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1 Limits and Convergence
Definition (Sequence). A sequence (xn), (xn)∞n=1 is a function N→ R (or C).
Definition (Convergence). xn → x as n → ∞ if ∀ε > 0, ∃N, ∀n ≥ N, |xn − x| < ε.
Definition (Increasing Sequence). (xn) is increasing if ∀n, xn ≤ xn+1
Definition (Strictly Increasing Sequence). (xn) is strictly increasing if ∀n, xn < xn+1
Definition (Monotone). (xn) is monotone if (xn) is increasing or decreasing.
Definition (Supremum). If a set S ⊆ R is nonempty and bounded above, supS is the least upper bound of
S . That is

• ∀x ∈ S, x ≤ supS
• ∀ε > 0, ∃x ∈ S, k − ε < x ≤ k

Theorem. Every increasing sequence that is bounded above converges.

Proof. Let S = {xn : n ∈ N}. Then S is bounded above and nonempty. We will show that xn → supS . Bydefinition of the supremum, we know that given ε > 0, there exists N such that k − ε < xN ≤ k . As xn isincreasing, ∀n ≥ N , k − ε < xN ≤ xn ≤ k .
Lemma. (i) Limit is unique. If xn → a and xn → b as n → ∞, then a = b.

(ii) If an → a as n → ∞, and n1 < n2 < . . . , then ank → a as k → ∞.

(iii) If an = c for all n, then an → c.

(iv) If an → a and bn → b, then an + bn → a+ b.

(v) If an → a and bn → b, then anbn → ab.

(vi) If an → a, an 6= 0 for all n, a 6= 0, then 1/an → 1/a.

(vii) If an ≤ A for all n, and an → a, then a ≤ A.

Proof. (i) Given ε > 0, we have |a − b| ≤ |an − a| + |an − b| < 2ε. Setting ε = |a − b|/3 for a 6= b weget a contradiction. So a = b.(ii) Given ε > 0, exists N such that ∀n ≥ N , |an − a| < ε. We note that nk ≥ k , so ∀k ≥ N ,
|ank − a| < ε.(iii) Clearly an − c = 0, so N is arbitrary.(iv) Clear from triangle inequality. |an + bn − a − b| ≤ |an − a|+ |bn − b|.(v) |anbn − ab| ≤ |anbn − anb|+ |anb − ab| = |an||bn − b|+ |b||an − a|. For n large enough, |an| ≤
|a|+ 1, |an − a| < ε, |bn − b| < ε, so |anbn − ab| < ε(|a|+ 1 + |b|).(vi) For n large enough, |an| ≥ 12 |a|. Then 1

|ana| <
2
|a|2 . Also, |an − a| < ε. With this, ∣∣∣ 1

an −
1
a

∣∣∣ =∣∣∣an−aana

∣∣∣ < 2
|a|2 ε.(vii) If a > A, then ε = a − A > 0, |an − a| < a − A =⇒ a − a + A < an =⇒ A < an.Contradiction.

Lemma. 1
n → 0

Proof. Clearly decreasing and bounded below so it converges to a. Note 12n → 12a, but it is also asubsequence so 12a = a. Hence a = 0.
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1.1 Bolzano-Weierstrass
Theorem (Bolzano Weierstrass). Every bounded sequence has a convergent subsequence.

Proof. Suppose for all n, xn ∈ [a, b]. At least one of S1 = {n : xn ∈ [a, a+b2 ]} and S2 = {n : xn ∈ [a+b2 , b]}must be infinite. We can use this to generate new interval [a1, b1] where {n : xn ∈ [a1, b1]} is infinite.Proceed inductively and we get two sequences an, bn. Now note that an−1 ≤ an ≤ bn ≤ bn−1, and
bn − an = 12 (bn−1 − an−1). So an → a, bn → b and a = b. Now as {n : xn ∈ [ak , bk ]} is infinite for all k ,we may choose xnk such that xnk ∈ [ak , bk ] and nk > nk−1 > · · · > n1. So xnk → a.
Proof. Alternatively, every bounded sequence has a monotonic subsequence. Consider the set S = {n :
xn ≥ xm ∀m ≥ n}. If S is infinite, we can use this to construct our monotonic subsequence. If S is finite,then for all n > max(S), there exists m ≥ n such that xm > xn. We can use this to construct a monotonicsubsequence. Clearly any monotonic bounded sequence converges.
1.2 Cauchy Sequences
Definition (Cauchy). (an) is Cauchy if given ε > 0, ∃N , |an − am| < ε for all n,m ≥ N .
Lemma. Every convergent sequence is Cauchy.

Proof. |an − am| ≤ |an − a|+ |am − a| < 2ε for n,m large enough.
Theorem. Every Cauchy sequence is convergent.

Proof. First note that every Cauchy sequence is bounded, by setting ε = 1 in definition and taking the maxof it and the first N terms. From Bolzano-Weierstrass, an has a convergent subsequence anj → a. Then
|an − a| ≤

∣∣an − anj ∣∣ + ∣∣anj − a∣∣ < 2ε for n, j large enough.
1.3 Series

Definition. For a sequence (an) (real or complex), ∞∑
j=1aj converges to s if the partial sums N∑

j=1aj convergesto s as N →∞.
Lemma. (i) If

∞∑
j=1aj and

∞∑
j=1bj converges, so does

∞∑
j=1(λaj + µbj )

(ii) If for all n ≥ N, an = bn, then
∞∑
j=1aj converges if and only if

∞∑
j=1 converges.

Proof. (i) Write out partial sums and use distributivity.(ii) Let Sn = n∑
1 aj = N−1∑

1 aj + n∑
N
aj and Dn = n∑

1 bj = N−1∑
1 bj + n∑

N
bj . Sn − dn = N−1∑

1 aj + N−1∑
1 bj andis constant. So Sn converges if and only if Dn converges.

Lemma. If
∞∑
1 aj converges, then aj → 0.

Proof. Let Sn = n∑
1 aj . an = Sn − Sn−1 → 0.

Proof. Let Sn = n∑
1 1/j . S2n = Sn + 1/(n + 1) + ... + 1/2n ≥ Sn + 1/2. So if Sn → a, then S2n → a, and

a ≥ a+ 1/2. Contradiction.
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1.4 Geometric Series

Definition (Geometric Series). Given x , set an = xn−1. Sn = n∑
1 aj .

Proposition. Sn = 1−xn1−x .
Proof. Consider (1− x)Sn and the terms cancel.
Proposition. Sn converges if and only if |x| < 1.
Proof. If |x| < 1, then xn → 0 as n → ∞. To see this, wlog 0 < x < 1, let 1/x = 1 + δ where δ > 0. Then0 < xn = 1/(1 + δ)n ≤ 1/(1 + δn). By comparison with 1/n, we can show 1/(1 + δn)→ 0.If |x| > 1, again wlog x > 1, xn = (1 + δ)n ≥ 1 + δn → ∞.For x = 1, Sn = n and clearly diverges. For x = −1, Sn oscillates between 1 and −1.
1.5 Convergence Tests

Theorem (Comparison Test). If 0 ≤ bn ≤ an for all n, and
∞∑
1 an converges, then so does

∞∑
1 bn.

Proof. Let Sn = n∑
1 aj and Dn = n∑

1 bj , then Dn ≤ Sn ≤ S for all n, and Dn is increasing, so it mustconverge.
Theorem (Root Test). Assume an ≥ 0 and a1/n

n → a as n → ∞. If a < 1, then
∑
an converges. If a > 1,

then
∑
an diverges.

Proof. If a < 1, choose a < r < 1. Then for n large enough, a1/n
n < r and an < rn. As r < 1, the geometricseries converges. By comparison, so does an.If a > 1, for n large enough, a1/n

n > 1, so an > 1. Then ∑an can’t converge as the terms don’t tend tozero.
Theorem (Ratio Test). Suppose an ≥ 0, an+1

an → l as n → ∞. If l < 1, then
∑
an converges, if l > 1, then∑

an diverges.
Proof. If l < 1, choose l < r < 1. For n ≥ N , we have 0 < an+1

an < r . Then an = an
an−1 · an−1

an−2 · · · · aN+1
aN an <

aNrn−N . By comparison to geometric, ∑an converges.If l > 1, then an > aNrn−N by a similar method. By comparison to geometric, ∑an diverges.
Theorem (Cauchy’s Condensation Test). Let an be a sequence of decreasing positive terms. Then

∑
an

converges if and only if
∑2na2n converges.

Proof. First suppose if ∑an = A. 2n−1a2n ≤ 2n∑
m=2n−1+1am, so N∑

n=1 2n−1a2n ≤ N∑
n=1

2n∑
m=2n−1+1am = 2N∑

m=2an.Hence N∑
n=1 2na2n ≤ 2 N∑

m=2am ≤ 2(A − a1). So N∑
n=1 2na2n is increasing and bounded above, thus it converges.

For the reverse implication, 2n∑
m=2n−1+1am ≤ 2n−1a2n−1 , so 2N∑

m=2 = N∑
n=1

2n∑
m=2n−1−1am ≤

N∑
n=1 2n−1a2n−1 . Thus∑

an is bounded and increasing, so it converges.
Proposition.

∑ 1
nk converges if and only if k > 1.

Proof. As n
n+1 < 1, ( n

n+1 )k < 1, so 0 < 1
nk < 1(n+1)k . 2na2n = 2n(1/(2n))k = (21−k )n. So ∑2na2n is ageometric series. This converges if and only if 21−k < 1, ie k > 1.

Theorem (Alternating Series Test). If an is decreasing, and an → 0, then
∑(−1)n+1an converges.

Proof. Let Sn = ∑n
j=1(−1)j+1aj . Then S2n = (a1−a2)+(a3−a4)+· · ·+(a2n−1−a2n) = S2n−2+(a2n−1−a2n).As an is decreasing, S2n ≥ S2n−2. Rearranging, S2n = a1− (a2−a3)− · · · − a2n ≤ a1. So S2n is boundedabove and increasing, thus it converges. Say S2n → S . S2n+1 = S2n + a2n+1 → S as well. Hence Sn → Sby choosing N to be the max of the N from S2n and S2n+1.
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1.6 Absolute Convergence
Definition (Absolute Convergence). Let an ∈ C, then ∑an is absolutely convergent if ∑ |an| converges.
Theorem. Absolute convergence implies convergence.

Proof. First suppose an ∈ R. Let vn = |an|+an2 , wn = |an|−an2 . Then vn, wn ≥ 0, an = vn − wn, |an| =
vn +wn ≥ vn, wn. if ∑ |an| converges, by comparison ∑ vn and ∑wn converges. So ∑an = ∑ vn−wn =∑
vn −

∑
wn converges.If an ∈ C, then let an = xn + iyn. |xn|, |yn| ≤ |an|, so if ∑ |an| converges, by comparison so do ∑ |xn|and ∑ |yn|. Thus ∑ xn and ∑yn converges. Then ∑an = ∑ xn + iyn = ∑ xn + i

∑
yn converges.

Definition (Conditional Convergence). A sequence is conditionally convergent if it is convergent and notabsolutely convergent.
Definition (Rearrangement). Let σ : N→ N be a bijection, then a′n = aσ (n) is a rearrangement of an.
Theorem. If

∑
an is absolutely convergent, then every rearrangement will sum to the same value.

Proof. We shall first show this for an ∈ R. Let a′n be a rearrangement of an. Let sn = n∑
i=1ai and tn = n∑

i=1a′i.For now, let’s consider an ≥ 0. Given n, we can find q = max{σ (i) : 0 ≤ i ≤ n} such that every term in snis in tq. Then sn ≤ tq ≤ t for all n, and as sn is increasing and bounded, sn → s ≤ t . Similarly t ≤ s, so
s = t .New define vn = |an|+an2 , wn = |an|−an2 and v ′n, w ′n similarly. As ∑ |an| converges, so do ∑ vn, ∑ v ′n,∑
wn and ∑w ′n. Then v ′n is a rearrangement of vn, and w ′n is a rearrangement of wn. So ∑ vn = ∑ v ′n and∑
wn = ∑w ′n. Result follows.For complex an, let an = xn + iyn. Then ∑ |xn| and ∑ |yn| converges. Then use the above.

Theorem (Riemann Rearrangement Theorem). If
∑
an is conditionally convergent, then given x ∈ R, there

is a rearrangement a′n such that
∑
a′n = x.

Proof. Let bn be the positive terms in an, cn be the negative terms, dn be the zeroes. Then ∑bn and ∑ cnmust both diverge. Now add on terms from bi until we go over x , then add on ci until we go below x , andso on. This converges to x as |x − xn| is bounded by |bn| and |cn|. Intersperse the dn as appropriate.
2 Continuity
Let E ⊆ C, E nonempty, f : E → C, a ∈ E .
Definition (Continuity (1)). f is continuous at a ∈ E if for every sequence zn ∈ E , zn → a, we have that
f (zn)→ f (a)
Definition (Continuity (2)). f is continuous at a ∈ E if given ε > 0, there exists δ > 0 such that for any
x ∈ E , if |x − a| < δ , then |f (x)− f (a)| < ε.
Proposition. The two definitions of continuity are equivalent.

Proof. (2) =⇒ (1). Given ε > 0, we require |zn − a| < δ , and this is true for all n ≥ N .(1) =⇒ (2). Suppose f (zn) → f (a) whenever zn → a. Also suppose that (according to 2), f is notcontinuous at a. That is, ∃ε > 0, ∀δ > 0, ∃x, |x − a| < δ ∧ |f (x)− f (a)| ≥ ε. From this we get zn such that
|zn − a| < 1

n and |f (zn)− f (a)| ≥ ε. Contradiction, as we must have that f (zn)→ f (a) as zn → a.
Proposition. Let f , g : E → C be continuous at a. Then so is f + g, fg, λf for λ ∈ C. If f (z) 6= 0 for all
z ∈ E, then 1/f is also continuous.

Proof. Using sequence definition of continuity, these are properties of sequences which we have alreadyshown.
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Definition (Continuous Function). f : E → C is continuous if it is continuous at every x ∈ E .
Theorem. Let f : A → C, g : B → C, f (A) ⊆ B, f continuous at a, g continuous at f (a). Then g ◦ f : A → C
is continous at a.

Proof. Take any sequence zn → a. Set wn = f (zn). Then g(wn)→ g(f (a)) by continuity.
2.1 Limits of Functions
Definition (Limit Point). Let E ⊆ C, a ∈ E is a limit point of E if for all δ > 0, exists z ∈ E such that0 < |z − a| < δ .
Proposition. a is a limit point if and only if there exists zn ∈ E such that zn → a and zn 6= a for all n.

Proof. Reverse implication is clear. For forward implication use δ = 1/n to construct zn.
Definition (Limit of Function). For f : E → C, a a limit point of E , then lim

z→a
f (z) = l if given ε > 0, thereexists δ > 0 such that for all |z − a| < δ , |f (z)− l| < ε.Or equivalently, f (zn)→ l for every sequence zn ∈ E , zn 6= a, zn → a.

Proposition. lim
z→a

f (z) = f (a) if and only if f is continuous at a.

Proof. Clear from definition.
Proposition. If a ∈ E is not a limit point, then f is continuous at a.

Proof. Choose δ small enough such that a is the only point left.
Lemma. (i) Limit of functions is unique

(ii) f (z)→ A and g(z)→ B as z → a implies f (z) + g(z)→ A + B as z → a.

(iii) f (z)→ A and g(z)→ B as z → a implies f (z)g(z)→ AB as z → a.

(iv) If in addition, B 6= 0, g(z) 6= 0 then f (z)/g(z)→ A/B.

Proof. Clear from sequence definition of limits and properties of the limits of sequences.
2.2 Intermediate Value Theorem
Theorem (Intermediate Value Theorem). Let f : [a, b] → R be continuous, wlog f (a) < f (b), then for any
f (a) < η < f (b), there exists a < c < b such that f (c) = η.

Proof. Let S = {x ∈ [a, b] : f (x) < η}. Clearly S is bounded above by b and a ∈ S . Set c = supS . Fromdefinition of the supremum, there exists c − 1/n < xn < c for all n. Then xn → c, f (xn)→ f (c) by continuity,and f (xn) < η. So f (c) ≤ η.For n large enough, c+ 1/n < b, and c+ 1/n → c, so f (c+ 1/n)→ f (c). As c+ 1/n > c, f (c+ 1/n) ≥ η,so f (c) ≥ η and we are done.
2.3 Bounds of a Continuous Function
Theorem. Let f : [a, b]→ R be continuous. Then there exists k such that |f (x)| ≤ k for all x ∈ [a, b].
Proof. Suppose not. Then for all n ∈ N, there exists xn ∈ [a, b] such that |f (xn)| > n. As xn is bounded, fromBolzano-Weierstrass there exists a convergent subsequence xnj → x . So f (xnj )→ f (x). But ∣∣f (xnj )∣∣ > nj , so∣∣f (xnj )∣∣→∞. Contradiction.
Theorem. Let f : [a, b] → R be continuous. Then there exists x1, x2 ∈ [a, b] such that f (x1) ≤ f (x) ≤ f (x2)
for all x ∈ [a, b].
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Proof. Let A = {f (x) : x ∈ [a, b]}. From theorem above, A is bounded above and clearly nonempty. Set
M = supA. Then for all n, there exists xn ∈ [a, b] such that M − 1/n < f (xn) < M . From Bolzano-Weierstrass, let xnj → x be a convergent subsequence. Then by continuity, f (xnj )→ f (x). But we also havethat f (xnj )→M . So f (x) = M . x1 can be found using the inf.
Proof. Let A and M be as above. Suppose if for all x , f (x) < M . Then g(x) = 1/(M − f (x)) is well defined,positive and continuous. So there exists k such that |g(x)| < k . Thus f (x) ≤ M−1/k for all x . Contradictionas M is least upper bound.
2.4 Inverse Functions
Theorem. Let f : [a, b] → R be a continuous strictly increasing function. Let c = f (a) and d = f (b). Then
f : [a, b]→ [c, d] is a bijection, and g = f−1 : [c, d]→ [a, b] is strictly increasing and continuous.

Proof. Surjective comes from the IVT, Injective comes from that it is strictly increasing. So f is a bijection.Let g = f−1. If x1 < x2, then we must have g(x1) < g(x2). Otherwise x1 = f (g(x1)) ≥ f (g(x2)) = x2.For k ∈ (c, d), given ε > 0, choose δ = min(f (k )− f (k − ε), f (k + ε)− f (k )). Then result follows. Prooffor k = c and k = d are similar.
3 Differentiability
Let E be a subset of C.
Definition (Differentiable). f : E → C is differentiable at x if the limit

lim
h→0 f (x + h)− f (x)

hexists, and we define f ′(x) to be its value.
Remark. Let ε(h) = f (x + h)− f (x)− hf ′(x). Then

lim
h→0 ε(h)

h = 0
Definition (Alternative definition for Differentiability). f : E → C is differentiable at x if there exists constant
A ∈ C and ε : C→ C such that

f (x + h) = f (x) + hA + ε(h)
where lim

h→0 ε(h)
h = 0. If such an A exists, then it is unique. We denote it by f ′(x).

Proposition. Differentiable implies continuous.

Proposition. (i) If f (x) = c for all x ∈ E, then f is differentiable, and f ′(x) = 0.

(ii) If f and g are differentiable, then so is f + g. (f + g)′(x) = f ′(x) + g′(x).
(iii) If f and g are differentiable, then so is fg, (fg)′(x) = f ′(x)g(x) + f (x)g′(x).
(iv) If f is differentiable at x, and f (x) 6= 0 for all x ∈ E, then 1/f is differentiable at x, and (1/f )′(x) =
−f ′(x)/(f (x))2.

Proof. (i) Clear from definition.(ii) From properties of limits, we have that lim f + g = lim f + limg.(iii) Write f (x + h)g(x + h)− f (x)g(x) as f (x + h)(g(x + h)− g(x)) + g(x)(f (x + h)− f (x)).(iv) 1/f (x + h)− 1/f (x) = −(f (x + h)− f (x))/(f (x)f (x + h)).
Proposition (Quotient Rule). (f /g)′ = f ′g − fg′

g2 .
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Theorem (Chain Rule). If f : U → C is differentiable at a ∈ U, and g : V → C is differentiable at f (a), with
f (U) ⊆ V , then g ◦ f is differentiable at a, with derivative(g ◦ f )′(a) = f ′(a)g′(f (a)).
Proof. Let f (x) = f (a) + (x − a)f ′(a) + (x − a)εf (x) and g(x) = g(b) + (x − b)g′(b) + (x − b)εg(x), wherelim
x→a

εf (x) = lim
x→b

εg(x) = 0. Now
g(f (x)) = g(b) + (f (x)− b)g′(b) + (f (x)− b)εg(f (x))Setting b = f (a), we get that

g(f (x)) = g(f (a)) + (f (x)− f (a))g′(f (a)) + (f (x)− f (a))εg(f (x))= g(f (a)) + (g′(f (a)) + εg(f (x)))(f (x)− f (a))= g(f (a)) + (g′(f (a)) + εg(f (x)))(x − a)(f ′(a) + εf (x))= g(f (a)) + (x − a)g′(f (a))f ′(a) + (x − a)(εg(f (x))f ′(a) + g′(f (a))εf (x) + εf (x)εg(f (x)))
Then suffices to show that

lim
x→a

εg(f (x))f ′(a) + g′(f (a))εf (x) + εf (x)εg(f (x)) = 0Which follows from the definitions of εf and εg.
3.1 Mean Value Theorem
Theorem (Rolle’s Theorem). Let f : [a, b]→ R, f continuous on [a, b], differentiable on (a, b) and f (a) = f (b).
Then there exists c ∈ (a, b) such that f ′(c) = 0.

Proof. As f is continuous, there exists m,M ∈ [a, b] such that for all x ∈ [a, b], f (m) ≤ f (x) ≤ f (M). If
f (m) = f (a) = f (M), then f is constant. Otherwise, we may assume that f (m) < f (a) or f (a) < f (M).If f (a) < f (M), then we must have that f ′(M) = 0. Suppose if f ′(M) > 0. Then by the definition ofthe derivative, f (M + h)− f (M)

h tends to a positive limit. Let h be positive and small enough such that
M + h < b and f (M + h)− f (M)

h > 0. Then f (M + h) > f (M). Contradiction. Proceed similarly for
f ′(M) < 0. Thus we must have that f ′(M) = 0 and M ∈ (a, b).The case for f (m) < f (a) is similar.
Theorem (Mean Value Theorem). Let f : [a, b] → R be continuous, and differentiable on (a, b). Then there
exists c ∈ (a, b) such that f (b)− f (a) = f ′(c)(b − a)
Proof. Let φ(x) = f (x)− kx , where k = f (b)− f (a)

b − a . Then φ(a) = φ(b). Using Rolle’s Theorem, there exists
c such that φ′(c) = 0 and φ′(x) = f ′(c)− k , so f (b)− f (a)

b − a = f ′(c), and the result follows.
Corollary. Let f : [a, b]→ R be continuous and differentiable on (a, b). Then

• If ∀x ∈ (a, b), f ′(x) > 0, then f is strictly increasing on [a, b].• If ∀x ∈ (a, b), f ′(x) ≥ 0, then f is increasing on [a, b].• If ∀x ∈ (a, b), f ′(x) = 0, then f is constant on [a, b].
Theorem (Cauchy’s Mean Value Theorem). Let f , g : [a, b] → R be continuous, and differentiable on (a, b).
Then there exists t ∈ (a, b) such that

(f (b)− f (a))g′(t) = f ′(t)(g(b)− g(a))
8



Proof. Let φ(x) =
∣∣∣∣∣∣

1 1 1
f (a) f (x) f (b)
g(a) g(x) g(b)

∣∣∣∣∣∣. By expanding the determinant, we find that φ is continuous on
[a, b] and differentiable on (a, b). By properties of the determinant, we have that φ(a) = φ(b) = 0. ByRolle, there must be a t ∈ (a, b) such that φ′(t) = 0. Expand the determinant and we get that φ′(t) =(g(b)− g(a))f ′(t)− (f (b)− f (a))g′(t), and result follows.
3.2 Inverse Function Theorem
Theorem. Let f : [a, b] → R be continuous, and differentiable on (a, b) with f ′(x) > 0. Then let f (a) = c,
f (b) = d. f : [a, b]→ [c, d] is a bijection. In addition, f−1 is differentiable, with derivative

(f−1)′(x) = 1
f ′(f−1(x))

Proof. As f ′(x) > 0, f is strictly increasing. Thus f is a bijection and has a continuous strictly increasinginverse as shown previously. Let g be the inverse to f and y = f (x).Given k 6= 0, let h = g(y+ k )− g(y). Then f (x + h) = y+ k = f (x) + k . Consequently,
g(y+ k )− g(y)

k = h
f (x + h)− f (x) → 1

f ′(x) = 1
f ′(g(y))by continuity, as when k → 0, h → 0 by the continuity of g.

3.3 Taylor’s Theorem
Theorem (Taylor’s Theorem with Lagrange’s Remainder). Suppose f and it’s derivatives up to order n − 1
are continuous in [a, a+ h]. The n-th derivative exists for x ∈ (a, a+ h). Then

f (a+ h) = f (a) + hf ′(a) + h22! f ′′(a) + hn−1(n − 1)! f (n−1)(a) + hn
n! f (n)(a+ θh)

where θ = θ(h) ∈ (0, 1).
Proof. For 0 ≤ t ≤ h, define

φ(t) = f (a+ t)− f (a)− tf ′(a)− · · · − tn−1(n − 1)! f (n−1)(a)− tn
n!Bwhere B is chosen such that φ(h) = 0. In addition, we see that φ(0) = φ′(0) = · · · = φ(n−1)(0) = 0. As

φ(h) = 0, we have some h1 ∈ (0, h) such that φ′(h1) = 0. Then using Rolle again we have h2 ∈ (0, h2)such that φ′′(h2) = 0. Repeat this until we get that φ(n−1)(0) = φ(n−1)(hn−1) = 0. Then finally we have
hn ∈ (0, hn−1) such that φ(n)(hn) = 0. Then hn ∈ (0, 1), so we can let hn = θh.Finally, φ(n)(t) = f (n)(a+ t)− B, so B = f (n)(a+ θh). Setting t = h gives us the desired result.
Theorem (Taylor’s Theorem with Cauchy’s Remainder). Suppose f and it’s derivatives up to order n− 1 are
continuous in [0, h]. The n-th derivative exists for x ∈ (0, h). Then

f (h) = f (0) + hf ′(0) + h22! f ′′(0) + hn−1(n − 1)! f (n−1)(0) + Rn

where Rn = (1− θ)n−1f (n)(θh)hn(n − 1)! , θ ∈ (0, 1).
Proof. Define for t ∈ [0, h]

F (t) = f (h)− f (t)− (h − t)f ′(t)− · · · − (h − t)n−1(n − 1)! f (n−1)(t)

9



Then F ′(t) = −f ′(t) + f ′(t)− (h − t)f ′′(t) + (h − t)f ′′(t)− · · · − (h − t)n−1(n − 1)! f (n)(t) = − (h − t)n−1(n − 1)! f (n)(t)
Set φ(t) = F (t) − (h − th

)p
F (0). Then φ(0) = φ(h) = 0. By Rolle, there exists θ ∈ (0, 1) such that

φ′(θh) = 0. Thus F ′(θh) + p(1− θ)p−1
h F (0) = 0. So

−h
n−1(1− θ)n−1(n − 1)! f (n)(θh) + p(1− θ)p−1

h

(
f (h)− f (0)− h′f (0)− · · · − hn−1(n − 1)! f (n−1)(0)) = 0

and
f (h) = f (0) + hf ′(0) + · · ·+ hn−1(n − 1)! f (n−1)(0) + hn(1− θ)n−1(n − 1)!p(1− θ)p−1 f (n)(θh)

Letting p = n we get Lagrange’s Remainder, letting p = 1 we get Cauchy’s Remainder.
4 Power Series
Definition (Power Series). Power series are series of the form ∑n anzn, where an, z ∈ C.
Proposition (Binomial Series). For |x| < 1, r ∈ R,

(1 + x)r = ∞∑
n=0
(
r
n

)
xn

where
(r
n
) = r(r − 1) . . . (r + n − 1)

n! are the generalised binomial coefficients.

Proof. Clearly f (n)(x) = r(r − 1) . . . (r + n − 1)(1 + x)r−n. From Lagrange’s Form of the Remainder, we havethat Rn = xn
n! f (n)(θx) = r(r − 1) . . . (r + n − 1)

n! xn(1 + θx)r−n = (r
n
)
xn(1 + θx)r−n. We first assume that0 < x < 1. Then (1 + θx)r−n ≤ 1 for n > r.Now consider the series ∑

n

(r
n
)
xn. Using the ratio test with an = (rn)xn, then ∣∣∣∣an+1

an

∣∣∣∣ = ∣∣∣∣ (r − n)x
n+ 1

∣∣∣∣→ |x|as n → ∞. Consequently, the original series is absolutely convergent, and as a result, an → 0. Thus for0 < x < 1 and n > r, we have that
|Rn| ≤

∣∣∣∣(rn
)
xn
∣∣∣∣ = |an| → 0

To prove this for −1 < x < 0, we will need to use Cauchy’s form of the remainder.
Rn = r

(
r − 1
n − 1

)
xn(1 + θx)r−1( 1− θ1 + θx

)n−1
. For x ∈ (−1, 1), we have that ∣∣∣∣ 1− θ1 + θx

∣∣∣∣ < 1, so
|Rn| ≤

∣∣∣∣r(r − 1
n − 1

)
xn
∣∣∣∣(1 + θx)r−1

By considering the sign of r − 1, we have that (1 + θx)r−1 < max(1, (1 + x)r−1). Let kr = |r|max(1, (1 +
x)r−1). Then

|Rn| ≤ kr |r − 1n − 1xn| → 0So |Rn| → 0 for |x| < 1.
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4.1 Radius of Convergence

Lemma. If
∞∑
n=0anzn1 converges, and |z| < |z1|, then

∞∑
n=0anzn converges absolutely.

Proof. Since ∑anzn1 converges, we must have that anzn1 → 0. So there exists k such that ∣∣anzn1 ∣∣ ≤ k for all
n. Then |anzn| ≤ k

∣∣∣∣ zz1
∣∣∣∣n. Since the geometric series ∑ ∣∣∣∣ zz1

∣∣∣∣n converges, result follows by comparison.
Theorem. A power seris either

(i) Converges absolutely for all z ∈ C

(ii) Converges absolutely for all z ∈ C, |z| < R and diverges for all |z| > R

(iii) Converges for z = 0 only.

Proof. Let S = {X ∈ R : x ≥ 0,∑anxn converges}. Clearly 0 is in S , and by the lemma above, if x1 ∈ S ,then [0, x1] ⊆ S . If S is not bounded above, then S = [0,∞) and we have case (i).On the other hand, if S is bounded above, let R = supS . For z ∈ C, if |z| < R , then there exists R0 ∈ Ssuch that |z| < R0 < R . Then by the lemma above ∑anzn converges.Now suppose |z| > R . If ∑anzn converges, then this contradicts the fact that R is a supremum.
Lemma. If

∣∣∣∣an+1
an

∣∣∣∣→ l then R = 1
l .

Proof. By ratio test.
4.2 Differentiation of Power Series
Lemma. If

∑
0 anzn has radius of convergence R, then so do

∑
1 nanzn−1 and

∑
2 n(n − 1)anzn−2.

Proof. For z ∈ C, choose R0 such that |z| < R0 < R . Then we must have some k such that ∣∣anRn0 ∣∣ < k forall n. Then ∣∣∣nanzn−1∣∣∣ = n
|z| |anR

n0 |
∣∣∣∣ zR0

∣∣∣∣n ≤ kn
|z|

∣∣∣∣ zR0
∣∣∣∣n

Using the ratio test, ∑n
∣∣∣∣ zR0

∣∣∣∣n converges, since
n+ 1
n

∣∣∣∣ zR0
∣∣∣∣→ ∣∣∣∣ zR0

∣∣∣∣ < 1
Thus ∑nanzn−1 converges by comparison. On the other hand, if |z| > R , then

|anzn| ≤ |z|
∣∣∣nanzn−1∣∣∣

and ∑nanzn−1 diverges by comparison. The proof for ∑n(n − 1)anzn−2 follows similarly.
Lemma. For 2 ≤ r ≤ n,

(n
r
)
≤ n(n − 1)(n−2

r−2).
Proof. (

n
r

) = n(n − 1)
r(r − 1)

(
n − 2
r − 2

)
≤ n(n − 1)(n − 2

r − 2
)

Lemma. |(z + h)n − zn − nhz| ≤ n(n − 1)(|z|+ |h|)n−2|h|2

11



Proof.

|(z + h)n − zn − nhz| = ∣∣∣∣∣ n∑
r=2
(
n
r

)
zn−rhr

∣∣∣∣∣
≤

n∑
r=2
(
n
r

)
|z|n−r |h|r

≤ n(n − 1)∑
r=2
(
n − 2
r − 2

)
|z|n−r |h|r = n(n − 1)(|z|+ |h|)n−2|h|2

Theorem. Let f (z) = ∞∑
0 anzn, with radius of convergence R. Then f is differentiable for all |z| < R, and

f ′(z) = ∞∑
1 nanzn−1.

Proof. We have already seen that ∞∑1 nanzn−1 converges. Define f ′(z) = ∞∑
1 nanzn−1. Then we need to show

that f (z + h)− f (z)− hf ′(z)
h → 0 as h → 0.

Let I = f (z + h)− f (z)− h′f (z)
h = 1

h
∞∑
n=0an((z + h)n − zn − nhzn−1). Then

|I| = 1
|h|

∣∣∣∣∣ lim
N→∞

N∑
n=0 an((z + h)n − zn − nhzn−1)∣∣∣∣∣

= 1
|h| lim

N→∞

∣∣∣∣∣ N∑
n=0 an((z + h)n − zn − nhzn−1)∣∣∣∣∣

≤ 1
|h|

∞∑
n=0 |an|

∣∣∣(z + h)n − zn − nhzn−1∣∣∣
≤
∞∑
n=0 |an|n(n − 1)(|z|+ |h|)n−2|h|

Now note that ∞∑2 ann(n−1)(|z|+|h|)n−2 ≤ ∞∑
2 ann(n−2)(|z|+r)n−2 = Ar , where |h| < r and |z|+r < R .Consequently, |I| ≤ |h|Ar , so I → 0 as h → 0.

5 Special Functions

5.1 Exponential Function
Definition. Define e : C→ C by

e(x) = ∞∑
0
zn
n!

Proposition. e is differentiable, and e′(x) = e(x).
Proof. Suffices to show that the power series for e has infinite radius of convergence. We have that ∣∣∣∣an+1

an

∣∣∣∣ =1
n+ 1 → 0, so R =∞. Result follows by term by term differentation.
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Lemma. Let f : C→ C be differentiable, and f ′(z) = 0 for all z ∈ C. Then f (z) is constant.

Proof. Consider g(t) = f (tz) = u(t) + iv (t) for a fixed z . By the chain rule, g is differentiable, with
g′(t) = f ′(tz) = 0 = u′(t) + iv ′(t). We must then have that u′(t) = v ′(t) = 0 for all t . Hence u and v areconstant, so f (z) = f (0) for all z ∈ C.
Proposition. e(a+ b) = e(a)e(b)
Proof. Consider f (z) = e(a + b − z)e(z). Then f ′(z) = −e(a + b − z)e(z) + e(a + b − z)e(z) = 0. So f isconstant. Hence e(a)e(b) = e(a+ b)e(0) = e(a+ b).

From now on, we consider the restriction e : R→ R.
Theorem.

(i) e : R→ R is everywhere differentiable and e = e′.

(ii) e(x + y) = e(x)e(y)
(iii) e′(x) > 0 for all x

(iv) e is strictly increasing

(v) e(x)→∞ as x → ∞ and e(x)→ 0 as x → −∞.

(vi) e : R→ (0,∞) is a bijection.

Proof. (i) and (ii) follows from the complex case. For (iii), clearly e(x) > 0 for all x ≥ 0. Then as e(−x) = 1
e(x) ,we have that e(−x) > 0 for x ≤ 0 as well.(v) For x > 0, e(x) ≥ 1 + x . So as x → ∞, e(x)→∞. Furthermore, e(−x) ≤ 11 + x → 0.(vi) Injectivity follows from the fact that it is strictly increasing. Now let y ∈ (0,∞) be arbitrary. Wecan find a, b such that e(a) < y < e(b). Then by the IVT, there exists x ∈ (a, b) such that e(x) = y.

Proposition. e : (R,+)→ ((0,∞), ×) is a group isomorphism.

Definition. l : (0,∞)→ R, l(x) = e−1(x).
Theorem.

(i) l : (0,∞)→ R is a bijection, l(e(x)) = x and e(l(y)) = y.

(ii) l is differentiable, with l′(t) = 1
t

(iii) l(xy) = l(x) + l(y)
Proof. (i) follows by definition. (ii) follows from the inverse function theorem. (iii) follows from IA Groups,the inverse of an isomorphism is an isomorphism.
Definition. For α ∈ R, x > 0

rα (x) = e(αl(x))
Theorem. Suppose x, y > 0, α, β ∈ R, then

(i) rα (xy) = rα (x)rα (y)
(ii) rα+β (x) = rα (x)rβ (x)
(iii) rα (rβ (x)) = rαβ (x)

13



(iv) r1(x) = x, r0(x) = 1.

Proof. Follows from definitions.
Proposition. For α ∈ Q, rα (x) = xα

Proof. For n ≥ 0, n ∈ Z, rn(x) = r1+···+1(x) = (r1(x))n = xn. r−1(x)r1(x) = r0(x) = 1, so r−1(x) = x−1and r−n(x) = x−n. Now for q ∈ Z, (r1/q(x))q = rq(r1/q(x)) = r1(x) = x , so r1/q(x) = x1/q. Finally
rp/q(x) = rp(r1/q(x)) = (x1/q)p = xp/q.
Definition (exp, log, Powers). exp(x) = e(x), log(x) = l(x), xα = rα (x).
Definition (e). e = exp(1).
Proposition. (xα )′ = αxα−1.

Proposition. (ax )′ = ax loga.

Proposition. For all k , lim
x→∞

ex

xk
=∞

Proof. From definitions, exp(x) = ∞∑
i=0

x i
i! > xn

n! for x > 0, n > k .
Then ex

xk
> xn−k

n! →∞.
5.2 Trigonometric Functions
Definition (cos). cos z = 1− z22! + z44! − . . .
Definition (sin). sin z = z − z33! + z55! − . . .
Proposition. Both power series have radius of convergence R =∞, both are differentiable and cos′ = − sin,sin′ = cos.
Theorem (Euler’s Formula).

eiz = cos z + i sin z
Proof. As the series for ez is absolutely convergent, we may write

eiz = ∞∑
0

(iz)n
n! = ∞∑

0
(iz)2n(2n)! + ∞∑

0
(iz)2n+1(2n+ 1)!

Now (iz)2n = (−1)nz2n and (iz)2n+1 = i(−1)nz2n+1. So
eiz = ∞∑

0
(−1)nz2n(2n)! + i

∞∑
0

(−1)nz2n+1(2n+ 1)! = cos z + i sin z
Proposition. cos z = 12 (eiz + e−iz) and sin z = 12i (eiz − e−iz)
Proposition. There exists a minimum positive real π such that

√2 < π2 <
√3, and cos(π2

) = 0.
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Proof. If 0 < x < 2, then for k ∈ N, 2k (2k + 1) ≥ 4 > x2. So x2k−1(2k − 1)! − x2k+1(2k + 1)! > 0. Hence
sin x = (x − x33!

) + (x55! − x77!
) + · · · > 0

So for 0 < x < 2, (cos x)′ = − sin x < 0, and cos x is a strictly decreasing function on (0, 2). Now as(2n+ 1)(2n+ 2) > 2 for n ∈ N, we have that
cos(√2) = 0 + ((√2)44! − (√2)66!

) + · · · > 0
Furthremore, as (2n+ 1)(2n+ 2) > 3 for n ∈ N, we have that

cos(√3) = 1− 32 + 94! −
((√3)66! − (√3)88!

)
− · · · < 1− 32 + 94! = −18 < 0

Thus by the IVT, we have some π such that cos(π2
) = 0 and √2 < π2 <

√3.
Definition (π). We define π to be the π from above.
Theorem.

• sin(π2 ) = 1.• sin(z + π2 ) = cos z, cos(z + π2 ) = − sin z.• sin(z + π) = − sin z, cos(z + π) = − cos z.• sin(z + 2π) = sin z, cos(z + 2π) = cos z.• e2πi = 1.

Proof. Follows immediately from angle addition formulae and Euler’s Identity.
5.3 Hyperbolic Functions
Definition (cosh). cosh z = ez + e−z2
Definition (sinh). sinh z = ez − e−z2
Proposition. cosh′ = sinh, sinh′ = cosh.

Proposition. cos z = cosh(iz), sin z = −i sinh(iz).
6 Integration

6.1 Definitions
Definition (Dissection). A dissection D of an interval [a, b] is a finite subset of [a, b] containing a and b.We write D = {x0, . . . , xn} where a = x0 < x1 < · · · < xn = b.
Definition (Upper Sum). We define the upper sum for a function f : [a, b]→ R and a dissection D by

S(f , D) = n∑
j=1 (xj − xj−1) sup

x∈[xj−1,xj ] f (x)
15



Definition (Lower Sum). We define the lower sum for a function f : [a, b]→ R and a dissection D by
s(f , D) = n∑

j=1 (xj − xj−1) inf
x∈[xj−1,xj ] f (x)

Proposition. s(f , D) ≤ S(f , D) for all D

Proof. Clear from definitions.
Lemma. If D and D′ are dissections of [a, b], with D ⊆ D′, then

s(f , D) ≤ s(f , D′) ≤ S(f , D′) ≤ S(f , D)
Proof. First suppose if D′ = D ∪ {y}, where xr−1 < y < xr . Clearly

sup
x∈[xr−1,y] f (x), sup

x∈[y,xr ] ≤ sup
x∈[xr−1,xr ] f (x)So

(y − xr−1) sup
x∈[xr−1,y] f (x) + (xr − y) sup

x∈[y,xr ] ≤ (xr − xr−1) sup
x∈[xr−1,xr ] f (x)and S(f , D) ≥ S(f , D′). A similar argument applies for s(f , D′) ≥ s(f , D). By induction this works for

|D′\D| = n.
Lemma. If D1 and D2 are dissections of [a, b], then

S(f , D1) ≥ S(f , D1 ∪ D2) ≥ s(f , D1 ∪ D2) ≥ s(f , D1)
Proof. Use D′ = D1 ∪ D2 in lemma above.
Definition (Upper Integral). For a function f : [a, b]→ R, we define the upper integral

I∗(f ) = inf
D
S(f , D)

Definition (Lower Integral). For a function f : [a, b]→ R, we define the lower integral
I∗(f ) = sup

D
s(f , D)

Proposition. For all f : [a, b]→ R, I∗(f ) ≤ I∗(f ).
Proof. For any dissections D1, D2, we have that s(f , D1) ≤ S(f , D2). Consequently we have that for any D1,
s(f , D1) ≤ inf

D2 S(f , D2). Then sup
D1 s(f , D1) ≤ inf

D2 S(f , D2).
Definition (Riemann Integrable). A bounded function f : [a, b]→ R is integrable if I∗(f ) = I∗(f ). We write∫ b

a
f = I∗(f ) = I∗(f )

Theorem. A bounded function f : [a, b] → R is integrable if and only if given ε > 0, we can always find a
dissection D such that S(f , D)− s(f , D) < ε.

Proof. For every dissection D we have
0 ≤ I∗(f )− I∗(f ) ≤ S(f , D)− s(f , D)so one direction of the implication is clear. Conversely, suppose if I∗(f ) = I∗(f ). Then there are partitions

D1 and D2 such that b∫
a
f − ε2 = I∗(f ) − ε2 < s(f , D1) and b∫

a
f + ε2 = I∗(f ) + ε2 > S(f , D2). Then S(f , D1 ∪

D2)− s(f , D1 ∪ D2) ≤ S(f , D2)− s(f , D1) < ε.
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6.2 Elementary Properties of the Integral
Theorem. If f : [a, b]→ R is monotonic, then it is integrable.

Proof. Without loss of generality, suppose f is increasing. Then sup
x∈[xj−i,xj ] f (x) = f (xj ) and inf

x∈[xj−1,xj ] f (x) =
f (xj−1). Thus for any dissection D,

S(f , D)− s(f , D) = n∑
j=1 (xj − xj−1)(f (xj )− f (xj−1))

Now let xj = a + (b − a)j
n . Then S(f , D) − s(f , D) = b − a

n (f (b) − f (a)). For n large enough, this isless than ε.
Lemma. Let f : [a, b] → R be continuous. Then given ε > 0, there exists δ > 0 such that if |x − y| < δ,
then |f (x)− f (y)| < ε.

Proof. Suppose not. Then there exists ε > 0, such that for all δ > 0, there exists x, y ∈ [a, b] such that
|x − y| < δ and |f (x)− f (y)| ≥ ε.Let δn = 1

n , then using the above we get xn and yn such that |xn − yn| < 1
n and |f (xn)− f (yn)| ≥ ε forall n. By Bolzano-Weierstrass, we have a convergent subsequence xnk → c. Now |ynk − c| ≤ |ynk − xnk |+

|xnk + c| → 0, so ynk → c as well. By continuity, f (xnk ) → f (c) and f (ynk ) → f (c) as well. Thus
|f (xnk )− f (ynk )| → 0. Contradiction.
Theorem. If f : [a, b]→ R is continuous, then it is integrable.

Proof. Given ε > 0, from the lemma above, there exists δ > 0 such that if |x − y| < δ , then |f (x)− f (y)| < ε.Let xj = a+(b − a)j
n , where n is chosen such that b − an < δ . Then for any x, y ∈ [xj−1, xj ], |f (x)− f (y)| < ε.Then

S(f , D)− s(f , D) = n∑
j=1 (xj − xj−1) ( max

x∈[xj−1,xj ] f (x)− min
x∈[xj−1,xj ] f (x)

)
<

n∑
j=1

b − a
n ε

= (b − a)ε
Proposition. Let f , g be bounded and integrable on [a, b]. Then if f ≤ g on [a, b], ∫ ba f ≤ ∫ ba g.

Proof. If f ≤ g, then for any dissection D, ∫ ba f = I∗(f ) ≤ S(f , D) ≤ S(g,D). As a result, ∫ ba f = I∗(f ) ≤inf
D
S(g,D) = I∗(g) = ∫ ba g.

Proposition. Let f , g be bounded and integrable on [a, b]. Then f+g is integrable, and
∫ b
a f+g = ∫ ba f+∫ ba g

Proof. For any dissection, we have that sup
x∈[xj−1,xj ](f +g) ≤ sup

x∈[xj−1,xj ] f + sup
x∈[xj−1,xj ]g. So S(f +g,D) ≤ S(f , D)+

S(g,D). Now choose two arbitary dissections D1 and D2. We have that
I∗(f + g) ≤ S(f + g,D1 ∪ D2) ≤ S(f , D1 ∪ D2) + S(g,D1 ∪ D2) ≤ S(f , D1) + S(g,D2)Fixing D1 and taking inf

D2 , we get that I∗(f + g) ≤ S(f , D1) + I∗(g,D2). Now taking inf
D1 , we get that

I∗(f + g) ≤ I∗(f ) + I∗(g).Similarly, we get that I∗(f + g) ≥ I∗(f ) + I∗(g), so I∗(f + g) = I∗(f + g) and ∫ ba f + g = ∫ ba f + ∫ ba g.
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Proposition. Let f be bounded and integrable on [a, b]. Then kf is integrable, and
∫ b
a kf = k

∫ b
a f .

Proof.

sup
x∈[xj−1,xj ](kf ) =


k supx∈[xj−1,xj ] f if k > 00 if k = 0
k infx∈[xj−1,xj ] f if k < 0and the rest follows.

Proposition. Let f be bounded and integrable on [a, b]. Then |f | is integrable, and
∣∣∣∫ ba f ∣∣∣ ≤ ∫ ba |f |.

Proof. Let f+(x) = max(f (x), 0). Then sup
x∈[xj−1,xj ] f+ − inf

x∈[xj−1,xj ] f+ ≤ sup
x∈[xj−1,xj ] f − inf

x∈[xj−1,xj ] f . Now given ε > 0,
we have a dissection D such that S(f , D)− s(f , D) < ε. Then

0 ≤ S(f+, D)− s(f+, D) ≤ S(f , D)− s(f , D) < ε

so f+ is integrable. |f | = 2f+ − f , so |f | is integrable. Since −|f | ≤ f ≤ |f |, ∣∣∣∫ ba f ∣∣∣ ≤ ∫ ba |f |.
Proposition. Let f , g be bounded and integrable on [a, b]. Then fg is integrable.

Proof. First assume if f ≥ 0. Then sup
x∈[xj−1,xj ] f 2 = ( sup

x∈[xj−1,xj ] f )2 = M2
j , and inf

x∈[xj−1,xj ] f 2 = ( inf
x∈[xj−1,xj ] f )2 = m2

j .
Then S(f 2, D)−s(f 2, D) = n∑

j=1(xj −xj−1)(M2
j −m2

j ) = n∑
j=1(xj −xj−1)(Mj +mj )(Mj −mj ). As f is bounded,we have that |f (x)| ≤ k . Then Mj +mj ≤ 2k . So

S(f 2, D)− s(f 2, D) ≤ 2k n∑
j=1 (xj − xj−1)(Mj −mj ) = 2k (S(f , D)− s(f , D))

So f 2 is integrable. For general f , note that f 2 = |f |2 and use the above. Finally, fg = (f + g)2 − (f − g)24so it is integrable.
Proposition. If a < c < b, f is integrable on [a, b], then f is integrable on [a, c] and [c, b]. Conversely, if f
is integrable on [a, c] and [c, b] then it is integrable on [a, b].

In both cases,
b∫
a
f = c∫

a
f + b∫

c
f .

Proof. First note that if D1 is a dissection of [a, c] and D2 is a dissection of [c, b], then D1∪D2 is a dissectionof [a, b]. Furthermore, we have that
S(f , D1 ∪ D2) = S(f �[a,c], D1) + S(f �[c,b], D2)Also, if D is a dissection of [a, b], then

S(f , D) ≥ S(f , D ∪ {c}) = S(f �[a,c], D1) + S(f �[c,b], D2)where D1 = (D ∪ {c}) ∩ [a, c] and D2 = (D ∪ {c}) ∩ [c, b].The first statement implies that I∗(f ) ≤ I∗(f �[a,c]) + I∗(f �[c,b]), while the second implies that I∗(f ) ≥
I∗(f �[a,c]) + I∗(f �[c,b]). So I∗(f ) = I∗(f �[a,c]) + I∗(f �[c,b]). Similarly I∗(f ) = I∗(f �[a,c]) + I∗(f �[c,b]). Thus

0 ≤ I∗(f )− I∗(f ) = I∗(f �[a,c])− I∗(f �[a,c]) + I∗(f �[c,b])− I∗(f �[c,b])and result follows.
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6.3 Fundamental Theorem of Calculus
Theorem. Let f : [a, b]→ R be bounded and integrable. Let F (x) = ∫ xa f (t)dt. Then F is continuous.

Proof. Say |f | ≤ k for x ∈ [a, b]. Then
|F (x + h)− F (x)| = ∣∣∣∣∣∫ x+h

x
f (t)dt∣∣∣∣∣ ≤ ∫ x+h

x
f (t)dt ≤ k|h|

Theorem (Fundamental Theorem of Calculus). Suppose further that f is continuous at x. Then F is differ-
entiable at x, with F ′(x) = f (x).
Proof. Consider∣∣∣∣F (x + h)− F (x)

h − f (x)∣∣∣∣ = 1
|h|

∣∣∣∣∣∫ x+h
x

f (tdt − hf (x))∣∣∣∣∣ = 1
|h|

∣∣∣∣∣∫ x+h
x

f (t)− f (x)dt∣∣∣∣∣If f is continuous, then given ε > 0 there exists δ > 0 such that if |t − x| < δ , then |f (t)− f (x)| < ε. Asa result, if we have that |h| < δ , then
1
|h|

∣∣∣∣∣∫ x+h
x

f (t)− f (x)dt∣∣∣∣∣ ≤ 1
|h|ε|h| = ε

Hence F (x + h)− F (x)
h → f (x).

Corollary. Integration is the inverse of differentiation. If f = g′ is continuous on [a, b], then for all x ∈ [a, b]∫ x

a
f = g(x)− g(a)

Proof. From the FTC, F − g has zero derivative on [a, b]. So it must be constant. As F (a) = 0, we musthave that F (x) = g(x)− g(a).
Corollary (Integration by Parts). Suppose f ′ and g′ exists and are continuous on [a, b]. Then∫ b

a
f ′g = f (b)g(b)− f (a)g(a)− ∫ b

a
fg′

Proof. By product rule and FTC.
Corollary (Integration by Substitution). Let g : [α, β ]→ [a, b], g(α) = a and g(β) = b. In addition, g′ exists
and is continuous on [α, β ]. Let f : [a, b]→ R be continuous. Then∫ b

a
f (x)dx = ∫ β

α
f (g(t))g′(t)dt

Proof. Set F (x) = ∫ xa f (t)dt and h(t) = F (g(t)). Then
∫ β

α
f (g(t))g′(t)dt = ∫ β

α
F ′(g(t))g′(t)dt = ∫ β

α
h′(t)dt = h(β)− h(α) = F (b)− F (a) = ∫ b

a
f (x)dx
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Theorem (Taylor’s Theorem with Integral Remainder). Let f (n) be continuous for x ∈ [0, h]. Then

f (h) = f (0) + hf ′(0) + · · ·+ hn−1(n − 1)! f (n−1)(0) + Rn

where Rn = hn(n − 1)! 1∫
0 (1− t)n−1f (n)(th)dt

Proof. Substituting u = th, we get that
Rn = 1(n − 1)!

∫ h

0 (h − u)n−1f (n)(u)duIntegrating by parts,
Rn = −hn−1f (n−1)(0)(n − 1)! + 1(n − 2)!

∫ h

0 (h − u)n−2f (n−1)(u)du = −hn−1f (n−1)(0)(n − 1)! + Rn−1Furthermore, R1 = f (h)− f (0), and we get the result required.
Theorem (Integral Mean Value Theorem). Let f , g : [a, b]→ R be continous. With g(x) 6= 0 for all x ∈ [a, b].
Then there exists c ∈ (a, b) such that ∫ b

a
fg = f (c) ∫ b

a
g

Proof. Set F (x) = ∫ xa fg and G(x) = ∫ ba g. Applyint the Cauchy Mean Value Theorem, there exists c ∈ (a, b)such that
(F (b)− F (a))G′(c) = F ′(c)(G(b)−G(a))ie (∫ ba fg)g(c) = f (c)g(c) ∫ ba g. Dividing through by g(c) 6= 0 yields the required result.

Proposition. Using g = 1 with the Integral form of the reaminder, and the integral mean value theorem, we
get Cauchy’s Form of the Remainder.
Proposition. Using g = (1− t)n−1, we get Lagrange’s Form of the Remainder.

6.4 Improper Integrals
Definition (Improper Integral). If f : [a,∞)→ R, f is bounded and integrable on every [a, R ] and as R → ∞∫ R
a f → l < ∞, then ∫ ∞

a
f = l

Definition (Improper Integral). If ∫∞a f = l1 and ∫ a−∞ f = l2, then we define∫ ∞
−∞

f = l1 + l2
Theorem (Integral Test). Let f be a positive decreasing function for x ≥ 1. Then

(i)
∫∞1 f converges if and only if

∑∞1 f (n) converges.

(ii) As n → ∞,
∑n1 f (r)− ∫ n1 f tends to a limit l, with 0 ≤ l ≤ f (1).

Proof. If n − 1 ≤ x ≤ n, then f (n − 1) ≥ f (x) ≥ f (n), so f (n − 1) ≥ ∫ nn−1 f ≥ f (n). Adding up, we get that
n−1∑

1 f (r) ≥ ∫ n

1 f ≥
n∑
2 f (r)

and (i) follows. Now set φ(n) = ∑n1 f (r) − ∫ n1 f . Then φ(n) − φ(n − 1) = f (n) − ∫ nn−1 f ≤ 0. Also,0 ≤ φ(n) ≤ f (1), and as φ(n) is decreasing and bounded below, φ(n)→ l, where 0 ≤ l ≤ f (1).
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