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This document is intended for revision purposes. As a result, it does not contain any exposition. This is based off

lectures given by Dr Ana Khukhro in Michaelmas 2020, but the order of content, as well as some of the proofs have
been modified after the fact, primarily to provide simpler proofs for theorems. Note that this also contains theorems
from examples sheets, as some are useful elsewhere.

Throughout this document, G is a group, H is generally another group or a subgroup of G. ¢ is a homomorphism.

N is usually a normal subgroup.

A summary of proofs is also provided, it is centred and italicised and occurs before the proof.
Groups is on Paper 3.
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1 Subgroups

Lemma (Fast subgroup check). If H C G, H is nonempty and Ya,b € H,ab™" € H, then H is a subgroup
of G.

Proof Sayx € H. Thenxx ' =e& H. Soeb™' =b~'€ H. Soab=a(b~ ") € Hforalla,b € H. [

Proposition. Let X C G. Then (X) is the intersection of all subgroups containing X. It is also the smallest
subgroup containing X. That is, if X C H < G, then (X) < H.

Proof. Let (X)) be the intersection of all subgroups containging X. Then if X C H < G, we must have that
(X)y < H.
Conversely, if (X) is a subgroup satisfying the minimality property, then we must have (X) < () H

© XCH<G
as (X) is a subgroup of each of the H. From minimality, we must have that (X)n (] H = (X), and we
XCH<G
are done. O
2 Homomorphisms
Definition (Image). The image of a homomorphism ¢ : G — H is
Im(g) = {h € H:3g € G, ¢lg) = h}
Definition (Kernel). The kernel of a homomorphism ¢ : G — H is
ker(p) = {g € G p(g) = e}
Proposition. ¢ is surjective if and only if Im(¢) = H.
Proof. By definition. O



Proposition. ¢ is injective if and only if ker(¢p) = {e}.

Proof (= ). If p(m) then @(m) = ¢(e )som—e

(=) If p(x) = (:) then ¢(xy~" T 1 € kerg and xy~!

=e,50 X =Y. ]
Proposition. Im¢ < H

Proof e € Im¢@. If g,h € Img, let x, y € G be such that ¢(x) = g, ¢(y) = h. Then gh™' = @(x)p(y)~" =
elxy™"). O
Proposition. kerp < G

Proof e € kerg, and if g, h € kerg, o(gh™") = @(g)p(h)™" = e, so gh™" & ker ¢ by the fast subgroup

check. 0

3 Direct Product Theorem

Theorem. If H, K < G, HNK = {e}, G = HK,Vh € H,Yk € k, hk = kh, then G = H x K.

Proof. Consider ¢(h, k) = hk. ¢ is a group homomorphism (by commutativity), and clearly it is surjective.
If ¢(h, k) = hk = e then h=k™"so h € K,and h = e. Then k = e, so (h, k) = (e, e) as required. [J

4 Examples of Groups

4.1 Cyclic Groups
Definition (Cyclic Group). A group G is cyclic if there exists a € G such that G = (a).

Proposition. An infinite cyclic group is isomorphic to Z.
Use the “obvious” map, there is no k > 0 such that b* = e.
Proof Suppose G = (a). Define ¢ : Z — G by @(k) = a*. @(k +m) = a**" = aka™ = @(k)p(m). So ¢ is

a homomorphism. Clearly ¢ is surjective. Now suppose if m € ker(¢). Then ¢(m) = a” = e. If m 0, this
would mean that G is finite. Contradiction. So ¢ is injective. O

Proposition. /f |G| = n, G = (b), then G = C,,.

Map generator to generator. Check cases where i+ j < n and > n separately.

Proof Let C, = (a). Define ¢ : G, — G by ¢(a¥) = bX. For any o/, a* € C,, @(a/a*) = btk = bib*
o(a)(a®) if j+k < n. If j+k > n then g(a/aX) = @(a/™ ") = Itk = pITK(p") =1 = pItk = pipk =
o(a)p(a¥). So ¢ is a homomorphism.

Since G = (b), and b" = e, all elements of G can be written as b* with 0 < k < n. So ¢ is surjective.
Given that ¢(a*) = e means that b* = e, we must have that k = 0, as otherwise we get a contradiction with
the definition of the order of an element. Thus ¢ is an isomorphism. O

4.2 Dihedral Groups

Definition (Dihedral Group). The dihedral group of order 2n is the group of symmetry of the regular n-gon.
Algebraically it is Do, = (r,s | r" = s> = e, rs = sr™'). Geometrically r is a rotation by 27/n, s is a
reflection through a fixed line, and sr” are the reflections across different lines of symmetry.



4.3 Quaternions

Definition. The quaternion group, Qg is given by the following presentation
Qs = (=1, i jk [(=1) =18 =" =k = ijk = 1)

A complex matrix representation of (g can be given by 1 = ((1) (1)) [ = (L O)/ = ( 0 1) and
0 i
-0
5 Lagrange's Theorem

5.1 Cosets
Definition (Left coset). Let H < G, g € G. Then gH = {gh : h € H} is a left coset of H in G.
Definition (Index). The index of H < G, denoted as |G : H| is the number of distinct cosets of H in H.

Proposition. for g1,g2 € G, H < G.

giH=g:H < g7'go€ H

92 € g2H = g1H. g1 = g91(97 " 92)(g7 " g2)~"

Proof (= ). g2 € g2H = g1H, so there exists hq such that go = g1hq. Then gfgz =heH.

(<= ). Now let h € H be arbitrary. g1h = g1(g1_1g2)(g1_1gz)_1h = gz((g1_1g2)_1h) € goH. So
giH C g2H. Similarly, g2h = g2(95 '91)(g7 ' 92)h = g2((g7 ' 92)h) € g2H. So g1H = g2H. O
5.2 Lagrange’s Theorem

Lemma. Cosets cover. That is,

G=UgH

geC

Proof Forall g € G, g € gH so G C |J gH. Reverse inclusion is trivial. O
gel

Lemma. Cosets are disjoint.
Consider elements in the intersection, show the cosets are equal
Proof. Suppose if there exists g € g1H N goH. Then g = g1h1 = g2h,. With this, g, = g1h1h51. So

for any h € H, goh = gihihy'h = gi(hih;'h) € g1H. So goH C giH. Similarly g1H C g2H. So
gi1H = gxH. O

Proposition. Cosets partition G.

Lemma. If H is finite, then for any g € G, |gH| = |H]|.

Left multiplication is a bijection.

Proof. Suffices to show f : H — gH, defined by f(x) = gx is a bijection. Surjection is clear by definition of
gH. If ghy = gho, then g~ 'ghy = g~ "ghy, so hy = hy and f is injective. O

Theorem (Lagrange’s Theorem). /f G is a finite group and H < G, then

|Gl =G HIH



Cosets form a partition, all partitions are the same size.

Proof. From the above, G can be written as the union of disjoint cosets, all of the same size. So

|G| = number of cosets x |H| = |G : H||H|

O
Corollary. For any H < G, |H| | |G].
Corollary. For any g € G, ord(q) | |G|.
Corollary. Forany g € G, gl = e.
5.3 Fermat-Euler
Definition (Units modulo n). Let
Z;, =1{k € Z, : gcd(n, k) = 1}
Proposition. Z} is the set of elements that are invertible under multiplication.
Proof. See Numbers and Sets. 0
Definition (Euler Totient Function).
p(n) = |Z,]
Theorem (Fermat-Euler). Let n > 1, N € Z coprime to n. Then
NP =1 (mod n)
Consider a = N mod n € Z}, use Lagrange.
Proof. As N is comprime to n, let a = N mod n € Z. Then a®n) = qglZl = 1,
We have that N = kn + a, so N = (a + kn)?") = g 4+ n(...) =1 (mod n). O

6 Quotient Groups

6.1  Normal Subgroups
Definition (Normal Subgroup). A subgroup N < G is normal if for all g € G, gN = Ng. We write N < G.

Theorem. The following are equivalent.
(i) Vg € G,gN = Ng
(i) Yg € G,¥n € N, gng™' € N
(iii) Yg € G,N = gNg~', where gNg=" = {gng=" : n € N}.

Proof We shall first show that (i) <= (iii).

(= ). Given g € G, n € N, ng € Ng, so there exists n” such that ng = gn’. Then n = gn'g~" €
gNg~".

(e )Giveng e G, ne N, n=g 'ngforsome n” € N, and gn = gg~'n"g = n’g € Ng. Also,
n=gn”g~" for some n” € N. So ng = gn”g~'g = gn” € gN. So gN = Ng.

Clearly (iii) = (ii), and also that (i) = Vg € G,gNg~' C N.

Given g € G, n € N, from (ii), we also have that g~'ng = n’ for some n’ € N. So n = gn'g™" €
gNg~. O



Proposition. Any subgroup of an abelian group is normal.
Proof gng™' =gg~'n=n € N. O
Proposition. Any index 2 subgroup is normal.

The cosets are N and G\N

Proof. The left and right cosets must be N = eN = Ne and G\N. So the left and right cosets of N are
equal. O

Proposition. For any homomorphism ¢ : G — H,

kero <G

Proof. Given k € kerg, g € G, p(gkg™") = @(g)(k)p(g) " = ¢(g)p(g) " = e, so gkg~" € ker ¢. O

6.2 Simple Groups
Definition (Simple group). A group G is simple if the only normal subgroups of G are G and {e}.

6.3 Quotients
Definition (Quotient Group). Let N < (. Then we denote by G/N the quotient group of G by N. This is

defined with the operation

(g1N)(g2N) = g1g2N
for g1, g2 € G.

Proposition. The Quotient Group is a group.

Show that the definition of multiplication in G|N is independent of the choice of coset representative.
Group properties are inherited from G.

Proof. First we need to show that the group operation is independent of the choice of g1, g2. Suppose

g1N = g)N and goN = g5N. Then we need to show that (g1N)(g2N) = g1g2N = g, g5N = (g7 N)(g5N).

g1N = g)N means that g;'g} € N, and similarly we have that g;'g5 € N. So g} = gin and

g5 = g2ny. Then g g5N = giniganaN = gin1gaN. So we need to show that n1goN = g2N, ie
g5 'ng2 € N. As N < G this is satisfied.
The group properties are clear, and inherited from G. O

Definition (Quotient map). Given N < G, the quotient map 7 : G — G/N is defined by m(g) = g/N.
Theorem. 7 is a surjective homomorphism.

Proof. w(gh) = ghN = (gN)(hN) = m(g)m(h) so 7 is a homomorphism. Surjectivity is clear. O
Theorem. ker s = N.

Proof m(g) =N < gN=N < ge N. O



6.4 Isomorphism Theorems

Theorem (First Isomorphism Theorem). Let ¢ : G — H be a homomorphism. Then
Glkergp = Img

Y(g ker @) = @(qg) (s the isomorphism.

Proof. Define ¢ : G/kerg — Im ¢ by (g ker ¢) = ¢(g). First we need to show that ¢ is well defined. If

g1 ker @ = goker ¢, then g1 = gok for some k € kerp. So (g1 ker ) = @(g1) = @(g2k) = ©(g2)p(k) =
®(g2) = (g2 ker ).

Now, ¢((g1ker ¢)(g2 ker ¢)) = (g1g2 ker ) = ¢(g192) = @(g1)p(g2) = Y(g1 ker p)i(g2 ker @), so ¢ is
a homomorphism.

Now suppose if ()(g1 ker @) = e, then ¢(g1) = e, so g1 € ker¢, and g1 kergp = kerp. So kery =

{ker ¢}.
Surjectivity is clear, so ¢ defines an isomorphism. O

Theorem (Correspondence Theorem). Let N < G, then there is a bijection between the subgroups of GIN
and the subgroups of G containing N.

Consider preimage under quotient map

Proof. Given N < M < G, N € G, then clearly N < M, and clearly M/N < G/N.

Conversely, given H < G/N, we can take the preimage of H under the quotient map, 7' (H) = {g €
G : gN € H}, and this is a subgroup of G. Clearly e € 7~ '(H). If g, h € 7~ '(H), then gN, hN € H. So
(gh™")N = (gN)(hN)~" € H, and gh~" € 7~ 1(H). Also, if g € N, then gN = N and g € 7~ (H).

The first part defines a map from subgroups of G containing N to subgroups of G/N, and the second
part defines a map from subgroups of Gi/N to subgroups of G containing N.

We can then check that (7= (M/N)) = M and 7~ (H)IN = H. 0

Theorem (Second Isomorphism Theorem). Let H < G and N < G. Then HONN < H and H|(HNN) = HN/N.

Proof As N 9 G, HN = {hn :h € H,n € N} is a subgroup of G. Define ¢ : H — HN/|N by ¢(h) = hN.
kero = H N N, and result follows from the First Isomorphism Theorem. O

Theorem (Third Isomorphism Theorem). et N < M < G, N < G, M < G. Then MIN <« GIN and
(GIN)I(MIN) = GIM.

Proof. Define ¢ : GIN — G/M by @(gN) = gM. This is well defined as N < M, and we note that ¢ is a
surjective homomorphism. If ¢(gN) = gM = M, then g € M, so ker ¢ = M/N. Result follows from First
Isomorphism Theorem. O

7 Group actions

Definition (Group Action). Let G be a group, X be a set, an action of G on X is a function a: G x X — X.
We write ag(x) = a(g, x) or just g(x) if it is clear. a satisfies

o Vgc (G VxeX gy(x) € X.

o Vx € X, ae(x) = x.

o Vg, h € G, Vx € X, agnlx) = aglan(x))
We write G @ X if G acts on X.

Lemma. Forall g € G, a5 : X — X is a bijection.



Two sided inverse means it's bijective.

Proof ag-1(ag(x)) = ag-14(x) = ae(x) = x and ag(az-1(x)) = ag4-1(x) = e(x) = x. So it has a two sided

inverse and is bijective. O

Proposition. Let G be a group, X be a set. a : G x X — X is an action if and only if p : G — Sym(X)
defined by p(g) = ag is a homomorphism.

(p(g))(x) = ag(x), check definitions.

Proof. ( = ). From lemma above, a; € Sym(X). In addition, p(gh) = agn = agan = p(g)p(h), so p is a
homomorphism.

( <= ). Suppose p is a homomorphism. Define a4(x) = (p(g))(x). Since p(g) € Sym(X), a4(x) € X.
ple) =d, so ae(x) = id(x) = x. p(gh) = p(g)p(h). so ag(an(x)) = agn(x). u

Definition (Kernel of Action). The kernel of an action «a is the kernel of the corresponding homomorphism
p G — Sym(X).

Definition (Faithful). An action « is faithful if ker p = {e}.

7.1 Orbit-Stabiliser
Definition (Orbit). Let G @ X, the orbit of x € X is

Orb(x) ={g(x):g € G} C X
Definition (Stabiliser). Let G @ X, the stabiliser of x € X is
Stab(x) ={ge G gx)=x} C G
Definition (Transitive). An action is transitive if Orb(x) = X for all x € X.
Lemma. For all x € X, Stab(x) < G.

Proof e € Stab(x) as e(x) = x. For g, h € Stab(x), gh~'(x) = gh~'(h(x)) = gh~'h(x) = g(x) = x, so
gh™" € Stab(x). By the fast subgroup check, Stab(x) < G. O

Lemma. Let G Q X, the orbits of x € X partition X.

Consider the intersection of the orbits

Proof. For x € X, x € Orb(x), so X = [ J Orb(x)

xeX
Now suppose if z € Orb(x) N Orb(y). Then for some g, h € G, we have that g(x) = z and h(y) = z. For
any t € Orb(y), t = k(y) = kh™"(z) = kh™"g(x). So t € Orb(x), and Orb(y) C Orb(x), and symmetrically,
Orb(x) € Orb(y). Thus Orb(x) = Orb(y), and orbits partition. O

Theorem (Orbit-Stabiliser). Let G be a finite group, G Q) X, then for all x € X,

|G| = |Orb(x)||Stab(x)|

h(x) = g(x) &= hg~' € Stab(x) <= h Stab(x) = g Stab(x), so |Orb(x)| = |G : Stab(x)|.

Proof. First, we note that Orb(x) must be finite as G is finite.

Also, h(x) = g(x) &= h~'g(x) = x &= h~'g € Stab(x). So this means that h Stab(x) = g Stab(x).
So distinct points in Orb(x) are in bijection with distinct cosets of Stab(x). Thus |Orb(x)| = |G : Stab(x)| =
|G|/|Stab(x)| and result follows. O



Lemma (Burnside's Lemma). Let Fix(g) = {x € X : g(x) = x}. Then the number of orbits is

|G\ Z |Fix(g)

gel

Count {(g, x) : g(x) = x} by summing over x, then summing over g, orbits partition

Proof. Let S = {(g,x) : g(x) = x}. Then

S = [ J{g} x Fixig) = [ J Stab(x) x {x}

geC xeX
So[S| = L [Fixigll = ¥ [Stab(o) = G T g
geG xeX vex Orb(x)
As orbits partition, let Oy, . . ., O,, be the orbits. Then
Orb k=1 x€0; 0] k’
O
7.2 Cauchy's Theorem
Theorem. If G is a finite group, p a prime, and p | |G|, then G has an element of order p.
Consider X = {(g1, ..., gp):g1...gp=e} CGP.ord(g) | p &= (g..... gleX. pl|Xlasp||GP"
Let C, act on X by ‘cycling’ By Orbit Stabiliser sizes of orbits are T or p. There must be at least p — 1
size 1 orbits as (e, ..., e) e X.

Proof. Consider the group GP. Let X C GP be defined by X = {(g1,..., gp) : g1-..9p, = e}. Note
that ord(g) | p < (g9,..., g) € X. Now define an action a : (, x X — X. Let C, = (a). Then

algr, . gp) = (g2, Gn g1). 1 g1...gp = ethen go...gag1 = g7 'g1...9sg1 = g7 'egi = e.

Now, we know that |X| = ]C|p_1, as for each element of X, (g1, ..., Gp—1.9p). g1, - - -, gp—1 are arbitrary,
and then g, is unique. Thus we know that p | | X|.
By Orbit-Stabiliser, we have that for any x € X, |Orb(x)[|Stab(x)| = |C,| = p. This means that the sizes

of orbits must be 1 or p. As orbits partition, we have that

|X| = (number of size 1 orbits) + p x (number of size p orbits)

Thus, the number of size 1 orbits must be a multiple of p. As Orb((e, ..., e))= (e ..., e), there must in
fact be at least p — 1 more. Orbits of size 1 are of the form (g, ..., g), so we must have some g € G. g #+ e
such that g” = e. O

7.3 Left reqular action
Definition (Left reqular action). A group G acts on itself by g(x) = gx.

Theorem. Left reqular action is an action.
Proof. Clear from definition and group axioms. O]
Lemma. The left reqular action is faithful.
Proof. If g(x) = gx = x for all x € G, then ge = e,s0 g = e. O

Lemma. The left reqular action is transitive.



Proof Given x,y € G, setting g = yx~', g(x) = yx 'x = y. O
Theorem (Cayley's Theorem). Every group is isomorphic to a subgroup of a symmetric group.

Left reqular action is faithful, First [somorphism Theorem

Proof Let G @ G by the left reqgular action. This gives us a homomorphism p : G — Sym(G), and as
ker p = {e}, from the First Isomorphism Theorem, we get that

G = Glkerp =1mp < Sym(Q)

O
Proposition. A group G acts on it's subgroups by g(H) = gH, and this action is transitive.
Proof. Clear from definitions. O]
7.4 Conjugation Action
Definition (Conjugate). Given g, h € G, the conjugate of g by h is hgh™".
Proposition. G O G by conjugation, that is g(x) = gxg~".
Proof. Clear from definitions. O]
Proposition. ord(ghg™') = ord(h)
Proof (ghg™")" = gh"g™', so (ghg™")" = e <= h" =e. O

Definition (Centre). The centre of a group Z(G) is the kernel of the conjugation action.

Z(G)={g e G:Yhe G ghg ' = h}
The centre is the set of elements of G that commute with all the others, as gh = hg.

Definition (Conjugacy Class). The conjugacy class of an element x € G is the orbit of x under the conjugation
action.

cclo(x) = {gxg™": g € G}

Definition (Centraliser). The centraliser of an element x € G is the stabiliser of x under the conjugation
action.

Col)={g9 € G gxg' =x}

The centraliser of x is the set of elements of G which commute with x.

Proposition.

2(G) = | Colg)

gel

Proof Consider C and D. O

Theorem. If G is a finite abelian group, acting on a finite set X, and the action is transitive and faithful,
then |G| = | X]|.

Proof. Let x € X be arbitrary. Consider g € Stab(x). Let y € X be arbitrary. Then as Orb(y) = X, there
exists h such that h(x) = y. Then g(y) = gh(x) = hg(x) = h(x) = y. As the action is faithful, g = e. So
|Stab(x)| = 1, |Orb(x)| = |X]. O]

Proposition. G acts on its subgroups by g(H) = gHg™".

10



Proof Clear from definitions. O

Proposition.
gHg "= H
Proposition. Singleton orbits are normal subgroups.
Proof. N is normal if and only if Vg,g/\/g_1 = N. 0

Lemma. Normal subgroups are those that are a union of conjugacy classes.
Proof N = |J cclg(h), as we clearly have that Yh € N, cclg(h) C N.
heN
Conversely, if H is a union of conjugacy classes, then given g € G, h € H, ghg™" € cclg(h) € H. So
H is normal. O

8 Small Groups
8.1 Order 1

The only group of order 1 is the trivial group.

8.2 Prime order
Proposition. /f |G| = p with p prime, then G = C,,.

Proof. By Lagrange, the elements in GG must have order dividing p, but as p is prime, the order of any
non-identity element must be p. This means that it generates the group. O

8.3 Order 4

Lemma. All groups of order <5 are abelian.

Consider {e, x, y, xy, yx}, two of them must be equal

Proof. Orders 1,2,3 and 5 are trivial. Consider a group G with |G| = 4. Choose distinct non-identity
x,y € G.

Consider the set {e, x, y, xy, yx}. We must have that (at least) two of the elements there are equal. If
x = xy or x = yx, then y = e. Contradiction. If y = xy or y = yx then x = e. Contradiction. Thus we must
have that xy = yx, and xy # x, xy #+ y. So the group is {e, x, y, xy} and is abelian as xy = yx. O

Proposition. The only groups of order 4 are C4 and V4 = (& x G.

Cases on whether there is an element of order 4.
Proof. If there exists an element of order 4, then it generates the group and the group is cyclic.
Otherwise, by Lagrange’s Theorem, all the non-identity elements must have order 2. Choose 2 distinct

elements of order 2, say b and ¢. From proof above, we have that G = {e, b, ¢, bc}. By the direct product
theorem, this is isomorphic to (b) x (¢) = G x . O

11



8.4 Order 6
Proposition. The only groups of order 6 are Cg and Dg (= S3).

By Cauchy there are elements of order 2 and 3. Cases on whether there is an element of order 6.
: N ,
De={rs|rP=s"=esrs=r"")

Proof. By Lagrange’s Theorem, the possible orders of elements are 1,2, 3, 6.

If there is an element g of order 6, then we are done, as G = (g) = Gs.

By Cauchy's Theorem, we must have an element s of order 2, and an element r of order 3. |G : (r)| = 2,
so (r) is a normal subgroup of G. This means that s~'rs € (r) = {e,r,r’}. We can check each case
separately.

If s='rs = e, then r = e. Contradiction.

If s='rs = r, then sr = rs, so (sr)” = s"r", and sr would have order 6, as lcm(2, 3) = 6. Contradiction.

Thus s 'rs=r2=r" and G = (s, r), with sr = rls, 2= =e SoGZ D ]

8.5 Order 8

Lemma. /f all non-identity elements of a finite group have order 2, then it is abelian.

Proof Let a,b € G be arbitrary. Then ord(ab) < 2. So ab = (ab)~'. Thus ab = a~'b~" = (ba)™’
ba.

Ol

Lemma. /f all non-identity elements of a finite group have order 2, then it must be isomorphic to C?x ... x C?.

By Cauchy we know the size is 2", choose elements, look at generated subgroups and use direct product
theorem.

Proof. By Cauchy's Theorem we know that the size of G must be 2" for some n and from the lemma above
we know that G is abelian.

If |G] = 2, then G = C, and we are done.

If |G| > 2, then choose a1 € G, ord(a1) = 2. There must be some a; € G such that a, € (a1). By the
Direct Product Theorem, (a1, a2) = (a1) x {a2) = G x Co. If |G| = 4 then we are done. If not, choose
as ¢ (a1, az) anf so on.

Continue until we get G = G x -+ x G ]

ncopies

Lemma. Let G be a group, and N be a normal subgroup of index m in G. Then for any g € G, g™ € N.

Lagrange on GIN

Proof. Let g € G be arbitrary. Consider gN € G/N. By Lagrange we have that (gN)" = g"N = N. So
g" e N. O

Proposition. A group of order 8 is isomorphic to one of the following
[ ] C8
[ C4 X Cz

C2><C2XC2
.Dg
o (s
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Order 8 = Cg. All order 2. = C5. Otherwise there exists h with ord(h) = 4. (h) < G, so g* € (h) for
all g. g = e, h, h? or h®. Can’t be h or h. For each case consider ghg=" = h or h>.

Proof. First we check that they are not isomorphic. Cg, (4 x (5, G x (; x C, are abelian, Dg and Qg are
not. By looking at elements of order 2,4 and 8, the abelian groups are not isomorphic. Dg has 5 elements
of order 2, but Qg has only 1.

By Lagrange, the orders of elements of the group are 1, 2, 4 and 8.

e |f we have an element of order 8, then G = Gs.
e If all non-identity elements have order 2, then C = G x G x C.

e Otherwise, we must have no elements of order 8, and at least one element h of order 4. Note that (h)
is an index 2, and thus normal subgroup of G. From the lemma above, g° € (h) for any g € G. So
g>=e h,h? or h°.

If g? = h or h?, then g* = h? + e, and this means that ord(g) = 8. Contradiction. So we must have
that g% = e or h°.
— If ¢ = e, now consider ghg™". As (h) < G, we must have that ghg™' &€ (h). In addition,
ord(ghg™") = 4, so ghg™" = h or h°.
% If ghg=" = h, then gh = hg, (h)N{g) = {e}, and G = (h){g). So G = (h)x(g) = Cy4x C>.
% If ghg™" = h? = h™1, then G = Qg by mapping h +— r and g > s.
— If g% = h?, we still have that ghg™" = h or h°.

% If ghg™" = h, then (gh)> = ghgh = g°h? = e has order 2. Applying the Direct Product
Theorem to (h) x (gh) yields the desired result.
% If ghg™" = h>, then define ¢ : G — Qg by e+ 1, h> i, g j, gh’ — k.

9 Mobius Group

Definition (Extended Complex Plane). The extended complex plane C is the complex plane with a point at
infinity. Equivalently, C = C U {oo}.

Definition (Mobius Map). A Mébius map is a function f : € — € of the form

az+b
f(z) =
2) cz+d
where a,b,c,d € C, ad — bc # 0, f(—d/c) = oo and

a .
f(oo)—{c ifc#0

oo ifc=0

Lemma. Mobius maps are bijections.

Proof We claim that

For z + a/c, oo,

13



( dz—b )
al——— | +b
—cz+a

c (dz —b ) +d
—cz+a
a(dz — b) + b(—cz + a)
c(dz —b) + d(—cz + a)
(ad — be)z
(ad — be)

=7

We also have that f(f~"(a/c)) = f(co) = a/c and f(f~'(00)) = f(—d/c) = co. Thus fof~" =id We
also have that "o f = id. O

Theorem (Mébius Group). The set M of Mobius maps forms a group under composition.

Proof. Closure - Algebra bash. Check composition of Mobius maps is a Mobius map, that is, ‘ad — bc #
and also check that the values for —d/c and oo match.

ldentity - id: z+— Zz.

Inverse - From lemma above.

Associativity - Function composition is always associative. O

Proposition. The Mébius group is generated by the following
(1) 1(z) = az (a #0)

(it) f(z)=z+Db

(iii) f(z) =1/z

Proof. If ¢ # 0, then

(i) d (i) 1 () (ad—bc)c™ (@) a (ad—bc)c™® az+b
Z—Z+ —— — d — — 4+ d = T d
¢ zZ+ — zZ+ - ¢ z+ - CZ
c c
If ¢ =0, then
)y oa (i) a +b az+b
Zr— —Z+— —Z 4+ — =
d d d d

Proposition. The Mébius group acts on C.
Proposition. The action M C is faithful

Proof Consider p - M — ng(@), defined by (p(f))(z) = f(z). Then if p(f) = id, we must then have that
f=id O

9.1 Fixed Points
Definition (Fixed Point). A fixed point of f € M is z € C such that f(z) = z.

Proposition. A Mébius map with at least 3 fixed points is the identity.

Fundamental Theorem of Algebra.
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az+b
cz +

Proof. Suppose f(z) = has at least 3 fixed points. First suppose if co is not a fixed point. Then

i;i—s = 7 has three roots over C, ie ¢z’ + (d — a)z + b = 0 has 3 roots. Contradiction by FTA So we
must have that c=d —a=b=0.

Now suppose if co is a fixed point, then f(co) = oo, so ¢ = 0. Consequently f(z) = OZ;_ b = 7 has two
roots, ie (¢ — d)z + b = 0 has at least two roots. Contradiction by FTA soa—d=b=0.

In either case, c = b =0, @ = d means that f(z) = z. O

Corollary. If f, g € M coincide at three points, then they are equal.

Proof Say z1,2,z3 € C are such that f(z) = g(z1), f(z2) = g(z2), f(z3) = g(z3). Then g~ 'f(z) = z for
i=1273. Sog_1f=ld,andf=g. OJ

Theorem. There is a unique Mébius map sending any three disjoint points of C to any three distinct points
in C.
Map each triple to (0,1, c0). Take g~ 'f.

Proof Suppose first that f : (21, 22, z3) — (0,1, 00). If 21, 22, z3 # o0, then

(22— z3)(z — 71)

f(z) =
= =)
satisfies the requirements. If z1 = oo, then f(z) = 278 g 7 = o9, then f(z) = 274 73 = 0Q,
722 — 79 Z—2Z3
then f(z) = — 2.
72— 71
Now suppose fy : (21,22, 23) — (0,1,00), f2 1 (w1, w2, w3) — (0,1,00). Then f = f51f N7, 22, 73)
(w1, w2, w3). O
Lemma. Every Mébius map has at least 1 fixed point.
Fundamental Theorem of Algebra
az+b 5
Proof. f(z) = i & cz°+ (d —a)z— b =0 has at least one root over C. O]
z

9.1.1 Conjugation and lIteration

Lemma. f fixes z if and only if hfh™" fixes h(z).
Lemma. /ff € M has 1 fixed point, then it is conjugate to z+— z + 1.
(z1, f(z1), z0) distinct. Conjugate f by map of (z1, f(z1), zg) to (0,1, 00). So f is conjugate to a map that fixes

oo and maps 0 to 1.

Proof. Suppose f(zg) = zg. Choose z1 # zg. Then (z1,f(z1), zo) are three distinct points. So we have
g € M such that g : (21, f(z1), z0) — (0,1, 00). Under gfg~', we have that 0 — z — f(z1) — 1, and
00 > 29 F> 29 > 00. S0 00 is the fixed point of hfh™!, and 0 is mapped to 1. As a result, we must have
that f(z) = az + 1 for some a € C, a #+ 0. If a # 1, then 1/(1 — a) is also a fixed point. So we must have
that a = 1, and gfg~'(z) =z + 1. O

Lemma. /f f € M has 2 fixed points, then it is conjugate to z+ az, a € C, a # 0.

Conjugate by map of (zg, z1) to (0, 00). Then 0 and oo are fixed.

Proof Say zg, z; are fixed points of f. Let g be any Mobius map such that (zg, z1) — (0, 00). Then gfg™'
fixes 0 and co. So it must have the form z +— az for some a + 0. O
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9.2 Complex Geometry

Definition (Circle). A circle in C is the set of z € C satisfying

Azz* 4+ B*'z+ Bz*+ C =0
where A, C € R, B € C, |B)* > AC.
Proposition. oo is in a circle if and only if A = 0.
Proposition. All circles on C are either circles or lines in C.
Theorem. Circles are preserved by Mdébius maps.

Proof Let S(A,B,C) = {z : Azz* + B*z + Bz* + C = 0}. We know that M is generated by z — az,
z+— z+ b and z+— 1/z, and we only need to check these cases.
A
Under z+ az, S(A,B,C)— S ol aﬁ*'
Under z+— z+ b, S(A, B, C) — S(A, B — Ab, C + Abb* — Bb* — B*b)
Under z+— 1/z, S(A, B, C) — S(C, B*, A). O

Definition (Cross Ratio). If z1, 72, 73, z4 are distinct points in €, the cross ratio is

(21,22, 23, 4] = f(z4)
where f is the unique Mobius map sending (z1, z2, z3) — (0, 1, c0).

Proposition. [0, 1,00, w| = w for all w € @\{0,1,00}.

Proposition.
(24 — 21)(22 — z3)
(21,22, 23, 23] =
(22 — z1)(z4 — 23)
Proposition.
22— 23
(00,22, 23, 24] =
Z4 — 273
Proposition.

(21,22, 23, 24) = |22, 21, 24, 3] = |23, 24, 22, 21) = 24, 23, 22, 74

Theorem. For any g € M,

(21,22, 23, 23] = [g(21), 9(22), g(23), g(24)]
Proof. Let f be the unique Mobius map f : (z1,22,23) = (0,1,00). Then [z1, 22, 23, z4] = f(z4) by defi-

nition. Now fg~" : (g(z1), g2, g(23)) = (0,1, 00), 50 [g(21), 9(22), 9(23), g(z4)] = Fg"(g(za)) = f(z4) =
[21,22,23,24]. O

Corollary. Four distince points z1, 23,73, 24 € € are on a circle if and only if (21,22, 23, ) € R.

Proof. Let f be the unique Mébius map f : (21, z2, z3) — (0, 1, 00). Then the circle passing through 71, 7, z3
is sent to the circle passing through 0, 1,00 by f, ie RU {oo}. As a result, z4 is on the circle with (71, 22, z3)
if and only if f(z4) € R. O]

10  Symmetric Groups

Definition (Permutation). Given a set X, a permutation on X is a bijective function X — X. The set of all
permutations is denoted by Sym(X).

Proposition. (Sym(X), o) is a group.

Definition (Symmetric Group). If | X| = n, then S, is the isomorphism class of Sym(X). We typically denote
X=1{1..n}

Proposition. |S,| = nl.

Proof. For each 0 € S,, there is n choices for a(1), (n — 1) for o(2) and so on. O
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10.1 Disjoint Cycle Representation

Definition (Cycle). A permutation of the form a1 — ay +— -+ +— a, — aj is an n-cycle. It is written as
(a1 az ... ap).

Definition (Transposition). A transposition is a 2-cycle.
Lemma. Disjoint cycles commute.

Proof. Let o and t be disjoint cycles.

If i € 0 and i ¢ 7, then o(i) ¢ T as o and 7T are disjoint. So t(0(i)) = o(i), and also (i) = i, so
o(t(i)) = o(i). Similarly if i € T and i & o, then o(7(i)) = T(0(i)).

If i ¢ 0 and i & 7, then o(i) = (i) = i, and result follows. O

Theorem (Disjoint Cycle Representation). Every permutation can be written as a product of disjoint cycles.

Proof Consider the sequence 1, (1), 0%(1),.... As of(1) € {1,.. ., n}, we must have o?(1) = o®(1) for
some a > b. There must be a minimal k > 1 such that (1) = 1. So 1,0(1), ..., o*=1(1) are all distinct.
So (1 o(1) ... o*='(1)) is the first cycle. Then repeat this for the other numbers in {1,.. ., n} not in the
current cycle to get the other cycles. O

Theorem. Disjoint cycle representation is unique (up to commutativity).

Proof. Suppose if 0 = (a1 ... a)(Ak+1 ---Ak,) .- (G, 41 - - ak,) = (b1 ... b)) (br+1 - br) o (br 41 ... br).
We have that aq = b; for some t, and the other numbers in the cycles are determined by o(a1), 0%(a1), . . ..
As a result, the cycles containing aq and b; are the same. Continue until all cycles are the same. O

10.2 Sign of a Permutation
Theorem. Every permutation can be written as a product of transpositions.
Proof. Suffices to show every cycle can be written as a product of transpositions.
(01 L. Gk) = (01 Clz)(az 03) A (Gk_1 Uk)
O

Theorem. Let 0 € S,. Then the number of transpositions in any representation of o will always be even,
or always off.

Proof. Define #(o) for the number of cycles when o is written as a product of disjoint cycles. Consider
o(cd).

If cand d are inthe same cyclein o,say(caz ... a1 d a1 ... ag). Then(caz ... ai-1daiy ... ay)(cd) =
(caip1 ... ag)ld ax ... ai—1), so #(o(c d)) = #(o) + 1.
If c and d are in different cycles, then (c a;11 ... ax)(d az ... aiq)(cd)=(cay ... ai_1d ajeq ... ag).

Then (c az ... ai—1 d ajy1 ... ag), so #(o(c d)) = #(o) — 1.
Note that #(e) = n. If o can be written as k transpositions, then we can write it as e composed with k
transpositions. So

#(o)=#(e)+k=n+k (mod 2)
As a result, k = #(0) — n (mod 2), as the right hand side is constant, the parity of k is constant. O
Definition (Sign). The sign of a permutation o is

sign(o) = (—1)

where o can be written as k transpositions.

Definition (Even, Odd). If sign(o) = 1, we say o is even. If sign(o) = —1, we say o is odd.
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Proposition. An odd length cycle is even, an even length cycle is odd.
Proposition. sign : S, — {&1} is a surjective homomorphism.

Definition (Alternating group). The alternating group A, = kersign is the group consisting of all of the even
permutations of S,.

Lemma. /f H < S, contains an odd permutation, then half of its elements are odd.

Proof Let T be an odd permutation in H, E be the set of even permutations and O be the set of odd
permutation in H.

Define f : E — O by f(0) = ot. This is a bijection, so |E| = |O|. O
Theorem. 15,1 |
An = == i
Al = == =5

10.3 Conjugation

Lemma. o(ay ... ay)o~ ' = (o(ay) ... o(ay))

Proposition. Two elements of S, are conjugate in S, if and only if they have the same cycle type.

Proof Suppose if 0 = 01... 0. Then pop~' = porp~' ... porp~'. By the lemma above, pop~' and o have
the same cycle type.

On the other hand, if two permutations have the same cycle type, say 0 = (a1 ... ax)(@k4+1 --.)- ..
and T = (b1 ... bg)(br+1 -..)..., then p(a;) = b; will mean pap~! = 1. O

Proposition. |ccls, (0)] = |ccly, (0)] or |ccls, (0)] = 2|ccla, (0)]-

Proof. Note that Ca,(0) = Cs,(0) N A, and that Cs, (o) < S,. Thus either all of the permutations in Cs, (0)
are even, or exactly half of them are even. As a result, |Ca,(0)] = |Cs,(0)| or |Ca,(0)| = 3|Cs,(0)]. Using
Orbit-Stabiliser we get the required result. O

Definition (Splitting). If |ccls, (0)] = 2|ccla, (0)], we say that the conjugacy class of o splits in A,.
Proposition. ccls, (o) splits in A, if and only if there are no odd permutations which commute with o.

Proof. If |ccls, (0)] = 2|ccla,(0)|, then Cs (o) = Ca, (0). But we also have that Cy (0) = Cs,(0) N Ay, so
Cs,(0) C A,
Conversely, if Cs, (o) C Ay, then Ca, (0) = Cs,(0) N A, and so ccls, (o) splits. O]
10.4 Simplicity of As
Lemma. Cs. (123 45)=((12345)).
5x4x3x2x1

Proof. |ccls (12 3 4 5))| = 5 = 24, as it is all of the 5 cycles in Ss. By orbit stabilier, we
have that |Cs. (1 2 3 4 5))| = 120/24 = 5. Clearly (1234 5)) C Cs. (123 4 5)) and |{(1 23 45)) =5,
and we have the required result. O

Theorem. As is simple.

Proof. The conjugacy classes in As are as follows

Cycle Type ‘ Odd element in Cs, ‘ Size of ccls, | Size of ccla,
1,1,1,1 Yes, (1 2) 1 1
2,21 Yes, (1 2)(3 4) commutes with (1 2) 15 15
3,11 Yes, (1 2 3) commutes with (4 5) 20 20

5 No 24 12 and 12

A normal subgroup of As must be the following
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e Contain e.
e Be a union of conjugacy classes.

e Have an order that divides |A,| = 60.

As a result, the only normal subgroups are {e} and As.

11 Matrix Groups

In this section, F represents any field. Typically F = R or C. Let M,(FF) represent the set of all n x n

matrices for reprsenting linear maps F” — F".

Definition (General Linear Group). GL,(F) = {A € M,(F) : detA & 0}

Definition (Special Linear Group). SL,(F) = {A € M,(F) : det A = 1} = kerdet < GL,(F)
Definition (Orthogonal Group). O, = O,(R) = {A € M,(F) : ATA = I}

Proposition. O, < GL,(R)

Proposition. det: O, — {£1} is a surjective homomorphism.

-1 0
Proof. Homomorphism is clear. det/ =1, det =—1.
0 1

Definition (Special Orthogonal Group). SO, = SO,(R) = kerdet < O,,.

11.1  Mobius Maps
Proposition. ¢ : SLy(C) — M defined by

(e a))=r=lem )

Proof. Homomorphism can be checked by comparing entries.

b
If f(z) = (ijr— is a Mobius map, then c d

olo (e a)) ="

Proposition. ker ¢ = {£/}

is a surjective homomorphism.

a b _ az+b
Proof. If(p((c d)) = id, then p——
matrix is 1, > =1 and @ = +1, kerp = {+/},

Proposition. M = SL,(C)/{=£/}.
Definition (Projective Special Linear Group). PSL,(C) = SLy(C)/{£/}.

11.2  Actions
Proposition. GL,(F), SL,(F) @ F” and O,, SO, Q R".
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b) € GL»(C), as ad — bc #+ 0. Let D? = ad — bc. Then

O

=zforallze C. Soa=d,b=c=0. As determinant of the
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11.3 Change of Basis

Proposition. GL,(F) acts on M, (F) by conjugation. The orbit of A € M, (F) is the set of matrices representing
the same linear map with respect to different bases.

Proof. The action is clear. A and B are in the same orbit if and only if there exists matrix P such that
PAP~" = B, for some P &€ GL,(F). By the definition of the change of base matrix this means that B
represents the same linear map as A, with the basis given by the columns of P. O
11.4 Geometry of Orthogonal Groups

Proposition. P € O, if and only if the columns of P are orthonormal.

Proof. (IDTID)IJZ lDl]/;lD/(/ = ’Dki’ij = 5,] OJ

Proposition. P Q M,(R) by conjugation. Two matrices are in the same orbit if and only if they represent
the same linear map with respect to orthonormal bases.

Proposition. P € 0, <= Vx,ye R", Px-Py=x-y.
Definition (Reflection). A reflection in the (hyper)plane with unit normal a € R” is the linear map R, :
R"” — R", where
X+ X —2(x-a)a
Proposition. R, € O,.
Proposition. PR,P~! = Rp,.

Proposition. det(R,) = —1.

Proof —1 is an eigenvalue as Ry(a) = —a. 1 is an eigenvalue as for any x where x-a = 0, Ra(x) = x. So
—1 has geometric multiplicity 1, 1 has geometric multiplicity n —1. det(R,) is the product of the eigenvalues
so it is —1. O

cosf sinf

Theorem. All elements of SO, are of the form _
—sin@ cosH

), and all matrices of this form are in SO;.

Proof Let A= (@ P} €50, Thenad —bc=1,AT =A"so (¢ ) = [ ¢ 7P} Thusa=4
c d b d —c a

b= —c Soad—bc=1 = a’+ b> =1 Without loss of generality, let @ = cos 8, b = sin O for a

unique @ € [0, 27). Converse implication is just calculation. O

Theorem. The elements of O,\SO, are reflections in lines through the origin.

Proof Let A — [@ P} ¢ 0N\SO,. Then ad —be — —1, AT — A1 50 (¢ <) = [79 P o
c d b d c —a
a = —d, b =c Asaresult, @ + b’ = 1. Without loss of generality, set @ = cos8, b = sin6, so
_[cos@ sin@
~ \sin@ —cosO)"
sin(0/2) \  [—sin(0/2) cos(6/2)  [cos(6/2) ) S
Now A (cos(Q/Z)) = ( cos(0/2) | and A sin(6/2) = sin(6/2) ] So A (s the reflection in the
_ _ sin(6/2)
line perpendicular to (COS(Q/Z))‘ O

Theorem. Every element in O; is the composition of at most 2 reflections.

Proof. Every element in O;\SO; is a reflection. Now for A € SO, A = A (_01 ?) (_01 ?) and

-1 0 -1 0 .
A( 0 1) and ( 0 1) are both in O,\SO.. O
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Theorem. For all A€ SOs, 1 is an eigenvalue of A.

Proof det(A—1/) = det(A—AAT) = det(A)det(/—AT) = det(/—AT) = det((/—A)T) = det(/ — A) =
—det(A—1/). So det(A—1) =0. O

Theorem. Every element in SO3 is conjugate to an element of the form

1 0 0
0 cos@® —sinf
0 sinf cosB

Proof From above, we have vi € R3 such that Avq = v; and lvi| = 1. Extending v4 to an orthonormal basis
{vi,v2,v3}, we have that Av; - vi = Av; - Avy = v; - vi = 01. So Av, and Avs are in span{vy, v3}.

10 0
As a result, we know that A has the form | 0 @ b |. A restricted to span{vz,v3} will be an element
0 ¢ d
1 0 0
of SO, so we get that A= | 0 cos@ —sinB | with respect to the basis {vq,v2,v3}.
0 sinB cosb
The change of base matrix P will be in Os, as {v1, vz, v3} is an orthonormal basis. It may or may not be
in SOs, if not, the change of base matrix with respect to {—vq, vz, v3} will be in SOs. ]

Theorem. EFvery element of Os is the composition of at most 3 reflections.

1 0 0
Proof If A € SOs, then there exists P € SOs such that PAP~" = B, where B = |0 cos® —sin6
0 sin@ cosB

Since (C(_)SQ o 9) is the composition of at most 2 reflections, so is B. Say B = B1B,. Then A =
sin@ cos B
PBP'PB,PT.
-1 00 -1 00 -1 00
If A€ 0s\SO;3, then detA=—1,and A=A 0 1 O 0O 1 0. ThenA[ O 1 0] isin
0 0 1 0 0 1 0 0 1
-1 0 0
S0O5 and can be written as 2 reflections, and 0 1 0] is a reflection. O
0 0 1

12 Symmetries of Platonic Solids

12.1  Tetrahedron

Let G be the group of symmetries of the tetrahedron. Clearly G acts transitively on the vertices, and the
only symmetry that fixes all of the vertices is the identity, so the action of G on the vertices is also faithful.

Now, labelling the vertices of the tetrahedron as 1,2, 3,4, we get that Orb(1) = {1, 2,3, 4}, and Stab(1)
is the symmetries which fix 1. This is precisely the symmetries of the triangle {2,3,4}. So Stab(1) = Ds.
As a result, |G| = 24. Clearly G is a subgroup of S4, and as |G| = |S4|, we must in fact have G = Sy.

Now letting G represent the group of symmetries consisting only of rotations. Orb(1) = {1, 2, 3,4} and
Stab(1) is the rotations of the triangle {2,3,4}. So |Gt| = 12. As GT < G = S;, we must in fact have
Gt = A4. Clearly all 3 cycles are there, and a 2 — 2 cycle is a rotation through opposing edges.

12.2 Cube

Let G be the group of symmetries of the cube. Clearly G acts transitively on the vertices. So we get that
|Orb(1)| = 8. In addition, we have that Stab(1) contains the identity, 2 rotations (These are rotations through
1 and the opposing vertex. Considering the triangle formed by the vertices connected to 1, we see that there
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are two non-trivial rotations through this axis) and 3 reflections (for each edge connecting 1, reflect across
plane through that edge and the opposing edge). So |Stab(1)| = 6. Thus |G| = 48.

Now let G* be the group of symmetries consisting only of rotations. Again this acts transitively on the
vertices. Now Stab(1) contains only the rotations, so |G| = 24. Letting G act on the four diagonals of the
cube, we can define p: G — S4. By rotations through the mid points of opposing edges, we see that Im p
contains all 2-cycles, and by rotations though the mid points of opposing faces, we see that Im p contains
all 4-cycles. As the 2-cycles generate Sy, we see that we must have Gt = Sy,

Proposition. O3 = SO; x G.
Proof. SOz = kerdet, and consider ¢ : O3 — SO3 defined by

A if Ae SO
P(A) = .

A (A& SO

This s a surjective homomorphism, with ker ¢ = {£/}.
Then, kerdetnkerg = {/}, kergpkerdet = {£A: A € SO3} = O3 and —IA = A(—/), Al = IA so
kerdet x kerp = O3. Thus O3 = SO3 x C. O

In the above, (5 is generated by —/, which represents the map v+ —v. Thus if vi— —v is a symmetry
of a platonic solid, the group of symmetry will also split. Thus G = G x C; = Sy x .

12.3 Platonic Solids

Cubes and Tetrahedra are Platonic solids, which means that their group of symmetries acts transitively on

(vertex, incident edge, incident face)

What this means is that choosing any vertex, an edge incident to it, and a face incident to the vertex,
there is a symmetry which will map any other triple to it.

There are three more platonic solids, the octahedron, dodecahedron and the icosahedron. By inscribing
the cube/octahedron in the other, we see that they must have the same group of symmetries. Similarly if we
inscribe the icosahedron/dodecahedron into the other, they must have the same group of symmetries. We
call them "dual”.

Consequently only three groups are groups of symmetries of a platonic solid.
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