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This document is intended for revision purposes. As a result, it does not contain any exposition. This is based off
lectures given by Dr Anthony Ashton in Lent 2021, but the order of content, as well as some of the proofs have been
modified after the fact, primarily to provide simpler proofs for theorems. Note that this also contains theorems from
examples sheets, as some are useful elsewhere.

X
Throughout this course a column vector (g) will represent a vector with respect to the usual Cartesian Axes.
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Vector Calculus is on Paper 3.
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1 Curves
Definition (Curve). A curve C in R? is the image of a continuous function x : [a, b] — R?, ie

X1(t)
x(t) = | x(t)
Xg(t)

Definition (Differentiable Curve). We say a curve C is differentiable if xq, x2 and x3 are differentiable for
t €la,b]

Definition (Regular Curve). We say a curve C is regular if [x'(t)] # 0 for all t € [a, b]
Definition (Arc Length Element). Define for a differentiable curve the arc lengthe element
ds = |X'(1)|dt

Definition (Length of Curve). Define the length of a curve C as

l(C)=/Ob }x/(t)|dr=/CdS

Definition (Arc Length Function). Define for a differentiable curve the arc length

s(t) = / IX'(7)|dT
Proposition. s(a) = 0 and s(b) = [(C)

Proposition. for reqular curves, % > 0 and

d_ 11
ds — & X0 X(i(s)

Definition (Arc Length Parametrisation). For a reqular curve C, we can invert the relationship of s and ¢,
and define t = t(s). Then we can define r(s) = x(t(s)).

Proposition. r'(s) =

Definition ((Unit) Tangent vector).

Definition (Curvature). Define the curvature of a curve at a point as

k(s) = |r"(s)] = |t(s)]



Proposition.
t-t'=0

Proof. Differentiate t-t = 1. O
Definition (Principal Normal). Define the principal normal n by t' = «n.
Definition (Binormal). Define the binormal b =t X n.
Proposition. {t,n,b} form an orthonormal basis.
Proposition. b’ n.
Proof. As b -b =1, we have that b-b" = 0. Furthermore, t-b=n-b=0. So
O=(t-b)=t-b+t-b'=«kn-b+t-b'=t-b
So t is perpendicular to b’. As {t,n, b} form an orthonormal basis, we must have that b’ n. ]
Definition (Torsion). Define the torsion 7 by b’ = —n.

Proposition. The curvature k(s) and torsion t(s) determine a curve up to translation/rotation.

Definition (Radius of Curvature). Define the radius of curvature R = m

Proposition. The radius of curvature is the radius of a circle which best fit the curve at a point.

Proof Expand the equation for a curve about s = 0. Let t = t(0) etc.

1
r(s) =r+st+ Eszxn + 0(52)
The equation of a circle passing through r with radius R is

X(0) = r+ R(1 — cos B)n + Rsin 6t
Expanding for 8 small,

1
x(0) =r + ROt + ER@Zn + 0(6%)

Arc length is s = R6 on the circle, and we require the second derivatives to be equal, so s’k = R6?

andRzl. O
K

2 Differentials

Definition (Differential Form). If we have coordinates (uq, . . ., up) for R”, then du; are differential forms, and
{du;} are linearly independent if the u; are independent.

Definition (Differential). If f = f(uq, ..., up)  R" — R, we define

Definition (Differential (Vectors)). If x : R” — R”, then

ox

dx =
X au[

C|U[



Proposition (Multivariate Chain Rule). Suppose (uq, ..., up) are a set of coordinates that depend on
(X1, ..., xp) and F(uq, ..., up)="~Fx1,..., Xp), then

oF B ﬁ@xj
au[ N aX/ aU[
Proof. o Ny o
X
—du; =dF =df = —d = T .
au; v 0x; X Ox; du, .

3 Coordinate Systems

Definition (Orthogonal Curvilinear Coordinates). We say that (u, v, w) are a set of orthogonal curvilinear
coordinates (OCCs) if the vectors

u= Ou_ e, = v and e, = ow , form a right handed orthonormal basis. That is, e, X e, = e,,.
du v ow

0
Definition (Scale Factor). Define the scale factor h, = £ :

Definition (Line Element). Define the line element

dx = gdu + %dv + ﬁdw = hueudu + hvevdV + hWerW
ou ov ow

3.1 Cylindrical Polars
Definition (Cylindrical Polars). Define (p, ¢,z) for 0 < p < 00, 0 < ¢ < 271, —o0 < z < 00 by

pcos ¢
X(p, ¢, 2) = | psin¢g
z
cos ¢ —sin¢ 0
Proposition. e, = [ sin¢g |, e = | cos¢ | ande, = |0
0 0 1

Proposition. h, =1, hy = p and h, = 1.
Proposition. dx = e,dp + peyd¢ + e, dz

Proposition. x = pe, + ze,.

3.2 Sphecical Polars
Definition (Spherical Polars). Define (r, 8, ¢) for 0 < r < o0, 0 <0< 1, 0< ¢ < 2 by

rcos ¢sin 6
X(r,0,¢)= | rsin¢sin@
rcos 0
cos ¢sin 6 cos ¢ cos O —sin¢
Proposition. e, = | sin¢sin0 |, eg = | singcosO | andey = | cos¢
cos 6 —sin 6 0

Proposition. h, =1, hg =1, hy = rsin 0.
Proposition. dx = e dr + regd0 + rsin fegd¢

Proposition. x = re,



4 Gradient

Definition (Gradient). For f : R? — R, define the gradient by

f(x +h) = f(x) + VI(x) - h+ o(h)
as |h| - 0

Definition (Directional Derivative). For f : R3 - R, v € R3, the directional derivative of f in the direction
of v is defined by

Dot = O i 10 1) = F)

Cov -0 t
or equivalently,
f(x + tv) = f(x) + Dyf(x) + oft)
Proposition. D,f =v - Vf.
Proof. Let h = tv in the definition of gradient. O
Proposition. V' points in the direction of greatest increase of f.
Proof. By Cauchy-Schwarz, D, = v - V{ is maximised when v V. O
Proposition. /f F(t) = f(x(t)), then

dF _d dx

T a( (x(t)) = T
Proof. Fix t and let ox = x(t 4+ 0t) — x(t). Then

- VI(x(1))

F(t+ ot) = f(x(t + ot))
= f(x(t) + 0x)
= f(x(t)) + ox - VI + o(0x)
= f(x(t)) + X'(t) - Vot + o(dt)
and by the definition of derivative this gives the required result. O

Proposition. If a surface S is defined implicitly by S = {x: f(x) = 0}. Then V' is normal to the surface.

Proof. Choose any curve on S. Then f(x(¢)) = O identically. So V- % = 0 and VT is perpendicular to the
tangent of the curve. O

4.1 Calculating the Gradient

Proposition. In cartesian coordinates,

of
fzit
v aXie
Proof.
gf
of of of 5
f h)="f h h h3)=f hi— + hy— + h3— h)="f of | . h h
(x 4+ h) (x + h1,y+ ha,z+ h3) (x) + 10X1+ 2(9X2+ 3(9X3+0() (x) + %X/z + o(h)
0x3



Proposition. V{ - dx = df
Proposition. /f (u,v, w) are OCCs, and f = f(u, v, w), then

v tof dof 1 of
Thaout T S T awtY

Proof.
f of f
a—d + —dv + a—d =df = Vf.dx =[Vf|,h,du +[Vf|,h,dv +[V{],h,dw
du dv ow
Using linear independence we can compare coefficients and the result follows. O

Proposition. /n Cylindrical Polars,

of 10f of

Vi=— - —e,
apep+pa¢e¢+ F)
Proposition. /n Spherical Polars,
of 1 af 1 of
f=—e —
V= T 38% T ren 600

5 Line Integrals

Definition (Line Integral). For a piecewise smooth curve C : [a, b] — R3, and a vector field F(x), the line

integral of F along C is
b
dx
F.dx — F(x ax
[ Feax= [ R o

Definition (Closed Curve). A curve C :[a, b] — R? is closed if x(a) = x(b).

Definition (Circulation). If the curve C is closed, then we write

fF-dx=/F-dx
C C

5.1 Exact Differentials and Conservative Fields

Definition (Exact Differential). We say that F - dx is exact if F-dx = df for some scalar function f : R? — R.
Definition (Conservative Fields). We say that F is conservative if F = V for some scalar function f.
Proposition. F is conservative <= F - dx is exact.

Proposition. If 8 is an exact differential form, then f 6 = 0 for any closed curve C.
C

Proof. If 6 is exact, say 8 = Vf - dx. Then
b
7{ 7! Vi dx = / Vf(x —dt = / %[f(x(t))]dt = f(x(b)) — f(x(a)) =0

Proposition. If F is conservative, then [ F - dx from a to b is independent of the path.

Proof If Ci and (, are paths from a to b, then (4 — ( is a loop. ]



Proposition. Let (u1, uz, u3) be a set of OCCs. Let F - dx = 6;du;. Then a necessary condition for 6 to be
exact is

20, 00;
an N aUl‘
for all i, .
) of
Proof If O is exact, then 8 = df = 6u~du[' Then
06; 0°f 0°f 00,

du - du;du; B ou,du; B du;
O

Definition (Simply Connected, 1-connected). A set Q C R? is simply connected, or 1-connected if every loop
in Q can be continuously shrunk to a point while staying in Q.

Proposition. The reverse implication is true if the domain of F is simply-connected (or 1-connected).

6 Area Integrals

Definition (Area Integral). Let D C R? and f : R’ — R, then the area integral is

/ f(x)dA
D
Proposition. /n Cartesians, dA = dxdy and

/Df(x)dAz /Y (/X(g) f(x, g)dx) dy

where Y = {y : 3x, (x,y) € D} and X(y) = {x: (x,y) € D}.
Theorem (Fubini's Theorem). /f [, |f(x, y)|dA is finite, then

/(/f(x’y)dx) dy:/ (/f(x,y)dy) dX=/Df(X,y)dA

6.1 Change of Variables

Proposition. Let x(u, v) and y(u, v) represent a smooth bijection with a smooth inverse, that maps the region
D" in (u,v) to the region D in (x,y). Then

/ /D flx, y)dxdy = / / D' Fix(un v}, y(u v)
ox

ax, y) au a% ox | dx
Wherea( J =det(§y gy)Zdet(

a(x,y)

3. v) dudv

= | = ) is the Jacobian J. So dxdy = |/|dudv.
u, V) du  dv du

v

7 Volume Integral

Definition (Volume Integral). Let V C R? and f : R? — R. The volume integral is

/V F(x)dV

Proposition. /n Cartesians, dV = dxdydz.



7.1 Change of Variables

Proposition. Let x(u, v, w), y(u, v, w) and z(u, v, w) represent a smooth bijection with a smooth inverse, that
maps the volume V' in (u, v, w) to the volume V in (x,y, z). Then

///V f(x,y, z)dxdydz = ///, fix(u,v,w), y(u,v,w), z(u, v, W))‘ (;9((;( é’lvzv))

2| g [ 2|22 2
du | dv

d(u, v, w) ow
8 Surface Integral

dudvdw

where

3 ) is the Jacobian J. Thus dxdydz = |/|dudvdw.
w

Recall that a surface can be defined as S = {x: f(x) = 0}, and the normal of the surface is given by V.
Definition (Regular Surface). A surface is reqular if Vf # 0 for all x € S.
Note that in this course, the boundary of a surface S, denoted by 95, is empty or piecewise smooth.

Definition (Parametrised Surface). We can also define a surface by a parametrisation, ie

S ={x(u,v): (u,v) € D}
where D C RZ.
Definition (Reqular Parametrisation). A parametrisation (u, v) is regular if for all x € S,

ox ox
X0
a0 5o T

Definition (Normal). For a regular surface, we can define the normal

x| o
n— Odu_ dv
’6x Bx’

au = av

Definition (Orientation of Boundary). When traversing the boundary, we require that the normal to the
surface is to the left when viewed from outside the surface.

Definition (Scalar Area Element). For a surface S, we define the scalar area element

ox ox

ds = |22 « 22
S5 X

dudv

Definition (Vector Area Element). For a surface S, we define the vector area element

ox  ox
dS = a X adud\/ =ndS
Definition (Surface Integral for Scalar Functions). For a surface S and f : R? — R, we define the surface
integral
ox  ox
fdsS = f — X —
/S ds //D (x(u V)| 5 % o= |dudv

Definition (Surface Integral for Vector Functions). For a surface S and F : R? — R?, we define the surface

integral
/FdS:/F»ndS
S S



9 Divergence, Curl and Laplacian

Definition (V in Cartesians). As an operator, we can define V = eio
Xi

Definition (Divergence). For F : R? — R3, we define the divergence of F as
div(F) =V -F
Definition (Curl). For F : R? — R3, we define the curl of F as

curl(F) =V X F
Definition (Laplacian). For f : R?> — R, we define the Laplacian of f to be

Vf=V.Vf
. . dF;
Proposition. /n Cartesians, V + F = I
i
Froot 0 0 oF oF oF,
F=ej— | -F=e+—(Fe;) = [,.7/:[_7/:7[
V (e aX[ ) € aX[ ( ]ej) (e el) 8)(,- / 6x,- le-
F
Proposition. /n Cartesians, V. X F = s[jk%ei
Xj
Proof. 5 oF oF
k k
V XF = (ej@xj X (Frex) = (e; X ek)a—xj = sijka—xje[
0f

Proposition. /n Cartesians, V2f =
P aX[aX[

Proposition. fFor f, g : R >R F,G:R>— R3 we have that

() Vifg)=(VI)g+1Vyg

(i) V - (fF) = (Vf)-F+fV -F

(iii) V X (fF) = (V) xF+fV xF

(iv) VIF-G) =FXx(VXG+GCGXx (VXF)+(F-V)G+ (G- V)F
v) VX(FxG=FV:-GQ—-GV-F)+(G-V)F—(F-V)G

(i) V.- (FxG=(VxF)-G-F-(V xGQq)

Proof. Use Cartesians and Suffix Notation.

Proposition. for general OCCs,

1 0 10 1 0
V.F= (euhuau +e\/hiva + eWhWaVV) : (Fueu + F\/e\/ + FWeW)
Proposition. for general OCCs,
1 0 10 1 0

euhfua + e\/hfva + ewmaiw

Definition (Laplacian of Vector Field). For a vector field F, define

VXFZ( X(Fueu“‘Fvev“‘Fwew)

V°F = (V?F)e;=V(V-F) =V x (V x F)



9.1 Second Derivatives

Proposition. for scalar field f and vector field F, we have that V x Vf =0 and V - (VF) = 0.
Proof. Use Cartesians and Suffix Notation. O
Definition (Irrotational). A vector field F is irrotational if V- X F = 0.

Proposition. Any conservative vector field is irrotational. The reverse implication is true if the domain is
T-connected.

Definition (Vector Potential). A is a vector potential for F if F = V X A
Definition (Solenoidal). A vector field F is solenoidal if V - F = 0.

Proposition. /f there exists a vector potential for F, then F is solenoidal. The reverse implication is true if
the domain is 2-connected. That is, every sphere can be shrunk to a point.

10 Integral Theorems

10.1 Green’'s Theorem

Theorem (Green's Theorem). If P = P(x, y) and Q = Q(x, y) are continuously differentiable functions on A,
and 0A is piecewise continuous, then

B 00 0P
ngde—i—Qdy//A(aX—ay)dxdg

Theorem (Stoke's Theorem). If F = F(x) is a continuously differentiable vector field, S is an orientable,
piecewise reqular surface with dS piecewise smooth, then

/S(VXF)-dS=7gSF-dx

Remark. Orientable means there is a consistent choice of normal. eg. not a Mobius strip.

10.2 Stoke's Theorem

Proposition. /f S is an orientable, piecewise reqular, closed surface, then

/(VxF)-dS=0
S

Proposition. If F is continuously differentiable and for every loop C, §-F - dx =0, then V x F = 0.

Proof. Suppose not. Then there exists a unit vector k such that k -+ V X F(xg) > 0 for some xg. Let
€ =k -V X F(xg) > 0. By continuity, there exists 0 > 0 such that for |[x — xg| < 0, k- V X F(x) > g
Now take a loop in the ball {x: |x —xg| < 0} that lies in the plane with normal k. Then

75 F-dx_/(VxF)-ds_/(VxF)-de>6/d5>0
s s s 2 Js

Contradiction. O

10



10.3 Divergence Theorem

Theorem (Divergence Theorem, Gauss' Theorem). If F is a continuously differentiable vector field, C is a

volume with piecewise reqular boundary 0V, then

/V-Fd\/=/ F.dS
% av

where the normal is chosen to point out of V.

Proposition. /f F is continuously differentiable and for every closed surface S we have [¢F -dS =0, then

V-F=0.

Proof. Suppose not. Then for some xg, V - F(xg) = € > 0. By continuity, we have a ball where V - F >
inside the ball. Choose any volume V' inside the ball. Then

0=/erS=/V-MV>8/WW>O
av v 2

Contradiction.

11  Maxwell's Equations

The following quantities will be used in this section.

e B(x, t) - Magnetic Field

e E(x,t) - Electric Field

e p(x, t) - Charge Density (per unit volume)
e J(x, t) - Current Density (per unit area)

o go - Permittivity of Free Space

)

e 1o - Permeability of Free Space (=

£0C?
Definition (Maxwell's Equations).
v.-E=F"
€0
V:-B=0
B
VXE+—=0
at
JoE
B_— =
V X Hogo 5, = Hol
Proposition (Conservation of Charge).
d
P rv.=0

ot
Proof. Taking the divergence of (4), we get that

JoE 0
0= eV - () + 1oV - ) = o=

Jt

Using (1) we get the results required.

11

at

(V-E)+ V-]

£
2



11.1  Integral Formulations

Proposition (Gauss' Law). For a volume V,

1
/ E-dS=— pd\/:g
1% &0 Jv €0
Proof. Integrate (1) over V and use the Divergence Theorem. O
Proposition (Gauss' Law for Magnetism). For a volume V,
/ B:-dS=0
av
Proof. Integrate (2) over V and use the Divergence Theorem. O

Corollary. There are no magnetic monopoles.

Proposition (Maxwell-Faraday Equation, Faraday's Law of Induction). For a surface S,

j{ E-dx=—a/B-dS
S ot Js

Proof Integrate (3) and use Stoke's Theorem. 0

Proposition (Ampeére's Circuital Law). For a surface S,

75 B-dXZ,Uo/J'dS+/Jo€Qd/E-dS
s s dt Js

Proof. Integrate (4) and use Stoke's Theorem. O

11.2 Electromagentic Waves

Proposition (Maxwell's Equations in Empty Space).

V-E=0 (1)
V.-B=0 (2)
oB
E+—=0 3
V X E+ 3 (3)
oE
B - — =0 4
V X Hogo 5, (4)
Proposition (Electric Waves in Empty Space).
1 0°E
2
Proof.
B 0 oE 0°E
2 2
E= -E)— E)=— —— | == — — | ==
\Y% V(V-E)—V X (V XE) V X 0t) at(V><B) at(ygeoat) 3
O
Proposition (Magnetic Waves in Empty Space).
1 0°B
g _ __ —
VB a0 0
Proof.
oE d d oB 0’B
2 2 2 2 2
= -E) — E)=— — | = —c"=— E)=—(Cc—|— | =c—
VB=V(V:-E)-—V x (V xXE) V X Cat) at(Vx ) at( at) IR
O

Proposition. Electromagnetic waves travel at speed c in empty space.

Proof See above and the Wave Equation. O

12



11.3 Electrostatics and Magnetostatics

Proposition (Time Independent Maxwell's Equations).

v.E=2 (1)
&0

V-B=0 (2)

VXE=0 3)

V x B = 1) (4)

Assume further that we're working in a space that is 2-connected. Then let E = =V ¢ and B =V X A.

Proposition (Time Independent Maxwell's Equations - Reduced).
r
€0
V X (V X A) = 1)

_v2¢ —

12 Poisson’s and Laplace’s Equations
Definition (Poisson’s Equation). For ¢ : R? — R

V2<p=F

Definition (Laplace’s Equation). For ¢ : R? — R

V2<p =0
Definition (Dirichlet Problem).
Vip=F inQ
o=Fr on 0Q)

Definition (Neumann Problem).
Vip=F inQ
g—f =g on dQ)

Proposition. The solution to the Dirichlet Problem is unique. The solution to the Neumann Problem is
unique up to +constant.

Proof. Let @1, ¢, be two solutions, and ¢y = @1 — 2. Then

V2 =0 inQ
By=0 in0dQ

where By = ) for the Dirichlet problem, and By = g—‘f for the Neumann problem.

Consider the functional /[y/] = |, IV|*dV. Then ] > 0, and ] = 0 if and only if Vi = 0 in Q.
Note that

_ _ _ _ : _ . dS — 9%
/[Lp]_/ovw-vwdv_/ov-wvw wvzwdv_/ov (vaLp)d\/_/aQwLp ds_LQ¢ands

d
Now by the boundary conditions, we have that g[/a—f =0on0dS, so Viy =0 and ¢ is constant.
For the Dirichlet problem, we have that ¢y = 0 on 9(), so by continuity ¢ is 0 in QU 0Q), and the solution
s unique.
For the Neumann problem, we have that % = 0 on 0Q), so ¢ is constant, and ¢ and ¢, differ by a
constant. O

13



12.1 Gauss' Flux Method

Definition (Gauss’ Flux Method). Suppose the source term F is spherically symmetric, and the domain
Q = R>?. Then Poisson’s Equation becomes

V. -Vo=F(r)

Without loss of generality, we may assume that ¢ is spherically symmetric. Then V¢ = ¢/(r)e,.
Integrating over the ball |[x| < R and using the divergence theorem,

V. VedV = V(p-dSz/ F(rdV
[x|<R [x|=R |x|<R

Let Q(R) = [ FdV. Then [|x| = RV¢-dS = Q(R). Now on a sphere, dS = e,r?sin 6d0d¢, so on
[x|<R
x| =R, V@ -dS = ¢/(R)R?sin 8d0d¢ = ¢'(R)dS. So Q(R) = [.._, ¢ (R)dS = 471R%*¢'(R). Finally, we
[x|=R Y
get that

Q(r)

J— / —

Vo= ¢(rle; e e

12.2  Superposition Principle

Proposition. /f L is a linear operator, and for n =1, ..., L({,) = F,, then

) -1

Definition (Superposition Principle). If we have a system Ly = F, where F = Fy + - + Fp, then suffices
to solve

L(‘l’n) =Fy

and
Lgyw+-+yp)=F+ - +F,=F

12.3 Integral Solutions
Proposition. Assume F — 0 rapidly as |x| — oo. The unique solution to the Dirichlet problem
Vip=F ForxeR?
lp| =0  as|x| - o0
is given by

o Fy)
4 Jrs x =yl

vz( T )—5(x)

_EM

px) = dV(y)

Proof. This is equivalent to saying

as by differentiating under the integral sign,

1 F(y) 1 1
v Ly =5 [ (v

- [ Pl - yaviy
- F(x

14



Now note that for r & 0,

1 02 1
Vi - = -
( r ) 0x;0x; ( r )

) Xi
-2

5[' 3X[X[
=) r
=0=06(x)

If we assume that the divergence theorem holds for delta functions, then for any ball |x| < R,

—L<RVZ“L)dV=jL=RV(&J.dS

/JT /Zﬂ —e 5

= L) - e R*sin 6dOd¢
6=0 J ¢p=0 ( R? )

= —4n

Thus for any R > 0,

/h V%—11)dV—/ S(x)dV =1
X|<R 471 |x| X[<R

Thus

12.4 Harmonic Functions

Definition (Harmonic Function). A function ¢ is harmonic if it satisfies Laplave's Equation, that it
V2<p =0
Proposition (Mean Value Property). If ¢ is harmonic on Q C R, then

1
o1e) = gz [, oS

Fora € Q, r sufficiently small.

Proof Let
1
F(r) = / x)dS
0=z ), ¥
1
_4m2Aiﬂ¢m+xm5
1 27 T
= — a -+ re;)sin 6dod
e | platre) ¢
Then
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1 21 T
F/(r) _ E /(z)_0 /Q_O e, Vq)(a —+ I”er) sin 9d9d¢

21

JT
= 4;2/ / e, - Vola+ re.)r’ sin 0d0d¢
¢=2 J0=2
1

= R v /)dS
- /ere pla+ rey)

1

B 4r? x|=r

_ / Volx) - dS

a 4orr? |x—al=r 4

1 / >

- V2pdV
4gr? [x—al|<r

=0

Vpla+x)-dS

So F(r) is constant. Letting r — 0 we get the result required. O

Proposition. /f ¢ is harmonic on some volume Q C R3, then ¢ cannot attain a maximum on any interior
point of Q) unless ¢ is constant.

Proof. Suppose we have a € Q such that for all x € Q, ¢(x) < ¢(a). Then by the Mean Value Property, we
can show that ¢ is constant in a ball centred at a.

B 1
 4ye?

1o = ez [, ob9s = [ gl —gtulas =0

As the integrand is nonnegative, it must be identically zero. Now choose any other point y € Q. Suppose
further that Q is compact. For any path connecting a to y, choose balls such that the center of one ball is in
the previous ball, and y is in the last ball. Then by compactness we have a finite subcover. Consequently,
we have that ¢(a) = ¢(y), so ¢ is constant. O

Corollary (Maximum Principle). /f ¢ is harmonic on Q, and continuous on the closure of Q, then for x € Q,

<
p(x) < gn;gg ®(y)

13 Cartesian Tensors

Throughout this section, we will only use (right handed) Cartesian coordinates.

Definition (Rank n tensor). An object with components Tij. ~ k that transforms from a basis {e;} to a
——

n indices

different basis {e!} according to

/
ij.k = RipRiq - Rir Tpq...r
N——’
n R's

is a rank n tensor. Here R;; = e} - e; are the components of a rotation matrix, and R, Rj, = 0.
Proposition (Scalar). A scalar is a rank 0 tensor.
Proposition (Vector). A vector is a rank 1 tensor.

Proposition (Linear Map). A linear map is a rank 2 tensor.

16



Proposition. /f u;, Vj,..., W are components of n vectors, then

Tijok = uvy. o wy
is a rank n tensor.
1 ifi =]
0 ifi %j

Proposition (Kronecker Delta). 0;; = «| is a rank 2 tensor.

Proof. 6;j = ¢; by definition. Also note that

RipRjq0pq = RipRjp = 0

O]
1 if (i j k) is an even permutation
Proposition (Levi-Civita Symbol). €jx = 1 =1 if (i j k) is an odd permutation s a rank 3 tensor.
0 if (i j k) is not a permutation
Proof. Note that & = 6f/k by definieion. Also,
Ripquergpqr = det Ré,‘/k = Eijk
O]

Definition (Conductivity Tensor). Suppose that the current produced in a medium J is proportional to the
electric field E. This relationship can be written as | = oE, or with indices, J; = i E;.
Since E and ] are vectors,

Ui/jE; =Ji=Rplp = Rp0peEq = prgququf

As this holds for any Ej(, we must have that
Ui/j = RipRjq0pq
and o is a rank 2 tensor known as the electrical conductivity tensor.
Definition (Addition). If A;; x and B;; x are rank n tensors, then define
(A+ B)ij.k = Aij .k + Bij.k
which is a rank n tensor.
Definition (Scalar Multiplication). If A; « is a rank n tensor, and « is a scalar, define
(aA)ij. .k = aAij k
which is a rank n tensor.
Definition (Tensor Product). If U;;  is a rank m tensor, and V)4, is a rank n tensor, we define
(U ® \/)[j...kpq...r = UYij..kpq...r
which is a rank m + n tensor.

Definition (Contraction). If T; ; is a rank n tensor (n > 2), then we can define the tensor contracting on a
pair of indices, say (i, j).

Tiik..t = 0ij Tijk..t

and this is a rank n — 2 tensor.

17



Definition (Symmetric). We say a tensor T;; « is symmetric in (i, j) if
Tk = Tji.k

Definition (Antisymmetric). We say a tensor 7 x is antisymmetric in (i, j) if
Tijok=—Tji«x

Definition (Totally (Anti)Symmetric). We say a tensor T;;  is totally (anti)symmetric if it is (anti)symmetric
for every pair of indices.

Proposition. 9;; is totally symmetric.
Proposition. ¢; is the only totally antisymmetric rank 3 tensor on R? up to multiplication by a constant.

Proof For a totally antisymmetric tensor, if two indices are the same then the component must be zero.
There are 3! = 6 non-zero components, and 7123 = T231 = 7312 and T130 = T3p1 = T31 = —T123. So
Tijk = T123€ijk- O

13.1 Tensor Calculus

Definition (Tensor Field). A tensor field of rank n, T «(x) gives a rank n tensor for all xinR3.

iti g 0
Proposition. Rij ax;

=
Prool 0 ox; 0 ox, 0 0 0
Xj Xk
— = = R = — = R;0ik=— = Rjj—
ox;  0x{0x; K ox; 0x; K kaxj Jox;
O
Proposition. If T;_j(x) is a tensor field of rank n, then
0 0
el IR I P
( 9xp ) (axq ) )
m derivatives
is a tensor of rank n + m.
Proof Let A, 4i..; be the expression above. Then
0 0
A — . =T
p...qt...J aX;)) (ax(/q) l...j(x)
0 0
= Rpa . ~qu (axg) (a)(b) Ric“~Rdec...d(X)
0 o)
Ry RypRec - Ry (ax) (aXb) o 4l
= Rpa - RgpRic .- Rja Ta. be..d
O

Proposition. V¢ and V X v are rank 1 tensor fields, V - v is a rank 0 tensor field.

Proposition. For tensor field T k. .((x),

0
Ti’...k...l(x)d\/:/ Tij k. 1ngdS
/\/an ! av

where n is the outwards normal.
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Proof Let a, ..., ¢ be constane vectors. Let vy = a;b; ... c/T;j. .. Applying the divergence theorem,

Oy d
—dV =aib;. .. — T dV
/\/an a;b;j Cl/\/ E ij..k..1

= / ViengedS
aVv

=ab;... Cz/ Tij ke 1nkdS
oV

As this holds for any a, .. ., ¢, result follows. O

13.2 Rank 2 Tensors
1
(

Definition (Symmetric Part). For a tensor 7;;, we can define S;; = 5 T+ Ti)

Definition (Antisymmetric Part). For a tensor 7;;, we can define A;; = %(Tl—- — 1)
Proposition. Every rank 2 tensor can be decomposed uniquely as
Tij = Sij + €jrwk
where wy = %&'jk Tij and Sy is symmetric.

Proof. Suffices to show A;; = &k wi.

1 1 1
EijkWk = 5Eijk€pqk Tpg = 5(0ip0jg — 0jp0iq) Tpg = 5(Tij — Tji) = Ay

If we had two decompositions, taking the symmetric part and the asymmetric part we see that they are
the same. O

Definition (Linear Strain Tensor). Suppose each point x is displaced by a small amount u(x). Consider two
nearby points x and x 4+ 0x. Then

(X + O0x + u(x + 0x)) — (x + u(x)) = 0x + [u(x + 0x) — u(x)]

change in displacement

Using Taylor’s Theorem,

du;

ui(x + 0x) — ui(x) = —5)(/ + 0(0x)
aX/'
Gui
We can decompose Fo e + &jkwi to get

i
j

ui(x + 0x) — ui(x) = eij0x; +[0x X w|; +0(0x)

N—— N——
translational displacement rotation

Here, ejj is known as the Linear Strain Tensor.

Definition (Inertia Tensor). For a body V' with density p(x) and angular velocity w, the angular momentum
about the origin is

L=/Vp(x)x><vd\/=/vp(x)x><(xxw)d\/

th components,
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L= /p(x)(xkka,' — Xin‘Uj)dV = /ijwf
v

where we have defined the Inertia Tensor

lij = /P(X)(kak5zj — xpx;)dV
1%
with V = {(x1, x2, x3) : x = x;e; € V'}. The Inertia Tensor is a symmetric rank 2 tensor.

Proposition. If T;; is symmetric, then there exists a basis {ei} such that

a 0 O
)= {0 6 0
0 0 vy

The corresponding coordinate axes are called the principal axes of the tensor.

Proof. Clear from the fact that any real symmetric matrix can be diagonalised by an orthogonal transormation
R for which detR = 1. O

13.3 Invariant and Isotropic Tensors

Definition (Isotropic Tensor). We say a tensor is isotropic if it is invariant under changes in Cartesian
coordinates. That is

[/j.../( = RiPqu L er qu‘,,r = lek
for any rotation R.

Proposition. /sotropic Tensors in R can be classfied as

(i) Rank O tensors
(ii) There are no non-zero rank 1 isotropic tensors
(iii) ad;; for rank 2
(iv) Beijk for rank 3
(v) adijOk; + BOi0dji + vy 0 for rank 4
(vi) A linear combination of products of €'s and d's for rank > 4.

Proof. (i) By definition.

-1 0 O
(i) Suppose if v; are components for an isotropic vector. Take (Rl-/-) =0 =1 0]. Thenvyy=wv, =0.
0 0 1
By a different R we can find that v3 = 0.
(iii) Taking rotations by 7 about each axis ylelds the required results.
(iv) - (vi) Same ideas. O
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13.4 Multilinear Maps

Proposition. Given a tensor T; j, t(a, ..., b) = T ja;...b; is a multilinear map. Furthermore, given a
multilinear map t(a, ..., b), T, ;= tle;, ..., e;) is a tensor.

Theorem (Quotient Theorem). Let T; j, 4 be an array of numbers defined in each coordinate system such
that

Viij = Ti...jp...qup...q

is a tensor for each up. 4. Then T; j,. 4 is a tensor.

Proof. Consider the special case u;...j = c,...dq for vectors c,...,d. Then v, ;= T; jp qCp... dgisa
tensor, and v; ja;...b; = T; jp.qa;...bjc,...dq is a scalar, so it is independent of the choice of basis.
Thus we have a multilinear map

t@ ....b,c,....d)=T; jp qa;...bjc,. .. dqg
By the previous proposition, 7;_j,. 4 is a tensor. O

Definition (Stress Tensor, Stiffness Tensor). Suppose the stress at a point is proportional to the strain. Then
let 0;; be the stress tensor. Then we have some c;jx; such that

Oij = Cijkl€ki

We cannot use the Quotient Theorem as ey is not arbitrary, as it is symmetric. However, if we assume
Cijkt = Cijix then we can use the quotient theorem. Then ¢ is known as the Stiffness tensor. Suppose
further that the material is isotropic. Then

0ij = (Adij0ki + BOikOji + vOudjk)ex = A0jjexk + Beij + veji = Abjjexk + 2uiej;

where 21 = B+ y. This is Hooke's Law for an Isotropic material.
Contracting on (i, j),

A
3A+2p

0‘..
Oi = BA+ 2U)ex = ek = =———— = 2ue; = 0 — (

5
34+ 20 ) kKO
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