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This is an extra note on Matrix Methods in DEs, we focus on 2D case here, but the results will generalise.

1 Motivation and Definitions

Problem. Consider the following system of differential equations.

X = ax + by + f1(t)
g =cx+dy+ Ht)

where x = x(t), y = y(t) and f1, f, are forcing terms. We would like to be able to find the general
solution to this system.

One way to solve this would be to differentiate one equation, and substitute into the other. However this
involves a large amount of algebraic manipulation.

Instead, we can represent this system using vectors and matrices.

a b

Definition (Matrix Representation). If we let X = (2) M = (c d) and F = (? ) then the system
2

above can be represented as

X=MX+F

2 Homogeneous Case

First, let's consider the homogeneous case where X = MX. Much like how we defined the characteristic
equation of a linear ODE by looking for solutions of the form e*!, we will try to find solutions of the form
X = ve'l, where v is a constant vector. Differentiating and substituting into the original equation, we get
that

Avell = Mye't

Dividing through by e, we get that Mv = Av. This is precisely the definition of an eigenvec-
tor/eigenvalue. From this, if we let A1, A2 be the eigenvalues of M, and vy, v, be the corresponding eigen-
vectors, then have two solutions to the system.

At

X1 = vie X) = vze’\zt

However, depending on whether the matrix M is real or complex, and whether we want to look for
real/complex solutions, there are a few things that we need to be careful for.
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2.1 Real, Distinct Eigenvalues

If we are looking for real solutions, and the two eigenvalues are real and distinct, then the two resulting
solutions will be linearly independent. As a result, we can use the principal of superposition and write the
general solution as a linear combination of the two solutions.

X = Ax1 4+ Bxa = Avie’! + Bvye™!

2.2 Repeated Eigenvalue

If instead we have that Ay = Ay, then the two solutions from before may not be linearly independent. For
this, x1 = vy Mt will still be a solution, but we will need to find a second solution.

We will need to look at the eigenspace E,,. If we have that dim E,, = 2, then we have a second, linearly
independent eigenvector v, and the second solution is

X2 = vpe’!
Writing X = Axq + Bx, as before gives us the general solution.
On the other hand, if dim £,, = 1, then we can't find such a v,. Let v, be a vector satisfying
(M — Ao = vq

Then the second solution is
_ Mt
x2 = e (tv1 + v2)

2.3 Complex Eigenvalues

Slnceihe matrix M has real coefficients, if we have complex eigenvalues A1 and A, then we must have that
A = 2. In this case, the eigenvectors vi and v2 may also be complex. The following lemma will be useful.

Lemma. Suppose x is a solution, where x = x1 + ix. Then xq and x are solutions.

Proof.
X1 + %2 = X = Mx = M(xq + ixz) = Mxq + iMxz

Equating the real and complex parts we get the result required. O

A

Using this, we have a solution x = vie'!, and by splitting into the real and complex parts, we can get

two linearly independent solutions.

2.4 Complex Eigenvalues - Alternative Method
If we first consider the general system with complex coefficients, and then consider restrictions such that the
result is real, we have
X = cx1 4 dxa = cviel + dvye™!
By some elementary algebra, we find that we must in fact have vi = v3. Letting vi = uy+iup, Ay = p+qi
and substituting, we get that
X = eP!((uy cos gt — uysin gt)(c + d) + i(ug sin gt + uz cos gt)(c — d))

As we want X to be real, one way is by saying that ¢ + d is real, and ¢ — d is pure imaginary. Without
loss of generality, we may assume that d = €. With this, and noting that e’2t = ", we get that

Mt )uf)

X = cvie"! + cvietit = Re(avie

where a = 2¢, a € C. This is another method to derive the above result.



3 Particular Integrals

With a inhomogeneous problem, we have a forcing term, and we will need to find a corresponding particular
integral. For that, we can use similar methods to how we found particular integrals for a linear ODE.
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