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This document is intended for revision purposes. As a result, it does not contain any exposition. This is based off
lectures given by Professor Peter Haynes in Lent 2021, but the order of content, as well as some of the proofs have
been modified after the fact, primarily to provide simpler proofs for theorems. Note that this also contains theorems
from examples sheets, as some are useful elsewhere.

In this course we will often use the shorthand notation r = |r| and r2 = r-r = |r|%

Furthermore, as an applied course, it may be useful to refer to the lecture notes for worked examples.

Dynamics and Relativity is on Paper 4.
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1 Newtonian Dynamics

1.1 Defintions

Definition (Particle). A particle is an object with negligible size, mass m > 0 and charge g.

Definition (Frame of Reference). In a frame of reference S, there is an origin O and Cartesian axes {%, §, 2}.

Definition (Position Vector). The position vector r or x, of a particle is the coordinates of the particle in a
frame of reference.

Definition (Velocity). The velocity of a particle is u = = T

dr
dt-

Definition (Momentum). The momentum of a particle is p = mu = mr.

Definition (Acceleration). The acceleration of a particle isa =0 =¥

1.2

Newton’s Laws

Definition (Newton's First Law). For a particle which is not acted on by a force, there exists an inertial
frame such that the acceleration of the particle is zero.

Definition (Newton's Second Law). In an inertial frame,

dp
F=2EX
dt

Definition (Newton's Third Law). For every action there is an equal and opposite reaction. That is, the force
between two particles are equal and opposite.

1.3

Inertial Frames and Galilean Transformations

Definition (Inertial Frame). In an inertial frame, the acceleration of a particle is zero if and only if the force
acting on the particle is zero.



Definition (Boost). For a particle P, let r be its position vector in a frame S. Let the frame S’ be moving
with velocity v relative to S. Then let r’ be the position vector of P in S’. We have that

' =r—vt
and this is known as a Boost.

Definition (Galilean Transformations). A Galilean transformation is one of the following

e Translation of space - ' =r +rg
e Translation of time - t/ = tg + ¢
e Rotations and Reflections of Space - r' = Rr where R is an orthogonal matrix.

e Boosts - =r + vt

Proposition. The set of Galilean Transformations generate a group, known as the Galilean group.

Proposition. /f frames S and S’ are related by Galilean transformations, then t = 0 <= = 0. That is,
S is inertial if and only if S is inertial.

Proposition (Galilean Invariance). The equations of Physics are invariant under Galilean transformations.

2 Dimensional Analysis

Definition (Dimension). In Mechanics, we have three basic dimensions, length (L), mass (M) and time (7).
We denote the dimension of a quantity X as [X].

Definition (Units). For each dimension, we have a set of units, for example m, kg and s.

Theorem (Bridgman's Theorem). Suppose the dimensional quantity Y depends on a set of dimensional
quantities X1, ..., Xp. Let [Y] = LMPTY and [X|] = L9MP T Say Yy = CXP'... X5, where C is a
dimensionless constant.

If n < 3, then p1, p2, p3 can be determined exactly.

If n > 3, choose dimensionally independent quantities X1, X2, X3 and n — 3 dimensionless quantities

o Xy
T vail yvqi2 93
X1 XZ X3

i

Then Y = XP' XD XD C(Ay, - An3)

3 Forces

3.1 Examples of Forces

Definition (Newtons's Law of Universal Gravitation). For particles of mass m4, my at rq, ry respectively, the
force on particle 1 is

Gmymy
Fr=——""(n—n)=—F
Ir1 —r2|

Definition (Lorentz Force). For particle with charge g in electric field E(r, t) and magnetic field B(r, t), the
Lorentz force is

F=g(E+ixB)



3.2 1 Dimensional Motion
Definition (Potential). Suppose F depends only on x and not x or t. We define the potential by

_dv
dx

Proposition. V(x) = — fX F(r)dr up the addition of a constant.

Definition (Kinetic Energy). For a particle with mass m moving with speed X, we define the kinetic energy

1
T = imxz

Proposition. £ = T + V is constant.
Proof.

%_gng_ %+ Fi—0

dt — dr Cdr TTEAT

O

Proposition.

where x(tg) = Xo.
Definition (Equilibrium Points). An equilibrium point x is where V/(x) = 0.
Definition (Stable Equilibrium Point). xp is a stable equilibrium point if V”(xg) > 0. If V”(xo) < 0 then it is
unstable.

1 1
Proof. Let x be close to xg. Then V(x) = V(xo) + 5 V7 (x0)(x — x0)° + o((x — x0)%) = V(x0) + 5 V7 (x0)(x — x0)°-
Differentiating, we get that V’(x) =~ V”(x0)(x — x0) and mx = — V" (xo)(x — xo). O

3.3 3 Dimensional Motion
Definition (Kinetic Energy). For a particle moving with velocity u, we define the kinetic energy

1 1
T = §m|u|2 = 5mu-u

Definition (Work). For a particle travelling along a curve C in a vector field F, the work done is

W:/Pm
C

dr
Proposition. T F-u

Definition (Conservative Vector Field). A conservative vector ﬁetcﬂ Fisone where F = —VVfor V : R* - R
Proposition. /f the force is conservative, then E = T + V' is conserved.

Proof. E
Wzmi-'r'—FVv-i’:(m'r'—F)-'r:O

'See Vector Calculus for more details



Proposition. For a particle moving along path C from rq to rz, under force field F = —V'V, the work done
is

V() = Vir2)

Proof
W:/F.dr:_/VV-der(m)—\/(fZ)
C C

Corollary. If C is closed, then work done is zero.

3.4 Gravity

Definition (Gravitational Potential Energy). For a particle of mass m, at r relative to a particle of mass M,
the gravitational potential is

—GMm
V0=

GMm
3

Proposition. F = — r=—VV, so the gravitational force is conservative.

I
Definition (Gravitational Potential). For a particle of mass M, we define its gravitational potential

M

by = ——

Definition (Gravitational Field). For a particle of mass M, we define its gravitational field

M
g=—-V&, \r|3 r
Proposition. V(r) = m®4(r) and F(r) = mg
Proposition. for masses My, ..., M, atrq, ..., r,, we have that
o . GM;
g(r) = _Z ||'— r[|
i=1
and
n
GM;
g(l’) - |I’—I’[|(r_rl)

Example (1-D Approximation to Gravity). On a planet of radius R, and mass M, we have a particle at radius
R 4+ z, where z <« R. Then

—GMm GCMm  GMmz
~ + +

VIRT =R "R R?

aMm
and if we set g = T then V(R + z) = constant + mgz

Example (Escape Velocity). For a particle with mass m leaving a planet with speed v. Then by conservation

1 M 2GM
of energy, £ = imv2 — CRm is constant. Thus if v > GR d

as the escape velocity.

the particle will escape. This is known



3.5 Electromagnetic Forces

oE 0B
[n this subsection, we shall assume that — = I

Vector Calculus for more information about Electromagnetism.

= 0. In this case, the force gE is conservative. Also see

Definition (Electrostatic Potential). Define the electrostatic potential P,.

Definition (Point Charge). For a point charge Q at the origin, the electrostatic potential is

Q

- dre|r|

Pe(r)

Definition (Coulomb Force). For a point charge Q at the origin, and a particle with charge g at r, the
coulomb force is

Qg

Fe—qVb, = 9 _
GV Pe 47750|r3]r

3.6 Friction

Definition (Dry Friction). For two objects in contact, we have dry friction

[FI < uIN]

where 1 is the coefficient of friction (which depends on the materials, and whether one is moving relative
to the other), and N is the normal reaction between the two.

Definition (Linear Drag). For a solid moving through a fluid, typically a small object through a viscous fluid,
the drag experienced is proportional to the velocity.

F = —ku
where k is a constant. For example, in Stoke's Law k = 65rrn, where n is the viscosity of the fluid.

Definition (Quadratic Drag). For a solid moving through a fluid, typically for a large object through a less
viscous fluid, the drag experienced is proportional to the velocity squared.

F = —k|uju

For example, k = pruigd CpR, where pyuig is the density of the fluid, Cp is the drag coefficient and R is
the size of the object.

4 Orbits

4.1 Angular Momentum

Definition (Angular Momentum). For a particle with mass m moving under a force F, with position vector r
and velocity vector r, we define the angular momentum about the origin as

L=rXp=mrxr

Definition (Torque). We define the torgue about the origin as

G=L=mrxi=rxF



4.2 Central Forces

Definition (Central Force). A central force is a conservative force with potential V' = V/(r), where r = |r|.

Proposition. for a central force F, we have that

dVv

Fir) = =V V() = ——+

(r) VV(r) drr
Wheref'zL.
Ir|

Proposition. for a central force F, the angular momentum is conserved.
Proof. 4y
—f) =0

L=rxF=
r X r X ar

Proposition. The motion under a central force is in a plane through the origin perpendicular to L.

Proof.
L-r=(mrxi)-r=0

4.3 Polars

Recall from Vector Calculus that for polars (r, 8), we have the unit vectors

o — % _ [cos B on — % _ [—sin®
" lax|  \sin® 7 Tox| | cosO
ar 90
Proposition. —e, = @e and ge == @e
P “or T de T e T T A

Proposition. r = re,.

Proposition. . _ )
F=(F —r6%)e, + (276 + rb)eq

4.4 Orbits

Proposition. Under a central force F, m(2i0 + r0) = 0

Proof. Newton's Second Law - F = —%er = mf, equating the ep components yields the result.
Corollary.

me 9) —0

rdt (r

Corollary. mr?0 is constant.
Definition (Anqular Momentum per Unit Mass).
h=1r’6

Proposition. Under a central force F = -V V,

dV  mh? dVes

mr = + —
dr r3 dt

2
m
where Ve = V + 57 is the effective potential.
r

Proposition. Under a central force F = —=V'V,

E=T+V= %mr2+ Vet (1)



4.5 Stability of Circular Orbits

dVes(rs) mh?
g~ VT

For a circular orbit, with radius r., we must have that =0as if r(t) = ry is
constant, then 7 = 0.
A circular orbit with radius ry is stable if \/e/%(r*) > 0. Since in that case we have a local minimum for

V at r.

4.6 Orbit Equation

1
The shape of the orbit is determined by r(t) and 6(t). From £ = Em'r2 + Vesi(r) = const we can find r(t)

and from h = r?0 we can find 6(t). However finding a solution for r(t) from Vi is difficult.
d

In practice, letting 8 be the independent variable (% = 9% = r%de) and u = 1/r, we get that

d%u 1
a2 TU = Tapzge ()

4.7 Kepler Problem

The Kepler problem is the problem of an orbit under a gravitational central force F = —mku?. Substituting
into the orbit equation, we get that

d6? - h?
k
The general solution is u = 2 + Acos(8 — &), where A and 6y are specified from initial conditions.
k
Without loss of generality, let A > 0. By a rotation, we may also let 6y = 0. So u = 2 + Acos 0. Let
h? Ah?
= m and e = - Then the general solution becomes
1 [
e — =
u T+4+ecosf
2

If e = 0 we have a circle of radius r = —.

If 0 < e <1, we have an ellipse with one foci at the origin.
As r? = x? + y?, x = rcos 0, in Cartesians this becomes

(x + ea)Z gz
T2 T,

whereaz%andbz [

1—e V1—e?
b
If e > 1, we have a hyperbola with one foci at the origin, asymptotes are y = +—(x — ea). The
a

perpendicular distance between the incoming trajectory (r — oo, where the particle is at the asymptote) and
the origin is b, and this is known as the impact paramater.
In Cartesians, the orbit is

If e =1, we have a parabola, y? = ([ — 2x).



4.8 Kepler’'s Laws of Planetary Motion

Proposition (Kepler's First Law). Orbits of planets are ellipsoidal with the Sun at one of the foci.

Proposition (Kepler's Second Law). Line between the Sun and a planet sweeps out equal area in equal
time.

1 15 1
Proof Area =~ §r259, so rate of change of area is §r29 = ih and is constant. OJ

Proposition (Kepler's Third Law). /f period is P and the semi-major axis is a, then P? < a°.

h 5 472a’
Proof From the second law, we have that wab = iP. So P4 = — o a°. O
4.9 Rutherford Scattering
k k
Now consider if the central force is repulsive, say F = n:—z As before, we have that v = 12 + Acos 6. If
2
[ = — and e = Al then we have that r = —————. Based on the physical conditions, we must have
k ecos B —1
that e > 1.
As before, we have a hyperbola
(x—ea) ¢
T !
l
where a = pv— and b = . The angle by which the particle is deflected can be calculated
_ ol _

k
from the asymptotes, and it is B = 2 arctan (bZ) where v is in initial velocity at r — oo.
%

5 Rotating Frames of Reference

Let S be an inertial frame, S’ rotation about z-axis of S, with angular velocity w. Let the basis vectors for
S be {eq,e2,e3} and for S’ be {e}, e}, e} with e3 = e}. Let w = we3 = €.

d
Let r be the position vector of a particle at rest in S”. Then let (r) be the rate of change of r, as
S

dt
observed in S. Then

ai(t)el(t).

Now consider a general vector a = a(t) =) ; i

L

[t = 5 Gttt + et x i = [ Gato] e

i

Applying this twice to the position vector r, we find that

d?r d
(dtz)f[(dr)s,“”” dr)g“’x]f
=[(d) +w><] dr) +wXr
dt | o dt | o
d’r dr

— | +twXr+wX(wXr)
dt | o

Hence we have the following



Definition (Newton's Second Law in a Rotating Frame).

dZ
O CF - 2wx
dt? | o

dr) .
— —WXr—wxX (wxr)
dt S/

dr

dt | o

Definition (Centrifugal Force). The Centrifugal Force is —w X (w X r).

Definition (Coriolis Force). The Coriolis force is —2w X

Definition (Euler Force). The Euler Force is —w X r.

r
Definition (Fictitious Forces). —2w X dt) —w Xr—w X (w X r) are known as ficticious forces. They

do not exist in an inertial frame, but we need ficticious forces to explain motion in a rotating frame.

6 Systems of Particles

Definition (Newton's Second Law for a System of Particles). For a system of n particles, we have Newton's
Second Law for them. In particular, we are going to separate out the external forces F&! from the internal
forces Fy;, which is the force on the ith particle from the jth.

n
m['l;[ = F?Xt + Z F,j
j=1

Proposition. F;; = —F;;, and F;; = 0.

Definition (Total External Force). We define the total external force F® as

n
ext ext
ey E
i=1

Definition (Total Mass). For a system of particles, we define the total mass M as

M = im,‘
i=1

Definition (Centre of Mass). For a system of particles, we define the centre of mass R as

,I n
R = M Z m;r;
i=1
Definition (Linear Momentum). For a system of particles, we define the total linear momentum P as
n n
P=MR=> mii=> p
i=1 i=1
Proposition. If F®' = 0, the P is constant.

Proof

n

P— im[h = F> 4 iZFU = Fe
i=1

i=1 j=1

10



Definition (Angular Momentum). For a system of particles, we define the total angular momentum about the
origin as

n

L:ZI’[XP[

i=1

Definition (External Torque). We define the total external torque about the origin as

n
Gext _ Z roX F?Xt
i=1

Proposition. /f Fy; is parallel to r; —r;, then

|'_ _ Gext
Proof
n n n n o n
= ZI’,‘ X mit; = ZI’[ X (F?Xt-i-ZFil') :GeXt-FZZI’[ X F[j
i—1 i—1 =1 i=1 j=1
and

n n n n

non
ZZI’[XFU:%ZZ(F[ X F[/'—i-r/‘)( Fﬂ)z?Z (I’[—I’/')X F[/'ZO
i=1 j=1

—_

i=1 j=1 i=1 j=1

O]

Definition (Position Relative to CoM). We can view the positions as being relative to the CoM, that is
ri = R +s;.

Proposition.

LZ/\/IRXR-FZITI[S[XS
i—1

Definition (Total KE).

1
i=1
Proposition.
T o 1
T = SMR? + Z Smis;

Proof. Expand and note that

6.1 Two Body Problem

This is the special case where we have two particles moving under their mutual gravitational attraction and
there are no external forces present.

Let R be the centre of mass of the two, and r = ri — ry be the posiiton of the first particle relative to the
second. As F&' = 0, we must have that R = 0. Now consider

F F 1 1
F:F1_f2:£—l= (+)F12

m my3 m my3

11



mqmy

mq + my
in Newton's Law of Universal Cravitation, we get that

Equivalently, we have that u¥ = F43, where p = is the reduced mass of the system. Substituting

r
r

6.2 Rocket Problem

Consider a rocket expelling fuel with velocity u relative to the rocket. We can solve for the motion of the
rocket. The momentum at time ¢ of the system is

m(t)v(t)

and the momentum of the rocket at time ¢ + 0t is

m(t + 8t)v(t + 6t)

and the momentum of the fuel expelled is

(m(t) — m(t + dt))(v(t) — u + O(d1))

The change in momentum between time ¢t and time ¢ + 0t is

m(t+ ot)v(t + ot)+(m(t) — m(t + dt))(v(t) — u + O(0t)) — m(t)v(t)
=m(t+ ot)(v(t + ot) — v(t)) + u(m(t + ot) — m(t)) + O(ot)
dv dm

Thus we have that

dv dm
/_—ext _ s -
Mo T

and this is known as the rocket equation.

7 Rigid Bodies

Definition (Rigid Body). A rigid body is a system of particles where the distance between particles remains
constant.
7.1 Moment of Inertia

Recall for a particle rotating about an axis through O, with angular velocity w, we have that f = w X r.
Recall (from Vectors and Matrices) that |w X r| = w|r |, where r} = r — ——w is the perpendicular part
w

of r. If the particle has mass m, then the kinetic energy is

1
T = Emriwz
Definition (Moment of Inertia). We define | = mri as the moment of inertia.

Definition (Moment of Inertia for System of Particles). For a system of particles rotating about an axis
through the origin and with angular momentum w = wn, we define the moment of inertia as

n
| = Zm[\n X r,-\z
i=1

12



1
Then the kinetic energy of the system is ilwz. Now consider the component of the angular momentum
L parallel to n.

L-n=w (im[r[x(nxri)) -n
i=1

= w (Zm,'n-(rgx(nxri))
i=1

n
= me[|n X ri?
i=1

= lw

7.2 Solid Bodies

For a solid body V' with density p(r), we have the total mass

M= [ plrlav

and the center of mass is at

1
RzM/Vrp(r)d\/

The moment of inertia about an axis n is given by

/ﬁﬁMquﬁanxmv

See Appendix for a List of Moments of Inertia.
Theorem (Perpendicular Axes Theorem). For a 2D body we have that

L=l +1,

where [, is the moment of inertia through an axis perpendicular to the lamina, and I, I, are the moments
of inertia through different, perpendicular axes in the plane of the lamina.

Theorem (Parallel Axes Theorem). For a rigid body with mass M, moment of inertia I. in an axis through
the centre of mass, then the moment of inertia about a parallel axis distance d away from the centre of mass
is

| =1, + Md?

7.3 Sliding and Rolling

Definition (Slipping Velocity). For an object (cylinder or sphere with radius @) with horizontal velocity v and
angular velocity w (signs taken such that if the object is not slipping then v = aw), we define the slipping
velocity vsip = v — aw.

The point of contact is slipping relative to the surface if v, # 0. We have pure slipping motion if w =0
and vsip # 0. On the other hand, if v = aw and v, = 0, we have pure rolling motion.

13



8 Special Relativity

8.1 Postulates

In special relativity, there are two postulates:

1. Laws of physics are the same in all inertial frames

2. Speed of light in a vacuum is the same in all inertial frames

Definition (Speed of light). We define the speed of light ¢ = 299792458 ms~".

Remark. In this course we will use units such that ¢ = 299792458, but in other places it may be the case
that the units are chosen such that ¢ = 1. In those places, note that the factors of ¢ that appear in this
course will not appear.

8.2 Lorentz Transform

For now, let's restrict ourselves to 1 dimensional motion. Suppose the frame S’ moves with velocity v in the
x direction relative to S. We can consider the motion in the (x, t) plane versus the (x’, t') plane. Without
loss of generality, let x =x"=0att =t =0.

From postulate 1, constant velocity paths in S will be constant velocity paths in S’, so the transformation
from one frame to another will be linear. O" moves with velocity v in S, so we have that

X' = VV(X - Vt)
whereas O moves with velocity —v in S/, so we have that
x =y (X' + vt
Now consider a light ray passing through the origin at t = t' = 0. We have that x = ct, and by postulate
2, x' = ct’. Substituting in, we get that

/

X =y (c—v)t x = yp(c+ vt
Combining these with x = ct and x” = ct’, we find the Lorentz factor.

Definition (Lorentz factor).

Remark. Note that the Lorentz factor must only depend on speed, and not velocity. This is because there is
no ‘preferred direction” for the Laws of Physics, from Postulate 1.

I roposition.
t/ = (f — 7V X)
y\/ 2

Definition (Lorentz Transform). In 1 + 1 dimensions, the Lorentz transform is

The inverse transformation can be found by setting v — —v

14



8.3 Spacetime Diagrams

Definition (Spacetime diagram). Consider one spatial dimension x, and time t in an inertial frame S. We
can plot x on the horizontal axis and ct on the vertical axes.

Definition (Event). A point P = (x, ct) in spacetime is an event.

Definition (World Line). A particle traces out a curve in (x, ct) space. This is known as the world line.
Proposition. The gradient of the world line of a light ray is +1.

Proposition. The gradient of a world line of a particle must be always greater than 1.

The spacetime axes of a different frame can also be plotted, and they will be at an angle 6 to the existing
axes (and both will be in Quadrant 1).

8.4 Simultaneity and Causality

Definition (Simultaneous). Two events Py and P, are simultaneous in a frame S if they occur at the same
time in S, that is t1 = 6.

Proposition. From a frame S" moving with speed v + 0 relative to S, Py and P, will not be simultaneous.
Definition (Light Cone). The light cones of an event P are lines of gradient &1 through P.

Definition (Past Light Cone, Future Light Cone). The parts of the light cone of P which have time t > tp
are known as the future light cone. The parts with t < tp are known as the past light cone.

Proposition. /f Q is in the past light cone of P, then it will occur before P in all frames. If R is in the future
light cone of P, it will occur after P in all frames.

Proof. Lines of simultaneity have |gradient| less than 1 as they cannot travel faster than light. O]

Proposition. /f T is not in either light cone of P, then the ordering of P and T will depend on the observer.

8.5 Geometry of Spacetime

Definition (Invariant Interval). For two events P, Q with spacetime coordinates (ct1, x1), (ct2, x2), we define
the time separation At = t; — t; and the space separation Ax = x; — x2. The invariant interval of P and Q
is defined to be

As? = A2 — Ax?
In 3 spatial dimensions, we define the invariant interval to be
As? = A — (Ax? + Ay? + A%

Proposition. (As)? is invariant under the Lorentz transform. That is, all observers in inertial frames agree
on the value.

Definition (Infitessimal Invariant Interval).
dS? = c?dt? — (dx? 4 dy? + dz?)
Definition (Minkowski Spacetime). Minkowski space time is the combination of 1 time dimension with 3

spatial dimensions into a 4 dimensional manifold. This is often denoted as R'*3.
The inner product in a Minkowski space is given by

(t1,X1) . (tz,XZ) = CZM t — (X1 . X2)

15



Definition (Time-like separated). Two events are time-like separated if As? > 0. There exists a frame such
that they occur at the space spatial coordinates but at different times.

Definition (Space-like separated). Two events are space-like separated if As? < 0. There exists a frame
such that they occur at the same time, but at different spatial coordinates.

Definition (Light-like separated). Two events are light-like separated if As? = 0. Each event is in the light
cone of the other.

Definition (4-vector). The coordinates of an event in spacetime can be represented as a 4-vector. Where

The components of X are X0 =ct, X1 =x, X2 = y, X3 =z

Definition (Inner Product). The inner product in Minkowski space can be represented using a matrix n =
1T 0 0 O

0 -1 0 0
o0 -1 o|®
00 0 —1

XX =X"nX
In summation convention, it is X « X = X¥n,, X"

Definition (Time, Space, Light-like). A 4-vector X is time-like if X'+ X > 0. It is space-like if X + X < 0 and
it is light-like if X - X = 0.

Definition (Lorentz Transformations). The Lorentz transform maps coordinates X in S to coordinates X’ in
S’. As the transformation is linear (by postulate 1), we can represent this as a 4 x 4 matrix. In particular, it
is the matrices preserving the inner product.

X+ X = (AX) « (AX)
or equivalently, ATnA = n.
Definition (Lorentz Group). The set of A such that AT nA = n form as group known as the Lorentz group.

Definition (Proper Lorentz Group). The subgroup of the Lorentz group of matrices with determinant 1 is the
proper Lorentz group.

Definition (Restricted Lorentz Group). The subgroup of the Lorentz group that preserves orientation of space
and time is known as the Restricted Lorentz Group.

8.6 Rapidity

We shall restrict to the 1+ 1 dimensional case now. This would correspond to the 2 submatrix of a Lorentz
transform.

Let NB] = ( ve VBB). This is a boost in the x direction. By calculation, we find that

—vgB v
B +/92]
1+ BB

Let ¢ be such that B = tanh ¢. Then the expression above can be written as

NB1INB] = A [

ANP1A(¢2) = A1 + ¢2)
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8.7 Relativistic Kinematics

Definition (Proper Time). For a particle at rest in S” with x’ = 0, the invariant interval between points on

1
its world line is As? = c?(At')%. Define the proper time T such that At = EASA

Proposition. The proper time is the time expereience in the rest frame of the particle.
Proposition. At is invariant under the Lorentz transform.

Proposition. for a particle moving with velocity u(t), we have that

dr_
dr Yu
Proof
ds 1 1 |u|? e dt
dr = — = —/2d2 — |dx|[* = =/ 22 — [u]*d? = [1 ==~ | dt=—
=2 = yfade o = yfede - |u . "
O
Definition (4-velocity). For a particle with position 4-vector X(t1) = (Cxt((TT))) , the 4-velocity is defined to be
X Cdt
A+ C
U= dr ixr — (u)
dr

_ dx
where u = o

Proposition. /f the 4-position vectors of a particle in' S and S" are X and X' respectively, then they are
linked by X" = N\X. Similarly, U" = N\U.

Proposition. For any particle, we have that U - U = ¢?.

C

0

Proof. Transform into the rest frame of the particle. There we have that U = ( ) and U+ U = c% 0

8.8 Relativistic Physics

Definition (Rest Mass). The rest mass m of a particle is the mass of the particle measured in its rest frame.

Definition (4-momentum). The 4-momentum of a particle with mass m and with 4-velocity U is

P=mU = my, (5)

Definition (Relativistic 3-momentum). The spatial components of the 4-momentum is the relativistic 3 mo-
mentum

p = myuyu

Definition (Relativistic Mass, Apparent Mass). The relativistic mass, or apparent mass of a particle is given
by myy.

Definition (Energy). Define £ = yymc®. Then P° = E/c.

Proposition (Mass-Enerqy Equivalence). For a stationary particle with rest mass m, we have that E = mc?.

Proof. For a stationary particle y, = 1. -
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Definition (Relativistic Kinetic Energy). The Relativistic Kinetic Energy of a particle is

’
E=(yu—1)m62=§mu2+...

Proposition (Energy-Momentum Relation). For any particle, we have that
E? = p*c? + m?c!
Proof. P is Lorentz invariant. Transform into the rest frame of the particle, result follows. O

Definition (Massless Particle). A massless particle has zero rest mass, for example a photon.

Remark. Massless particles travel on light-like trajectories, and as a result they do not have a proper time,
and we cannot tranform into their rest frame. However they can have a non-zero momentum and energy.

Proposition. fFor a massless particle, the 4-momentum is of the form

where n is a unit vector in the direction of travel.

Proof. E = |p|c, result follows. O

8.9 Newton’s Second Law

Definition (4-Acceleration). For a particle, we define its 4-acceleration by

_
Cdr

Definition (4-Force). For a force F, we define the corresponding 4-force

A

F-ulc
ol
Definition (Newton's Second Law).
F=mA= i
dr

8.10 Applications to Particle Physics

Problems in Particle Physics can be solved using the conservation of 4-momentum. Often it is useful to
consider the conservation of 4-momentum in the rest frame of the centre of momentum. That is, the frame
where ) P =0.

Example (Particle Decay). Suppose a particle with mass m4 with 4-momentum P; decays into two particles,
with mass mz,m3 and 4-momenta P, P3. Then in the centre of momentum frame, equating the O components
of the 4-momenta, we get that

E E E
%:mw:?z—kf:\/p§+m§cz+\/p§+m§622mzc+mgc

as a result, decay is only possible if the rest mass of the resulting particles is less than the current
particle.
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A List of Moments of Inertia

All objects are taken to have mass M, and are uniform unless otherwise stated. The parallel axes and
perpendicular axes theorem can be used to calculate the Moments of Inertia of these objects about other
axes.

Body Axis Moment of Inertia
Ring with radius a Through centre, perpendicular to ring Ma?
Rod with length [ Through one end, perpendicular to rod 1/\/l[2
Disc with radius a Through centre, perpendicular to disc IQ)/\/laz
Disc with radius @ | Through centre, in the plane of the disc j/\/la2
Sphere with radius a Through centre %/\/’02
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