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This document is intended for revision purposes. As a result, it does not contain any exposition. This is based off
lectures given by Dr John Taylor in Michaelmas 2020, but the order of content, as well as some of the proofs have
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1 Notation

1.1 Little-o and Big-O Notation
Definition (Little-o notation). We say that f(x) = o(g(x)) as x — xp if

) _
A g 0

Definition (Big-O notation). We say that f(x) = O(g(x)) as x — xp if there exists M > 0 and 0 > 0 such
that for all 0 < |x — xo| < 0,

[F()] < Mg(x)



Definition (Big-O notation at infinity). We say that f(x) = O(g(x)) as x — oo if there exists M > 0 and
xo € R such that for all x > xg,

[F()] < Mg(x)

2 Taylor’'s Theorem

Definition (Taylor Polynomial). Given f : R — R, n € N, and that (") exists, we define the Taylor Polynomial
of degree n about xy as

(x — x0)?
2!

Theorem (Taylor's Theorem). (Without Loss of Generality set xo = 0)

F(x0) + -+ 0 )

Pa(x) = f(x0) + (x — x0)f'(x0) +

f(x) = Pn(x) + E,
where E, is an error term. We have that E, = o(h"). Furthermore, if "V exists, then E, = O(h"*").

Theorem (L'Hépital's Rule). Let f, g be differentiable at x = xo and f(x), g(x) — 0 as x — xp. If g’(x0) #+ O
and f" and g’ are continuous at xy, then
f) _ . F'ix)

ltm —— = lim
x=x g(x)  x=x0 g'(x)

Proof. From Taylor's Theorem, we have that f(x) = f(xo) + (x — x0)f(x0) + o(x — x0), and g(x) = g(xo0) + (x —
x0)g’(x0) + o(x — xo). So

lim f(x) — U f(x0) + (x — x0)f'(x0) + o(x — x0)
x=x g(x)  x=x g(xo) + (x — x0)g’(x0) + o(x — xo)
'(x0) + O(XX_;):)O)

X—X0

= lim
= go) +

(o)

g9'(xo)
(x)
= g'(x)

3 Multivariable Calculus

3.1 Multivariate Chain Rule

Proposition (Differential Form of the Multivariate Chain Rule). For f(x, y), we have that

of  of
df = =-dx + 3y

Proposition (Multivariate Chain Rule). /f f(x(t), y(t)), then

df _ofdv  ofdy
dt — oxdt = oy dt



3.2 Differentiation of Integrals

Proposition. for f(x; c(t)), we have that

d (bl b af de db da
- f(x: c(t)dx = — dx + f(b: )— — f(a: c)—
dt/u(t) (x elt))dx /am gcar X b —flaag

4 Linear ODEs

4.1 Exponential Function

Definition (Exponential Function). We denote the solution to % =f, f(0) =1 as exp(x).

Definition (Logarithm). We define log(x) to be the inverse to exp(x).
Definition (Eigenfunction). For an operator D, an eigenfunction is a function f satisfying
Df = Af
A is known as the eigenvalue.

Proposition. exp(Ax) is the eigenfunction to dd7 with eigenvalue A.

4.2 Homogeneous ODEs

Definition (Homogenous ODE). An ODE is homogeneous if all of the terms involve only the dependent
variables and its derivatives.

Proposition. Any linear homogeneous ODE with constant coefficients has solutions of the form e,
Proposition. for linear, homogeneous ODEs, any constant multiple of a solution is a solution.

Proposition. An n-th degree linear DE has n linearly independent solutions.

Definition (Characteristic Equation). For a linear homogeneous DE [y = 0, the Characteristic Equation is
given by

L(e)u()

ex =0

Proposition. An n-th order ODE requires n initial/boundary conditions.

Proposition. The solution(s) to a homogeneous linear constant coefficient ODE can be found using the
Characteristic Equation.

4.3 Forcing

Definition (Inhomogeneous ODE). An ODE is inhomogeneous if there are terms which involve the indepen-
dent variable, or are constant.

Definition (Forcing). In an ODE Ly = F, F is known as the forcing term.

Proposition. The general solution to a forced linear inhomogeneous ODE Ly = F is y = y. + yp, where
e [y. =0 - Solving the corresponding homogeneous equation, y. is the complementary function.
e Ly, = F - Finding the particular integral y,.

Proof As L is linear, L(yc + yp) = Lyc + Ly, =0+ F = F. O



5 Linear First Order ODEs

5.1  Non Constant Coefficients
Consider y’ + p(x)y = f(x).

Definition (Integrating Factor). The integrating factor is

r-cof o

Proposition. The solution to y" + p(x)y = f(x) is given by

ulx)y = / Fx)ulx)dx

/

Proof. Note that ¢/ = pexp(f pdx) = py, so p = % So muliplying through by u, we get that py’ + puy =
(by) = pf. So py = [ pfdx. O

6 Nonlinear First Order ODEs

General Form is Q(x, y)g—g +P(x,y)=0
Definition (Separable). The ODE is separable if it can be written in the form g(y)dy = p(x)dx.

6.1 Exact Equations

Definition (Exact Equation). If for some scalar function f(x, y), we have that

df = Qdy + Pdx
Then the equation is exact.

Proposition. /f the domain is simply connected (1-connected), then the equation is exact if and only if

9P _ 90

dy  Ox
Proof. If df = Qdy + Pdx, then % = P(x, y) and g—; = Q(x, y). Then we have that % = a‘fgx = aangy = %—(X).
The reverse implication will not be proven. O

Proposition. The solution to an exact equation df = Qdy + Pdx is f = constant.

7 Graphical Methods

7.1 Graphs of Solutions

_ , d
In this subsection assume § = f(y, t).

Definition (Isocline). An isocline is a curve along which % = f is constant.

We can use isoclines to sketch the solutions to DEs, furthermore as f is single valued, different solution
curves do not cross.

7.2 Phase Portrait

. . dy
In this subsection assume d—{ = f(y).

A phase portrait plots y on the horizontal axis and % on the vertical axes. Fixed points are roots, and
the stability can be determined from the sketch.



7.3 1D phase portrait

. . d
In this subsection assume d—f = f(y).

A 1D phase portrait marks out the fixed points, as well as the direction a point would move in.

8 Fixed Points

Definition (Equilibrium Point). Equilibrium points are points where % =0 for all t.

8.1 Stability

In this subsection assume % = f(y, t), and that a is a fixed point.

Let y = a + €(t) for small €. Then %’ = % = f(a + ¢, t). Expand using a Taylor series, we get

de df 5
i fla+e t)="f(a,t)+ a@(a, t)+ O(e%)

As a is a fixed point, f(a,t) = 0, and as € < 1, we can neglect terms of O(g?). So

Definition (Stable Fixed Point). If € — 0 as t — oo, then a is a stable fixed point.
Definition (Unstable Fixed Point). If € — +00 as t — oo, then a is an unstable fixed point.

Note if g—g(a, t) = 0 then we will need higher order terms.

8.2 Autonomous DEs

Definition (Autonomous DE). An Autonomous DE is of the form i—‘j = f(y).

In this case,
de
=7
dt

and if f'(a) < 0, it is stable. If f/(a) > 0 it is unstable.

(a)e

8.3 Discrete Equations

In this section assume xp411 = f(x,).

Definition (Fixed point). A fixed point satisfies x,+1 = f(x,) = x,.
Let @ be a fixed point, x, = @ + €,. Then

df df
Xos1 = Flxa) = (0 + €0) = 1(0) + €n[0) + O(}) ~ a + e1-a)

Then €,01 = xp41 — a = g,,%(a). Thus if ‘%(a)! < 1, it is stable. If ‘%(0)‘ > 1, it is unstable.



9 Second Order ODEs

9.1 Detuning

In this subsection assume y” + by’ + cy = f(x).

From before, we have seen that this can be solved by finding the complementary function and the
particular integral, and that the complementary function can be found by solving the characteristic equation
A+ bA+ ¢ =0, which has roots A1, A, € C. If Ay = A> then we only find one linearly independent solution
here, and there should be another.

Consider y” + by’ + (c — €?)y = 0, for € < 1. From above, we have that A + bA + ¢ = (A — A1)°. So
the roots to the characteristic equation of our new equation are Ay & €.

Then y. = Ae+eX 1 Beli=eX — oh1X(Ae® 1 Be~#¥). Expanding e®*, we get

ye = e"((A+ B) + (A— B)ex + O(¢?))

Suppose further that we have some initial conditions y.(0) = C, y%-(0) = D and also that we may

disregard terms of order 2. Using these, we have that C = A+ B = O(1), and D = A(A + B) + (A — B),

D—kC
then A— B = . =
B = e(A— B), then

O(1/g). Thus we can keep the € term when taking € — 0. let 0 = A+ B,

lim y. = (e + Bx)
e—0

Hence if y1 is a degenerate complementary function, then gy, = xy4 is a linearly independent compli-
mentary function.

9.2 Reduction of Order

In this section, assume y” + p(x)y’ + g(x)y = 0.
Suppose we are given one solution y1. We can try and find a solution of the form y> = vy4. Substituting,
we get

(v +2Vy5 + v Y1) + p)(vys +V'ya) + qx)(vyr) = viyT + pys + qua) + 2V'y7 + Vg1 + pvys
= 275 + VY1 4 pVy
=0

Setting u = v/, we find that v'y1 + u(2y’ + py1) = 0. This is a separable DE, and once we have found
u we can find v, and thus y».

10 Phase Space

For an n-th order linear ODE

n

> Py =0

k=0
The value of y)(x) can be determined from y, ..., y"=1) We can represent the state of the system as
an n-dimensional vector
y
/
Y= °
Y=



10.1 Linear Independece and Uniqueness of Solutions

Proposition. Solutions y1, .. ., yn to an n-th order ODE are independent if and only if the corresponding
solution vectors Y1, ..., Y, are independent.
ifyq, ..., yn are solutions to the ODE, then the general solution will be of the form a1y1 + - 4+ a,y,.
Suppose we were given initial conditions, which are y(x1) = b1, ..., y"(x,) = b, then we have that
ary1(x1) + -+ apyn(x1) = b1, ..., G1y(1n_1)()(n) + -4 anyn  '(xa) = b,. This can be written as a matrix
equation
yix) o yalx) a b1
9(1”7”()(/7) c U%ﬂq)(xn) an by

With this, we can see that the solution is unique if and only if the determinant of the matrix is non-zero.

10.2 Wronskian

Definition (Fundamental Matrix). If the solutions to a DE are y1, ..., Y, then the fundamental matrix is
1 0 Y1 o Yn
Yo ... Y, | = : :
l ! g(1n71) o g%nfn

Definition (Wronskian). The Wronskian, W(x) is the determinant of the fundamental matrix.

1 T Y Yn

W) =1Y1 ... Yo =] : :
n—1 n—1
S

If the Wronskian is non-zero for some x, then the two solution vectors are linearly independent. On the
other hand, if the two solution vectors are linearly dependent, then the Wronskian is identically zero. Do
note the directions of the implications, the reverse implications are not true. For example, if y1 = x* and
y2 = x|x|, the Wronskian is identically zero, but the two functions are linearly independent.

11 Second Order ODEs - Continued

11.1  Abel’s Identity

In this subsection assume y” + py’ + qy = 0.

Theorem (Abel's Identity). /f p and g are continuous on an interval |, then the Wronskian is either identically
zero in |, or always non-zero.

Proof. Let y1, y2 be solutions. Then W(x) = y1y5 — y2y}. In addition, we have that y2(y} + py’ + qy1) = 0
and y1(yy + py5 + qy2) = 0. Subtracting, we get that
Y195 = y2u1 + plyrys — y2y1) = Y1y — yayi + pWix) =0
Now W' (x) = y1v5 + v\ u5 — yhyh — yauyl = y1y5 — yoy’, so what we have is that
w
— +pW =0
Hence

W(x) = W(xo) exp (— /Xp(t)dt)

for any xp € I. The second term is always positive, as the integral is always finite, by the continuity of
p. O



Corollary. /f p =0 then W is constant.

We can also use Abel's identity to find the second solution to a differetial equation. That is, if we know
one solution y1, then the other solution y; satisfies

y1ys — yayh = Wo eXP(—/ p(t)dt)

0

11.2 Equidimensional Equations

Definition (Equidimensional Equation). . A DE is equidimensional if it is unaffected by a multiplicative
scaling, say x — Kx.

The general form is ax’y” 4 bxy’ + cy = f(x), where a, b, c are constants.

To solve equidimensional equations, use y = x* and solve ak(k — 1) + bk + ¢ = 0. If there are two
distinct roots k1 and kz, then the solution is y = Axk1 4+ Bxk2,
Note that z = log x transforms an equidimensional equation into one with constant coefficients, that is,
2
037% +(b— a)j—g + cy = f(e?)
Solving this as before, we find that the characteristic equation of this is the same as before, and if we
have a repeated root k, the solution is y = Ae*” + Bzek?, ie. y = AxK + Bx*log x.

11.3 Variation of Parameters

If we know the complementary functions, we can use them to find the particular integrals. Suppose y4 and
y7 are linearly independent complementary functions, and suppose further that

Yy, = u(x)Y1 + v(x)Y2
Then y, = uyr + vyz and yj, = vy} + vy5. We also find that y, = u'yr + uyj + v'ys + vy, so
u'y1 +v'y2 = 0. Differentiating the result for yj, we find that y; = uyf + v’y + vy + v'y5. Hence if
Yy, + px)yp, + qlx)yp = f(x), using the above we find that v’y + v'y = f(x).
Putting this all together, we get that

() 0- 12
yioyy) \vV f(x)

As y1 and y; are linearly independent, we get that W(x) # 0. So

nd o= 0 Wi

. Integrating we can find v and v.

12 Transients and Damping

Consider a particle under a Hooke's Law like force, and a frictional force proportional to velocity. Then we
have that

my" = F(t) — ky — Ly’
| k
Dividing through by m, and letting T = Et (and y" will mean % from here on out). We get that

y” + ZKy/ +y=f(1)




12.1  Unforced Response

The unforced respose is given by f = 0, and is determined entirely by the parameter x. The characteristic
equation is A? + 2kA + 1 = 0.
If K <1 the system is underdamped, and the resulting motion can be described by

y=e*" (Acos(\/1 - kzr) + Bsm(\ﬂ - kzr) )
If Kk =1, the system is critically damped, and the resulting motion is given by

y=-e “"(A+ Br)

If « > 1, the system is overdamped, and the resulting motion is given by
y = AeMT 4+ BeT

Note that in all of these cases, if L > 0 then y — 0 as 7 — .

12.2  Sinusoidal Forcing

Consider y” + py’ + wiy = sin(wt). We would guess that the particular integral is of the form Asin(wt) +

wh — w? —Hw
B cos(wt). Substituting in, we find that A = and B = . Hence y, =
(Wi — w2 + pw (Wi — w?)? + pw P
(w(z) — w?) sin(wt) — pw cos(wt)

(wg —w)? + prw
If damped, the transient (short term) response is given by the complementary function, whereas the long
term behaviour is determined entirely by the particular integral.

12.3 Resonance
cos(wt)
Hwo

Consider if w = wp in the above. If iy # 0, we find that y, — — as w — wp. Consequently the result

is finite amplitude oscillations.
On the other hand, if the system is undamped, that is to say y = 0, then consider y” + w%g = sin(wt),

i t
where w # wp. We find that y, = s;Lw)z Since the original DE is linear, we have that y, + Ay, will
Wy — w
] ) ) sin(wt) ) )
also satisfy the DE, hence without loss of generality, we can let y, = ———— + Asin(wpt). Choosing
—1 sin(wt) — sin(wot) , , o L
A= ———, we get that y, = 5 5 . Using trigonometric identities, we get that
2COS(w+ CUol‘) s'm(w_ wot)
y, = 2 2
P w(z) — w?
Setting Aw = w — wp, we get that
2 % t i %t
B cos| (wo— = sin| =
Yp = Aw(w + wp)
Awt Awt
For Awt <« 1, sin (;)) =~ TM As a result,

lim ~ —— cos(wgt
w0 7P 2w (wot)

and the amplitude of oscillations grows linearly.

10



12.4 Dirac Delta Forcing

1 t?
Consider a family of functions (eg D(t; €) = —= exp (—)) which satisfy the following:

Cﬁ 82
. l'erB D(x; €) = 0 for all x # 0.
e

° ffooo D(t; e)dt = 1.

Define the Dirac delta function d(x) = l’Lm0 D(x; ). Then d(x) = 0 for all x # 0 and ffooo o(x)dx = 1.
£—

For continuous functions g, we also have the sampling property,

/b g(x)o(x — xp)dx = gxo) fa<xp<b
! 0 otherwise

If we have an oscillatory system, which is given a sudden impulse at time t = 0, we can represent this

y" 4+ py +qy = o(1)

To solve this, we can solve it for t < 0 and t > 0 separately. We then impose the jump conditions to
connect the two solutions. First of all we require that y is continuous at ¢t. Second, we find that

£ £ £
/y”+py/+qydf=/ y”dt=[y’]6g=/ o(t)dt =1

& —& —&

as [ py’ and gy both go to zero, since y is continuous. Consequently, we must have a ‘jump’ of 1 at
t =0, ie
limy'(€) — limy'(g) = 1

el0 10
12.5 Heaviside Step Forcing
Define the Heaviside Step function
N 0 if x <0
H(x) = / o(t)dt = 41 ifx>0

undefined ifx =0

We can define a system with Heaviside step forcing, y” + py’ + qy = H(t). In this case, the jump
conditions are that y and y’ are both continuous at t = 0.

13 Discrete Equations

The general form of a m-th order linear discrete equation is as such

AmYn+m + -+ anYn = fn

Note that the eigenfunction in this case is y, = k". We can find solution s just like for Differential
Equations using the characteristic equation.

11



13.1  Second Order Discrete Equation
If the characteristic equation has distinct roots ky and kz, then the complementary function is
yc(n) = Aky + BKY
On the other hand, if it has a repeated root k, then the complementary function is

yc(n) = AK" + Bnk"

The table below has the form of common particular integrals.

Form of f, ‘ From of y,(n)
K" k + ki, ko AK"

ki, kY Ank{' + Bnky

nP cpnP + -+ co

14 Series Solutions

By considering the solution as a power series, we can use this to find the solution to Differential Equations.

Setting y(x) = Y 7, anx", or as a convenient trick y(x) = Y _, a,x", where we define a, =0 if n <0,
we can differentiate term by term, and by substituting into the differential equation and equating coefficients
of x we can find a difference equation for the a,s.

14.1 Method of Frobenius

Given a second order, linear homogeneous ODE py” + qy’ + r = 0, the method of Frobenius can be used to
find the series solution to it. Suppose we wanted to find a power series expansion about x = xg. We must
first classify the point xp.

If the power series of g/p and r/p converge in some neighbourhood around xp, then xp is an ordinary point.
Otherwise, xg is a singular point. If the differential equation cen be written as P(x—xp)’y” 4+ Q(x—xo)y’+ R =
0, then xg is a reqular singular point. Otherwise it is an irreqular sinqular point.

q 2!

Note that % = (x —Xo)E and i (x — xp)°—.

If xo is an ordinary point, then there are two linearly independent solutions of the form

00
y= Z Gn(X _XO)n
n=0

If xo is a reqular sinqular point, then there is at least one solution of the form

%)
g — ZGH(X _ XO)nJrU
n=0

where 0 € R, ag # 0. Note for a reqular singular point, we substitute the power series into P(x —
x0)°y” 4+ Q(x — xo0)y’ + R = 0, not the original equation. To find the value of o, consider the coefficient of
the lowest degree of x, usually x?. Dividing through by ag = 0, we get the indicial equation, which is of the
form

ac’ +bo+c=0

Let the roots be oy and 0. If oy — 02 & Z, then we have two linearly independent solutions.

o oo
y=) apx—x0)"" N+ bylx—xo)"*
n=0 n=0

If o1 — 02 € Z, then one of the solutions is of the following form

12



o
y1 — Z Gn(X _ Xo)n+(ﬁ

n=0
and the other is of the form

o
yr = Z ba(x — x0)" "% + cyq log(x — xo)
n=0
where ¢ € R, which may or may not be zero. Note that if 0y = 02, then ¢ must be non-zero.

15 Multivariate Functions

For this section also see Vector Calculus. Here we only consider f(x, y) in Cartesians, but for generalisations
to higher dimensions and other othonormal curvilinear coordinates see Vector Calculus.

15.1 Gradient
Definition (Gradient). For f(x, y),

Definition (Line element).

Then df = Vf - ds.

Definition (Directional Derivative). Given a unit vector §, the directional derivative % is §-Vf, and it is the

rate of change of f in the direction of &.

Note that V{ points in the direction of greatest increase, and that on the contours of f, % =0, so

S+ V{ =0, which means that § is perpendicular to V.
15.2 Hessian

The Hessian of a function f is given by

15.3 Multivariate Taylor Series
Consider f : R? — R, then

a | orf &
dr 2 dr?2

Note that 5r% = 0r - V. Considering the quadratic part,

f(ro + or) = f(rp) + (0r)

d?f 0 0 d 0
27 — PR PR PR PR
(or) P (6xax+5gax) (5xax+5gax)f

= 5X2fxx + 6x5yfxy + 5yzfgy

B fx Ty 0x
_<6X 6g) (fyx fyy) (59’)

= or Hor

So f(rg 4+ or) = f(ro) + or- Vf + %5rTH5r

13



15.4 Stationary Points

Note that the stationary points of f : R” — R are the points where Vf = 0. Note that the Hessian matrix
is symmetric, as partial derivatives are symmetric. As a result, we can diagonalise H with respect to its
principal axes. Then

Moo 0
or'Hor=or" | & - | or
0 ... X

where the A; are the eigenvalues of H. Expanding the quadratic form, we get that or’ Hor = Ay 5/’12 +
-+ A,0r2, where dr; is the components of or with respect to the principal axes of H.

At a minimum point, or" Hor > 0 for all dr, which means that we must have that all of the eigenvalues
of H are positive, so H is positive definite.

At a maximum point, or" Hor < 0 for all or, so H is negative definite.

Otherwise, some of the A; are positive and some are negative, and in this case we have a saddle point.

15.5 Signature

For a function f : R” — R, define the sub-Hessian matrices

faxy -+ Fax
H =
fxl)q ce fx,x[

The signature of f is the sequence of signs of the determinants of the Hessians,

sign([H]), sign(|H2l), -, sign(|H,|) = sign(|H])

Proposition (Sylvester's Criterion). If the signature is 1, ..., 1, then it is a maximum point. If the signature
is—=1,1,-1,..., (=1)", then it is a minimum point.

15.6 Contours
For a function f(x, y), the contours of f are

e Locally elliptic about minima/maxima
e Locally hyperbolic about saddle points

e Contours only cross at saddle points

To see this, let xg be a stationary point, Then f approximately constant about x9, and Vf =~ 0. Let

0X = (i) in terms of the principal axes of H. Then we have that

ox" Hox = M & + Jon’ ~ constant

Depending on the signs of A1 and Ay, we get either hyperbolic or elliptic contours.

16 Systems of Linear ODEs

Consider two functions yq and y; satisfying

Yy = ayr + bys + 1
yh =cyr +dy, +
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we can write this as

Y = (‘Z S)Y+F

Any n-th order linear ODE can be written as n first order coupled ODEs, by considering Y = :
(n—1)

the differential equation can be written as

Y = MY+ F

Conversely, any system of n first order coupled ODEs can be written as an n-th order ODE.

16.1  Matrix Methods

To solve a system of linear ODEs,

Y = MY +F

again we use the linearity to find the complementary function Y. and the particular integral Y,. To find
Y, let v be a constant vector, then we can try Y, = ety Substituting this in, we get Aettv = Me?ty which
is equivalent to Av = Mv. Note this means v are the eigenvectors of M, and A are the eigenvalues.

To find Y,, we use the form of F, and either by inspection/guesswork, or variation of parameters.

16.2 Phase Portraits

Returning to n = 2, if Y, = MY, then we know that

Y. = Avq et + BVZE‘/\zt
The behaviour of the system near the origin will depend on the value of A1 and A;.

o If A1, > € R, then we have three cases

— If A1, A2 > 0, then we have an unstable node. The solutions move away from the origin.
— If A1, 42 <0, then we have a stable node. The solutions move towards the origin.

— If &yA2 < 0O, then we have a saddle node. The solutions move towards the origin along the axis
with negative eigenvalue, and waya from the origin along the axis with positive eigenvalue.

o If Re(41) = Re(A2) = 0, then we have a centre. The solutions move in concentric ellipses about the
origin.

e — [f Re(A) = Re(A2) > 0, then we have an unstable spiral. The solutions move in a spiral away
from the origin.

— If Re(A1) = Re(4A2) < O, then we have a stable spiral. The solutions move in a spiral towards the
origin.

The direction of rotation for a centre and a spiral can be determined by evaluating the system at a point
nead the origin.

16.3 Nonlinear Systems of ODEs

Consider the autonomous system

X' =1f(x,y)
y' = qlx.y)
The equilibrium points (xo, yo) are where f(xo, yo) = g(xo, yo) = 0.
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16.4 Stability of Fixed Points

Like before, we can use perturbation analysis to determine the stability of a fixed point. Suppose (xo, yo) is
a fixed point. Let (x, y) = (xo + <, yo + n), then

&= flxo+ & yo+ n) = f(xo, yo) + <filxo, yo) + nfy(x0, yo) = Efelxo, yo) + nfy(xo. yo)
n = g(xo + < yo+n) = g(xo, yo) + §gx(x0, Yo) + 19y (X0, Yo) = $gx(x0. Yyo) + ngy(x, Yo)

)=o) )

This is a homogeneous system of linear ODEs, so the eigenvalues of the matrix will determine the
stability of the system.

Hence

17 Partial Differential Equations

17.1  First Order Wave Equation

Consider if y(x, t) where

dy  dy
ot Cax Y
Now let x = x(t), then
dy _ay oydr
dt ot  oxdt

dx dy _

Comparing these, we see that if 7 = —c, then 7 = 0. Consequently y is constant along lines where

X = Xg — Ct.
Solving the ODE at t = 0, we find that y(x,0) = f(x). Now note that y(x, t) = y(x + ct,0), so the
general solution is f(x + ct).

17.2 Second Order Wave Equation

Now consider y(x, t) satisfying

Py 2%

o2~ < ox?

If we factorise the differential operatorﬂ then we get that

LR AN R R AU
ot “ox) \at T ox YT
Clearly the operators commute, so we must have that at least one of % — C% =0 and % + C% =0
holds.

By comparison to the first order, we see that the respective solutions are of the form y = f(x + ct) and
y = g(x — ct). As the equation is linear, y = f(x 4+ ct) + g(x — ct) is a solution.

—0

"This works
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17.3 Diffusion Equation

Now consider if c(x, t) satisfies

o _ o
ot ox?
52
Let n = It then n is dimensionless. We now look for solutions of the form y = t=“f(n). Working out

the derivatives, we find that

2

x —n
ne = il = T
(n) = (”)2 _ %
At 16k2t2  «t
2
Nxx = m
Y= —at M 4t = —at " — 7
Yx = tiafnnx

1
Yx = o2+t e = t 9 ook + ir‘a—1 for!

Substituting in, we find that

o o 1
—t " Naf —fyn) =t 1(f,],7+§fr,)

Cancelling t~~" and rearranging, we find that

d N _
nd—n(f+f)+§(f +2af) =0

1
Recall that o is arbitrary. Without loss of generality, set a = 5 and F =+ Then
df 1
—+=-F=0
ndn + 2

We can solve this for F, and using that we can find f.

17
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