
Probability
Shing Tak Lam∗
April 13, 2021

This document is intended for revision purposes. As a result, it does not contain any exposition. This is basedoff lectures given by Dr Perla Sousi in Lent 2021, but the order of content, as well as some of the proofs have beenmodified after the fact, primarily to provide simpler proofs for theorems. Note that this also contains theorems fromexamples sheets, as some are useful elsewhere.Probability is on Paper 2.
Contents
1 Probability Spaces 21.1 Properties of Probability Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Stirling’s Formula 5

3 Discrete Probability Distributions 6

4 Random Variables 7

5 Discrete Random Variables 75.1 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75.2 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95.3 Joint Distribution and Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105.4 Conditional Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105.5 Probability Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6 Inequalities 136.1 Markov’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136.2 Chebyshev’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136.3 Cauchy-Schwarz Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136.4 Jensen’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146.5 AM-GM Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7 Random Walks 15

8 Branching Processes 168.1 Extinction Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9 Continuous Random Variables 179.1 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189.3 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199.4 Moment Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

∗stl45@cam.ac.uk
1

mailto://stl45@cam.ac.uk


10 Multivariate Density Functions 2010.1 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2010.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2010.3 Conditional Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2110.4 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2110.5 Order Statistics for a Random Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2110.6 Multivariate Moment Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
11 Limit Theorems 2311.1 Convergence of Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2311.2 Laws of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2311.3 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2411.4 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
12 Multidimensional Gaussian Random Variables 2512.1 Construction of Gaussian Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2612.2 Density of a Multivariate Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2612.3 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2612.4 Bivariate Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
13 Sampling 27

Appendices 29

A Common Distributions 29A.1 Discrete Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29A.2 Continuous Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29A.3 Multivariate Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1 Probability Spaces
Definition (σ-algebra). Let Ω be a set and F be a collection of subsets of Ω. F is a σ-algebra if

• Ω ∈ F
• If A ∈ F then A{ ∈ F
• If (An)n∈N ∈ F , then we must have ⋃

n∈N
An ∈ F .

Remark. When Ω is countable, we take F = P(Ω).
Definition (Probability Measure). Suppose F is a σ-algebra on Ω. Then P : F → [0, 1] is a probabilitymeasure if

• P (Omega) = 1
• If (An)n∈N ∈ F are (pairwise) disjoint, then P

( ⋃
n∈N

An
) =∑n∈N P (An)

Definition (Probability Space). We call (Ω,F ,P) a probability space.
Definition (Outcomes). The elements of Ω are called outcomes.
Definition (Events). The elements of F are called events.
Proposition.
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• P
(
A{
) = 1− P (A)

• P
(
∅
) = 0• If A ⊆ B, then P (A) ≤ P (B)

• P (A ∪ B) = P (A) + P (B)− P (A ∩ B)
1.1 Properties of Probability Measures
Proposition (Countable Subadditivity). Let (An)n∈N be a sequence of events in F . Then

P

(⋃
n∈N

An

)
≤
∑
n∈N

P (An)
Proof. Define B1 = A1, B2 = A2\A1, Bn = An\(A1 ∪ · · · ∪ An−1). Then (Bn) is a sequence of disjoint eventsin F , and ⋃

n∈N
An = ⋃

n∈N
Bn. By countable additivity, P( ⋃

n∈N
An
) = P

( ⋃
n∈N

Bn
) ∑
n∈N

P (Bn).But Bn ⊆ An, so P (Bn) ≤ P (An), as a result
P

(⋃
n∈N

An

) = P

(⋃
n∈N

Bn

) = ∑
n∈N

P (Bn) ≤∑
n∈N

P (An)
Proposition (Continuity). Let (An)n∈N be a sequence of increasing (≤=⊆) events in F . Then P(An) is
increasing and bounded above, so it converges. In addition,

lim
n→∞

P (An) = P

(⋃
n∈N

An

)

Proof. Let Bn be defined as above. Then n⋃
k=1Bk = An. Hence

P (An) = P

( n⋃
k=1Bn

) = n∑
k=1 P (Bn)→ ∞∑

k=1 P (Bn)
as n→∞. As ∞⋃

n=1An = ∞⋃
n=1Bn, and P

( ∞⋃
n=1Bn

) = ∞∑
n=1P (Bn), we get the required result.

Proposition (Inclusion-Exclusion). Let A1, . . . , An ∈ F . Then

P

( n⋃
i=1Ai

) = n∑
k=1(−1)k+1 ∑

1≤i1<···<ik≤nP
(
Ai1 ∪ · · · ∪ Aik )

Proof. By induction. n = 1 is trivial. In addition, we have already seen the case for n = 2. Now suppose itholds for n− 1 events. Then
P ((A1 ∪ · · · ∪ An−1) ∪ An) = P (A1 ∪ · · · ∪ An−1) + P (An)− P ((A1 ∪ · · · ∪ An−1) ∩ An)Now let Bi = Ai ∩ An. Then

P ((A1 ∪ · · · ∪ An−1) ∩ An) = P (B1 ∪ · · · ∪ Bn−1)By the inductive hypothesis, we have that
P (A1 ∪ · · · ∪ An−1) = n−1∑

k=1(−1)k ∑
1≤i1<···<ik≤nP

(
Ai1 ∩ · · · ∩ Aik )
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and
P (B1 ∪ · · · ∪ Bn−1) = n−1∑

k=1(−1)k ∑
1≤i1<···<ik≤nP

(
Bi1 ∩ · · · ∩ Bik )

= n−1∑
k=1(−1)k ∑

1≤i1<···<ik≤nP
(
Ai1 ∩ · · · ∩ Aik ∩ An)

Plugging these into the original expression yields the desired result.
Proposition (Bonferroni Inequalities). If r < n and r is odd, then

P

( n⋃
k=1Ak

)
≤

r∑
k=1(−1)k+1 ∑

1≤i1<···<ik≤nP
(
Ai1 ∪ · · · ∪ Aik )

If r is even, then

P

( n⋃
k=1Ak

)
≥

r∑
k=1(−1)k+1 ∑

1≤i1<···<ik≤nP
(
Ai1 ∪ · · · ∪ Aik )

Proof. By induction. n = 2 is trivial. Suppose this holds for n − 1 events. Suppose further than r is odd.Then
P (A1 ∪ · · · ∪ An) = P (A1 ∪ · · · ∪ An−1) + P (An)− P (B1 ∪ · · · ∪ Bn−1) . (∗)where Bi = Ai ∩ An. By applying the inductive hypothesis and as r is odd,

P (A1 ∪ · · · ∪ An−1) ≤ r∑
k=1(−1)k+1 ∑

1≤i1<···<ik≤nP
(
Ai1 ∩ · · · ∩ Aik )

and as r − 1 is even,
P (B1 ∪ · · · ∪ Bn−1) ≥ r−1∑

k=1(−1)k+1 ∑
1≤i1<···<ik≤nP

(
Bi1 ∩ · · · ∩ Bik )

Substitute these into (∗) to get the required result. The even case can be proven similarly.
1.2 Independence
Definition (Independence). Let A, B ∈ F . We say that A and B are independent if

P (A ∩ B) = P (A) ∩ P (B)
Definition (Independence). A countable collection of events (An)n∈N is said to be countable if for all distinct
i1, . . . , ik , we have that

P
(
Ai1 ∩ · · · ∩ Aik ) = k∏

j=1 P
(
Aij
)
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1.3 Conditional Probability
Definition (Conditional Probability). Let B ∈ F , P (B) > 0. Let A ∈ F , we define the conditional probabilityof A given B as

P (A | B) = P (A ∩ B)
P (B)

Proposition. If A and B are independent, then P (A | B) = P (A).
Proposition. Suppose (An) is a disjoint sequence of events. Then

P

(⋃
n
An | B

) =∑
n

P (An | B)
Proof.

P

(⋃
n
An | B

) = P
((⋃n An) ∩ B)

P (B) = P
(⋃

n(An ∩ B))
P (B) = ∑

n P (An ∩ B)
P (B) =∑

n
P (An | B)

Proposition (Law of Total Probability). Suppose (Bn) is a disjoint sequence of events such that
⋃
n Bn = Ω

and for all n, P (Bn) > 0. Let A ∈ F . Then

P (A) =∑
n

P (A | Bn)P (Bn)
Proof.

P (()A) = P (A ∩ Ω) = P

(
A ∩

(⋃
n
Bn

)) = P

(⋃
n

(A ∩ Bn)) =∑
n

P (A ∩ Bn) =∑
n

P (A | Bn)P (Bn)
Proposition (Bayes’ Formula). Suppose (Bn) is a disjoint sequence of events such that

⋃
n Bn = Ω and for

all n, P (Bn) > 0. Then

P (Bn | A) = P (A | Bn)P (Bn)∑
k P (A | Bk )P (Bk )

Proof.
P (Bn | A) = P (Bn ∩ A)

P (A) = P (A | Bn)P (Bn)
P (A) = P (A | Bn)P (Bn)∑

k P (A | Bk )P (Bk )
2 Stirling’s Formula
Definition (Asymptotic Equivalence). We say f ∼ g, or f is asymptotically equivalent to g if

lim
x→∞

f (x)
g(x) = 1

Theorem (Stirling).
n! ∼ nn

√2πne−n
Lemma. log(n!) ∼ n logn
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Proof of Lemma. Define ln = log(n!) = log 2 + · · · + logn. We have that log bxc ≤ log x ≤ log bx + 1c.Integrating from 1 to n, ∫ n

1 log bxc dx = n−1∑
k=1 log k = ln−1

So
ln−1 ≤

n∫
1

log xdx ≤ ln

Thus ln−1 ≤ n logn− n+ 1 ≤ ln and n logn− n+ 1 ≤ ln ≤ (n+ 1) log(n+ 1)− (n+ 1) + 1. Dividingthrough by n logn, we get that
1− n+ 1

n logn ≤ ln
n logn ≤ (n+ 1) log(n+ 1)− n

n logn
So ln

n logn → 1 as n→∞.
Proof of Stirling. Is non-examinable and omitted. See Lecture Notes or Analysis I Examples Sheet 4.
3 Discrete Probability Distributions
Definition (Discrete Probability Distribution). Let Ω be finite or countable, F = P(Ω). Let Ω = {ω1, . . . }.Then knowing P ({ωi}) for all i gives us the probability for any event. Let pi = P ({ωi}).
Definition (Bernoulli Distribution). For parameter p ∈ [0, 1], we have the Bernoulli Distribution Ber(p),where:Let Ω = {0, 1}. Then p1 = 0, p0 = 1− p.
Definition (Binomial Distribution). For parameters n ∈ Z+, p ∈ [0, 1], we have the Binomial DistributionBin(n, p), where:Let Ω = {0, . . . , n}. Then pk = (nk

)
pk (1− p)n−k .

Definition (Multinomial Distribution). For parameters p1, . . . , pk ∈ [0, 1], n ∈ Z+, we have the MultinomialDistribution M(n, p1, . . . , pk ), whereLet Ω = {(n1, . . . , nk ) ∈ Nk : n1 + · · ·+ nk = n}. Then
P ({(n1, . . . , nk )}) = ( n

n1, . . . , nk
)
pn11 . . . pnkk

where ( n
n1, . . . , nk

) = n!
n1! . . . nk !

Definition (Geometric Distribution). For parameter p, we have the Geometric Distribution Geo(p), where:Let Ω = N = {1, . . . }. Then pk = p(1− p)k−1.
Definition (Poisson Distribution). For parameter λ, we have the Poisson Distribution Poi(p), where:Let Ω = {0, . . . }. Then pk = e−λ λ

k

k !
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4 Random Variables
Definition (Random Variable). Let (Ω,F ,P) be a probability space. A random variable X is a function
X : Ω→ R satisfying

∀x ∈ R, {ω ∈ Ω : X (ω) ≤ x} ∈ F

Remark. We use {X ∈ A} = {ω : X (ω) ∈ A} as a shorthand.
Definition (Indicator). For A ∈ F , define 1A(ω) = {1 if ω ∈ A0 if ω /∈ A

Definition (Probability Distribution Function). For a random variable X , define the probability distributionfunction FX : R→ [0, 1] by
FX (x) = P (X ≤ x)

Definition (Multidimensional Random Variable). (X1, . . . , Xn) is called a random variable in Rn if (X1, . . . , Xn) :Ω→ Rn and for all x1, . . . , xn ∈ R,
{X1 ≤ x1, . . . , Xn ≤ xn} ∈ F

5 Discrete Random Variables
Definition (Discrete Random Variable). A random variable X is discrete if it takes values in a countable set.
Definition (Probability Mass Function). For x ∈ S , we define px = P (X = x) to be the probability massfunction.
Definition. Suppose X1, . . . , Xn are discrete random variables, taking values in S1, . . . , Sk . We say that
X1, . . . , Xn are independent if

P (X1 = x1, . . . , Xn = xn) = P (X1 = x1) . . .P (Xn = xn)for all x1 ∈ S1, . . . , xn ∈ Sn.
5.1 Expectation
Definition (Expectation for Nonnegative Random Variables). For a discrete random variable X , define theexpectation

E [X ] =∑
ω
X (ω)P ({ω})

Proposition.
E [X ] = ∑

x∈X (Ω) xP (X = x)
Proof.

E [X ] =∑
ω
X (ω)P ({ω}) = ∑

x∈X (Ω)
∑

ω∈{X=x}X (ω)P ({ω}) = ∑
x∈X (Ω) xP (X = x)

Definition (Expectation for General Random Variables). Let X be a discrete random variable. Define X+ =max(X, 0) and X− = max−X, 0. Then X = X+ − X− and |X | = X+ + X−. The both E [X+] and E [X−] arewell defined. If at least one is finite, then we define
E [X ] = E [X+]− E [X−]
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Proposition.
E [X ] = ∑

x∈X (Ω) xP (X = x)
Definition (Integrable). If E [|X |] <∞, then X is integrable.
Proposition. If X ≥ 0, then E [X ] ≥ 0.

Proposition. If X ≥ 0 and E [X ] = 0, then P (X = 0) = 1.

Proposition. For c ∈ R, E [cX ] = cE [X ] and E [X + c] = E [X ] + c.

Proposition. For X, Y integrable, E [X + Y ] = E [X ] + E [Y ].
Proposition. For c1, . . . , cn ∈ R, X1, . . . , Xn integrable random variables,

E

[ n∑
i=1 ciXi

] = n∑
i=1 ciE [Xi]

Proposition. Suppose X1, . . . are nonnegative random variables. Then

E

[∑
n
Xn

] =∑
n

E [Xn]
Proof.

E

[∑
n
Xn

] =∑
ω

∑
n
Xn(ω)P ({ω}) =∑

n

∑
ω
Xn(ω)P ({ω}) =∑

n
E [Xn]

Proposition. E [1(A)] = P (A)
Proposition. For g : R→ R, we define g(X ) to be the random variable such that g(X )(ω) = g(X (ω)). Then

E [g(X )] = ∑
x∈X (Ω)g(x)P (X = x)

Proof. Let Y = g(X ). Then E [Y ] = ∑
y∈Y (Ω)yP (Y = y). Now Y = y ⇐⇒ x ∈ g−1({y}). Hence
E [Y ] = ∑

y∈Y (Ω)yP
(
x ∈ g−1({y}))

= ∑
y∈Y (Ω)y

∑
x∈g−1({y})P (X = x)

= ∑
y∈Y (Ω)

∑
x∈g−1({y})g(x)P (X = x)

= ∑
x∈X (Ω)g(x)P (X = x)

Proposition. If X ≥ 0 and X takes integer values, then

E [X ] = ∞∑
k=1 P (X ≥ k ) = ∞∑

k=0 P (X > k )
Definition (Moment). For r ∈ N, we call E [X r ] then r-th moment of X .
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5.2 Variance
Definition (Variance). We define the variance of X , Var(X ) by

Var(X ) = E
[(X − E [X ])2]

Definition (Standard Deviation). σ =√Var(X )
Proposition. Var(X ) ≥ 0, and Var(X ) = 0 ⇐⇒ P (X = E [X ]) = 1.

Proposition. Var(cX ) = c2 Var(X ) and Var(X + c) = Var(X ).
Proposition. Var(X ) = E

[
X 2]− (E [X ])2

Proposition. Var(X ) = min{E [(X − c)2] : c ∈ R}

Definition (Covariance). Let X ,Y be random variables, we define the covariance of X and Y as
Cov(X, Y ) = E [(X − E [X ])(Y − E [Y ])]

Proposition. Cov(X, Y ) = Cov(Y , X )
Proposition. Cov(X, X ) = Var(X )
Proposition. Cov(X, Y ) = E [XY ]− E [X ]E [Y ]
Proposition. Cov(cX, Y ) = c Cov(X, Y ) and Cov(X + c, Y ) = Cov(X, Y )
Proposition. Var(X + Y ) = Var(X ) + Var(Y ) + 2 Cov(X, Y )
Proposition. For c1, . . . , cn, d1, . . . , dn ∈ R, and X1, . . . , Xn, Y1, . . . , Yn random variables,

Cov( n∑
i=1 ciXi,

n∑
i=1 diYi

) = n∑
i=1

n∑
j=1 cidj Cov(Xi, Yj )

Proposition.

Var( n∑
i=1 Xi

) = n∑
i=1 Var(Xi) +∑

i6=j Cov(Xi, Xj )
Proposition. If X, Y are independent random variables, then

E [f (X )g(Y )] = E [f (X )]E [g(Y )]
Proof.

E [f (X )g(Y )] =∑
x,y

f (x)g(y)P (X = x, Y = y) =∑
x
f (x)P (X = x)∑

y
g(y)P (Y = y) = E [f (X )]E [g(Y )]

Proposition. If X and Y are independent, then Cov(X, Y ) = 0.
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5.3 Joint Distribution and Convolution
Definition (Joint Distribution). Let X1, . . . , Xn be random variables. The joint distribution is defined to be

P (X1 = x1, . . . , Xn = xn)
Proposition.

P (Xi = xi) = ∑
x1,...,xi−1,xi+1,...,xn

P (X1 = x1, . . . , Xi−1 = xi=1, Xi+1 = xi+1, Xn = xn)
Definition (Marginal Distribution). We call P (Xi = xi) the marginal distribution of Xi.
Definition (Conditional Distribution). The conditional distribution of X given Y = y is defined to be

P (X = x | Y = y) = P (X = x, Y = y)
P (Y = y)

Proposition. If X and Y are independent, then

P (X = x | Y = y) = P (X = x)
Definition (Convolution). Suppose X, Y are independent random variables. Then

P (X + Y = z) =∑
y

P (X = z − y)P (Y = y)
5.4 Conditional Expectation
Definition (Conditional Expectation (Event)). Let B ∈ F , P (B) > 0 and X be a random variable. Then

E [X | B] = E [X · 1(B)]
P (B)

Proposition (Law of Total Expectation). Suppose X ≥ 0, (Ωn) is a partition of Ω into disjoint events. Then

E [X ] =∑
n

P (Ωn)E [X | Ωn]
Proof. X = X · 1(Ω) =∑

n
X · 1(Ωn). Taking expectations yields the required result.

Definition (Conditional Expectation (Random Variable = Value)). Let X, Y be random variables. The condi-tional expectation of X given Y = y is
E [X | Y = y] = E [X · 1(Y = y)]

P (Y = y) =∑
x
xP (X = x | Y = y)

Definition (Conditional Expectation (Random Variable)). Let X, Y be random variables. Let g(y) = E [X | Y = y].We define the conditional expectation of X given Y as
E [X | Y ] = g(Y ) =∑

y
E [X | Y = y] · 1(Y = y)

Proposition. E [cX | Y ] = cE [X | Y ]
Proposition.

E

[ n∑
i=1 Xi | Y

] = n∑
i=1 E [Xi | Y ]

Proposition.
E [E [X | Y ]] = E [X ]
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Proposition. If X and Y are independent, then E [X | Y ] = E [X ].
Proposition. Suppose Y and Z are independent. Then E [E [X | Y ] | Z ] = E [X ].
Proposition. Suppose h : R→ R. Then E [h(Y ) · X | Y ] = h(Y )E [X | Y ].
Corollary. E [X | X ] = X , and E [E [X | Y ] | Y ] = E [X | Y ].
5.5 Probability Generating Functions
Definition (Probability Generating Function). Let X be a random variable taking values in N. Let pr =
P (X = r). The probability generating function is defined to be

p(z) = ∞∑
r=0 prz

r = E
[
zX
]

Proposition. For |z| < 1, the pgf is absolutely convergent.

Theorem. The pgf uniquely determines the distribution of X .

Proof. Suppose (pr), (qr) are two pgfs of with
∞∑
r=0 prz

r = ∞∑
r=0 qrz

r

for all |z| < 1.Setting z = 0, we get that p0 = q0. Suppose pr = qr for all r ≤ n. Then
∞∑

r=n+1 prz
r = ∞∑

r=n+1qrz
r

Dividing by zn+1 and taking z → 0, we get that pn+1 = qn+1. By strong induction we are done.
Theorem. lim

z↑1 p′(z) = E [X ]
Proof. First we assume that E [X ] < ∞. In Analysis I, we have seen that within the radius of convergence,we can differentiate a power series term by term. So

p′(z) = ∞∑
r=0 rprz

r−1 ≤ ∞∑
r=1 rpr = E [X ]

For 0 < z < 1, we have that p′(z) is an increasing function. So we have that
lim
z↑1 p′(z) ≤ E [X ]

Given ε > 0, there exists N such that
N∑
r=0 rpr ≥ E [X ]− ε

Then we have that as z > 0,
p′(z) ≥ N∑

r=1 rprz
r−1

So for all ε > 0,
11



lim
z↑1 p′(z) ≥ N∑

r=1 rpr ≥ E [X ]− ε
Now suppose if E [X ] =∞. Then for any M , we have some N such that

N∑
r=0 rpr ≥ M

Then from above,
lim
z↑1 p′(z) ≥ N∑

r=1 rpr ≥ M

so lim
z↑1 p′(z) =∞ = E [x ].

Theorem. lim
z↑1 p′′(z) = E [X (X − 1)]

Proposition. Var(X ) = p′′(1−) + p′(1−)− (p′(1−))2
Proposition.

P (X = n) = 1
n!p(n)(0)

Proposition. If X1, . . . , Xn are independent random variables with pgfs q1, . . . , qn, then if X = X1 + · · ·+Xn
and the pgf of X is p, we have that

p(z) = q1(z) . . . qn(z)
Proposition. If X ∼ Bin(n, p), then

E
[
zX
] = (pz + 1− p)n

Proposition. If X ∼ Geo(p), then

E
[
zX
] = pz1− z(1− p)

Remark. We are using Geo(p) to represent the number of trials including the success.
Proposition. If X ∼ Poi(λ), then

E
[
zX
] = eλ(z−1)

Example. Let (Xi) are iid with pgf p, Sn = X1 + · · ·+ Xn, N independent random variable with pgf q. Then
E
[
zSN
] = E

[
zX1+···+XN]

=∑
n

E
[
zX1+···+Xn · 1(N = n)]

=∑
n

E
[
zX1+···+Xn]P (N = n)

=∑
n

(p(z))nP (N = n)
= q(p(z))

12



We can also use conditional expectation, since
E
[
zSn
] = E

[
E
[
zX1+···+XN |N]]

We have that
E
[
zX1+···+XN | N = n

] = (p(z))nas a result,
E
[
zSN
] = E

[(p(z))N] = q(p(z))
6 Inequalities

6.1 Markov’s Inequality
Proposition (Markov’s Inequality). Let X ≥ 0 be a random variable. Then for all a > 0,

P (X ≥ a) ≤ E [X ]
a

Proof. Observe that X ≥ a · 1(X ≥ a). Taking expectations, we get that
E [X ] ≥ E [a · 1(X ≥ a)] = aP (X ≥ a)

6.2 Chebyshev’s Inequality
Proposition (Chebyshev’s Inequality). If X is a random variable with E [X ] <∞, then for all a > 0,

P (|X − E [X ]| ≥ a) ≤ Var(X )
a2

Proof.
P (|X − E [X ]| ≥ a) = P

((X − E [X ])2 ≥ a2) ≤ E
[(X − E [X ])2]

a2 = Var(X )
a2

6.3 Cauchy-Schwarz Inequality
Proposition (Cauchy-Schwarz Inequality). Let X and Y be random variables. Then

E [|XY |] ≤√E [X 2]E [Y 2]
Proof. Without loss of generality, we may assume that E

[
X 2] ,E [Y 2] < ∞ and X, Y ≥ 0. As XY ≤12(X 2 + Y 2), we must also have that E [XY ] <∞.We may assume E

[
X 2] ,E [Y 2] > 0, as otherwise the result is trivial. Let t ∈ R, we have that

(X − tY )2 ≥ 0 =⇒ X 2 − 2tXY + t2Y 2 ≥ 0 =⇒ E
[
X 2]− 2tE [XY ] + t2E [Y 2] ≥ 0

Minimising for t , we find that the minimum occurs when t = E [XY ]
E [Y 2] . Result follows.

Proposition. Equality holds in Cauchy Schwarz if and only if P (X = tY ) = 1.
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6.4 Jensen’s Inequality
Definition (Convex Function). A function f : R→ R is convex if for all x, y ∈ R, for all t ∈ (0, 1),

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y)
Lemma. Let f : R→ R be convex. Then f is the supremums of the lines below it. That is,

∀m ∈ R,∃a, b ∈ R, f (m) = am+ b ∧ ∀x, f (x) ≥ ax + b

Proof. Let m ∈ R, choose x < m < y. Then m = tx + (1 − t)y. Therefore f (m) ≤ tf (x) + (1 − t)f (y). So
t(f (m)− f (x)) ≤ (1− t)(f (y)− f (m)). This implies that

f (m)− f (x)
m− x ≤ f (y)− f (m)

y−m

Let a = sup
x<m

f (m)− f (x)
m− x , then

f (m)− f (x)
m− x ≤ a ≤ f (y)− f (m)

y−mso f (x) ≥ a(x −m) + f (m) for all x .
Proposition (Jensen’s Inequality). Let f : R→ R be a convex function, let X be a random variable, then

E [f (X )] ≥ f (E [X ])
Proof. Set m = E [X ], we get a, b ∈ R from the lemma above. Then

f (X ) ≥ aX + b =⇒ E [f (X )] ≥ aE [X ] + b = f (E [X ])
Proposition. Equality holds if and only if P (X = E [X ]) = 1.

Proposition. Let f be a convex function and x1, . . . , xn ∈ R. Then

1
n

n∑
k=1 f (xk ) ≥ f

(1
n

n∑
k=1 xk

)
Proof. Define random variable X taking values x1, . . . , xn with equal probability. Result follows from Jensen.
6.5 AM-GM Inequality
Proposition. For x1, . . . , xn ≥ 0, ( n∏

k=1 xk
)1/n

≤ 1
n

n∑
k=1 xk

Proof. Use f (x) = log x in proposition above.
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7 Random Walks
Definition (Random Process). A random (stochastic) process is a sequence of random variables (Xn)
Definition (Random Walk). A random walk is a random process where Xn = x + Y1 + · · ·+ Yn, where x isa constant, (Yi) are iid random variables.
Definition (Simple Random Walk on Z). We define the simple random walk on Z by P (()Yi = 1) = p,
P (Yi = −1) = 1− p = q.
Definition (Conditional Probability Measure). We define Px (·) = P (· | X0 = x).
Definition.

h(x) = Px ((Xn) hits a before 0)
Proposition.

• h(0) = 0
• h(a) = 1
• For 0 < x < a, h(x) = ph(x + 1) + qh(x − 1)

Proposition. If p = q = 0.5, then h(x) = x
a .

Proposition (Gabler’s Ruin Estimate). If p 6= q, then

h(x) = (qp )x − 1(qp )a − 1
Definition (Expected Time of Absorption).

T = min{n ≥ 0 : Xn ∈ {0, a}}
Definition.

τx = Ex [T ]
Proposition.

• τ0 = τa = 0
• For 0 < x < a, τx = pτx+1 + qτx−1 + 1

Proposition. If p = q = 0.5, then

τx = x(a− x)
Proposition. If p 6= q, then

τx = 1
q− px −

(
q

q− p

) (qp )x − 1(qp )a − 1

15



8 Branching Processes
Let Xn represent the number of individuals in generation n. We take X0 = 1. The individual in generation0 produces a random number of offspring, with distribution gk = P (X1 = k ). Each new individual producesoffspring with the same distribution.Let (Yn,k : n ≥ 0, k ≥ 1) be an iid sequence of random variables, with distribution (gk ). Yn,k representsthe number of offspring of the k-th individual in generation n. Then

Xn+1 = {Yn,1 + · · ·+ Yn,Xn if Xn > 00 if Xn = 0
Theorem. For all n ≥ 1,

E [Xn] = (E [X1])n
Proof.

E [Xn+1 | Xn = m] = E [Yn,1 + · · ·+ Yn,Xn | Xn = m]= E [Yn,1 + · · ·+ Yn,m]= mE [Yn,1] = mE [X1]
so

E [Xn+1] = E [E [Xn+1 | Xn]]= E [XnE [X1]] = E [X1]E [Xn]
Theorem. Let G(z) = E

[
zX1], and Gn(z) = E

[
ZXn
]
. Then Gn+1(z) = G(Gn(z)) = Gn(G(z)).

Proof.
E
[
zXn+1 | Xn = m

] = E
[
zYn,1+···+Yn,m] = (E [zX1])m = (G(z))mSo

Gn+1(z) = E
[
ZXn+1] = E

[
E
[
zXn+1 | Xn

]] = E
[(G(z))Xn] = Gn(G(z))

8.1 Extinction Probability
Definition (Exctinction Probability). Define the extinction probability q = P (Xn = 0 for some n ≥ 1).
Proposition. Let qn = P (Xn = 0). Then qn → q.

Proof. Let An = {Xn = 0}. Then An ⊆ An+1. So (An) is an increasing sequence. By continuity of theprobability measure,
qn = P (An)→ P

(⋃
n
An

) = q

Proposition. qn+1 = G(qn), and q = G(q).
Proof.

qn+1 = Gn+1(0) = G(Gn(0)) = G(qn)From the continuity of G we have that q = G(q).
16



Theorem. Assume P (X1 = 1) < 1. Then q is the minimum nonnegative solution to t = G(t).
Proof. Let t be the minimum nonnegative solution to t = G(t). q0 = 0 ≤ t . Now suppose qn ≤ t . Then as
G is increasing, qn+1 = G(qn) ≤ G(t) = t . So qn ≤ t for all n. Then as qn → q, G(q) = q, we must havethat t = q.
Proposition. q < 1 if and only if E [X1] > 1.

Proof. Omitted.
9 Continuous Random Variables
Definition (Probability Distribution Function). For a random variable X , we define the probability distributionfunction F : R→ [0, 1] with F (x) = P (X ≤ x).
Proposition. F is increasing.

Proposition. If a < b, then P (a ≤ X ≤ b) = F (b)− F (a).
Proposition. F is right continous. That is, limy↓x F (y) = F (x).
Proposition. Left limits for F always exist.

Proposition. lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

Definition (Continuous Random Variable). A random variable X is continuous if the distribution function Fis continuous.From now on, we will assume that F is differentiable.
Definition (Probability Density Function). For a random variable X with distribution F , we define theprobability density function f = F ′.
Proposition.

∞∫
−∞

f (x)dx = 1 and
x∫
−∞

f (t)dt = F (x).
9.1 Expectation
Definition (Expectation for Nonnegative Random Variable). For a nonnegative random variable X withdensity f , we define the expectation

E [X ] = ∫ ∞0 xf (x)dx
Proposition. Suppose g(x) ≥ 0 for all x . Then

E [g(X )] = ∫ ∞
−∞

g(x)f (x)dx
Definition (Expectation of General Random Variables). Let X be a random variable. Define X+ = max(X, 0)and X− = max(−X, 0). If at least one of E [X+] and E [X−] are finite, then we define

E [X ] = E [X+]− E [X−]
Proposition.

E [X ] = ∫ ∞
−∞

xf (x)dx
Proposition.

E [g(X )] = ∫ ∞
−∞

g(x)f (x)dx
17



Proposition. If X ≥ 0, then
E [X ] = ∫ ∞0 P (X ≥ x) dx

Proof.

E [X ] = ∫ ∞0 xf (x)dx = ∫ ∞0
∫ x

0 dyf (x)dx = ∫ ∞0 dy ∫ ∞
y

f (x)dx = ∫ ∞0 dy(1− F (y)) = ∫ ∞0 P (X ≥ y) dy

9.2 Distributions
Definition (Uniform Distribution). Let a < b, we say X ∼ U [a, b] if X has density

f (x) =
 1
b− a if x ∈ [a, b]0 otherwise

Proposition. If X ∼ U [a, b], then

F (x) =


0 x ≤ a
x − a
b− a a ≤ x ≤ b1 b ≤ x

Proposition. If X ∼ U [a, b], then E [X ] = a+ b2
Definition (Exponential Distribution). Let λ ∈ R, λ > 0. We say X ∼ Exp(λ) if X has density

f (x) = {λe−λx x > 00 otherwise
Proposition. If X ∼ Exp(λ), then

F (x) = 1− e−λx
Proposition. If X ∼ Exp(λ), then E [X ] = 1− e−λx
Proposition (Memoryless Property). Let T be a positive random variable, no identically zero or ∞. Then T
is memoryless, that is ∀t, s,P (T > t + s) = P (T > t)P (T > s) if and only if T is exponential.

Proof. If is clear. Suffices to show only if. Suppose ∀t, s,P (T > t + s) = P (T > t)P (T > s). Let g(t) =
P (T > t). Then g(t + s) = g(t)g(s) for all t, s.Inductively, for m ∈ N, g(m) = (g(1))m, and g(mn ) = (g(1))mn . As T is not identically zero or ∞, we musthave that g(1) ∈ (0, 1). Let λ = − logP (T > 1) > 0. Then g(t) = e−λt for all t ∈ Q, t > 0.Now let t ∈ R. Then there exists r, s ∈ Q such that r < t < s and |r − s| < ε. As the distributionfunction is increasing, we have that

e−λs = P (T > s) ≤ P (T ≥ t) ≤ P (T > r) = e−λrLetting ε → 0 we get the desired result.
Definition (Normal Distribution). Given µ ∈ R, σ > 0, we say X ∼ N(µ, σ 2) if X has density

f (x) = 1√2πσ 2 exp(− (x − µ)22σ 2
)

Proposition. If X ∼ N(µ, σ 2), then E [X ] = µ, Var(X ) = σ 2.
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Definition (Standard Normal). We define the standard normal Z ∼ N(0, 1) which has density
f (x) = 1√2π exp(−x22

)
Definition (Φ). Φ is defined to be the distribution function of Z ∼ N(0, 1).
Proposition. If X ∼ N(µ, σ ), then aX + b ∼ N(aµ + b, a2σ 2)
Proposition. If X ∼ N(µ, σ ), then X − µ

σ ∼ N(0, 1)
Definition (*Gamma Distribution*). Given α, λ > 0, we say X ∼ Γ(α, λ) if X has density

f (x) = e−λxλαxα−1Γ(α)
Proposition. Γ(1, λ) = Exp(λ).
9.3 Transformations
Theorem. Let X be a continuous random variable with density f . Let g be a strictly monotone continuous
function with difdferentiable inverse g−1. Then g(X ) is a continuous random variable with density

f (g−1(x))∣∣∣∣ ddx g−1(x)∣∣∣∣
Proof. Suppose g is increasing. Then P (g(X ) ≤ x) = P

(
X ≤ g−1(X )) = F (g−1(x)). Now suppose g isdecreasing. Then P (g(X ) ≤ x) = P

(
X ≥ g−1X) = 1 − F (g−1(x)). Differentiating both expressions yieldsthe result.

9.4 Moment Generating Functions
Definition (Moment Generating Function). Let X be a random variable with density f . The mgf of X is

m(θ) = E
[
eθX
] = ∫ ∞

−∞
eθxf (x)dx

Theorem. The mgf uniquely determines the distribution of a random variable provided it is defined for an
open interval of values of θ. (That is, it converges for some θ 6= 0).
Theorem. Suppose the mgf is defined on an open interval of θ. Then

m(r)(θ) = ( drdθrm(θ)) ∣∣∣∣
θ=0 = E [X r ]

Proposition. If X ∼ Γ(n, λ), then m(θ) = ( λ
λ− θ

)n
for θ < λ.

Corollary. If X ∼ Exp(λ), then m(θ) = λ
λ− θ for θ < λ.

Proposition. If X1, . . . , Xn are independent with mgfs m1, . . . , mn, then

m(θ) = E
[
eX1+···+Xn] = n∏

i=1 mi(θ)
Proposition. If X ∼ N(µ, σ 2), then

m(θ) = exp(θµ + θ2σ 22
)

Proof. Note
θx − (x − µ)22σ 2 = θµ + θ2σ 22 − (x − (µ + θσ 2))22σ 2and result follows.
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10 Multivariate Density Functions
Definition (Density). Let X = (X1, . . . , Xn) ∈ Rn be a random variable. We say X has density f if

P (X1 ≤ x1, . . . , Xn ≤ xn) = ∫ x1
−∞
· · ·
∫ xn

−∞
f (y1, . . . , yn)dyn . . . dy1

Proposition.
f (x1, . . . , xn) = ∂n

∂x1 . . . ∂xnF (x1, . . . , xn)
where F (x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn).

10.1 Independence
Definition (Independence). We say X1, . . . , Xn are independent if for all x1, . . . , xn ∈ R,

P (X1 ≤ x1, . . . , Xn ≤ xn) = P (X1 ≤ x1) . . .P (Xn ≤ xn)
Theorem. Let X = (X1, . . . , Xn) have density f . Suppose X1, . . . , Xn are independent have have densities
f1, . . . , fn. Then f (x1, . . . , xn) = f1(x1) . . . fn(xn).
Proof. As P (X1 ≤ x1, . . . , Xn ≤ xn) = P (X1 ≤ x1) . . .P (Xn ≤ xn), and∫ x1

−∞
f1(y1)dy1· · ·

∫ xn

−∞
fn(yn)dyn = ∫ x1

−∞
· · ·
∫ xn

−∞
f1(y1) . . . fn(yn)dyn . . . dy1

we get the result required.
Theorem. Suppose X = (X1, . . . , Xn) has density f , and f factorises into f (x1, . . . , xn) = f1(x1) . . . fn(xn), then
X1, . . . , Xn are independent, and have densities proportional to f1, . . . , fn.
Proof. As f is a density, we must have that∫ ∞

−∞
· · ·
∫ ∞
−∞

f (x1, . . . , xn)dxn . . . dx1 = n∏
i=1
∫ ∞
−∞

fi(xi)dxi = 1
In addition P (Xi ≤ xi) = P

(
Xi ≤ xi, Xj ∈ (−∞,∞) for all j 6= i

), and
P
(
Xi ≤ xi, Xj ∈ (−∞,∞) for all j 6= i

) = ∫ xi

−∞
fi(y)dy∏

i 6=j
∫ ∞
−∞

fj (y)dy = ∫ xi
−∞ fi(y)dy∫∞
−∞ fi(y)dy

Hence the density of Xi is fi∫∞
−∞ fi(y)dy . Independence follows from the fact that f factorises.

Definition (Marginal Density). For X = (X1, . . . , Xn) with density f , we define the marginal density (for X1)as
fX1 (x) = ∫ ∞

−∞
· · ·
∫ ∞
−∞

f (x, x2, . . . , xn)dx2 . . . dxn
10.2 Convolution
Definition (Convolution). If f and g are densities, then we define the convolution of f and g as

f ∗ g(x) = ∫ ∞
−∞

f (x − y)g(y)dy
Proposition. f ∗ g = g ∗ f
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Proposition. If X , Y are independent random variables with densities fX , fY respectively, then X + Y has
density fX ∗ fY

Proof.

P (X + Y ≤ z) = ∫∫
{x+y≤z} fX,Y (x, y)dxdy

= ∫ ∞
−∞

∫ z−x

−∞
fX (x)fY (y)dydx

= ∫ ∞
−∞

∫ z

−∞
fY (y− x)fX (x)dydx

= ∫ z

−∞

∫ ∞
−∞

fY (y− x)fX (x)dxdy
= ∫ z

−∞
fX ∗ fY (y)dy

10.3 Conditional Density
Definition (Conditional Density). Let X , Y be continuous random variables, with joint density fX,Y andmarginal densities fX , fY . The conditional density of X given Y = y is

fX |Y (x | y) = fX,Y (x, y)
fY (y)

Proposition (Law of Total Probability).
fX (x) = ∫ ∞

−∞
fX,Y (x, y)dy = ∫ ∞

−∞
fX |Y (x | y)fY (y)dy

Definition (Conditional Expectation). Let g(y) = ∞∫
−∞

xfX |Y (x | y)dx . Then we define the conditional expec-tation of X given Y to be
E [X | Y ] = g(Y )

10.4 Transformations
Theorem. Let X be a random variable with values in D ⊆ Rd, and with density fX . Let g : D → g(D) be a
bijection with a continuous derivative, with det(g′(x)) 6= 0 for all x ∈ D.

Then Y = g(X ) has density

fY (y) = fX (x)|J|
where x = g−1(y) and J = det( ∂x

∂y1 . . . ∂x
∂yd

)
is the Jacobian.

Proof. Omitted.
10.5 Order Statistics for a Random Sample
Definition (Order Statistics). Suppose X1, . . . , Xn are iid random variables with distribution F and density
f . Let Y1 ≤ · · · ≤ Yn be Xn in increasing order. Then (Yi) are the order statistics.
Proposition. P (Y1 ≤ x) = 1− (1− F (x))n
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Proof.
P (Y1 ≤ x) = 1− P (x < Y1) = 1− P (x < minX1, . . . , Xn) = 1− (1− F (x))n

Proposition. P (Yn ≤ x) = (F (x))n.
Proposition.

fY1,...,Yn (x1, . . . , xn) = {n!f (x1) . . . f (xn) if x1 ≤ · · · ≤ xn0 otherwise

Proof.

P (Y1 ≤ x1, . . . , Yn ≤ xn) = n!P (X1 ≤ x1, . . . , Xn ≤ xn, X1 ≤ · · · ≤ Xn)= n! ∫ x1
−∞

∫ x2
u1 · · ·

∫ xn

un−1 f (u1) . . . f (un)dun . . . du1

Proposition. The Yi are not independent.

Proof. fY1,...,Yn (x1, . . . , xn) = n!f (x1) . . . f (xn) · 1(x1 ≤ · · · ≤ xn) so the density does not factorise.
Example (Order Statistics of iid Exponentially Distributed Random Variables). Let X1, . . . , Xn be iid Exp(λ).Let Yi be the order statistics. Define Z1 = Y1, Z2 = Y2 − Y1, . . . , Zn = Yn − Yn−1. Then

Z =
Z1...
Zn

 =


1
−1 1. . . . . .

−1 1

Y1...
Yn


and if z = Ay, then yj =∑j

i=1 zi. In addition, |J| = 1. So
fZ1,...,Zn (z1, . . . , zn) = fY1,...,Yn (y1, . . . , yn)|J|= n!f (y1) . . . f (yn)= n!λn exp(−λ(y1 + · · ·+ yn))= n!λn exp(−λ(nz1 + · · ·+ zn))

= n∏
i=1(n− i+ 1)λ exp(−λ(n− i+ 1)zi)

So the Zi are independent, and Zi ∼ Exp(λ(n− i+ 1)). Note this only holds because of the memorylessproperty of the exponential distribution.
10.6 Multivariate Moment Generating Functions
Definition (Moment Generating Function). Suppose X = (X1, . . . , Xn) is a random variable in Rn. Then themgf of X is defined to be

m(θ) = E
[
eθTX

] = E
[
eθ1X1+···+θnXn]

where θ =
θ1...
θn


Theorem. If the mgf is defined for a range of θ, then it uniquely determines the distribution of X .
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Proposition.
∂nm
∂θni

(0) = E [X ri ]
Proposition.

∂r+sm
∂θri ∂θsj

(0) = E
[
X ri X sj

]
11 Limit Theorems

11.1 Convergence of Random Variables
Definition (Convergence in Distribution). Let (Xn) be a sequence of random variables. Let X be a randomvariable. We say that Xn converges to X in distribution, that is Xn d−→ X if for all continuity points x of FX ,

FXn (x)→ FX (x)
Theorem (Convergence of mgfs). Let (Xn) be a sequence of random variables with mgfs (mn), and suppose
X is a random variable with mgf m. If for all θ ∈ R, mn(θ)→ m(θ), then Xn

d−→ X .

Definition (Convergence in Probability). Let (Xn) be a sequence of random variables. (Xn) converges to Xin probability, that is Xn P−→ X if for all ε > 0,
P (|Xn − X | > ε)→ 0as n→∞.

Definition (Almost Sure Convergence). (Xn) converges to X with probability 1, or almost surely (a.s.), thatis Xn → X a.s. if
P
( lim
n→∞

Xn = X
) = P (∀ε > 0,∃n0,∀n ≥ n0, |Xn − X | < ε) = 1

Proposition.
Xn → X a.s. =⇒ Xn

P−→ X =⇒ Xn
d−→ X

Proposition. Suppose Xn → 0 a.s.. Then Xn
P−→ 0.

Proof. Suffices to show that ∀ε > 0,P (|Xn| ≤ ε) → 1 as n → ∞. Let An = ∞⋂
m=n{|Xm| ≤ ε}. Then

P (|Xn| ≤ ε) ≥ P (An). Then
lim
n→∞

P (|Xn| ≤ ε) ≥ lim
n→∞

P (An) = P

(⋃
n
An

)
≥ P

( lim
n→∞

Xn = 0) = 1

11.2 Laws of Large Numbers
Theorem (Weak Law of Large Numbers). Let (Xn) be a sequence of iid random variables with µ = E [X1].
Let Sn = X1 + · · ·+ Xn. Then as n→∞,

Sn
n

P−→ µ

Proof. Assume further σ 2 = Var(X ) <∞. Then using Chebyshev’s Inequality we have that
P
(∣∣∣∣Snn − µ

∣∣∣∣ > ε
) = P (|Sn − nµ| > εn) ≤ Var(Sn)

ε2n2 = nσ 2
n2ε2 = σ 2

nε2 → 0
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Theorem (Strong Law of Large Numbers). Suppose further that E [X1] = µ finite. Then as n→∞,

Sn
n → µ a.s.

Proof. Omitted.
11.3 Central Limit Theorem
Theorem. Let (Xn) be a sequence of iid random variables with E [X1] = µ and Var(X1) = σ 2 both finite. Let
Sn = X1 + · · ·+ Xn, and Zn = Sn − nµ

σ
√
n

, then

Zn
d−→ Z ∼ N(0, 1)

Proof. Consider Yi = Xi − µ
σ . Thus without loss of generality, we may assume that E [Xi] = 0 and Var(Xi) = 1.Assume further that there exists δ > 0 such that E [eδXi] and E

[
e−δXi

] are both finite.By convergence of mgfs, suffices to show that for all θ ∈ R, as n→∞,
E
[
eθ

Sn√
n
]
→ E

[
eθZ
] = exp(θ22

)
Let m(θ) = E

[
eθX1]. Then E

[
eθ

Sn√
n
] = (

E
[
e

θ√
nX1])n = (

m
(
θ√
n

))n. Therefore, we need to show
that (m( θ√

n

))n
→ exp(θ22

) as n→∞. Suffices to show that m(θ) = 1 + θ2
n + o(θ2).

We now let |θ| < δ2 . Then
∣∣∣∣∣∣E
∑
k≥3

X k1 θk
k !

∣∣∣∣∣∣ ≤ E

∑
k≥3
|X1|k |θ|k

k !


≤ E
[
|θX1|3 exp(|X1θ|)]

≤ E
[
|θX1|3 exp(δ2 |X1|

)]

Now |θX1|3 exp( δ2 |X1|) = |θ|3 ( δ2 |X1|)33! 3!( δ2 )3 exp( δ2 |X1|) ≤ |θ|3 3!( δ2 )3 exp(δ|X1|) = 3!(2|θ|
δ

)3 exp(δ|X1|).Thus
∣∣∣∣∣∣E
∑
k≥3

X k1 θk
k !

∣∣∣∣∣∣ ≤ 3!(2|θ|
δ

)3
E [exp(δ|X1|)]

≤ 3!(2|θ|
δ

)3
E [exp(δX1) + exp(−δX1)]

= o(θ2)
11.4 Approximations
Proposition (Poisson approximation to Binomial). As n→∞, Bin(n, λn )→ Poi(λ).
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Proof. Suppose X ∼ Bin(n, λn ). Let p = λn, then as n→∞,
P (X = k ) = (nk

)
pk (1− p)n−k = λk

k ! n!
nk (n− k )!

(1− λ
n

)n−k
→ λk

k ! · 1 · e−λ = e−λ λ
k

k !
Proposition (Normal Approximation to Binomial). Suppose Sn ∼ Bin(n, p). Then as n → ∞, Sn ≈
N(np, np(1− p)).
Proof. If Sn ∼ Bin(n, p), then Sn = X1 + · · ·+ Xn, where Xi are iid Ber(p). So by the CLT as n→∞,

Sn − np
np(1− p) d−→ N(0, 1)

Proposition (Normal Approximation to Poisson). If Sn ∼ Poi(n). Then as n→∞, Sn ≈ N(n, n).
Proof. If Sn∑Poi(n), then Sn = X1 + · · ·+ Xn, where Xi are iid Poi(1).
12 Multidimensional Gaussian Random Variables

Definition (Gaussian Vector). Let X =
X1...
Xn

. X is a Gaussian Vector if for all u =
u1...
un

 uTX is Gaussian.
Definition (Expected Value). If X =

X1...
Xn

, we define the expected value of X as

µ = E [X ] =
E [X1]...
E [Xn]


Definition (Variance Matrix). If X =

X1...
Xn

, we define the variance of X as
V = Var(X ) = E

[(X − µ)(X − µ)T ]This is a n× n matrix.
Proposition. If X is Gaussian, then uTX ∼ N(uT µ, uTVu)
Proposition. V is symmetric.

Proposition. V is nonnegative definite. That is, for all u ∈ Rn, uTVu ≥ 0.

Proof. uTVu = Var(uTX ) ≥ 0.
Proposition (mgf of Gaussian Vector).

m(λ) = E
[
eλTX

] = exp(λT µ + λTVλ2
)

Remark. As the mgf uniquely characterises the distribution of a random variable, a Gaussian vector X isuniquely characterised by the mean µ and variance V . As a result, we write
X
∑

N(µ, V )
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12.1 Construction of Gaussian Vectors

Proposition. Let Z1, ,̇Zn be iid N(0, 1). Then Z =
Z1

...
Zn

 is a Gaussian vector. Furthermore, Z ∼ N(0, I).
Definition (Square Root of Matrix). If V is a nonnegative definite symmetric matrix, then for an orthogonal
matrix U and diagonal matrix D, we have that V = UTDU , where D =

λ1 . . .
λn

. We define the
square root σ of V to be

σ = UT


√
λ1 . . . √

λn

U

Proposition. σ 2 = V .

Proposition. X = µ + σZ ∼ N(µ, V ).
12.2 Density of a Multivariate Gaussian
Proposition. If V is positive definite, and X ∼ N(µ, V ), then

fX (x) = 1√(2π)n detV exp(− (x − µ)TV−1(x − µ)2
)

Proof. As V is positive definite, σ is invertible. Let z = σ−1(x − µ). Then
fX (x) = fZ (z)|J| =  n∏

i=1
exp(− z2

i2 )√2π
∣∣∣det σ−1∣∣∣

= 1(2π)n/2 exp(−|z|22
) 1√detV

= 1√(2π)n detV exp(− (x − µ)TV−1(x − µ)2
)

Proposition. If V is nonnegative definite, then by an orthogonal change of basis, V = (U 00 0) and µ = (λν),

where U is a m×m matrix, λ ∈ Rm, ν ∈ Rn−m. Then we can write X = (Yν) where Y has density

fY (y) = 1√(2π)m detU exp(− (y− λ)TU−1(y− λ)2
)

12.3 Independence
Proposition. If the Xi’s are independent, then V is diagonal.

Proof. For i 6= j , Vij = Cov(Xi, Xj ) = 0.
Proposition. If V is diagonal, then the Xi’s are independent.
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Proof. If V =
λ1 . . .

λn

, then (x − µ)TV−1(x − µ) = n∑
i=1

(xi − µi)2
λi

and the density factorises.
Alternative Proof. Similarly we can show that the mgf factorises.
12.4 Bivariate GaussianThis subsection contains information about the special case of n = 2. Let (X1, X2) be a Gaussian vector in
R2, with mean (µ1, µ2) and variance (σ ,1σ 22 ).
Definition (Correlation Coefficient). For random variables X1, X2, we define

ρ = Corr(X1, X2) = Cov(X1, X2)√Var(X1) Var(X2)
Proposition. ρ ∈ [0, 1]
Proof. Cauchy-Schwarz
Proposition. V = ( σ 21 ρσ1σ2

ρσ1σ2 σ 22
)

Proposition. V is nonnegative definite for ρ ∈ [0, 1].
Proposition. If ρ = 0, then X1 and X2 are independent.

Proposition. Given X1, X2 ∼ N(aX1+µ2−aµ1,Var(X2−aX1)), where Var(X2−aX1) = Var(X2)+a2 Var(X1)−2aCov(X1, X2) and a = ρσ2
σ1 .

Proof. Let Y = X2 − aX1. Then Cov(Y , X1) = 0. Also, (Y , X1) is a Gaussian vector, so Y and X1 areindependent. Now X2 = Y + aX1, and E [X2 | X1] = E [Y ] + aX1. Result follows.
13 Sampling
Theorem. Let X be a continuous random variable with distribution function F . Then if U ∼ U [0, 1], we have
that F−1(U) ∼ F .

Proof. Let Y = F−1(U). Then
P (Y ≤ x) = P

(
F−1(U) ≤ x

) = P (U ≤ F (x)) = F (x)
Definition (Box-Muller Transform). Let X, Y ∼ N(0, 1) be independent random variables. If we let X =
R cos Θ and Y = R sin Θ, then we find that R and Θ are independent, with densities

fR (r) = {re−r2/2 r ∈ [0,∞)0 otherwise
fΘ(θ) = { 12π r ∈ [0, 2π)0 otherwiseBy computing the distributions, we can find that if U1, U2 ∼ U [0, 1] and are independent, then settingΘ = 2πU1 and R =√−2 logU2 we can generate a random bivariate Gaussian.
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Definition (Rejection Sampling). Let A ⊆ [0, 1]d be a subset with non-zero volume |A|. Define f (x) =1(x ∈ A)
|A| . Let X ∼ f . Then X is uniformly distributed on A.Let (Un) be an iid sequence of uniform random variables, that is

Un = (Uk,n : k = 1, . . . , d)where (Uk,n) ∼ U [0, 1] iid. Let N = min{n ≥ 1 : Un ∈ A}. We claim that UN has density f .
Proof. Suffices to show that for any B ⊆ [0, 1]d, P (Un ∈ B) = ∫B f (x)dx .

P (UN ∈ B) = ∞∑
n=1 P (Un ∈ B,N = n)

= ∞∑
n=1 P (Un ∈ A ∩ B,Un−1 /∈ A, . . . , U1 /∈ A)

= ∞∑
n=1 P (Un ∈ A ∩ B)P (Un−1 /∈ A) . . .P (U1 /∈ A)

= ∞∑
n=1 |A ∩ B|(1− |A|)n−1

= |A ∩ B||A|= ∫
A

1(x ∈ B)
|A| dx

= ∫
B
f (x)dx

Definition (Rejction Sampling). Now suppose f is a density supported on [0, 1]d−1 which is bounded. Say
f (x) ≤ λ. Then consider

A = {(x1, . . . , xd) ∈ [0, 1]d : xd ≤ f (x1, . . . , xd−1)
λ

}
Let Y = (X1, . . . , Xd) be a uniform random variable on A, generated as above. Let X = (X1, . . . , Xd−1).We claim that X has density f .

Proof. Suffices to show that for any B ⊆ [0, 1]d, P (X ∈ B) = ∫B f (x)dx .
P (X ∈ B) = P ((X1, . . . , Xd−1) ∈ B)= P ((X1, . . . , Xd) ∈ (B × [0, 1]) ∩ A)

= |(B × [0, 1]) ∩ A|
|A|then

|(B × [0, 1]) ∩ A| = ∫ · · · ∫ 1((x1, . . . , xd) ∈ (B × [0, 1] ∩ A))dx1 . . . dxd
= ∫ · · · ∫ 1((x1, . . . , xd−1) ∈ B) · 1(xd ≤ f (x1, . . . , xd−1)

λ

) dx1 . . . dxd
= ∫ · · · ∫ 1((x1 . . . xd−1) ∈ B) f (x1, . . . , xd−1)

λ dx1 . . . dxd−1
= 1
λ

∫
B
f (x)dx
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Furthermore,
|A| = 1

λ

∫
[0,1]d−1 f (x)dx = 1

λ

and the result follows.
A Common Distributions

A.1 Discrete Distributionsname parameters pmf mean variance pgfBernoulli p ∈ [0, 1] pk (1− p)1−k p p(1− p) q+ pzBinomial n ∈ N, p ∈ [0, 1] (
n
k

)
pk (1− p)n−k np np(1− p) (q+ pz)n

Geometric1 p ∈ [0, 1] (1− p)k−1p 1
p

1− p
p2 pz1− qzPoisson λ > 0 e−λ λ

k

k ! λ λ eλ(z−1)
A.2 Continuous Distributionsname parameters pdf cdf mean variance mgfUniform a < b 1

b− a
x − a
b− a

a+ b2 (b− a)212 ebθ − eaθ
b− aNormal µ ∈ R, σ > 0 1√2πσ 2 exp(− (x − µ)22σ

) / µ σ 2 exp(θµ + θ2σ 22
)

Exponential λ > 0 λe−λx 1− e−λx 1
λ

1
λ2 λ

λ− θGamma λ > 0, n ∈ N
λnxn−1e−λx(n− 1)! / n

λ
n
λ2

(
λ

λ− θ

)n
A.3 Multivariate Distributionsname parameters pdf mean varianceMultivariate Normal µ, V 1√(2π)n detV exp(−(x − µ)TV−1(x − µ)) µ V
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