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1 Complex Numbers
Definition of C and elementary properties shall be assumed. The complex conjugate is dnenoted by z in thiscourse.
Theorem (Fundamental Theorem of Algebra). A polynomial over C of degree n has n roots in C, counted
with multiplicity.

Theorem (de Moivre’s Theorem). For any n ∈ Z,

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)
Proof. The case for n = 0 is trivial. For the inductive case, (cos θ+ i sin θ)n+1 = (cos(nθ)+ i sin(nθ))(cos θ+
i sin θ) = (cos(nθ) cos θ − sin(nθ) sin θ) + i(sin(nθ) cos θ + cos(nθ) sin θ) = cos((n+ 1)θ) + i sin((n+ 1)θ).Note that (cos θ+ i sin θ)−m = (cos(mθ)+ i sin(mθ))−1 = cos(mθ)−i sin(mθ) = cos(−mθ)+ i sin(−mθ).
Definition (exp, cos, sin). For z ∈ C, we define

exp(z) = ∞∑
n=0

zn
n!

cos(z) = exp(iz) + exp(−iz)2sin(z) = exp(−iz)− exp(−iz)2i
Proposition. cos(z) = 1− z22 + z44! − . . .
Proposition. sin(z) = z − z33! + z55! − . . .
Proposition. exp(z + w) = exp(z) exp(w)
Lemma. (i) ex+iy = ex (cosy+ i siny)
(ii) exp(C) = C\{0}
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(iii) ez = 1 ⇐⇒ z = 2nπi for some n ∈ N.

Proof. (i). By definitions.(ii) By definitions and properties of the real exponential.(iii) Using (i) and standard properties of sin and cos.
Definition (Roots of Unity). The n-th roots of unity are the solutions to zn − 1 = 0.
Proposition. The n-th roots of unity are of the form ωk , where 0 ≤ k < n, ω = exp(2πi

n

)
.

Proof. Clearly they satisify (ωk )n− 1 = 0. By the Fundamental Theorem of Algebra, these must be the onlyroots.
Definition (log). For z ∈ C, we define

log(z) = log |z|+ i arg(z)
Note this is multivalued as arg(z) is multivalued.

Definition (Complex Exponentiation).
za = exp(a log z)

Note this is multivalued as log(z) is multivalued.
Proposition. A line in C through z0 and parallel to w is given by

wz − wz = wz0 − wz0
Proposition. A circle in C with centre a and radius r is given by

|z − a| = r

2 Vectors in R3
Definition (Scalar Triple Product). [a, b, c] = a · (b × c) = b · (c × a) etc.
Definition (Vector Triple Product). a × (b × c) = (a · c)b− (a · b)c.
Proposition. A line in R3 has the form r = a + λu, or r × u = c, where u and c are constant vectors.

Proposition. A plane in R3 through a and with normal n is given by n · r = n · a = constant.

Definition (Kronecker Delta).
δij = {1 if i = j0 if i 6= j

Definition (Levi-Civita Epsilon).
εijk =


1 if (i j k ) is an even permutation
−1 if (i j k ) is an odd permutation0 if (i j k ) is not a permutation

Proposition.

εijkεpqr = δipδjqδkr − δjpδiqδkr+ δjpδkqδir − δkpδjqδir+ δkpδiqδjr − δipδkqδjr
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Proof. Note that both sides are totally antisymmetric in i, j , k and in p, q, r , which suggests that both sidesare equal up to multiplcation by a constant. By substituting i = p = 1, j = q = 2 and k = r = 3, we getthat the left hand side and the right hand side are both 1. Therefore the left hand side and the right handside must be equal.
Proposition.

εijkεpqk = δipδjq − δjpδiq

Proof. Let r = k in the general identity above. Also note that δkk = 3.
Proposition.

εipkεipq = 2δkq
Proof. By permuting the indices, we have that εipkεipq = εkipεqip = δqkδii−δkiδqi = 3δkq−δkq = δkq.
3 Vector Spaces
Definition (Vector Space). A vector space over a field F is a set V , where V is an abelian group underaddition, and

• λ(v + w) = λv + λw.• (λ+ µ)v = λv + µv• λ(µv) = (λµ)v• 1v = v

4 Inner Product Space
In this section, F = R or C, and for x ∈ R, x = x . Note further that in this course, we’re using “Physicist’snotation”, where the variable which is conjugate linear is opposite to what Pure Mathematics uses.
Definition (Inner Product Space). An inner product space is a vector space V over a field F together with amap 〈·, ·〉 : V × V → F satisfying

• 〈z, λu + µw〉 = λ〈z, u〉+ µ〈z,w〉• 〈λu + µw, z〉 = λ〈u, z〉+ µ〈w, z〉• 〈w, z〉 = 〈w, z〉• 〈x, x〉 ∈ R, and ≥ 0. Furthermore, it is 0 if and only if x = 0.
Using this, we can define norms, as well as what it means for two vectors to be orthogonal. Furthermore,the Cauchy-Schwarz inequality holds in any inner product space.

5 Vectors in Rn

Definition (Inner Product). For x, y ∈ Rn,
x · y = xiyi

Proposition. The inner product is symmetric, bilinear and positive definite.

Definition (Norm). For x ∈ Rn, the norm of x is defined by
|x|2 = ∥x∥2 = x · x
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Theorem (Cauchy-Schwarz Inequality). For all x, y ∈ Rn

|x · y| ≤ ∥x∥∥∥y
∥∥

with equality if and only if x and y are parallel.

Proof. If y = 0, the result is trivial. Otherwise, consider ∥∥x− λy
∥∥.∥∥x− λy

∥∥2 = (x− λy) · (x− λy) = ∥x∥− 2λx · y + λ2∥∥y
∥∥ ≥ 0This is a quadratic in λ, and as it is always non-negative, it has at most one real root. Consider thediscriminant, we get that

4(x · y)2 − 4∥x∥2∥∥y
∥∥2 ≤ 0Hence

|x · y| ≤ ∥x∥∥∥y
∥∥and equality holds if and only if x = λy.

Proposition (Triangle Inequality). For all x, y ∈ Rn∥∥x + y
∥∥ ≤ ∥x∥ + ∥∥y

∥∥
Proof.∥∥x + y

∥∥2 = (x + y) · (x + y) = ∥x∥2 + ∥∥y
∥∥2 + 2x · y ≤ ∥x∥2 + ∥∥y

∥∥2 + ∥x∥∥∥y∥∥ = (∥x∥ + ∥∥y∥∥)2

6 Linear Indepdence
In this section, let V be a (real) vector space.
Definition (Linear Indepdence). . Let v1, . . . , vr ∈ V . The vi are linearly independent if

r∑
i=1 λivi = 0

if and only if λi = 0 for all i.
Lemma. In any real inner product space V , if v1, . . . , vr 6= 0 and orthogonal, then they are linearly inde-
pendent.

Proof. If ∑i λivi = 0, then 〈vj ,∑i λivi〉 = ∑
i λi〈vj , vi〉 = λj

∥∥vj
∥∥ = 0. So λj = 0 for all j , and the vectorsare linearly independent.

7 Basis and Dimension
Definition (Basis). For a vector space V , a basis B is a set such that

• span(B ) = V• B is linearly independent.
Theorem. If {e1, . . . , en} and {f1, . . . , fm} are bases for V , then n = m.

Proof. For each a, fa = ∑
i Aaiei. Similarly, ei = ∑

a Biafa. So fa = ∑
i Aai

∑
b Bibfb = ∑

b(∑i AaiBib)fb.As the fs are linearly independent, ∑i AaiBib = δab. Similarly, from e, we get that ∑a BiaAaj = δij . Then∑
i,a AaiBia = ∑a δaa = m, but we also have that ∑i,a AaiBia = ∑i δii = n. So m = n.
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Definition (Dimension). We define the dimension dim(V ) of a vector space V as the size of any basis for V .
Proposition ((A version of the) Steinitz Exchange Lemma). Let V be a vector space with dim(V ) = n, with

• Y = {w1, . . . ,wm} with spanY = V .

• X = {u1, . . . , uk} that are linearly independent.

Then k ≤ n ≤ m, and

(i) A basis can be found as a subset of Y , by discarding vectors as necessary.

(ii) X can be extended to a basis by adding vectors from Y as necessary.

Proof. If Y is linearly independent, then Y is a basis, and n = m = dimV . If Y is linearly dependent, thenwithout loss of generality (by reordering the wi), we may write wm = m−1∑
i=1 λiwi. Then spanY = span(Y\{wm}).Repeat this until a basis is found. Consequently, we must have that n ≤ m.If X spans V , then X is a basis, and k = n. Otherwise, there exists uk+1 ∈ V which is not in spanX . Butas uk+1 /∈ spanX , k+1∑

i=1 λiui = 0 must mean that λi = 0 for all i. Hence X ∪ {uk+1} is linearly independent.Furthermore, we may choose uk+1 ∈ Y , as if Y ⊆ spanX , then spanY ⊆ spanX and spanX = V . Repeatthis until a basis is obtained.
8 Cn

Again, note that in this course we’re using “Physicists’ Notation” and the conjugation is opposite in PureMathematics.
Definition (Complex Inner Product).

〈z,w〉 = n∑
i=1 ziwisatisfies the axioms of an inner product.

9 Linear Maps
Definition. Let V and W be vector spaces, then T : V → W is a linear map if

T (λv + µw) = λT (v) + µT (w)
Proposition. A linear map is completely determined by its action on a basis.

T (v) = T
( n∑
i=1 viei

) = n∑
i=1 viT (ei)

Definition (Image). Im(T ) = {w ∈ W : ∃v ∈ V , T (v) = w}

Definition (Kernel). ker(T ) = {v ∈ V : T (v) = 0}

Lemma. ker T is a subspace of V , ImT is a subspace of W .

Definition (Rank). rank T = dim ImT
6



Definition (Nullity). null T = dim ker T
Theorem (Rank-Nullity). dimV = rank T + null T
Proof. Let {e1, . . . , ek} be a basis for ker T , and extending this to a basis of V by adding on {ek+1, . . . , en}.We claim that B = {T (ek+1), . . . , T (en)} is a basis for ImT .For any x ∈ ImT ,

x = T (v) = T
( n∑
i=1 viei

) = n∑
i=1 viT (ei) = k∑

i=1 viT (ei) + n∑
i=k+1 viT (ei) = n∑

i=k+1 viT (ei) ∈ span B
Now suppose if n∑

i=k+1 λiT (ei) = 0. Then T ( n∑
i=k+1 λiei

) = 0. So n∑
i=k+1 λiei ∈ ker T . This means that for

some µi, we have n∑
i=k+1 λiei = ∑k

i=1 µiei. As the eis form a basis, we must have that λi = 0 for all i. So Bis a basis.Consequently, rank T = n − k , null T = k and rank T + null T = n = dimV .
9.1 Geometrical Examples
Definition (Rotation). An anticlockwise rotation about an axis given by a unit vector n is given by

T (x) = (cos θ)x + (1− cos θ)(n · x)n + (sin θ)n × x

Definition (Projection). A projection onto a plane with unit normal n is defined by
T (x) = x− (x · n)n

Definition (Reflection). A reflection across a plane with unit normal n is defined by
T (x) = x− 2(x · n)n

Definition (Dilation). Given scale factors α, β, γ > 0, a dilation is defined by
T (e1) = αe1
T (e2) = βe2
T (e3) = γe3

Definition (Shear). Let a, b be orthogonal unit vectors in R3, and λ ∈ R. Define a shear parallel to a withscale factor λ by
T (x) = x + λa(x · b)

10 Matrices
Definition (Matrix-Vector Multiplication). If a matrix M represents the action of a linear map T , then

T (x) = Mxand
[T (x)]a = Maixi
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Definition (Matrix Multiplication). Matrix multiplication is given by
[AB]ij = AiaBaj

Definition (Transpose). The transpose of a matrix M , denoted by MT is given by
[MT ]ij = Mji

Definition (Hermitian Conjugate). The hermitian conjugate of a complex matrix M , denoted by M† is givenby
[M† ]ij = Mji

Definition (Symmetric, Antisymmetric Matrices). A square matrix S is symmetric if ST = S . A square matrix
A is antisymmetric if AT = −A.
Definition (Hermitian, Antihermitian Matrices). A square complex matrix M is hermitian if M† = M . It isantihermitian if M† = −M .
Proposition. The inner product can be written in terms of the Hermitian Conjugate (if we regard 1 × 1
matrices and scalars to be equivalent).

〈z,w〉 = z†w

Definition (Trace). For q square matrix M , the trace is defined to be
tr(M) = Mii

Definition (Orthogonal Matrix). A real square matrix U is orthogonal if UTU = I . Equivalently, UT = U−1.
Proposition. U is orthogonal if and only if its columns are orthonormal vectors.

Proof. [UTU ]ij = [UT ]iaUaj = UaiUaj = δij

Proposition. U is orthonormal if and only if its rows are orthonormal vectors.

Proposition. U is orthogonal if and only if it preserves the real inner product.

Proof. (Ux) · (Uy) = (Ux)TUy = xTUTUy = xTy = x · yThe reverse implication can be checked by assuming xTUTUy = xTy and calculating the entries of
UTU .
Definition (Unitary Matrix). A complex square matrix U is unitary if U†U = I , or equivalently U† = U−1.
Proposition. U is unitary if and only if it preserves the complex inner product.
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11 Determinants and Inverses
Definition (Levi-Civita Symbol).

εij . . . l︸ ︷︷ ︸
n indices

=


1 if (i j . . . l) is an even permutation
−1 if (i j . . . l) is an odd permutation0 if (i j . . . l) is not a permutation

Proposition. If σ is a permutation of {1, . . . , n}, then

εσ (1)...σ (n) = sign(σ )
Definition (Alternating Form). Given vectors v1, . . . , vn in Rn or Cn, the alternating form is defined to be

[v1, . . . , vn] = εij...l(v1)i(v2)j . . . (vn)l
Proposition. The alternating form is multilinear.

Proposition. The alternating form is totally antisymmetric. For any permutation σ ,

[vσ (1), . . . , vσ (n)] = sign(σ )[v1, . . . , vn]
Proof. Suffices to check that it holds for a transposition, as every permutation can be written as a productof transpositions. Let τ = (p q), where p < q. Then
[v1, . . . , vp−1, vq, vp+1, . . . , vq−1, vp, vq+1, . . . , vn]=∑

σ
sign(σ )(v1)σ (1) . . . (vp − 1)σ (p−1)(vq)σ (q)(vp+1)σ (p+1) . . . (vq−1)σ (q−1)(vp)σ (p)(vq+1)σ (q+1) . . . (vn)σ (n)

=∑
σ ′

sign(σ )(v1)σ ′(1) . . . (vp − 1)σ ′(p−1)(vq)σ ′(q)(vp+1)σ ′(p+1) . . . (vq−1)σ ′(q−1)(vp)σ ′(p)(vq+1)σ ′(q+1) . . . (vn)σ ′(n)
Where σ ′ = στ , and summing over all σ is the same as summing over all σ ′. As sign(στ) = − sign(σ ),we get that

[v1, . . . , vp−1, vq, vp+1, . . . , vq−1, vp, vq+1, . . . , vn] = −[v1, . . . , vn]as expected.
Proposition. [e1, . . . en] = 1

where {ei} is the standard basis for Rn, that is, (ei)j = δij .

Proposition. If two of the vectors are the same, then the alternating form is zero.

Proposition. [v1, . . . , vn] 6= 0 if and only if v1, . . . , vn are linearly independent.s
Proof. First suppose if v1, . . . , vn were linearly dependent. Without loss of generality, say vn = n−1∑

i=1 λivi.Using the multilinearity of the alternating form, and the fact that if two of the vectors were the same thenthe alternating form is zero, we get that [v1, . . . , vn] = 0.Now suppose if v1, . . . , vn are linearly independent. Then they span Rn. Hence the standard basisvectors can be written as linear combinations of the vis. We can write ei = Uaiva. Thus
[e1, . . . , en] = [Ua1va, . . . , Ubnvb] = Ua1 . . . Ubn[va, . . . , vb] = Ua1 . . . Ubnεa...b[v1, . . . , vn]But [e1, . . . , en] = 1, so we must have that [v1, . . . , vn] 6= 0.

9



11.1 Determinants
Definition (Determinant). If M is a n × n matrix, with columns Ca = Mea, detM is defined to be

detM = [C1, . . . ,Cn] = [Me1, . . . ,Men] = εi...jMi1 . . .Mjn = ∑
σ∈Sn

sign(σ )Mσ (1)1 . . .Mσ (n)n
Proposition. If M has rows Ra, then detM = [R1, . . . ,Rn]

Consequently, detM = det(MT )
Proof. Note that (Ca)i = Mia = (Ri)a. Then Mσ (1)1 . . .Mσ (n)n = M1σ−1(1) . . .Mnσ−1(n), and sign(σ ) =sign(σ−1), so we are done.
Definition (Minor). For a matrix M , we define the minor M ia as the determinant of the matrix obtained byremoving the i-th row and a-th column of M .
Proposition. For fixed a,

detM =∑
i

(−1)i+aMiaM ia

Proposition. For fixed i,

detM =∑
a

(−1)i+1MiaM ia

Proposition (Column/Row Scaling). If Ri 7→ λRi, or Ci 7→ λCi, then detM 7→ λ detM.

Proposition (Column/Row operations). If Ri 7→ Ri + λRj (i 6= j ), or Ci 7→ Ci + λCj (i 6= j ), then detM is
fixed.

Proposition (Column/Row swaps). If two columns/rows are swapped, then detM 7→ − detM.

Lemma.
εi1...inMi1a1 . . .Minan = (detM)εa1...an

Proof. Note both sides are antisymmetric in a1, . . . , an, so they are equal up to a constant. Set ai = 1 tofind the constant is 1.
Alternative Proof. Let σ (i) = ai, then σ ∈ Sn and

εi1...inMi1ai . . .Minan = εi1...inMi1σ (1) . . .Minσ (n)= εi1...inMi11 . . .Minn sign(σ )= (detM) sign(σ )= (detM)εa1...an

Theorem. det(MN) = detM detN
Proof. det(MN) = εi1...in (MN)i11 . . . (MN)inn= εi1...in (Mi1k1Nk11) . . . (MinknNknn)= εi1...inMi1k1 . . .MinknNk11 . . . Nknn= (detM)εk1...knNk11 . . . Nknn= detM detN
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11.2 Cofactors
Definition. If a matrix M has columns Ca, then the cofactor ∆ia is

∆ia = [C1, . . . ,Ca−1, ei,Ca+1, . . . ,Cn]
Proposition. ∆ia = (−1)i+aMia

Proposition. For a fixed, detM =∑
i
Mia∆ia

Proposition.

[C1, . . . ,Ca−1,Cb,Ca+1, . . . ,Cn] = {detM if a = b0 otherwise
= δab detM

Definition (Cofactor Matrix). For a matrix M , define the cofactor matrix ∆ with entries ∆ia.
11.3 Adjugate and Inverses
Definition (Adjugate Matrix). Adj(M) = M̃ = ∆T

Proposition.
M̃M = (detM)I

Proof. [M̃M ]ab = M̃aiMib = ∆iaMib = δab detM = (detM)Iab
Definition (Inverse Matrix). If detM 6= 0, then M−1 = 1detMM̃ .
12 Systems of Linear Equations
Proposition. For a linear system Ax = b, there are three possibilities

• detA 6= 0 and x = A−1b is the unique solution.

• detA = 0 and b /∈ ImA, and there is no solution.

• detA = 0 and b ∈ ImA, then x = x0 + u is a solution, where Ax0 = b, Au = 0.

Proof. Note that detA 6= 0 ⇐⇒ ImA = Rn ⇐⇒ kerA = {0}, and there is a solution if and only if
b ∈ ImA.If detA 6= 0, then x = A−1b is a solution. Suppose if x′ was also a solution. Then A(x − x′) = 0, so
x− x′ ∈ kerA = {0}, and x = x′.If detA = 0 and b ∈ ImA, then rank A < n and nullA > 0. Then choosing any u ∈ kerA and adding itto a solution will yield another solution.
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12.1 Gaussian Elimination
Definition (Gaussian Elimination). For a general system Ax = b, reorder the equations (1 to m) and variables(rename/reorder x1, . . . , xn to y1, . . . , yn) to get the coefficient of y1 in equation 1 to be

B(1)11 6= 0Eliminate y1 from all of the other equations by subtracting off multiples of equation 1. Then reorderequations/variables such that the coefficient of y2 in equation 2 is
B(2)22 6= 0and so on.This process stops when all coefficients in equations r + 1, . . . , n are 0.

Proposition. r ≤ m, r ≤ n.

Proposition. If r < m, then a solution exists only if c(r)
r+1 = · · · = c(r)

n = 0
Proposition. If r < n, and a solution exists, then yr+1, . . . , yn are undetermined.

Using Gaussian Elimination, the values for xr , . . . , x1 can be determined as B(j)
j j 6= 0 for j = 1, . . . , r .

Proposition. If r = m < n, then there is no constraint coming from the bis, so there are infinitely many
solutions.

Proposition. If r = n < m, then if the constraint coming from the bis is satisfied, there is a unique solution.
Otherwise there is no solution.

In matrices, the new system is My = c, where M is a m× n matrix in echelon form, that is
M =

 M̂

0 0


where M̂ is a r × r upper-triangular matrix, that is
M =

M11 . . . M1r. . . ...0 Mrr


In the process of Gaussian Elimination, reordering variables corresponds to column swaps, reorderingequations corresponds to row swaps and subtractions corresponds to row operations.Then r = rankM = rank A = # linearly independent columns = # linearly independent rows.If n = m, then detA = ± detM , and in addition, if r = n = m, then detA = ±M11M22 . . .Mnn 6= 0.

13 Eigenvalues and Eigenvectors
Definition (Eigenvector, Eigenvalue). For a linear map T : V → W , v ∈ V , v 6= 0 is an eigenvector if thereexists λ ∈ R such that

T (v) = λv

λ is known as the eigenvalue.
Definition (Characteristic Polynomial). For a matrix A, the characteristic polynomial χA(t) is given by

χA(t) = det(A − tI)
12



Proposition. λ is an eigenvalue of A if and only if χA(λ) = 0.

Proposition. χA(t) has n roots over C, counted with multiplicity.

Proposition. tr(A) = −coefficient of tn−1 in χA(t)
Proposition. detA = product of eigenvalues = χA(0)
13.1 Multiplicities
Definition (Eigenspace). For an eigenvalue λ of a matrix A, define the eigenspace Eλ by

Eλ = {v : Av = λv}

Definition (Geometric Multiplicity). For an eigenvalue λ of a matrix A, define the geometric multiplicty by
mλ = dimEλ = null(A − λI)

Definition (Algebraic Multiplicity). For an eigenvalue λ of a matrix A, define the algebraic multiplicity by
Mλ = Multiplicity of (t − λ) in χA(t)

Proposition.
Mλ ≥ mλ

Proof.
v1, . . . , vrwhere r = dimEλ = mλ. Extend this to a basis for Rn (or Cn) by adding vectors

wr+1, . . . ,wnFrom now on, we will take the indices with ranges i, j = 1, . . . , r and a, b = r + 1, . . . , n. Then definea matrix P with columns
Ci(P) = vi for i = 1, . . . , r
Ca(P) = wa for a = r + 1, . . . , n

Then ACi = Avi = λCi and
ACa = Awa =∑

i
Biavi +∑

b
Bbawa

=∑
i
BiaCi +∑

b
BbaCb

where Bia, Bba are arbitrary constants, ∑i = ∑r
i=1, ∑b = ∑n

b=r+1. This means that AP = PB, where
B is a matrix of the form

• Bij = λδij• Bai = 0
• Bia, Bab are unknowns.

13



Therefore,
P−1AP = B =

 λI

0 B̂


where I is the r × r identity matrix, and B̂ is the (n − r)× (n − r) matrix with entries Bab. Then, as Aand B are similar, we have that χA(t) = χB(t) = det(B − tI), and

det(B − tI) =
∣∣∣∣∣∣∣∣

(λ − t)I
0 B̂ − tI

∣∣∣∣∣∣∣∣
If we expand the determinant, then as the bottom left part of the matrix is zero, we get that det(B − tI) =det((λ − t)I) det(B̂ − tI) = (λ − t)r det(B̂ − tI). Thus, the algebraic multiplicity is at least r = mλ =dimEλ.

13.2 Linear Independence
Proposition. Let v1, . . . , vr be eigenvectors of a matrix A, with eigenvalues λ1, . . . , λr . If the eigenvalues are
distinct, say λi 6= λj fo i 6= j , then the eigenvectors are linearly independent.

Proof. Let w = r∑
i=1 αivi. Then (A − λI)w = r∑

i=1(λi − λ)vi. Now suppose if the eigenvectors were linearlydependent. Then there exists a linear combination w = 0. Furthermore, let p represent the number ofnon-zero αis. Clearly p ≥ 2.Now choose the linear combination w such that p is least. Without loss of generality, let α1 6= 0.Then (A − λ1I)w = r∑
j=2 αj (λj − λ1)vj = 0. But this is a linear combination with p − 1 non-zero coefficients.Contradicting the minimality of p.

Alternative Proof. Fix k , then ∏
j 6=k(A − λj I)

w = αk

∏
j 6=k(λj − λk )

 vk = 0

as the other vis are multiplied by λi − λi = 0. As the vks are non-zero, and λj − λk 6= 0, we must havethat αk = 0, and this holds for all k .
Proposition. Let Bλi be a basis for Eλi , then

r⋃
i=1 Bλi

is linearly independent.

Proof. Consider w = w1 + · · · + wr , where wi ∈ Eλi . By a similar argument to the previous proposition,
wi = 0. Then we must have that the coefficients for each of the basis vectors is zero.

14



14 Diagonalisation
Proposition. For an n × n matrix A, the following are equivalent.

• There exists a basis of eigenvectors v1, . . . , vn
• There exists a matrix P with P−1AP = D, where D =

λ1 . . . 0
... . . . ...0 . . . λn


Proof. Let the columns of P be Ci. Letting Ci = vi, we get that

P−1AP = D ⇐⇒ AP = PD ⇐⇒ ∀i, λivi = λivi

Definition (Diagonalisable). A matrix M is diagonalisable if either of the above conditions holds.
Proposition. For an n × n matrix M, M is diagonalisable if it has n distinct eigenvalues.

Proof. If we have n distinct eigenvalues, we must have n distinct linearly independent eigenvectors, whichforms a basis.
Proposition. A is diagonalisable if and only if for each eigenvalue λi, Mλi = mλi .

Proof. Clearly ∑iMλi = n. Now consider ⋃i Bλi . We have shown that this is linearly independent, and thesize is ∑imλi = n. So it is a basis of eigenvectors.
15 Similar Matrices
Definition (Similar). Matrices A and B are similar if B = P−1AP for some matrix P>
Proposition. If A and B are similar, then

• trA = trB
• detA = detB
• χA(t) = χB(t)

Proposition. Similarity is an equivalence relation.

Remark. Similarity is also called conjugate, especially in Groups. Note that two matrices are similar if theyrepresent the same linear map but with respect to different bases.
16 Hermitian and Symmetric Matrices
Theorem. If a matrix A is hermitian, then every eigenvalue is real, and eigenvectors with distinct eigenvalues
are orthogonal.

Proof. As A is hermitian,
v† (Av) = (Av)†v =⇒ v† (λv) = (λv† )v =⇒ λv†v = λv†v =⇒ λ = λ =⇒ λ ∈ RFurthermore,

v† (Aw) = (Av)†w =⇒ v† (µw) = (λv)†w =⇒ µv†w = λv†w =⇒ v†w = 0
15



Proposition. For a real symmetric matrix A acting on Cn, for each eigenvalue λ there is a real eigenvector
v.

Proof. Given an eigenvector v ∈ Cn, let v = u + iw, where u,w ∈ Rn. Then if Av = λv, we must havethat Au = λu and Aw = λw, as A and λ are real. In addition, as v 6= 0, at least one of u and w must benon-zero.
17 Unitary and Orthogonal Diagonalisation
Theorem. Any Hermitian matrix can be diagonalised. In addition, the eigenvectors ui can be chosen to be
orthonormal, so u†i uj = δij . Consequently P can be chosen to be unitary.

Proof. Consider A : Cn → Cn, and a subspace V such that A(V ) ⊆ V , and we can consider A : V → V .We will show that for m = dimV ≤ n, V has an orthonormal basis of eigenvectors. The case for n = 1 isimmediate.Now given V , v be an eigenvector with eigenvalue λ. Let W be the m − 1 dimensional subspace
W = {w ∈ V : v†w = 0}. v† (Aw) = (Av)†w = λv†w = 0, so Aw ∈ W . Hence by our inductive hypothesis
A has an orthonormal basis {u1, . . . , um−1} formed by eigenvectors of A. Letting um = 1∥v∥v, {u1, . . . , um} isan orthonormal basis of eigenvectors of A. For m = n, we get a basis of eigenvectors, and result follows.
Proposition. Any real symmetric matrix can be diagonalied, and the matrix P can be chosen to be orthogonal.

Proof. Immediate from Theorem above.
18 Quadratic Forms
Definition (Quadratic Form). A quadratic form F : Rn → R, is a function given by

F (x) = xTAxwhere A is a real symmetric matrix.
Remark. Strictly speaking A does not have to be symmetric, but any asymmetric part will not contribute.
Definition (Diagonalisation). The matrix A can be diagonalised, where PTAP = D =

λ1 . . .
λn


Then if we let x′ = PT x, or equivalently x = Px′, then

F (x) =∑
i
λi(x ′i )2

Definition (Principal Axes). The axes given by the columns of P are known as the principal axes of thequadratic form.
19 Cayley-Hamilton
Theorem (Cayley-Hamilton). If we regard the characteristic polynomial as a formal polynomial, then χA(A) =0.

Proof for 2× 2 matrices. By calculation.
Proof for Diagonalisable Matrices. Clearly χA(D) =

χA(λ1) . . .
χA(λn)


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Proof for General Matrices. Let M = A − tI . Then detM = det(A − tI) = χA(t). The adjugate, Adj(M) = M̃can be written as a sum M̃ = n−1∑
i=0 Biti, where Bi are matrix coefficients.

From previously, we know that M̃M = (detM)I . As M is also a n × n matrix, detM is a degree npolynomial. Say detM = n∑
i=0 citi.

M̃M = (n−1∑
i=0 Bit

i

) (A − tI) = B0 + (B1A − B0)t + · · ·+ (Bn−1A+ Bn−2)tn−1 − Bn−1tn
Now if we compare the coefficients of tr in detM and M̃M , we get that

c0I = B0A
c1I = B1A − B0...

cn−1I = Bn−1A − Bn−2
cnI = −Bn−1Then χA(A) = detM with t = A, and this is

c0I + c1A+c2A2 + · · ·+ cn−1An−1 + cnAn= B0A+ (B1A2 − B0A) + (B2A3 − B1A2) + · · ·+ (Bn−1An − Bn−2An−1)− Bn−1An= 0
20 Changing Bases
Definition (Change of Base Matrix). If {ei} and {e′i} are bases, then the change of base matrix P is definedto satisfy

e′i = Pjiejie the i-th column is e′i with respect to the {ej}.
Proposition. Suppose if T : V → W is a linear map, {ei} and {e′i} are bases for V , {fa} and {f ′a} are
bases for W , and A is the matrix representing T with respect to {ei} and {fa}. Letting the change of base
matrices be P and Q, we get that

A′ = Q−1AP
Proof. T (e′i) = T (∑j Pjiej ) = ∑j PjiT (ej ) = ∑j

∑
a AajPjifa.But also, T (e′i) = ∑b A′bif ′b = ∑a

∑
bQabA′bifa.If we equate the coefficients on both sides, we get that∑

j
AajPji =∑

b
QabA′bi

which means AP = QA′, consequently A′ = Q−1AP .
Proposition (Change in Components). If the vector X can be written as xiei and x ′ie′i, thenx1...

xn

 = P

x ′1...
x ′n


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21 Jordan Normal Form
Proposition. Any 2× 2 complex matrix A is similar to one of the following

(i) A′ = (λ1 00 λ2
)

, where λ1 6= λ2
(ii) A′ = (λ 00 λ

)
(iii) A′ = (λ 10 λ

)
Proof. χA(t) has 2 roots over C. If the two roots are distinct, then we have distinct eigenvalues λ1, λ2, andwe will have Mλ1 = mλ1 = Mλ2 = mλ2 = 1. Then, the two eigenvectors v1 and v2 forms a basis. Hence
A′ = P−1AP with the eigenvectors being the columns of P , and A′ will be (i).For a repeated root λ, where Mλ = mλ = 2, the above argument applies, and A′ will be in the form in(ii). For a repeated eigenvalue λ, with Mλ = 2 and mλ = 1, let v be an eigenvector, and thet w be any vectorsuch that {v,w} is linearly independent.Then Av = λv, and Aw = αv + βw. Therefore the matrix of the map with respect to the basis {v,w}would (λ α0 β

), and then by looking at χA(t), we must have that λ = β , otherwise χA(t) has two distinctroots. We must also have that α 6= 0, otherwise Mλ = mλ = 2.Now set u = αv, and note that A(αv) = λαv, and Aw = αv + λw. Therefore, with respect to the basis
{v,w}, we get that A′ = (λ 10 λ

), and the matrix is similar to (iii).
Alternative approach for (iii). If A has characteristic polynomial χA(t) = (t−λ)2, but A 6= λI , then there exists
w such that u = (A−λI)w 6= 0. However, (A−λI)u = (A−λI)2w = 0w = 0, by the Cayley-Hamilton theorem.Thus, we have that Au = λu and Aw = u+ λw, and with basis {u,w}, we get the matrix A′ = (λ 10 λ

).
Definition (Jordan Block). For a Jordan Block of size n and parameter λ, let N be a n × n matrix such that

N =


0 1 0 . . . 0... . . . . . . . . . ...... . . . . . . 0... . . . 10 . . . . . . . . . 0


where Nij = {1 if j = i+ 10 otherwise
Then Jn(λ) = λI +N =


λ 1 0 . . . 00 . . . . . . . . . ...... . . . . . . . . . 0... . . . . . . 10 . . . . . . 0 λ


Proposition. The standard basis of Cn, {ei}, under the transformation of N is mapped

en 7→ en−1 7→ · · · 7→ e1 7→ 0

Consequently, Nn = 0, and N is nilpotent.
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Proposition. χJn(λ)(t) = (λ − t)n, and Mλ = n, mλ = 1 as ker(N) = span{e1}.
Theorem (Jordan Normal Form). Any n × n complex matrix A is similar to a matrix of the following form

A′ =



Jn1 (λ1)
Jn2 (λ2)

. . .

Jnr (λr)


where each block is a Jordan Block, λ1, . . . , λr are eigenvalues of A and A′, and the same eigenvalue

may appear in different blocks.

Proof. See IB Linear Algebra and IB Groups, Rings and Modules.
Proposition. Clearly n1 + · · ·+ nr = n

Proposition. A is diagonalisable if and only if A′ consists of only 1× 1 blocks.

22 Quadrics
Definition (Quadric). A quadric in Rn is a hypersurface defined by

Q(x) = xTAx + bT x + c = 0For A non-zero, real and symmetric, b ∈ Rn and c ∈ R.
Definition (Completing the square). Let y = x + 12A−1b, we get that

yTAy = xTAx + bT x + 14bTA−1b

Hence Q(x) = 0 if and only if F (y) = k , where F (y) = yTAy, k = 14bTA−1b− c.
Hence quadrics are (up to affine isomatries) equivalent to a quadratic form.

22.1 Conics
Definition (Conic). A quadric in R2 is also known as a conic.
Proposition. By completing the square and diagonalising A, we get that λ1(x ′1)2 +λ2(x ′2)2 = k. The solutions
are as follows

• If λ1, λ2 > 0, then

– If k > 0 we have an ellipse
– If k = 0 we have a point
– If k < 0 there is no solution.• If λ1 > 0, λ2 < 0 then

– If k > 0 or k < 0 we have a hyperbola
– If k = 0 we have a pair of lines

Proposition (Cartesian Forms of Conics).
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• Ellipse - x2
a2 + y2

b2 = 1
• Parabola - y2 = 4ax
• Hyperbola - x2

a2 − y2
b2 = 1

Definition (Eccentricity of Conics).
• Ellipse - b2 = a2(1− e2) and 0 < e < 1• Parabola - e = 1• Hyperbola b2 = a2(e2 − 1), 1 < e

Definition (Foci of Conics).
• Ellipse - (±ae, 0)• Parabola - (a, 0)• Hyperbola - (±ae, 0)

Definition (Polar Form of Conics). Let r = l1 + e cos θ , then
• Ellipse - l = a(1− e2)• Parabola - l = 2a• Hyperbola - l = a(e2 − 1)

Definition (Double Cone). A double cone in R3 is given by
((x− c) · n)2 = ∥x− c∥2 cos2 αwhere c is the point where the cones meet, n is a unit vector representing the axis of the cone, and α isthe angle of the cone (angle from one side to n).

Proposition. Conics are the intersection of double cones with planes.

23 Minkowski Space
For this section, also see Dynamics and Relativity.
Definition (Minkowski Metric). For x, y ∈ R2

〈x, y〉 = xT Jy

where J = (1 00 −1)
Proposition. (∀x, y, 〈Mx,My〉 = 〈x, y〉) ⇐⇒ MT JM = J

Definition (Lorentz group). The Lorentz group contains the matrices which preserve the Minkowski metricand have determinant 1.
Proposition. General form of a matrix in the Lorentz group is M = (cosh θ sinh θsinh θ cosh θ)
Proposition.

M(θ1 + θ2) = M(θ1)M(θ2)
20



23.1 Special RelativityIn this subsection, we will use units where the speed of light is c = 1.
Definition (Lorentz Factor). The Lorentz factor for a velocity v is γ(v ) = (1− v2)1/2
Proposition.

M(θ) = γ(v ) (1 v
v 1)

where v = tanh θ
Proposition. If S ′ is moving with velocity v1 with respect to S, and S ′′ is moving with velocity v2 with respect
to S ′, then S ′′ is moving with velocity

v1 + v21 + v1v2
as observed in S.

Proof. Using v = tanh θ and M(θ1 + θ2) = M(θ1)M(θ2).
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