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This is an extra note on Matrix Methods in DEs, we focus on 2D case here, but the results will generalise.
1 Motivation and Definitions
Problem. Consider the following system of differential equations.

ẋ = ax + by+ f1(t)
ẏ = cx + dy+ f2(t)

where x = x(t), y = y(t) and f1, f2 are forcing terms. We would like to be able to find the generalsolution to this system.One way to solve this would be to differentiate one equation, and substitute into the other. However thisinvolves a large amount of algebraic manipulation.Instead, we can represent this system using vectors and matrices.
Definition (Matrix Representation). If we let X = (

x
y

), M = (
a b
c d

) and F = (
f1
f2

), then the systemabove can be represented as
Ẋ = MX + F

2 Homogeneous Case

First, let’s consider the homogeneous case where Ẋ = MX. Much like how we defined the characteristicequation of a linear ODE by looking for solutions of the form eλt , we will try to find solutions of the form
X = veλt , where v is a constant vector. Differentiating and substituting into the original equation, we getthat

λveλt = MveλtDividing through by eλt , we get that Mv = λv. This is precisely the definition of an eigenvec-tor/eigenvalue. From this, if we let λ1, λ2 be the eigenvalues of M , and v1, v2 be the corresponding eigen-vectors, then have two solutions to the system.
x1 = v1eλ1t x2 = v2eλ2t

However, depending on whether the matrix M is real or complex, and whether we want to look forreal/complex solutions, there are a few things that we need to be careful for.
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2.1 Real, Distinct EigenvaluesIf we are looking for real solutions, and the two eigenvalues are real and distinct, then the two resultingsolutions will be linearly independent. As a result, we can use the principal of superposition and write thegeneral solution as a linear combination of the two solutions.
X = Ax1 + Bx2 = Av1eλ1t + Bv2eλ2t

2.2 Repeated EigenvalueIf instead we have that λ1 = λ2, then the two solutions from before may not be linearly independent. Forthis, x1 = v1eλ1t will still be a solution, but we will need to find a second solution.We will need to look at the eigenspace Eλ1 . If we have that dimEλ1 = 2, then we have a second, linearlyindependent eigenvector v2, and the second solution is
x2 = v2eλ2t

Writing X = Ax1 + Bx2 as before gives us the general solution.On the other hand, if dimEλ1 = 1, then we can’t find such a v2. Let v2 be a vector satisfying
(M − λ1I)v2 = v1Then the second solution is

x2 = eλ1t(tv1 + v2)
2.3 Complex EigenvaluesSince the matrix M has real coefficients, if we have complex eigenvalues λ1 and λ2, then we must have that
λ1 = λ2. In this case, the eigenvectors v1 and v2 may also be complex. The following lemma will be useful.
Lemma. Suppose x is a solution, where x = x1 + ix2. Then x1 and x2 are solutions.

Proof.
ẋ1 + iẋ2 = ẋ = Mx = M(x1 + ix2) = Mx1 + iMx2Equating the real and complex parts we get the result required.

Using this, we have a solution x = v1eλ1t , and by splitting into the real and complex parts, we can gettwo linearly independent solutions.
2.4 Complex Eigenvalues - Alternative MethodIf we first consider the general system with complex coefficients, and then consider restrictions such that theresult is real, we have

X = cx1 + dx2 = cv1eλ1t + dv2eλ2t
By some elementary algebra, we find that we must in fact have v1 = v2. Letting v1 = u1 +iu2, λ1 = p+qiand substituting, we get that

X = ept((u1 cosqt − u2 sinqt)(c + d) + i(u1 sinqt + u2 cosqt)(c − d))As we want X to be real, one way is by saying that c+ d is real, and c− d is pure imaginary. Withoutloss of generality, we may assume that d = c. With this, and noting that eλ2t = eλ1t , we get that
X = cv1eλ1t + cv1eλ1t = Re(αv1eλ1t)where α = 2c, α ∈ C. This is another method to derive the above result.

2



3 Particular Integrals
With a inhomogeneous problem, we have a forcing term, and we will need to find a corresponding particularintegral. For that, we can use similar methods to how we found particular integrals for a linear ODE.
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