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This document is intended for revision purposes. As a result, it does not contain any exposition. This is based off
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1 Complex Numbers

Definition of C and elementary properties shall be assumed. The complex conjugate is dnenoted by Z in this
course.

Theorem (Fundamental Theorem of Algebra). A polynomial over C of degree n has n roots in C, counted
with multiplicity.

Theorem (de Moivre’'s Theorem). For any n € Z,

(cos B + isin O)" = cos(nB) + isin(nO)

Proof The case for n = 0 is trivial. For the inductive case, (cos O+ isin 8)"+!" = (cos(n8) + i sin(nO))(cos 6+
isin 8) = (cos(nB) cos 8 — sin(nB) sin H) + i(sin(nb) cos O + cos(nB) sin B) = cos((n + 1)6) + isin((n + 1)6).

Note that (cos @+ isin 8)™" = (cos(m8) + i sin(mB))~" = cos(mB) — i sin(mB) = cos(—m8) + i sin(—mO).

O

Definition (exp, cos, sin). For z € C, we define

(o] Zn
exp(z) = Z ]
n=0
cos(z) = exp(iz) +2e><p(—iz)
sin(z) = exp(—iz) 2— exp(—iz)
i
Proposition.
2 7
cos(z)=1—7+ﬂf
Proposition.
, 7 7
Sm(z):z—§+§—
Proposition.

exp(z + w) = exp(z) exp(w)
Lemma. (i) et = e¥(cosy + isiny)

(ii) exp(C) = C\{0}



(i) e =1 <= z = 2nmi for some n € N.

Proof. (i). By definitions.
(ii) By definitions and properties of the real exponential.
(iit) Using (i) and standard properties of sin and cos.

Definition (Roots of Unity). The n-th roots of unity are the solutions to z7 —1 = 0.

Proposition. The n-th roots of unity are of the form Wk, where 0 < k< n, w= exp (

Proof Clearly they satisify (w*)” —1 = 0. By the Fundamental Theorem of Algebra, these must be the only

roots.

Definition (log). For z € C, we define

log(z) = log|z| + iarg(2)
Note this is multivalued as arg(z) is multivalued.

Definition (Complex Exponentiation).
7% = exp(a log 2)

Note this is multivalued as log(z) is multivalued.

Proposition. A line in C through zy and parallel to w is given by

Wz —WzZ = Wzy — Wz

Proposition. A circle in C with centre a and radius r is given by
|z—a|l=r
2 Vectors in R’

Definition (Scalar Triple Product). [a,b,c]=a-(b X ¢)=b - (c X a) etc.

Definition (Vector Triple Product). a X (b X ¢) = (a-c)b — (a - b)c.

Proposition. A line in R? has the form r = a + Au, or r X u = ¢, where u and ¢ are constant vectors.

Proposition. A plane in R? through a and with normal n is given by n+r = n-a = constant.

Definition (Kronecker Delta).
0ij = 1 :Lf l ] j
0 ifi#

Definition (Levi-Civita Epsilon).

1 if (i j k) is an even permutation

€ijk =4 —1 if (i j k) is an odd permutation
0  if (i j k) is not a permutation

Proposition.

Eijk€pgr = OipOjqOkr — 0jpOiq Ok
+ 5/,;5@5,’, — 5kp5jq5ir
+ O1pig 0 — BipOkq O
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Proof. Note that both sides are totally antisymmetric in i, j, K and in p, g, r, which suggests that both sides
are equal up to multiplcation by a constant. By substituting i =p =1, j =g =2 and k = r = 3, we get
that the left hand side and the right hand side are both 1. Therefore the left hand side and the right hand
side must be equal. O

Proposition.
EijkEpgk = 0ipOjq — 0jp0ig

Proof. Let r = k in the general identity above. Also note that oy, = 3. O

Proposition.
Eipk€ipg = 20kq

Proof. By permuting the indices, we have that €pk€ipq = €kip€qip = OqkOii — OkiOgi = 30kq — Okq = Okq. I

3 Vector Spaces

Definition (Vector Space). A vector space over a field F is a set V, where V is an abelian group under
addition, and

o Alv+w) = Av+ Aw.
o (A+uv=Av+pv
o Aluv) = (Ap)v

o lv=yv

4 Inner Product Space

In this section, F = R or C, and for x € R, X = x. Note further that in this course, we're using “Physicist’s
notation’, where the variable which is conjugate linear is opposite to what Pure Mathematics uses.

Definition (Inner Product Space). An inner product space is a vector space V over a field F together with a
map (+,+): V x V — T satisfying

o (z,lu+ pw) = Az, u) + iz, w)
o (w.z)=(wz)

(

o (Ju+pw,z) = Mu,z) + 1w, z)
(
(

x,x) € R, and > 0. Furthermore, it is 0 if and only if x = 0.

Using this, we can define norms, as well as what it means for two vectors to be orthogonal. Furthermore,
the Cauchy-Schwarz inequality holds in any inner product space.

5 Vectors in R”

Definition (Inner Product). For x,y € R”,

XY= XY
Proposition. The inner product is symmetric, bilinear and positive definite.
Definition (Norm). For x € R”, the norm of x is defined by

2

X|” = 1IxII” = x + x



Theorem (Cauchy-Schwarz Inequality). For all x,y € R”

x - y| < xit]y]|
with equality if and only if x and y are parallel.

Proof. If y =0, the result is trivial. Otherwise, consider Hx — /\gH.

[x = Ay||” = (x — Ay} - (x — Ay) = lixIl — 2ax -y + A2[|y|| > 0

This is a quadratic in A, and as it is always non-negative, it has at most one real root. Consider the
discriminant, we get that

4x - y)” — 4ix1?[|y[|* < 0

Hence
[x -yl < iixit |yl

and equality holds if and only if x = Ay. O

Proposition (Triangle Inequality). For all x,y € R"

[x+ g < txin+ [fyl]
Proof

[x + gHZ = (x+y) - (x+y) = x> + HgHZ +2x-y < IxI12 + HgHZ + x| = (ixir =+ |y )

O
6 Linear Indepdence
In this section, let V' be a (real) vector space.
Definition (Linear Indepdence). . Let vq, ..., v, € V. The v; are linearly independent if
r
Z)\[V( =0
i=1
if and only if A; = 0 for all i.
Lemma. /n any real inner product space V, if vy, ..., v, # 0 and orthogonal, then they are linearly inde-

pendent.
Proof It ", i = 0, then (vj, Y, Awvi) = Y_; Ailvj,vi) = Aj]|vj|| = 0. So A; = 0 for all j, and the vectors
are linearly independent. 0
7 Basis and Dimension
Definition (Basis). For a vector space V, a basis B is a set such that

e span(B) =V

e B is linearly independent.

Theorem. If {eq, ..., e,} and {fr, ..., fm} are bases for V, then n = m.

Proof. For each a, f; = ) ;Asiei. Similarly, e; = ) , Bigfa. Sofqo =3 Aui)_, Bifs = 3> AciBin)fs.
As the fs are linearly independent, ) ; AqiBiy = 0gp. Similarly, from e, we get that ) BigAaj = 0ij. Then
> i0AaiBia = )_4 0aa = m, but we also have that ) ,  AsBia =3 ;0 =n. Som=n. d
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Definition (Dimension). We define the dimension dim(V/) of a vector space V' as the size of any basis for V.

Proposition ((A version of the) Steinitz Exchange Lemma). Let V' be a vector space with dim(V) = n, with

o V={wy,.. ., wp} with spanY = V.

o X ={uy,..., ug} that are linearly independent.
Then kK < n < m, and

(i) A basis can be found as a subset of Y, by discarding vectors as necessary.

(ii) X can be extended to a basis by adding vectors from Y as necessary.

Proof. If Y is linearly independent, then Y is a basis, and n = m = dim V. If Y is linearly dependent, then
m—1

without loss of generality (by reordering the w;), we may write w,, = > A;w;. Thenspan Y = span(Y\{w}).
=1

(=
Repeat this until a basis is found. Consequently, we must have that n < m.
If X spans V/, then X is a basis, and kK = n. Otherwise, there exists ug1 € V which is not in span X. But

k+1

as ugy1 € span X, Y Au; = 0 must mean that A; = 0 for all i. Hence X U {ux41} is linearly independent.
i=1

Furthermore, we may choose uxy1 € Y, as if ¥ C span X, then span Y C span X and span X = V. Repeat

this until a basis is obtained. O

8 C”

Again, note that in this course we're using “Physicists’ Notation” and the conjugation is opposite in Pure
Mathematics.

Definition (Complex Inner Product).
n
(z,w) = ZZ‘W[
i=1

satisfies the axioms of an inner product.

9 Linear Maps
Definition. Let V' and W be vector spaces, then 7 : V — W is a linear map if

TV + pw) = AT(v) + uT(w)

Proposition. A linear map is completely determined by its action on a basis.

Tv)=T (i Viei) = i viT(e)
i=1 i=1
Definition (Image).
Im(T) ={we W:ave V, T()=w}

Definition (Kernel).
ker(T)={ve V:T(v)=0}

Lemma. ker T is a subspace of V, Im T is a subspace of W.

Definition (Rank).
rank T =dimIm T



Definition (Nullity).
null 7 = dimker T

Theorem (Rank-Nullity).
dimV =rank T +null T

Proof. Let {eq, ..., ex} be a basis for ker T, and extending this to a basis of V by adding on {ex+1, ..., en}.
We claim that B = {T(ex+1), ..., T(en)} is a basis for Im T.
ForanyxeImT,

n n k n n
x=7T(v)=T (Z viei) = Z viT(e;) = Z vi T (e;) + Z viT(e;) = Z vi I (e;) € spanB
i=1 i=1 i=1 i=k+1 i=k+1

Now suppose if > A;T(e;) =0. Then T ( > A[el—) =0.So ) Ae; €kerT. This means that for
i=k+1 i=k+1 i=k+1

n
some y;, we have ) e = ZL uie;. As the e;s form a basis, we must have that A; = 0 for all i. So B
i=k+1
is a basis.

Consequently, rank T =n —k, null T =k and rank T + null 7 = n =dim V. O

9.1 Geometrical Examples
Definition (Rotation). An anticlockwise rotation about an axis given by a unit vector n is given by
T(x) = (cos O)x + (1 — cos B)(n + x)n + (sin O)n X x
Definition (Projection). A projection onto a plane with unit normal n is defined by
T(x) =x—(x+n)n
Definition (Reflection). A reflection across a plane with unit normal n is defined by
T(x) =x—2(x+n)n

Definition (Dilation). Given scale factors a, B,y > 0, a dilation is defined by

T(e1) = aeq
I'(e2) = Be:
I'(e3) = yes

Definition (Shear). Let a, b be orthogonal unit vectors in R, and A € R. Define a shear parallel to a with
scale factor A by

T'(x) = x+ Aa(x - b)

10 Matrices

Definition (Matrix-Vector Multiplication). If a matrix M represents the action of a linear map 7, then

and



Definition (Matrix Multiplication). Matrix multiplication is given by
[ABlij = AiqBaj
Definition (Transpose). The transpose of a matrix M, denoted by M’ is given by
M)y = M,

Definition (Hermitian Conjugate). The hermitian conjugate of a complex matrix M, denoted by M7 is given
by

M) = M

Definition (Symmetric, Antisymmetric Matrices). A square matrix S is symmetric if ST = S. A square matrix
A is antisymmetric if AT = —A

Definition (Hermitian, Antihermitian Matrices). A square complex matrix M is hermitian if MT = M. It is
antihermitian if M7 = —M.

Proposition. The inner product can be written in terms of the Hermitian Conjugate (if we regard 1 x 1
matrices and scalars to be equivalent).

(z,w) =zTw
Definition (Trace). For q square matrix M, the trace is defined to be
tr(M) = M
Definition (Orthogonal Matrix). A real square matrix U is orthogonal if U" U = I. Equivalently, UT = U™,

Proposition. U is orthogonal if and only if its columns are orthonormal vectors.

Proof
(UTU)j = [UT)igUsj = UgiUsj = 8

Proposition. U is orthonormal if and only if its rows are orthonormal vectors.
Proposition. U is orthogonal if and only if it preserves the real inner product.

Proof.
(Ux) - (Uy) = (UX) Uy = x"UT Uy = x"y =x-y

The reverse implication can be checked by assuming x’ U" Uy = x"y and calculating the entries of
u'u. O

Definition (Unitary Matrix). A complex square matrix U is unitary if UTU =/, or equivalently UT = U™,

Proposition. U is unitary if and only if it preserves the complex inner product.



11 Determinants and Inverses

Definition (Levi-Civita Symbol).

1 if (( j ... l) is an even permutation
Eij. 1= —1 if(ij ... ) is an odd permutation
g 0 if(ij ... 0)is not a permutation
Proposition. /f o is a permutation of {1, ..., n}, then

E€a(1)...0(n) = Sign(0)

Definition (Alternating Form). Given vectors vq, ..., vy in R" or C”, the alternating form is defined to be

2 Vol = €ija(v1)i(va)j - - (Vo)
Proposition. The alternating form is multilinear.

Proposition. The alternating form is totally antisymmetric. For any permutation o,

Proof. Suffices to check that it holds for a transposition, as every permutation can be written as a product
of transpositions. Let T = (p g), where p < g. Then

= Z stign(a)(vi)o(1) - - - (Vo = Na(p=1)(Vg)a(q) (Vp+1)a(p+1) - - - (Vg=1)alg—1)(Vp)a(p) (Vg+1)a(g+1) - - - (Vn)a(n)

[
= Z sign(@)(v1)er1y - - (Vo = Dearp—1)(Vg) o (q) (Vp+1) o (p+1) - - - (Vg=1)a(g—1) Vp)o'(p) Vg +1) o7 (g+1) - - - (Va)o'(n)
0—/

Where ¢’ = o1, and summing over all ¢ is the same as summing over all ¢’. As sign(ot) = — sign(o),
we get that
Vi, ..., Vo 1,Vg, Vptt, - -, Vg—1,Vp, Vg1, - - -, Vol =—v1,..., Vo]
as expected. O
Proposition.
e1,...ep] =1

where {e;} is the standard basis for R", that is, (e;); = 0j;.

Proposition. /f two of the vectors are the same, then the alternating form is zero.

Proposition. [vi, ..., vp| # 0 if and only if vy, .. ., v, are linearly independent.
s
n—1
Proof. First suppose if vq, ..., v, were linearly dependent. Without loss of generality, say v, = > Awv;.

Using the multilinearity of the alternating form, and the fact that if two of the vectors were the sar;]e1 then
the alternating form is zero, we get that [vq, ..., vy = 0.

Now suppose if vq, ..., v, are linearly independent. Then they span R". Hence the standard basis
vectors can be written as linear combinations of the v;s. We can write e; = Ug;v,. Thus



11.1  Determinants
Definition (Determinant). If M is a n x n matrix, with columns C, = Me,, det M is defined to be

detM = {C1 ..... Cn] = [/\/’81 ..... /\/Ien] = 5[...]‘/\/’1‘1 L Mjrl = Z S[gn(U)/\/’U(1)1 R /\/Ig(n)n

gES,

Proposition. /f M has rows R,, then

Consequently, det M = det(/\/lT)
Proof. Note that (Cg)i = My = (Ri)a.  Then Moayr .. Mgy = /\/11071(1).. M 1) and sign(o)

- Vipg- =
sign(o~"), so we are done. O

Definition (Minor). For a matrix M, we define the minor M@ as the determinant of the matrix obtained by
removing the i-th row and a-th column of M.

Proposition. For fixed a,
detM =% (=1)F MM
i
Proposition. For fixed |,
detM =5 (=1)* MM

Proposition (Column/Row Scaling). If R; — AR;, or C; — AC;, then det M — Adet M.

Proposition (Column/Row operations). /f R; — R; + AR; (i # j), or C; — C; + AC; (i # j), then detM is
fixed.

Proposition (Column/Row swaps). If two columns/rows are swapped, then det M +— — det M.

Lemma.

SHW[NMHUW ce Minan = (det M)801--~0n
Proof. Note both sides are antisymmetric in a1, ..., ap, so they are equal up to a constant. Set a; = 1 to
find the constant is 1. O

Alternative Proof Let o(i) = a;, then 0 € S, and

811._.1,7/\//4'1 aj - - - Mina,, = 611.._[”/\/’110(1) ce M[nff(n)
=&y i,My1 ... M, ,sign(o)
= (det M) sign(o)
= (detM)ey, q,

Theorem.
det(MN) = det M det N

Proof
det(MN) = i, i, (MN)i1 ... (MN);,
= €iy i, (Miyky Nig1) - - - (Mi, ki, Nion)
= &€i..iuMik - Mok, Nyt -+ - Nign
= (detM)ek, ki, Nig1 - Nign
= det M det N

10



11.2 Cofactors

Definition. If a matrix M has columns C,, then the cofactor A, is

Proposition. 4
A[a = (_1 )H_a/\/’[a

Proposition. for a fixed,
detM = Z MiaAia

L

Proposition.

G, ..., Co—1.Cp, Copr, ..., C,l = = Ogp det M

detM ifa=0>b
0 otherwise

Definition (Cofactor Matrix). For a matrix M, define the cofactor matrix A with entries A;,.

11.3 Adjugate and Inverses

Definition (Adjugate Matrix). i
Adj(M) = M = AT

Proposition. i
MM = (det M)/
Proof. i )
IMM|ap = MaiMip = DNigMip = dqp det M = (det M)/ gp
O]
1 .

Definition (! Matrix). If detM = 0, then M~ = ——M.

efinition (Inverse Matrix) et M = 0, then =y

12 Systems of Linear Equations
Proposition. for a linear system Ax = b, there are three possibilities

e detA+ 0 and x = A~'b is the unique solution.
e detA=0andb & ImA, and there is no solution.

e detA=0andb € ImA, then x = xg + u is a solution, where Axg = b, Au = 0.

Proof. Note that detA #+ 0 <= ImA = R" <= kerA = {0}, and there is a solution if and only if
belmA

If detA # 0, then x = A~'b is a solution. Suppose if X’ was also a solution. Then A(x —x’) = 0, so
x —x € kerA= {0}, and x = x".

If detA=0and b € ImA, then rank A < n and nullA > 0. Then choosing any v € ker A and adding it
to a solution will yield another solution. O

11



12.1 Gaussian Elimination

Definition (Gaussian Elimination). For a general system Ax = b, reorder the equations (1 to m) and variables
(rename/reorder xq,..., X, to Y1, ..., yn) to get the coefficient of y1 in equation 1 to be

1
Bl +0

Eliminate yq from all of the other equations by subtracting off multiples of equation 1. Then reorder
equations/variables such that the coefficient of y, in equation 2 is

(2)
By, #0

and so on.

This process stops when all coefficients in equations r + 1, ..., n are 0.
Proposition. r < m, r < n.
Proposition. /f r < m, then a solution exists only if cﬁL == C(nr) =0
Proposition. /f r < n, and a solution exists, then y,.1, ..., Yy, are undetermined.

Using Gaussian Elimination, the values for x, ..., x; can be determined as B%) +0forj=1,...,r

Proposition. /f r = m < n, then there is no constraint coming from the b;s, so there are infinitely many
solutions.

Proposition. /f r = n < m, then if the constraint coming from the b;s is satisfied, there is a unique solution.
Otherwise there is no solution.

In matrices, the new system is My = ¢, where M is a m x n matrix in echelon form, that is

where M is a rx r upper-triangular matrix, that is

M1 oo My,
M = .
0 M,

In the process of Gaussian Elimination, reordering variables corresponds to column swaps, reordering
equations corresponds to row swaps and subtractions corresponds to row operations.

Then r = rank M = rank A = # linearly independent columns = # linearly independent rows.
If n = m, then det A = +detM, and in addition, if r = n = m, then detA = =My 1My .. . M,, % 0.

13 Eigenvalues and Eigenvectors

Definition (Eigenvector, Eigenvalue). For a linear map 7 :V — W, v &€ V, v # 0 is an eigenvector if there
exists A € R such that

T(v) = Av
A is known as the eigenvalue.

Definition (Characteristic Polynomial). For a matrix A, the characteristic polynomial ya(t) is given by
xA(t) = det(A — tl)

12



Proposition. A is an eigenvalue of A if and only if xa(A) = O.
Proposition. y4(t) has n roots over C, counted with multiplicity.
Proposition. tr(A) = —coefficient of t"~" in ya(t)
Proposition. det A = product of eigenvalues = y4(0)
13.1  Multiplicities
Definition (Eigenspace). For an eigenvalue A of a matrix A, define the eigenspace E, by
Ey={v:Av=Av}
Definition (Geometric Multiplicity). For an eigenvalue A of a matrix A, define the geometric multiplicty by
m, = dim £, = null(A — Al)
Definition (Algebraic Multiplicity). For an eigenvalue A of a matrix A, define the algebraic multiplicity by
M), = Multiplicity of (t — A) in xa(t)

Proposition.
My > m,

Proof.

Wit Wp
From now on, we will take the indices with ranges i,j =1,..., randa,b=r+1,..., n. Then define
a matrix P with columns
Ci(P)=v; fori=1,..., r
Cu(P) = wg fora=r+1,..., n

Then AC; = Av; = AC; and

AC, = Aw, = Z Bigvi + Z BphaWa
i b

= Z B[C,C[ + Z BbaCb
i b

where Biq, By, are arbitrary constants, ;=3 | 4, > , = p_,.4. This means that AP = PB, where
B is a matrix of the form

[ ] B,/ = /\511
° Bai =0

e B, Bgyp are unknowns.

13



Therefore,

pap—p=| "

0 |B

where [ is the r x r identity matrix, and B is the (n —r) x (n — r) matrix with entries Bgp. Then, as A
and B are similar, we have that ya(t) = x5(t) = det(B — t/), and

det(B — th = | A

0 |B-tl

If we expand the determinant, then as the bottom left part of the matrix is zero, we get that det(B — t/) =
det((A — t)/)det(B— t/) = (A—1t) det(B— t/). Thus, the algebraic multiplicity is at least r = m, =
dim E. O

13.2 Linear Independence

Proposition. Letvq, ..., v, be eigenvectors of a matrix A, with eigenvalues A
distinct, say A; # A; fo i # j, then the eigenvectors are linearly independent.

..... Ar. If the eigenvalues are

r r

Proof Let w = ) a;v;. Then (A — Al)w Z Ai — A)vi. Now suppose if the eigenvectors were linearly
i=1 =

dependent. Then there exists a linear combtnatton w = 0. Furthermore, let p represent the number of

non-zero q;s. Clearly p > 2.

Now choose the linear combination w such that p is least. Without loss of generality, let a1 # 0.
r

Then (A= X/)w = ) aj(A; — A1)v; = 0. But this is a linear combination with p — 1 non-zero coefficients.
j=2
Contradicting the minimality of p. O

Alternative Proof Fix k, then

[ A= |w=a [[ |t =) | v =0

jtk JFk
as the other v;s are multiplied by A; — A; = 0. As the vis are non-zero, and A; — Ax # 0, we must have
that ax = 0, and this holds for all k. OJ

Proposition. Let By, be a basis for E,,, then

s
i=1

is linearly independent.

Proof. Consider w = w1 + --- + w,, where w; € £,. By a similar argument to the previous proposition,
w; = 0. Then we must have that the coefficients for each of the basis vectors is zero. O

14



14 Diagonalisation
Proposition. fFor an n x n matrix A, the following are equivalent.

e There exists a basis of eigenvectors vy, . . ., Vj

Moo 0
e There exists a matrix P with P~VAP = D, where D =

Proof. Let the columns of P be C;. Letting C; = v;, we get that

P'AP =D & AP =PD = Vi, \vi = v,

Definition (Diagonalisable). A matrix M is diagonalisable if either of the above conditions holds.
Proposition. For an n x n matrix M, M is diagonalisable if it has n distinct eigenvalues.

Proof. If we have n distinct eigenvalues, we must have n distinct linearly independent eigenvectors, which
forms a basis. O
Proposition. A is diagonalisable if and only if for each eigenvalue A;, My, = m;,.

L

Proof. Clearly >, M,, = n. Now consider | J; B),. We have shown that this is linearly independent, and the
sizeis ) ;my, = n. So it is a basis of eigenvectors. O

15 Similar Matrices
Definition (Similar). Matrices A and B are similar if B = P~'AP for some matrix P>
Proposition. I/f A and B are similar, then
o trA=1trB
o detA=detB
* xalt) = xs(1)
Proposition. Similarity is an equivalence relation.

Remark. Similarity is also called conjugate, especially in Groups. Note that two matrices are similar if they
represent the same linear map but with respect to different bases.

16 Hermitian and Symmetric Matrices

Theorem. /f a matrix A is hermitian, then every eigenvalue is real, and eigenvectors with distinct eigenvalues
are orthogonal.

Proof As A is hermitian,

viAY) = (AY)Tv —= v = Wy = AWiv=iTv — 1=)1 — 1eR

Furthermore,

viAw) = (AV)Tw — vi(pw) = (AW)Tw — iwviw = viw — viw=0
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Proposition. for a real symmetric matrix A acting on C", for each eigenvalue A there is a real eigenvector
v.

Proof. Given an eigenvector v € C”, let v = u + iw, where u,w € R". Then if Av = Av, we must have
that Au = Au and Aw = Aw, as A and A are real. In addition, as v = 0, at least one of u and w must be
non-zero. O

17 Unitary and Orthogonal Diagonalisation

Theorem. Any Hermitian matrix can be diagonalised. In addition, the eigenvectors u; can be chosen to be
orthonormal, so u[Tuj = 0;. Consequently P can be chosen to be unitary.

Proof. Consider A : C" — C”", and a subspace V such that A(V) C V, and we can consider A: V — V.
We will show that for m = dim V' < n, V' has an orthonormal basis of eigenvectors. The case for n =1 is
immediate.

Now given V, v be an eigenvector with eigenvalue A. Let W be the m — 1 dimensional subspace
W ={we V:viw=0}. vI(Aw) = (Av)Tw = Avw = 0, so Aw € W. Hence by our inductive hypothesis

A has an orthonormal basis {uq, ..., um—1} formed by eigenvectors of A. Letting u,, = WV' {ug, ..., um}is
v
an orthonormal basis of eigenvectors of A. For m = n, we get a basis of eigenvectors, and result follows. [

Proposition. Any real symmetric matrix can be diagonalied, and the matrix P can be chosen to be orthogonal.

Proof Immediate from Theorem above. O

18 Quadratic Forms

Definition (Quadratic Form). A quadratic form F : R" — R, is a function given by
F(x) = x" Ax
where A is a real symmetric matrix.

Remark. Strictly speaking A does not have to be symmetric, but any asymmetric part will not contribute.

A
Definition (Diagonalisation). The matrix A can be diagonalised, where PTAP = D =

Then if we let X' = P'x, or equivalently x = Px/, then
F) =) Alx)

Definition (Principal Axes). The axes given by the columns of P are known as the principal axes of the
quadratic form.

19 Cayley-Hamilton

Theorem (Cayley-Hamilton). /f we regard the characteristic polynomial as a formal polynomial, then ya(A) =
0.

Proof for 2 x 2 matrices. By calculation. O

XAM)
Proof for Diagonalisable Matrices. Clearly xa(D) = 0

XA()\n)
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Proof for General Matrices. Let M = A — tI. Then det M = det(A — t/) = xa(t). The adjugate, Adj(M) = M
can be written as a sum M = E B;t!, where B; are matrix coefficients.

From previously, we know?l?at MM = (detM)l. As M is also a n x n matrix, detM is a degree n
polynomial. Say detM = i}c[t[.

n—1
Z B;t!
i=0

Now if we compare the coefficients of ¢" in det M and MM, we get that

MM = (A—tl) = By + (B1A— Bo)t + - - - + (By—1A+ Bp_o)t" ' — B,_4t"

C()/ = B()A
C1/ = B1A — B()

Cn—1/ = Bn—1A - Bn—Z
Cn/ = —Bnq

Then ya(A) = det M with t = A, and this is

col + A+OA? + -+ ¢ AT 4 AT
= BoA + (B1A? — BoA) + (BoA® — BiA?) + -+ + (B, 1A" — B, 2A" 1) — B, 4A”
-0

20 Changing Bases

Definition (Change of Base Matrix). If {e;} and {e/} are bases, then the change of base matrix P is defined
to satisfy

¢ = P,
te the i-th column is e} with respect to the {e;}.

Proposition. Suppose if T : V' — W is a linear map, {e;} and {e}} are bases for V, {f,} and {f,} are
bases for W, and A is the matrix representing T with respect to {e;} and {f,}. Letting the change of base
matrices be P and Q, we get that

A = QAP
Proof. T(ef) = T(3_; Pjiej) =_; PjiT(ej) = 3_;)_4AajPjifa-

But also, T(e}) = , A f) =3 4, QAL fa
If we equate the coefficients on both sides, we get that

Y AdPii =) QapA,
j b
which means AP = QA’, consequently A" = Q~'AP. O

Proposition (Change in Components). If the vector X can be written as x;e; and x[e], then

X1 X
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21 Jordan Normal Form
Proposition. Any 2 x 2 complex matrix A is similar to one of the following

(i) A/ = (A(; )?) where Ay + A,
2

(i) A = (é 3)

(i) A = (é l)

Proof. xa(t) has 2 roots over C. If the two roots are distinct, then we have distinct eigenvalues A1, A2, and
we will have My, = m,, = M, = my, = 1. Then, the two eigenvectors v; and v, forms a basis. Hence
A" = P~TAP with the eigenvectors being the columns of P, and A’ will be (i).

For a repeated root A, where M, = m, = 2, the above arqument applies, and A" will be in the form in
(ib).

For a repeated eigenvalue A, with M, = 2 and m; = 1, let v be an eigenvector, and thet w be any vector
such that {v, w} is linearly independent.

Then Av = Av, and Aw = av + Bw. Therefore the matrix of the map with respect to the basis {v,w}

would (é g) and then by looking at xa(t), we must have that A = B, otherwise ya(t) has two distinct

roots. We must also have that o = 0, otherwise M) = m, = 2.
Now set u = av, and note that A(av) = Aav, and Aw = av + Aw. Therefore, with respect to the basis

{v,w}, we get that A’ = (é j\) and the matrix is similar to (iit). ]

Alternative approach for (iii). If A has characteristic polynomial y(t) = (t—A)?, but A # A/, then there exists
w such that u = (A—A/)w + 0. However, (A—Al)u = (A—Al)?w = Ow = 0, by the Cayley-Hamilton theorem.

Thus, we have that Au = Au and Aw = u + Aw, and with basis {u, w}, we get the matrix A" = (é 1) O

Definition (Jordan Block). For a Jordan Block of size n and parameter A, let N be a n x n matrix such that

0 1 0O ... 0
N = 0
1
0 0
1T j=i+1
vvhere/\/,-/-: v tr
0 otherwise
A 0O ... 0
0 :
Then J(A) =AM +N=1|: . -~ -~
: U
O ... ... 0 A

Proposition. The standard basis of C", {e;}, under the transformation of N is mapped

epr> e, - = er—0

Consequently, N" = 0, and N is nilpotent.

18



Proposition. x;,(t) = (A —t)", and M, = n, m, =1 as ker(N) = span{eq}.

Theorem (Jordan Normal Form). Any n x n complex matrix A is similar to a matrix of the following form

Iy (A1)
v 2]
In, (A7)
where each block is a Jordan Block, A, ..., A+ are eigenvalues of A and A, and the same eigenvalue
may appear in different blocks.
Proof. See IB Linear Algebra and IB Groups, Rings and Modules. O

Proposition. Clearly n1+---+n,=n

Proposition. A is diagonalisable if and only if A’ consists of only 1 x 1 blocks.

22 Quadrics

Definition (Quadric). A quadric in R” is a hypersurface defined by

Ox) =x"Ax+b'x+c=0

For A non-zero, real and symmetric, b € R” and c € R.
Definition (Completing the square). Let y = x + %Aqb, we get that
y Ay = x"Ax + b x + %bTA’%
Hence Q(x) = 0 if and only if F(y) = k, where F(y) =y Ay, k = %bTA*1b —c

Hence quadrics are (up to affine isomatries) equivalent to a quadratic form.

221 Conics
Definition (Conic). A quadric in R? is also known as a conic.

Proposition. By completing the square and diagonalising A, we get that A4 ()(1/)2 +Az(x§)2 = k. The solutions
are as follows

o [fA, A >0, then

— If k > 0 we have an ellipse
— If k =0 we have a point

— If k < 0 there is no solution.
o /[fA1 >0,4 <0 then

— If k>0 or k <0 we have a hyperbola

— If k =0 we have a pair of lines

Proposition (Cartesian Forms of Conics).

19



2 2

) X y
° Elltpse—p+§=1

e Parabola - y> = 4ax

2 2

e Hyperbola - X J

2

Definition (Eccentricity of Conics).
e Ellipse - b = a’(1 —e’)and 0 < e < 1
e Parabola - e =1
e Hyperbola b = a’(e’ — 1), 1< e
Definition (Foci of Conics).
e Ellipse - (£ae, 0)
e Parabola - (a,0)

e Hyperbola - (+ae, 0)

l

— then
1T+ ecosf

Definition (Polar Form of Conics). Let r =

e Ellipse - [ = a(1 — €?)
e Parabola - [ = 2a
e Hyperbola - [ = a(e? — 1)
Definition (Double Cone). A double cone in R? is given by

2

)2 = 1Ix — cli? cos’ a

(x—c)-n

where c is the point where the cones meet, n is a unit vector representing the axis of the cone, and « is
the angle of the cone (angle from one side to n).

Proposition. Conics are the intersection of double cones with planes.

23  Minkowski Space

For this section, also see Dynamics and Relativity.

Definition (Minkowski Metric). For x,y € R?

(x,y) =x"Jy

17 0
where / = (O _1)

Proposition.
(Vx, g, (Mx, My) = (x,y)) &= M"JM =]

Definition (Lorentz group). The Lorentz group contains the matrices which preserve the Minkowski metric
and have determinant 1.

- o _ cosh6 sinh 6
Proposition. General form of a matrix in the Lorentz group is M = (slnh 0 cosh 9)

Proposition.
M(6r + 6;) = M(61)M(6;)
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23.1  Special Relativity

In this subsection, we will use units where the speed of light is ¢ = 1.
Definition (Lorentz Factor). The Lorentz factor for a velocity v is y(v) = (1 — v?)!?

Proposition.

where v = tanh 0

Proposition. If S is moving with velocity vy with respect to S, and S” is moving with velocity v, with respect
to S', then S” is moving with velocity

Vi + v
T4+wvv
as observed in S.
Proof. Using v = tanh 8 and M(61 + 6,) = M(61)M(6,). O
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