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This document is intended for revision purposes. As a result, it does not contain any exposition. This is based
off lectures given by Dr Perla Soust in Lent 2021, but the order of content, as well as some of the proofs have been
modified after the fact, primarily to provide simpler proofs for theorems. Note that this also contains theorems from
examples sheets, as some are useful elsewhere.

Probability is on Paper 2.
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1 Probability Spaces
Definition (o-algebra). Let () be a set and F be a collection of subsets of (). F is a o-algebra if

e Qe F
o fAC Fthen AL c F

o If (A))pen € F, then we must have | J A, € F.
neN

Remark. When Q is countable, we take F = P(Q).
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Definition (Probability Measure). Suppose F is a o-algebra on Q. Then P : F — [0, 1] is a probability

measure if
e P(Omega) =1

o If (A))nen € F are (pairwise) disjoint, then P ( U A,,) =) enP(A)

neN
Definition (Probability Space). We call (), F,P) a probability space.
Definition (Outcomes). The elements of Q) are called outcomes.
Definition (Events). The elements of F are called events.

Proposition.



IP(AC) —1-P(A)

P (8) =0
If AC B, then P(A) < P(B)

e PIAUB) =P (A) +P(B)—P(AN B)

1.1 Properties of Probability Measures

Proposition (Countable Subadditivity). Let (As)nen be a sequence of events in F. Then

A ] <> PA)

neN neN
Proof. Define By = Ay, By = A)\A1, B, = A)\(A1 U ---UA,_1). Then (B,) is a sequence of disjoint events
in F,and |J A, = |J B, By countable additivity, ]P’( U An) =P ( U Bn| > P(Bp).

neN neN neN neN neN
But B, C A,, so P(B,) <P(A)), as a result

U A U 8

neN neN

P

P =P

=) PB)<) PA)

neN neN

O]

Proposition (Continuity). Let (As)nen be a sequence of increasing (<=C) events in F. Then P(A,) is
increasing and bounded above, so it converges. In addition,

lim P(A) =P ( g A,,)
n—oQ neN
n
Proof. Let B, be defined as above. Then | J By = A,. Hence

k=1
U8

k=1

P(A,) =P

=) P(Bi)—) P(B)
k=1 k=

1

™18

asn—oo As |JA, = J By and P ( U B,| = P (B,), we get the required result. O
n=1

n=1 n=1

Il
=

Proposition (Inclusion-Exclusion). Let A1, ..., A, € F. Then

n

=5 (=D Y P(A U UA,)

k=1 1<ip<--<ix<n

Proof. By induction. n =1 is trivial. In addition, we have already seen the case for n = 2. Now suppose it
holds for n — 1 events. Then

P((ATU---UA)UA) =P(AU---UA ) +P(A) —P((AAU---UA,_1)NA)
Now let B; = A; N A,. Then

P((A1 U--- UAnq) NA)=P(B1U---UB,_1)
By the inductive hypothesis, we have that

P(ATU---UA )

I
I\j
|
—_
—

~

Y P(A N NA)

k=1 1<ip<-<ig<n



and

n—1
P(BiU---UB,q)=) (-1 Y  P(B,n---NBy)
k=1 1<ip<--<ix<n
n—1
=Y =1 Y P(A N nANA)
k=1 1<ip<-<ix<n
Plugging these into the original expression yields the desired result. O

Proposition (Bonferront Inequalities). /f r < n and r is odd, then

PlUAS <) 05T ) P(A U UA)
k=1 k=1 1<ip<<ig<n
If r is even, then
P UAk >N =)k Z P (A, U - UA,)

k=1 1<ip<<ig<n
Proof. By induction. n = 2 is trivial. Suppose this holds for n — 1 events. Suppose further than r is odd.
Then
PATU---UA)=PAU---UA1)+PA)—P(BU---UB,1). ()
where B; = AiN'A,. By applying the inductive hypothesis and as r is odd,

P(A U UA )<Y (DT > PA N NA)
k=1 1<ip<-<ixg<n

and as r — 1 is even,
1

P(BiU---UB, 1) >) (=)' > P(B,n---NBy)
1 1<ip<<ig<n

ﬁ
|

~
Il

Substitute these into () to get the required result. The even case can be proven similarly. O

1.2 Independence
Definition (Independence). Let A, B € F. We say that A and B are independent if
PANnB)=PA) NP (B)
Definition (Independence). A countable collection of events (A,),en is said to be countable if for all distinct

,..., ix, we have that

P (A, N0 A) =[P (A)
j=1



1.3 Conditional Probability

Definition (Conditional Probability). Let B € F, P(B) > 0. Let A € F, we define the conditional probability
of A given B as

P(AN B)
P (B)

Proposition. /f A and B are independent, then P (A | B) = P (A).

P(A|B) =

Proposition. Suppose (A,) is a disjoint sequence of events. Then

A [B] =) P(A|B)

Proof.

_P((U,A)NB) P (U, (A NB) e IP Ant
_ 5 P ] z:PA|B

A B

O

Proposition (Law of Total Probability). Suppose (B,) is a disjoint sequence of events such that | J, B, = Q
and for all n, P(B,) > 0. Let A€ F. Then

=) _PA[B)P(B)

AN

s | -

P (| JAnB,) ) Z:PAma, > P(A|B,)P(B

O]

Proposition (Bayes' Formula). Suppose (B,) is a disjoint sequence of events such that | J, B, = Q and for
all n, P(B,) > 0. Then

_ P(A|B,)P(B,)

]P(Bn ‘ A) - Zk A ’ Bk Bk)
Proot P(B,NA PA|B)P(B,)  PA|B,)P(B)
PUB 14 = e = = Bl BaP (B

2 Stirling's Formula

Definition (Asymptotic Equivalence). We say f ~ g, or f is asymptotically equivalent to g if

) _
Aty

Theorem (Stirling).
nl ~n"2mne™"

Lemma.
log(n!) ~ nlogn



Proof of Lemma. Define [, = log(n!) = log2 + --- + logn. We have that log |x] < logx < log|x +1].
Integrating from 1 to n,

n n—1
/ log [x] dx = Z logk = 1
! k=1

So

lh—q < /logxdx <,
1

Thus [,—1 < nlogn—n+1< 1, and nlogn—n+1< 1, < (n+1)log(n + 1) —(n + 1)+ 1. Dividing
through by nlogn, we get that

n+1< ln <(n+1)Log(n+1)—n

1—
nlogn =~ nlogn — nlogn

[ﬂ
nlogn

— 1 as n — co. O

Proof of Stirling. 1s non-examinable and omitted. See Lecture Notes or Analysis | Examples Sheet 4. [

3 Discrete Probability Distributions

Definition (Discrete Probability Distribution). Let Q be finite or countable, F = P(Q). Let Q = {wq,...}.
Then knowing P ({w;}) for all i gives us the probability for any event. Let p; = P ({w;}).

Definition (Bernoulli Distribution). For parameter p € [0, 1], we have the Bernoullt Distribution Ber(p),
where:
Let Q = {0,1}. Then p1 =0, po=1—p.

Definition (Binomial Distribution). For parameters n € Z*, p € [0, 1], we have the Binomial Distribution
Bin(n, p), where:

Let Q = {0, ..., n}. Then py = (I/Z)pkm — p)”fk.

Definition (Multinomial Distribution). For parameters p1, ..., pr €101, n € 7", we have the Multinomial
Distribution M(n, p1, ..., pk), where
Let Q = {(n1,..., ny) € NK:npy 4 4 ng = n}. Then

Definition (Geometric Distribution). For parameter p, we have the Geometric Distribution Geo(p), where:
let Q=N=1{1,...}. Then px = p(1 — p)<=".

Definition (Poisson Distribution). For parameter A, we have the Poisson Distribution Poi(p), where:
)\k
Let Q ={0,...}. Then px = e*AF



4 Random Variables

Definition (Random Variable). Let (Q, F,P) be a probability space. A random variable X is a function
X Q) — R satisfying

VxeR {weQ: Xw) <x} eF
Remark. We use {X € A} = {w: X(w) € A} as a shorthand.

1T fweA

Definition (Indicator). For A € F, define 14(w) = 4
0 fwegA

Definition (Probability Distribution Function). For a random variable X, define the probability distribution
function Fx : R — [0, 1] by
Fx(x) =P (X < x)

Definition (Multidimensional Random Variable). (X1, ..., Xp) is called a random variable in R" if (X3, . . ., Xn)
Q — R" and for all xq, ..., x, € R,

5 Discrete Random Variables

Definition (Discrete Random Variable). A random variable X is discrete if it takes values in a countable set.

Definition (Probability Mass Function). For x € S, we define p, = P (X = x) to be the probability mass
function.

Definition. Suppose Xj, ..., X, are discrete random variables, taking values in Sy, ..., Sk. We say that
X1, ..., Xy, are independent if

P(Xy=x,..., Xn =xp) =P (X1 =x1)...P(X, = xp)
forall xy € Sq,.. ., X, €S,

5.1 Expectation

Definition (Expectation for Nonnegative Random Variables). For a discrete random variable X, define the
expectation

E(X] =) X(wP{w})

Proposition.

EX]= ) xP(X=x

xEX(Q)
Proof
EX]=) X@P({wh= > > XwP{w)= ) xP(X=x)

XEX(Q) we{X=x} XEX(Q)
OJ

Definition (Expectation for General Random Variables). Let X be a discrete random variable. Define X} =
max(X,0) and X_ = max—X,0. Then X = X, — X_ and |X| = Xy + X_. The both E[Xy] and E[X_] are
well defined. If at least one is finite, then we define

E[X] = E[X;]— E[X_]



Proposition.

EX]= ) xP(X=x)

XEX(Q)
Definition (Integrable). If E[|X|] < oo, then X is integrable.
Proposition. /f X >0, then E[X] > 0.
Proposition. /f X > 0 and E[X] =0, then P(X =0) = 1.
Proposition. For c € R, E[cX] = cE[X] and E[X + ¢c]=E[X]+ c.

Proposition. For X, Y integrable, E[X + Y] =E[X]+ E[Y].

Proposition. For cq, ..., cneER Xq, ..., Xy integrable random variables,
n n
E ZC[X[] = ZC[E X
i=1 i=1
Proposition. Suppose Xi, ... are nonnegative random variables. Then

E [Z xn] = > E[X,]
Proof

E ZX,,

=3 Y X@PHwh) =) > X(wP{w}) =) E[X]

Proposition. E[1(A)] = P (A)
Proposition. For g : R — R, we define g(X) to be the random variable such that g(X)(w) = g(X(w)). Then
Z glx
xeX(Q

Proof Let Y = g(X). ThenE[Y]= Y yP(Y =y) Now Y =y < x & g '({y}). Hence
yev(Q)

> yP(xeq7({uh)

yevY(Q)

-2y ) PX-=

yeY(Q)  xeg'({y})

=) ) gWP(X=x)

yeY(Q) xeg~"({y})

:Zg

xeX(Q

Proposition. /f X > 0 and X takes integer values, then
E[X] = ZIP’X>/< =) P(X>k)
k=0

Definition (Moment). For r € N, we call E[X"] then r-th moment of X.



5.2 Variance

Definition (Variance). We define the variance of X, Var(X) by
Var(X) = E [(x - E[X])Z]

Definition (Standard Deviation). o = \/\W

Proposition. Var(X) > 0, and Var(X) =0 < P(X =E[X]) =1.
Proposition. Var(cX) = ¢? Var(X) and Var(X + c) = Var(X).
Proposition. Var(X) = E[X?] — (E[X])’

Proposition. Var(X) = min{E [(X — ¢)’] : c € R}

Definition (Covariance). Let X,Y be random variables, we define the covariance of X and Y as

Cov(X, ¥) = E[(X — E[X)(Y — E[Y])
Proposition. Cov(X, Y) = Cov(Y, X)
Proposition. Cov(X, X) = Var(X)
Proposition. Cov(X, Y) =E[XY]—-E[X]E[Y]
Proposition. Cov(cX, Y) = cCov(X, Y) and Cov(X + ¢, Y) = Cov(X, Y)
Proposition. Var(X 4 Y) = Var(X) 4 Var(Y) + 2 Cov(X, Y)

Proposition. For cq, ..., Cp,dr, ..., d, € R, and Xy, ..., Xn, Y1, ..., Y, random variables,

n n

Cov (Z ciXi, Z d; m) =Y > ad;Cov(X,, Y))
i=1 i=1

i=1 j=1
Proposition.

> X

i=1

Var

=Y Var(Xj)+ ) Cov(X;, X))
i=1 i+
Proposition. /f X, Y are independent random variables, then
E[f(X)g(Y)] = E[f(X)]E[g(Y)]
Proof.

E[f(X)g(V)| =) fxguP(X =x,Y =y) =) FP(X=2x)) gy)P(Y =y)=E[f(X)E[g(V)
X,y X Y

O

Proposition. /f X and Y are independent, then Cov(X, Y) = 0.



5.3 Joint Distribution and Convolution

Definition (Joint Distribution). Let Xi, ..., X, be random variables. The joint distribution is defined to be

Proposition.

P(Xi=x) = Z PXi=x1,..., Xi1 = Xie1, Xis1 = Xig1, Xo = Xp)

XT0e Xi—1,Xi41
Definition (Marginal Distribution). We call P (X; = x;) the marginal distribution of X;.
Definition (Conditional Distribution). The conditional distribution of X given Y = y is defined to be

PX=x,Y=y)
P(Y =y

PX=x|Y=y)=
Proposition. /f X and Y are independent, then
PX=x|Y=y) =PX=x)

Definition (Convolution). Suppose X, Y are independent random variables. Then

PX+Y=2)=) PX=z—yP(Y=y)

5.4 Conditional Expectation
Definition (Conditional Expectation (Event)). Let B € F, P(B) > 0 and X be a random variable. Then

E[X-1(B)]
P (B)

Proposition (Law of Total Expectation). Suppose X > 0, (Q,) is a partition of Q) into disjoint events. Then

ZIP’ E[X | Q)

Proof X = X -1(Q ZX 1(Qy). Taking expectations yields the required result. O

E[X | B] =

Definition (Conditional Expectation (Random Variable = Value)). Let X, Y be random variables. The condi-
tional expectation of X given Y =y is

E[X-1(Y
]E[X\ng]zw ZXIP’ =x|Y=y)

X

Definition (Conditional Expectation (Random Variable)). Let X, Y be random variables. Let g(y) = E[X | Y = y].
We define the conditional expectation of X given Y as

EIX|Y]=g(Y ZEXIY—y = y)

Proposition. E[cX | Y] = cE[X | Y]

Proposition.

E ix[w
i=1

=Y EX |V
i=1

Proposition.
E[EX | Y] = E[X]

10



Proposition. /f X and Y are independent, then E[X | Y] = E[X].

Proposition. Suppose Y and Z are independent. Then E[E[X | V]| Z] = E[X].
Proposition. Suppose h: R — R. Then E[h(Y)- X | Y]=h(V)E[X | Y]
Corollary. E[X | X]= X, and E[E[X | Y]| Y]=E[X | Y]

5.5 Probability Generating Functions

Definition (Probability Generating Function). Let X be a random variable taking values in N. Let p, =
P (X = r). The probability generating function is defined to be

Proposition. For |z| < 1, the pgf is absolutely convergent.
Theorem. The pgf uniquely determines the distribution of X.

Proof. Suppose (p;), (g,) are two pgfs of with

(o] o
Y pd =) q7
r=0 r=0

for all |z| < 1.
Setting z = 0, we get that pg = go. Suppose p, = g, for all r < n. Then

(o) o
Y pd =) a7

r=n+1 r=n+1

+

Dividing by z"*" and taking z — 0, we get that p,41 = g,41. By strong induction we are done. O

Theorem.
l’LTn? p'(z) = E[X]

Proof. First we assume that E[X] < oco. In Analysis |, we have seen that within the radius of convergence,
we can differentiate a power series term by term. So

o oo

ple)=>) "< rp=E[X]

r=0 r=1

For 0 < z < 1, we have that p’(z) is an increasing function. So we have that

UTn; p'(z) <E[X]

Given € > 0, there exists N such that

N
err >E[X]—¢
r=0

Then we have that as z > 0,

N
pll2)>) rpz!
r=1

So for all € > 0,

11



N
lim p’(2) > rpr > E[X]—¢
mpu_; pr > E[X]

Now suppose if E[X] = co. Then for any M, we have some N such that

Then from above,

r=1
o) UTF? p'(z) = co = Ex] O
Theorem.
HTT p"(z) = E[X(X —1)]
Proposition.
Var(X) = p"(17) + p'(17) = (p'(17))°
Proposition.

P(X = n) = p(0)

Proposition. /f X7, ..., X, are independent random variables with pgfs g1, . . ., Gn, then it X = X1+ -+ X,
and the pgf of X is p, we have that

pz) = q1(2). .- qa(2)
Proposition. /f X ~ Bin(n, p), then

E[ZX] = (pz+1—p)"

Proposition. /f X ~ Geo(p), then

Bl =

Remark. We are using Geo(p) to represent the number of trials including the success.

Proposition. /f X ~ Poi(A), then
E [Zx] _ pMe=1)

Example. Let (X;) are iid with pgf p, S, = X1 4+ --- 4+ X, N independent random variable with pgf g. Then

B[] = B[]
=Y B[N = )]
_ iEﬁ [ZX1+”'+X”] P(N = n)
S PN =
= q?p(z»

12



We can also use conditional expectation, since

E [25,7] —F [E [Zx1+--»+xw|w“
We have that

B[22 [N = n] = (o)’

as a result,

6 Inequalities

6.1  Markov’s Inequality

Proposition (Markov's Inequality). Let X > 0 be a random variable. Then for all a > O,

MszgEf]

Proof. Observe that X > a - 1(X > a). Taking expectations, we get that

E[X]>E[a-1(X > a)]=dP(X > q)

O
6.2 Chebyshev's Inequality
Proposition (Chebyshev's Inequality). /f X is a random variable with E[X] < oo, then for all a > 0,
Var(X
PX~E[X] > o) < o0
Proof. ,
E|(X—-E[X Var(X
PUX —EX] > o) = P (X~ BN > ) < EIKZERD]_ Yart¥)
a a
O

6.3 Cauchy-Schwarz Inequality

Proposition (Cauchy-Schwarz Inequality). Let X and Y be random variables. Then

E[IXY[] </ E[X?E[V?]
Proof. Without loss of generality, we may assume that IE[XZ] ,E[YZ] < ooand X,Y > 0. As XY <
1

2(X2 + Y?), we must also have that E[XY] < co.

We may assume E [X?] , E[Y?] > 0, as otherwise the result is trivial. Let t € R, we have that
X—tY)P?>0 = X2—2tXY +£2Y2>0 — E [XZ] —2E[XY]+ #E [YZ] >0

E[XY]
E[V7]

Minimising for t, we find that the minimum occurs when t = . Result follows. O

Proposition. Equality holds in Cauchy Schwarz if and only if P (X = tY) = 1.

13



6.4 Jensen's Inequality

Definition (Convex Function). A function f : R — R is convex if for all x,y € R, for all t € (0, 1),
fltx + (1= t)y) < tH(x) + (1= 0f(y)
Lemma. Let f : R — R be convex. Then f is the supremums of the lines below it. That is,
Vme R, da,b € R, f(m)=am+bAVx,f(x) >ax+b

Proof. Let m € R, choose x < m < y. Then m = tx + (1 — t)y. Therefore f(m) < tf(x) + (1 — t)f(y). So
t(f(m) — f(x)) < (1 —t)(f(y) — f(m)). This implies that

fim) —flx) _ fly) — f(m)

m—-x — y—m
f(m)—f
LetazsupM, then
x<m ~M—=X
flm) — _
(m) f(X)gagf(y) f(m)
m — x y—m
so f(x) > a(x — m) + f(m) for all x. O

Proposition (Jensen’s Inequality). Let f : R — R be a convex function, let X be a random variable, then
E[f(X)] > f(E[X])
Proof. Set m = E[X], we get a, b € R from the lemma above. Then

f(X) > aX +b = E[f(X)]> aE[X]+ b = f(E[X]

O]
Proposition. Equality holds if and only if P(X =E[X]) = 1.
Proposition. Let f be a convex function and xq, .. ., x, € R. Then
1if(xk) > f 1i)<k)
T L
Proof. Define random variable X taking values x1, .. ., xp with equal probability. Result follows from Jensen.
O]
6.5 AM-GM Inequality
Proposition. For xq, ..., xp >0,
n 1/n 1
(/l;' Xk < - ; Xk
Proof. Use f(x) = log x in proposition above. O

14



7 Random Walks

Definition (Random Process). A random (stochastic) process is a sequence of random variables (X,)

Definition (Random Walk). A random walk is a random process where X, = x + Y7 + --- 4+ Y, where x is
a constant, (Y;) are iid random variables.

Definition (Simple Random Walk on Z). We define the simple random walk on Z by P(()Y; = 1) = p,
P(Yi=-1=1-p=q

Definition (Conditional Probability Measure). We define Py(:) =P (- | Xo = x).

Definition.
h(x) = Py((X,) hits a before 0)
Proposition.
e h(0)=0
e h(a) =1

o For0<x <a, h(x)=ph(x+1)+gh(x—1)
Proposition. /f p = g =05, then h(x) = 7.

Proposition (Gabler's Ruin Estimate). /f p & g, then

Definition (Expected Time of Absorption).
T'=min{n>0:X, €{0,a}}

Definition.
T, = E,\[T]

Proposition.
® 1) = Tg = 0
e fFor0< x<a T =pTys1 + qTy—1 + 1

Proposition. /f p = g = 0.5, then

Proposition. /f p # g, then

15



8 Branching Processes

Let X, represent the number of individuals in generation n. We take Xy = 1. The individual in generation
0 produces a random number of offspring, with distribution g = P (X4 = k). Each new individual produces
offspring with the same distribution.

Let (Yok :n >0,k > 1) be an iid sequence of random variables, with distribution (gg). Y,k represents
the number of offspring of the k-th individual in generation n. Then

Yor+ -+ Yox, UX,>0
Xn+1 = .
0 if X, =0

Theorem. For all n > 1,

E[Xy] = (E[Xi])"
Proof
EXor1 | Xo=m=E[Yo14+ -+ Yax, | Xo = m]
= IE‘J[Yn,’] + -+ Yn’m}
= mE[Yy1] = mE[X/]
S0

E[Xn+1] = E[E [Xn+1 | XHH
= E[X,E[Xi] = E[X]E[X,]

O
Theorem. Let G(z) = E[75], and G,(2) = E[Z%]. Then G,11(2) = G(Gal2)) = Go(G(2)).
Proof. m
E [ZX”“ | X = m] =E [ZY’”J“”'*Y””] = (E [ZX1]) = (G(2))"
S
i Grinlz) = E |25 | =E[E| 71 | X, || = E[(Gl2) ™| = Gu(Gl2)
O

8.1 Extinction Probability
Definition (Exctinction Probability). Define the extinction probability g = P (X, = 0 for some n > 1).
Proposition. Let g, =P (X, =0). Then g, — q.

Proof Let A, = {X, = 0}. Then A, C A,+1. So (A,) is an increasing sequence. By continuity of the
probability measure,

Gn =P (A,) > P UAJ=Q
n
O]
Proposition. g,+1 = G(g,), and g = G(q).
Proof.
G+t = Gni1(0) = G(Gn(0)) = Ggn)
From the continuity of G we have that g = G(q). O
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Theorem. Assume P (X1 = 1) < 1. Then q is the minimum nonnegative solution to t = G(t).

Proof. Let t be the minimum nonnegative solution to t = G(t). go = 0 < t. Now suppose g, < t. Then as
G is increasing, go41 = G(g,) < G(t) = t. So g, < tfor all n. Then as g, — g, G(g) = g, we must have
that t = g. O

Proposition. g < 1 if and only if E[X4] > 1.
Proof. Omitted. O

9 Continuous Random Variables

Definition (Probability Distribution Function). For a random variable X, we define the probability distribution
function F : R — [0, 1] with F(x) =P (X < x).

Proposition. F is increasing.
Proposition. /fa < b, then P(a < X < b) = F(b) — F(a).
Proposition. F is right continous. That is, lim, | F(y) = F(x).
Proposition. Left limits for F always exist.
Proposition. lim F(x) =0 and lim F(x) = 1.

X——00 X—00

Definition (Continuous Random Variable). A random variable X is continuous if the distribution function F
is continuous.

From now on, we will assume that F is differentiable.

Definition (Probability Density Function). For a random variable X with distribution £, we define the
probability density function f = F’.

Proposition. [ f(x)dx =1 and [ f(t)dt = F(x).

9.1 Expectation

Definition (Expectation for Nonnegative Random Variable). For a nonnegative random variable X with
density f, we define the expectation

Definition (Expectation of General Random Variables). Let X be a random variable. Define X, = max(X, 0)
and X_ = max(—X, 0). If at least one of E[X} ] and E[X_] are finite, then we define

E[X] = E[X;]— E[X_]

Proposition.

Proposition.



Proposition. /f X > 0, then

Proof.

E[X]z/Oooxf(x)dx=/ooofoxdgf(x)dx=/Ooodg/yoof(x)dx=/ooodg(1—F(g))z/OOOIP’(XZy)dg

9.2 Distributions
Definition (Uniform Distribution). Let a < b, we say X ~ U|a, b] if X has density
1

f()(): m leE[U,b]
0 otherwise
Proposition. /f X ~ Ula, b], then
0 x<a
Fx) = Z:Z a<x<bh
1 b<x
- a+b
Proposition. /f X ~ Ula, b], then E[X] = >

Definition (Exponential Distribution). Let A € R, A > 0. We say X ~ Exp(A) if X has density

Ao~ 0
f(x) _ e X >
0 otherwise

Proposition. /f X ~ Exp(A), then
Fix)=1—e™

Proposition. /f X ~ Exp(A), then E[X] =1 — e

Proposition (Memoryless Property). Let T be a positive random variable, no identically zero or co. Then T
is memoryless, that is Vt,s,P(T > t+s)=P(T > t)P(T > s) if and only if T is exponential.

Proof. If is clear. Suffices to show only if. Suppose Vt,s,P(1 > t+s) =P (7 > t)P(T > s). Let g(t) =
P (7T > t). Then g(t +s) = g(t)g(s) for all t,s.

Inductively, for m € N, g(m) = (g(1))", and g(7) = (g(1))7. As T is not identically zero or co, we must
have that g(1) € (0,1). Let A= —logP (T > 1) > 0. Then g(t) = e forall t € Q, t > 0.

Now let t € R. Then there exists r,s € Q such that r < t < s and |r —s| < €. As the distribution
function is increasing, we have that

e S =P(T>s)<P(T>H)<P(T>r)=e"
Letting € — 0 we get the desired result. O

Definition (Normal Distribution). Given g € R, ¢ > 0, we say X ~ N(u, 0?) if X has density

flx) =

1 (x — )’
exp | —
V2102 207
Proposition. /f X ~ N(u, 02), then E[X] = u, Var(X) = o’

18



Definition (Standard Normal). We define the standard normal Z ~ N(0, 1) which has density

flx) = 1 ex ( Xz)

V2 b 2
Definition (®). ¢ is defined to be the distribution function of Z ~ N(O, 1).
Proposition. /f X ~ N(u, o), then aX + b ~ N(ay + b, a’0?)

X —
Proposition. /f X ~ N(u, o), then ~— — N(0,1)
Definition (*Gamma Distribution®). Given a, A > 0, we say X ~ ['(a, A) if X has density
ef)\x)taxaf1

=)

Proposition. [ (1, A) = Exp(A).

9.3 Transformations

Theorem. Let X be a continuous random variable with density f. Let g be a strictly monotone continuous
function with difdferentiable inverse g~'. Then g(X) is a continuous random variable with density

flg~'(x))

Proof Suppose g is increasing. Then P(g(X) < x) = P (X < g~ (X)) = F(g7'(x)). Now suppose g is
decreasing. Then P(g(X) < x) =P (X > g‘1X) = 1— F(g~'(x)). Differentiating both expressions yields
the result. O

9.4 Moment Generating Functions

Definition (Moment Generating Function). Let X be a random variable with density f. The mgf of X is

m(6) = E [eQX] - /_OO e (x)dx

(o,¢]
Theorem. The mgf uniquely determines the distribution of a random variable provided it is defined for an
open interval of values of 6. (That is, it converges for some 6 % 0).

Theorem. Suppose the mgf is defined on an open interval of 6. Then

df
(@) = 6 —E[X
)= (g5 |~
)L n
Proposition. /f X ~ [(n, A), then m(6) = (/\ 9) for 6 < A
A
Corollary. /f X ~ Exp(A), then m(0) = o for 6 < A
Proposition. /f X1, ..., X, are independent with mgfs mq, . . ., m,, then

m(6) = E [eX1+“'+Xn] =[] mu(6)

Proposition. /f X ~ N(u, 0?), then

2 2
m(6) = exp(@u—l-@;)
Proof Note , - .
= 0’ (x—(u+00)
= g St 207
and result follows. O
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10 Multivariate Density Functions

Definition (Density). Let X = (Xq, ..., Xy) € R” be a random variable. We say X has density f if

X1 Xn
P(X; <xq,..., Xn < xp) = / flyr, ..., Yn)dyn ... dyq

Proposition.

where (xq

10.1  Independence

Definition (Independence). We say Xj, ..., X, are independent if for all xq, ..., X, € R,

]P)(X1£X1 rrrrr Xngxn):P(X1§X1)~~]P)(Xngxn)

Theorem. Let X = (Xq,..., Xy) have density f. Suppose Xj, ..., X, are independent have have densities
fi,..., fo. Then f(xy, ..., xp) = f(x1) . Falxn).

Proof As P (X1 < x,..., Xo < xp) =P (X5 < xq9).. . P(X, < x,), and

X1 Xn
/ f1(y1)dy1/ yn dyn / / y1 . yn)dgndg
— o0 _

we get the result required. O

Theorem. Suppose X = (X1, ..., Xy) has density f, and f factorises into f(xq
X1, ..., X, are independent, and have densities proportional to fy, . . ., fo.

Proof. As f is a density, we must have that

/ [ fxi, ..., Xp)dx, .. dxq =|_|/ filxi)dxi =1
—00 —00 =177

In addition P (X; < x;) =P (Xl- < xi, Xj € (—00,00) for all j # i), and

§ " fily)dy
P (Xi < xi, Xj € (—00,00) for all j # i =/ y)dy / 007
( ! ) EJ % fily)dy
£
Hence the density of X; is m Independence follows from the fact that f factorises. O
—co lilg)ay

Definition (Marginal Density). For X = (X1, ..., Xn) with density f, we define the marginal density (for X4)
as

10.2 Convolution

Definition (Convolution). If f and g are densities, then we define the convolution of f and g as

5 glx) = / i — )gly)dy

Proposition. fxg =g f

20



Proposition. /f X, Y are independent random variables with densities fx, fy respectively, then X + Y has
density fx * fy

Proof

PX+Y<2) = // fx v(x, y)dxdy
{

10.3 Conditional Density

Definition (Conditional Density). Let X, Y be continuous random variables, with joint density fx y and
marginal densities fx, fy. The conditional density of X given Y =y is

f
fxy(x | y) =

Proposition (Law of Total Probability).

Fe(x) = / Py, y)dy = / ey (¢ | )fr(y)dy

Definition (Conditional Expectation). Let g(y) = [ xfx|y(x | y)dx. Then we define the conditional expec-
tation of X given Y to be )
E[X|Y]=g(Y)

10.4 Transformations

Theorem. Let X be a random variable with values in D C RY, and with density fx. Let g : D — g(D) be a
bijection with a continuous derivative, with det(g/(x)) + 0 forall x € D.
Then Y = g(X) has density

fy(y) = fx(x)l]

ox
where x = g~ andjzdet( — .| =
9 ) dy1 Y4

Proof Omitted. O

ox

) is the Jacobian.

10.5 Order Statistics for a Random Sample

Definition (Order Statistics). Suppose X, ..., X, are iid random variables with distribution F and density
f. Let ¥y < --- <Y, be X, in increasing order. Then (Y;) are the order statistics.

Proposition. P (Y4 < x) =1—(1— F(x))"
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Proof

PVi<x)=1T—-Px<VYy)=1—-P(x <minXy, ..., Xp)=1—(1—=F(x)"
O
Proposition. P (Y, < x) = (F(x))".
Proposition.
frva Xn) = {n!f(m)...f(x,,) T S.”. =
0 otherwise
Proof.
PYi<x,..., Yo < xp) =nlP (X7 < xq, ..., Xp <xp, X4 < <XG)
_ /X1 /2 " bun) . Fun)duy - duy
—o0 Juy Up—
O]
Proposition. The Y; are not independent.
Proof. fy, vy, (x1,..., xp) = nlf(xq). .. f(xa) - T(x1 < -+ < x,) so the density does not factorise. ]

Example (Order Statistics of iid Exponentially Distributed Random Variables). Let Xy, ..., Xy be iid Exp(A).
Let Y; be the order statistics. Define Z1 = Y1, L = Yo — Y4, ..., Zy =Y, — Y,_4. Then
Y]

-1 1 i

= nlf(y1) ... flyn)
= nlA" exp(—Aly1 + - + y,))
= nlA"exp(=A(nzy + - - + z))

= |_|(n — i+ DAexp(—=A(n — i+ 1)z)
i=1
So the Z; are independent, and Z; ~ Exp(A(n — i + 1)). Note this only holds because of the memoryless
property of the exponential distribution.

10.6 Multivariate Moment Generating Functions

Definition (Moment Generating Function). Suppose X = (X1, ..., Xp) is a random variable in R". Then the
mgf of X is defined to be

m(6) = E [eQTX] _E [ee1x1+---+e,,xn]

o
where 8 = |
O
Theorem. If the mgf is defined for a range of 6, then it uniquely determines the distribution of X.
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Proposition.

Proposition.

11 Limit Theorems

11.1  Convergence of Random Variables

Definition (Convergence in Distribution). Let (X,) be a sequence of random variables. Let X be a random

variable. We say that X, converges to X in distribution, that is X, 9 X if for all continuity points x of Fx,

Fx (x) = Fx(x)

n

Theorem (Convergence of mgfs). Let (X,,) be a sequence of random variables with mgfs (m,), and suppose
X is a random variable with mgf m. If for all 6 € R, m,(6) — m(6), then X, 9 X

Definition (Convergence in Probability). Let (X,) be a sequence of random variables. (X,) converges to X
in probability, that is X, E Xifforalle >0,

P(’Xn_x‘ >6)_>O
as n — oQ.

Definition (Almost Sure Convergence). (X,) converges to X with probability 1, or almost surely (a.s.), that
is X, — X as. if

P lim X, =X] =P (Ve >0,3ng,Vn > no, | X, — X| <€) =1

Proposition.
Xy = X as = X, X = X, 5 X

Proposition. Suppose X, — 0 a.s. Then X, 5o

Proof Suffices to show that Ve > 0,P(|X,| <€) — 1 as n — oo Let A, = () {|Xa| < €} Then
P(|Xa| < €) > P(A,). Then )

2P(le Xn:O):1

n—oQ n—oo

lim P(1X,| < &) > lim P(A,) =P (UA,,

11.2 Laws of Large Numbers

Theorem (Weak Law of Large Numbers). Let (X,) be a sequence of iid random variables with y = E[Xi].
Let S, = X1+ -+ X,. Then as n — oo,

Sn P

Ny
n

Proof Assume further o? = Var(X) < oo. Then using Chebyshev's Inequality we have that

S Var(S 2 2
]P’(‘”—u‘>e) =]P’(|S,7—nu|>sn)§%=%=a—2—>0
n en n‘e ne
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Theorem (Strong Law of Large Numbers). Suppose further that E[X1] = p finite. Then as n — oo,

n
— >y as.
n

Proof Omitted. O

11.3 Central Limit Theorem

Theorem. Let (X,) be a sequence of iid random variables with E[Xi] = y and Var(X;) = o° both finite. Let

S,—n
Sy =X\ 4+ + X, and 7, = Uﬁ“

, then

Zy % 7 ~ N(O,1)

—

Xi
Proof. Consider Y; = . Thus without loss of generality, we may assume that E[X;] = 0 and Var(X;) = 1.

o
Assume further that there exists 0 > 0 such that E [e‘ij] and E [e‘éXl] are both finite.
By convergence of mgfs, suffices to show that for all 8 € R, as n — oo,

E [99%] —E [eez] = exp(ezz)

Let m(6) = E[QGM]_ Then E [99%] = (E [e%)ﬁ]) = (m (\/Qﬁ) ) . Therefore, we need to show
0 " 6’ 6°
that (m (\ﬁ) ) — exp (2) as n — oo. Suffices to show that m(6) =1 + - + 0(67).
0
We now let |0] < 5 Then

Xio xal16/
El)_ || <E ) k!
<E 10X exp(lXi6)]
b)
gE[|9X1|3exp(2|X1|)]

BpalP 3 3 261’
2 T 6—3exp(%|x1|) < |9|3573 exp(d]Xq]) = 3! 5‘ exp(0]X4 -
L(3) (2)

Now [60X1]” exp(3]Xi]) = |6
Thus

Xkok 216\’
B |5 | <3t (5] Blestobvi)
k>3

3
<3 (259') E[exp(6%1) + exp(—5X3)]

= o(®")

11.4 Approximations

Proposition (Poisson approximation to Binomial). As n — oo, Bin(n, %) — Poi(A).
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Proof. Suppose X ~ Bin(n, %) Let p = An, then as n — oo,

)\k nl A n—k )\k )\k
_ _ k n—k __ e _ A A_ AT
P =K (k)p (1=r) k! nk( k)! (1 n) k! e ¢ k!

O]
Proposition (Normal Approximation to Binomial). Suppose S, ~ Bin(n,p). Then as n — oo, S, =~
N(np, np(1 — p)).
Proof If S, ~ Bin(n, p), then S, = X7 4+ - - + X,;, where X; are iid Ber(p). So by the CLT as n — oo,
S0 =P 4o, 1)
np(1—p)
Proposition (Normal Approximation to Poisson). If S, ~ Poi(n). Then as n — oo, S, = N(n, n).

Proof. If S, > Poi(n), then S, = X1 + -+ + X, where X; are iid Poi(1). O

12 Multidimensional Gaussian Random Variables

X u1
Definition (Gaussian Vector). Let X = | : |. Xis a Gaussian Vectorifforallu = | : | v’ X is Gaussian.
X Un

X
Definition (Expected Value). If X = | : [, we define the expected value of X as
Xn

E[Xi]
p=E[X]= :
E[X]

Xi
Definition (Variance Matrix). If X = | : |, we define the variance of X as
Xn
V = Var(X) = E[(X = )X — )]
This is a n x n matrix.
Proposition. /f X is Gaussian, then u' X ~ N(u"p, u” Vu)
Proposition. V' is symmetric.
Proposition. V' is nonnegative definite. That is, for all u € R", u"Vu>0.

Proof u’Vu = Var(u” X) > 0. O

Proposition (mgf of Gaussian Vector).

;
m()) = E [e”] = exp (ﬂu+ 4 W)

2

Remark. As the mgf uniquely characterises the distribution of a random variable, a Gaussian vector X is
uniquely characterised by the mean p and variance V. As a result, we write

XY N, V)
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12.1  Construction of Gaussian Vectors
Z
Proposition. Let /4, ,7, be iid N(0,1). Then Z = : is a Gaussian vector. Furthermore, Z ~ N(O, /).
Zp
Definition (Square Root of Matrix). If V' is a nonnegative definite symmetric matrix, then for an orthogonal
M
matrix U and diagonal matrix D, we have that V = U’ DU, where D = . We define the

AI?
square root ¢ of V to be

VAT
o=U" U

Proposition. ¢ = V.

Proposition. X =+ 0Z ~ N(u, V).

12.2 Density of a Multivariate Gaussian
Proposition. /f V' is positive definite, and X ~ N(u, V), then

_ 1 =)V =)
xix) = 27)" det V eXp( 2 )

Proof As V is positive definite, o is invertible. Let z = 0! (x — p). Then

nexp _z
fx(x) = fz(2)|J] = [=1\£ﬂz) ’deto 1'
o 2P}
" e TP\ T2 Vet
B 1 ox (_(X—U)TV_1(X—/J))
(25t)" det V P 2

O]

Proposition. /f V' is nonnegative definite, then by an orthogonal change of basis, V = ( LOJ 8) and y = (é) ,

. . ) Y .
where U is a m x m matrix, A € R", v € R"™". Then we can write X = ( v) where Y has density

__r =AUy =
MY = ey O 2 )

12.3 Independence

Proposition. /f the X;'s are independent, then V is diagonal.
Proof. For i # j, Vi; = Cov(X;, X;) = 0. O

Proposition. /f V' is diagonal, then the X;'s are independent.

26



M

n )2
Proof. If V = then (x =)V x —p) = 5 b = ) and the density factorises. O
) = A
Alternative Proof Similarly we can show that the mgf factorises. O

12.4 Bivariate Gaussian

This subsection contains information about the special case of n = 2. Let (Xj, X2) be a Gaussian vector in
R?, with mean (i, 112) and variance (0 03).

Definition (Correlation Coefficient). For random variables Xi, X2, we define

Cov(Xy, X2)
Var(X1) Var(X3)

p = Corr(Xq, X3) =

Proposition. p € [0, 1]
Proof. Cauchy-Schwarz O

2
Proposition. V' = ( g PO ‘72)

poro, 03
Proposition. V' is nonnegative definite for p € [0, 1].
Proposition. /f p = 0, then Xy and X5 are independent.

Proposition. Given X1, Xo ~ N(aXj+ 2 —apq, Var(Xa—aX;)), where Var(Xo —aX;) = Var(Xa)+a? Var(X;) —

2a Cov(Xy, Xo) and a = P2

0

Proof Let Y = X — aXj. Then Cov(Y, X;) = 0. Also, (Y, Xj) is a Gaussian vector, so Y and Xj are
independent. Now X2 = Y + aXj, and E[X3 | Xi] = E[Y]+ aXj. Result follows. O

13 Sampling

Theorem. Let X be a continuous random variable with distribution function F. Then if U ~ U[0, 1], we have
that F~'(U) ~ F.

Proof Let Y = F~1(U). Then
P(Y <x)=P (F—WU) < x) —P(U< F(x) = F(x)
O

Definition (Box-Muller Transform). Let X, Y ~ N(0,1) be independent random variables. If we let X =
Rcos© and Y = Rsin©, then we find that R and © are independent, with densities

{re’z/2 r €0, 00)

0 otherwise

L 0,2
fole) = {27 T =027
0 otherwise

By computing the distributions, we can find that if Uy, U> ~ U[0, 1] and are independent, then setting
© = 2nU; and R = /—2log U, we can generate a random bivariate Gaussian.
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Definition (Rejection Sampling). Let A C [0,1] be a subset with non-zero volume |A|. Define f(x) =
1(x € A)
A ) | | |
Let (U,) be an iid sequence of uniform random variables, that is

. Let X ~ f. Then X is uniformly distributed on A.

Up=Uepn:k=1,..., d)
where (Ug.p) ~ U[0, 1] iid. Let N = min{n > 1: U, € A}. We claim that Uy has density f.
Proof Suffices to show that for any B C [0,1)%, P (U, € B) = [ f(x)dx.

E

P(UveB) =S P(U,cB N=n)

S
Il
-

M

P(U, €ANB, U1 & A, ....Us & A

S
I
-

M

P(U, € ANB)P(Upr & A)...P(Us & A)

S
Il
-

AN B|(1— A"

|
i[~e

RN

_|AnB|
Al

_[(xeB)
‘/A A

- /B F(x)dx

Definition (Rejction Sampling). Now suppose f is a density supported on [0, 1]~ which is bounded. Say
f(x) < A. Then consider

O]

Let Y = (Xq,..., X4) be a uniform random variable on A, generated as above. Let X = (Xj, ..., Xd—1).
We claim that X has density f.

Proof. Suffices to show that for any B C [0, 19, P(X € B) = [ f(x)dx.

P(X € B)=P(X,...,X4_1) € B)
=P ((X1,...,Xq) € (B x[0,1) N A)
(B x[0,1])) N A]
Al

then

(B x [0,1) A|/~~/1((X1 ..... xg) € (B x[0,1]N A))dx1 . .. dxg
:/.../1((x1 ..... xg 1) € B) 1 | xg < f(x“"A"Xd‘” dxi . dxg
:[m[mm xg_1) € By = gy . dxg
I
A
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Furthermore,

1 1
Al = f(x)dx = -
A=) =
and the result follows.
A Common Distributions
A.1 Discrete Distributions
name parameters pmf mean | variance pgf
Bernoulli p€[0,1] pk(1 —p)=F p p(1—p) q+pz
Binomial | n €N, p €10,1] (I/Z) pk(1=p)" % | np | np(1 =p) | (g + p2)"
1 1—
Geometrl p €[0,1] (1—p)*p ; pzp ] 5Zqz
)\k
Poisson A>0 e’AF A A e/
A.2  Continuous Distributions
name parameters pdf cdf mean | variance mgf
, 1 x—a | a+b | (b—a) eP¥ — e
Unif b
ndorm 7= R N BT 12 b-a,
_WX—H 2 v
Normal veER 0>0 Wexp( T ) / u o exp(@er >
1 1 A
Exponential A>0 e 1— e - - —
Gamma A>0 neN Axrle ™ / é /}7 ie '
' (n—="1)! A K A—0
A.3 Multivariate Distributions
name | parameters | pdf | mean | variance
Multivariate Normal u, vV W exp(—(x — )"V (x — U)) U %
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