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1 Number Theory

1.1 Prime Numbers
Definition (Multiples). For a natural number n ∈ N, the multiples of n are the numbers of the form kn,where k ∈ N.
Definition (Divisor). For natural numbers m and n, m is a divisor of n, denoted as m | n if n is a multipleof m.
Definition (Prime). A natural number n ≥ 2 is prime if the only divisors of n are 1 and n.
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Proposition. Every natural number n can be expressed as a product of primes.

Proof. Note we define the result of the empty product as 1.Applying strong induction on n, n = 2 is true as 2 is prime. Now, given n > 2, if n is prime thenwe are done. Otherwise, n is composite. Say n = ab, where 1 < a, b < n. By the inductive hypothesis,
a = p1 . . . pk and b = q1 . . . ql. Then n = ab = p1 . . . pkq1 . . . ql and we are done.
Theorem. There are infinitely many primes.

Proof. Suppose not. Denote the primes by p1, . . . , pn. Let N = p1 . . . pn + 1. Then N has no prime factor,as none of the primes p1, . . . , pn divides N . Contradiction.
1.2 Euclid’s Algorithm
Definition (Highest Common Factor). For a, b ∈ N, a natural number c is a natural number satisfying

• c | a and c | b• If d | a and d | b, then c | d.
Definition (Division Algorithm). Given natural numbers n, k , the division algorithm finds integers q, r ∈ Zsuch that n = qk + r and 0 ≤ r < k .
Algorithm. Recursion on n.

• If n = 1, then
– If k = 1, then n = 1× 1 + 0
– Otherwise, n = 0× k + 1• If n > 1, we have that n− 1 = qk + r .
– If r < k − 1, then n = qk + (r + 1).
– If r = k − 1, then n = (q+ 1)k + 0.

Definition (Euclid’s Algorithm). For a, b ∈ N, a ≥ b.
Algorithm. By division algorithm, we can find q1, . . . and r1, . . . such that

a = q1b+ r1
b = q2r1 + r2
r1 = q3r2 + r3...

rn−1 = qn+1rn + 0
Output rn.

Proposition. Euclid’s Algorithm Terminates

Proof. b > r1 > r2 · · · > rn > 0.
Theorem. The output of Euclid’s Algorithm on a, b is the HCF of a, b.

Proof. Clearly rn | rn−1. So rn | rn−2. Repeat and we get that rn | b and rn | a.Now suppose if d | a and d | b. Then we have that d | q1b and d | a, so d | r1. Repeat this and wehave that d | ri for 1 ≤ i ≤ n. So d | rn.
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Theorem (Bézout’s Lemma, Bézout’s Identity). For all a, b ∈ N, there exists x, y ∈ Z such that ax + by =hcf(a, b).
Proof. Run Euclid’s Algorithm on a, b. We get that ri = uiri−1 + viri−2. Using this, we can show that
rn = unrn−1 + vnrn−2 = un(un−1rn−2 + vn−1rn−3) + unrn−2 = (unun−1 + vn)rn−2 + unvn−1rn−3. Repeatuntil we get that rn = sr1 + tr2 = sr1 + t(b − q2r1) = (s − tq2)r1 + bt = (s − tq2)(a − bq1) + bt =(s− tq2)a+ (t − q1(s− tq2))b.
Alternative Proof. Let h be the least positive linear combination of a and b. We claim that h = hcf(a, b).Suppose if d | a and d | b, then clearly d | xa+ yb for all x, y ∈ Z.Now suppose for contradiction if h - a. Then let a = qh+r , 0 < r < h. So r = a−qh = a−(xa+yb) =(1− x)a− yb < h is also a positive linear combination of x and y, and is less than h, Contradiction.
1.3 Fundamental Theorem of Arithmetic
Lemma. Let p be a prime, a, b ∈ N. Then if p | ab, we must have p | a or p | b.

Proof. Suppose if p - a. As hcf(p, a) | p, we must have that hcf(p, a) = p or hcf(p, a) = 1. But as p - a, wemust have hcf(p, a) = 1. Hence there exists x, y ∈ Z such that ax + py = 1. Then p(by) + a(bx) = b. As
p | abx and p | pby, we must have that p | b.
Theorem (Fundamental Theorem of Arithmetic). Every natural number n ≥ 2 can be expressed uniquely as
a product of primes, up to reordering.

Proof. We have already shown existence. Proceed by strong induction on n. The case for n = 2 is trivial.Now suppose if n = p1 . . . pk = q1 . . . ql. Then as p1 | n, p1 | q1 . . . ql. So we must have that p1 | qifor some i. Without loss of generality, we may assume p1 | q1. Then p1 = q1, as they are primes. Dividingthrough by p1 = q1, we have that p2 . . . pk = q2 . . . ql. By the inductive hypothesis we are done.
Corollary. hcf(x, y) lcm(x, y) = xy.

Proof. Suffices to consider prime factors. Suppose if p is a prime factor of x and y, with a factor of pain x and pb in y. The factor of p in hcf(x, y) is min(a, b) and the factor in lcm(x, y) is max(a, b). Asmin(a, b) + max(a, b) = a+ b, we are done.
1.4 Modular Arithmetic
Proposition. Let p be prime, then every a 6≡ 0 (mod p) is invertible mod p.

Proof. As a 6≡ 0 (mod p), we have that hcf(a, p) = 1. Thus there exists x, y ∈ Z such that ax + py = 1. So
ax ≡ 1− py ≡ 1 (mod p).
Proposition. If a ∈ Zp, a 6= 0, then 0, a, 2a, . . . , (p− 1)a are distinct elements of Zp.

Proof. If ia = ja, then (i − j)a = 0. As a 6= 0, we must have that i ≡ j (mod p). As 0 ≤ i, j < p, we musthave that i = j .
Consequently, as Zp has p elements, 0, a, 2a, . . . , (p− 1)a must be 0, 1, . . . , p− 1 in some order.

1.5 Fermat’s Little Theorem
Theorem (Fermat’s Little Theorem). Let p be a prime, a ∈ Zp, a 6= 0. Then ap−1 = 1.

Proof. We have already shown that a, 2a, . . . , (p− 1)a are distinct, so they are 1, . . . , p− 1 in some order.Multiplying them together, ap−1(p− 1)! = (p− 1)!. As (p− 1)! is a product of invertible elements, it is itselfinvertible. So ap−1 = 1.
Definition (Euler Totient Function). For a natural number n, the φ(n) is the number x , where 1 ≤ x ≤ nand hcf(x, n) = 1.

3



Proposition. If p is prime, then φ(p) = p− 1.

Proposition. If p is prime, then φ(p2) = p2 − p
Proposition. If p, q are prime, then φ(pq) = pq− p− q+ 1.

Proposition. φ(n) is the number of invertible elements in Zn.

Theorem (Fermat-Euler Theorem). Let n ≥ 2. Then in Zn, every invertible element a ∈ Zn satisfies

aφ(n) = 1
Proof. Let the units of Zn be x1, . . . , xφ(n). Consider ax1, . . . , axφ(n). These are distinct (as a is invertible) andalso invertible, so they must be x1, . . . , xφ(n) in some order. Hence aφ(n)x1 . . . xφ(n) = x1 . . . xφ(n). Cancelling,we get that aφ(n) = 1.
1.6 Wilson’s Theorem
Lemma. Let p be prime. Then the only solutions to x2 = 1 in Zp are x = 1 and x = −1 = p− 1.

Proof.
x2 = 1 ⇐⇒ x2 − 1 = 0 ⇐⇒ (x − 1)(x + 1) = 0As p is prime, we must have x − 1 = 0 or x + 1 = 0.

Theorem (Wilson’s Theorem). Let p be prime. Then (p− 1)! ≡ −1 (mod p).
Proof. It is true for n = 2. Now let p > 2. Consider 1, . . . , p − 1. We can pair up each a with a−1,when a−1 6= a. Note that a−1 = a ⇐⇒ a2 = 1 ⇐⇒ a = 1 ∨ a = −1. Consequently, (p − 1)! =1 · (a1 · a−11 ) · · · · · (ak · a−1

k ) · (p− 1) = p− 1 = −1.
Proposition. Let p be an odd prime. −1 is a square mod p if and only if p ≡ 1 (mod 4).
Proof. Suppose for contradiction that p = 4k + 3, x ∈ Zp and x2 = −1. By Fermat’s Little Theorem, wehave that −1 = (−1)2k+1 = (x2)2k+1 = x4k+2 = 1. Contradiction.Now if p = 4k+1, from Wilson’s Theorem we have that (4k )! = −1. Comparing (4k )! = (1·· · ··(2k ))((2k+1)·· · ··(4k )) and ((2k )!)2 = (1·· · ··(2k ))(1·· · ··(2k )), and noting that 2k+n ≡ (2k+n)−(4k+1) ≡ −(2k−n+1)(mod 4k + 1). Hence we see that ((2k )!)2 and (4k )! differ by (−) signs only, and there are 2k (−) signs, soin fact, we have that ((2k )!)2 = (4k )! = −1.
1.7 Chinese Remainder Theorem
Theorem (Chinese Remainder Theorem). Let m, n be coprime. Then for any a, b, there exists x such that
x ≡ a (mod m) and x ≡ b (mod n). Moreover, x is unique mod mn.

Proof. As m and n are coprime, there exists s, t such that sm+ tn = 1. Then x = atn+bsm satisfies x ≡ a(mod m) and x ≡ b (mod n).Now suppose if x ′ was also a solution. Then x ′ ≡ x (mod m) and x ′ ≡ x (mod n). So m | x − x ′ and
n | x − x ′. As m, n are coprime, we have that mn | x − x ′, so x ≡ x ′ (mod mn).
1.8 RSAIn this subsection, choose p, q large primes, n = pq, e coprime to φ(n) = pq− p− q+ 1.
Definition (RSA). To encode a message x ∈ Zn, map x to xe.To decode a message, using Euclid’s Algorithm/Bézout’s Lemma on e and φ(n), we find d, k such that
de+ kφ(n) = 1. Then de ≡ 1 (mod φ(n)). Then by Fermat-Euler, (xe)d = xde = x1−kφ(n) = x .
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2 Real Numbers

2.1 Completeness
Proposition. There is no rational x ∈ Q such that x2 = 2.

Proof. Suppose if x2 = 2, x = a
b , a, b ∈ N. Then a2 = 2b2. The exponent of 2 in the prime factorisation in

a2 is even, but it is odd in 2b2. Contradicting unique factorisation.
Alternative Proof. Suppose if x2 = 2, x = a

b , a, b ∈ N. For any integers c, d, cx + d is of the form e
b , for

e ∈ Z. Hence if cx + d > 0, we must necessarily have cx + d > 1
b . As 1 < x2 < 4, we must have that

1 < x < 2 and 0 < x − 1 < 1. Thus 0 < (x − 1)n < 1
b if n is large enough. Contradiction as (x − 1)n is ofthe form cx + d, since x2 = 2.

Axiom (Least Upper Bound Axiom). Every set that is nonempty and bounded above has a least upper bound.We call the least upper bound the supremum.For the next proposition, consider the canonical map p from N to R, where p(1) = 1 and p(n+1) = p(n)+1.We may also refer to p(N), the image of N under p, as N, as an embedding of the natural numbers into thereals.
Proposition (Axiom of Archimedes). The natural numbers are not bounded above in R.

Proof. Suppose not. Clearly N is nonempty. Let c = supN. Then there exists n ∈ N such that c−1 < n ≤ c.But then n+ 1 ∈ N and n+ 1 > c. Contradiction.
Corollary. For all ε > 0, there exists n ∈ N such that 1

n < ε.

Theorem. There exists x ∈ R such that x2 = 2.

Proof. Let S = {x ∈ R : x2 < 2}. S is nonempty, and bounded above. Ler c = supS .Suppose if c2 < 2. Then for 0 < t < 1, and t < 2− c25 , (c + t)2 = c2 + 2ct + t2 ≤ c2 + 5t < 2. So
c + t ∈ S , c + t > c. Contradiction.Suppose if c2 > 2, then for 0 < t < 2, t < c2 − 24 , (c − t)2 = c2 − 2ct + t2 ≥ c2 − 4t ≥ 2. So c − t isalso an upper bound for S . Contradiction.Thus, c2 = 2.
Theorem. The rationals are dense in the reals.

Proof. Without loss of generality, assume 0 ≤ a < b. Let n ∈ N be such that 1
n < b− a. Then there must

be a q ∈ N such that qn ≤ a and q+ 1
n > a, as otherwise, an would be an upper bound to N. Then we

have that a < q+ 1
n < b.

Similarly, the irrationals are dense in the reals.
2.2 Sequences
Definition (Convergence). We say that xn → c if for all ε > 0, there exists N , such that for all n ≥ N ,
|xn − c| < ε.
Proposition. If xn is increasing and bounded above then it is convergent.

Proof. Let c = sup{x1, . . . }. Then given ε > 0, there exists N such that c − ε < xN ≤ c. Then for all
n ≥ N , c − ε < xN ≤ xn ≤ c. So |xn − c| < ε.
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Proposition (Divergence of the Harmonic Series). The series
∞∑
n=1

1
n diverges.

Proof. We have that 13 + 14 ≥ 12 , and also 15 + 16 + 17 + 18 ≥ 12 .
In general, we have that 12n + 1 + 12n + 2 + · · ·+ 12n+1 ≥ 2n2n+1 = 12 .Therefore, the partial sums are unbounded. Thus, it can’t be convergent, as any convergent series isbounded.

Proposition (Convergence of the Basel Series). The series
∞∑
n=1

1
n2 converges.

Proof. We have that 122 + 132 ≤ 222 = 12 , and also 142 + 152 + 162 + 172 ≤ 442 = 14 .
In general, we have that 1(2n) + 1(2n + 1) + · · ·+ 1(2n+1 − 1) ≤ 2n(2n)2 = 12n .
Hence, the partial sums are bounded above by 1 + 12 + 14 + · · · = 2, and increasing. Therefore it isconvergent.

2.3 e

Definition (e). .
e = ∞∑

n=0
1
n!

Note this sum converges as it is bounded above by 1 + 1 + 12 + 14 + · · · = 3.
Proposition. e is irrational.

Proof. Suppose not. Let e = p
q , p, q ∈ N, q > 1. Then q!e = p(q− 1)! ∈ Z. Thus ∞∑

n=0
q!
n! ∈ Z.

Then q!(q+ 1)! = 1
q+ 1 and q!(q+ 2)! = 1(q+ 1)(q+ 2) ≤ 1(q+ 1)2 . In general q!(q+ n)! ≤ 1(q+ 1)n .

Clearly, q∑
n=0

q!
n! ∈ Z, which means that ∞∑

n=q+1
q!
n! must also be an integer. However, 0 ≤ ∞∑

n=q+1
q!
n! ≤

∞∑
n=q+1

1(q+ 1)n = 1
q < 1. Contradiction.

2.4 Transcendental Numbers
Definition (Algebraic Numbers). A real number x is algebraic if it is the root of a non-zero polynomial withinteger coefficients.
Definition (Transcendental). If x is not algebraic, then it is transcendental.
Theorem. The number

c = ∞∑
n=1

110n!
is transcendental.

Lemma. For all polynomials p, there exists k such that for all 0 ≤ x, y ≤ 1, |p(x)− p(y)| ≤ k |x − y|
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Proof. Let p(x) = adxd +ad−1xd−1 + · · ·+a1x +a0, then p(x)−p(y) = ad(xd−yd) +ad−1(xd−1−yd−1) +
· · ·+ a1(x − y).Factoring out (x − y), we get that p(x)− p(y) = (x − y)(ad(xd−1 + xd−2y+ · · ·+ yd−1) + ad−1(xd−2 +
xd−3y+ · · ·+ yd−2) + · · ·+ a1)Therefore

|p(x)− p(y)| = |x − y|∣∣∣ad(xd−1 + xd−2y+ · · ·+ yd−1) + · · ·+ a1∣∣∣Using the triangle inequality, we get that
|p(x)− p(y)| ≤ |x − y|(∣∣∣ad(xd−1 + xd−2y+ · · ·+ yd−1)∣∣∣+ · · ·+ |a1|)

≤ d(|a1|+ · · ·+ |ad|)|x − y|
Lemma. A polynomial of degree d has at most d roots.

Proof. Given a polynomial p of degree d, if p has no roots then we are done. If p has a root a, then
p(x) = (x − a)q(x) where q(x) is a polynomial of degree d− 1. Then every root of p is either a or a root of
q. But q has at most d− 1 roots (by induction)
Proof of Theorem. Let cn = n∑

k=1
110k ! . Then cn → c. Suppose for contradiction that c was algebraic. Thenwe must have some integer polynomial p such that p(c) = 0. From the lemma above, we have some k suchthat for 0 ≤ x, y ≤ 1, |p(x)− p(y)| ≤ k |x − y|. Suppose further that p has degree d.Now cn is of the form a10n! , so p(cn) is of the form b10d(n!) for a, b ∈ Z. For n sufficiently large, cn is

not a root of p, as p has finitely many roots. Then we must have that p(cn) 6= 0, so |p(cn)| ≥ 110d(n!) .Thus |p(cn)− p(c)| = |p(cn)| ≥ 110d(n!) .Now |c − cn| = ∞∑
k=n+1

110k ! ≤ 210(n+1)! , so |p(cn)− |p(c)|| ≤ 2k10(n+1)! . This means that 110d(n!) ≤ 2k10(n+1)! .Contradiction for n sufficiently large.
Definition (Liouville Number). A real number x is a Liouville number if for all natural numbers n, there existsinfinitely many (p, q) ∈ Z, q > 1 such that

0 < ∣∣∣∣x − p
q

∣∣∣∣ < 1
qnIntuitively, they are "almost rational" or "has very good rational approximations". The proof above can bemodified to show that any Liouville number is transcendental.

3 Sets

3.1 Binomial Coefficients
Definition (Binomial Coefficients). For n ∈ N, 0 ≤ k ≤ n, we denote by (nk) the number of ways to choose
k items from n.
Proposition. (

n
k

) = |{S ∈ P({1, . . . , n}) : |S| = k}|

Proposition. (
n
k

) = ( n
n− k

)
7



Proposition. (
n
k

) = (n− 1
k − 1

)+ (n− 1
k

)
Proposition. (

n
k

) = n(n− 1) . . . (n− k + 1)
k ! = n!

k !(n− k )!
Proof. The number of ways to name a k-set is n(n − 1) . . . (n − k + 1). However, each k-set is named
k . . . 1 = k ! times, so the number of different k-sets is n(n− 1) . . . (n− k + 1)

k ! .
Theorem (Binomial Theorem). (a+ b)n = n∑

k=0
(
n
k

)
akbn−k

Proof. If we expand (a+ b)n we get terms of the form akbn−k . We need to choose k of the as and n− k ofthe bs, so there are (nk) ways to do this.
Theorem (Inclusion-Exclusion). Define SA = ⋂

i∈A
Si.

Let S1, . . . , Sn be finite sets, then

|S1 ∪ · · · ∪ Sn| = ∑
|A|=1 |SA| −

∑
|A|=2 |SA|+ · · ·+ (−1)n+1 ∑

|A|=n |Sa|
Proof. Let x ∈ S1∪ · · · ∪Sn, and suppose that x is in k of the Si. The number of A with |A| = 1 and x ∈ SAis k . The number of A with |A| = 2 and x ∈ SA is (k2). In general, the number of A with |A| = r and x ∈ SAis (kr). Consequently, the number of times x is counted on the right hand side is

k −
(
k2
)+ (k3

)
− · · ·+ (−1)k+1(k

k

) = 1− (1 + (−1)k) = 1

4 Functions
Proposition. f : A→ B is injective if and only if there exists g : B → A such that g ◦ f = id.

Proof. If f is injective, define
g(b) = {a if f (a) = barbitrary if b /∈ f (A)Note that a must be unique as f is injective. Clearly gf (a) = a. On the other hand, if such a g exists,

f (x) = f (y) =⇒ gf (x) = gf (y) =⇒ x = y.
Proposition. f : A→ B is surjective if and only if there exists h : B → A such that f ◦ h = id.

Proof. If f is surjective, define h(b) to be an a such that f (a) = b, coming from surjectivity of f . Clearly
fh(b) = b. On the other hand, if such an h exists, then f (h(b)) = b, so f is clearly surjective.
Proposition. If f is bijective, then g = h, and we denote this by f−1.
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5 Equivalence Relations
Let ∼ be an equivalence relation on a set X .
Proposition. Equivalence classes form a partition.

Proof. Clearly x ∈ [x ], so equivalence classes are nonempty and they cover X . Now suppose if t ∈ [x ] ∩ [y].Then t ∼ x and t ∼ y, so x ∼ y and [x ] = [y].
Proposition. Partitions form an equivalence relation.

Proof. Define a ∼ b for “a and b are in the same partition”. This is an equivalence relation.
Definition (Quotient). Define X/ ∼= {[x ] : x ∈ X} to be the quotient of X by ∼.
Definition (Quotient Map). Define q : X → X/

∑ by x 7→ [x ].
6 Countability
Definition (Countable). A set X is countable if it is finite, or there exists a bijection X → N.
Proposition. A set X is countable if and only if its elements can be listed as x1, x2, . . .
Proposition. Z is countable.

Proof. 0, 1,−1, 2,−2, . . .
Proposition. A set X is countable if and only if there exists an injection f : X → N.

Proof. ( =⇒ ). Trivial.( ⇐= ). If X is finite, clearly it is countable. Now suppose if X is infinite. Clearly f : X → f (X ) is abijection. Suffices to show that f (X ) is countable.Let a1 = min(f (X )), a2 = min(f (X )\{a1}), a3 = min(f (X )\{a1, a2}) and so on. Then for each a ∈ f (X ),clearly it must be an for some n ≤ a. Thus f (X ) = {a1, a2, . . . }.
Theorem. N× N is countable.

Proof. Define a1 = (1, 1). Let an = (p, q). If p = 1, an+1 = (q+ 1, 1). If p > 1, an+1 = (p− 1, q+ 1). Then
N× N = {a1, a2, . . . }.
Alternative Proof. f (x, y) = 2x3y is an injection.
Theorem. Let (An)n∈N be a collection of countable sets. Then A1 ∪ A2 ∪ . . . is countable.

Proof. For each Ai, list the elements as ai,1, ai,2, . . . .Define f : ⋃
n∈N
→ N by f (x) = 2i3j where x = ai,j and i is minimal. Clearly such an i exists as x mustbe in (at least) one of the Ai. f is an injection.

Proposition. Q is countable.

Proof. Define An = 1
nZ = {kn : k ∈ Z

}. Then Q = ⋃
n∈N

An and is countable.
Proposition. The set A of algebraic numbers is countable.

Proof. As each integer polynomial has finitely many roots, suffices to show that the set of all integerpolynomials is countable.Define Ad = {
adXd + ad−1Xd−1 + · · ·+ a0 : a0, . . . , ad ∈ Z

}. Then clearly Ad injects into Zd+1. So
Ad is countable, and the set of all integer polynomials is countable.
Theorem. R is uncountable.
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Proof. We shall show that (0, 1) is uncountable. Suppose not. Let (0, 1) = r1, r2, . . . , and for each ri, let
ri = 0.ri,1ri,2 . . . . Now define s = 0.s1s2 . . . by sn = {5 if rn,n 6= 56 if rn,n = 5 . Then clearly for all i, ri 6= s. So we
did not list all of the real numbers in (0, 1).
Proposition. The set of transcendental numbers R\A is uncountable.

Proof. Suppose not. Then R = (R\A) ∪ A would be countable.
Theorem. P(N) is uncountable.

Proof. Suppose not. Let P(N) = S1, . . . . Define S = {n ∈ N : n /∈ Sn}. Then for all i, S 6= Si.
Alternative Proof. Given x ∈ (0, 1), write x = 0.x1 . . . in binary. Define f (x) = {n : xn = 1}. Then
f : (0, 1)→ N is an injection. Hence if P(N) is countable, so is (0, 1). Contradiction.
Theorem. For any set X , there does not exist a surjection X → P(X ).
Proof. Given any f : X → P(X ), define S = {x : x /∈ f (x)}. Then S /∈ f (X ).
Theorem (Schröder-Bernstein). Given sets A and B, with f : A → B and g : B → A injections, there exists
h : A→ B which is bijective.

Proof. For each a ∈ A, consider the chain g−1(a), f−1g−1(a), . . . , as long as the inverses are well defined.This chain may be empty, may terminate or may be infinite. Define χ : a → N ∪ {∞} to be the length ofthe chain of a.Define A0 = {a ∈ A : χ (a) even},A1 = {a ∈ A : χ (a) odd},A∞ = {a ∈ A : χ (a) =∞}. Define similarly
B0, B1, B∞. Then f : A0 → B1 is a bijection, and g : B0 → A1 is a bijection. Furthermore, f : A∞ → B∞ isa bijection.

Hence h(a) = {f (a) if a ∈ A0 or a ∈ A∞
g−1(a) if a ∈ A1 is a bijection.

10


	Number Theory
	Prime Numbers
	Euclid's Algorithm
	Fundamental Theorem of Arithmetic
	Modular Arithmetic
	Fermat's Little Theorem
	Wilson's Theorem
	Chinese Remainder Theorem
	RSA

	Real Numbers
	Completeness
	Sequences
	e
	Transcendental Numbers

	Sets
	Binomial Coefficients

	Functions
	Equivalence Relations
	Countability

