, so
‘f(Xn,)’ — oo. Contradiction. 0

Theorem. Let f : [a, b] — R be continuous. Then there exists x1, x> € |a, b] such that f(x1) < f(x) < f(x2)
for all x € [a, b].



Proof Let A = {f(x) : x € [a, b]}. From theorem above, A is bounded above and clearly nonempty. Set
M = supA. Then for all n, there exists x, € [a, b] such that M — 1/n < f(x,) < M. From Bolzano-
Welerstrass, let x,, — x be a convergent subsequence. Then by continuity, f(x,;) — f(x). But we also have
that f(xn,) — M. So f(x) = M. x7 can be found using the inf. O

Proof. Let A and M be as above. Suppose if for all x, f(x) < M. Then g(x) = 1/(M — f(x)) is well defined,
positive and continuous. So there exists k such that |g(x)| < k. Thus f(x) < M —1/k for all x. Contradiction
as M is least upper bound. O

2.4 Inverse Functions

Theorem. Let f :[a, b] — R be a continuous strictly increasing function. Let ¢ = f(a) and d = f(b). Then
f:[a,b] = [c,d] is a bijection, and g = f~" :[c, d] — [a, b] is strictly increasing and continuous.

Proof. Surjective comes from the VT, Injective comes from that it is strictly increasing. So f is a bijection.
Let g = =" If xy < x2, then we must have g(x;) < g(xz). Otherwise x1 = f(g(x1)) > f(g(x2)) = xo.

For k € (c, d), given € > 0, choose 0 = min(f(k) — f(k — €), f(k + €) — f(k)). Then result follows. Proof
for k = c and k = d are similar. O

3 Differentiability

Let £ be a subset of C.
Definition (Differentiable). f : E — C is differentiable at x if the limit

lim fix + h) —f(x)
h—0

exists, and we define f’(x) to be its value.
Remark. Let e(h) = f(x + h) — f(x) — hf’(x). Then

- g(h)
lim —<- =0
hTO h

Definition (Alternative definition for Differentiability). f : E — C is differentiable at x if there exists constant
A€ C and € : C — C such that

f(x + h) = f(x) + hA+ €(h)
h
where lim eth) = 0. If such an A exists, then it is unique. We denote it by f’(x).

h—0

Proposition. Differentiable implies continuous.

Proposition. (i) If f(x) = c for all x € E, then f is differentiable, and t'(x) = 0.
(ii) If f and g are differentiable, then so is f + g. (f + g)'(x) = f'(x) + g'(x).
(iii) If f and g are differentiable, then so is fg, (fg)'(x) = f'(x)g(x) + f(x)g’(x).

(iv) If f is differentiable at x, and f(x) # O for all x € E, then 1/f is differentiable at x, and (1/f)(x) =
—F)IF(x)°

Proof. (i) Clear from definition.
(it) From properties of limits, we have that limf + g = limf + lim g.
(iit) Write f(x + h)g(x + h) — f(x)g(x) as f(x + h)(g(x + h) — g(x)) + g(x)(f(x + h) — f(x)).
(V) Vf(x + h) = 1/f(x) = —(f(x + h) — F(X)/(F(X)f(x + h)). O

f'g—fqg’

Proposition (Quotient Rule). (f/g) = p



Theorem (Chain Rule). /ff: U — C is differentiable at a € U, and g : V' — C is differentiable at f(a), with
f(U) C V, then g o f is differentiable at a, with derivative

(g o f)'(a) = f'(a)g'(f(a))
Proof Let f(x) = f(a) + (x — a)f’(a) + (x — a)er(x) and g(x) = g(b) + (x — b)g’(b) + (x — b)ey(x), where
Xliwl er(x) = L'Lmb gg(x) = 0. Now
g(f(x)) = g(b) + (f(x) = b)g'(b) + (f(x) — b)eg(f(x))
Setting b = f(a), we get that

g(f(x)) = g(f(a)) + (f(x) = f(a))g'(F(a)) + (F(x) — f(a))eq(f(x))
= g(f(0)) + (g'((a)) + 4 (F(N)(F (x) — f(a))
= g(f(a)) + (g'(F(a)) + 4 (f{(x))(x — a)(F'(a) + &r(x))
= g(f(a)) + (x — a)g'(f(a)f'(a) + (x — a)(eg(F(X)F'(a) + ¢'(F(a))es(x) + £rlx)eq(f()))

Then suffices to show that
lim q(F(x)f'(a) + g'(f(a))er(x) + er(x)eg(f(x)) = 0

Which follows from the definitions of &¢ and &4.

3.1 Mean Value Theorem

Theorem (Rolle's Theorem). Let f :[a, b] — R, f continuous on [a, b], differentiable on (a, b) and f(a) = f(b).
Then there exists ¢ € (a, b) such that f'(c) = 0.

Proof As f is continuous, there exists m, M & [a, b] such that for all x € [a, b], f(m) < f(x) < f(M). If
f(m) = f(a) = f(M), then f is constant. Otherwise, we may assume that f(m) < f(a) or f(a) < f(M).

If f(a) < f(M), then we must have that (M) = 0. Suppose if f'(M) > 0. Then by the definition of
f(M+ h) —f(M)

tends to a positive limit. Let h be positive and small enough such that

the derivative, p
f(M+ h) — (M)

M+ h < b and > 0. Then f(M + h) > f(M). Contradiction. Proceed similarly for

f'(M) < 0. Thus we must have that /(M) =0 and M € (a, b).
The case for f(m) < f(a) is similar. O

Theorem (Mean Value Theorem). Let f : [a, b] — R be continuous, and differentiable on (a, b). Then there
exists ¢ € (a, b) such that f(b) — f(a) = f'(c)(b — a)

f(b) - f
Proof. Let ¢(x) = f(x) — kx, where k = ( 2 — a(a). Then ¢(a) = ¢(b). Using Rolle’s Theorem, there exists
f(by—f
¢ such that ¢'(c) = 0 and ¢'(x) = f'(c) — k, so % = f'(c), and the result follows. O

Corollary. Let f :[a, b] = R be continuous and differentiable on (a, b). Then
o IfVx € (a,b), f'(x) >0, then f is strictly increasing on [a, b].
o I[fVx € (a,b), f'(x) >0, then f is increasing on [a, b].
o IfVx € (a,b), f'(x) =0, then f is constant on [a, b].

Theorem (Cauchy's Mean Value Theorem). Let f, g : [a, b] — R be continuous, and differentiable on (a, b).
Then there exists t € (a, b) such that

(F(b) = Ha)g'(t) = F(1)(g(b) — g(a))



1 1 1
Proof. Let @(x) = |f(a) f(x) f(b)]. By expanding the determinant, we find that ¢ is continuous on
gla) glx) g(b)
[a, b] and differentiable on (a, b). By properties of the determinant, we have that ¢(a) = ¢(b) = 0. By
Rolle, there must be a t € (a, b) such that ¢'(t) = 0. Expand the determinant and we get that ¢'(t) =
(g(b) — g(a))f'(t) — (f(b) — f(a))g'(t), and result follows. O

3.2 Inverse Function Theorem

Theorem. Let f : [a, b] — R be continuous, and differentiable on (a, b) with f'(x) > 0. Then let f(a) = ¢,
f(b)=d. f:[a, b] = [c,d] is a bijection. In addition, f~" is differentiable, with derivative

1

—1\/ o
R (T

Proof As f’(x) > 0O, f is strictly increasing. Thus f is a bijection and has a continuous strictly increasing
inverse as shown previously. Let g be the inverse to f and y = f(x).
Given k # 0, let h = g(y + k) — gly). Then f(x + h) = y + k = f(x) + k. Consequently,

gly+k—gly) _ h 11
k fx+h) —=1x)  F'(x) Flgly)
by continuity, as when k — 0, h — 0 by the continuity of g. O

3.3 Taylor's Theorem

Theorem (Taylor's Theorem with Lagrange's Remainder). Suppose f and it's derivatives up to order n — 1
are continuous in[a, a + h|. The n-th derivative exists for x € (a,a + h). Then
hZ hn—1

fla + h) = f(a) + hf'(a) + jf”(a) + =)

f=(a) + %f(”)(a + 6h)
where 6 = 6(h) € (0,1).

Proof For 0 < t < h, define

l”771 "
= — —tfla) — - — —— fn=Ngy =
o(t) = f(a+ t)— f(a) — tf'(a) = 1)!1‘ (a) oy
where B is chosen such that ¢(h) = 0. In addition, we see that ¢(0) = ¢/(0) = --- = @!"~1)(0) = 0. As

@p(h) = 0, we have some hy € (0, h) such that ¢’(hy) = 0. Then using Rolle again we have h, € (0, hy)
such that ¢”(h2) = 0. Repeat this until we get that ¢"~"(0) = ¢"~"(h,_1) = 0. Then finally we have
h, € (0, h,_1) such that ¢")(h,) = 0. Then h, € (0,1), so we can let h, = Bh.

Finally, ¢"(t) = f"(a + t) — B, so B = f(a + 6h). Setting t = h gives us the desired result. O

Theorem (Taylor's Theorem with Cauchy's Remainder). Suppose f and it's derivatives up to order n — 1 are
continuous in [0, h]. The n-th derivative exists for x € (0, h). Then

f(h) = £(0) + hf'(0) + /;f”(()) o n_l)! f=10) + R,
where R, — (1~ 9)(21_’((;))!(9/7)/7”, 6 e (0,1).
Proof Define for t & [0, A
F) = 118 = 110 = = 07— = S o



Then F/(t) = —f(t) + /(t) — (h — OF"(t) + (h — OF"(t) — - — Mf(”)(t) — —Mf(”)(t)
(n—1)! (n—1)!
A\ P
Set ¢(t) = F(t) — (hht) F(0). Then ¢(0) = ¢@(h) = 0. By Rolle, there exists 8  (0,1) such that
— g)p—]
¢'(6h) = 0. Thus F'(6h) + %F(O) =0. So
_Mf(”)(gh) + M f(h) — f(0) — h'F(0) — - - — h! f(n—1)(0) -0
(n =l h (n—1)!
and : 1
_ / h™ " oy h"(1—0)"" (n)
f(h) = 1(0) + ht"(0) + +(n—1)!f (0) (n—T)!p(1—9)P—1f (6h)
Letting p = n we get Lagrange’s Remainder, letting p = 1 we get Cauchy's Remainder. O

4 Power Series

Definition (Power Series). Power series are series of the form Zn apz", where a,,z € C.

Proposition (Binomial Series). For |x| <1, r € R,

ro__ — r n
(T+x) =) (n)x
n=0
—-1)... —1
where (;) = rr=1) n(|r = are the generalised binomial coefficients.

Proof Clearly f")(x) = r(r —1).. . (r4+n —1)(1 +x)"~". From Lagrange's Form of the Remainder, we have
" —-1)... —1
that R, = %f(m(ex) _fr=h n(|r+ d )x”(1 + 6x)"" = (1)x"(1 + 6x)"". We first assume that

0<x <1 Then (14 0x)~" <1 forn>r.

(r—n)x
" an n+1
as n — oo. Consequently, the original series is absolutely convergent, and as a result, a, — 0. Thus for

0 < x < 1andn>r we have that
‘Rﬂ, <‘(r)xn
n

To prove this for —1 < x < 0, we will need to use Cauchy's form of the remainder.

n—1
anr(r_1)x”(1+9x)’1 ( 1_9)

an4+1

Now consider the series ) (;)x”. Using the ratio test with a, = (;)x”, then — |x]

= |an,| =0

n—1 1+ 6x
For x € (—1,1), we have that 1+9x‘ <1, s0
—1
IR,| < r(2_1)x” (1 + 6x)"

By considering the sign of r — 1, we have that (1 + 0x)~" < max(1, (1 +x)""). Let k. = |r| max(1, (1 +
x)™~1). Then

IRyl < kelr —1n —1x"| - 0
So |R,| — 0 for |x]| < 1. O
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4.1 Radius of Convergence

o o
Lemma. If ) a,z} converges, and |z| < |z1|, then ) _ a,z" converges absolutely.
n=0 n=0

Proof Since ) a,z{ converges, we must have that a,z{ — 0. So there exists k such that ’anz{" < k for all
n
z

n
n. Then |a,z"| < k converges, result follows by comparison. [

. _ _ z
. Since the geometric series ) ‘
4|

2
Theorem. A power seris either

(i) Converges absolutely for all z € C

(ii) Converges absolutely for all z € C, |z| < R and diverges for all |z| > R
(iii) Converges for z =0 only.

Proof Let S={X €R:x>0,) a,x" converges}. Clearly 0 is in S, and by the lemma above, if x; € S,
then [0, x1] C S. If S is not bounded above, then S = [0, c0) and we have case (i).

On the other hand, if S is bounded above, let R = sup S. For z € C, if |z| < R, then there exists Ry € S
such that |z] < Ry < R. Then by the lemma above ) a,z" converges.

Now suppose |z| > R. If ) _a,z" converges, then this contradicts the fact that R is a supremum. O
1
Lemma. I || 5 [ then R = -,
ap l

Proof. By ratio test. O

4.2 Differentiation of Power Series

Lemma. If ) a,z" has radius of convergence R, then so do ) na,z"~" and Y n(n— 1)0,72”*2.
0 1 2

Proof. For z € C, choose Ry such that |z| < Ry < R. Then we must have some k such that ’anR(’)” < k for
all n. Then

n

" kn

1 n nil £ V4
na,z" ‘:—GR | <+—|5
‘ " ‘Z‘| " 0| Ro| — |Z| Ro
Zz n
Using the ratio test, ) n|{—| converges, since
n+1|z z
— = = <1
n Ry Ro

Thus _na,z"~" converges by comparison. On the other hand, if |z| > R, then
la,z"| < |Z|’nan2”*1‘

and 5 na,z"~" diverges by comparison. The proof for 5 n(n — 1)a,z"~? follows similarly. O

Lemma. For2 <r < n, (’r’) gn(n—1)(7:§)‘
n\ _nn="1)(n—=2 n—?2
7= =m0 om0 (23]

Lemma. |(z+ h)" — 2" — nhz| < n(n —1)(|z| + ‘h‘)nizwz

Proof.

11



Proof

l(z4+ h)" = 2" — nhz| =

! n
<3 (7)1t ier

r=2
n—2 n—ryp|r n—21412
<nln=1 S|l = n(n=1)(z| + |A)"~|h]
r=2
O
Theorem. Let f(z) = ) a,z", with radius of convergence R. Then f is differentiable for all |z| < R, and
0

oQ
=) na,z"”
1

o0 oQ
Proof We have already seen that _na,z"~' converges. Define f'(z) = Y_na,z"~'. Then we need to show
1

f(z + h) — f(z) — hf'(2) 1

that p —0as h—0.
f h) —f(z) — h'f(z o0
Let | = 2+ h) h(z) 2) EZ oz + h)" — 2" —nhz"""). Then
N
,,‘_7 Z (z+ h)"—2"—nhz"")
n=0
N
Z (z4h)" —2"—nhz"")
n=0

IN

A
e =1~

(z4 h)" = 2" — nhz""! ‘

o
Z 0|
n=0

|an|n(n —1)(|z| + |h])" 2|l

n=0
O
NownotethatZan n—1)(|1z|+|h[)" 2<Za,, n(n—=2)(|z|+r)"~ = A, where |h| < rand |z|+r < R.
Consequently, |/\ < |h|Ar,sol - 0as h— O
5 Special Functions
5.1 Exponential Function
Definition. Define e : C — C by
0 ZN
e(x) =) —
0
Proposition. e is differentiable, and e’(x) = e(x).
Proof. Suffices to show that the power series for e has infinite radius of convergence. We have that GZH =
n
1
P — 0, so R = oco. Result follows by term by term differentation. O

12



Lemma. Let f : C — C be differentiable, and f'(z) = 0 for all z € C. Then f(z) is constant.

Proof. Consider g(t) = f(tz) = u(t) + iv(t) for a fixed z. By the chain rule, g is differentiable, with
g'(t) = f'(tz) = 0 = u'(t) + iv/(t). We must then have that uv'(t) = V/(t) = 0 for all t. Hence u and v are
constant, so f(z) = f(0) for all z € C. O

Proposition. e(a + b) = e(a)e(b)

Proof. Consider f(z) = e(a + b — 2)e(z). Then f'(z) = —e(a + b — z)e(z) + e(a + b — z)e(z) = 0. So f is
constant. Hence e(a)e(b) = e(a + b)e(0) = e(a + b). O

From now on, we consider the restriction e : R — R.

Theorem.

(i) e:R — R is everywhere differentiable and e = ¢€’.
(i) e(x +y) = e(x)e(y)
(iii) €'(x) > 0 for all x

(iv) e is strictly increasing

(v) e(x) = oo as x — oo and e(x) — 0 as x — —o0.
(vi) e : R — (0, o) is a bijection.

1
Proof. (i) and (it) follows from the complex case. For (iii), clearly e(x) > Oforall x > 0. Then as e(—x) = ek

we have that e(—x) > 0 for x < 0 as well.

1
(v) For x > 0, e(x) > 1+ x. So as x — o0, e(x) — oco. Furthermore, e(—x) < —— — 0.

=+ X
(vi) Injectivity follows from the fact that it is strictly increasing. Now let y € (0, 00) be arbitrary. We
can find a, b such that e(a) < y < e(b). Then by the IVT, there exists x € (a, b) such that e(x) = y. O

Proposition. e : (R, +) — ((0, 00), X) is a group isomorphism.
Definition. [: (0, 00) — R, {(x) = e~ (x).
Theorem.
(i) L:(0,00) = R is a bijection, l(e(x)) = x and e(l(y)) = y.
(it) [ is differentiable, with l'(t) = 1?
(tii) {xy) = l(x) + l(y)

Proof. (i) follows by definition. (ii) follows from the inverse function theorem. (iii) follows from IA Groups,
the inverse of an isomorphism is an isomorphism. O

Definition. Fora € R, x > 0
ro(x) = e(al(x))
Theorem. Suppose x,y >0, a, B € R, then
() ra(xy) = ra(x)ra(y)
(i0) ra+p(x) = ra(x)rp(x)
(iii) ro(rg(x)) = rog(x)

13



(iv) ri(x) = x, ro(x) = 1.
Proof. Follows from definitions.

Proposition. For a € Q, rq(x) = x¢

Proof For n > 0,n € Z, ry(x) = riy.11(x) = (X)) = x". r(x)r1(x) = ro(x) = 1, so r_q(x) = x~

and r_,(x) = x7". Now for g € Z, (r1)4(x))7 = rq(riq(x)) = n(x) = x, so ryg(x) = x1a,

Ipig(X) = rp(rijg(x)) = (x"a)p = xPla.

Definition (exp, log, Powers). exp(x) = e(x), log(x) = [(x), x* = rq(x).
Definition (e). e = exp(1).

Proposition. (x?) = ax?~".

Proposition. (a*) = a*loga.

Proposition. For all k,

X

R
[o'e) X[ Xﬂ
Proof. From definitions, exp(x Z R for x >0, n > k.
X Xk = .
Then — > —— — oo
X n!

5.2 Trigonometric Functions

Definition (cos).

. Z2 Z4
COS 7z = —j—i‘ﬂ—
Definition (sin).
Z3 Z5
S\InNZz =27 — § —+ a

Proposition. Both power series have radius of convergence R = oo, both are differentiable and cos’ =

sin’ = cos.

Theorem (Euler's Formula).
e¥ =cosz+isinz

Proof. As the series for e” is absolutely convergent, we may write
2n+1

o 2" 2 o
e:; ol Z +;2n+1

Now (iZ)Zn _ (_1)n22n and (iZ)2n+1 _ [(_1)n22n+1. So

.~ 2n & n2n+1
) (—1)”2 ) (—1) V4 L.
z __ —
e’ = EO 2n)! + EO 2n+ 1)l = (C0Ssz+ (slnz

cle N N4 —iz : _ 1 iz —iz
Proposition. cosz = 5(e'” + ™) and sinz = (" — e™ ")

W W
Proposition. There exists a minimum positive real @ such that /2 < 5 < /3, and cos ( 2) =0.

14
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2k—1 x2k+1

Proof 1t 0 < x < 2, then for k € N, 2k(2k + 1) >4 > x% So (2)/2_1)! — 2k )] > 0. Hence

X3 x> X
sinx = (x—3!) —|—(5!—7!) +--->0

So for 0 < x < 2, (cosx)’ = —sinx < 0, and cosx is a strictly decreasing function on (0,2). Now as
(2n +1)(2n + 2) > 2 for n € N, we have that

cos(\ﬁ) =0+ (\2)4 — (\5)6) +--->0
Furthremore, as (2n + 1)(2n 4+ 2) > 3 for n € N, we have that
6 8
cos(\/§) =1—%+%— ((\g) —(\g) ) —~-<1—%+%=—%<0

Thus by the IVT, we have some ® such that cos(?) =0and V2 < % < V3. O
Definition (7). We define 7 to be the @ from above.
Theorem.

. sln(%) =1.

° sln(z + g) = C0S Z, cos(z + g) = —sinz

® sin(z + 7) = —sinz, cos(z + ) = —cos z.

e sin(z + 2) = sinz, cos(z + 271) = cos z.

o 02T — 1
Proof. Follows immediately from angle addition formulae and Euler’s Identity. O

5.3 Hyperbolic Functions

Definition (cosh).

74 e
coshz = >
Definition (sinh).
7 _ oz
sinhz = 5
Proposition. cosh’ = sinh, sinh’ = cosh.
Proposition. cos z = cosh(iz), sinz = —isinh(iz).

6 Integration

6.1 Definitions

Definition (Dissection). A dissection D of an interval [a, b] is a finite subset of [a, b] containing @ and b.
We write D = {xp, ..., Xp} where a = xp < x1 < -+ < xp =Db.

Definition (Upper Sum). We define the upper sum for a function f : [a, b] — R and a dissection D by

n

S(F,D) =) (x—x1) sup f(x)

=1 XE[xj-1,x/]
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Definition (Lower Sum). We define the lower sum for a function f : [a, b] — R and a dissection D by

s(f.D) =) (x—x1) inf f(x)
= XE[xj-1.,x]]
Proposition. s(f, D) < S(f, D) for all D

Proof. Clear from definitions. O

Lemma. /f D and D’ are dissections of [a, b], with D C [, then

s(f, D) < s(f, D) < S(f, D) < S(f, D)
Proof First suppose if D' = DU {y}, where x,_1 < y < x,. Clearly

sup  f(x), sup < sup f(x)

X€E[X—1,y] xelyx]  x€x—1.x]
So
(y—xr—1) sup f(x)+(xr—y) sup < (xr —x—1) sup f(x)
XE[xr—1,Y] x€ly x| XE[Xr—1,xr]
and S(f, D) > S(f,D’). A similar argument applies for s(f, D') > s(f, D). By induction this works for
|D'\D| = n. O

Lemma. /f Dy and D, are dissections of [a, b, then
S(f,Dr) > S(f, Dy U Dy) > s(f, Dy U D;) > s(f, Dy)
Proof Use D' = Dy U D> in lemma above. ]

Definition (Upper Integral). For a function f : [a, b] — R, we define the upper integral
I*(f) = inf S(f, D
(1) = inf SIf. D)
Definition (Lower Integral). For a function f : [a, b] — R, we define the lower integral
L(f) = sup s(f, D)
D

Proposition. For all f :[a, b] = R, I.(f) < I*(f).

Proof. For any dissections Dy, D, we have that s(f, D1) < S(f, D>). Consequently we have that for any Dy,

s(f, Dq) <inf S(f, Dy). Then sups(f, D1) < inf S(f, Dy). O
D, D; D,

Definition (Riemann Integrable). A bounded function f : [a, b] — R is integrable if /*(f) = I.(f). We write

b
/ f=I(f) = L(f)

Theorem. A bounded function f : [a, b] — R is integrable if and only if given € > 0, we can always find a
dissection D such that S(f, D) — s(f, D) < e.

Proof. For every dissection D we have

0 < I*(f) — () < S(f, D) — s(f, D)

so one direction of the implication is clear. Conversely, suppose if I*(f) = I.(f). Then there are partitions

b b

Dy and D> such that ff—g = 1(f) — g < s(f,Dy)and [f+ g — () + g > S(f, D»). Then S(f, Dy U
a a

Dy) — s(f, Dy U Dy) < S(f, Do) — s(f, D) < e. O
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6.2 Elementary Properties of the Integral
Theorem. If f :[a, b] = R is monotonic, then it is integrable.

Proof. Without loss of generality, suppose f is increasing. Then sup f(x) = f(x;) and ['Lnf ]f(x) =
XE[Xj—i.xj] XE[Xj—1,X]
f(xj—1). Thus for any dissection D,

n

S(f, D)= s(f, D) = (x; — x;-1)(F(x)) = Flx;-1))
j=1

Now let x; = a + @ Then S(f, D) — sif, D) = - ?

less than . O

(f(b) — f(a)). For n large enough, this is

Lemma. Let f : [a, b] — R be continuous. Then given € > 0, there exists 0 > 0 such that if |[x — y| < 9,
then |f(x) — f(y)| < .

Proof Suppose not. Then there exists € > 0, such that for all 0 > 0, there exists x,y € [a, b] such that
Ix —y| < 0 and |f(x) — f(y)] > &
1
Let 0, = - then using the above we get x, and y, such that |x, — y,| < - and |f(x,) — f(yn)| > € for

all n. By Bolzano-Weierstrass, we have a convergent subsequence x,, — ¢. Now |y,, — c| < |yn, — X, | +
|Xn, +¢c| = 0, so y,, — c as well. By continuity, f(x,,) — f(c) and f(yn,) — f(c) as well. Thus
[f(xn,) — f(yn,)] — 0. Contradiction. O

Theorem. If f :[a, b] — R is continuous, then it is integrable.

Proof. Given € > 0, from the lemma above, there exists 0 > 0 such that if [x — y| < 9, then |[f(x) — f(y)| < €.

b— b —
Let x; = a—f—( - a)j, where n is chosen such that 9 < 5. Then for any x, y € [xi—1,x], |[f(x) = f(y)| < .
Then
S(f, D) —s(f, D) = Z(X/ — Xj-1) ( max f(x)— min f(x)
= XE[xj-1.,x] XE[Xj-1.x]]
" b—ua
< Z - €
j=1
—(b—a)e

Proposition. Let f, g be bounded and integrable on [a, b]. Then if f < g on[a, b], fab f< fab g.

Proof. If f < g, then for any dissection D, fabf = I*(f) < S(f, D) < S(g, D). As a result, fabf = I*(f) <
: X b
nfS(g.D) = I"(g) =[5 ¢ O

Proposition. Letf, g be bounded and integrable on|a, b]. Then f+g is integrable, and fab f+g = fab f+fab g
Proof. For any dissection, we have that sup (f+¢g)< sup f+ sup g. So S(f+g,D) < S(f, D)+

XE[Xj_1.X)] XE[Xj-1.X]] XE[Xj1.X]]

S(g, D). Now choose two arbitary dissections D7 and [,. We have that

I"(f +g) < S(F +g,D1U D;) < S(F, Dy U Do) + S(g, Dy U Dy) < S(F, Dh) + S(g, D)
Fixing Dy and taking 'LBf, we get that I*(f + g) < S(f, D1) + I*(g, D2). Now taking 'LBf, we get that
2 1

I(F + g) < I*(f) + I(q).
Similarly, we get that L(f + g) > L(f) + L(g), 50 L(f +g) = F*(f +g)and [P F+g= [P+ ['g O
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Proposition. Let f be bounded and integrable on [a, b] Then kf is integrable, and fab kf =k fab f.

Proof.
ksupyep ) k>0
sup (kf)=140 ifk=0
XE[XJ‘—W ,X/] k 'Lnfxe[qu ’XJ] f if k <0
and the rest follows. O

Proposition. Let f be bounded and integrable on [a, b]. Then |f| is integrable, and ’fab f‘ < fab f].

Proof. Let f(x) = max(f(x),0). Then sup fr— inf fL < sup f— inf f Now given e >0,

X€Elxj1.x] XElxj-1.%] X€E[xj—1,x] X€[xj-1.x]

we have a dissection D such that S(f, D) — s(f, D) < . Then
0 < S(f+, D) —s(fy, D) < S(f,D)—s(f,D) < ¢
so f1 is integrable. |f| = 2f, — 1, so |f| is integrable. Since —|f| < f < |f], 'fab f’ < fab If]. O
Proposition. Let f, g be bounded and integrable on [a, b]. Then fg is integrable.

Proof First assume if f > 0. Then sup 2 =( sup f)? = /\/Ijz, and inf f2=( inf f)?= mjz-.

XE[xj—1,x]] XE[Xj-1.X]] XE[xj-1.x]] XE[xj1.x]
n n
Then S(f2, D) —s(f2, D) = Y (x; — xj—1) /\/Iz—m =2 (= x—1)(M; +m;)(M; —mj). As f is bounded,
j=1 j=1
we have that |f(x)| < k. Then M; + m; < 2k. So
S(f?, D) — ) < ZkZ — xj—1)(M; — mj) = 2k(S(f, D) — s(f, D))

(f +g)* = (f — g)°

So f? is integrable. For general f, note that f2 = ]f| and use the above. Finally, fg = J

so it is integrable. O

Proposition. /f a < ¢ < b, f is integrable on [a, b], then f is integrable on [a, c| and [c, b]. Conversely, if f
is integrable on [a, c| and [c, b] then it is integrable on |a, b].

c b
In both cases, [f= [+ [T
a C

a

Proof. First note that if Dy is a dissection of [a, ¢| and D, is a dissection of ¢, b, then D1 U D> is a dissection
of [a, b]. Furthermore, we have that

S(f, Dy U D2) = S(f 1ja,q, D1) + S(f ljc.p), D2)
Also, if D is a dissection of [a, b], then

S(f, D)ZS(I[,DU{C} = 5(f r[ac]vDT)+S(f [[c,b]rDZ)

where D1 = (DU {c})Nla, c]and D, = (DU {c})N|c, b].
The first statement implies that /*(f) < / (f Tja,q) + I*(f Tjc.p)) while the second implies that /*(f) >
F(F Tia,e) + F(F Tie,p))- S0 () = I°(F Tja,e) + IF(F Tie,p)- Similarly L(F) = L(f 1jg,q)) + L(F Tjc,p))- Thus

0 < IH(F) = L{f) = I°(F Tia,c) = kel Tia,c)  T°(F Ticpp) = BelF Ticp))

and result follows. ]
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6.3 Fundamental Theorem of Calculus

Theorem. Let f :[a, b] — R be bounded and integrable. Let F(x) = fGX f(t)dt. Then F is continuous.

/X . F(t)dt

Theorem (Fundamental Theorem of Calculus). Suppose further that f is continuous at x. Then F is differ-
entiable at x, with F'(x) = f(x).

Proof. Say |f| < k for x € [a, b]. Then

x+h
[F(x + h) — F(x)] = < / f(t)dt < k||

O]

Proof Consider

Flx + h) — Flx x+h x+h
( +f3 (>f(x)‘:|1|/x f(tdt — hf(x)) / f(t) — f(x)dt

If f is continuous, then given € > 0 there exists 0 > 0 such that if |t — x| < 0, then |f(t) — f(x)| < &. As
a result, if we have that |h| < 0, then

_ 1
]

1

x+h
| |/X+ f(t) — f(x)dt

— f(x). [

1
< —¢lh|=¢
|l

F(x+h)— F(x)

H
ence h

Corollary. Integration is the inverse of differentiation. If f = g’ is continuous on [a, b], then for all x € [a, b]

/ f = g3 — gla)

Proof From the FTC, F — g has zero derivative on [a, b]. So it must be constant. As F(a) = 0, we must
have that F(x) = g(x) — g(a). O

Corollary (Integration by Parts). Suppose " and g’ exists and are continuous on [a, b]. Then

b b
/ 'g = f(b)g(b) — f(a)gla) — / g

a a

Proof. By product rule and FTC. O

Corollary (Integration by Substitution). Let g : [a, B] — [a, b}, g(a) = a and g(B) = b. In addition, g exists
and is continuous on [a, B]. Let f :[a, b] — R be continuous. Then

b B
/ f(x)dx = / fg()g'(1)dt

Proof Set F(x) = [ f(t)dt and h(t) = F(g(t)). Then

B B B b
/ flg(t)g'(1)de = / Flg(t)g'(1)dt = / W(0)dt = h(B) — hla) = F(b) — Fla) = / F(x)dx
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Theorem (Taylor's Theorem with Integral Remainder). Let f") be continuous for x € [0, h]. Then

f(h) = £(0) + hF'(0) + - + (nhn_l)! f-1(0) + R,
pno1
where R, = =y _0[(1 — )" ") (th)dt
Proof. Substituting u = th, we get that
R, = ! /h(h o)) () du
(n="1Jo
Integrating by parts,
Ry = _h:n 1_][(;’)!1)(0) + G 1 %) /Oh(h — u)" 2N () = _h:n 1_)[(:)11)(0) + Ry

Furthermore, Ry = f(h) — f(0), and we get the result required. O

Theorem (Integral Mean Value Theorem). Let f, g : [a, b] — R be continous. With g(x) # 0 for all x € [a, b].

Then there exists ¢ € (a, b) such that
b b
[rg=1a [ g
a a

Proof. Set F(x) = faX fg and G(x) = fab g. Applyint the Cauchy Mean Value Theorem, there exists ¢ € (a, b)
such that
(F(b) = F(a)G'(c) = F'(c)(G(b) — G(a))
ie (fab fg)g(c) = f(c)g(c) fab g. Dividing through by g(c) # 0 yields the required result. O

Proposition. Using g = 1 with the Integral form of the reaminder, and the integral mean value theorem, we
get Cauchy's Form of the Remainder.

Proposition. Using g = (1 —t)"~!, we get Lagrange’s Form of the Remainder.

6.4 Improper Integrals

Definition (Improper Integral). If f : [a, 00) — R, f is bounded and integrable on every [a, R] and as R — oo
faRf*) [ < o0, then
[o,¢]
[ =1

Definition (Improper Integral). If [7°f = {1 and [ _f = b, then we define

/ f=04L+0

Theorem (Integral Test). Let f be a positive decreasing function for x > 1. Then
(i) [7°f converges if and only if Y_5° f(n) converges.
(ii) Asn — oo, y_1f(r)— [{'f tends to a limit [, with 0 < [ < f(1).
Proof If n —1 < x < n, then f(n —1) > f(x) > f(n), so f(n—1) > fn"_1 f > f(n). Adding up, we get that

n—1 n

Y fz [ 123 0

1 ! 2
and (i) follows. Now set ¢(n) = Y | f(r) — 1” f. Then ¢(n) — ¢(n — 1) = f(n) — fnn_1f < 0. Also,
0 < ¢(n) < f(1), and as ¢(n) is decreasing and bounded below, ¢(n) — [, where 0 < [ < f(1). O
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